ICLR, May 6–9, New Orleans

Local SGD Converges Fast and Communicates Little sebastian.stich@epfl.ch

Summary: Theoretical Analysis of (Communication Efficient) Local SGD

Stochastic Optimization Problem:

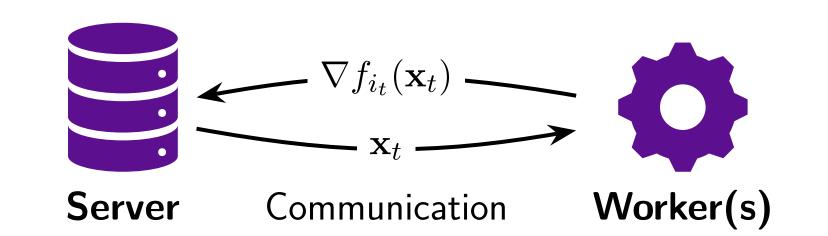
$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f(\mathbf{x}) := \mathbb{E}_{\xi} F(\mathbf{x}, \xi) \right] \qquad \left(f(\mathbf{x}) \stackrel{\mathsf{Example}}{=} \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}) \right)$$

Assumptions:

• access to gradient oracles, $\mathbf{g} \colon \mathbb{R}^d \to \mathbb{R}^d$, s.t. $\forall \mathbf{x} \in \mathbb{R}^n$: $\mathbb{E} \mathbf{g}(\mathbf{x}) = \nabla f(\mathbf{x}), \quad \mathbb{E} \|\mathbf{g}\|^2 \le G^2, \quad \text{Var} \mathbf{g} \le \sigma^2$

• $f: \mathbb{R}^n \to \mathbb{R} \ \mu$ -strongly convex, *L*-smooth, $\kappa := \frac{L}{\mu}$

Notation:



Frequent communication between worker nodes (e.g. GPU's) is a **major bottleneck** for distributed training of DL models.

Local SGD (aka parallel SGD) enables models to be different on the worker nodes for a few iterations, that is, some all-to-all

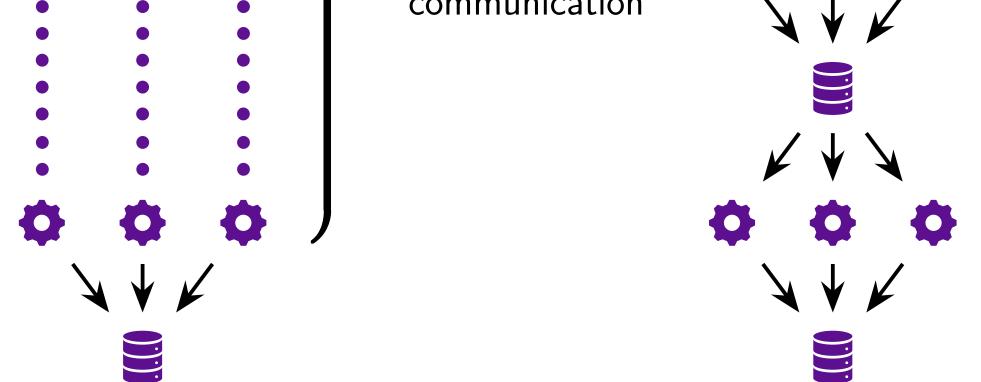
Local SGD	Mini-Batch SGD
$\not\leftarrow$ \checkmark \checkmark	$\not\leftarrow$ \checkmark
ϕ ϕ	ϕ ϕ
	$\searrow \checkmark \checkmark \checkmark$
	H steps of SGD \checkmark
$\phi \phi \phi$	without with O O
• • •	$communication$ λ I /

- *B* mini-batch size
- *H* steps of local SGD between communication rounds
- T iterations
- W parallel workers

- ← Download the Paper
- communication rounds can be skipped. Local SGD could be an alternative to large-batch training. We show that in the convex setting
- Local SGD is as good as mini-batch SGD

while requiring fewer communication rounds.

• our technique offers a promising direction to extend the analysis to the non-convex setting in future work

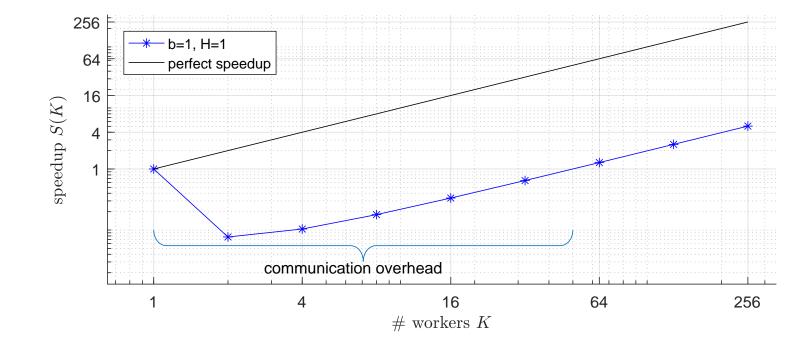


Local SGD communicates $H \times$ less than mini-batch SGD

Details

Illustration: Impact of high communication cost

An algorithm converging as $O\left(\frac{1}{BTW}\right)$ achieves linear speedup in terms of batch size $\stackrel{\scriptstyle\frown}{B}$ and number of workers Win terms of iterations. However, the speedup also depends on the *communication cost*.



Algorithm: Local SGD	(for batch size $B = 1$)	Tł
1: Initialize variables $\mathbf{x}_0^w = \mathbf{x}_0$ on	every worker $w \in [W]$	Let
2: for t in $0 \dots T - 1$ do		SIZ
3: parallel for $w \in [W]$ do		Th
4: Sample $\mathbf{g}_t^w = \mathbf{g}(\mathbf{x}_t^w)$		
5: if $H \mid t+1$ then		
I	$\sigma_t^w - \eta_t \mathbf{g}_t^w) \hspace{0.2cm} \triangleright \hspace{0.2cm} global \hspace{0.2cm} synchronization$	
7: else		for
8: $\mathbf{x}_{t+1}^w \leftarrow \mathbf{x}_t^w - \eta_t \mathbf{g}_t^w$	⊳ local update	we
9: end if		
10: end parallel for		-

heorem:

et $f: \mathbb{R}^d \to \mathbb{R}$ be L-smooth, μ -strongly convex, and stepzes $\eta_t := \frac{4}{\mu(a+t)}$ for $a \ge \max\{H, 16\kappa\}$. (technical conditions) nen

$$f(\bar{\mathbf{x}}_T) - f^{\star} = O\left(\frac{\sigma^2}{\mu BTW} + \frac{\kappa H^2 G^2}{\mu T^2}\right) \qquad \text{(simplified)}$$

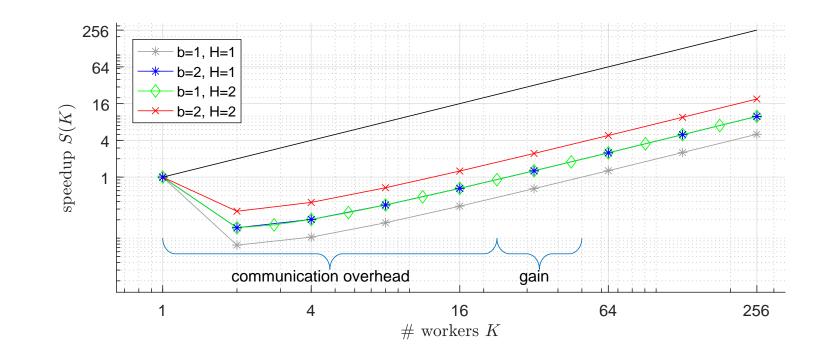
or weighted average $\bar{\mathbf{x}}_T := \frac{1}{WS_T} \sum_{w=1}^W \sum_{t=0}^{T-1} \lambda_t \mathbf{x}_t^w$, with veights $\lambda_t = (a+t)^2$, $S_t := \sum_{t=0}^{T-1} \lambda_t$.

for $H \leq \sqrt{\frac{T}{\kappa BW}}$ we recover the convergence rate of

time-wise speedup, with communication cost (assuming communication is $25 \times$ slower than computation)

This suggests two strategies:

- increase batch size B (mini-batch SGD)
- increase local steps H



11: **end for**

Special cases:

- H = 1: Mini-batch SGD. Communication in every round.
- H = T: One-shot averaging. Only one communication round at the end.

Baseline result:

Previous analyses did not show a speedup in W, the number of workers (expect for special cases).

 $f(\bar{\mathbf{x}}_T) - f^* = O\left(\frac{\sigma^2}{\mu BT}\right)$

(no dependence on W)

Experiments

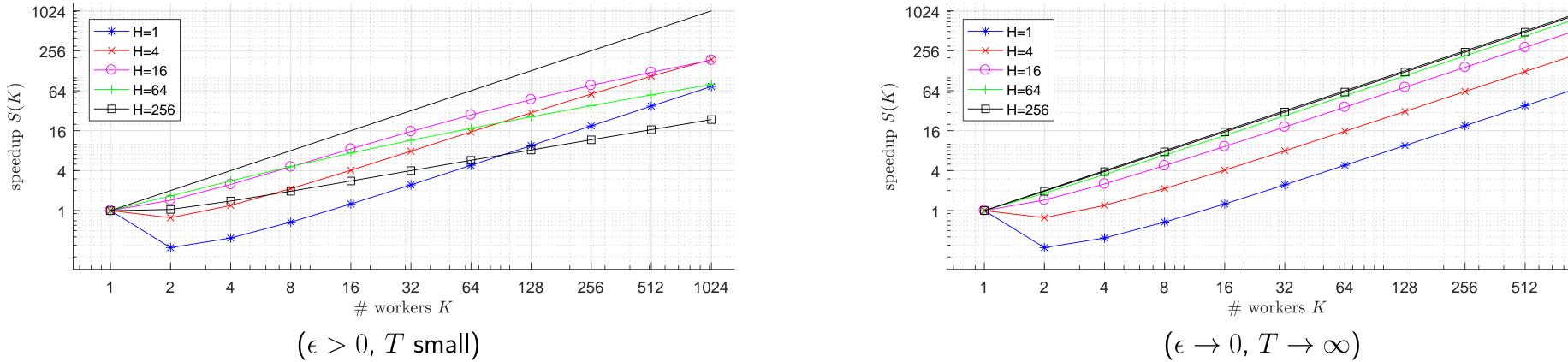
Logistic regression:

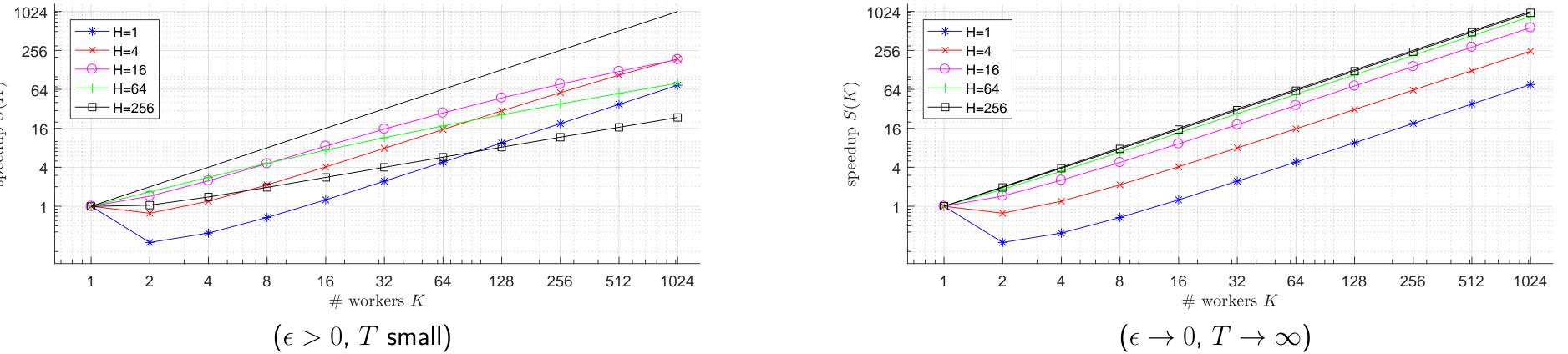
 $f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \log\left(1 + e^{-b_i \mathbf{a}_i^{\mathsf{T}} \mathbf{x}}\right) + \frac{1}{2n} \|\mathbf{x}\|^2$

(local SGD)

for w8a dataset (d = 300, n = 49749).

theoretical speedup of local SGD for different H and number of workers W





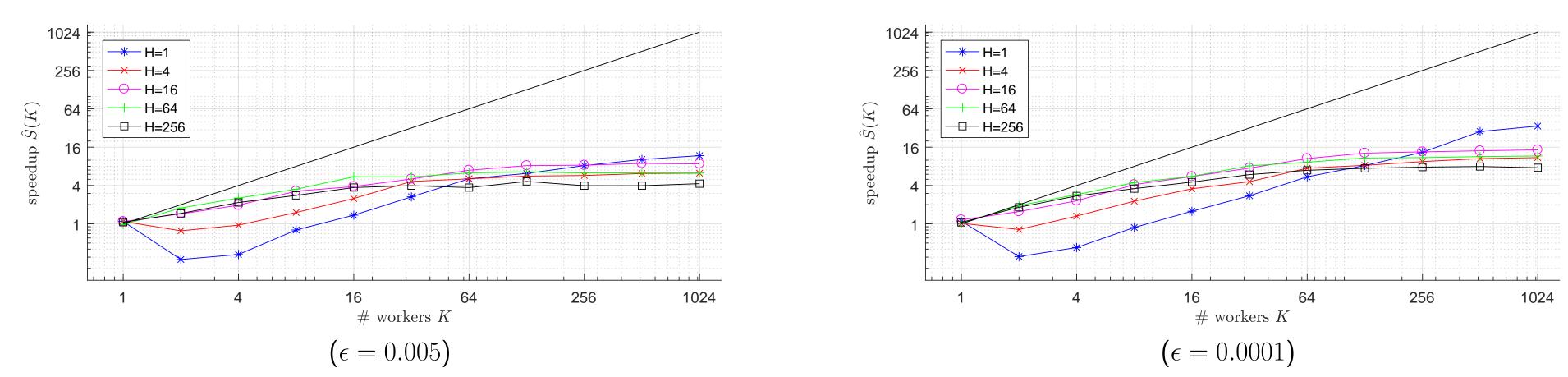
mini-batch SGD, i.e. linear speedup in batch size B and in number of workers W

- choosing $H = \sqrt{\frac{T}{\kappa BW}}$ reduces the communication rounds by a factor $O\left(\sqrt{\frac{T}{\kappa BW}}\right)$ compared to mini-batch SGD
- when the number of steps T is unknown, one could use an adaptive strategy (e.g. 'doubling trick') to successively increase the number of local steps (more communication steps for small t, less as t grows)

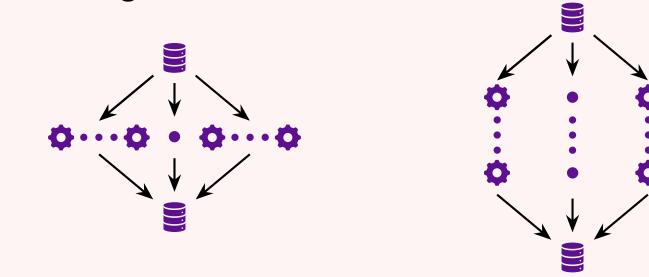
Discussion & Open Problems

- the result is not optimized for extreme settings of H, W, L, σ or G. For instance, we do not recover the convergence rate of SGD for H = T.
- the assumptions on the gradient oracle (e.g. bounded gradient assumption, unbiased on every worker) can potentially be relaxed
- the proof technique mainly leverages smoothness, allowing for extension of the results to the non-convex setting
- **huge-batch** SGD (i.e. SGD with mini-batch size *BHW*) converges under these assumptions with rate $O\left(\frac{\sigma^2}{\mu BTW}\right)$. This rate is strictly better than our established upper

measured speedup of local SGD, B = 4



bound for local SGD. However, it is conjectured than local SGD converges faster.



two algorithms with the same computation and communication cost, which one is faster?

• recent work showed limitations of huge batch training. Local SGD could be promising direction (as the local mini-batches are considerably smaller). However, the current analysis does not resolve this.