Semi-Rigidity of Through-Tenon Joints under Tension and Shear Loads and Perpendicular-to-Grain Compression

Experimental Tests Report

Authors: Anh Chi NGUYEN Aryan Rezaei RAD Prof. Yves WEINAND

1 Introduction

This report presents the results of experimental tests performed on through-tenon joints used in double-layered and double-curved timber plate shells recently developed [1, 2]. Three tests were carried out to determine the semi-rigidity of these wood-wood connections in their three translational degrees-of-freedom. The objective of these tests is to obtain values of axial, shear and perpendicular-to-grain compression stiffness of the connections used in large-scale assemblies tested [2], as well as their maximum capacity in all three directions.

2 Material and Methods

2.1 Material

All specimens tested were made out of Baubuche-Q panels which are 40 mm-thick beech laminated veneer lumber (LVL) made of 2 crosswised layers [3]. This material was used in large-scale assemblies tested [2]. Its properties are presented in Tables 1 and 2.

Table 1: Characteristic stiffness and density values of 40 mm thick BauBuche Q panels [3]

Property	\mathbf{Symbol}	Va	Units	
		flatwise	edgewise	
Elastic modulus	$E_{0,05}$	12 200	12 200	N/mm^2
	$E_{90,05}$	2000	2000	N/mm^2
Shear modulus	G_{05}	540	360	N/mm^2
Density	$ ho_{ m k}$	7	kg/m^3	

Table 2: Characteristic strength values of 40 mm thick BauBuche Q panels [3]

Strength	Symbol	Va	Units	
		flatwise	edgewise	
Bending	$f_{m,0,k}$	75	60	N/mm^2
	$f_{m,90,k}$	20	10	N/mm^2
Compression	$f_{c,0,k}$	53.3	53.3	N/mm^2
	$f_{c,90,k}$	13.0	19.0	N/mm^2
Tension	$f_{t,0t,k}$	51	51	N/mm^2
	$f_{t,90,k}$		8	N/mm^2
Shear	$f_{v,k}$	3.8	7.8	N/mm^2

2.2 Geometry of the Tested Specimens

The geometry of the through-tenon joints tested is the one of the large-scale assemblies tested [2]. These joints (see Figures 1a and 1b) are characterized by a tab length L_{tab} of 72.5 mm and Bryant angles θ_1 , θ_2 and θ_3 equal to 0, 25 and 0° respectively, as illustrated in Figure 1c.

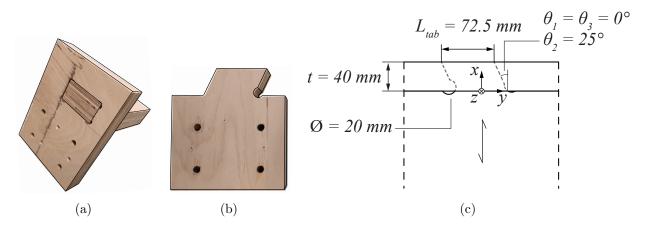


Figure 1: Geometry of the through-tenon joints tested: wood-wood connection (a) panel with tenon (b) and geometry of the connection (c)

2.3 Experimental Procedure

Three different experimental tests were performed to retrieve the stiffness of the connection in its three translational degrees-of-freedom (x, y and z in Figure 1c). The loading procedure applied for the three tests was as described in the European Standards EN 26891 [4].

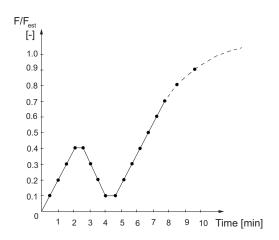


Figure 2: Loading procedure as described in EN 26891:1991 [4]

1. Test n°1: Tension

The test setup used for the determination of the maximum capacity and stiffness of the connection in tension is presented in Rad et al. [5].

2. Test n°2: In-Plane Shear

The test setup used for the determination of the maximum capacity and stiffness of the connection in in-plane shear is presented in Rad et al. [6].

3. Test n°3: Perpendicular-to-Grain Compression

The test setup used for the determination of the maximum capacity and stiffness of the connection in perpendicular-to-grain compression is illustrated in Figure 3. As for the second test setup, symmetric specimens with two connections were fabricated and placed on a concrete support, considered rigid. Force was applied through a hydraulic jack and four linear variable differential transducers (LVDTs) were placed to measure the deformation of the samples.

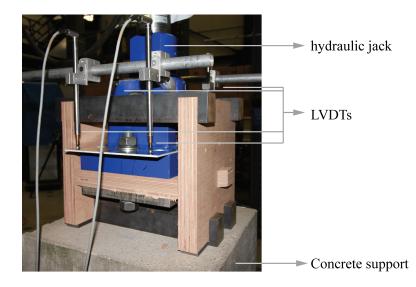


Figure 3: Experimental setup for the determination of the maximum capacity and stiffness of the connection in perpendicular-to-grain compression

3 Results

Results for the three tests are presented in Figure 4, 5 and 6 and are summarized in Table 3. The coefficient of variation c_v was analyse to assess the variability of the results for the maximum force F_{max} and stiffness of the connection k. It is defined as the ratio between the average μ and the standard deviation σ :

$$c_v = \frac{\mu}{\sigma} \tag{1}$$

For all three tests, the coefficient of variation for the maximum capacity F_{max} and stiffness k of the connections was found to be below 10%.

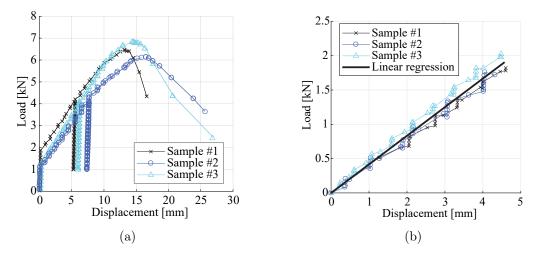


Figure 4: Force-deformation curves for test n°1: entire tests (a) and linear range between 10 and 40 % of F_{max} (b)

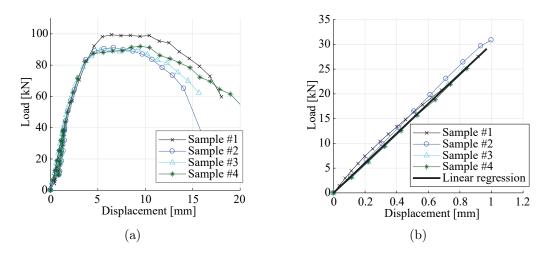


Figure 5: Force-deformation curves for test n°2: entire tests (a) and linear range between 10 and 40 % of F_{max} (b)

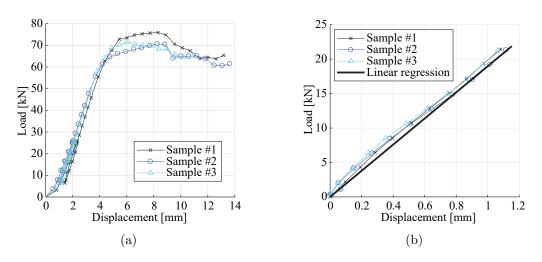


Figure 6: Force-deformation curves for test n°3: entire tests (a) and linear range between 10 and 40 % of F_{max} (b)

	Total samples	$\begin{array}{c} F_{\rm max,avg} \\ [\rm kN] \end{array}$	$c_{v,F_{\max}}$ [%]	$k_{ m avg} \ [m N/mm]$	$c_{v,k}$ [%]
Test n°1	3	6.47	5.32	416.81	6.16
Test n°2	4	46.83	4.48	$15\ 0009.24$	1.79
Test n°3	3	36.55	3.88	9489.04	2.74

Table 3: Results of the three tests performed

4 Conclusions

Experimental tests allowed to determine the maximum capacity and stiffness of through-tenon joints, which were used in large-scale assemblies of double-layered timber plate structures tested [2], in the their three translational degrees-of-freedom. Coefficient of variations lower than 10% and were considered acceptable for this material. The connections were shown to have a much lower resistance and stiffness in the axial direction and the highest resistance and stiffness in shear. The values obtained can be used in numerical models of large-scale assemblies [2].

References

- C. Robeller, M. Konakovic, M. Dedijer, M. Pauly and Y. Weinand, "A double-layered timber plate shell - computational methods for assembly, prefabrication and structural design," in: *Advances in Architectural Geometry 2016*, S. Adriaenssens, F. Gramazio, M. Kohler, A. Menges and M. Pauly (Eds.), vdf Hochschulverlag AG, ETH Zürich, 2016, pp. 104-122.
- [2] A. C. Nguyen and Y. Weinand, "Development of a Spring Model for the Structural Analysis of a Double-Layered Timber Plate Structure with Through-Tenon Joints," in: WCTE 2018 World Conference on Timber Engineering CD-ROM Proceedings, Seoul, South Korea, 2018.
- [3] Pollmeier, Declaration of performance of board BauBuche S/Q, ref no. pm-003-2015, 2015.
- [4] CEN (European Committee for Standardization), "EN 26891: Timber structures –Joints made with mechanical fasteners – General principles for the determination of strength and deformation characteristics," Brussels, Belgium, 1991.
- [5] A. R. Rad, H. Burton and Y. Weinand, "Performance assessment of through-tenon timber joints under tension loads," *Construction and Building Materials*, vol. 207, pp.706-721, 2019.
- [6] A. R. Rad, Y. Weinand and H. Burton, "Experimental push-out investigation on the in-plane force-deformation behavior of integrally-attached timber Through-Tenon joints," *Construction* and Building Materials, vol. 215, pp.925-940, 2019.