

Confinement Analysis
Multivariable Regression through the full κ - δ-scan

$\tau_{\text {Ee fit }}[\mathrm{ms}]=2 \times 6^{\alpha_{1 /}} \mathrm{n}_{\mathrm{e} 19}{ }^{0.46} \mathrm{P}^{-0.68} \mathrm{I}_{\mathrm{p}}{ }^{\alpha_{1 / \mathrm{P}}} \kappa^{\alpha_{\kappa}}(1+\delta)^{-0.35}$ $\alpha_{n}=0.46 \pm 0.2, \alpha_{p}=-0.68 \pm 0.1, \alpha_{\delta}=-0.35 \pm 0.3$,

Comparison with ITER-98-L
Comparison with Rebut-Lallia-Watkins

-TCV ECRH heated (+ ohmic target) data fit quite well ITER-98-L-mode
scaling scaling
-The benefit of small (or negative)
triangularity appears clearly (not triangularity appears clearly (n triangularity appears cle
included in
ITER-98-L)

-ECRH and OH data well described by RLW scaling, based on a critica - gradient transport model - Negative δ appear also favourable in
this representation, although RLW this representation, although RLW
better integrates triangularity than better integra
ITER-98-L

Confinement versus Triangularity
-Triangularity range: $-0.6<\delta<0.45$
-3 power classes
density range: $1.3<n_{\text {eo } 19<3}$

- confinement normalised using $\tau_{\text {Ee }} \sim\left(n_{e}{ }_{e}{ }^{0}\right)^{0.46}$ dependence
- $\mathrm{P}_{\text {tof }} \sim 3$ to 9 for $\mathrm{q}_{\text {eng }}=2$ to 3

The continement time is larger at small or negative triangularities, pa
ticularly at low input power (OH) ticularly at ow input power (OH).
Power degradation may be weaker at positive traiangularity, possibly
reducing the triangurity reducing the triangularity depe
dence at high power - degeative triangularities yield higher $\tau / \tau_{\text {RLw }}$ at all powers - Higher power experiments with next
gyrotron clusters $\left(P_{\text {tot }}=3\right.$ and gyrotron Clusters $\left(P_{\text {tot }}=3\right.$ and
4.5 MW will help clarify the situation

4.5 MW) will help clarity the situation

Sawteeth Stability vs Plasma Shape (elongation κ, triangularity δ)

- Low $\mathrm{q}_{\text {eng }} \sim 2$ series, inversion radius $\rho_{\text {inv }} \sim 0.55$
- $\rho_{\text {inc }} \sim$ constant throughout shape changes (5% variation
- ECH power deposition inside inversion radius (TORAY)
- Increasing power at $\delta>0.3$ or $k<1.6$ stabilises sawteeth (increased period \& amplitude)
- Increasing power at $\delta<0.2$ or $\kappa>1.6$ destabilises sawteeth (reduced period \& amplitude)

Sual

- Stabilisation found in experiment at positive triangularity in qualitat
Mercier stability of internal kink \& Resistive stability of $m=1$ mode:

Ellipticity and negative triangularity are destabilising [Lütiens et al. NF 32 (1992) 1625]
Confinement Transitions with off-axis Heating

In the process of expanding the confinement database
to decouple ${ }_{\mathrm{I}}^{\mathrm{f}}$ and k : to decouple I_{p} and k :

High $q \sim 20, \kappa=2$ discharges have been heated off-axis
at $p \sim 0.4$ (HFS with $B=1.43 T$ and 827 GHz) at $\rho \sim 0.4$ (HFS with $\mathrm{B}_{\varphi}=1.43 \mathrm{~T}$ and 82.7 GHz) At the highest EC powers, 1-1.5 MW ($\mathrm{P}_{\mathrm{ECC}} / \mathrm{P}_{\mathrm{oH}} \sim 50-90$ during $\mathrm{EC}, \sim 10-15$ before EC), spontaneous oscillating continement transitions oca
(the density profile flattens when the $\phi s x$ drops)

In the different cases of counter-ECCD, confinement times about twice above RLW have been measured (10 keV)

Conclusions
Confinement and central MHD studied varying triangularity ($\pm \delta$), elongation ($\mathrm{K}<2.15$)
ECRH power $<1.5 \mathrm{MW}$, electron density. plasma current 1 p
ECRH power $<1.5 \mathrm{MW}$, electron density, plasma current Ip
General TCV ECRH
ccaling law close to ITER- - -98: shows
TCV ECRH data fit closely the critical gradient Rebut-Lallia-Wawneficial effect of $\delta<0.2$
Cef ECRH data fit closely the critical gradient Rebut-Lallia- \mathbf{y}) δ less apparent then in $I T E R-$--98, but still visble)
angularity dependence may be weaker at higher additional powe (1.5 MW)

- Higher EC power (3-4.5MW) will
- clarify the issue of high power confinement triangularity dependence - and allow the study of high elongations $\left(\kappa>2\right.$) at significant $\mathrm{P}_{\mathrm{EC}} / \mathrm{P}_{\mathrm{O}}$ Shape dependence of sawtooth stability with central deposition

