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1 Introduction

This report presents the results of experimental tests performed on through-tenon joints used in
double-layered and double-curved timber plate shells recently developed [1, 2]. Three tests were
carried out to determine the semi-rigidity of these wood-wood connections in their three translational
degrees-of-freedom. The objective of these tests is to obtain values of axial, shear and perpendicular-
to-grain compression stiffness of the connections used in large-scale assemblies tested [2], as well as
their maximum capacity in all three directions.

2 Material and Methods

2.1 Material

All specimens tested were made out of Baubuche-Q panels which are 40 mm-thick beech laminated
veneer lumber (LVL) made of 2 crosswised layers [3]. This material was used in large-scale assemblies
tested [2]. Its properties are presented in Tables 1 and 2.

Table 1: Characteristic stiffness and density values of 40 mm thick BauBuche Q panels [3]

Property Symbol Value Units

flatwise edgewise

Elastic modulus E0,05 12 200 12 200 N/mm2

E90,05 2 000 2 000 N/mm2

Shear modulus G05 540 360 N/mm2

Density ρk 730 kg/m3

Table 2: Characteristic strength values of 40 mm thick BauBuche Q panels [3]

Strength Symbol Value Units

flatwise edgewise

Bending fm,0,k 75 60 N/mm2

fm,90,k 20 10 N/mm2

Compression fc,0,k 53.3 53.3 N/mm2

fc,90,k 13.0 19.0 N/mm2

Tension ft,0t,k 51 51 N/mm2

ft,90,k 8 N/mm2

Shear fv,k 3.8 7.8 N/mm2

2.2 Geometry of the Tested Specimens

The geometry of the through-tenon joints tested is the one of the large-scale assemblies tested [2].
These joints (see Figures 1a and 1b) are characterized by a tab length Ltab of 72.5 mm and Bryant
angles θ1, θ2 and θ3 equal to 0, 25 and 0° respectively, as illustrated in Figure 1c.
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Figure 1: Geometry of the through-tenon joints tested: wood-wood connection (a) panel with tenon
(b) and geometry of the connection (c)

2.3 Experimental Procedure

Three different experimental tests were performed to retrieve the stiffness of the connection in its
three translational degrees-of-freedom (x, y and z in Figure 1c). The loading procedure applied for
the three tests was as described in the European Standards EN 26891 [4].
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Figure 2: Loading procedure as described in EN 26891:1991 [4]

1. Test n°1: Tension

The test setup used for the determination of the maximum capacity and stiffness of the
connection in tension is presented in Rad et al. [5].

2. Test n°2: In-Plane Shear

The test setup used for the determination of the maximum capacity and stiffness of the
connection in in-plane shear is presented in Rad et al. [6].

3. Test n°3: Perpendicular-to-Grain Compression

The test setup used for the determination of the maximum capacity and stiffness of the
connection in perpendicular-to-grain compression is illustrated in Figure 3. As for the second
test setup, symmetric specimens with two connections were fabricated and placed on a concrete
support, considered rigid. Force was applied through a hydraulic jack and four linear variable
differential transducers (LVDTs) were placed to measure the deformation of the samples.
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Figure 3: Experimental setup for the determination of the maximum capacity and stiffness of the
connection in perpendicular-to-grain compression

3 Results

Results for the three tests are presented in Figure 4, 5 and 6 and are summarized in Table 3. The
coefficient of variation cv was analyse to assess the variability of the results for the maximum force
Fmax and stiffness of the connection k. It is defined as the ratio between the average µ and the
standard deviation σ:

cv =
µ

σ
(1)

For all three tests, the coefficient of variation for the maximum capacity Fmax and stiffness k of the
connections was found to be below 10%.
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Figure 4: Force-deformation curves for test n°1: entire tests (a) and linear range between 10 and
40 % of Fmax (b)
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Figure 5: Force-deformation curves for test n°2: entire tests (a) and linear range between 10 and
40 % of Fmax (b)
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Figure 6: Force-deformation curves for test n°3: entire tests (a) and linear range between 10 and
40 % of Fmax (b)

Table 3: Results of the three tests performed

Total samples Fmax,avg cv,Fmax kavg cv,k
[kN] [%] [N/mm] [%]

Test n°1 3 6.47 5.32 416.81 6.16
Test n°2 4 46.83 4.48 15 0009.24 1.79
Test n°3 3 36.55 3.88 9489.04 2.74

4 Conclusions

Experimental tests allowed to determine the maximum capacity and stiffness of through-tenon
joints, which were used in large-scale assemblies of double-layered timber plate structures tested
[2], in the their three translational degrees-of-freedom. Coefficient of variations lower than 10% and
were considered acceptable for this material. The connections were shown to have a much lower
resistance and stiffness in the axial direction and the highest resistance and stiffness in shear. The
values obtained can be used in numerical models of large-scale assemblies [2].
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