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Abstract

Learning general image representations has proven key
to the success of many computer vision tasks. For example,
many approaches to image understanding problems rely
on deep networks that were initially trained on ImageNet,
mostly because the learned features are a valuable starting
point to learn from limited labeled data. However, when it
comes to 3D motion capture of multiple people, these fea-
tures are only of limited use.

In this paper, we therefore propose an approach to learn-
ing features that are useful for this purpose. To this end, we
introduce a self-supervised approach to learning what we
call a neural scene decomposition (NSD) that can be ex-
ploited for 3D pose estimation. NSD comprises three layers
of abstraction to represent human subjects: spatial layout
in terms of bounding-boxes and relative depth; a 2D shape
representation in terms of an instance segmentation mask;
and subject-specific appearance and 3D pose information.
By exploiting self-supervision coming from multiview data,
our NSD model can be trained end-to-end without any 2D
or 3D supervision. In contrast to previous approaches,
it works for multiple persons and full-frame images. Be-
cause it encodes 3D geometry, NSD can then be effectively
leveraged to train a 3D pose estimation network from small
amounts of annotated data.

1. Introduction
Most state-of-the-art approaches to 3D pose estimation

use a deep network to regress from the image either directly
to 3D joint locations or to 2D ones, which are then lifted to
3D using another deep network. In either case, this requires
large amounts of training data that may be hard to obtain,
especially when attempting to model non-standard motions.

In other areas of computer vision, such as image classifi-
cation and object detection, this has been handled by using a
large, generic, annotated database to train networks to pro-
duce features that generalize well to new tasks. These fea-
tures can then be fed to other, task-specific deep nets, which
can be trained using far less labeled data. AlexNet [28] and
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Figure 1. Neural Scene Decomposition disentangles an im-
age into foreground and background, subject bounding boxes,
depth, instance segmentation, and latent encodings in a fully self-
supervised manner using a second view and its relative view trans-
formation for training.

VGG [59] have proved to be remarkably successful at this,
resulting in many striking advances.

Our goal is to enable a similar gain for 3D human pose
estimation. A major challenge is that there is no large,
generic, annotated database equivalent to those used to train
AlexNet and VGG that can be used to learn our new repre-
sentation. For example, Human 3.6M [21] only features
a limited range of motions and appearances, even though
it is one of the largest publicly available human motion
databases. Thus, only limited supervision has to suffice.

As a step towards our ultimate goal, we therefore intro-
duce a new scene and body representation that facilitates the
training of 3D pose estimators, even when only little anno-
tated data is available. To this end, we train a neural net-
work that infers a compositional scene representation that
comprises three levels of abstraction. We will refer to it as
Neural Scene Decomposition (NSD). As shown in Fig. 1,
the first one captures the spatial layout in terms of bound-
ing boxes and relative depth; the second is a pixel-wise in-
stance segmentation of the body; the third is a geometry-
aware hidden space that encodes the 3D pose, shape and
appearance independently. Compared to existing solutions,
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Figure 2. 3D pose estimation. Pose is regressed from the NSD
latent representation that is inferred from the image. During train-
ing, the regressor P requires far less supervision than if it had to
regress directly from the image.

NSD enables us to deal with full-frame input and multiple
people. As bounding boxes may overlap, it is crucial to also
infer a depth ordering. The key to instantiating this repre-
sentation is to use multi-view data at training time for self-
supervision. This does not require image annotations, only
knowledge of the number of people in the scene and camera
calibration, which is much easier to obtain.

Our contribution is therefore a powerful representation
that lets us train a 3D pose estimation network for multiple
people using comparatively little training data, as shown in
Fig. 2. The network can then be deployed in scenes contain-
ing several people potentially occluding each other while
requiring neither bounding boxes nor even detailed knowl-
edge of their location or scale. This is made possible though
the new concept of Bidirectional Novel View Synthesis (Bi-
NVS) and is in stark contrast to other approaches based on
classical Novel View Synthesis (NVS). These are designed
to work with only a single subject in an image crop so that
the whole frame is filled [50] or require two or more views
not only at training time but also at inference time [13].

Our neural network code and the new boxing dataset will
be made available upon request for research purposes.

2. Related work

Existing human pose estimation datasets are either large
scale but limited to studio conditions, where annotation can
be automated using marker-less multiview solutions [57, 36,
21, 23], simulated [8, 77], or generic but small [5, 51] be-
cause manual annotation [33] is cumbersome. Multi-person
pose datasets are even more difficult to find. Training sets
are usually synthesized from single person 3D pose [37] or
multi-person 2D pose [53] datasets; real ones are tiny and
meant for evaluation only [37, 78]. In practice, this data
bottleneck starkly limits the applicability of deep learning-
based single [42, 69, 46, 39, 35, 38, 52, 43, 91, 65, 61] and
multi-person [37, 53, 85] 3D pose estimation methods. In
this section, we review recent approaches to addressing this
limitation, in particular those that are most related to ours
and exploit unlabeled images for representation learning.

Weak Pose Supervision. There are many tasks for which
labeling is easier than for full 3D pose capture. This has
been exploited via transfer learning [38], cross-modal vari-
ational [60] and adversarial [83] learning both 2D and 3D

pose estimation; minimizing the re-projection error of 3D
poses to 2D labels in single [91, 29, 31] and multiple
views [23, 43]; annotating the joint depth order instead
of the absolute position [45, 41]; re-projection to silhou-
ettes [62, 75, 24, 44, 76].

Closer to us, in [58], a 2D pose detector is iteratively re-
fined by imposing view consistency in a massive multi-view
studio. A similar approach is pursued in the wild in [89, 51].
While effective, these approaches remain strongly super-
vised as their performance is closely tied to that of the re-
gressors used for bootstrapping.

In short, all of these methods reduce the required amount
of annotations but still need a lot. Furthermore, the process
has to be repeated for new kinds of motion, with potentially
different target keypoint locations and appearances. Box-
ing and skiing are examples of this because they involve
motions different enough from standard ones to require full
re-training. We build upon these methods to further reduce
the annotation effort.

Learning to Reconstruct. If multiple views of the same
object are available, geometry alone can suffice to infer 3D
shape. By building on traditional model-based multi-view
reconstruction techniques, networks have been optimized
to predict a 3D shape from monocular input that fulfills
stereo [16, 89], visual hull [81, 25, 71, 47], and photometric
re-projection constraints [73]. Even single-view training is
possible if the observed shape distribution can be captured
prior to reconstruction [93, 15]. The focus of these methods
is on rigid objects and they do not apply to dynamic and ar-
ticulated human pose. Furthermore, many of them require
silhouettes as input, which are difficult to automatically ex-
tract from natural scenes. We address both of these aspects.

Representation Learning. Completely unsupervised
methods have been extensively researched for represen-
tation learning. For instance autoencoders have long
been used to learn compact image representations [4].
Well-structured data can also be leveraged to learn disen-
tangled representations, using GANs [9, 70] or variational
autoencoders [19]. In general, the image features learned
in this manner are rarely relevant to 3D reconstruction.

Such relevance can be induced by hand-crafting a pa-
rameteric rendering function that replaces the decoder in
the autoencoder setup [66, 3], or by training either the en-
coder [30, 17, 74, 55, 27] or the decoder [11, 12] on struc-
tured datasets. To encode geometry explicitly, the methods
of [68, 67] map to and from spherical mesh representations
without supervision and that of [87] selects 2D keypoints to
provide a latent encoding. However, these methods have
only been applied to well-constrained problems, such as
face modeling, and do not provide the hierarchical 3D de-
composition we require.

Most similar to our approach are methods using camera



pose estimation [84] and NVS [50, 13] as auxiliary tasks
for geometry-aware representation learning. In particular, it
was shown in [13] that reinforcement learning of 3D grasp-
ing converges much faster when using NVS features instead
of raw images. This, however, was demonstrated only in
simulation. In [50], NVS is applied in natural scenes for
human pose estimation, using a geometry-aware representa-
tion based on transforming autoencoders [20, 10, 80]. This
approach, however, is restricted to images of single humans
with tight ground-truth bounding box annotations used at
training and test time. Here, we introduce a hierarchical
scene decomposition that allows us to deal with images de-
picting multiple subjects, without requiring any other in-
formation than the multiview images and the camera poses
during training, and only single view images at test time.

3. Method

Our goal is to learn a high-level scene representation that
is optimized for 3D human pose estimation tasks, that is, de-
tecting people and recovering their pose from single images.
We refer to this as Neural Scene Decomposition (NSD). To
create this NSD, we rely at training time on Novel View
Synthesis (NVS) using multiple views and enforcing con-
sistency among the results generated from different views.

Fig. 1 summarizes our approach. Given a scene contain-
ing N people, we want to find N corresponding bounding
boxes (bi)

N
i=1, segmentation masks (Si)

N
i=1, depth plane

estimates (zi)
N
i=1, and latent representation ([Lapp

i ,L3D
i ])Ni=1

where Lapp
i is a vector representing appearance and L3D

i a
matrix encoding geometry. Our challenge then becomes
training a deep network to instantiate this scene decompo-
sition from images in a completely self-supervised fashion.
This means training without bounding boxes, human pose
estimates, depth, or instance segmentation labels.

To meet this challenge, we ground NSD on standard deep
architectures for supervised object detection and represen-
tation learning [31, 72] and NVS [50], and add new network
layers and objective functions to enable self-supervision. In
the remainder of this section, we first summarize NVS. We
then show how we go from there to NSD, first for a single
person and then for multiple. We provide more implemen-
tation details in the supplementary material.

3.1. Novel View Synthesis

Given two images, (Iv, Iv′), of the same scene taken
from different viewpoints, NVS seeks to synthesize from
Iv a novel view F(Iv,Rv,v′ , tv,v′) that is as close as possi-
ble to Iv′ , where Rv,v′ and tv,v′ are the rotation matrix and
translation vector defining the camera motion from v to v′.
This is typically done by minimizing

L(F(Iv,Rv,v′ , tv,v′), Iv′) , (1)

where L is an appropriate image-difference metric, such
as the L2 norm. This requires static and calibrated cam-
eras, which much less labor intensive to setup than precisely
annotating many images with bounding boxes, 3D poses,
depth ordering, and instance segmentation. This is one of
the main attractions of using NVS for training purposes.

Previous NVS approaches focused merely on rigid ob-
jects [63, 64, 82, 40, 90, 14, 10, 80]. Methods that syn-
thesize human pose and appearance have used clean sil-
houettes and portrait images [88, 92] and intermediate 2D
and 3D pose estimates to localize the person’s body parts
[34, 32, 86, 56, 1, 79, 26]. We rely on the approach
of [50] that focuses on representation learning and uses
an encoding-decoding architecture without needing human
pose supervision. Its encoder E(·) maps the input image
Iv to an appearance vector Lapp

v and a 3D point cloud L3D
v

that represents geometry. In the rest of the paper we will
refer to the pair [Lapp

v ,L3D
v ] as the latent representation of

Iv . A novel view is then obtained by rotating L3D
v by

Rv,v′ and then running the decoder D(·) on the rotated
cloud and original appearance vector, that is, computing
D(Rv,v′L

3D
v ,L

app
v ).

This NVS formulation assumes that subjects are por-
trayed individually and at the same scale in each image,
which makes it possible to ignore the translation tv,v′ but
precludes real-world application where scale may vary sig-
nificantly. In practice, this is achieved by exploiting the
ground-truth bounding box around each subject at both
training and test time.

To overcome this limitation, we propose to comple-
ment the latent representations produced by this NVS-based
scene decomposition with all the information required to
deal with multiple people appearing at different scales in
the multi-view images. We therefore introduce a novel ar-
chitecture that we first describe in the case where there is
only one person and then in the multi-person scenario.

3.2. NSD with a Single Subject

Existing NVS solutions require scale and position nor-
malization because changes in object scale and translations
along the camera optical axis can compensate each other
under perspective projection. In particular, a person’s abso-
lute height can be predicted from an image only with uncer-
tainty [18]. Hence, it is geometrically impossible to predict
the size and position in a novel view.

To alleviate this problem and to attain the sought NSD,
we introduce an explicit detection and localization step,
along with the notion of bidirectional NVS, that allows us to
mix the information extracted from two views in the NVS
process. Our complete framework is outlined in Fig. 3. We
now describe each one of these components individually,
assuming there is only one person in the scene.
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Figure 3. Bidirectional NVS jointly predicts a novel view v′ from v and v from v′, mixing object location and scale estimates between the
two directions. This overcomes scale ambiguities in classical NVS, which predicts v′ from v without backwards flow from v′.

Subject Detection and Localization. To estimate the po-
sition and observed size of a single subject whose height
and 3D location are initially unknown, we run a detector
network B on the input image Iv . Let bv = B(Iv) denote
the resulting bounding box that tightly contains the subject.
We use it to define the spatial transformer (ST) network, T ,
that returns Īv = T (Iv,bv), an image window of fixed size
in which the person is centered. As both detection and win-
dowing are performed by neural networks, this process is
end-to-end differentiable.

Bidirectional NVS. The simplest way to use the detec-
tions described above would be to obtain them in two views
Iv and Iv′ and apply the NVS strategy of Section 3.1 to the
corresponding windows Īv and Īv′ , that is, aim to approx-
imate Īv′ as F(Īv,Rv,v′). This, however, would provide
very little supervisory signal to the detection process and
may result in trivial solutions where the detector focuses on
background regions that are easy to match. To prevent this,
we propose to reconstruct the entire image Iv′ instead of just
the window Īv′ . This requires mixing the representations of
the two views v and v′, because generating the entire image
Iv′ from the window Īv requires knowing the background
and where to insert the transformed version of this window.
Therefore, we estimate background images and simultane-
ously approximate Iv′ given Iv and Iv given Iv′ .

Formally, given the bounding boxes and spatial trans-
former introduced above, applying the encoder E of Sec-
tion 3.1 to both image windows Īv = T (Iv,bv) and Īv′ =
T (I′v,bv′) returns the latent representations [Lapp

v ,L3D
v ] and

[Lapp
v′ ,L

3D
v′ ], one per view. We can then invoke the decoder

D of Section 3.1 to reconstruct the entire images as

Îv = T −1(D(Lapp
v′ ,Rv′,vL

3D
v′ ),bv) , (2)

Îv′ = T −1(D(Lapp
v ,Rv,v′L

3D
v ),bv′) .

Intuitively, the reconstruction Îv of view v is obtained by

taking the pose seen in v′, rotating it to view v, applying
the appearance in view v′ to it, and reversing the spatial
transformation obtained from view v. Equivalently, Îv′ is
reconstructed from v, with the roles of v and v′ exchanged.
As such, the two reconstructions exchange parts of their de-
composition, which creates a bidirectional synthesis.

The final ingredient is to blend in the target view back-
ground. To make this easier, we assume the cameras to be
static and compute background images Bv and Bv′ by tak-
ing the median pixel value across all frames in views v and
v′, respectively. For each view, we then learn to produce
a segmentation mask S̄v as an additional output channel of
the decoder D. Since this mask corresponds to the image
window Īv , we apply the inverse spatial transformer to ob-
tain a mask Ŝv′ corresponding to the full image. We then
use these segmentation masks to blend the reconstructed
images Îv and Îv′ of Eq. 2 with the corresponding back-
grounds Bv and Bv′ to produce the final reconstructions

FIv (Iv′ ,Rv′,v) = Ŝv Îv + (1− Ŝv)Bv

FIv′ (Iv,Rv,v′) = Ŝv′ Îv′ + (1− Ŝv′)Bv′ . (3)

While our approach to blending is similar in spirit to that
of [1], it does not require supervised 2D pose estimation. It
also differs from that of [50] where the background compo-
sition is formulated as a sum without explicit masks. The
generated segmentation masks allows NSD to operate on
images with complex background at test time and equips it
with a shape abstraction layer.

3.3. NSD with Multiple Subjects

The approach of Section 3.2 assumes that there is a sin-
gle subject in the field of view. We now extend it to the case
where there are a fixed number ofN > 1 subjects of varying
stature. To this end, we first generalize the detectorB to pro-
duce N bounding boxes (bv,i)

N
i=1 = B(Iv), instead of only
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Figure 4. Multi-person Bi-NVS. Multiple subjects are detected in each input image and their encoding and decoding is processed sepa-
rately, akin to single person Bi-NVS. Key is the association of multiple persons across views by Eq. 5 and their composition by Eq. 7.

0.8

0.9

0.2

0.1

Source

Target

Source bounding boxes Target bounding boxes

Figure 5. Identity association. In this example, the light subject is
detected once as the first and once as the second subject, here vi-
sualized by red and green boxes. To match subjects across views,
we build a similarity matrix from their respective appearance en-
codings, as shown on the right.

one. NVS is then applied in parallel for each detection as
shown in Fig. 4. This yields tuples of latent codes (Lapp

v,i)
N
i=1

and (L3D
v,i)

N
i=1, transformed windows (Īv′,i)

N
i=1, and corre-

sponding segmentation masks (S̄v′,i)
N
i=1. The only step that

is truly modified with respect to the single subject case is the
compositing of Eq. 3 that must now account for potential
occlusions. This requires the following two extensions.

Appearance-based view association. Objects in the
source and target views are detected independently. To
implement the bidirectional NVS of Section 3.1, we need
to establish correspondences between bounding boxes in
views v and v′. Doing so solely on the basis of geome-
try would result in mismatches due to depth ambiguities.
To prevent this, we perform an appearance-based matching.
As shown in Fig. 5, it relies on the fact that the appearance
latent vector Lapp

v,i of object i in view v should be the same
same as Lapp

v′,j in view v′ when i and j correspond to the
same person in views v and v′. We therefore build the sim-
ilarity matrix M whose elements are the cosine distances

Mj,i =
Lapp
v,i · L

app
v′,j

||Lapp
v,i || ||L

app
v′,j ||

, (4)

where · is the dot product. In practice, we found that us-
ing only the first 16 out of 128 latent variables of the Lapp

v,is
in this operation to leave room to encode commonalities
between different subjects in Lapp for the NVS task while
still allowing for distinctive similarity matrices for the pur-
pose of association. Ideally, subject i in view v should be

Volumetric renderingvisibility * segmentation class color

visibility * depth

visibility * pixel color

Gaussian
density

Transmittance

Figure 6. A visual breakup of Eq. 7. The novel view is the sum
of decoding layers and background, weighted by their respective
visibility maps. Similarly, the segmentation mask and depth map
is computed from weighted color and depth values. Visibility is
computed through volumetric rendering. We plotted the computa-
tion for four pixels marked in red, green blue and magenta. Each
person forms a translucent layer with Gaussian density in depth di-
rection (see lower plot), so that transmittance decays smoothly at
each layer and proportionally to the segmentation mask (top plot).

matched to the subject j∗ in view v′ for which Mj,i is max-
imized with respect to j. To make this operation differen-
tiable, we apply a row-wise softmax of the scaled similarity
matrix βM, with β = 10 to promote sharp distinctions. We
use the resulting N × N association matrix A to re-order
the transformed windows and segmentation masks as

(Īv′,j)
N
j=1 ← A(Īv′,i)

N
i=1 ,

(S̄v′,j)
N
j=1 ← A(S̄v′,i)

N
i=1 . (5)

This weighted permutation is differentiable and, hence, en-
ables end-to-end training.

Reasoning about Depth. After re-ordering the trans-
formed windows and segmentation masks, the recon-
structed image for view v can in principle be obtained as

FIv ((Iv′,i),Rv′,v) =

(
N∑
i=1

Ŝv,iÎv,i

)
+

(
1−

N∑
i=1

Ŝv,i

)
Bv ,

(6)
where Îv,i is the initial reconstruction for view v and subject
i, computed independently for each person via Eq. 2. In
short, this combines the foreground region of every subject



with the overall background. This strategy, however, does
not account for overlapping subjects; depth is ignored when
computing the intensity of a pixel that is covered by two
foreground masks.

To address this, we extend the detector B to predict a
depth value zv,i in addition to the bounding boxes. We
then compute a visibility map for each subject based on
the depth values of all subjects and their segmentation
masks. To this end, we use the occlusion model intro-
duced in [49, 48] that approximates solid surfaces with
Gaussian densities to attain differentiability. This model re-
lies on the transmittance to depth z, given in our case by
T(z) = exp(−

∑
i Sv,i(erf(zv,i − z) + 1)). Given this

transmittance, the visibility of subject i is then defined as
T(zv,i)Sv,i. These visibility maps form the instance seg-
mentation masks, and we obtain depth maps by weighting
each by zv,i. This process is depicted in Fig. 6. Altogether,
this lets us re-write the reconstruction of image Iv as

FIv ((Iv′,i),Rv′,v) =

(∑
i

T(zv,i)Sv,iÎv,i

)
Z+T(∞)Bv ,

(7)
where Z = 1−T(∞)∑

j T(zv,j)Sv′,i
is a normalization term. More

details on this occlusion model are provided in the supple-
mentary material.

If at all, depth order in NVS has been handled through
depth maps [63] and by introducing a discrete number of
equally spaced depth layers [14], but none of these address
the inherent scale ambiguity as done here with Bi-NVS.
Closely related is the unsupervised person detection and
segmentation method proposed in [2], which localizes and
matches persons across views through a grid of candidate
positions on the ground plane.

In short, we train a combined detetection-encoding-
decoding network to individually detect, order, and model
foreground objects, that is, the objects visible from all views
and not contained in the static background.

3.4. NSD Training

NSD is trained in a fully self-supervised fashion to carry
out Bi-NVS as described in Section 3.2. We perform gra-
dient descent on batches containing pairs of images taken
from two or more available views at random. Since no la-
bels for intermediate supervision are available and B, E and
D are deep neural networks, we found end-to-end training
to be unreliable and rely on the following. To counteract, we
introduce focal spatial transformers (explained in the sup-
plemental document) and the following priors.

Using Weak Priors. Without guidance, the detector con-
verged to a fixed location on an easy to memorize back-
ground patch. To push the optimization process towards
exploring detection positions on the whole image, we add

a loss term that penalizes the squared deviation of the av-
erage bounding box position across a batch from the image
center. Note that this is different from penalizing the posi-
tion of each detection independently, which would lead to a
strong bias towards the center. Instead, it assumes a Gaus-
sian prior on the average person position, which is fulfilled
not only when the subjects are normally distributed around
the center, but, by the central limit theorem, also when they
are uniformly distributed. We build independent averages
for the N detection windows, which avoids trivial solutions.

Similarly, we introduce a scale prior that encourages the
average detection size to be close to 0.4 times the total im-
age size and favors an aspect ratio of 1.5. As for position,
this prior is weak and would be fulfilled if sizes vary uni-
formly from 0.1 to 0.7. Both terms are given a small weight
of 0.1 to reduce the introduced bias.

4. Evaluation
In this section, we evaluate NSD for the tasks of multi-

people detection, 3D pose estimation, and novel view syn-
thesis. First, we show that, in single-person scenarios, our
method delivers similar accuracy compared to existing self-
supervised approaches, even though they require ground-
truth bounding box annotations whereas we do not. Sec-
ond, we use a boxing scenario that stumps state-of-the-art
algorithms to demonstrate that our method can effectively
handle closely interacting people. Finally, we provide re-
sults on scenes containing three people. Additional scene
decomposition and re-composition results are given in the
supplementary material.

4.1. Baselines

We refer to our method as Ours and compare it against:

• LCR-H36M and LCR-ITW. They are both versions
of LCR++ [53], which is the current state of the art in
multi-person 3D pose estimation. The first is trained
on Human3.6M (H36M) and the second on in-the-wild
2D and 3D datasets.

• Resnet-I and Resnet-Ī. Two baselines that use a
Resnet [38], whose architecture is similar to the one
we use, to regress directly from the image to the 3D
pose. Resnet-I runs on the whole image I whereas
Resnet-Ī runs on the cropped one Ī that NSD returns.

• Auto-encoder. A baseline that uses the same spatial
transformer and encoder-decoder as we do but learns
an image auto-encoding instead of NVS in Ours.

In the above list, we distinguish between baselines Resnet-
I, Resnet-Ī, and Auto-encoder that we implemented our-
selves and the recently published method LCR. The latter
has been discussed in Section 2. We have used publicly
available code to run LCR on our data.



Figure 7. Novel view synthesis. The images on the left and right
were taken at the same time by two different cameras. The dot-
ted lines denote the NSD bounding box. The image in the middle
was synthesized from the image on the left with the subject retain-
ing his original appearance, with shorts instead of long pants, but
being shown in the pose of the one on the right.
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Figure 8. Accuracy of single-person NSD. We plot the MPJPE on
the PoseTrack validation set as a function of the number of training
samples used to train P .

4.2. Supervised Training

Recall from Section 3.4 that we learn our NSD represen-
tation in a completely self-supervised way, as shown on the
left side of Fig. 2. This being done, we can feed an image
to the encoder E that yields a representation in terms of one
or more bounding boxes, along with the corresponding seg-
mentation masks, and latent representations. As our central
goal is to demonstrate the usefulness of this representation
for 3D pose estimation using comparably little annotated
data, we then use varying amounts of such data to train a
new network P that regresses from the representation to the
3D pose. The right side of Fig. 2 depicts this process.

At inference time on an image I, we therefore compute
E(I) and run the decoder P on each resulting bounding
box and corresponding latent representation. Because the
learned representation is rich, we can use a simple two-layer
fully-connected network for P .

4.3. Single-Person Reconstruction

We test single-person NSD on the PoseTrack2018 chal-
lenge of the well known H36M [21] dataset. The images
were recorded in a four-camera studio and the task is to es-
timate 17 3D joint locations relative to the subject’s hip.
Accuracy is usually measured in terms of the mean per
joint position error (MPJPE) expressed in mm. To com-
pare against [51] and [50], we also report the N-MPJPE,
that is, the MPJPE after rigidly aligning the prediction to
the ground truth in the least squares sense.

We learn our NSD representation from the training se-

Ours GT Ours GT Ours GT Ours GT Ours GT

Figure 9. Pose estimation using only 15% of the training labels
to train P . Top row: Images with detected bounding box. Bottom
row: Recovered and ground-truth poses shown side by side.

quences featuring five different subjects. We evaluate on
the validation sequences that feature two different subjects.
In Fig. 7, we use one image pair from the validation set
to show that NSD localizes and scale normalizes a subject
well enough for resynthesis in a different view. We provide
additional examples in the supplementary material.
P is learned on subsets of the complete training set. In

Fig. 8, we plot the MPJPE as a function of the amount of
labeled training data we used for supervised training, as de-
scribed in Section 4.2. In practice, the smaller training sets
are obtained by regularly sub-sampling the dedicated 35k
examples. Direct regression from the full-frame image as in
Resnet is very inaccurate. Using the NSD bounding boxes
as in Resnet-Ī and Auto-encoder significantly improves
performance. Using our complete model further improves
accuracy by exploiting the learned high level abstraction. It
remains accurate when using as few as 1% of the available
labels. Fig. 9 depicts predictions obtained when P has been
trained using less than 15% of the available labels.

Among the semi-supervised methods, Ours is more than
15mm more accurate than Auto-encoder. The results re-
ported by [51] and [50] are not directly comparable, since
their evaluation is on a non-standard training and test sets
of H36M and they use ground truth bounding boxes. Nev-
ertheless, their reported N-MPJPE are higher than ours
throughout, for example 153.3 and 117.6 for 15k supervised
labels while we obtain 91. This confirms that our approach
can handle full-frame input without loosing accuracy.

To demonstrate that our approach benefits from addi-
tional multi-view data without additional annotations, we
retrained the encoder E using not only the training data but
also the PoseTrack challenge test data for which the ground-
truth poses are not available to us. Furthermore, our ap-
proach can also be used in a transductive manner, by ad-
ditionally incorporating the images used during evaluation
without the corresponding annotations at training time. We
refer to these two strategies as Ours-extended and Ours-
transductive, respectively. As can be seen in Fig. 7, they
both increase accuracy. More specifically, when using only
500 pose labels, the error reduces by 5mm with the former
and another 10mm with the latter, as shown in Fig. 10,

Of course, many existing methods attain a higher accu-
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Figure 10. Varying the unlabeled training set size. Using more
samples improves accuracy, particularly in the transductive case,
where examples come from the test distribution.

Ours GT Ours GT Ours GT
Figure 11. Estimating the poses of two boxers. Top row: Images
with one detected bounding box per boxer. Bottom row: Recov-
ered and ground-truth poses shown side by side.

Method MPJPE in mm NMPJPE in mm NMPJPE? in mm Detection rate
Ours 125.4 99.7 97.8 99.8 %
LCR-ITW 155.6 154.37 122.7 79.7 %
LCR-H36M 240.9 238.5 171.7 37.6 %
Resnet-Ī 196.0 194.8 182.2 98.9 %

Figure 12. Accuracy of two-person NSD on the boxing dataset,
as average over all detected persons. NMPJPE? is a version of
NMPJPE that accounts for LCR’s different skeleton dimensions.
It normalize predictions before error computation with the 17×17
linear map that aligns prediction and GT in the least squares sense.

racy than Ours by using all the annotated data and adding
to it either synthetic data or additional 2D pose datasets for
stronger supervision. While legitimate under the PoseTrack
challenge rules, it goes against our aim to reduce the re-
quired amount of labeling. For example, LCR-H36M re-
ports an accuracy of 49.4mm, but this has required creating
an additional training dataset of 557,000 synthetic images to
supplement the real ones. Without it, the original LCR [52]
achieves accuracies that are very close to those of Ours—
ranging from 75.8 to 127.1 depending on the motion—when
using full supervision. However, the strength of Ours is that
its accuracy only decreases very slowly when reducing the
amount of annotated data being used.

4.4. Two-Person Reconstruction

To test the performance of NSD when two people are in-
teracting, we introduce a new boxing dataset that comprises
8 sequences with sparring fights between 11 different box-
ers. We used a semi-automated motion capture system [6]
to annotate 6 of these sequences, of which we set aside 4
for supervised training of P and 2 for testing purposes. We
then use the remaining 2 in combination with the annotated
training sequences for self-supervised NSD learning.

Fig. 11 depicts 3 different images and the recovered
3D poses for each boxer, which are accurate in spite of
the strong occlusions. In Fig. 12, we compare our results

(a) (b) (c) (d)
Figure 13. Three-person NSD training. (a) The three detected
bounding boxes. (b) Segmentation masks. (c) Depth ordering,
where darker pixels are closer. (d) Re-synthesized images.

to those of LCR-H36M, LCR-ITW, and Resnet-Ī. We
clearly outperform all three. While LCR is trained on an-
other dataset, which precludes a direct comparison, this
demonstrates the importance of domain specific training
and NSD’s ability to learn a depth ordering and occlusions.

4.5. Multi-Person Reconstruction

Our formalism is designed to handle a pre-defined yet
arbitrary number of people. To test this, we captured a 10
minute five-camera sequence featuring 6 people interacting
in groups of three and used it to train a 3-people NSD rep-
resentation, still in a fully self-supervised way. Fig. 13 de-
pict the NSD representation of two images of that sequence,
along with the image re-synthesized using it. Note that, in
both cases, there are only three people in the re-synthesized
image, which makes sense in this case.

5. Conclusion
We have proposed a multi-view self-supervision ap-

proach to training a network to produce a hierarchical scene
representation that is tailored for 3D human pose capture,
yet general enough to be employed for other reconstruc-
tion tasks. It includes 3 levels of abstraction, spatial layout
(bounding box and relative depth), instance segmentation
(masks), and body representation (latent vectors that encode
appearance and pose). Given that representation, very little
annotated data suffices to train a secondary network to map
it to a full 3D pose. The trained network can then operate
without being given a priori locations for the people. It can
compute their poses in parallel, even when they overlap.

In this work, we have limited ourselves to a few people
in the scene. It serves well to our primary application do-
main of sports performance analysis, which demands high
accuracy but where the number of athletes is known in ad-
vance. In future work, we will extend this to a larger and
unknown number of people.
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Project.



Appendix

In this document, we supply additional implementa-
tion details, provide an ablation study, introduce focal spa-
tial transformers, and explain the differentiable occlusion
model in depth.

A. Implementation Details

Staged Training. Multi-person NSD requires to train B,
E and D in staged fashion. First, we train all three net-
works without depth reasoning. Second, we re-initialize E
andD to random values and incorporate the depth output of
the detector. In practice, we found that the first stage cor-
rectly localizes the subjects but inconsistently matches them
across the views. The second stage corrects the person as-
sociations. P is trained in a third stage, keeping B and E
fixed.

Network architecture and hyperparameter. We use 18-
and 50-layer residual networks for B and E , respectively.
They were pre-trained on ImageNet. For D we employ a
U-Net architecture [54] with 32, 64, 128, 256 feature chan-
nels in each stage. Following [50], we define P as a simple
fully connected network with two layers of 1024 features
and dropout with probability 0.5. All training stages are op-
timized for 200k iterations with Adam and a learning rate of
1e-3 for B and E , and of 1e-4 for D and P . We use an input
image resolution of 910px×512px and a batch size of 16
for the boxing dataset, 480px×360px and a batch size of 12
for the three-person dataset, and 500px×500px and a batch
size of 32 for H36M. The loss L(·) in Eq. 1 of the main doc-
ument is implemented as the combination of a simple image
loss on the pixel intensity and a perceptual loss on ResNet-
ImageNet features. Both losses use the L2 distance and the
perceptual loss is weighted by a factor two. P is optimized
with the mean squared error (MSE) loss.

The input images are whitened and the segmenta-
tion masks Ŝ are normalized to the range [0,1] before
foreground-background blending.

Implementation. We use the PyTorch platform for NN
training. To deal with the increased memory throughput due
to using full-frame images instead of pre-processed crops,
we use the NVVL loader [7]. It loads videos in compressed
format and decodes them efficiently on the GPU.

Inverse spatial transformers The inverse spatial trans-
former maps from the small bounding box crop to full-
frame. To handle regions without source pixels, we use the
Pytorch grid sample function with padding. Zero padding
is used for the segmentation and border padding for the de-
coded image. The resulting partiallyfilled but full-frame
images are completed by blending those regions where the
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Figure 14. Training progress with respect to the number of per-
formed gradient steps. Top row: With our full model the detector
learns to localize the persons quickly (left) and Bi-NVS gives al-
ready reasonable reconstructions on the validation set after 30k
iterations. Central row: Without weak priors, training gets trapped
in a local minima. Bottom row: With classical spatial transformers
the detector converges much slower and, hence, also the Bi-NVS
takes longer to converge and remains blurry after 40k iterations

segmentation mask is 0 with the background via Eq. 3 and
Eq. 6. (main paper).

B. Introducing Focal Spatial Transformers

Spatial transformers [22] make image transformations
differentiable. We use them for localizing the subjects and
noticed that their unsupervised training slows down conver-
gence. To counteract, we propose to encourage them to fo-
cus on the subject, which should be at the center of the crop.
We therefore define a smooth mask G, which we model

as a bump function G = exp

(
1− 1

1−
√
x4+y4

)
with C∞

smoothness on the compact crop window. We then post-
multiply the spatial transformer operation with G, which
yields the focal spatial transformer (FST)

T̃ (b, I) = T (b, I)G. (8)

Conversely, we use a pre-multiplication for the inverse un-
warping operation, that is, T̃ −1(b, Ī) = T −1(b,GĪ).

C. Ablation Study

All of our model components contribute to the success of
NSD. Not using weak priors leads to divergent training, as
shown in the second row of Fig. 14. Convergence is signif-
icantly slower without using focal spatial transformers, as



Figure 15. Ablation study. Top row: Without NVS task, that
means using Auto-encoder, partially overlapping subjects merge.
Central row: Without depth handling, overlapping parts blend in
the segmentation mask. Bottom row: NSD yields clear instance
segmentation masks and depth map.

shown in the third row of Fig. 14. Fig. 15 highlights the im-
portance of depth handling and Bi-NVS. The top row shows
that simple image encoding separates the subjects roughly,
but leads to bleeding between the subject instances. Us-
ing Bi-NVS without depth information creates two separate
masks, but partial occlusions, in this example at the arms,
are not resolved. By contrast, our full model produces clear
separation together with depth maps.

Furthermore, we evaluate the influence of using pre-
dicted and ground truth (GT) bounding boxes on pose es-
timation. Unfortunately, the popular Human80K subset of
H36M provides only cropped images and the recent Pose-
Track challenge only full-frame input without 2D pose or
bounding box annotation. To nevertheless compare the al-
gorithm on the same dataset, we use the unofficial proto-
col from [51]. We train self-supervised on all five training
subjects of H36M and supervised on Subject 1 only. Train-
ing Ours with GT bounding boxes instead of the ones pro-
duced by B leads to a reduction in pose estimation error
from 145.3 to 124.4 N-MPJPE. Such a shift is expected,
since the bounding box location provides additional albeit
unrealistic cues at test time.

D. Differentiable Occlusion Model
Our goal is an occlusion model that is smooth and

thereby differentiable in the depth ordering of objects. It
should also be physically correct in that a partial occluder
is as much visible as it reduces the visibility of the further
occluded objects—the visibility of all objects must sum to
one.

While occlusion and dis-occlusion of solid objects is

generally non-differentiable, these properties can be at-
tained by smoothing the scene to be partially translucent and
modeling physical light transport in a participating medium
without scattering. In the following, we review the model
used in [49, 48] that approximates the scene with a set of
Gaussian densities and explain our simplifications to it.

In contrast to previous work that approximated arbitrary
scenes consisting of multiple objects by hundreds of Gaus-
sians, we assume that people are sufficiently separated and
model each with a single depth plane, see Fig. 6 in the main
document. For the sake of smoothness, we make each plane
partially translucent with a smooth Gaussian density in the
z direction. To model the complex shape of humans, we
consider different densities for each pixel. In practice, we
use the generated segmentation masks to perform a kind of
alpha blending.

We model how light travels in the z direction along a
view ray. In the following, we consider a single pixel and
apply this model to each of the pixels, with varying opac-
ity for each layer and pixel. Beer-Lambert law states that
the transmittance function from a point s to the observer at
−∞ in a participating medium decays exponentially with
the traversed density, that is,

T (s) = exp

(
−
∫ s

−∞
d(z)dz

)
, (9)

with d(z) the density at point z and assuming an ortho-
graphic projection with the observer at −∞. Using a Gaus-
sian density with means (µq)q and (σq)q has the advantage
that this integral can be written in closed form as∫ s

−∞
d(z) =

∫ s

−∞

∑
q

cqGq(z;σq, µq)dz

=

∫ s

−∞

∑
q

cq exp(− (z − µq)2

2σ2
q

)dz

=
∑
q

σqcq
√
π√

2

(
erf

(
s− µq√

2σq

)
+ 1

)
, (10)

in terms of the error function erf(s) = 2
π

∫ s
0

exp(−z2)dz.
In our case, we simplify this equation by assuming fixed

Gaussian widths σ = 1√
2

and magnitude cq =
c′q2√
π

. This
yields

T (s) = exp

(
−
∑
q

cq
√
π

2
(erf(s− µq) + 1)

)

= exp

(
−
∑
q

c′q (erf(s− µq) + 1)

)
. (11)

In this model, an object occludes as much as it is visible.
The object’s visibility V (s) at position s is proportional to



the transmittance and the density of the object at s, that is,

Vq(s) = d(s)T (s) . (12)

For the background, which is assumed to be ∞ distant,
we use the simplified model of [48] expressed as

T (∞) = exp(−
∑
q

c′q (erf(∞− µq) + 1))

= exp(−
∑
q

c′q (2)) . (13)

and the visibility of the background plane is equal to that
remaining fraction T (∞). The individual depth planes have
been diffused in z direction. To capture the entire visibility
of one in relation to the other potentially intersecting depth
layers, one has to integrate the point-wise visibility of the
diffused density

Vq =

∫ ∞
−∞

Vq(s)ds . (14)

This integral cannot be computed in terms of simple func-
tions and was approximated by regular sampling in [49].
Here we approximate it with a single sample at the Gaus-
sian’s position µq , that is,

Vq ≈ Vq(s)Sq
2√
pi
ds

∝ Vq(s)Sq . (15)

The ‘lost’ energy due to this drastic approximation can be
inferred from 1−T (∞), for which we have an analytic solu-
tion. Assuming that the error is equally distributed across all
Gaussians, we simply re-weight the visibility of each Gaus-
sian by

Z =
1−T(∞)∑
j T(zv,j)Sv′,i

, (16)

so that their sum with the background visibility is exactly
one. These simplifications ensure computational efficiency
while maintaining smoothness and differentiability.
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