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Summary: Theoretical Analysis of (Communication Efficient) Local SGD
Stochastic Optimization Problem:

min
x∈Rd

[
f (x) := EξF (x, ξ)

] f (x) Example= 1
n

n∑
i=1

fi(x)



Assumptions:
• access to gradient oracles, g : Rd→ Rd, s.t. ∀x ∈ Rn:

Eg(x) = ∇f (x) , E ‖g‖2 ≤ G2 , Var g ≤ σ2

• f : Rn→ R µ-strongly convex, L-smooth, κ := L
µ

Notation:
• B mini-batch size
• H steps of local SGD between communication rounds
• T iterations
• W parallel workers

← Download the Paper

Server Communication Worker(s)

Frequent communication between worker nodes (e.g.
GPU’s) is a major bottleneck for distributed training of DL
models.

Local SGD (aka parallel SGD) enables models to be different
on the worker nodes for a few iterations, that is, some all-to-all

communication rounds can be skipped.
Local SGD could be an alternative to large-batch training.

We show that in the convex setting
Local SGD is as good as mini-batch SGD

while requiring fewer communication rounds.

• our technique offers a promising direction to extend the
analysis to the non-convex setting in future work

Local SGD Mini-Batch SGD

H steps of SGD
without with

communication

Local SGD communicates H× less than mini-batch SGD

Details
Illustration: Impact of high communication cost
An algorithm converging as O

(
1

BTW

)
achieves linear

speedup in terms of batch size B and number of workers W
in terms of iterations. However, the speedup also depends
on the communication cost.
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time-wise speedup, with communication cost
(assuming communication is 25× slower than computation)

This suggests two strategies:
• increase batch size B (mini-batch SGD)
• increase local steps H (local SGD)
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Algorithm: Local SGD (for batch size B = 1)
1: Initialize variables xw0 = x0 on every worker w ∈ [W ]
2: for t in 0 . . . T − 1 do
3: parallel for w ∈ [W ] do
4: Sample gwt = g(xwt )
5: if H | t + 1 then
6: xwt+1 ← 1

W

∑W
w=1 (xwt − ηtgwt ) . global synchronization

7: else
8: xwt+1 ← xwt − ηtgwt . local update
9: end if

10: end parallel for
11: end for

Special cases:

• H = 1: Mini-batch SGD. Communication in every round.
• H = T : One-shot averaging. Only one communication
round at the end.

Baseline result:
Previous analyses did not show a speedup in W , the number
of workers (expect for special cases).

f (x̄T )− f ? = O

(
σ2

µBT

)
(no dependence on W )

Experiments
Logistic regression: for w8a dataset (d = 300, n = 49749).

f (x) = 1
n

n∑
i=1

log
(
1 + e−bia

>
i x
)

+ 1
2n
‖x‖2

theoretical speedup of local SGD for different H and number of workers W
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(ε > 0, T small)

1 2 4 8 16 32 64 128 256 512 1024

1

4

16

64

256

1024
H=1
H=4
H=16
H=64
H=256

(ε→ 0, T →∞)

measured speedup of local SGD, B = 4
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Theorem:
Let f : Rd → R be L-smooth, µ-strongly convex, and step-
sizes ηt := 4

µ(a+t) for a ≥ max{H, 16κ}. (technical conditions)
Then

f (x̄T )− f ? = O

(
σ2

µBTW
+ κH2G2

µT 2

)
(simplified)

for weighted average x̄T := 1
WST

∑W
w=1

∑T−1
t=0 λtxwt , with

weights λt = (a + t)2, St := ∑T−1
t=0 λt.

• for H ≤
√

T
κBW we recover the convergence rate of

mini-batch SGD, i.e. linear speedup in batch size B and in
number of workers W
• choosing H =

√
T

κBW reduces the communication rounds
by a factor O

(√
T

κBW

)
compared to mini-batch SGD

• when the number of steps T is unknown, one could use an
adaptive strategy (e.g. ‘doubling trick’) to successively
increase the number of local steps (more communication
steps for small t, less as t grows)

Discussion & Open Problems
• the result is not optimized for extreme settings of H, W ,
L, σ or G. For instance, we do not recover the
convergence rate of SGD for H = T .
• the assumptions on the gradient oracle (e.g. bounded
gradient assumption, unbiased on every worker) can
potentially be relaxed
• the proof technique mainly leverages smoothness, allowing
for extension of the results to the non-convex setting
• huge-batch SGD (i.e. SGD with mini-batch size BHW )
converges under these assumptions with rate O

(
σ2

µBTW

)
.

This rate is strictly better than our established upper
bound for local SGD. However, it is conjectured than local
SGD converges faster.

two algorithms with the same computation and
communication cost, which one is faster?

• recent work showed limitations of huge batch training.
Local SGD could be promising direction (as the local
mini-batches are considerably smaller). However, the
current analysis does not resolve this.

https://sstich.ch/#localsgd
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