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A B S T R A C T

Know-how of volume change characteristics, VCC, of the fine-grained soils, exposed to thermal stresses, is es-
sential for design of various thermo-active structures. These stresses are known to induce excess pore-water
pressure, Δuθ, in the saturated state of such soils, which in turn affects their compression and shear strength
characteristics. In this context, through several experimental studies, the effect of thermo-mechanical stress-
path, the over-consolidation ratio (OCR) and degree of saturation on VCC (viz., thermally induced volumetric
strain, εvθ, compression and re-compression indices, cc and cr) of the fine-grained soils has been demonstrated by
earlier researchers. However, the response of these soils when exposed to sequential thermal and mechanical
stresses, STMS, due to temperature fluctuation and continued infrastructure development, on VCC has seldom
been studied. This motivated us to investigate the VCC of the fine-grained soils, by subjecting them to STMS in a
suitably modified oedometer setup which facilitates temperature controlled tests. From the results of STMS tests,
it is seen that the εvθ of these soils exposed to thermal cycles (20-60-20 °C) is independent of the thermal stress
history experienced at different applied vertical stress, σv, (= 60, 125, 250 kPa). Furthermore, from the analysis
of deformation-time curve of the thermal loading phase, a methodology for direct determination of the volume
change component of fine-grained soils, due to structural rearrangement, ΔVsθ, has been proposed. The meth-
odology enables direct computation of the coefficient of volume change due to structural rearrangement, αsθ,
that would aid in direct prediction of Δuθ from the deformation-time curve of thermal loading phase.

1. Introduction

Several practical situations met in the design and realization of
radioactive waste repositories (Delage et al., 2000; Zhang and
Rothfuchs, 2004; Romero et al., 2005; Favero et al., 2016a; Jacinto and
Ledesma, 2017), geothermal energy piles (Laloui and Ferrari, 2013; Di
Donna et al., 2016), thermal pre-fabricated vertical drains (Abuel-Naga
et al., 2007a), and buried cables and pipelines (Rao and Singh, 1999)
necessitate the knowledge of how fine-grained soils, in particular, re-
spond to the thermal stresses. This is mainly because thermal stresses,
caused by temperature fluctuation or imposition of the thermal flux,
result in volumetric expansion of the soil constituents that lead to de-
velopment of excess pore-water pressure, Δuθ, in case of geological
formations with low hydraulic conductivity. It has been demonstrated
by researchers like Pinyol et al. (2018) that in the case of saturated fine-
grained soils, generation of Δuθ could become critical in scenarios in-
volving conversion of slow-moving landslides into fast-moving ones due

to loss in effective stress, σ'. Furthermore, it is interesting to note that
the subsequent dissipation of Δuθ would result in volumetric deforma-
tion of the fine-grained soils (Delage et al., 2000; Tawati, 2010) and an
increment in σ' could be observed. This concept has been successfully
adopted by Abuel-Naga et al. (2007a) in enhancing the performance of
pre-fabricated vertical drains for stabilization of the soft Bangkok clay.
This phenomenon termed as thermal consolidation, involving develop-
ment of Δuθ and subsequent volumetric deformation, has been ex-
tensively studied with a focus on mechanisms and various influencing
factors (viz., thermo-mechanical stress path, over-consolidation ratio,
thermal stress history and degree of saturation etc.) that govern the
process.

The underlying mechanism of the thermal consolidation phenomena
was explained by Campanella and Mitchell (1968) in their pioneering
study, which suggested that the differential thermal expansion occur-
ring due to the difference between the volumetric expansion coefficient
of soil-solids, αs, and pore-water, αw, of the constituents of the soil mass,
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would lead to the development of excess pore-water pressure, Δuθ,
which in turn is the primary cause of thermal consolidation. In addition,
simultaneous decrease in viscosity, μ, of water observed at higher
temperature and structural rearrangement of the soil grains under
thermal stresses would also contribute to the variation in the rate and
amount of thermal consolidation of the soil mass, respectively. These
authors have proposed Eq. 1 for computing Δuθ of the soil mass, when it
is exposed to an incremental change in temperature, Δθ.
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where, η is the porosity, mv is the compressibility of the soil matrix and

αsθ is a coefficient (refer Eq. 2) that defines structural rearrangement of
the grains of the soil mass due to thermal stresses. In a way, αsθ is
analogous to the secondary compression that is defined in the ‘me-
chanical consolidation’ of the soils (Campanella and Mitchell, 1968).
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where, ΔVsθ is the volume change incurred due to structural re-
arrangement of the soil grains due to imposition of Δθ and V is the
volume of the soil mass before exposing it to Δθ.

However, determination of αsθ has largely remained elusive owing
to the lack of clarity on precise determination of the ‘point of initiation’

Nomenclature

α coefficient of thermal expansion.
αs volumetric expansion coefficient of soil solids.
αw volumetric expansion coefficient of pore-water.
αsθ volume change coefficient due to structural rearrange-

ment.
A Area of specimen.
cc compression index.
cr recompression index.
csθ coefficient of secondary compression under thermal stress.
cv coefficient of consolidation.
cα coefficient of secondary compression under σv.
d settlement.
dact corrected settlement.
E modulus of elasticity.
Er stiffness.
e instantaneous voids ratio.
e0 initial voids ratio.
Δe change in voids ratio.
Δecum cumulative change in voids ratio.
εv total volumetric strain.
εvp total volumetric strain due to applied vertical (mechan-

ical) stress.
εvθ volumetric strain due to thermal stress.
εvθ

e elastic volumetric strain due to thermal stress.
εvθ

p plastic volumetric strain due to thermal stress.
εvθcum cumulative volumetric strain due to thermal stress.
H hardness.
Ho initial specimen height.
ΔH deformation of specimen.
ΔHm correction for setup deformation under applied vertical

(mechanical) stress.
ΔHθ correction for setup deformation under thermal stress.
Ip plasticity index.
LVDT linear variable displacement transducer.
mv compressibility of the soil matrix.
μ dynamic viscosity of water.
η porosity.
NC normally consolidated.
OC over-consolidated.
OCR over-consolidation ratio.
σv applied vertical stress.
σ' effective stress.
σp′ pre-consolidation stress.
θ temperature.
θmax maximum temperature.
Δθ change in temperature (thermal loading).
TC thermal cycle.
t time.
Δu excess pore-water pressure.
Δuθ excess pore-water pressure due to thermal stress.
USCS Unified Soil Classification System.
V total volume of the soil mass.
ΔVm change in volume of the soil mass due to applied vertical

(mechanical) stress.
ΔVθ change in volume of the soil mass due to thermal stress.
Vs volume of soil solids.
Vw volume of water (pore-fluid).
ΔVsθ volume change due to structural rearrangement under

thermal stress.
wL liquid limit.
wP plastic limit.

Fig. 1. Schematic representation of EThIReS methodology for determination of ΔVsθ.
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of structural rearrangement in the soil mass. This led to uncertainty in
quantifying the contribution of the ΔVsθ from the total volumetric
change, ΔVθ, of the specimen under thermal stress directly from the
deformation-time curves. Hence, more recently, Ghaaowd et al. (2017)
have proposed an empirical relationship as given in Eq. 3, to obtain αsθ
as a function of plasticity index, Ip.

= ⋅ − ⋅α e0.0001sθ
I0.014 p (3)

The authors of the above study utilized Δuθ measured during un-
drained heating test to back-calculate the αsθ employing Eq. 1 for dif-
ferent soil types. The αsθ thus obtained for different soil types were
correlated with corresponding Ip to arrive at Eq. (2). However, the
measurement of Δuθ requires additional undrained tests to be con-
ducted with measurement of the pore-water pressure. With this in view,
a methodology that facilitates delineation of the contribution of ΔVsθ
from the deformation-time curve obtained during thermal consolida-
tion has been proposed. Details of this methodology, designated as,
Estimation of Thermally Induced Rearrangement of Soils, EThIReS, are
presented in Fig. 1. The methodology facilitates direct computation of
αsθ, by employing Eq. (2), using deformation-time curve obtained from
thermal consolidation test.

Fig. 1 depicts the total volume change, ΔV, with respect to time, t,
obtained from the change in specimen height, ΔH, for mechanical, Δσ,
and thermal, Δθ, loadings. These loadings are responsible for the vo-
lumetric changes undergone by the specimen designated as ΔVm and
ΔVθ, respectively. It should be noted that ΔVm comprises ΔVmp and
ΔVms, the primary consolidation and the secondary compression, re-
spectively, that can be computed by following the methodology pro-
posed by Casagrande (1936). Interestingly, ΔVθ versus t trend is found
to be similar to ΔVm versus t trend. This can be attributed, and hy-
pothesized, to the fact that the excess pore-water pressures, Δum and
Δuθ, generated due to imposition of Δσ and Δθ, respectively, dissipate in
an identical manner. Hence, Casagrande's (1936) approach could be
extended to analyze deformation-time curve obtained during thermal
consolidation, which can further be divided in to the ‘primary con-
solidation’ and ‘secondary compression’, designated as ΔVpθ and ΔVsθ,
respectively. Thus, the new approach to determine secondary com-
pression of the specimen under thermal loading regime, designated as,
EThIReS has been employed for estimating the αsθ, using Eq. (2). The
results have been compared and discussed with the αsθ obtained using
Eq. (3).

1.1. Factors influencing volume change characteristics

Although, the primary cause of thermal consolidation phenomena
remains the same irrespective of soil types and their stress-state, several
influencing factors such as thermo-mechanical stress path, over-

consolidation ratio, thermal stress history (i.e., number of thermal cy-
cles) and degree of saturation of the fine-grained soils are known to
affect their volume change characteristics, VCC. In this context, initial
studies were conducted by employing conventional oedometer and
maintaining the temperature of the water bath to establish the effect of
elevated temperature on consolidation characteristics of the fine-
grained soils by Campanella and Mitchell (1968). These investigations
revealed that the pre-consolidation pressure, σp′, of the fine-grained
soils decreases with an increase in temperature. However, the influence
of elevated temperature was found to be insignificant on the com-
pression, cc, and recompression, cr, indices. Conversely, several studies
(Plum and Esrig, 1969) that were conducted to establish the effect of
sequential heating and cooling (defined as the ‘thermal cycle’), under
application of a constant applied vertical stress, σv, have reported that
when fine-grained soils are heated from 24 °C to 50 °C, the cc gets sig-
nificantly (1.24 to 1.40) affected, for σ' < 210 kPa. The authors have
also reported that the specimens of the fine-grained soils when sub-
jected to a ‘thermal cycle’ exhibit over-consolidated behavior, with an
increase in σ'. This phenomena has been termed as ‘thermal hardening’
by Cui et al. (2000) and Abuel-Naga et al. (2007b). It has also been
opined that though the over-consolidation ratio, OCR, generated during
the ‘thermal cycle’, is independent of σv, it is a function of the maximum
temperature, θmax, to which the specimen is exposed. Furthermore, to
establish the role of number of ‘thermal cycles’ on the volumetric strain,
εvθ, of the fine-grained soils, Ma et al. (2017) have re-synthesized ex-
perimental results obtained by (Campanella and Mitchell, 1968; Di
Donna and Laloui, 2015; Vega and McCartney, 2015), and it has been
demonstrated that after about 4 to 5 thermal cycles the specimen ceases
to exhibit any significant εvθ, under a constant σ'.

Further, several studies (Baldi et al., 1988; Cui et al., 2000; Sultan
et al., 2002; Abuel-Naga et al., 2007a) have revealed that εvθ is de-
pendent on the OCR of the soil. The normally consolidated, NC, spe-
cimen would exhibit irreversible contraction whereas the over-con-
solidated, OC, specimens would undergo reversible expansion (elastic
volumetric strain, εvθe), when exposed to thermal cycles. In this context,
Favero et al. (2016b) have concluded that the soils with σ' < σp′ and
σ' > σp′ when exposed to thermal stress would exhibit elastic and plastic
volumetric strains, respectively. In short, the influence of θmax, the
number of thermal cycles, and OCR on VCC, of the fine-grained soils has
been studied. More recently, studies (Tang et al., 2008; Coccia and
McCartney, 2016) have also tried to establish the influence of degree of
saturation on the compressibility and shear strength parameters of fine-
grained soils subjected to thermal stresses.

However, aforementioned studies deal with behavior of soils sub-
jected to thermal stresses under the influence of specific σ' value,
without bringing in the concept of sequential ‘thermo-mechanical
stresses’, STMS, that nature of manmade activities impose on the fine-
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Fig. 2. Schematic of the experimental setup.
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grained soils. With this in view, the response of the fine-grained soils to
a sequence of alternate thermal and mechanical stress was investigated
and its details are presented in this manuscript. The study focusses on
the effect of varying σv on the εvθ of the specimen upon exposure to
thermal cycle. The range of temperature imposed in the thermal cycle
comprising heating (from 20 to 60 °C) and cooling (60 to 20 °C) phases
has been selected to simulate naturally occurring temperature fluctua-
tions.

2. Experimental setup

The response of fine-grained soils exposed to sequential thermo-
mechanical stresses, STMS, has been studied by employing a standard
oedometer setup, wherein the specimen temperature is controlled by
placing it in the water-bath (unit 1), as depicted in Fig. 2 (Di Donna and
Laloui, 2015). As depicted in the figure, the standard oedometer cell
(unit 2) is surrounded by two copper helical tubes (unit 3) through
which heated fluid (demineralized water) is circulated. The tempera-
ture of the heating fluid is controlled using a thermostat (make Huber®,
Germany). The water-bath is connected to a water reservoir in order to
compensate for the evaporation loss. The specimen (60mm in diameter
and 15mm height), is prepared in the oedometer ring (unit 4), which is
made of invar, an alloy of Ni and steel, for which the coefficient of
thermal expansion, α, is 5.5× 10−7 °C. Selection of invar as the oed-
ometer ring facilitates negating the relative contraction and expansion
with respect to the specimen, during thermal cycle i.e., heating and
cooling. The specimen is sandwiched between the top and bottom filter
papers and porous stones, as in the case of standard oedometer tests.
The mechanical load is applied on the specimen by using a reaction-
loading frame (unit 5), which transmits the load to the loading cap (unit
6). The vertical deformations undergone by the specimen are recorded
with the help of a linear variable displacement transducer, LVDT, (unit
7), which has a least count of 0.1 μm. The temperature of water in the
water-bath is data-logged with the help of two K-type thermocouples
(unit 8), of least count of 0.1 °C, as depicted in Fig. 2. The average of the
temperatures measured by these thermocouples is considered the
temperature of the specimen. Since the pore-fluid and the water bath
are inter-connected, and heating of the specimen is through the oed-
ometer ring (unit 4) and cell (unit 2) which are good conductors of heat,
it is apparent that the specimen temperature would equilibrate with
that of water bath after some initial time lag. The entire setup has been
enclosed in a thermally insulated chamber to minimize the heat losses

(unit 9).

3. Experimental investigations

In order to establish the influence of sustained thermal and me-
chanical loads on the volume change characteristics of soils, the spe-
cimens were subjected to the sequential thermal and mechanical
stresses, STMS, as depicted by the stress-paths in Fig. 3. The isothermal
consolidation tests on specimen were conducted at θ=20 °C to study
the effect of STMS on εvθ. Thus, the experimental program comprises of
two separate thermo-mechanical paths being imposed on the specimen:
(i) standard oedometer test, SOT (refer Fig. 3a), wherein the standard
consolidation test with loading (from A to B) and unloading phase
(from B to C) has been performed at θ=20 °C, (ii) STMST (refer
Fig. 3b), wherein the specimen is mechanically consolidated until
60 kPa (from A″ to B″) at θ=20 °C, followed by imposition of thermal
cycle comprising of heating (B″ to C″) and cooling (C″ to B″). At every
temperature increment, Δθ, of 10 °C, which is attained at the rate of
2–3 °C/h (Di Donna and Laloui, 2015) to avoid instantaneous genera-
tion of high pore-water pressure, the vertical deformation undergone by
the specimen was allowed to stabilize before imposing the subsequent
Δθ. These incremental steps of Δθ are represented by the arrowheads in
Fig. 3. The settlement of the specimen after imposition of each Δθ was
monitored until the observed changes were minimal (usually for a
duration of 24 h). The specimen was further consolidated under
σv= 125 kPa (B″ to D″) followed by imposition of a thermal cycle (D″-
E″-D″). The process was repeated at 250 kPa (D″-F″ and F″-G″-F″) fol-
lowed by which the sample was consolidated under a maximum
σv= 1000 kPa (depicted as F″-H″).

3.1. Calibration of the setup

It should be realized that various components of the test setup
would undergo deformations measured by the LVDT due to Δσv and Δθ.
Hence, to obtain the actual deformations undergone by the specimen,
suitable corrections for the setup under mechanical and thermal load-
ings, ΔHm and ΔHθ should be applied, respectively. A stainless steel
cylindrical unit with dimensions similar to the specimen, for which the
modulus of elasticity, E, and α are 210 GPa and 1.2·10−5 °C−1, re-
spectively, was taken as the calibrating specimen. Subsequently, ΔHm

and ΔHθ were determined for various combinations of thermo-me-
chanical paths depicted in Fig. 3. Hence, during the specimen runs, the
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ΔHm and ΔHθ were subtracted from the LVDT measurements of the
specimen for obtaining the actual deformation of the specimen.

3.2. Details of the specimen

Two fine-grained soils (naturally occurring terrestrial clay sample,
and a kaolinite clay, designated as Soil S1 and S2, respectively), which
exhibit low and high plasticity as per Unified Soil Classification System,
USCS, (ASTM-D2487, 2017) were used in this study. These soils were
characterized to obtain specific gravity, G, Atterberg's Limits, and
particle-size distribution characteristics by following the guidelines
presented in ASTM-D5550 (2014); ASTM-D4318 (2017); ASTM-D7928
(2017), respectively, and the results are listed in Table 1. Several
identical specimens of these soils were prepared for conducting SOT
and STMST, as depicted in Fig. 3. The specimen, in the slurry form was
prepared by adding the quantity of water equal to 1.65 times the liquid
limit, wL, to the oven-dried soil. Enough care was taken to avoid en-
trapment of air voids during specimen preparation. The specimen was
pre-consolidated to σ' of 30 kPa, (which also ensures saturation) at room
temperature,θ, equal to 20 °C to ensure that the loading cap (unit 6)
does not get lifted up due to generation of Δuθ, particularly at the lower
magnitude of the applied vertical stress, σv.

4. Results and discussion

The following subsections present the results obtained from the
study and discusses the effect of sequential thermo-mechanical stress,
STMS, path on the volume change characteristics, VCC, of the clays.
Also, the computation of the αsθ, by using EThIReS methodology, and
its comparison with that obtained from Eq. (3) is presented.

4.1. Effect of STMS on the VCC

The deformation characteristics, of specimens of Soils S1 and S2,
obtained from the SOT and STMST, as volumetric strains, εv, are pre-
sented in Fig. 4. The TC, in Fig. 4, corresponds to the thermal cycle
imposed on the specimen during STMST.

It can be observed from Fig. 4 that for specimens of Soils S1 and S2,
during SOT and STMST, as σ' increases the εv increases. The steep drop
in the εv value of the specimen, corresponds to the volumetric strain due
to imposition of TC, εvθ, applied under a specific σ' (=60, 125 and
250 kPa). The summation of plastic volumetric strains of all the TCs,
designated as, εvθp, of specimens of Soils S1 and S2 is equal to 2.90%
and 0.86%, respectively, refer Table 2. From Fig. 4, it is interesting to
note that the deformation curves of the specimens of the soil, subjected
to SOT and STMST eventually coincide. A closer look at the deforma-
tion curves of SOT and STMST of both the soils reveal that the slope of
the latter in the mechanical loading portion, followed by the applica-
tion of TCs, is lesser than the corresponding portion of the former. The
change in slope in case of the STMST indicates that the compressibility
of the specimens subjected to STMS path decreases on exposure to TCs.
This could mainly be attributed to the enhancement in stiffness, Er, and
hardness, H, of the soil solids due to exposure to elevated temperatures.
This observation gets corroborated with the findings reported by Kadali
et al. (2013), who have employed nano-indentation technique to
highlight the effect of temperature on Er and H of various clay minerals
and soils. As depicted in Fig. 5, the results for the Soil S2, for the θ range
used in the present study, the Er and H of the specimen increase by ~1.5
and ~3 times that of the values corresponding to the room temperature
(Kadali et al., 2013). The contribution of change in Er and H value of the
soil solids on the thermal hardening behavior reported by the several
researchers (Plum and Esrig, 1969; Cui et al., 2000; Abuel-Naga et al.,
2007b), in addition to the densification of the soil matrix by thermal
consolidation, needs to be determined. Such an exercise would reveal
the precise magnitude of thermal consolidation in the thermal hard-
ening behavior observed due to increment in σ'.

In addition to the analysis of deformation characteristics, it is also
important to know the (i) the nature of εvθ (i.e., reversible (elastic), εvθe,
irreversible (plastic), εvθp or both (elasto-plastic) and (ii) the effect of σ'
on εvθ. For the sake of brevity, the variation of εvθ due to imposition of
TC, during STMST for the Soil S1, only is being depicted in Fig. 6. From
Fig. 6, it can be noted that εvθ of the soil consist of elastic- and plastic-
volumetric strains, εvθ

e and εvθ
p, which develop due to cooling and

heating of the specimen, respectively. The εvθ, however, is pre-
dominantly irreversible (i.e., having greater plastic component, as re-
ported by Baldi et al., 1988; Cui et al., 2000; Sultan et al., 2002; Abuel-
Naga et al., 2007a) for the normally consolidated (NC) state of the soil.
Table 2 presents these components of the εvθ for the Soils S1 and S2.
The values of the settlement and the resulting strain undergone by the
Soil S1 during heating and cooling are listed in Table 3.

From the data presented in Table 2, it can be observed that σ' has
little influence on εvθ, and for all practical purposes it remains un-
changed. Interestingly, this finding is similar to those reported in the
literature (Abuel-Naga et al., 2007b), wherein εvθ of different speci-
mens, pre-consolidated to various σ' remains unaltered. Hence, it can be
opined that the mechanical loading on these soils, during the STMST,
has little significance on εvθ undergone by it for 60 kPa≤ σ'≤ 250 kPa.
However, this observation needs to be validated for different types of
soils when σ' > 250 kPa.

Furthermore, it can be noticed that exposure to a TC, at a particular
σ', has no effect on the εvθ undergone by the specimen at subsequent
TCs, at a higher σ'. This is contrary to the behavior of the specimen,
exposed to repeated TCs under a specific σ', for which a decrease in εvθ
for subsequent TCs imposed has been reported Ma et al. (2017). These
scenarios have been depicted as Case 1 (TCs imposed under varying σ')
and Case 2 (TCs imposed under constant σ') in Fig. 7.

It should be noted that in Case 1, despite the reduced availability of
water content, due to mechanical consolidation undergone by the
specimen, εvθ remains practically constant under varying σ', as depicted
in Fig. 7. This could be attributed to amount of freely available water in
pores that would be expelled under the work done by thermal cycle
imposition. However, this amount of work done by imposition of
identical TC would be insufficient to expel an equivalent amount of
water held under attractive forces at the solid-liquid interface (bound
water) due to electrostatic forces. Thus, until Vv (i.e., Vw in saturated
case) falls below a critical value due to the expulsion of all the available
free-water from the pores and only the bound water remains, there
would not be any significant change in εvθ for the completely saturated
specimens. Furthermore, εvθ is a function of Δuθ, and Eqs. (1) and (2)
indicate that it is dependent on ΔVsθ. It has been shown through several
studies (Campanella and Mitchell, 1968) that .repeated application of
TC would reduce the extent of ΔVsθ in each of the subsequent TC im-
position. This would result in a lesser Δuθ generation, which is re-
sponsible for a reduced ΔVvθ and εvθ, as depicted in Case 2, Fig. 7.

However, in Case 1, the soil matrix is alternatively loaded to a
higher σ' after every imposition of TC. This leads to an equivalent scope
of structural rearrangement of the specimen due to thermal stresses
under the new σ'. Thus, the ΔVsθ, remains constant under each TC and
hence εvθ achieved in the subsequent TC remains unaltered. In other
words, STMS erases the effect of a TC on εvθ undergone by the specimen
during subsequent TCs.

Table 1
Basic characteristics of the soils used in the study.

Soil G Size fraction (%) wL (%) Ip (%) USCS

Sand Silt Clay

S1 2.56 01 37 62 64 41 CH
S2 2.64 00 55 45 48 24 CL
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4.2. Determination of αsθby employing EThIReS

The volume change coefficient of structural rearrangement, αsθ, has
been computed for Soils S1 and S2, by employing EThIReS metho-
dology, as described in Section 1 (refer to Fig. 1). The methodology
involves determination of volume change during the secondary con-
solidation process under thermal loading, ΔVsθ, from deformation
versus time curves by extending the Casagrandes' approach. The de-
formation versus time curves of Soil S1 are depicted in Fig. 8a during
the imposition of first TC under σ' of 60 kPa. For the sake of brevity, the
computation of ΔVsθ (=ΔHsθ×A, where A is the area of cross-section of

the specimen) from the deformation versus time curve is briefed for the
final temperature increment, Δθ4, in Fig. 8. For the deformation versus
time curves terminating before 24 h, or for the ones extending beyond
24 h, the ΔVsθ corresponding to 24 h was determined by using the
coefficient of secondary consolidation for thermal stress, cαθ, of the
corresponding Δθ step. Thus twelve values of ΔVsθ, corresponding to
four Δθ steps for each of the three σ' (=60, 120 and 250 kPa) were
obtained from which αsθ for each soil was computed by employing Eq.
(2). The average of the so obtained αsθ was considered as the re-
presentative value of the soil, which has been further compared with
those obtained by using Eq. (3) (refer to Table 4).

As depicted in Table 4, contrary to the Soil S1, the αsθ value for the
Soil S2 exhibits a good match with that obtained from Eq. (3). However,
it is worth noticing that as Soil S1 is more compressible (cc= 0.49)
when compared to Soil S2 (cc= 0.26), and would exhibit a higher εvθ,
as depicted in Table 2, and hence a higher αsθ. This leads to a discussion
on the validity of Eq. (3), which indicates that αsθ is only dependent on
Ip. It should be realized that Ip being an index property would not in-
clude in it the characteristics of the soil matrix and fabric (Gumaste
et al., 2014), which in turn gets influenced by the imposed thermal
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Fig. 4. Deformation characteristics of the specimens of (a) Soil S1 and (b) Soil S2.

Table 2
The values of elastic and plastic volumetric strains (in %) for different soils.

Thermal cycle Soil S1 Soil S2

εvθ
e εvθ

p εvθ εvθ
e εvθ

p εvθ

TC1 (60 kPa) 0.38 0.84 1.22 0.15 0.31 0.46
TC2 (125 kPa) 0.27 0.97 1.24 0.14 0.30 0.44
TC3 (250 kPa) 0.36 1.09 1.45 0.12 0.25 0.37
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Fig. 5. The variation of stiffness (Er) and hardness (H) of the white clay (S2)
with temperature (Kadali et al., 2013).
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stresses. Hence, though out of the scope of this study, extensive in-
vestigations on different types of soils, compacted to different matrix,
should be conducted to modify αsθ and Ip relationship, which would
facilitate a quick and accurate determination of Δuθ, without resorting
to elaborate testing protocols.

5. Concluding remarks

Efforts have been made to understand the effect of sequential
thermo-mechanical stress, STMS, on the volume change characteristics
of the fine-grained soils. Based on the study, it can be opined that the
volumetric strain of the soil mass due to thermal stress is independent
of the thermal history that has been defined as number of thermal cy-
cles, TCs, experienced by the specimen when it is imposed at different
effective stresses (σ' ranging from 60 to 250 kPa). Although, the results
of STMS path exhibit a similar value of thermal volumetric strain, at
different σ', it did not result in substantial additional consolidation of
the specimen (as the cumulative plastic strain, εvθp, is about 2.90%),
which is majorly due to the stiffening and hardening of the soil solids
(grain minerals) subjected to elevated temperatures. Study to this ex-
tent needs to be carried out to quantify the effect of stiffening of various
soil minerals and their role in reducing the efficacy of thermal volume

change of the specimen. In addition, this study successfully demon-
strates the utility of the methodology EThIReS for enabling a simple
and direct way for computing the volume change coefficient of struc-
tural rearrangement, αsθ, from the deformation versus time curve.
However, the study reveals that extensive investigations should be
conducted on different types of soils, compacted to different matrix, so
that a better αsθ and Ip relationship could be developed. It is believed
that such an improvement of Eq. (3) would facilitate a quick and ac-
curate determination of Δuθ, without resorting to elaborate testing
protocols.
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