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ABSTRACT: Analysis of the dynamic and steady-state properties of biochemical networks hinge 

on information about the parameters of enzyme kinetics. The lack of experimental data 

characterizing enzyme activities and kinetics along with the associated uncertainties impede the 

development of kinetic models, and researchers commonly use Monte Carlo sampling to explore 

the parameter space. However, the sampling of parameter spaces is a computationally expensive 

task for larger biochemical networks. To address this issue, we exploit the fact that reaction rates 

of biochemical reactions and network responses can be expressed as a function of displacements 

from thermodynamic equilibrium of elementary reaction steps and concentrations of free enzymes 

and their intermediary complexes. For a set of kinetic mechanisms ubiquitously found in 

biochemistry, we express kinetic responses of enzymes to changes in network metabolite 

concentrations through these quantities both analytically and schematically. The tailor-made 

sampling of these quantities allows for characterizing the missing kinetic parameters and 

accelerating the efforts towards building genome-scale kinetic metabolic models.  
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1. INTRODUCTION 

Evolutionary processes in biological systems gave rise to a wide range of control and 

regulatory mechanisms to ensure their survival and robustness under varying environmental 

conditions. For a comprehensive understanding of cellular organisms, we have to consider them 

at the system-wide level and use the appropriate analytical methods.1 The methods from systems 

and control theory2-5 are particularly suitable for the analysis of biological systems, and many 

significant properties of cellular organisms have been discovered using these concepts.6, 7  

The theoretical analysis and study of metabolic processes and ways to control fluxes in 

metabolic networks have been mostly focused on developing the quantitative descriptions of 

metabolism.8 A predominant approach in these studies is Metabolic Control Analysis (MCA), a 

parametric sensitivity analysis of a metabolic system around a steady-state.9-12 Though the theory 

of MCA is well developed, information about kinetic properties of enzymes that is required for 

its successful application is scarce. 

To obtain the values of kinetic parameters, one can use experimental data and perform 

parameter estimation,13-16 or explore the parameter space by employing Monte Carlo sampling 

techniques,16, 17 The latter approach is prevalent in newer kinetic modeling methods.18 However, 

the random sampling of kinetic parameters spaces of large biochemical networks becomes 

computationally challenging as the size of network is growing.17 Efficient methods for exploring 

large parametric spaces of biochemical networks require tailor-made sampling techniques that 

exploit the specific structure of the networks while considering physico-chemical constraints.17, 

19  Recently, a novel method for characterization and reduction of uncertainty in kinetic models 
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was proposed that further alleviates issues with intensive computational requirements by 

identifying parameters and their bounds relevant for the analyzed physiology.20 

In our previous work19, we proposed a framework for modeling of uncertainty in the enzyme 

kinetics and efficient sampling technique that allows us to sample parametric space of large 

biochemical networks. The framework allows us to calculate the local parametric sensitivity 

coefficients of biochemical reactions, dubbed elasticities within the Metabolic Control Analysis 

(MCA) formalism9-12, as a function of the distribution of enzymes among their free form and 

intermediary complexes, the thermodynamic displacements of the reactions from the 

equilibrium, and the net reaction fluxes. The proposed formulation allowed us to explicitly 

integrate the conservation of the total amount of enzymes, metabolite concentrations and reaction 

thermodynamics, and perform an efficient Monte Carlo sampling for generating all states within 

modeled enzymatic mechanisms. The features of the proposed framework were illustrated 

through examples of the three-step reversible and irreversible Michaels-Menten kinetic 

mechanisms. 

 While the single-substrate single-product mechanisms can be used to model more complex 

enzymes, e.g., certain hydrolyses are commonly described with these mechanisms because water 

is abundant in living cells and its concentration is considered constant, according to a strict 

definition these mechanisms are rather infrequent in biochemistry as they are confined to 

isomerizations.21 In this work, we extend the previously proposed framework19 to more 

ubiquitous mechanisms appearing in biochemical networks such as ordered Bi Bi, ping pong Bi 

Bi, ordered Uni Bi and ordered Bi Uni mechanism. It is estimated that the Bi Bi mechanisms 

cover more than 60% of known enzymatic reactions.21 We also propose a novel schematic 

method for the derivation of the analytic expressions of elasticities allowing us to skip altogether 
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algebraic manipulations that are particularly cumbersome for more complex mechanisms. The 

method is closely related to the signal flow graphs methods used in the analysis of  (i) electronic 

circuits and control loops,22 and (ii) control and regulation in metabolic pathways.23-25 

Furthermore, we present a bottom-up workflow that makes use of the computed elasticities to 

determine the steady-state outputs of biochemical networks induced by the changes in the 

enzyme activities despite uncertainties in kinetic properties of enzymes. 

 

2. METHODS 

2.1. (Log)Linear Description of Biochemical Networks and Metabolic Control Analysis. 

Consider a biochemical system with 𝑛 metabolites involved in 𝑚 enzymatic reactions. The mass 

balances of the system are described by 

𝑑𝒙
𝑑𝑡 = N𝒗(𝒙(𝑡), 𝒑(𝑡)) (1) 

where the stoichiometric matrix, 𝑁 ∈ ℛ1×3, describes the network topology, 𝒗 ∈ ℛ3 is the 

reaction rate vector, 𝒙 ∈ ℛ1 is the vector of metabolite concentrations, and 𝒑 ∈ ℛ4 is the vector 

of manipulated inputs. Due to conservation relationships among metabolites in the network, the 

stoichiometric matrix is rank deficient, and the rows corresponding to dependent metabolites, 

𝒙𝒅 ∈ ℛ16, can be expressed as a function of the rows corresponding to independent metabolites, 

𝒙𝒊 ∈ ℛ18, so that the system (Eq. 1) takes the form 

𝑑𝒙𝒊
𝑑𝑡 = N9𝒗:𝒙𝒊(𝑡), 𝒙𝒅:𝒙𝒊(𝑡),𝒑(𝑡);, 𝒑(𝑡); (1) 

where N9 is the reduced stoichiometric matrix containing the rows corresponding to the 

independent metabolites.26 
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The vector of metabolic outputs, 𝒉 ∈ ℛ=, can be formed in general as a nonlinear function of 

reaction rates, 𝒗, the independent metabolites, 𝒙𝒊, and the inputs, 𝒑.8, 12 For simplicity, here we 

choose 𝒉 to contain the following two variables: 

𝒉 = >𝒙𝒊𝒗 ? (2) 

Following the derivation from Hatzimanikatis and Bailey12, we can linearize the system (Eqs. 

1-2) around a steady state 𝒙𝒊∗, 𝒑∗ to obtain a (log)linear model: 

𝑑𝒛𝒊
𝑑𝑡 = N9𝑉Σ𝒛𝒊 + N9𝑉Π𝐪 (3) 

𝒘 = >
𝒛𝒊

Σ𝒛𝒊 + Π𝐪?
(4)  

where the vectors 𝒛𝒊 and 𝐪 represent the logarithmic deviations of the state variables and 

parameters whose elements are defined as:12 

𝑧L,M = ln P
𝑥L,M
𝑥L,M∗

R 					𝑘 = 1, … , 𝑛L

𝑞W = ln	 X
𝑝W
𝑝W∗
Z 					𝑙 = 1,… , 𝑡

	 (5) 

and the matrices 𝑉, Σ, and Π are: 

𝑉 = 𝑑𝑖𝑎𝑔(𝑣a∗, 𝑣b∗,… , 𝑣3∗)

Σ = c𝜎e,M	|	𝜎e,M =
g hi jk
g hi l8,m

n
l8∗,o∗

p	

Π = c𝜋e,M	|	𝜋e,M =
g hi jk
g hi om

r
l8∗,o∗

p

	 (6)  

Hatzimanikatis and Bailey have demonstrated8, 12 that (log)linear models can accurately 

describe the dynamic behavior of metabolic responses. Moreover, they have shown that the flux 

and concentration control coefficients defined within the framework of Metabolic Control 

Analysis (MCA)9, 10, 12 can readily be derived from the (log)linear model (Eqs 3-6). Indeed, the 

flux and concentration control coefficients that quantify the responses of biochemical networks 
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to the changes in systems parameters such as enzyme activities are the steady-state gains of the 

(log)linear system. By expressing the steady state solution of Eqs. 3-6, one obtains 

𝒘𝒔𝒔 ≜ >
𝒛𝒊

Σ𝒛𝒊 + Π𝐪
?
l8∗,o∗

= 𝐶𝐪 (7) 

with 

𝐶 = x −(N9𝑉Σ)zaN9𝑉Π
(I − Σ(N9𝑉Σ)zaN9𝑉)Π

| (8) 

The matrix 𝐶 is the control coefficient matrix of the outputs 𝒉 (metabolite concentrations and 

metabolic fluxes) with respect to inputs 𝒑 (within the MCA formalism9, 10, 12, the inputs 𝒑 are 

considered as parameters as they do not change at the steady state). By inspecting Eq. 8, we 

observe that for computing the control coefficients we need to accurately determine the matrices 

of sensitivities of reaction rates with respect to the metabolite concentrations, Σ, and the 

parameters, Π (within the MCA formalism these matrices are called the elasticity matrices). The 

rates of reactions constituting a biochemical network are characterized by the mechanistic 

properties of catalyzing enzymes, but also by the states of the biochemical network, i.e., 

metabolic fluxes and metabolite concentrations.  

Therefore, for determining the elasticity matrices Σ and Π, the steady-state values of fluxes and 

concentrations in the network are required. This task can be performed by employing methods 

that integrate information about thermodynamics in the context of Flux Balance Analysis27 such 

as the Thermodynamics-based Flux Analysis (TFA)28-30, the energy balance analysis (EBA)31, 

and the network-embedded thermodynamic analysis (NET analysis)32.  

In contrast, determining the mechanistic properties of enzymes catalyzing the reactions 

involved in the networks is a challenging task because the comprehensive knowledge of the 

kinetic properties of enzymes is lacking.19, 33-35 To address this challenge, the space of enzyme 
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states can be explored,19 and the information about the distribution of the enzymes among their 

free form and the intermediary complexes can then be used to compute the elements of the 

elasticity matrices Σ and Π. These matrices are, in turn, used to compute the control coefficients.  

The set of procedures for determining the flux and concentration control coefficients is 

assembled in a conceptual workflow (Figure 1), and its constitutive elements are detailed below. 

 

Figure 1. A workflow for the computation of flux and concentration control coefficients based 

on the Monte Carlo sampling of the enzyme states and elementary reaction displacements. 

 

INPUTS
 - Reaction network (Stoichiometry)
 - Thermodynamics
 - Experimental data (if available)

NETWORK PROPERTIES
Compute: - Metabolite concentrations
 - Net fluxes
 - Equilibrium displacements

MECHANISTIC PROPERTIES
 - Assign kinetic mechanism
 - Sample enzyme states
 - Sample elementary reaction displacements

METABOLIC CONTROL ANALYSIS
Compute:
 - Concentration control coefficients
 - Flux control coefficients
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2.2. Displacements from Thermodynamic Equilibrium. The displacement of a reaction 

from its thermodynamic equilibrium is defined as follows:19, 36, 37 

Γ =
𝑉�
𝑉�
=

1
𝐾��

∏ 𝑃L3
L�a

∏ 𝑆e1
e�a

	 (9) 

where 𝑉�  and 𝑉�  denote the backward and the forward reaction rates of the overall reaction, and 

𝑆e, 𝑗 = 1…𝑛, and 𝑃L, 𝑖 = 1…𝑚, are the concentrations of the participating substrates and 

products. The reaction’s equilibrium constant, 𝐾��, represents the ratio of the concentrations of 

substrates, 𝑆e
�� , and products, 𝑃L

�� , at the equilibrium, and it can be expressed as:  

𝐾�� =
∏ 𝑃L

��3
L�a

∏ 𝑆e
��1

e�a
= 𝑒z

�����
9� 	 (10) 

where Δ=𝐺�� denotes the standard Gibbs free energy of the reaction, 𝑅 is the universal gas 

constant and 𝑇 is the temperature. The Gibbs free energy of the reaction can be expressed as  

Δ=𝐺� = Δ=𝐺�� + 𝑅𝑇 ln
∏ 𝑃L3
L�a

∏ 𝑆e1
e�a

	 (11) 

Combining Eqs 9-11, Γ can be expressed as: 

Γ = 𝑒
����
9� 	 (12) 

Therefore, for reactions operating towards production of products 𝑃L, the Gibbs free energy 

difference is negative and Γ can take values from the interval [0, 1], whereas for reactions 

operating towards production of substrates 𝑆e, Δ=𝐺� is positive and Γ	 ∈ [1,+∞]. Reactions with 

values of Γ close to 1 are operating near thermodynamic equilibrium, whereas reactions with Γ ≈

0 and Γ → +∞ are operating strictly in the forward and backward direction, respectively. 

The displacement Γ of a reaction can be determined by knowledge of the Δ=𝐺��,and 

equivalently the 𝐾��, and the concentrations of the metabolites (substrates and products). The 
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Gibbs free energy of reactions (Δ=𝐺��) can be determined by experiments38 or it can be estimated 

using estimation methods, such as group contribution methods.39, 40  

 

2.3. Mass Balances of Enzyme Complexes in Enzymatic Reactions. For a generic multi-

substrate multi-product enzymatic reaction 

𝐴 + 𝐵 +⋯	↔ 𝑃 + 𝑄 +⋯  

the mass balance equations of the concentrations of enzyme states have the following form: 

𝑑𝒙𝑬𝑺
𝑑𝑡 = M𝒖(𝒙𝑬𝑺, 𝒑𝑬𝑺) (13) 

where 𝒙𝑬𝑺 ∈ ℛ3¦§  denotes the vector of enzyme states’ concentrations, M ∈ ℛ3¦§×1¦§  is the 

stoichiometric matrix describing the dependency of 𝒙𝑬𝑺 and the fluxes of elementary reactions 

steps 𝒖 ∈ ℛ1¦§ , and 𝒑𝑬𝑺 ∈ ℛ4¦§  is the parameter vector 

𝒑𝑬𝑺 = ¨𝐸�, 𝑘a�, 𝑘a�, … , 𝐴, 𝐵, 𝑃, 𝑄,… ª
�  

that contains the conserved concentrations of total enzyme, 𝐸�, the rate constants of elementary 

reaction steps, 𝑘a�, 𝑘a�,… , and other parameters such as the concentrations of substrates and 

products, 𝐴, 𝐵, 𝑃, 𝑄,…. 

We assume that an enzyme is not consumed nor produced in the course of a reaction, i.e., the 

total amount of enzyme, 𝐸�, remains constant, i.e., 𝐸 + 𝐸𝐴 + 𝐸𝐵 +⋯+ 𝐸𝑃 +⋯ = 𝐸�. As a 

consequence, M is a rank deficient matrix as the concentration of an enzyme state can be 

expressed as a function of other enzyme states. Therefore, the vector of enzyme states, 𝒙𝑬𝑺, can 

be split in the dependent enzyme states, 𝒙𝑬𝑺,𝒅, and the independent enzyme states, 𝒙𝑬𝑺,𝒊, and the 

temporal evolution the enzyme states can then be expressed as 

𝑑𝒙𝑬𝑺,𝒊
𝑑𝑡 = 𝑀9𝒖:𝒙𝑬𝑺,𝒊, 𝒙𝑬𝑺,𝒅:𝒙𝑬𝑺,𝒊, 𝐸�;, 𝒑𝑬𝑺;	 (14) 
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where 𝑀9 is a reduced stoichiometric matrix.26, 41 

2.4. Sampling of Enzyme States and Displacements of Elementary Reaction Steps from 

Thermodynamic Equilibrium. For exploring both enzyme states’ space and thermodynamic 

displacements space, the samples can be drawn from a n-variate Dirichlet distribution. A n-

variate Dirichlet distribution with all parameters equal to one allows generating a population of 

uniformly distributed samples over n-dimensional simplices.19  

2.4.1. Sampling of Enzyme States. In the space formed by the concentration values of the 

enzyme in its free form, 𝐸, and in the form of enzyme-metabolite complexes, 𝐸𝑆L, the 

conservation of 𝐸�: 

𝐸
𝐸�

+
1
𝐸�

¬ 𝐸𝑆L

3¦§za

L�a

= 1	 (15) 

represents a 𝑚­®-dimensional simplex. Therefore, the samples of enzyme states scaled by 𝐸� can 

be efficiently generated by drawing samples from the Dirichlet distribution.19 

2.4.2. Sampling of Thermodynamic Displacements of Elementary Reaction Steps. The overall 

displacement of a reaction from its equilibrium, Γ, can be expressed as a product of 

thermodynamic displacements of elementary reactions steps, 𝛾M , belonging to a set 𝐷: 

Γ =±𝛾M
M∈²

≜±
𝑢M�
𝑢M�M∈²

	 (16) 

where 𝑢M� is the backward, and 𝑢M� the forward rate of the kth elementary reaction step. The 

content of the set 𝐷 depends on the kinetic mechanism of a reaction. For example, in the case of 

ping-pong or ordered kinetic mechanisms, the set 𝐷 contain all elementary steps. From the above 

expression, we obtain by applying logarithm: 

1
lnΓ¬ ln𝛾M

M∈²

= 1	 (17) 
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In the space of logarithms of thermodynamic displacements of elementary reactions steps, 𝛾M , 

Eq. 17 represents a k-dimensional simplex and the samples of  𝛾M  can promptly be generated 

using the Dirichlet distribution. Observe that for Γ = 1, the thermodynamic displacements of 

elementary steps are equal to one, i.e., 𝛾M = 1, 𝑘 ∈ 𝐷. 

Information about the marginal distributions of the enzyme states or displacements from 

thermodynamic equilibrium of elementary reaction steps inferred from experimental 

observations can be used to generate refined sets of these quantities. We can accomplish this by 

adjusting the parameters of the Dirichlet distribution to match the experimental data.19 

2.5. Elasticities. Elasticities are defined within the MCA formalism9, 10, 12 as the local 

sensitivities of reaction rates to the changes in metabolite concentrations and parameters, and 

they are required to compute the flux and concentration control coefficients.9, 10, 12, 33-35 

According to the MCA formalism, the elasticities of the enzyme states, 𝒙𝑬𝑺,𝒊, and of the 

elementary fluxes, 𝒖, with respect to the parameters, 𝒑𝑬𝑺, can be expressed in the following 

form:19

ℇo
l¦§,8 ≜ µ hi 𝒙𝑬𝑺,𝒊	

µ hi 𝒑𝑬𝑺
= −(𝑀9𝑈Ξ)za𝑀9𝑈Π­®	

ℇo¸ ≜
µ hi𝒖	
µ hi 𝒑𝑬𝑺

= Ξℇo
l¦§,8 + Π­®

(18) 

where 𝑈 ∈ ℛb1¦§×b1¦§  is a diagonal matrix of the forward and backward elementary rates, and 

Ξ ≜ g hi𝒖
g hi 𝒙𝑬𝑺

 and Π­® ≜
g hi 𝒖
g hi𝒑𝑬𝑺

 are the matrices of the sensitivities of elementary reaction rates 

with respect to the enzyme states and the system parameters, respectively. Considering the 

conservation of the total amount of enzymes, we can write 

Ξ = ΞL + Ξµ𝑄Lµ  
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where ΞL ≜
g hi𝒖

g hi 𝒙𝑬𝑺,𝒊
 and Ξµ ≜

g hi𝒖
g hi 𝒙𝑬𝑺,𝒅

 are the matrices of the sensitivities of elementary reaction 

rates with respect to independent and dependent enzyme states, and 𝑄Lµ ≜
g hi𝒙𝑬𝑺,𝒅
g hi 𝒙𝑬𝑺,𝒊

 is the relative 

abundance of the dependent enzyme states with respect to the independent ones.19, 33  

 

3. RESULTS AND DISCUSSION 

3.1. Analytical Expressions for Elasticities of Several Enzymatic Mechanisms. 

3.1.1. Ping Pong Bi Bi mechanism. The ping pong mechanism, also called double displacement 

reaction21, is characterized by the existence of a substituted enzyme intermediate, 𝐸∗, that is 

temporary formed after the binding of the first substrate, 𝐴, to the enzyme, 𝐸 (Figure 2b). In the 

ping pong Bi Bi mechanism, the occurrence of ternary complexes is structurally impossible due 

to an overlap of the binding sites for the substrates 𝐴 and 𝐵, and the first product, 𝑃, is created 

and released before the second substrate, 𝐵, binds.21 Examples of reactions that exhibit the ping 

pong mechanism include pyruvate carboxylase and serine proteases such as trypsin and 

chymotrypsin. 
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Figure 2. Two representations of a ping pong Bi Bi enzymatic reaction. a) network 

representation characterized by the flux through the reaction and the metabolite concentrations of 

participating metabolites; b) more detailed mechanistic representation additionally characterized 

by the enzymatic mechanism, the enzyme states, and the fluxes of elementary reaction steps. 

 
The net fluxes of six elementary reactions steps, 𝑢¹1�4	𝑘 = 1,… ,6, of the ping pong mechanism 

are all equal to the net flux of the overall reaction, 𝑉. Therefore, using the definition of the 

thermodynamic displacement from equilibrium of elementary reaction steps from Eq. 16, the 

forward and backward elementary reaction rates can be expressed as: 

𝑢M� = 𝑢¹1�4 + 𝑢M� =
1

(1 − 𝛾M)
𝑉

𝑢M� =
𝛾M

(1 − 𝛾M)
𝑉

			

⎭
⎬

⎫
			𝑘 = 1,… ,6 (19) 
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𝐸 + 𝐸𝐴 + 𝐸∗𝑃 + 𝐸∗ + 𝐸∗𝐵 + 𝐸𝑄 = 𝐸�	 (20) 

we can consider the enzyme states 𝐸𝐴, 𝐸∗𝑃, 𝐸∗, 𝐸∗𝐵, and 𝐸𝑄 to be independent and 𝐸 to be 

dependent. 

The elasticities of the ping-pong mechanism can be expressed analytically in the form of Eq. 

18, where the stoichiometric matrix of the mechanism is  

𝑀9 =	

⎝

⎜
⎛
1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 1 −1 −1 1 0 0 0 0 0 0
0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 1 −1 −1 1 0 0
0 0 0 0 0 0 0 0 1 −1 −1 1⎠

⎟
⎞

(21) 

and the matrix of the elementary rates can be derived from Eq. 19: 

𝑈 = 𝑉 ∙ 𝑑𝑖𝑎𝑔 Ä a
azÅÆ

, ÅÆ
azÅÆ

, a
azÅÇ

, ÅÇ
azÅÇ

, a
azÅÈ

, ÅÈ
azÅÈ

, a
azÅÉ

, ÅÉ
azÅÉ

, a
azÅÊ

, ÅÊ
azÅÊ

, a
azÅË

, ÅË
azÅË

Ì (22) 

The sensitivities of the elementary reaction rates with respect to the vectors of independent 

enzyme states [𝐸𝐴,𝐸∗𝑃, 𝐸∗, 𝐸∗𝐵, 𝐸𝑄] and parameters 𝒑𝑬𝑺 = [𝐸�, 𝐴, 𝐵, 𝑃, 𝑄]� read as 

Ξ = 	

⎝

⎜
⎛

−𝐸𝐴/𝐸 1 1 0 0 0 0 0 0 0 0 −𝐸𝐴/𝐸
−𝐸∗𝑃/𝐸 0 0 1 1 0 0 0 0 0 0 −𝐸∗𝑃/𝐸
−𝐸∗/𝐸 0 0 0 0 1 1 0 0 0 0 −𝐸∗/𝐸
−𝐸∗𝐵/𝐸 0 0 0 0 0 0 1 1 0 0 −𝐸∗𝐵/𝐸
−𝐸𝑄/𝐸 0 0 0 0 0 0 0 0 1 1 −𝐸𝑄/𝐸 ⎠

⎟
⎞

�

(23) 

and 

Π­® = 	

⎝

⎜
⎛
𝐸�/𝐸 0 0 0 0 0 0 0 0 0 0 𝐸�/𝐸
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 ⎠

⎟
⎞

�

(24) 

Substituting Eqs. 21-24 into Eq. 18, and considering that 

ℇo
¸Î
ÏÐÑ

=
1

1 − 𝛾a
ℇo
¸mÒ −

𝛾a
1 − 𝛾a

ℇo
¸mÓ (25) 

we finally obtain  
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ℇÔ
¸Î
ÏÐÑ

=

𝐸
𝐸�

+ 𝛾b𝛾Õ𝛾Ö𝛾×𝛾Ø
𝐸𝐴
𝐸�

+ 𝛾Õ𝛾Ö𝛾×𝛾Ø
𝐸∗𝑃
𝐸�

+ 𝛾Ö𝛾×𝛾Ø
𝐸∗
𝐸�

+ 𝛾×𝛾Ø
𝐸∗𝐵
𝐸�

+ 𝛾Ø
𝐸𝑄
𝐸�

1 − 𝛾a𝛾b𝛾Õ𝛾Ö𝛾×𝛾Ø
(26) 

ℇÙ
¸Î
ÏÐÑ

=
𝛾a𝛾b𝛾Õ

𝐸
𝐸�

+ 𝛾b𝛾Õ
𝐸𝐴
𝐸�

+ 𝛾Õ
𝐸∗𝑃
𝐸�

+ 𝐸∗
𝐸�

+ 𝛾a𝛾b𝛾Õ𝛾×𝛾Ø
𝐸∗𝐵
𝐸�

+ 𝛾a𝛾b𝛾Õ𝛾Ø
𝐸𝑄
𝐸�

1 − 𝛾a𝛾b𝛾Õ𝛾Ö𝛾×𝛾Ø
(27) 

ℇÚ
¸Î
ÏÐÑ

= −
𝛾Õ Ä𝛾a𝛾b

𝐸
𝐸�

+ 𝛾b
𝐸𝐴
𝐸�

+ 𝐸
∗𝑃
𝐸�

+ 𝛾a𝛾b𝛾Ö𝛾×𝛾Ø
𝐸∗
𝐸�

+ 𝛾a𝛾b𝛾×𝛾Ø
𝐸∗𝐵
𝐸�

+ 𝛾a𝛾b𝛾Ø
𝐸𝑄
𝐸�
Ì

1 − 𝛾a𝛾b𝛾Õ𝛾Ö𝛾×𝛾Ø
(28) 

ℇÛ
¸Î
ÏÐÑ

= −
𝛾Ø Ä𝛾a𝛾b𝛾Õ𝛾Ö𝛾×

𝐸
𝐸�

+ 𝛾b𝛾Õ𝛾Ö𝛾×
𝐸𝐴
𝐸�

+ 𝛾Õ𝛾Ö𝛾×
𝐸∗𝑃
𝐸�

+ 𝛾Ö𝛾×
𝐸∗
𝐸�

+ 𝛾×
𝐸∗𝐵
𝐸�

+ 𝐸𝑄𝐸�
Ì

1 − 𝛾a𝛾b𝛾Õ𝛾Ö𝛾×𝛾Ø
(29) 

and, as expected, ℇ­Ü
¸Î
ÏÐÑ

= 1 . 

 

3.1.2. Ordered Bi Bi mechanism. The ordered Bi Bi mechanism is characterized by a 

compulsory order of substrate binding and product release (Figure 3). The enzyme 𝐸 first binds 

to substrate 𝐴, and creation of the 𝐸𝐴 complex results in the formation of a binding site for 

substrate 𝐵. The ternary 𝐸𝐴𝐵 complex is then formed and isomerized to the 𝐸𝑃𝑄 complex which 

releases first the product 𝑃 and then the product 𝑄. Examples of reactions that follow the ordered 

bi-bi mechanism include lactate dehydrogenase42, alcohol dehydrogenase43, and many other 

dehydrogenases. 
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Figure 3. Ordered Bi Bi enzymatic mechanism. 

Using the formalism presented in Section 3.1.1., one can obtain the following expressions for 

the elasticities of the net rates with respect to the parameter vector 𝒑𝑬𝑺 = [𝐴,𝐵, 𝑃, 𝑄]�: 

ℇÔ
¸Î
ÏÐÑ

=

𝐸
𝐸�

+ 𝛾b𝛾Õ𝛾Ö𝛾×
𝐸𝐴
𝐸�

+ 𝛾Õ𝛾Ö𝛾×
𝐸𝐴𝐵
𝐸�

+ 𝛾Ö𝛾×
𝐸𝑃𝑄
𝐸�

+ 𝛾×
𝐸𝑄
𝐸�

1 − 𝛾a𝛾b𝛾Õ𝛾Ö𝛾×
(30) 

ℇÙ
¸Î
ÏÐÑ

=
𝛾a
𝐸
𝐸�

+ 𝐸𝐴𝐸�
+ 𝛾a𝛾Õ𝛾Ö𝛾×

𝐸𝐴𝐵
𝐸�

+ 𝛾a𝛾Ö𝛾×
𝐸𝑃𝑄
𝐸�

+ 𝛾a𝛾×
𝐸𝑄
𝐸�

1 − 𝛾a𝛾b𝛾Õ𝛾Ö𝛾×
(31) 

ℇÚ
¸Î
ÏÐÑ

= −	
𝛾a𝛾b𝛾Õ𝛾Ö

𝐸
𝐸�

+ 𝛾b𝛾Õ𝛾Ö
𝐸𝐴
𝐸�

+ 𝛾Õ𝛾Ö
𝐸𝐴𝐵
𝐸�

+ 𝛾Ö
𝐸𝑃𝑄
𝐸�

+ 𝛾a𝛾b𝛾Õ𝛾Ö𝛾×
𝐸𝑄
𝐸�

1 − 𝛾a𝛾b𝛾Õ𝛾Ö𝛾×
(32) 

ℇÛ
¸Î
ÏÐÑ

= −	
𝛾a𝛾b𝛾Õ𝛾Ö𝛾×

𝐸
𝐸�

+ 𝛾b𝛾Õ𝛾Ö𝛾×
𝐸𝐴
𝐸�

+ 𝛾Õ𝛾Ö𝛾×
𝐸𝐴𝐵
𝐸�

+ 𝛾Ö𝛾×
𝐸𝑃𝑄
𝐸�

+ 𝛾×
𝐸𝑄
𝐸�

1 − 𝛾a𝛾b𝛾Õ𝛾Ö𝛾×
(33) 

 

3.1.3. Ordered Uni Bi mechanism. The ordered Uni Bi mechanism is characterized by a 

compulsory order of product release (Figure 4). Examples of reactions that are conform with the 

ordered uni-bi mechanism include fructose-bisphosphate aldolase44, 45 and isocitrate lyase46. 

 

Figure 4. Ordered Uni Bi enzymatic mechanism. 
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The elasticities of the net rates with respect to the parameter vector 𝒑𝑬𝑺 = [𝐴, 𝑃, 𝑄]� for this 

mechanism read as: 

ℇÔ
¸Î
ÏÐÑ

=

𝐸
𝐸�

+ 𝛾b𝛾Õ𝛾Ö
𝐸𝐴
𝐸�

+ 𝛾Õ𝛾Ö
𝐸𝑃𝑄
𝐸�

+ 𝛾Ö
𝐸𝑄
𝐸�

1 − 𝛾a𝛾b𝛾Õ𝛾Ö
(34) 

 

ℇÚ
¸Î
ÏÐÑ

= −	
𝛾a𝛾b𝛾Õ

𝐸
𝐸�

+ 𝛾b𝛾Õ
𝐸𝐴
𝐸�

+ 𝛾Õ
𝐸𝑃𝑄
𝐸�

+ 𝛾a𝛾b𝛾Õ𝛾Ö
𝐸𝑄
𝐸�

1 − 𝛾a𝛾b𝛾Õ𝛾Ö
(35) 

 

ℇÛ
¸Î
ÏÐÑ

= −	
𝛾a𝛾b𝛾Õ𝛾Ö

𝐸
𝐸�

+ 𝛾b𝛾Õ𝛾Ö
𝐸𝐴
𝐸�

+ 𝛾Õ𝛾Ö
𝐸𝑃𝑄
𝐸�

+ 𝛾Ö
𝐸𝑄
𝐸�

1 − 𝛾a𝛾b𝛾Õ𝛾Ö
(36) 

 

3.1.4. Ordered Bi Uni mechanism. The ordered Uni Bi mechanism is characterized by a 

compulsory order of substrate binding (Figure 5). Examples of reactions that exhibit this 

mechanism include 3-methylaspartate ammonia-lyase47 and pyruvate aldolase48.  

 

 

Figure 5. Ordered Bi Uni enzymatic mechanism.  

The elasticities of the net rates with respect to the parameter vector 𝒑𝑬𝑺 = [𝐴,𝐵, 𝑃]� for this 

mechanism can be written as: 

ℇÔ
¸Î
ÏÐÑ

=

𝐸
𝐸�

+ 𝛾b𝛾Õ𝛾Ö
𝐸𝐴
𝐸�

+ 𝛾Õ𝛾Ö
𝐸𝐴𝐵
𝐸�

+ 𝛾Ö
𝐸𝑃
𝐸�

1 − 𝛾a𝛾b𝛾Õ𝛾Ö
(37) 
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ℇÙ
¸Î
ÏÐÑ

=
𝛾a
𝐸
𝐸�

+ 𝐸𝐴𝐸�
+ 𝛾a𝛾Õ𝛾Ö

𝐸𝑃𝑄
𝐸�

+ 𝛾a𝛾Ö
𝐸𝑄
𝐸�

1 − 𝛾a𝛾b𝛾Õ𝛾Ö
(38) 

 
 

ℇÚ
¸Î
ÏÐÑ

= −	
𝛾a𝛾b𝛾Õ𝛾Ö

𝐸
𝐸�

+ 𝛾b𝛾Õ𝛾Ö
𝐸𝐴
𝐸�

+ 𝛾Ö𝛾Ö
𝐸𝐴𝐵
𝐸�

+ 𝛾Ö
𝐸𝑃
𝐸�

1 − 𝛾a𝛾b𝛾Õ𝛾Ö
(39) 

 
 

3.2. Schematic Method for Deriving Analytical Expressions for Elasticities. The algebraic 

manipulations used in deriving the analytical expressions for elasticities (Section 3.1) are rather 

complicated for mechanisms with a large number of enzyme states. However, inspection of the 

analytical expressions from Section 3.1. reveals a regularity in terms that multiply the enzyme 

states thus providing a way to shorten the derivations substantially. We propose here a schematic 

method that is reminiscent of Mason’s gain formula22 for finding the transfer function of linear 

systems from the control theory. We present the method through an elementary example.  

3.2.1. Illustrative example. Consider the reversible Uni Uni mechanism 

 

Figure 6. Reversible Uni Uni mechanism 

The analytical expressions for the elasticities of the net rates of this mechanism with respect to 

the parameters 𝒑𝑬𝑺 = [𝐴,𝐵]� are derived elsewhere:19 

ℇÔ
¸Î
ÏÐÑ

=

𝐸
𝐸�

+ 𝛾b𝛾Õ
𝐸𝐴
𝐸�

+ 𝛾Õ
𝐸𝑃
𝐸�

1 − 𝛾a𝛾b𝛾Õ
(40) 
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P

E
v vu2f 
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 19 

ℇÚ
¸Î
ÏÐÑ

= −
𝛾a𝛾b𝛾Õ

𝐸
𝐸�

+ 𝛾b𝛾Õ
𝐸𝐴
𝐸�

+ 𝛾Õ
𝐸𝑃
𝐸�

1 − 𝛾a𝛾b𝛾Õ
(41) 

The expressions Eqs. 40-41 can be obtained schematically in two steps as follows. 

Step 1: Draw a schematic diagram of the kinetic mechanism as a graph, where the enzyme 

states that both (i) bind with a substrate and (ii) are formed by releasing a product are represented 

by two nodes. Such a state in the illustrative example is the enzyme in its free form (Figure 6). 

We distinguish these two nodes as the input node, that connects to a substrate (Figure 7a, empty 

circle) and the output node that connects to a product (Figure 7a, full circle). The other enzyme 

states, 𝐸𝐴/𝐸� and 𝐸𝑃/𝐸�, are represented with a node of the graph (Figure 7a).  
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Figure 7. Directed graphs of typical enzymatic mechanisms: Uni Uni mechanism (a), Ordered 

Uni Bi Mechanism (b), Ordered Bi Bi mechanism (c), and Ping Pong Bi Bi mechanism (d). 

 
It is assumed that there is a net production of the product 𝑃, i.e., a net flow is directed from 𝐴 

to 𝑃 (Figure 7a). The vertices of the graph that connect each two enzyme states are weighted by 

the equilibrium displacements of the elementary steps connecting them, and they are directed 

along the assumed net flow. For example, the vertex that connects 𝐸/𝐸� and 𝐸𝐴/𝐸� has a weight 
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of 𝛾a, and it is directed from 𝐸/𝐸� to 𝐸𝐴/𝐸�. The vertices that connect a substrate to the input 

node of an enzyme state have the weight of +1, whereas the vertices that connect the output 

nodes of an enzyme state to a product are directed toward the product and have the weight of -1. 

The vertices that connect the input and the output node of an enzyme state are directed towards 

the input node and have the weight of +1. 

 
Step 2: From the directed graph formed in Step 1 (Figure 7a), the analytic expression of the 

elasticity of the net rate with respect to 𝐴 and 𝑃, ℇÔ
¸Î
ÏÐÑ

and ℇÚ
¸Î
ÏÐÑ

, can be obtained as follows. 

The denominator of ℇÔ
¸Î
ÏÐÑ

and ℇÚ
¸Î
ÏÐÑ

is equal, and we form it by subtracting from 1 the product 

of the weights of the vertices that form the graph loop, i.e., we obtain 1 - 𝛾a𝛾b𝛾Õ from Figure 7a.  

To derive the terms in the numerator, we start by forming for each of enzyme states the direct 

path from that state to 𝐴 when we derive ℇÔ
¸Î
ÏÐÑ

or to 𝑃 for ℇÚ
¸Î
ÏÐÑ

. For the enzyme states with two 

nodes, the direct path starts from the input node. Then, to form the numerator terms, the weights 

of the direct paths are multiplied with the corresponding enzyme state. The summary of the 

procedure for the example is provided in Table 1. 

Table 1. Direct paths of the directed graph used to form the numerators of ℇÔ
¸Î
ÏÐÑ
	and ℇÚ

¸Î
ÏÐÑ
	of the 

reversible Uni Uni mechanism. 

 Direct path 
Gain 

Corresponding 
numerator term  From To 

ℇÔ
¸Î
ÏÐÑ

 
𝐸/𝐸� 𝐴 1 𝐸/𝐸� 
𝐸𝐴/𝐸� 𝐴 𝛾b𝛾Õ 𝛾b𝛾Õ𝐸𝐴/𝐸� 
𝐸𝑃/𝐸� 𝐴 𝛾Õ 𝛾Õ𝐸𝑃/𝐸� 

ℇÚ
¸Î
ÏÐÑ

 

𝐸/𝐸� 𝑃 −𝛾a𝛾b𝛾Õ −𝛾a𝛾b𝛾Õ𝐸/𝐸� 
𝐸𝐴/𝐸� 𝑃 −𝛾b𝛾Õ −𝛾b𝛾Õ𝐸𝐴/𝐸� 
𝐸𝑃/𝐸� 𝑃 −𝛾Õ −𝛾Õ𝐸𝑃/𝐸� 
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3.2.2. Schematic Method. The method can be summarized as follows. Create a directed graph 

representing a kinetic mechanism as described in Step 1 of Section 3.2.1. The analytical 

expression for the elasticities of the reaction rate of the mechanism with respect to its substrates 

and products can be readily derived from the expression 

∑ 𝐸𝑆L
𝐸�

∙ ∏ 𝛾WW∈²6Þ,8
3¦§
L�a

1 − ∏ 𝛾MM∈²ßààÞ
(42) 

where 𝐷Wááo is the set that contains the vertices that form the graph loop, 𝐷µo,L the set of vertices 

that form the direct path from the enzyme state 𝐸𝑆L towards the metabolite of interest. 

3.2.3. Ping Pong Bi Bi Mechanism. An interesting example for the application of the schematic 

method is the ping pong bi bi mechanism because it has two enzyme states, the free enzyme, 𝐸, 

and the substituted enzyme intermediate, 𝐸∗, that have two nodes (Figure 7d).  

From the directed graph (Figure 7d) and Eq. 42, we obtain for the denominator 1 −

𝛾a𝛾b𝛾Õ𝛾Ö𝛾×𝛾Ø, and the terms of the numerators are provided in Table 2. 

Table 2. Direct paths of the directed graph used to form the numerators of ℇÔ
¸Î
ÏÐÑ
	, ℇÙ

¸Î
ÏÐÑ

, ℇÚ
¸Î
ÏÐÑ

 

and ℇÛ
¸Î
ÏÐÑ
	of the ping pong Bi Bi mechanism. 

 Direct path 
Gain 

Corresponding 
numerator term  From To 

ℇÔ
¸Î
ÏÐÑ

 

𝐸/𝐸� 𝐴 1 𝐸/𝐸� 
𝐸𝐴/𝐸� 𝐴 𝛾b𝛾Õ𝛾Ö𝛾×𝛾Ø 𝛾b𝛾Õ𝛾Ö𝛾×𝛾Ø𝐸𝐴/𝐸� 
𝐸∗𝑃/𝐸� 𝐴 𝛾Õ𝛾Ö𝛾×𝛾Ø 𝛾Õ𝛾Ö𝛾×𝛾Ø𝐸∗𝑃/𝐸� 
𝐸∗/𝐸� 𝐴 𝛾Ö𝛾×𝛾Ø 𝛾Ö𝛾×𝛾Ø𝐸∗/𝐸� 
𝐸∗𝐵/𝐸� 𝐴 𝛾×𝛾Ø 𝛾×𝛾Ø𝐸∗𝐵/𝐸� 
𝐸𝑄/𝐸� 𝐴 𝛾Ø 𝛾Ø𝐸𝑄/𝐸� 

ℇÙ
¸Î
ÏÐÑ

 
𝐸/𝐸� 𝐵 𝛾a𝛾b𝛾Õ 𝛾a𝛾b𝛾Õ𝐸/𝐸� 
𝐸𝐴/𝐸� 𝐵 𝛾b𝛾Õ 𝛾b𝛾Õ𝐸𝐴/𝐸� 
𝐸∗𝑃/𝐸� 𝐵 𝛾Õ 𝛾Õ𝐸∗𝑃/𝐸� 
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𝐸∗/𝐸� 𝐵 1 𝐸∗/𝐸� 
𝐸∗𝐵/𝐸� 𝐵 𝛾a𝛾b𝛾Õ𝛾×𝛾Ø 𝛾a𝛾b𝛾Õ𝛾×𝛾Ø𝐸∗𝐵/𝐸� 
𝐸𝑄/𝐸� 𝐵 𝛾a𝛾b𝛾Õ𝛾Ø 𝛾a𝛾b𝛾Õ𝛾Ø𝐸𝑄/𝐸� 

ℇÚ
¸Î
ÏÐÑ

 

𝐸/𝐸� 𝑃 𝛾a𝛾b𝛾Õ 𝛾a𝛾b𝛾Õ𝐸/𝐸� 
𝐸𝐴/𝐸� 𝑃 𝛾b𝛾Õ 𝛾b𝛾Õ𝐸𝐴/𝐸� 
𝐸∗𝑃/𝐸� 𝑃 𝛾Õ 𝛾Õ𝐸∗𝑃/𝐸� 
𝐸∗/𝐸� 𝑃 𝛾a𝛾b𝛾Õ𝛾Ö𝛾×𝛾Ø 𝛾a𝛾b𝛾Õ𝛾Ö𝛾×𝛾Ø𝐸∗/𝐸� 
𝐸∗𝐵/𝐸� 𝑃 𝛾a𝛾b𝛾Õ𝛾×𝛾Ø 𝛾a𝛾b𝛾Õ𝛾×𝛾Ø𝐸∗𝐵/𝐸� 
𝐸𝑄/𝐸� 𝑃 𝛾a𝛾b𝛾Õ𝛾Ø 𝛾a𝛾b𝛾Õ𝛾Ø𝐸𝑄/𝐸� 

ℇÛ
¸Î
ÏÐÑ

 

𝐸/𝐸� 𝑄 𝛾a𝛾b𝛾Õ𝛾Ö𝛾×𝛾Ø 𝛾a𝛾b𝛾Õ𝛾Ö𝛾×𝛾Ø𝐸/𝐸� 
𝐸𝐴/𝐸� 𝑄 𝛾b𝛾Õ𝛾Ö𝛾×𝛾Ø 𝛾b𝛾Õ𝛾Ö𝛾×𝛾Ø𝐸𝐴/𝐸� 
𝐸∗𝑃/𝐸� 𝑄 𝛾Õ𝛾Ö𝛾×𝛾Ø 𝛾Õ𝛾Ö𝛾×𝛾Ø𝐸∗𝑃/𝐸� 
𝐸∗/𝐸� 𝑄 𝛾Ö𝛾×𝛾Ø 𝛾Ö𝛾×𝛾Ø𝐸∗/𝐸� 
𝐸∗𝐵/𝐸� 𝑄 𝛾×𝛾Ø 𝛾×𝛾Ø𝐸∗𝐵/𝐸� 
𝐸𝑄/𝐸� 𝑄 𝛾Ø 𝛾Ø𝐸𝑄/𝐸� 

 

In a similar way, one can derive the analytic expressions for the elasticities of the ordered Uni 

Bi and ordered Bi Bi mechanisms using the directed graphs from Figure 7b and 7c, respectively 

(Supplementary material). 

 

4. CONCLUSIONS 

The uncertainties and absence of data about kinetic properties of enzymes remain a major 

hurdle for developing kinetic models of biochemical networks. The construction of these models 

requires approaches that consider networks as a whole and also consider the mechanistic 

properties of enzymes. Indeed, the network quantities such as metabolic fluxes and metabolite 

concentrations affect the behavior of elementary reaction steps within kinetic mechanisms, and 

conversely, the parameters and variables corresponding to individual kinetic mechanisms affect 

the overall behavior of biochemical networks. The formalism based on Monte Carlo sampling of 

enzyme states and equilibrium displacements of elementary reaction steps discussed here allows 
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us to model the kinetic responses of enzymes despite the lack of kinetic data, and therefore, to 

model the effects of individual kinetic mechanisms on metabolic networks. The formalism, 

coupled together with the network information obtained from methods such as TFA, allow us to 

predict the responses of biochemical networks to genetic and environmental variations. Efficient 

sampling procedures for generating missing kinetic data used in the formalism represent a 

valuable tool for methods that use Monte Carlo sampling to generate populations of large-scale 

kinetic models36, 37, 49-62.  

Though the proposed schematic method for deriving the analytical expressions for elasticities 

can cover a wide gamut of the ordered and ping-pong mechanisms, its extension to the random-

order and other more complex mechanisms remains to be addressed. 

 

ASSOCIATED CONTENT 

Supporting Information.  

The following files are available free of charge. 

Further illustration of the schematic method for derivation of the elasticities for: (i) ordered Uni 

Bi; (ii) ordered Bi Uni and (iii) ordered Bi Bi mechanisms (DOCX) 

 

AUTHOR INFORMATION 

Corresponding Authors 

* Tel: + 41 21 693 9892. Email: ljubisa.miskovic@epfl.ch.  

* Tel: + 41 21 693 9870. Email: vassily.hatzimanikatis@epfl.ch  

ORCID 



 25 

Ljubisa Miskovic: 0000-0001-7333-8211 

Milenko Tokic: 0000-0001-8076-4964 

Georgios Savoglidis: 0000-0001-9692-4715 

Vassily Hatzimanikatis: 0000-0001-6432-4694 

Present Addresses 

† Georgios Savoglidis is currently with Embion Technologies SA, Chemin de la Dent d’Oche 

1A, Building L, EPFL Innovation Park, 1024 Ecublens, Switzerland. 

Author Contributions 

The manuscript was written through contributions of all authors. All authors have given approval 

to the final version of the manuscript.  

Funding Sources 

M.T. was supported by the Ecole Polytechnique Fédérale de Lausanne (EPFL) and the 

ERASYNBIO1-016 SynPath project funded through ERASynBio Initiative for the robust 

development of Synthetic Biology. G.S. was supported through the RTD grant LipidX, within 

SystemX.ch, the Swiss Initiative for System Biology evaluated by the Swiss National Science 

Foundation. L.M. and V.H. were supported by the Ecole Polytechnique Fédérale de Lausanne 

(EPFL). 

Notes 

The authors declare no competing financial interests. 

 
ABBREVIATIONS 



 26 

MCA, metabolic control analysis; TFA, thermodynamic-based flux analysis; EBA, energy 

balance analysis; NET, network-embedded thermodynamic analysis. 

 

REFERENCES 

1. Kitano, H. (2002) Systems biology: a brief overview, Science 295, 1662-1664. 
2. El-Samad, H., Prajna, S., Papachristodoulou, A., Doyle, J., and Khammash, M. (2006) 

Advanced methods and algorithms for biological networks analysis, P Ieee 94, 832-853. 
3. El-Samad, H., and Khammash, M. (2010) Modelling and analysis of gene regulatory network 

using feedback control theory, Int J Syst Sci 41, 17-33. 
4. Radivojevic, A., Chachuat, B., Bonvin, D., and Hatzimanikatis, V. (2012) Exploration of 

trade-offs between steady-state and dynamic properties in signaling cycles, Physical 
Biology 9. 

5. Doyle III, F. J., Bequette, B. W., Middleton, R., Ogunnaike, B., Paden, B., Parker, R. S., and 
Vidyasagar, M. (2011) Control in biological systems, The Impact of Control Technology. 

6. Shen-Orr, S. S., Milo, R., Mangan, S., and Alon, U. (2002) Network motifs in the 
transcriptional regulation network of Escherichia coli, Nature Genetics 31, 64-68. 

7. Barabasi, A. L., and Oltvai, Z. N. (2004) Network biology: Understanding the cell's functional 
organization, Nature Reviews Genetics 5, 101-U115. 

8. Hatzimanikatis, V., and Bailey, J. E. (1997) Effects of spatiotemporal variations on metabolic 
control: approximate analysis using (log)linear kinetic models, Biotechnol Bioeng 54, 91-
104. 

9. Kacser, H., and Burns, J. A. (1973) The control of flux, Symp Soc Exp Biol 27, 65-104. 
10. Heinrich, R., and Rapoport, T. A. (1974) A linear steady-state treatment of enzymatic chains. 

Critique of the crossover theorem and a general procedure to identify interaction sites 
with an effector, Eur J Biochem 42, 97-105. 

11. Ingalls, B. P. (2006) "Metabolic Control Analysis" from a control theoretic perspective, Ieee 
Decis Contr P, 2116-2121. 

12. Hatzimanikatis, V., and Bailey, J. E. (1996) MCA has more to say, Journal of Theoretical 
Biology 182, 233-242. 

13. Bardow, A., and Marquardt, W. (2004) Incremental and simultaneous identification of 
reaction kinetics: methods and comparison, Chemical Engineering Science 59, 2673-
2684. 

14. Billeter, J., Srinivasan, S., and Bonvin, D. (2013) Extent-based kinetic identification using 
spectroscopic measurements and multivariate calibration, Analytica Chimica Acta 767, 
21-34. 

15. Brendel, M., Bonvin, D., and Marquardt, W. (2006) Incremental identification of kinetic 
models for homogeneous reaction systems, Chemical Engineering Science 61, 5404-
5420. 

16. Almquist, J., Cvijovic, M., Hatzimanikatis, V., Nielsen, J., and Jirstrand, M. (2014) Kinetic 
models in industrial biotechnology - Improving cell factory performance, Metabolic 
Engineering 24, 38-60. 



 27 

17. Miskovic, L., Tokic, M., Fengos, G., and Hatzimanikatis, V. (2015) Rites of passage: 
requirements and standards for building kinetic models of metabolic phenotypes, Current 
Opinion in Biotechnology 36, 1-8. 

18. Srinivasan, S., Cluett, W. R., and Mahadevan, R. (2015) Constructing kinetic models of 
metabolism at genome-scales: A review, Biotechnology Journal 10, 1345-1359. 

19. Miskovic, L., and Hatzimanikatis, V. (2011) Modeling of uncertainties in biochemical 
reactions, Biotechnology and Bioengineering 108, 413-423. 

20. Andreozzi, S., Miskovic, L., and Hatzimanikatis, V. (2016) iSCHRUNK - In Silico Approach 
to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale 
Metabolic Networks, Metabolic Engineering 33, 158-168. 

21. Cornish-Bowden, A. (2012) Fundamentals of enzyme kinetics, 4th, compl. rev. and greatly 
enl. ed., Wiley-Blackwell, Weinheim. 

22. Mason, S. J. (1956) Feedback Theory - Further Properties of Signal Flow Graphs, P Ire 44, 
920-926. 

23. Sen, A. K. (1991) A Graph-Theoretic Analysis of Metabolic-Regulation in Linear Pathways 
with Multiple Feedback Loops and Branched Pathways, Biochimica Et Biophysica Acta 
1059, 293-311. 

24. Sen, A. K. (1990) Metabolic Control Analysis - an Application of Signal Flow-Graphs, 
Biochemical Journal 269, 141-147. 

25. Sen, A. K. (1990) Topological Analysis of Metabolic Control, Mathematical Biosciences 
102, 191-223. 

26. Reder, C. (1988) Metabolic Control Theory - A Structural Approach, In Journal of 
Theoretical Biology, pp 175-201. 

27. Orth, J. D., Thiele, I., and Palsson, B. O. (2010) What is flux balance analysis?, Nat 
Biotechnol 28, 245-248. 

28. Ataman, M., and Hatzimanikatis, V. (2015) Heading in the right direction: thermodynamics-
based network analysis and pathway engineering, Curr Opin Biotechnol 36, 176-182. 

29. Soh, K. S., and Hatzimanikatis, V. (2010) Network thermodynamics in the post-genomic era, 
Current Opinion Microbiology 13, 350-357. 

30. Soh, K. S., and Hatzimanikatis, V. (2014) Constraining the flux space using thermodynamics 
and integration of metabolomics data, Methods in Molecular Biology 1191, 49-63. 

31. Beard, D., Liang, S. D., and Qian, H. (2002) Energy balance for analysis of complex 
metabolic networks, Biophysical Journal 83, 79-86. 

32. Zamboni, N., Kümmel, A., and Heinemann, M. (2008) anNET: a tool for network-embedded 
thermodynamic analysis of quantitative metabolome data, BMC Bioinformatics 9, 199. 

33. Wang, L., Birol, I., and Hatzimanikatis, V. (2004) Metabolic Control Analysis under 
Uncertainty: Framework Development and Case Studies, Biophysical Journal 87, 3750-
3763. 

34. Wang, L., and Hatzimanikatis, V. (2006) Metabolic engineering under uncertainty--II: 
analysis of yeast metabolism, Metab Eng 8, 142-159. 

35. Wang, L., and Hatzimanikatis, V. (2006) Metabolic engineering under uncertainty. I: 
Framework development, Metabolic Engineering 8, 133-141. 

36. Miskovic, L., Alff-Tuomala, S., Soh, K. C., Barth, D., Salusjärvi, L., Pitkänen, J.-P., 
Ruohonen, L., Penttilä, M., and Hatzimanikatis, V. (2017) A design–build–test cycle 
using modeling and experiments reveals interdependencies between upper glycolysis and 



 28 

xylose uptake in recombinant S. cerevisiae and improves predictive capabilities of large-
scale kinetic models, Biotechnol Biofuels 10, 166. 

37. Soh, K. C., Miskovic, L., and Hatzimanikatis, V. (2012) From network models to network 
responses: integration of thermodynamic and kinetic properties of yeast genome-scale 
metabolic networks, Fems Yeast Research 12, 129-143. 

38. Goldberg, R. N., Tewari, Y. B., and Bhat, T. N. (2004) Thermodynamics of enzyme-
catalyzed reactions - a database for quantitative biochemistry, Bioinformatics 20, 2874-
2877. 

39. Jankowski, M. D., Henry, C. S., Broadbelt, L. J., and Hatzimanikatis, V. (2008) Group 
contribution method for thermodynamic analysis of complex metabolic networks, 
Biophysical Journal 95, 1487-1499. 

40. Noor, E., Haraldsdottir, H. S., Milo, R., and Fleming, R. M. T. (2013) Consistent Estimation 
of Gibbs Energy Using Component Contributions, Plos Comput Biol 9. 

41. Heinrich, R., and Schuster, S. (1996) The Regulation of Cellular Systems. 
42. Chang, G. G., Huang, S. M., and Chiou, S. H. (1991) Kinetic Mechanism of the Endogenous 

Lactate-Dehydrogenase Activity of Duck Epsilon-Crystallin, Archives of Biochemistry 
and Biophysics 284, 285-291. 

43. Herdendorf, T. J., and Plapp, B. V. (2011) Origins of the high catalytic activity of human 
alcohol dehydrogenase 4 studied with horse liver A317C alcohol dehydrogenase, Chem-
Biol Interact 191, 42-47. 

44. Chassagnole, C., Noisommit-Rizzi, N., Schmid, J. W., Mauch, K., and Reuss, M. (2002) 
Dynamic modeling of the central carbon metabolism of Escherichia coli, Biotechnology 
and Bioengineering 79, 53-73. 

45. Richter, O., Betz, A., and Giersch, C. (1975) Response of Oscillating Glycolysis to 
Perturbations in Nadh-Nad System - Comparison between Experiments and a Computer 
Model, Biosystems 7, 137-146. 

46. Vincenzini, M. T., Vanni, P., Giachetti, E., Hanozet, G. M., and Pinzauti, G. (1986) Steady-
State Kinetic-Analysis of Isocitrate Lyase from Lupinus Seeds - Considerations on a 
Possible Catalytic Mechanism of Isocitrate Lyase from Plants, J Biochem-Tokyo 99, 375-
383. 

47. Botting, N. P., and Gani, D. (1992) Mechanism of C-3 Hydrogen-Exchange and the 
Elimination of Ammonia in the 3-Methylaspartate Ammonia-Lyase Reaction, 
Biochemistry 31, 1509-1520. 

48. Wang, W. J., Baker, P., and Seah, S. Y. K. (2010) Comparison of Two Metal-Dependent 
Pyruvate Aldolases Related by Convergent Evolution: Substrate Specificity, Kinetic 
Mechanism, and Substrate Channeling, Biochemistry 49, 3774-3782. 

49. Birkenmeier, M., Mack, M., and Roder, T. (2015) Thermodynamic and Probabilistic 
Metabolic Control Analysis of Riboflavin (Vitamin B(2)) Biosynthesis in Bacteria, Appl 
Biochem Biotechnol 177, 732-752. 

50. Birkenmeier, M., Mack, M., and Roder, T. (2015) Erratum to: A coupled thermodynamic and 
metabolic control analysis methodology and its evaluation on glycerol biosynthesis in 
Saccharomyces cerevisiae, Biotechnol Lett 37, 317-326. 

51. Murabito, E., Verma, M., Bekker, M., Bellomo, D., Westerhoff, H. V., Teusink, B., and 
Steuer, R. (2014) Monte-Carlo modeling of the central carbon metabolism of 
Lactococcus lactis: insights into metabolic regulation, PLoS One 9, e106453. 



 29 

52. Murabito, E., Smallbone, K., Swinton, J., Westerhoff, H. V., and Steuer, R. (2011) A 
probabilistic approach to identify putative drug targets in biochemical networks, J R Soc 
Interface 8, 880-895. 

53. Lee, Y., Rivera, J. G. L., and Liao, J. C. (2014) Ensemble Modeling for Robustness Analysis 
in engineering non-native metabolic pathways, Metabolic Engineering 25, 63-71. 

54. Tran, L. M., Rizk, M. L., and Liao, J. C. (2008) Ensemble Modeling of Metabolic Networks, 
Biophysical Journal. 

55. Khodayari, A., and Maranas, C. D. (2016) A genome-scale Escherichia coli kinetic metabolic 
model k-ecoli457 satisfying flux data for multiple mutant strains, Nat Commun 7. 

56. Khodayari, A., Zomorrodi, A. R., Liao, J. C., and Maranas, C. D. (2014) A kinetic model of 
Escherichia coli core metabolism satisfying multiple sets of mutant flux data, Metabolic 
Engineering 25, 50-62. 

57. Chowdhury, A., Zomorrodi, A. R., and Maranas, C. D. (2014) k-OptForce: integrating 
kinetics with flux balance analysis for strain design, PLoS Comput. Biol 10, e1003487. 

58. Andreozzi, S., Chakrabarti, A., Soh, K. C., Burgard, A., Yang, T. H., Van Dien, S., 
Miskovic, L., and Hatzimanikatis, V. (2016) Identification of metabolic engineering 
targets for the enhancement of 1,4-butanediol production in recombinant E. coli using 
large-scale kinetic models, Metabolic Engineering 35, 148-159. 

59. Chakrabarti, A., Miskovic, L., Soh, K. C., and Hatzimanikatis, V. (2013) Towards kinetic 
modeling of genome-scale metabolic networks without sacrificing stoichiometric, 
thermodynamic and physiological constraints, Biotechnology journal 8, 1043-1057. 

60. Soh, K. S., Miskovic, L., and Hatzimanikatis, V. (2012) From network models to network 
responses: integration of thermodynamic and kinetic properties of yeast genome-scale 
metabolic networks, FEMS Yeast Research 12, 129-143. 

61. Miskovic, L., and Hatzimanikatis, V. (2010) Production of biofuels and biochemicals: in 
need of an ORACLE, Trends in biotechnology 28, 391-397. 

62. Hameri, T., Fengos, G., Ataman, M., Miskovic, L., and Hatzimanikatis, V. (2018) Kinetic 
models of metabolism that consider alternative steady-state solutions of intracellular 
fluxes and concentrations, Metab Eng 52, 29-41. 

 


