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Abstract. 

Efficient, real-time and automated data analysis is one of the key elements for achieving scientific 

success in complex engineering and physical systems, of which two examples are the JET and ITER 

tokamaks. 

One problem which is common to these fields is the determination of pulsation modes from 

irregularly sampled time-series. To this end, there is a wealth of signal processing techniques that are 

being applied to post-pulse and real-time data analysis in such complex systems. Here we wish to 

present a review of the applications of a method based on the Sparse Representation of Signals, using 

examples of the synergies that can be exploited when combining ideas and methods from very 

different fields, such as astronomy and astrophysics and thermonuclear fusion plasmas. 

Examples of this work in astronomy and astrophysics are the analysis of pulsation modes in various 

classes of stars and the orbit determination software of the Pioneer spacecrafts. Two examples of this 

work in thermonuclear fusion plasmas are the detection of magneto-hydrodynamic instabilities, 

which is now performed routinely in JET in real-time on a sub-millisecond time-scale, and the studies 

leading to the optimization of the magnetic diagnostic system in ITER and TCV. 

These questions have been solved formulating them as inverse problems, despite the fact that these 

applicative frameworks are extremely different from the classical use of Sparse Representations, on 

both the theoretical and computational points of view. Requirements, prospects and ideas for the 

signal processing and real-time data analysis applications of this method to routine operation of ITER 

will also be discussed. 

Finally, a very recent development has been an attempt at the application of this method to the 

deconvolution of the measurement of electric potential performed during a ground-based survey of a 

proto-Villanovian necropolis in central Italy. 
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(1) Introduction. 

Efficient, real-time and automated data analysis is one of the key elements for achieving scientific 

success in complex engineering and physical systems, of which two examples are the JET and ITER 

tokamaks. There is a wealth of signal processing techniques that are being applied to data analysis in 

such complex systems, and here we wish to present a review of some examples of the synergies that 

can be exploited when combining ideas and methods from different fields, such as Astronomy and 

Astrophysics (A&A) and thermonuclear fusion plasmas. 

One problem which is common to these subjects is the determination of pulsation modes from 

irregularly sampled temporal and spatial series [1]. Historically, this problem has been addressed 

combining methods based on various forms of the Fourier Transforms (FT) for the time-series 

analysis, and using methods essentially based around the Lomb-Scargle Periodograms (LSP) [2-5] 

for the spatial-series analysis. For the latter, much work has been performed to improve on the 

limitations of the original periodogram methods, essentially in the field of A&A. This general 

measurement problem is further complicated in thermonuclear fusion plasmas, and specifically in 

large-scale tokamak and stellarator devices, by the (often very) low number of measurement points 

in the spatial domain, which is due to in-vessel engineering and installation constraints, leading to a 

number of mathematical difficulties. Therefore, analysis method based on the spatial Nyquist 

criterion cannot in general be used because of the effect of aliasing, particularly if intermediate to 

small wavelengths need to be resolved. For the specific case of magneto-hydro-dynamic (MHD) 

instabilities in tokamak devices, this deficiency has prompted the development and the successful 

application of various analysis methods, such as the Singular Value (SVD) [6, 7] and wavelet [8] 

decompositions, the Wigner [9], Choi-Williams [10, 11] and Hilbert [12] Transforms, and a 

generalization of the LSP specifically adapted to stellarator devices [12]. 

A particular sub-class of MHD analysis problems is that of understanding the behaviour of 

instabilities that are essential for controlling the stability of magnetically confined thermonuclear 

plasmas. Specifically, the problem of automated real-time detection of MHD modes has now become 

one of the most important aspects for machine protection and control and optimization of plasma 

discharges in thermonuclear fusion experiments. The method routinely used for this analysis involves 

sampling a (usually) rather small set of input signals, such as measurements of magnetic, temperature 

and density fluctuations, which in most cases are un-evenly sampled in the spatial domain. 

Appropriate processing of such a set of input data facilitates the detection of the different components 

in a multi-harmonics spectrum. Furthermore, when the data contains some spatial periodicities, these 

can be readily used to enhance or eliminate the detection of certain components. A real-time algorithm 

can then generate a global alarm that is sent to the plant. Under certain specified and pre-determined 
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operational conditions, this may then trigger a feedback control mechanism. For some examples of 

these activities, the Readers are referred to Chapter3 and Chapter7 and references therein in [13] and 

Chapter2 and references therein in [14]. 

One drawback of most of the current MHD detection and control methods is that they can only detect 

modes when they have become unstable (with a growth rate GROWTH/>0, where >0 is the mode’s 

angular frequency), i.e. when they may have already had some detrimental effect on the actual plasma 

operation and performance. On the other hand, an alternative and innovative method is in use on the 

JET tokamak [15]. This diagnostic technique combines the active excitation (via a set of in-vessel 

antennas) of magnetic field perturbations which have a very small amplitude at the plasma edge 

(maximum intensity |BDRIVEN|<100mG, i.e. typically ~105 times smaller than the value of the toroidal 

magnetic field in JET, BTOR~1T to BTOR~4T) with synchronous real-time detection of the resonant 

plasma response to such antenna-driven perturbations. This method then allows detecting MHD 

modes when they are still stable (with a damping rate DAMP/>0), i.e. before they could have affected 

the discharge, which is evidently a much more satisfying situation for plasma control and machine 

protection. 

However, none of the methods described above can be efficiently used for the decomposition of a 

stable spectrum of MHD modes with the aim to measure their damping rate, because of their 

mathematical limitations and computational requirements, particularly if real-time, sub-millisecond 

calculations are needed, and when the measurement spectrum is frequency-degenerate, i.e. contains 

multiple spatial components at frequencies which are separated by less than the damping. On the 

other hand, a method based on the Sparse Representation of Signals (SRS), as implemented in the 

SparSpec code (freeware available at: http://www.ast.obs-mip.fr/article123.html) [16, 17] has been 

demonstrated to efficiently and correctly perform the post-pulse [18] and real-time [19, 20] blind and 

automated signal decomposition of data which are un-evenly sampled in the spatial domain using a 

(very) small number of measurement points. 

Finally, following the successful application of the SRS to the analysis of actual measurements of 

different classes of MHD instabilities on the JET tokamak, we have used this method as an “inverse 

tool” to predict the measurement performance of the ITER array of high-frequency (HF) magnetic 

probes [21-24]. This has allowed us to comparatively test the measurement performance of different 

system designs, thus allowing us to propose an optimized diagnostic design [25, 26]. 

This paper aims at presenting a review as complete as possible of the mathematical properties of 

analysis methods based on the SRS, particularly focussing on the SparSpec code, and of current 

applications of such methods to A&A and fusion plasma problems, completed with an outlook to 

problems that could be tackled in the future using this method. As we want the Readers to be presented 
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clearly and rapidly with the main results of our work, while still being able to then delve into the 

details if willing to, we present most of the background and reference material separately from the 

main text using self-contained Appendices. 

Starting from existing literature [27], in Section-2 we briefly review the mathematical foundations of 

the SRS and of the SparSpec code (a more detailed review is then presented as the stand-alone 

Appendix-A). Analysis methods based on the SRS and the SparSpec code itself have been used in 

different A&A applications, and Section-3 provides some examples of these analyses [16, 28-31]. 

Drawing then from various previously published results [32-40], Section-4 presents a review of the 

applications of the SparSpec algorithm to the analysis of various MHD instabilities observed on the 

JET tokamak (more details are then presented as the stand-alone Appendix-B). This section is then 

completed with some previously unpublished results obtained with the SparSpec code when analysing 

magnetic fluctuations corresponding to Tearing Modes (TM) with multiple helicities on the TCV 

tokamak. Section-5 then presents a review of the application of a method based on the SRS to the 

optimization of the design of the ITER HF magnetic diagnostic system, as previously discussed in 

[25, 26] (more details are then presented as the stand-alone Appendix-C). A new topic presented in 

this section reports on the optimization of the in-vessel positioning of a set of new 3D HF magnetic 

sensors recently installed in the TCV tokamak. Section-6, as a rather unorthodox conclusion to this 

review, illustrates the first attempts at a completely new development in the applications of the SRS, 

which also realizes a youngster’s idea of the main author of this paper (DT, when he was still working 

as an archaeologist during his summers), namely obtaining an efficient and inexpensive interpretation 

of the ground-based measurements of electric potential made during surveys of one archaeological 

site in central Italy, the proto-Villanovian necropolis of Poggio della Pozza (dated circa 1200 BC: the 

main author of this paper (DT) was in fact in charge of the original excavation of this site in 1988, 

during which the measurements of electric potential were made). Finally, Section-7 presents the 

conclusions of this work and some prospects for future applications to ITER and other complex 

engineering and scientific systems such as the Square Kilometre Array (SKA) telescope [41]. 

 

(2) Sparse Representations of Signals and the SparSpec code: a brief mathematical review. 

The detection and the characterization of oscillations existing in time series are questions raised by 

many data analysis problems. In A&A observations, the acquisition is often subject to an irregular 

process of measurement, in particular for ground-based observations: objects of interest can be 

periodically unobservable due to the alternation of day and night or seasons, and poor weather 

conditions cause gaps in temporal coverage. In fusion plasmas, the spatial acquisition can similarly 

be based on irregular sampling, for instance due to engineering and financial constraints. In general 
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terms, and for any experiment, the sampling time points and spatial positions may be (both) 

irregularly spaced due to observational constraints. This kind of sampling makes the problem of 

oscillation frequencies detection and estimation particularly difficult. 

Considering for simplicity the general conjugated variables time and frequency (which in fusion 

plasmas could represent also toroidal (poloidal) angles and toroidal (poloidal) mode numbers), this 

irregular sampling can be seen as the application of an irregular Dirac comb w(t) to the original signal 

ys(t) and can be well understood in the Fourier domain: 

(1)

In eq.(1), y(tp) are the individual measurements taken at all the time points tp (for p=1, …, P), from 

which the irregularly sampled signal ys(t) is constructed through the filtering via the Dirac delta 

function (t-tp), and Ys(f) is the Fourier Transform (FT) in time of ys(t). Ys(f) then corresponds to the 

convolution of the FT of the original signal Y(f)=FT(y(t)) with the spectral windows W(f), which is 

the FT of the irregular Dirac comb w(t), W(f)=FT(w(t)). 

In the theoretical infinite regular sampling case, the spectral window is the usual Dirac comb and the 

Fourier transform of the sampled data corresponds to a periodised version of the original signal’s FT. 

This property leads to the well-known Nyquist-Shannon theorem [42] which is not valid in the 

irregular sampling case. 

Hence, the analysis problem becomes that of obtaining a deconvolution of the spectral line data Y(f) 

from the spectral window W(f). The mathematical modelling for this problem is relatively simple: as 

the original signal is constituted of a sum of pure frequencies, each data point y(tp) is expressed as a 

weighted sum of complex sinusoids, the so-called atoms: 
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(2a) 

where p is the error on the measurement, cl and l are the complex amplitudes and frequency, and L 

is the total number of spectral components. The formulation of eq.(2a) presents two problems: first, 

it is non-linear with respect to the (continuum of) frequencies l, and second, L is unknown a-priori. 
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The problem described by eq.(2a), which amounts to fitting multiple complex sinusoids to the input 

data, is a very general signal processing problem which arises in many fields of physics. Such a 

spectral analysis problem from irregularly sampled data is very common in A&A, where time series 

acquisition usually suffer from incomplete temporal coverage, in particular periodic gaps caused by 

the Earth’s rotation and revolution, and a-periodic interruptions due to the weather. Many methods 

have been proposed in the field of A&A to improve the analysis of such irregularly sampled time 

series, based on generalizations of the LSP [2, 3] and of Data-Compensated Discrete FT [43]. When 

dealing with data which contain oscillations at several frequency, iterative procedures are generally 

used [5, 44]. Such methods, however, are inadequate when there are several temporal frequencies and 

too few measurements. Specific methods have also been developed for short data strings to analyse 

strictly periodic signals (fundamental frequency 0 and harmonics frequencies at an exact multiple of 

0), such as Phase Dispersion Minimization [45] and string length method [46]. 

A major simplification [47] of eq.(2a) can be obtained using a discretization of the frequency axis 

into the known components fk=(k/K)fMAX, with k=[-K, ..., K], where fMAX is much larger than the 

largest frequency component that can reasonably be present in the measurements, leading to: 

  2 k p

K
j f t

p k p
k K

y t x e  


  , 
(2b) 

The problem is now linear with respect to the mode amplitude xk, but we must deal with an even 

larger number of still unknown {xk} and now known {fk}, as one may take that K>>L to achieve a 

high resolution analysis. However, the estimation of the spectral lines {xk, fk} can be greatly 

simplified by using the sparsity of {xk} and {fk}, i.e. imposing that the {xk} and {fk} have only a 

small number of non-zero components. Such a problem can be tackled through the principle of SRS. 

Formally, SRS [17, 48, 49] are representations that account for all information in the input data y(t) 

with a linear combination of a small number of elementary signals (sine waves, Diracs, …) called 

atoms that belong to a selected family (a dictionary) which contains many such elementary signals. 

The atoms set is a redundant family, i.e. it does not form a basis as the number of atoms (2K+1, see 

eq.(2b)) exceeds the dimension P of the signal space, so any signal can be represented by more than 

one combination of different atoms. Among all these various possible combinations, the one with the 

smallest number of atoms is the Sparse Representation of the Signal. The sparsity of {xk} can be 

quantified with the L0 (pseudo-) norm, which corresponds to the number of non-zero components in 

{xk}: ||x||0=#{k, |xk|≠0}. The Sparse Approximation of Signals [50-52] (SAS) is the version of the 

SRS method adapted to noisy data. Theoretically, the problem tackled with the SAS can also be 

written as the minimizer of the criterion: 
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2

0 0
( )J x W   y x x , 

(3) 

where  is a penalization parameter related to the noise level. However, to minimize this criterion, 

one must perform a combinatorial optimization, i.e. sift through all possible combinations of 

elementary signals, which becomes rapidly intractable as the datasets become larger. Two different 

methods have been proposed to get round this problem. The first one, often called a Greedy Pursuit 

algorithm, iteratively adds atoms to the initial approximation of the signal to improve such 

approximation [53]. The second one, often called a Convex Relaxation scheme, replaces the L0 

pseudo-norm in eq.(3) with another penalization term, generally based on the L1-norm ||x||1=k|xk|, 

such that the criterion may be minimized more easily, particularly when considering optimization of 

the use of CPU time. 

In our work we follow this convex relaxation approach, classically using the L1-norm, instead of the 

L0 pseudo-norm shown in eq.(3). Hence we obtain the criterion: 
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(4) 

It can then be easily shown that the criterion of eq.(4) is convex, therefore has no local minima, but, 

as the number of unknowns may be larger than the number of data points, this criterion is not strictly 

convex, i.e. the global minimum cannot be a-priori guaranteed to be unique. Moreover, minimizing 

eq.(4) does not necessarily lead to the same solution as minimizing eq.(3), i.e. sufficient conditions 

for the equivalence between the L0 pseudo-norm and L1-norm need to be satisfied (see for instance 

[53, 54, 55]). 

Many computationally efficient algorithms have been developed to optimize the solution of eq.(4), 

some of which can be made compatible with the requirements for real-time analysis of JET data. 

While for real-valued unknown {xk} this problem can be written as a classical Quadratic Program, 

for complex-valued unknown {xk} it corresponds to a Second-Order Cone Program [49]. An 

algorithm based on an iterative Block Coordinate Descent procedure has been previously proposed 

[16, 17], and implemented in the SparSpec code. This procedure consists of performing successive 

one-dimensional minimization steps with respect to each complex-valued unknown xk, where each 

one-dimensional minimization has an explicit solution. This algorithm is very efficient and a correct 

solution can be typically found in less than 1ms using the rather modest computational resources 

available to process real-time JET data [19, 20, 27]. 
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Considering now the application of the SRS and SAS methods to magnetically confined 

thermonuclear fusion plasmas in a tokamak device, the analysis is based on magnetic and turbulence 

measurements, and typically starts with an initial Fourier decomposition of the data in the 

time/frequency domain to obtain the individual frequency components (). In a tokamak the plasma 

column has, to a first approximation, 2D boundary conditions along the toroidal direction and on the 

poloidal plane, perpendicular to the toroidal direction. The spatial structure of the instabilities is 

determined by further decomposing each frequency component in its toroidal (n) and poloidal (m) 

harmonics: ()=e-jtn,mAmnejnejm. Here  and  are the toroidal and poloidal angle coordinates, 

respectively, and we have used the fact that in tokamak geometry one single toroidal component with 

a given n usually has multiple poloidal components due to toroidicity and various other geometrical 

effects. The aim of mode number analysis is to determine the value of {n, m} of the magnetic 

instabilities present in the plasma and to estimate their amplitude from data acquired with P detectors 

un-evenly positioned at angles p (θp), p={1, …, P} being the suffix labelling the individual sensors 

used for the measurement. 

For generality and consistency with the original A&A notation, in the tokamak plasma fusion problem 

the Fourier conjugated variables can still be called {time, frequency}, which can then be the actual 

toroidal {, n} or the poloidal {, m} conjugated angle and mode-number variables. This means that 

the mathematical formulation can be equivalently used for calculating the n- (toroidal) and m- 

(poloidal) mode numbers by using the relevant sensor geometry. For the determination of the poloidal 

mode numbers in tokamak geometry, one has to remember that we should consider explicitly the so-

called -correction [56-58] to the sensors’ position, so as to run the mode number decomposition 

analysis using the correct, i.e. equilibrium-dependent, sensor geometry. 

When applied to thermonuclear plasma physics, the problem described by eq.(2b) has some additional 

requirements with respect to the A&A problem, which is also described by eq.(2b), even if its solution 

can still be obtained using eq.(4) in both cases. First, the data are complex-valued, which implies that 

the Fourier transform of the data does not satisfy the Hermitian property ˆ ˆ( ) ( )y y    as in the 

spectral analysis of real-valued data. Obviously, the complex-valued data have to be analysed 

together, conserving the phase relation between in-phase (I) and quadrature (Q) components, and not 

independently. Second, the mode numbers can only take positive or negative integer values, while in 

the general spectral analysis problem, frequencies take real values. This is a favourable property as 

the model (2b) works on a discretized frequency grid. For A&A problems, a very fine discretization 

of the frequency grid is required so that real valued frequencies are not too distant from the nearest 

frequency on the grid. Third, in the real time applications we consider for JET (and for ITER), a set 

of data is acquired every 1ms, therefore the spectral analysis must be completed in an automated 
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manner in the short time between each measurement acquisition. Finally, in terms of amplitude 

estimations, it has been shown [16, 17] that minimizing eq.(4) leads to an under-estimation of the 

amplitudes of the detected mode numbers due to the L1-norm penalization term. Thus, an a-posteriori 

Least-Square (LS) re-estimation of these amplitudes is usually performed for post-pulse analysis in a 

second step within the calculations, after the modes have been actually detected in real-time. 

The Readers are referred to the stand-alone Appendix-A for a complete, more detailed presentation 

of the mathematical background leading to the SRS method and the implementation of the SparSpec 

code for the analysis of A&A and fusion data. 

 

(3) Applications of the SRS method and of the SparSpec code to the analysis of A&A data. 

Analysis methods based on the SRS and using the SparSpec code have been applied to various A&A 

problems. Some examples that we will briefly discuss in this Section are the analysis of the radial 

velocity curves of the Herbig Ae star HD 104237 [16, 59], the pulsation modes of the red supergiant 

HV2576 in the Large Magellanic Cloud [28], the orbit determination software for the analysis of the 

anomaly in the trajectories of the Pioneer 10 and Pioneer 11 spacecrafts [29], the estimate of the p-

mode frequencies of the solar twin18 Scorpii [30], and the search for long term periodicities of the 

X-ray binaries observed with the Swift Burst Alert Monitor [31]. 

 

(3.1) Analysis of the radial velocity curves of the Herbig Ae star HD 104237. 

The A&A problem consists in the analysis of time-series: these can be, for instance, light curves or 

radial velocity measurements, which are subject to observational constraints, such as day/night 

alternation and meteorological conditions. The A&A ground-based measurements are therefore 

always obtained through irregular sampling. An example of such a data set is provided in fig1, 

showing the observation for the radial velocity curve of the Herbig Ae star HD 104237, obtained over 

five observing nights of high resolution spectroscopy at the South African Astronomical Observatory 

during April 1999 [59, 60]. 

As for many such pre-main sequence binary stars, the main pulsation modes are dominated by the 

low-frequency orbital movement caused by the system multiplicity, which could be removed thanks 

to a second set of observations during April and May 2000. Using a pre-whitening method together 

with a frequency analysis via the PERIOD98 package (available at www.astro.univie.ac.at/∼dsn/) 

[61], it was possible to detect five dominant oscillations modes between 28.5/days and 35.6/days. 

These pulsation modes are shown in the top frame of fig2 as the dominant peaks in the FT analysis 

of the data. 
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The spectral window of the measurement time series is shown in the bottom frame of fig2, 

highlighting the very large side lobes at 1 day caused by the daily gaps in the observations. The 

SparSpec code was applied to the analysis of the data for HD 104237, and very similar results were 

obtained for the four main FT frequencies, except for the low frequency pulsations associated to the 

orbital motion, which shows the robustness of SparSpec towards such low-frequency perturbations. 

Moreover, the pulsation associated to the very large side lobes at 1 day could be easily removed 

from the FT spectrum. However, the fifth frequency detected by SparSpec at f5=34.6/days [16] differs 

quite significantly from the one originally detected at f5=33.862/days [59]. To determine the 

correctness of either finding, simulations were run using SparSpec and the pre-whitening method 

using the HD 104237 data time sampling and the two sets of spectral components previously obtained 

with the SparSpec and the PERIOD98 FT analysis. This demonstrated that SparSpec would have 

been able to correctly find the f5 component from the PERIOD98 FT analysis [59], had that been in 

the measurement dataset, while the pre-whitening method would have failed to find the f5 component 

from SparSpec. This shows that the five main pulsation frequencies identified with the SparSpec 

algorithm is a more reliable result than that obtained with the PERIOD98 FT analysis. 

 

(3.2) The pulsation modes of the red supergiant HV2576 in the Large Magellanic Cloud. 

Red supergiants are rather massive He-burning stars, with a mass between 10 and 30 times the mass 

of the Sun. One such example is the Harvard Variable HV2576, a red supergiant in the Large 

Magellanic Cloud. This star has a very complex light variation: when analysed using a simple linear 

sine fitting method, is shows a periodicity of around 530 days [62]. This single pulsation mode 

however does not fit very well the measurements taken from a database irregularly spanning 8 years 

of astronomical observations. When fitting the original photometric measurements with several other 

algorithms, such as those based on the PERIOD04 package [63], the Phase Dispersion Minimization 

method [64] and SparSpec, two distinct oscillation periods appear [28]. The first one corresponds to 

a pulsation mode with a period of 525 days, very close to the original single-mode result [62]. The 

second pulsation mode has a period of 261 days, its presence helping to provide a much better fit to 

the measurements. Moreover, this second pulsation mode is slowly varying in time, indicating the 

presence of huge convection cells that interplay with the first two pulsation modes or the presence of 

a much longer periodicity in this red supergiant. 

 

(3.3) The analysis of the Pioneer anomaly. 

The Pioneer anomaly refers to the difference between the trajectories of the Pioneer-10 and Pioneer-

11 spacecrafts computed using the standard relativistic model for the gravitational force and their 
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actual trajectories as observed through irregular time sampling with Doppler tracking by the NASA 

Deep Space Network. These differences only became clearly observable after the spacecrafts had 

moved beyond 20 AU on their way out of the solar system. This difference has been described as due 

to a constant anomalous red-shifted acceleration directed towards the Sun of around (8.741.33)10-

8cm/s2 [65]. For many years, and before rather mundane engineering causes related to the anisotropic 

radiation pressure produced by the spacecrafts heat losses could be found [66], the Pioneer anomaly 

was the subject of a large number of studies as a possible indication of the requirement for a correction 

of the standard relativistic model for the gravitational force. 

One such study [30] employed the SparSpec algorithm, together with many other methods, to analyze 

the residuals of the fit to the Doppler tracking data, after processing them with the secular term 

provided by [66], with the aim of finding pulsation modes that could then be linked to physical causes 

not present in the standard relativistic model for the gravitational force. The SparSpec analysis 

indicates the presence of significant pulsation modes in the residual to the fit of the Pioneer anomaly 

with periods corresponding to half a sidereal day, one sidereal day and half a sidereal year. These 

pulsation modes were then included in the orbit determination software for the Pioneer spacecrafts to 

better track its position over time [30], and were considered to be consistent with the effects on the 

propagation of light from the spacecraft to the observer on Earth due to metric corrections in the 

framework of general relativity or to an incorrect modelling of the solar corona. 

 

(3.4) The estimate of the p-mode frequencies of the solar twin18 Scorpii. 

Solar twins is a terminology used to indicate stars that are spectroscopically very similar to the Sun. 

These objects have been the focus of a significant number of photometric and spectroscopic studies 

in recent years, with the interest in these astronomical objects stemming from trying to answer two 

main questions: first, what is the “best” solar twin, a quest that could then indicate the location of a 

system capable of supporting exoplanets similar to the Earth, and second, is the Sun really unique? 

One of the main analysis tools for solar twins is astero-seismology, which can provide insights into 

the un-observable stellar interior from the measurement of pulsating modes in their light emission 

spectra. As an example, the measured frequencies of pressure-driven modes (p-mode frequencies) 

provide information on the internal pressure fluctuations in the solar twin, the dynamics of these 

modes being determined by the internal hydro-dynamical stability and thus the radial profile of the 

speed of sound: p-modes are very common in Sun-like stars, such as Alpha-Centauri. Similarly, 

gravity-driven (g-)modes are produced by buoyancy, and thus provide information on the radial 

profile of the mass density: these modes are essentially confined to the core of the star’s convection 

system, which converts thermal energy into the kinetic energy of the modes, and are often observed 
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in white dwarfs. Finally, surface (f-)modes are the equivalent of tidal waves on the surface of the 

ocean, providing insights on the perturbation at the surface of the star due to centrifugal effects or the 

presence of a binary sister star nearby. Detailed and accurate analysis of multiple periodicities in their 

light emission spectra through irregularly sampled time series has therefore become a major tool for 

the understanding of the internal structure of solar twins. 

The SparSpec code has been applied, together with other analysis methods, to the deconvolution of 

the emission spectra of the solar twin 18 Scorpii [30], a solitary star in the Scorpius constellation at 

approximately 14 parsecs from the Earth [67]. For this study, 100 irregularly-sampled time series 

were constructed using an arbitrary number of input frequencies so as to match the observations, and 

thus deduce the accuracy of the Bayesian method used for the analysis of the photometric 

measurements, a Maximum A Posteriori (MAP) approach obtained through a Markov-Chain Monte 

Carlo estimation, where the likelihood is replaced by a Posterior Probability Density. Figure3 shows 

the results of this analysis: of the original 52 pulsation modes detected with MAP in the frequency 

range between ~2000Hz and ~3800Hz, only 21 of them sitting in the frequency range between 

~2800Hz and ~3400Hz are deemed to be sufficiently reliable when comparing with the results 

from SparSpec and CLEAN [68], and therefore only these modes are used in the ensuing astero-

seismology studies of 18 Scorpii. The identification of each pulsation mode is then accomplished 

straightforwardly by comparing to well-established solar pulsation modes. 

 

(3.5) The search for long-term periodicities in X-rays binaries. 

The detection of multiple pulsation modes in the light curves emitted by X-ray binaries is a very 

important tool to understand the properties of these systems. Periodic variations, ranging from a few 

hours to hundreds of days, have indeed been observed in the light curves of several low-mass and 

high-mass X-ray binaries. These sources have been monitored for over 10 years now using two 

different systems: the Swift Burst Alert Monitor [69] (S-BAT), which observes more than 50% of the 

sky each day, and the Rossi X-rays Timing Explorer [70] (RXTE), part of the All-Sky-Monitor 

system, both providing long term light curves of several hundreds of sources. 

A selection of data from the S-BAT and RXTE systems have been analysed in [31] using the SparSpec 

code, and multiple orbital and super-orbital periodicities have been detected. While the orbital motion 

is a natural candidate for several pulsating modes, super-orbital periodicities have also been detected, 

with the likely explanation being the presence of an unstable, pre-cessing and tilted accretion disk. 

Using the same analysis method (SparSpec) to compare the pulsation modes more recently obtained 

using the S-BAT with those previously obtained from the RXTE data, this in itself being a feat not 
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often accomplished in A&A work, the work reported in [31] was able to discover new periodicities 

and to confirm previously reported one. 

 

(4) Applications of a Sparse Representation method and of the SparSpec algorithm to the 

analysis of magnetic fluctuations in JET tokamak plasmas. 

The main application of Sparse Representation methods and of the SparSpec code on JET has been 

the real-time and post-pulse analysis of Alfvén Eigenmodes [71-74]. Alfvén Eigenmodes (AEs) are 

a particularly important example of real-time mode detection and tracking in thermonuclear fusion 

experiments for two essential reasons. First, these waves are a natural Eigenmode of any magnetically 

confined plasma: their frequency FAE is simply proportional to the ratio between the magnetic field 

and the square root of the plasma mass: 

 
4

TOR
AE

RES RES p i i
i

B
F multiplier

R q m n A
 


, 

(5) 

and thus represents the balance between the tension force of the ambient magnetic field lines and the 

plasma inertia. In eq.(5) BTOR is the toroidal magnetic field, ni and Ai are the density and atomic mass 

of all ion species, mp is the proton mass, qRES(rRES)=(2m+1)/2n is the value of the safety factor at the 

mode resonant position RRES=R0+rRES, where R0 is the magnetic axis position and r the minor radius. 

The quantity multiplier defines which class of AEs is being investigated: multiplier=1 is used for 

Toroidal AEs (TAEs) and multiplier=2 for ellipticity-induced AEs. The analysis of the dispersion 

relation of AEs can thus provide unique information on the plasma isotopic composition, the safety 

factor profile and the toroidal rotation frequency via the Doppler shift in the AE mode frequency for 

different toroidal mode numbers [75-77]. Second, the fusion-born alpha particles (s) have a supra-

thermal speed at birth that is typically well above the Alfvén speed in the usual thermonuclear 

tokamak plasma conditions. Resonant interaction with AEs is the first wave-particle interaction 

encountered by the s during their thermalization process: hence, this mechanism for phase-space 

and spatial diffusion needs to be appropriately monitored and controlled to guarantee good 

confinement of the s themselves [78, 79]. 

While in JET the measurements of unstable AEs, i.e. with a negative imaginary component <0 of 

the mode frequency =AE+i, are obtained using standard high-frequency magnetic diagnostic 

systems, the measurements of stable AEs, i.e. with a positive >0, are obtained using the so-called 

Alfvén Eigenmodes Active Diagnostic (AEAD) system [15], as its original (and still currently 

predominant) aim is indeed that to drive and detect AEs. This diagnostic system works on the 

principle of active excitation of low-amplitude magnetic perturbations using in-vessel antennas, with 
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maximum driven intensity at the plasma edge |BDRIVEN|<100mG, i.e. typically ~105 times smaller 

than the value of the toroidal magnetic field in JET, BTOR~1T to BTOR~4T. Active excitation is then 

combined with synchronous real-time detection of the resonant plasma response to such antenna-

driven perturbations, which provides the capability of measuring only the plasma response at the 

frequency corresponding to the antenna excitation. The AEAD real-time controller, the Alfvén 

Eigenmodes Local Manager (AELM), works on a millisecond time scale and constitutes one essential 

and furthermore worldwide unique component of the JET Real Time Data Network. The 

measurement of the mode characteristics, such as the frequency, amplitude, toroidal mode number 

and damping rate, are obtained in real-time through calculations performed on a sub-millisecond time 

scale by the AELM software. This data is then passed to the Real Time Signal Server [80], which in 

principle allows implementing a real-time control and feedback system for the modes detected with 

the AELM by measuring the distance from the marginal stability limit /=0, and calling for a 

reaction of the plant when the plasma is approaching the limit during the discharge. More details on 

the technical implementation of the AELM hardware infrastructure and software can be found in [27]. 

The Sparse Representation method and the SparSpec code have been extensively used to obtain 

results on the dependency of the mode frequency and damping rate for stable AEs on various 

background plasma parameters, and these results have been presented previously [32-38]. Hence, in 

this Section we focus our attention to a brief review of the analysis capabilities of the SparSpec code 

and on newer data that may open novel applications of such method on JET (and ITER), specifically 

in view of the on-going upgrade of the AEAD system [81-83]. The Readers can find additional details 

on the use of the SparSpec code and its accuracy for the analysis of magnetic fluctuation data in 

tokamak fusion experiments in the stand-alone Appendix-B. 

 

(4.1) Real-time and post-pulse measurement of the TAE mode frequency, amplitude and 

damping rate using the SparSpec algorithm. 

Figure4 shows an overview of the measurement of the damping rate, mode frequency and mode 

amplitude for TAEs with different toroidal mode numbers. The measurements were obtained in JET 

using the AEAD system for the He4 discharge #79216, and these results were obtained using the 

post-pulse implementation of the SparSpec algorithm. In addition to the TAE data, fig4 also shows 

some representative plasma background parameters (electron density and temperature, measured with 

a high-resolution Thomson Scattering diagnostic system; safety factor, obtained combining EFIT [84] 

reconstruction with Motional Stark Effect (MSE) and polarimetry measurements), the value of the 

antenna driving frequency and the value of the central frequency of the n=1 TAE gap computed as in 

eq.(5) with RRES=3m, qRES=1.5, iniAi=4ne0, and using the real-time and post-pulse measurement of 
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the toroidal magnetic field and of the electron density line-integrated along a chord passing through 

the plasma centre. Figure4 shows that many different toroidal mode numbers are present in the 

frequency-degenerate spectrum of stable TAEs, and these modes have amplitude and damping rate 

that can easily vary by up to a factor 10 at any given time point. Hence, an accurate real-time mode 

number discrimination is clearly an essential ingredient for obtaining damping rate and (at least 

relative) amplitude data that could meaningfully be used for plasma control purpose. 

The main differences between the real-time and post-pulse implementations of the SparSpec 

algorithm are described in details in [27], and are basically due to the different computing resources 

that are available to perform these two sets of analyses (real-time: 1GHz PowerPC with 512MB 

RAM; post-pulse: 2.4GHz laptop with 8GB of RAM). Moreover, for real-time calculations there is a 

hard CPU time limit of 850sec, as the AELM works on a 1kHz clock rate: the results of missing a 

deadline (i.e. not completing the calculations within the allocated time frame) are classed as a failure, 

leading to a full stop of the experiment in order to avoid any potential damage to the AEAD system 

or to the JET machine itself. Post-pulse processing does not suffer of this CPU time limit, hence 

allows for a much greater flexibility and scope in the analysis. 

Figure5 shows the comparison between the real-time (RT) and post-pulse (PP) measurements of the 

mode frequency, amplitude and damping rate for some representative toroidal mode numbers for the 

JET discharge #77417. The post-pulse analysis was performed using NORM=0.65, a normalized 

quantity in the range NORM=/MAX=01 related to the penalization parameter  of eq.(4), and 

|fMAX|=150, the size of the mode-number dictionary, whereas for the real-time analysis we set 

NORM=0.85 and |fMAX|=20 to satisfy the corresponding CPU and RAM limits. The data were 

evaluated using the RT and PP implementation of the SparSpec algorithm, and for presentation we 

selected both low-n and high-n modes. We note that the RT and PP measurement of the mode 

frequency for the different mode numbers shown in fig5 almost exactly overlap, with a difference 

that is typically less than 100Hz: this is essentially due to the accuracy of the synchronous detection 

system. Similarly, the damping rate measurement follows almost exactly the same trends in real-time 

and post-pulse, and the discrepancy in their absolute value is usually well below 15% when the 

temporal evolution of the mode was well tracked in real-time. On the other hand, the measurement 

of the absolute value of the mode amplitude is only correct in real-time within a factor 3 to 10, 

although the trends are sufficiently well reproduced. This is essentially due to the fact that the LS 

renormalization of the output amplitudes required by SparSpec cannot be implemented in real-time 

due to the limitations in the available CPU and RAM resources. 

In summary, the representative TAE measurements shown in fig4 and fig5 demonstrate that the 

SparSpec algorithm fully satisfies the requirement for accurate mode detection and discrimination 
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not only post-pulse, where in principle “unlimited” computational capabilities are available, but also, 

and more importantly, in real-time when using more limited computational resources. The next step 

in JET would be to upgrade the AELM hardware so that even more accurate calculations could be 

performed in real-time, and then implement a feedback loop where appropriate actuators are activated 

when the damping rate approaches the marginal stability limit /=0 while the mode amplitude 

exceeds a certain threshold. As an example of possible actuators, and specifically for the case of AEs, 

a change by less than 3% in the edge elongation (95) in the range 1.45<95<1.55 has been 

experimentally observed for JET plasmas to cause an increase in the mode damping from below 0.3%, 

hence very close to the marginal stability limit, to above 1%, hence much further away from the 

marginal stability limit, with no other effect on the overall plasma confinement [32, 98]. Such a 

change is obtained through a variation by less than 5% in the voltage applied to some of the shaping 

coils, which could then be used as an actuator to control the stability of AEs. Other possible actuators 

for the control of the stability of AEs are the launchers for the Electron Cyclotron Resonance Heating 

(ECRH) and Current Drive (ECCD) systems, as recently demonstrated in experiments on DIII-D [99]. 

 

(4.2) Measurement of the mode location of unstable TAEs. 

The SparSpec algorithm can also be used to determine the toroidal and poloidal (m) mode number of 

unstable TAEs, driven by a population of energetic ions. An example of these measurements is shown 

in fig6 for the JET discharge #49384, where we want to compare the mode radial location as 

determined from cross-correlation analysis and from the resonant condition qRES(rRES)=(2m+1)/2n. 

For these studies, we compare the post-pulse SparSpec toroidal and poloidal mode number results 

(fig6a) with those obtained using a Least Square Fit (LSF) algorithm (fig6b). While with SparSpec 

we obtain multiple components at any given time and frequency point, the LSF algorithm provides 

us only with what is calculated to be the dominant (toroidal, poloidal) mode number. The SparSpec 

analysis was performed using NORM=0.65 and |fMAX|=150 for the toroidal mode number analysis, and 

NORM=0.35 and |fMAX|=300 for the poloidal mode number analysis, respectively. Figure6c shows the 

mode radial location determined as the Eigenfunction peak using qRES(rRES)=(2m+1)/2n and cross-

correlation analysis between one magnetic probe located and the plasma edge and ECE and 

reflectometry measurements viewing various radial positions. Note that to determine the qRES value, 

we only use the dominant component provided by the SparSpec analysis. 

To first approximation, we find that both the SparSpec and LSF algorithms provide an evaluation of 

rRES which is consistent with the cross-correlation data. However, at a closer inspection we actually 

see that the trend, indicated by the cross-correlation measurements, of rRES moving towards the 

magnetic axis as the current profile relaxes and the value of the q-profile drops across the plasma 
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cross-section, is only well reproduced when using the SparSpec qRES data. Conversely, the LSF data 

produce (even if relatively small) jumps in qRES that are not consistent with the cross-correlation data. 

The reason for this difference is straightforward: whereas the LSF algorithm effectively forces a best 

(in the LS sense) fit of the magnetic measurements with one single component, the SparSpec 

algorithm allows multiple components. The dominant one is only selected a-posteriori to obtain qRES, 

and this turns out to be a more accurate processing method. 

 

(4.3) Measurement of turbulence suppression by fusion-born alpha particles. 

The Deuterium-Tritium Experiment (DTE1) performed in JET in 1997 [85] produced the world 

record fusion power PFUS16MW, with a record fusion energy gain QDT0.65 maintained over about 

half the plasma energy confinement time E. One of the main purposes of this experiment was that to 

verify the plasma self-heating by the fusion-born s: this process requires the s first to thermalize 

on the electrons, on a time scale e that is in general comparable with E, and then the electrons are 

required to heat the ions through energy equi-partition, occurring over a time scale ei that is around 

five to ten times longer than E. This mechanism for the plasma self-heating by the fusion-born s 

was fully verified during the DTE1 experiment [86, 87]. However, and totally unexpectedly from a 

theoretical point of view, at the time of the DTE1 experiment it was also noted that under certain 

experimental conditions a thermal ion heating was obtained that was much larger than what could be 

predicted, and furthermore occurring over time scales even shorter than E. This unexpected 

observation of an anomalous ion heating in the presence of a minority population of fusion-born s 

has only been very recently explained in terms of turbulence suppression in the Ion Temperature 

Gradient (ITG) channel by the s themselves [39, 40]. This explanation has been obtained by 

combining methods that have only recently become available, such as the SparSpec algorithm for the 

spectral analysis of the magnetic and turbulence measurements and the GENE code [88] for the 

numerical simulation of turbulence in the ion and electron channels in the presence of multiple and 

non-thermal ion species. 

Figure7 shows a summary of the spectral measurements of the turbulence in the ion acoustic 

frequency range, presented as function of the toroidal mode number for three discharges with different 

densities of s, and for two phases in the discharge: before and after full thermalization of the s. 

These results were obtained using the post-pulse implementation of the SparSpec algorithm, with 

NORM=0.15 and |fMAX|=500. The very small value of NORM and high value of |fMAX| are both needed 

as the turbulence spectra are incoherent, in principle could extend up to very large toroidal mode 

numbers (i.e., down to a wavelength smaller than the ion Larmor radius), and have an amplitude 
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which may sit just above the background noise level. Data for negative and positive mode numbers 

(in the plasma moving frame, i.e. with the spectrum corrected for the background toroidal rotation) 

correspond to turbulence in the electron and ion channels, respectively Trapped Electron Modes 

(TEM) and Ion Temperature Gradient (ITG) driven modes. For the discharge #41069, which does not 

have s, the data have been analysed at the same two time points used for the discharges #42847 and 

#43011, which had s. Whereas in #41069 the turbulence spectra are very similar at these two time 

points, in #42847 and #43011 we note a large increase in the TEM turbulence as the s thermalize. 

More importantly, there is a factor ~2 to ~5 suppression of turbulence in the ITG channel when the 

s have not yet thermalized, with the larger reduction occurring in the discharge #42847, which has 

a larger fraction of s. Simulations performed with the GENE code indicate that the intensity |BMEAS| 

and growth rate ITG turbulence in the toroidal mode number range 65<n<120, which is identified in 

the simulations as ITG modes, both decrease as the s start thermalizing on the background plasma, 

as indicated by the turbulence measurements. This then allows the core ion temperature Ti0 to increase 

on a time scale which is comparable to the energy confinement time E~0.8sec, as measured, but is 

much faster than the s slowing-down time on the ions (i~4sec) and the electron-ion energy equi-

partition time (ei~5sec). Again consistently with the turbulence and ion temperature measurements, 

the increase in Ti0 drives an increase in |BMEAS| and ITG as the fusion born s start to fully thermalize, 

which prevents a further increase in Ti0 itself. 

 

(4.4) Analysis of Tearing Modes with multiple helicities in the TCV tokamak. 

One example of application of the SparSpec algorithm on the TCV tokamak is the analysis of Tearing 

Modes (TM) at multiple mode frequencies and with multiple helicities m/n, and the ensuing 

estimation of the island width from the measured magnetic data at the plasma edge. One such case is 

the TCV discharge #48799 where two TMs are observed experimentally: the first a pure m/n=2/1 

mode at around 4kHz, the second a m/n=4/2 mode at around 8kHz, with a significant sideband 

m/n=5/2 component, providing approximately 1/3 of the mode energy (evaluated as |BMEAS|2). 

For these TMs, the island width has been evaluated using magnetic measurements obtained through 

Mirnov coils mounted on the vacuum vessel wall following the method presented in [89]. First, we 

evaluate the different (m.n) helical harmonic components of the perturbed surface current density 

along the resonant flux-surface jSUR~sin(m-n)B/RB, where  and  are the poloidal (in straight-

field line coordinates) and toroidal angles, respectively, B and B are the total magnetic (vector) field 

and its poloidal component, respectively, and R is the major radius position of the resonant q-surface 

determined by qRES=m/n. This 3D problem can then be treated with a simpler 2D model by 
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considering only the toroidal component of jSUR. This allows evaluating the perturbation 

B,MEAS=(bMS+bMVcVS())IS in the poloidal magnetic field at the sensors’ location, where bMS and 

bMV represent the coupling coefficients between the different toroidal filaments in the perturbed 

helical surface current IS (subscript “S”), the vessel eddy current Iv (subscript “V”) and the sensors 

(subscript “M”), respectively, and cVS() represents the frequency-dependent vessel response to the 

perturbation caused by IS. The “best” mode at any one frequency, or the “best” superposition of modes 

at different frequencies, can then be identified fitting the model poloidal magnetic field perturbation 

to the Mirnov coil measurements. The perturbed helical flux at each plasma position xP produced by 

the perturbed helical current at the q-surface resonant position xS can then be obtained from this “best” 

(superposition of) mode(s), and it is given by (xP)=MPSIS(xS)|B|/B, with IS=kkIS(mk,nk,,xS), 

where MPS is the mutual inductance between the toroidal current filaments located at xP and xS and 

B is the toroidal magnetic field component. The equilibrium flux is modulated around the resonant 

surface by (xP): the X-points (respectively O-points) of the islands are then associated with the 

maxima (minima) of this modulation. The island width is then simply given by half the separation 

between the two X-points. 

Figure8 shows three different estimation of the island width for the TCV discharge #48799 using the 

magnetic measurements and the procedure described above. The first estimate is obtained when 

considering only a pure m/n=2/1 mode at around 4kHz (no significant sidebands were detected at this 

frequency using SparSpec), the second summing up this mode and a pure m/n=4/2 mode at around 

8kHz, and the third including the contribution of the sideband m/n=5/2 component at 8kHz obtained 

through the SparSpec analysis. We note that by including this last term we obtain a larger estimate 

for the island width, increasing from ~1.8cm to ~2.2cm over the time window of interest. Although 

relatively small, as it amount to only about ~20% of the single-helicity width, this increase in the 

island width estimation for TM with multiple helicities could not have been detected without allowing 

for multiple modes at the same frequency, and it is this latest method which is now currently used in 

analyses of TM onset and stabilization for TCV plasma [90-92]. 

 

(5) Optimization of the design of the ITER HF magnetic diagnostic system. 

The ITER HF magnetic diagnostic system is intended to provide measurements of MHD modes and 

magnetic fluctuations with magnitude as low as |BMEAS|~10-4G (as measured at the position of the 

sensors) and up to frequencies >300kHz, with toroidal and poloidal mode numbers up to |n|=30 and 

|m|=60 [22-24]. Figure9a shows the baseline design for this system as in 2009, built around 2 main 

arrays of 2x18=36 equi-spaced sensors each on the low-field side of the machine for toroidal mode 

number detection (indicated by the filled dots in fig9a) and 6 main arrays of 16 un-evenly spaced 
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sensors each for poloidal mode number detection (indicated by the filled squares in fig9a), covering 

the entire poloidal cross-section but for the divertor region. The toroidal and poloidal mode number 

detection systems can be improved in the ITER original design layout, initial provisions already 

having being made for this, by adding a number of high-resolution mini-arrays on the horizontal (for 

toroidal analysis) and vertical (for poloidal analysis) edges of some of the equatorial ports on the low-

field side, as shown in fig9b. 

We have performed [25, 26] the baseline analysis and an attempt at optimization of the ITER HF 

magnetic diagnostic system using an approach based on the SRS method. The SparSpec algorithm 

has been applied to a model dataset of input modes for various implementations of the ITER HF 

magnetic sensor geometry for n(m)-number detection. This analysis is performed by scanning various 

parameters for the input mode spectrum: number of components with their relative random amplitude, 

relative phase and mode number, and standard deviation in the background Gaussian (white) noise. 

The ITER measurement requirements and the expected measurements’ errors and tolerances are 

explicitly considered in our method to define the correct and the wrong detection of the input modes. 

We then consider a measure of the projected financial costs required for each implementation of the 

ITER HF magnetic diagnostic system. The ratio between the confidence level in the measurement 

performance, i.e. how correctly the input mode spectrum is detected, and the financial costs necessary 

to achieve this performance, is then taken as the measure of the cost-normalized measurement 

performance. By then averaging over all the scans perform to study a given implementation of the 

ITER HF magnetic diagnostic system, we obtain an assessment of the overall system performance, 

one where we have integrated physics and budgetary requirements: the highest ratio defines the 

cheapest (financially) diagnostic system that allows obtaining a satisfactory measurement 

performance. The Readers can find additional details on the use of the SparSpec code and the method 

we have employed for the analysis of the measurement performance of the ITER HF magnetic 

diagnostic system in the stand-alone Appendix-C. 

It is now important to introduce the nomenclature that we use for this analysis. We use the wording 

geometry to define a specific method to select the number and position of the magnetic sensors. For 

instance, one geometry is made up with 36 un-evenly spaced sensors, and a second geometry still has 

36 un-evenly spaced sensors in total, but of these 12 are installed in one high-resolution array in one 

of the equatorial ports. For each geometry, the actual position of each sensor is selected either ad-hoc 

(for evenly spaced sensors), or through a pseudo-random algorithm (for un-evenly spaced sensors) 

that takes into account all potential installation constraints, such as zones where sensors cannot be 

located (for instance the divertor region in the case of a poloidal array). This is particularly important 

for the geometries used for poloidal analysis, as only the equatorial port can be used to add a single 
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high-resolution array, and no sensors can be positioned in the divertor region or in the lower and 

upper mid-plane ports. Because of these installation constraints, the position of each sensor cannot 

be truly randomly selected. Each geometry is then represented by a number of different sensors’ 

arrangements. Each geometry using un-evenly spaced sensors is represented by at least 10 

arrangements of sensors, corresponding to the different pseudo-random number realizations used to 

construct the sensors’ position. For geometries using evenly-spaced sensors, for instance those used 

for toroidal analysis, different arrangements can be obtained when changing the equatorial port(s) 

where the high-resolution array(s) are installed. In total, we consider 19 different geometries for the 

ITER HF magnetic diagnostic system, as summarized in Table1. 

geometry sensor spacing type high-resolution arrays mode number analysis 

ES1 evenly spaced sensors none toroidal + poloidal 

ES2 evenly spaced sensors 1x5 sensors toroidal + poloidal 

ES3 evenly spaced sensors 1x7 sensors toroidal + poloidal 

ES4 evenly spaced sensors 1x12 sensors toroidal + poloidal 

ES5 evenly spaced sensors 3x5 sensors toroidal only 

US1 un-evenly spaced sensors none toroidal + poloidal 

US2 un-evenly spaced sensors 1x5 sensors toroidal + poloidal 

US3 un-evenly spaced sensors 1x7 sensors toroidal + poloidal 

US4 un-evenly spaced sensors 1x12 sensors toroidal + poloidal 

US5 un-evenly spaced sensors 3x5 sensors toroidal only 

BT1 baseline design toroidal system none toroidal only 

BT2 baseline design toroidal system 1x5 sensors toroidal only 

BT3 baseline design toroidal system 1x7 sensors toroidal only 

BT4 baseline design toroidal system 1x12 sensors toroidal only 

BT5 baseline design toroidal system 3x5 sensors toroidal only 

BT6 baseline design poloidal system none poloidal only 

BT7 baseline design poloidal system 1x5 sensors poloidal only 

BT8 baseline design poloidal system 1x7 sensors poloidal only 

BT9 baseline design poloidal system 1x12 sensors poloidal only 

Table1. Overview of the main characteristics of the 19 different geometries used for the baseline 

analysis and optimization of the ITER HF magnetic diagnostic system. 

Ten of these geometries are labelled as ES# and US# to indicate assemblies with a varying number 

of evenly (ES) and un-evenly (US) spaced sensors, as follows: #1: no high-resolution sensors; #2; 

adding 1x5 high-resolution sensors; #3: adding 1x7 high-resolution sensors; #4: adding 1x12 high-
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resolution sensors; #5: adding 3x5 high-resolution sensors. The BT labels indicate the baseline design 

for toroidal mode number measurements with 2x18 evenly spaced sensors, and the configurations 

obtained adding to this baseline assembly [1x5, 1x7, 1x12, 3x5] high-resolution sensors, and the 

baseline design for poloidal mode number measurements with 16 un-evenly spaced sensors, and the 

configurations obtained adding to this baseline assembly [1x5, 1x7, 1x12] high-resolution sensors. 

The {ES1ES4} and {US1US4} geometries can be used for both toroidal and poloidal mode 

number analysis, as only one equatorial port is required for the high-resolution sensors. Conversely, 

the ES5 and US5 geometries can only be used for toroidal analysis, as multiple high-resolution arrays 

are used. 

Figure10a and fig10b show some representative examples of the geometries used for the toroidal and 

poloidal mode number measurement arrays. For comparison purposes, we also show the spectral 

window W() for the various geometries shown in fig10(a,b),  being the toroidal (n) or poloidal (m) 

mode number, respectively. The spectral window for all these geometries is well behaved, i.e. it does 

not show any peaks >0.8 in the mode number range of interest, which would very much complicate 

the analysis [24, 25]. Hence, having passed the preliminary test of a well-behaved W(), we have 

then defined four additional and complementary criteria to assess the cost-normalized measurement 

performance of any given geometry. For each test, we performed 50’000 simulation runs for each of 

the selected 19 geometries. We have used an input spectrum SIN(xn) 
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containing between 3 and 7 modes with known randomly chosen and normalized amplitudes in the 

range 0.05Ak1.00, relative phases 0.00k1.95* and random choice of integer mode numbers 

up to |n|30 (|fMAX|=150) and |m|60 (|fMAX|=300) for the toroidal and poloidal mode number analysis, 

respectively, and scanning the standard deviation in the background noise in the range 0.000.30. 

In eq.(6) xn[0, 2] is the position of the n-th sensor, and the quantities SIG[0, 1] and MEAS(xn)[0, 

1] represent the standard deviation in the background noise on each spectral component and on the 

measurement itself at each sensor, respectively. These quantities have a fixed and unique value for 

each simulation as they can in principle be measured directly on the system when installed. The 

quantities {r1k, r2k, r3n, r4n} are random numbers chosen from a uniform distribution in the interval 

[0.0  1.0]; note that the random seed used for {r1k, r2k} can be different from the one used for {r3n, 

r4n}. With this approach, the noise has independent and un-correlated complex components satisfying 

the circularity property. In general, SIG and MEAS can be different and, more importantly, MEAS can 

have different values for different sensors. Intuitively, SIG can be associated to background noise 
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from the plasma, for instance due to un-coherent turbulence; conversely, MEAS is associated with 

“engineering” errors, such as tolerances on the position and alignment of the sensors, calibration 

errors, and various effects such as cross-talk, drifts, offset, signal pick-up and bit-noise in the cabling 

and electronics. 

The main results of the baseline analysis and an attempt at optimization of the ITER HF magnetic 

diagnostic system are shown separately for the four selected tests in the following sub-sections. We 

will then conclude this section with the analysis of the expected measurement performance of the HF 

magnetic diagnostic system used for toroidal mode number analysis on the TCV tokamak, which has 

recently been upgraded with the installation of 3 new 3D sensors made using the Low-Temperature 

Co-fired Ceramic technology [93]. 

 

(5.1) Noise test analysis. 

The first test aims at assessing whether one particular geometry is more prone than the others to 

mistakenly “recognize” white noise as being a high-n(m) mode. Therefore, we consider an input data 

set made only of white Gaussian noise of known variance, and we determine the 95% and 99% 

confidence level for not detecting any true mode. 

Figure11 shows a summary overview of this analysis. We find that the best performing geometry has 

~30 un-evenly spaced sensors, but needs around ~40 equi-spaced sensors. For an even higher number 

of sensors the cost function increases much more rapidly than the confidence level for noise rejection, 

i.e. the measurement performance of the system becomes much less cost-efficient. We also find that 

the reduction in the cost-normalized confidence level for noise rejection is much sharper for an equi-

spaced geometry as the number of sensors increases above its optimum value. We conclude that 

geometries made with sub-assemblies with spatial periodicities are inherently more prone to incorrect 

detection of high-n(m) modes than those using un-evenly distributed sensors. For the baseline toroidal 

and poloidal designs, the best cost-normalized performance is obtained adding one array of 7 high-

resolution sensors to the nominal ITER design, for a total of 43 and 23 sensors, respectively. However 

in both cases the resulting confidence level values =0.907 (toroidal) and =0.924 (poloidal) are still 

below the best values =0.935 which is obtained with 25 un-evenly spaced + 1x5 high-resolution 

sensors. 

 

(5.2) False alarms analysis. 

For the second test, we consider the statistics of correctly recognizing the given input real modes, to 

which white Gaussian noise of known variance is added, vs. the occurrence of false alarms, i.e. modes 

being detected which are not in the input dataset (i.e. detected modes have a different mode number 
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than the input ones) or for which the difference between the input and detected amplitude is larger 

than the set tolerance for the corresponding mode number. The geometries giving the higher number 

of correctly detected modes and the lower values of false alarms are then the best choices for actual 

in-vessel installation. 

Figure12 shows a summary of this analysis. We find again that not only the fraction of false alarms 

is lower for the geometries using un-evenly spaced sensors, but it also reaches a local minimum for a 

lower number of sensors. The addition of one high-resolution array of seven sensors clearly improves 

the measurement performance of the baseline ITER geometries against detection of false alarms for 

toroidal and poloidal mode number analysis, at the expense, however, of a larger number of sensors 

for a higher false alarm fraction. 

 

(5.3) Resilience to the loss of sensors. 

For the third test, we consider the resilience in the measurement performance of all the test geometries 

against the loss of sensors through faults, considering the nominal cases of [10%, 20%, 30%] loss. A 

measure for this resilience is provided by evaluating the confidence level in achieving the same 

measurement performance of a sensors’ arrangement that has all its sensors when some sensors have 

been lost: the higher the confidence level over all possible permutations of lost sensors and input 

spectrum variations, the more resilient is that sensors’ arrangement against the loss of sensors. To 

assess the results of this test, we (logically, but somewhat arbitrarily) choose to define the values 

=0.85, =0.75 and =0.65 as the thresholds in the confidence level associated to a [10%, 20%, 30%] 

loss of sensors, respectively, that indicate that a certain geometry still satisfies the measurement 

performance requirements even when not all sensors are available. Note that the system costs do not 

enter the evaluation of this particular test, as these costs are defined once and for all when the system 

is built and do not change if any number of sensors is lost at a later stage during the machine lifetime. 

Figure13 shows a summary of this analysis. The threshold values for acceptance of this test are 

explicitly shown by the horizontal (magenta) lines to guide the eye. Considering the example of a 

nominal 10% loss of sensors, we find that the nominal ITER geometry for toroidal mode number 

detection does not satisfy the requirements for the resilience in the measurement performance because 

of its intrinsic spatial periodicity, and only adding at least one array of 12 high-resolution sensors can 

correct this problem. For toroidal mode number analysis, an assembly with 25 un-evenly spaced 

sensors in total, comprising 3x5 high-resolution arrays, satisfies the requirements for resilience in the 

measurement performance even for a 30% loss of sensors. It is not possible to satisfy the requirements 

for resilience in the measurement performance against loss of sensors with the nominal ITER 

geometry for poloidal mode number detection, even when adding up to 12 high-resolution sensors. 
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This is due to the low number of sensors =16 in the nominal design. For poloidal mode number 

analysis, an assembly with 30 to 35 un-evenly spaced sensors in total, comprising one array of 12 

high-resolution sensors, satisfies the requirements for resilience in the measurement performance 

even against a nominal 30% loss of sensors. 

 

(5.4) Tolerance to installation and calibration errors and uncertainties. 

For the fourth test, we consider two elements, namely that (a) the position of each individual sensor 

is not absolutely fixed, as given in the installation drawings, but that there is a given volume where 

that sensor will be located, as actually installed in-vessel, and (b) there will be uncertainties in the 

end-to-end calibration of the transfer function for each sensor, causing errors in the determination of 

the relative amplitude and phase of the signals from multiple sensors [94, 58]. To practically 

understand this last term, consider that the relative phase shift  between the measurements 

obtained from two sensors is only due to a calibration error. We can then set =, where  is the 

mode number and  the corresponding angular coordinate: for any mode number, the “wrong” relative 

phase shift corresponds to a “calculated” sensor separation which is not the actual one. 

These two elements effectively add an additional free parameter, i.e. a “tolerance” on the nominal 

position of each sensor as given by an in-vessel survey. We can then assess whether one particular 

geometry is more sensitive than the others to the exact position of each sensor by “numerically 

moving” the initial location of each sensor to achieve the best measurement performance. If a 

displacement outside this positional tolerance is needed to improve the overall measurement 

performance, this tells us that we must then change the nominal in-vessel position of (some of) the 

sensors, which in turns implies that the initial geometry was not optimized. 

Defining posITER as the initial and posOPT as the optimized final sensor position, we construct the 

average shift in the sensor position SensorShift for a total of NN sensors as: 
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We then (again logically but somewhat arbitrarily) consider that each individual geometry satisfies 

the ITER measurement requirements if the overall sensors’ displacement is <SensorShift>2.5deg 

with a standard deviation std(SensorShift)1.5deg (or larger, provided their sum is 3.5deg) when 

averaged over all arrangements representing that particular geometry. 

Figure14 shows a summary of this analysis. For toroidal mode number detection, the baseline ITER 

geometry satisfies the optimization requirements only when adding at least 1x7 high-resolution 

sensors. This gives a total of 43 sensors, whereas an assembly with 25 un-evenly spaced sensors in 
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total, comprising 3x5 high-resolution arrays, already satisfies those requirements. The nominal ITER 

geometry for poloidal mode number analysis does not satisfy the optimization requirements. 

Conversely, an assembly with 30 un-evenly spaced sensors in total, comprising at least 7 high-

resolution sensors, satisfies them. 

 

(5.5) Overall evaluation of the measurement performance. 

Having performed the four tests mentioned above, we can now proceed to an overall evaluation of 

the measurement performance of the ITER HF magnetic diagnostic system for the test geometries 

analysed in this work. To this end, we define a threshold value for each of the individual tests, telling 

us if such a test has been passed. In that case, we give a value =1 to the (cost-normalized) confidence 

level in achieving the target measurement requirements. If the test has not been passed, the confidence 

level is then reduced proportionally to the distance from the set threshold value. The results from the 

four tests are then averaged: this defines the cost-normalized confidence level in achieving the ITER 

measurement requirements. The threshold values defining the acceptance of a test as function of the 

toroidal and poloidal mode numbers for different class of HF instabilities are presented in Table2, 

using the same units and conventions of the corresponding Sections 5.1 to 5.4. For the noise rejection 

tests presented in Section 5.1, we indicate the fraction of detected modes due to noise. For the false 

alarms tests presented in Section 5.2, we s the fraction of wrongly detected modes. For the tests on 

the resilience to the loss of sensors presented in Section 5.3, we indicate the confidence level in 

achieving the same measurement performance of the complete array when some sensors are lost. For 

the positional optimization tests presented in Section 5.4, we indicate the maximum allowed sensor 

shift and its standard deviation. 

 Machine Protection Basic Control Advanced Control Physics Studies 

Mode Numbers n|3, |m|5 n|5, |m|10 3|n|10, 5|m|20 10|n|20, 20|m|30 

Noise Rejection 0% 0% 10% 30% 

False Alarms 0% 0% 10% 30% 

Sensor Loss: 10% 95% 95% 85% 70% 

Sensor Loss: 20% 90% 90% 75% 60% 

Sensor Loss: 30% 85% 85% 65% 50% 

Sensor Shift (1.50.5)deg (1.50.5)deg (2.01.0)deg (2.51.5)deg 

Table2: the threshold values used to define acceptance of the tests described in Section 5.1 to 5.4, for 

the different classes of HF instabilities in the corresponding mode number range. 

Figure15 shows the results of this analysis for some of the test geometries analysed in the previous 

sub-sections. For clarity, the three cases of [10%, 20%, 30%] loss of sensors are considered 



paper PPCF2016-V3: topical review SparSpec, for proofs September 2016 

separately, and we also separate the analysis for individual (groups of) mode numbers, as in Table2. 

There are two main reasons for this approach, which are graphically illustrated in fig15. 

The ITER measurement requirements for HF instabilities [21-23] specify four main topics, namely 

machine protection, basic and advanced control, and physics studies, classified according to the mode 

numbers. Modes required for machine protection are those with toroidal mode number |n|3 and 

poloidal mode number |m|5, which correspond to basic instabilities such as precursors for sawteeth, 

Edge Localized Modes and disruptions, Neoclassical Tearing Modes (NTMs) and Resistive Wall 

Modes: detection of these modes will call for a hard feedback controlled reaction aimed at protecting 

the integrity of the machine. Modes required for basic control have similar mode numbers in the range 

n|5 and |m|10 and correspond to less dangerous variants of the modes sought for machine 

protection, so that their detection will call for a softer feedback controlled reaction. Modes required 

for advanced control usually have 3|n|10 and poloidal mode number 5|m|20, corresponding to 

Alfvén Cascades and AEs. Finally, modes with higher toroidal and poloidal mode numbers up to 

|n|20 and |m|30 are classified of interest for dedicated physics studies. Even higher mode numbers 

are not subject to any detailed measurement specification, and do not enter the assessment of the 

measurement performance. The classification of these groups of instabilities as function of their mode 

numbers is somewhat arbitrary and partially overlapping, as for instance global, low m/n=3/2 AEs 

are usually much more benign modes then m/n=3/2 NTMs, so that the former always falls into the 

basic control class, whereas the latter may under certain experimental conditions fall into the machine 

protection class. This is reflected by the (green) vertical lines in fig15, separating the mode numbers 

into classes: these vertical lines can be “moved” to reflect changing physical understanding and 

measurement specifications. 

Similarly, we somewhat arbitrarily choose to define that an acceptable value for the confidence level 

in the measurement performance of a given sensors’ arrangement is =0.85 when all sensors are still 

available, and we also set this value to be the same for all classes of HF instabilities, i.e. a flat value 

independent of the mode number. We then reduce this threshold to again a flat value =0.70 and =0.65 

for toroidal and poloidal mode number analysis, respectively, when considering a nominal 30% loss 

of sensors. This is reflected by the horizontal (magenta) lines in fig15, which can also be “moved” to 

reflect changing requirements in the desired confidence level. By combining our wishes for the 

confidence level for the different classes of HF instabilities, we can then determine whether a 

particular sensors arrangement satisfies the ITER measurement requirements. 

Figure15a shows the summary results of this analysis for some representative geometries usable for 

toroidal mode number detection. We find that only by adding one array of 12 high resolution sensors 

can we use the baseline 2009 ITER design with 2x18 equi-spaced sensors, but only when all 48 
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sensors are present: this is simply due to the intrinsic periodicity of the baseline array. However, 

already a 10% loss makes this modified baseline geometry unable to satisfy the requirements in the 

measurement performance, unless we install 3x5 high-resolution arrays in well-separated equatorial 

ports, for instance ports [#3, #10, #14]. This therefore makes a total of >50 sensors in each array used 

for toroidal mode number detection. When using un-evenly spaced sensors, we can reduce their total 

number down to 30 if we install 3x5 high-resolution arrays in the same well-separated equatorial 

ports. If these ports are too close-by, for instance ports [#8, #9, #10], then we are unable to satisfy the 

measurement performance requirements with 30% loss of sensors, particularly for higher mode 

numbers. By installing high-resolution array too close by, we reduce the spatial coverage of the 

measurements: hence we became very sensitive to which sensors are actually lost through fault. If 

only one equatorial port is available for HF magnetic measurements, then our best geometry is not as 

performing and needs at least 35 sensors, including an 1x7 high resolution array, or 40 sensors, if we 

can only have an 1x5 high resolution array. 

Figure15b shows the summary results of this analysis for some representative geometries usable for 

poloidal mode number detection. We find that not even by adding one array of 12 high resolution 

sensors can we use the baseline ITER design with 16 un-evenly spaced sensors: this is simply due to 

the intrinsic low number of sensors in the baseline array. Similar results are obtained when 

considering two alternative geometries with 32 un-evenly spaced sensors in total, comprising an high-

resolution array of 12 and 7 sensors, respectively. Only a geometry with 35 un-evenly spaced sensors 

in total, comprising one array of 12 high resolution ones, can satisfy the measurement performance 

requirements for physics studies, i.e. up to |m|30, and this also considering the case of a 30% sensor 

loss. If we relax this requirement and take into account only modes relevant for advanced control, i.e. 

up to |m|20, we find two other geometries to be acceptable: the first one still has 35 sensors in total, 

including one array of 7 high resolution ones, whereas the second requires 45 sensors in total as it 

only uses one array of 5 high resolution sensors. 

In summary, our analysis has demonstrated that the more robust sensor geometry is the un-evenly 

spaced one, i.e. one without periodicities in the sensors’ spacing. For the foreseeable input mode 

spectra for ITER, a truly un-evenly distributed geometry is the more resilient to the loss of sensors, 

furthermore being much less sensitive to false alarms caused by background noise in the input 

spectrum. Conversely, a geometry made up of equi-spaced sub-assemblies has the lowest resilience 

to the loss of sensors, and the highest sensitivity to false alarms, even if the initial number of sensors 

is larger than that needed to obtain the required spatial Nyquist number. High-resolution arrays 

(located in well separated ports for toroidal mode number analysis) are very useful to reduce the total 

number of sensors required for installation. Finally, our optimization tests indicate that a separation 
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smaller than 2deg to 3deg between adjacent sensors is not necessarily beneficial, even for high-n(m) 

detection, as random phase shifts due to background noise mask the “true” phase shifts for the closest 

sensors, which in turns makes it more difficult to detect high-n(m) modes with a sufficiently high 

confidence level. Keeping in mind the ITER measurement requirement for the HF magnetic 

diagnostic system, these results mean that it is indeed possible to find an optimum compromise 

between the need for redundancy, calling for the use of arrays of the largest possible size, the in-

vessel installation constraints, which calls for the least possible number of sensors, and the need for 

having a solution for the n- and m-number analysis which is unique (i.e. irrespective of the number 

of sensors), robust (i.e. keeping the same accuracy irrespective of the input spectrum) and resilient 

against the loss of faulty sensors up to a specified value. 

 

(5.6) Analysis of the measurement performance of the low-field-side toroidal array on TCV. 

A new set of HF, 3D magnetic sensors based on combining the Low Temperature Co-fired Ceramic 

(LTCC) and the classical thick-film technologies have been designed and manufactured in-house for 

installation on the Tokamak à Configuration Variable (TCV) [93]. Five LTCC-3D sensors were 

initially foreseen to be installed along the toroidal direction on the low-field side (LFS) of TCV to 

optimize the measurement performance of this toroidal array while limiting the number of elements 

for the first phase of installation on TCV. However, due to problem that occurred during installation 

with one of the in-vessel attachment and support elements, only three sensors could be installed and 

therefore it became important to understand which of the original five positions should be sacrificed 

in order to maintain the highest possible measurement performance. 

The original LFS toroidal array on TCV has 16 equi-spaced Mirnov-1D sensors (one on each sector 

of the TCV tokamak) and a 17th not equi-spaced sensor that is installed mid-way between the 15th and 

16th equi-spaced sensors. The five LTCC-3D sensors were originally intended to be installed at not 

equi-spaced position in sectors [#2, #10, #12, #14, #16]. Figure16 shows the spectral window for all 

the possible selection of three out of five LTCC-3D sensors. We find that the current LFS toroidal 

array on TCV exceeds the “bad detection limit” [25, 26] of a spectral window W=0.85 for |n|=16, 

which represents the absolute measurement limitation of this system, twice the Nyquist limit |n|=8. 

Had it be possible to install the five LTCC-3D sensors, this limit would have been removed, as 

W(|n|=16)=0.61 and W(|n|=32)~0.79 also would have remained below the value W=0.85, but also 

W<0.25 for all other toroidal components, i.e. below the spectral noise limit [25, 26]. By installing 

only three sensors, we find that choosing sectors [#2, #14, #16] we have W(|n|=16)=0.72 and 

W(|n|=32)~0.84, marginally below the bad detection limit. This configuration is therefore chosen for 
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installation, as all other selection of three sectors out of five give rise to W(|n|=32)>0.87, marginally 

above the bad detection limit. 

 

(6) Electrical survey of the proto-Villanovian necropolis in Poggio della Pozza (Italy). 

A completely new development on possible applications of an analysis method based on the SRS has 

come to light very recently following a discussion with some childhood friends of one of the Authors 

(DT), namely if it was conceivable to develop a cheap and user-friendly method to analyse the data 

obtained during an electrical prospection made in 1988 of the Proto-Villanovian necropolis of Poggio 

della Pozza [95]. This site is dated circa 1200 BC and is located around 50km north-east of Rome. 

One important feature of this site is the use of a ziro (one example is shown in figure17) as the cinerary 

urn. The ziro is a huge carved-out stone egg (approximately 2m tall, 1m wide), set typically 1m to 

2m underground in an isolated position. Inside the ziro, there is a ceramic urn, a canopo, which 

contains the dead’s ashes and a few objects. Sometimes smaller ziri are present around a larger one, 

which is usually considered to indicate the close-by burial of different family members. Although 

very rewarding when found, it is in fact very time consuming to find a ziro, as these objects are usually 

sparsely located in a field of excavation that can in principle be very large. 

The site of Poggio della Pozza (first the necropolis and later also the close-by village) has been 

extensively excavated by Universities and by an Italian volunteer archaeological association from the 

early 1980’s to the mid-1990’s, and one of the Authors (DT) of this paper has been in charge of the 

excavations conducted during the summer of 1988. During this period, an electrical prospection was 

performed to try to locate the presence of the ziri by measuring the anomalies that such a bulky stone 

object would produce in the electrical potential. This technique is sometimes used in archaeological 

excavations, and possibly one of the most successful examples is the 3D electrical tomography survey 

of an insula in Regio III in Pompei [96]. The idea behind this technique is very simple [97], as shown 

in fig18: the ground resistance is affected by the presence of a sufficiently large object underground, 

the AC current flow driven with an array of current electrodes is then distorted around this object, 

and therefore the potential contours measured with an array of potential electrodes will also be 

distorted and will not show anymore the usual 2D (planar at ground level) circular pattern. 

While the measurement technique is in principle simple and sufficiently inexpensive, the analysis of 

these electrical prospection data is actually very complex and requires dedicated and very expensive 

purpose-built software that is not available to a volunteer group in Italy. An attempt has therefore 

been made to extend the model leading to the SRS to the analysis of such archaeological data, by 

assuming that equi-potential circular equilibrium contours are affected by the presence of a small 

number of spatially separated sources (namely: buried objects which affect the underground electrical 
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potential through changes in the local resistivity), which create localised instabilities in the 

equilibrium signal. The analogy with the SRS method is as follows: in the absence of instabilities, the 

measurements of electrical potential will show a (circular) periodicity related to the spacing of the 

electrodes, which corresponds to the spectral window of the system. The spectral window is changed 

by the presence of underground sources: by moving the electrodes, a map of the localisation of the 

sources could in principle be reconstructed. Then, following the same approach used in Section 5.4 

for the analysis of the ITER HF magnetic system, the position of these underground sources, assuming 

a standard size and depth for the ziro, is varied to match as best as possible the ground measurement 

of electrical potential, assuming an otherwise uniform ground resistance. 

Figure19 show the results of this attempt for the analysis of the electrical prospection data of the 

proto-Villanovian necropolis in Poggio della Pozza: the position of the majority of the larger ziri that 

were already found up to 1988 is actually sufficiently well reproduced, typically within a 3m radius. 

Only in a couple of cases there is no direct correspondence within a radius of 10m between the 

position of a ziro as determined from the analysis of the electrical survey performed in 1988 and as 

actually found during the excavations. In a few more cases there is such a correspondence, but only 

when selecting a radius between 3m and 10m, and this usually occurs close to the sparse trees that 

were growing on the site at the time. These trees may have large underground roots that locally affect 

the ground water retention, hence likely invalidating the assumption of a ground resistance that is 

otherwise uniform but for the presence of a ziro. Based on the results of this analysis, we are hopeful 

that during forthcoming excavation campaigns, possibly scheduled for the summers of 2016 or 2017, 

we should be able to locate more rapidly the other larger ziri still buried underground in the non-

excavated area of this site. 

 

(7) Summary, conclusions and an outlook to future work. 

We have used recent techniques of signal processing in astronomy and astrophysics, based on the 

Sparse Representations of Signals, to solve current questions arising in thermonuclear fusion plasmas. 

Two examples are the detection of magneto-hydrodynamic instabilities, which is now performed 

routinely in JET in real-time on a sub-millisecond time-scale, and the studies leading to the 

optimization of the magnetic diagnostic system in ITER and TCV. These questions have been solved 

formulating them as inverse problems, despite the fact that these applicative frameworks are 

extremely different from the classical use of Sparse Representations, on both the theoretical and 

computational points of view. Very recently, an attempts has also been made to apply this method to 

the analysis of the data obtained during an electrical prospection of an archaeological site in central 

Italy. 
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The advantages of using a Sparse Representation method, and particularly algorithms based on the 

SparSpec code, are the high speed at which automated calculations can be performed, coupled with 

the relative ease with which the results can be understood. As an example, using Matlab R14 on a 

2GHz laptop with 1024MB of RAM, the complete post-pulse analysis of the mode number and 

damping rate data collected during one full JET discharge with the AEAD system takes about 200sec 

of CPU time when performed using the SparSpec algorithm, compared to in excess of 2’000sec of 

CPU time when performed using an SVD algorithm similar to those presented in [6, 7]. Despite the 

many hardware limitations of the current AELM system on JET, only with SparSpec a similar 

analysis can be performed in real time on a sub-millisecond time base, as other available algorithms 

based on SVD methods would clearly exceed the CPU and RAM limits. Whereas it is true that for 

ITER the real-time hardware resources will be much improved, it will also be clearly beneficial to 

use them judiciously, i.e. as efficiently and as little as possible. 

Similarly, the optimization analysis for the ITER HF magnetic diagnostic system takes advantage of 

one of the main features of Sparse Representation methods, namely the relative ease with which 

physics-based tests can be turned without further supervision into precise mathematical properties 

and specifications for any diagnostic system. Combined with the numerical efficiency of SparSpec, 

and using the methods described in this work, we find that we can fully analyse the cost-normalized 

measurement performance of one arrangement of magnetic sensors typically within 12 hours of CPU 

time using Matlab R14 on a 2GHz laptop with 1024MB of RAM. 

For forthcoming large engineering and scientific projects, such as ITER and the SKA, it is clear that 

efficient and automated data analysis, in “real-time” wherever possible, will be of paramount 

importance. For these projects, “real-time” means that the data analysis will have to be performed 

over a time scale much faster than those over which the experimental measurements will change, so 

that a control reaction of some actuators may need to be called upon. Whereas for ITER and perhaps 

one gigabyte of data for one particular sub-system, real-time means calculations performed on a sub-

millisecond time scale, for the SKA collecting hundreds of terabytes of data for one single image the 

relevant time scale is of the order of a week, i.e. the time it may take to re-deploy some of the optics 

for some of the telescopes to obtain a more accurate image of the same view of the universe. 

Therefore, the experience with JET data has clearly indicated that, due to their speed, accuracy and 

automated operation, Sparse Representation methods are perfectly adapted to achieve the goal of 

obtaining real-time measurements with an accuracy satisfying the desired requirements in future 

complex engineering and scientific devices. 
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List of main symbols used in equations. 

Symbol Explanation 

y(tp) measurements (y) made at the time points tp 

Ts sampling time 

W spectral window 

p the error on the measurement 

cl (complex) mode amplitude 

l mode frequency 

{fk} discretized mode frequency 

{xk} mode amplitude for the discretized mode frequency {fk} 

 penalization parameter related to the noise level. 

{, n} toroidal angle and (conjugated) toroidal mode number 

{, m} poloidal angle and (conjugated) poloidal mode number 

FAE Frequency of Alfvén Eigenmodes 

BTOR toroidal magnetic field 

RRES mode resonant position 

qRES safety factor at the mode resonant position 

SIN(n) input signal SIN at the position (n) of each sensor 

Ak, k randomized amplitude (Ak) and relative phase (k) 

SIG standard deviation in the background noise on each spectral component 

MEAS(n) standard deviation on the measurement itself at each sensor 
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Appendix-A: Sparse Approximation for line spectra estimation from irregularly sampled data 

in astronomy, astrophysics and thermonuclear fusion. 

The A&A problem consists in the analysis of time-series, which can be, for instance, light curves or 

radial velocity measurements. These measurements are subject to observational constraints, such as 

day/night alternation and meteorological conditions. The A&A ground-based measurements are 

therefore always obtained through irregular sampling. This kind of sampling makes the problem of 

oscillation frequencies detection and estimation particularly difficult. In A&A data analysis (as for 

analysis of magnetic measurements in thermonuclear fusion plasmas), the main objective is that of 

looking for periodicities. For the case of variable stars, and multiple star systems, there are several 

oscillation modes, some of which are related to the stars’ orbits and have to be filtered out when 

oscillations in other quantities are sought. This leads to the estimation of spectral lines from the data. 

The irregular sampling can be seen as the application of an irregular Dirac comb w(t) to the original 

signal y(t) and can be well understood in the Fourier domain. Ideal sampling of the signal y(t) at time 

points tp, p={1, …, P} through the Dirac comb w(tp)=(t-tp) leads to the convolution of the spectrum 

being sought Y(f) by the spectral window Ws(f) to produce the signal Ys(f): 

ሻݐ௦ሺݕ ൌ ሻݐሺݕ	 ൈ෍ߜሺݐ െ ௣ݐ

௉

௣ୀଵ

ሻ
ி்
ሱሮ ௦ܻሺ݂ሻ ൌ ܻሺ݂ሻ ∗ ௦ࣱሺ݂ሻ 

with	 ௦ࣱሺ݂ሻ ൌ ∑ ݁௝ଶగ௙௧೛௉
௣ୀଵ . 

Here (t) stands for the Dirac delta function. For regular sampling tp=(p-1)Ts, where Ts is the sampling 

time, and the spectral window Ws(f) reduces to a periodized trigonometric (sin) function 

௦ࣱሺ݂ሻ ൌ ݁௝గሺ௉ିଵሻ௙ ೞ்
sinሺ݂ܲߨ ௦ܶሻ
sinሺ݂ߨ ௦ܶሻ

 

with a main lobe of width 2/(pTs). With irregular sampling, the window does not have simple 

properties, but it should be noted however that the width of the main lobe remains of the order of the 

inverse of the duration of the observation. Moreover, it can be shown that a periodic lack of data 

generates secondary lobes in |Ws(f)| at the corresponding frequency, whose amplitude increases with 

the proportion of gaps in the temporal coverage. 

Note that the periodicity of Ws(f), which is at the origin of spectral aliasing in the regular sampling 

case (the well-known Nyquist-Shannon theorem [42]), is no longer valid with irregular sampling. The 

irregularity of sampling is in this sense an advantage, allowing the estimation of the spectrum on a 

much wider frequency range [A1]. In return, the definition of the largest frequency for the spectrum 

is a complex issue. A practical solution consists in choosing a value in accordance with the physics 
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of data, ensuring that the spectral window does not present any pseudo-periodicity in the band 

considered for the analysis. 

If the signal is considered to be a sum of M frequencies m with amplitudes am such that 	ݕሺݐሻ ൌ

∑ ܽ௠݁௝ଶగఔ೘௧ெ
௠ୀଵ , it has a line spectrum 	ܻሺ݂ሻ ൌ ∑ ܽ௠ߜሺ݂ െ ௠ሻெߥ

௠ୀଵ , and the spectrum of the 

irregularly sampled signal simply writes as ௦ܻሺ݂ሻ ൌ ∑ ܽ௠ ௦ࣱሺ݂ െ ௠ሻெߥ
௠ୀଵ , which is a weighted sum 

of shifted spectral windows. The estimation problem is therefore all the more complex when the 

spectral window has a complex shape. 

FigureA1 shows such a particularly difficult artificial data set similar to the one proposed by Foster 

([5], data set A), which consists of three sinusoids with periods =370 days, =230 days and =100 days 

and amplitudes =3.0, =2.828 and =3.0, respectively. A constant value of 10 is added. An initial data 

set was generated with 200 points sampled every 10 days. The final data sets shows gaps of 100 days 

every 365 days and gaps of 10 days every 30 days. To make the problem a bit trickier, a fourth 

sinusoid was added with period =122.5 days and amplitude =3.0, such that the side-lobes caused by 

the annual gaps (for the periods =370 days and =122.5 days) superimpose at a period =184 days 

(1/122.5-1/365=1/370+1/365=1/184), generating a high false peak in the Fourier spectrum. White 

Gaussian noise with standard deviation =0.30 was also added. Due to the initial regularity of the 

sampling (sampling frequency fs=0.1/day) the spectral windows is periodic with a period =fs. High 

secondary lobes can then also be seen at frequencies which are multiple of 1/365=2.710-3/day, 

corresponding to the annual gaps period. Therefore, the Fourier spectrum of the data presents several 

local maxima at frequencies that do not correspond to oscillations. 

In general terms, for a set of M frequencies =[1, …, M], the data can be modelled as: 

௣൯ݐ൫ݕ ൌ ∑ ܽ௠݁
௝ଶగఔ೘௧೛ெ

௠ୀଵ ൅ ௣ߝ ⟺ ܡ ൌ Γ൫࣏൯ࢇ ൅  (A1) ,ࢿ

where y=[y1(t1), …, yP(tP)] contains the data sampled at the time points tp, a=[a1, …, aM]T the 

amplitudes, () is a PM matrix with elements mp=exp(j2mtp) and =[1, …, P] is a random 

perturbation term. For the sake of simplicity, we consider independent and identically distributed 

(IID) perturbations, Gaussian, centred, with a variance 2. Note however that all the developments 

presented here, which are based on the likelihood of the data, can be extended without any major 

difficulty to the case of non-IID Gaussian perturbations, a case frequently encountered in A&A, for 

example due to the variation of the atmospheric conditions or to the observation of the same object 

with several instruments. 

When the frequencies are known, the maximum likelihood (ML) estimation of their amplitudes a 

corresponds to minimize the LS criterion min
ࢇ
ܡ|| െ Γ൫࣏൯ࢇ||ଶ, which leads to the solution ࢇෝ ൌ
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൬Γ൫࣏൯
ୌ
Γ൫࣏൯൰

ିଵ

Γ൫࣏൯
ୌ
 where the subscript H stands for the Hermitian transpose operator. When ,ܡ

the number K of frequencies is known but not the values of these frequencies, the ML estimation 

leads to minimize the criterion ܬ୑୐൫࣏, ൯ࢇ ൌ 	 ܡ|| െ Γ൫࣏൯ࢇ||ଶ, which is a very difficult optimization 

problem in general due to the large number of local minima of this criterion. Note that, thanks to the 

previous expression of ࢇෝ this amount to minimize with respect to the frequencies  the criterion: 

൯࣏୑୐൫ܬ ൌ 	ብܡ െ Γ൫࣏൯ ൬Γ൫࣏൯
ୌ
Γ൫࣏൯൰

ିଵ
Γ൫࣏൯

ୌ
ብܡ

ଶ

. 

Particular cases of this problem are the single frequency estimation, which leads to estimate the 

frequencies as those which maximize the periodogram: 

ሻߥሺ۾ ൌ
ଵ

௉
ห∑ ௣ሻ݁ݐሺݕ

௝ଶగఔ௧೛௉
௣ୀଵ ห

ଶ
ൌ

ଵ

௉
| ௦ܻሺߥሻ|ଶ. 

In the case of a real valued single frequency, writing the matrix () in terms of sine and cosine 

functions instead of exponentials, this leads to maximize the LSP [2]. Introducing a time delay ߬ ሺߥሻ ൌ

ଵ

ସగఔ
Arctanሺ∑ sinሺ4πνt୮୮ ሻ/∑ cosሺ4πνt୮୮ ሻሻ to invert a diagonal matrix equivalent to Γ൫࣏൯

ୌ
Γ൫࣏൯, 

this can be written as: 

ሻߥ௅ሺ۾ ൌ
൫∑ ௣൯ݐ൫ݕ cosሺ2ߥߨ൫ݐ௣ െ ߬ሺߥሻ൯ሻ௉

௣ୀଵ ൯
ଶ

∑ cosଶሺ2ߥߨ൫ݐ௣ െ ߬ሺߥሻ൯ሻ௉
௣ୀଵ

൅
൫∑ ௣൯ݐ൫ݕ sinሺ2ߥߨ൫ݐ௣ െ ߬ሺߥሻ൯ሻ௉

௣ୀଵ ൯
ଶ

∑ sinଶሺ2ߥߨ൫ݐ௣ െ ߬ሺߥሻ൯ሻ௉
௣ୀଵ

 

Note that in the case of more than one frequencies, if the convolution of the original line spectrum 

with the spectral window is an interesting interpretation of the classical periodogram, it is not valid 

for the LSP. Moreover, as illustrated figA1, the maxima of the periodogram do not correspond to the 

true location of the frequencies. Therefore in the multi-frequencies case, the periodogram cannot be 

used directly to estimate the frequencies. 

A lot of work has been performed in A&A to tackle this difficult multi-frequencies case and most of 

it can be interpreted in the framework of Sparse Approximations. The difficulty to minimize the least 

squares criterion JML(), even when the number of frequencies is known, is mainly due to the non-

linearity of the model with respect to the frequencies m, which leads to a large amount of local 

minima in the criterion. The problem is generally much more difficult in general, when the number 

of frequencies is unknown. 
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Instead of searching for a small number M of frequencies m, one can consider a multi-frequencies 

model, with a large number K of frequencies regularly discretized between 0 and a maximum 

frequency fMAX. The model is then written as: 

௣൯ݐ൫ݕ ൌ
1

√ܲ
෍ ௞݁ݔ

௝ଶగ௙ೖ௧೛

௄

௞ୀି௄

൅ ௣ߝ ⟺ ܡ ൌ ܹ࢞ ൅  (A2) ࢿ

Here the frequencies  of the multi-frequencies model given in eq.(A1) are searched in the set 

fk=(k/K)fMAX, with k{-K, …, K}, with corresponding amplitudes xk and W is a P(2K+1) matrix 

with elements Wpk=(1/P)exp(i2fktp). 

For large enough K, both models are equivalent if one adds the constraints that xk=0 for most of the 

indices k, which correspond to a sparsity prior. In contrast to the previous model, for which the 

unknown parameters are the order M, the M frequencies and the M corresponding amplitudes, the 

new model, considering fixed frequencies and a known order K, becomes linear with respect to the 

only unknowns xk. The introduction of the factor1/P in the matrix W helps to have its columns wk 

of unit norm, a property which will be useful later. 

Abundant works concerning denoising and compression during the last two decades have relied on 

the sparsity hypothesis which assumes that, for certain classes of signals and images, the essential 

information is concentrated in a small number of coefficients, expressed in an appropriate 

transformed space [A2]. Under a linear model such as that of eq.(A2), where W represents this 

transformation, often redundant (x typically being of larger dimension than y), then the sparsest 

approximation of the data is sought, that is to say, with the least non zero components, that correctly 

fits the data: 

min
ܠ
଴||ܠ|| 	such	that ܡ|| െ Wܠ||ଶ ൏ ߬,

݁ݎ݄݁ݓ ଴||ܠ|| ൌ Cardሼk | x୩ ് 0ሽ. 
(A3) 

This large dimension combinatorial optimization problem can generally not be solved exactly and 

two classes of sub-optimal approaches are often considered: 

 greedy methods, building a sparse solution by selecting components in an iterative manner [53]; 

 relaxation methods of the problem towards a numerically computable approximation: the most 

commonly used substitute the pseudo-norm L0-norm by the L1-norm: ||࢞||ଵ ൌ ∑ ௞|௞ݔ|  [52]. 

The characterization of the solutions obtained by these approaches in relation to the one of eq.(A3) 

has been the subject of numerous works and sufficient conditions of equivalence of the solutions have 

been proposed, based on near-orthogonality measures of W. For example, the solutions obtained by 
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greedy methods [53] and by L1-norm relaxation [51] methods correspond to the solution of eq.(A3) 

in the noiseless case if it satisfies ||࢞||଴ ൏
ଵ

ଶ
ሺ1 ൅ ଵ

ఓሺௐሻ
ሻ where the mutual coherence is defined by 

ሺܹሻߤ ൌ 	max
௞ஷ௟

௞࢝|
ு	ܟ௟|. Other sufficient conditions have been established using restricted isometry 

constants [A3] or the Exact Recovery Coefficient [52, 53]. 

For line spectra estimation, the structure of the dictionary is imposed by the multi-frequencies model 

and the considered configuration: sampling time points tp and frequency grid fk. It can be shown that 

the above mentioned sufficient conditions are generally not satisfied. In particular, one has 

that	ห࢝௞
ு	ܟ௟ห ൌ

ଵ

௉
ቚ ௦ࣱሺ

௞ି௟

௄ 	݂୫ୟ୶ሻቚ, thus the mutual coherence is equal to the maximum value (except 

at 0) of the spectral window. Thus, for the problem of figA1, where the highest secondary lobe is 

higher than 1/3, the greedy and relaxed approached are guaranteed to find the correct frequencies 

only if it has a single frequency (||࢞||଴ ൌ 1), which is of low interest in practice. 

Greedy algorithms, such as those presented in [A4], construct a sparse solution in an iterative manner. 

A number of variants have been proposed, whose performances can be evaluated from a perspective 

of compromise between the quality of the solution and their computational complexity. If the 

interpretation of these methods in the context of sparse representations is fairly recent, they were used 

much earlier for astronomical data analysis, as early as the 1970’s. 

Greedy methods construct a solution, for which at the nth iteration the signal y is approximated with 

the sum of n columns (called atoms) of the matrix W (called dictionary), indexed by n: 

ො௡ܡ ൌ ෍ x୩
୩∈ஐ౤

௞ܟ ൌ ஐܹ೙ܠ௡		 with ஐܹ೙ ൌ ௞൧௞∈ஐ೙ܟൣ
and ௡ܠ	 ൌ ሾx୩ሿ௞∈ஐ೙  

Based on a zero initialization such that ܡො଴ ൌ 0, each iteration thus consists of: 

a) the selection of an atom wk from the approximation of the previous iteration, defining the new 

support Ω௡ ൌ 	Ω௡ିଵ ∪ ሼ݇ሽ; 

b) the amplitudes estimation xn of the selected atoms; 

c) the update of the approximation ܡො௡	and of the residual error ܚ௡ ൌ ܡ െ  .ො௡ܡ

The algorithm is stopped when none of the atoms is any longer significant in the residual rn. The 

stopping rule therefore controls the number of components of the solution, thus is difficult to tune in 

practice. However, when the noise distribution is known, as for the previous simulated data where 

the noise is centered, Gaussian with known variance 2 (then ||||2 follows a 2 distribution with N 

degrees of freedom), a stopping rule can be built based on statistical bases, such as ||rn||2/2, where 

Pr(u | u~N
2)=, for a probability  fixed at 95%. 
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The prewhitening technique [68] which is equivalent to the Matching Pursuit (MP) algorithm [A4] 

selects at each iteration the atom having the highest correlation with the residual, and estimates the 

amplitude associated with the correlation coefficient: 

ሺiሻ k ൌ 	 argmax୩ หܟ୩
ୌܚ௡ିଵห and ሺiiሻ x୩ ൌ ୩ܟ

ୌܚ௡ିଵ 

This approach is very sensitive to interferences between the different frequencies as R௞ ൌ หܟ୩
ୌܚ௡ିଵห 

corresponds to the periodogram of the residual for frequency fk. Thus, on critical spacing of 

frequencies, such an approach can perform an erroneous selection, generating the propagation of 

errors in subsequent iterations. FigureA2 shows the results obtained with the MP algorithm on the 

data of figA1, presenting several false alarms due to an erroneous selection at the 3rd iteration of the 

algorithm. One way to improve the estimation step (ii) of the MP is to perform an orthogonal 

projection of the data on all the selected atoms, which leads to the Orthogonal Matching Pursuit 

(OMP) algorithm, with estimation step 	ሺiiሻ		ܠ௡ 	ൌ 	 argminܠ೙		||ܡ െ ஐܹ೙ܠ௡||
ଶ. However, as the 

selection step is not modified, such algorithm is still sensitive to erroneous selections, as can be seen 

in figA2. 

The idea leading to the CLEAN method [A5, 4], to decrease the sensitivity to erroneous selection, is 

to build the approximation accounting only for a fraction (typically 10%) of the amplitude associated 

to a selected atom. Therefore, an atom can be selected at a large number of iterations and the 

estimation is not easy to grasp, as illustrated figA2. To this end, astronomers generally convolve the 

estimated frequencies with an ideal spectral window, with only one primary lobe. Even if it is more 

difficult to interpret in terms of frequency estimation, such heuristic clearly improve the spectrum 

representation, even if the effect of the false detection is still visible. 

A real improvement can be made by greedy algorithms which try to minimize the least squares 

criterion in the selection step, such as the Orthogonal Least Squares (OLS) [A6] for which (iሻ		݇	 ൌ

	argmin୩		argminܠ೙	||ܡ െ ஐܹ೙ܠ௡||
ଶ with Ω௡ ൌ 	Ω௡ିଵ ∪ ሼ݇ሽ, with the same estimation step than the 

OMP. The Continuation Single Best Replacement (CSBR) algorithm [A7], although based on a 

different principle, can be interpreted as a greedy algorithm which proposes, at each iteration, either 

to select a new atom, either to suppress a previously selected atom, based on the minimization of the 

least squares criterion penalized with the L0-norm. As can be seen in figA2, such approach clearly 

improves the detection results, but with a much higher computation cost. 

Contrary to greedy algorithms which increase the number of detected frequency at each iteration, the 

aim of global approaches is to estimate the whole frequencies at once, relaxing the L0-norm in eq.(A3) 

to obtain a simpler optimization problem. Typically, the L0-norm is relaxed with a L1-norm, which 

leads to minimize a L1-norm penalized least squares criterion: 
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ොఒܠ ൌ 	 argminܠ	ܬఒ൫ܠ൯					with ൯ܠఒ൫ܬ ൌ ܡ|| െܹܠ||ଶ ൅ λ||࢞||ଵ. (A4) 

Indeed, used since the 1970s in spike train deconvolution [A8], penalization with the L1-norm is 

known to enforce the sparsity of the solution. It is nowadays the standard method for sparse 

approximations, also known as Basis Pursuit Denoising, and has been the subject of numerous works, 

both theoretical and applied [53, A2]. Note that such a criterion is convex, so is guaranteed to admit 

no local minima and can be minimized easily. 

In the context of frequencies estimation, such an approach has some specific features: 

 It is essential to apply the L1-norm on the complex values amplitudes, and not independently on 

their real and imaginary parts [16]. Indeed, if a spectral line is present at the frequency fk, both 

the real and imaginary parts of the associated amplitude are generally non-zero. 

 The uniqueness of the solution can be shown if it has less than P/2 non-zero components, based 

on the Unique Representation Property (URP) of the matrix W (any set of P columns of W are 

linearly independent). Actually, it can be shown that for a fixed K and given acquisition time 

points tp the values of fMAX for which W does not satisfy the URP are isolated points [17]. 

 As the data y are real valued, the solution must satisfy the Hermitian symmetry property, which 

means that for each frequency fk detected with amplitude ak, the frequency –fk should also be 

detected with amplitude ܽ௞
∗  (the complex conjugate of ak): the minimizer of J is guaranteed to 

satisfy this property [17]. 

 It can be shown [17] that, if ܀ ൌ ܹுሺܡ െܹܠොఒሻ denotes the Fourier Transform of the residual 

computed at frequencies fp, the solution satisfies the following condition: 

൜
∀݇	such	that	x୩ ൌ 0,			|R୩| ൏ ,ߣ

∀݇	such	that	x୩ ് 0,			R୩ ൌ λe୧	ୟ୰୥	ሺ୶ౡሻ.
 This characterization of the optimality makes it 

possible to strictly test the convergence of the optimization procedure. It also provides an 

interesting information on the meaning of the regularization parameter , which is the maximum 

value reached by the periodogram of the estimation residual. 

 The L1 penalization helps to obtain a sparse spectrum and therefore to detect frequencies in the 

data corresponding to the non-zero coefficients in 	ܠොఒ. However the estimation of the associated 

amplitudes is biased [51]. Moreover, it should be noted that in practice, a spectral line is 

sometimes detected by the two closest frequencies on the grid. In addition to the minimization 

of J, an a posteriori frequencies correction, for example by simply taking the barycenter of the 

two neighboring frequencies weighted by their estimated amplitudes, and a least squares re-

estimation of their amplitudes, allow to improve their accuracy as can be seen in figA3. 
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Finally, a large number of algorithms have been proposed in the context of sparse approximations to 

minimize the L1-norm penalized least squares criterion. A large majority takes the form of projected 

gradient algorithms, alternating between a stage of descent, guided by the gradient of the quadratic 

part of the criterion, and a thresholding step [A9]. These methods have been developed in relation 

with large-size problems (in particular, for images), where sparsity is often expressed in a widely 

incoherent dictionary, and the product of vectors with matrices W and WH can be computed with 

efficient algorithms (Fast Fourier Transform, Orthogonal Wavelet Transform, …). These properties 

condition the complexity of optimization: the closer the dictionary will be to orthogonality, the more 

significant will be the descent step and the more effective gradient-computation based approaches 

will be. In contrast, for frequencies estimation, the dictionary is extremely correlated due to the 

required high frequency resolution and the shape of the spectral window, no fast algorithm is available 

associated with W, but the size of the data remains limited due to their one-dimensional nature. The 

above mentioned algorithms can then appear to be pathologically slow. It should also be noted that 

the inability to use a formulation with a L1-norm involving real variables excludes any quadratic 

programming-based optimization approach as well as the powerful homotopic methods [A10]. 

Conversely, an algorithmic scheme such as Iterative Coordinate Descent, alternating minimizations 

with respect to every complex variable xk, proved particularly effective for this problem [17]. Indeed, 

if this strategy proves to be generally inefficient, it allows several properties of the criterion to be 

exploited: (i) each minimization has a low computational-cost analytical solution; (ii) the solution 

being sparse, the number of non-zero components drops quickly during the iterations, hence a 

selective scan of the coordinates can then be performed, frequently updating the non-zero 

components; (iii) the non-differentiable part of the criterion being separable in the unknowns, this 

strategy is guaranteed to converge to the minimal value of the criterion. Such characteristics are fully 

taken into account in the SparSpec software [16]. 

Considering now the particular application of SRS methods to magnetically confined thermonuclear 

fusion plasmas in a tokamak, the analysis is based on magnetic and turbulence measurements, and 

typically starts with an initial Fourier decomposition of the data in the time/frequency domain to 

obtain the individual frequency components (). In a tokamak the plasma column has, to a first 

approximation, 2D boundary conditions along the toroidal direction and on the poloidal plane, 

perpendicular to the toroidal direction. The spatial structure of the magnetic instabilities is determined 

by further decomposing each frequency component in its toroidal (n) and poloidal (m) harmonics: 

 
,

i t in im
nm

n m

e A e e      . Here  and  are the toroidal and poloidal angle coordinates, respectively, 

and we have used the fact that in tokamak geometry one single toroidal component with a given n 

usually has multiple poloidal components due to toroidicity and various other geometrical effects. 
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The aim of mode number analysis is to determine the value of {n, m} of the magnetic instabilities 

present in the plasma and to estimate their amplitude from data acquired with P detectors un-evenly 

positioned at angles p (θp), p={1, …, P} being the suffix labelling the individual sensors used for the 

measurement. 

Considering now for simplicity of notation the specific case of toroidal mode number analysis, each 

measurement y(tp) can be mathematically modelled with a slight variation of eq.(A1): 

 
1

l p

L
jn

p l p
l

y e   


  , 
(A5) 

where nl and αl are the unknown mode numbers and amplitudes, respectively, L is the unknown 

number of modes and εp corresponds to the noise on the data for the given p-th sensor, and periodic 

boundary conditions in  have been used. Thus, the mode detection problem is strictly equivalent 

mathematically to the A&A spectral analysis problem. 

Evaluating the amplitudes αl and the mode numbers nl of multiple modes in a multi-harmonic 

spectrum is a very difficult problem, even if the number of modes in the input spectrum is actually 

known a-priori. The usual way to tackle this problem is performing a best LS fitting of the input data. 

However, this criterion has many local minima for real valued spectral peaks [48, 52], hence in 

principle requiring a combinatorial exploration for integer-valued mode numbers nl, and an a-

posteriori thresholding scheme to differentiate the “correct” from the “wrong” solutions, in many 

aspects similar to the SVD-based method described in [7]. This is a very CPU-time intensive process 

and cannot possibly be adapted for real-time applications on the sub-millisecond time scale required 

for the real-time analysis of the JET (and ITER) measurements. An alternative solution consists of 

providing an estimate for the amplitudes of all possible mode numbers in the range {−K, …, K} 

(where |K| is much larger than the maximum mode number that can be conceivably present in the 

input spectrum), at the same time enforcing that most of these modes actually have a null amplitude, 

i.e. a utilizing a Sparse Approximation. 

The mode detection (i.e. the spectral analysis) problem is particularly difficult in the case of tokamak 

plasma physics as the data is un-evenly sampled and sparse, because of unavoidable installation 

constraints on the measurement devices. It can be shown that the difficulty of the spectral analysis 

problem is closely related to properties of the spectral window, such as the height and positions of its 

secondary lobes. Indeed, the mathematical problem described by eq.(A5) can be expressed 

equivalently in the Fourier spatial domain as: 



paper PPCF2016-V3: topical review SparSpec, for proofs September 2016 

           
1 1

L L

l l l l
l l

Y W n E W n E        
 

        , (A6) 

where  is the spatial frequency, Y() and E() corresponds to Fourier transform with respect to the 

angular position  of the data and the noise, the symbol “” is the convolution operator and W() is 

the spectral window of the sampling scheme. Thus, if W() has a high secondary lobe (with an 

amplitude close to 1) at a frequency 0, a mode number n will produce in the Fourier transform Y() 

a maximum at 1=n and a secondary maximum at 2=n0, with an amplitude proportional to 

   2 1 0W W    . This means that it will be difficult to distinguish the actual mode n from the 

two “aliases” modes at n0, even in the absence of noise in the data. If we consider for simplicity 

that obtaining the “true” mode number n0 obeys a normal probability distribution with variance 2(n0), 

i.e.      2 2
0 0 0exp /TRUEP n n n n n      , then we also find (using a best fit of the data that led 

to the analysis presented in [25, 26]) that the probability PFALSE(n=n0) for a false detection of n as n0 

due to the secondary lobes in the spectral window when using the SparSpec algorithm is 

PFALSE(n=n0)2(n0)i(W(ni)+W(|ni|=0))/W(n0), where the sum is intended on all combinations of 

ni and 0 such that ni=n00. 

In thermonuclear (tokamak) plasmas these lobes are due to regularities in the sampling (for instance 

when using a spacing larger than the Nyquist condition) and to the low number of sensors. This 

situation is further compounded by the failure of sensors over time, a problem that cannot easily be 

rectified due to restricted in-vessel access. As an example, the spectral window for two families of 

JET high-frequency magnetic sensors is shown in figA4, comparing the data for the original complete 

set of 11 sensors that could be used in 1997 for toroidal mode number analysis, and then for the 7 and 

remaining 4 sensors in that set which could be used for real-time and post-pulse analysis of MHD 

instabilities in 2013 and as of today, respectively. Note that the original dominant 0=10 secondary 

lobe has now been supplemented from 2013 by an even higher secondary lobe at 0=4, which is 

much more difficult to deal with as the most interesting n-number range is actually within |n|=1 and 

|n|=10. Moreover, the failure of three additional sensors between 2013 and the end of 2015 means 

that now there is an even more problematic secondary lobe at n=1 with W()=0.62. 

When applied to thermonuclear plasma physics, the problem described by eq.(A6) has some 

additional requirements with respect to the A&A problem described by eq.(A1), even if its solution 

can still be obtained using eq.(A4). First, the data are complex-valued, implying that the Fourier 

transform of the data does not satisfy the Hermitian property ˆ ˆ( ) ( )y y   as in the spectral analysis 
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of real-valued data. Obviously, the complex-valued data have to be analysed together, conserving the 

I/Q phase relation between them, and not independently. Second, the mode numbers nl can only take 

positive or negative integer values, while in the general spectral analysis problem frequencies take 

real values. This is a favourable property as the model of eq.(A1) works on a discretized frequency 

grid. For A&A problems, a very fine discretization of the frequency grid is required so that real valued 

frequencies are not too distant from the nearest frequency on the grid. However, as for A&A data, the 

maximum mode number is unknown. Therefore, one as to account for a mode number in the range {-

K, …, K}. Note however that a posterior estimation of the out-grid estimation of the detected 

frequencies can be performed, i.e. using a barycentric estimation of the neighbour frequencies (as we 

are interested in all the |xk|0 components and not in the approximation of the signal as y~kwkxk) 

[16]. Third, in the real time applications we consider for JET (and for ITER), a set of data is acquired 

every 1ms, therefore the spectral analysis must be completed in an automated manner in the short 

time between each measurement acquisition. 

Therefore, the choice of the family of atoms is critical in the Sparse Representations (and Sparse 

Approximations) of signals as, with an appropriate choice, these atoms might be well adapted to the 

signal to be analysed and might lead to a matrix W with good analytical and numerical properties. 

For these reasons, the matrix W is often chosen as a family of relatively uncorrelated atoms, such as 

wavelets, Diracs, pure sine waves, etc …, but cannot be chosen arbitrarily as it is not guaranteed to 

have the required good properties, as we will show later. For the spectral analysis problem that we 

analyse here the atoms are driven by the problem itself and therefore we use  exp 2k k pw i f t , for 

p={1, …, P}.. Moreover, the sparsity of the components xk, hence the L1-norm, has to be computed 

on the modulus of the complex amplitudes xk, while the Sparse Approximation problem is generally 

studied, only for real-value amplitudes. Finally, note that    Re Imk k kx x x  , so imposing the 

sparsity on the complex modulus is radically different in terms of the model than sparsity applied 

separately on the real and imaginary components [16]. 

For the analysis presented here, the atoms are imposed by the model setup in eq.(A5) to be pure 

complex exponential waves,   
,

exp k p
k p

W in  , for p={1, …, P} and k={1, …, M}, with 

1kn k K    and 2 1M K  . Due to the irregular sampling, the atoms are strongly correlated. 

Indeed, it can be shown that  H

k l k lw w W n n  , so that it corresponds to regular samples of the 

spectral window. As W() may take values greater than 1/3 (as shown in figA4), the previous 

sufficient condition guarantees exact detection only if the signal consists of a single mode number. 

Nevertheless, it has been shown from many simulations and analysis of measurements using 
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comparisons between different numerical methods that such a solution generally gives very 

satisfactory results in terms of detection, even in the case of multiple modes [18, 25, 26, 48]. 

Moreover, for irregular sampling, uniqueness of the global minimizer is almost surely guaranteed if 

it has less than P/2 non-zero components, where P is the data size [16, 25, 26]. 

In terms of amplitude estimations, it has been shown [16, 17] that minimizing eq.(A4) leads to an 

under-estimation of the amplitudes of the detected mode numbers due to the L1-norm penalization 

term. Thus, an a-posteriori LS re-estimation of these amplitudes is usually performed for post-pulse 

analysis in a second step within the calculations, after the modes have been actually detected. Their 

amplitudes are computed by minimizing the least square criterion ||y−WDETxDET||2 where only the 

non-zero amplitudes of the optimization step are preserved in xDET. Note that this a-posteriori 

amplitude estimation step is not an absolute necessity for the real-time analysis, as its main objective 

is to detect the actual modes, their mode numbers and frequency width, and not to precisely estimate 

their absolute amplitudes, a scaled value being sufficient for this purpose. 

Many numerical algorithms are available to minimize criteria such as those of eq.(A4) for Sparse 

Approximations. While for real-valued unknown {xk} this problem can be written as a classical 

Quadratic Program, for complex-valued unknown {xk} it corresponds to a Second-Order Cone 

Program [49]. An algorithm based on an iterative Block Coordinate Descent procedure has been 

previously proposed [16, 17], and implemented in the SparSpec code. This procedure consists of 

performing successive one-dimensional minimization steps with respect to each complex-valued 

unknown xk, where each one-dimensional minimization has an explicit solution. This algorithm is 

very efficient and a correct solution can be typically found in less than 1ms using the rather modest 

computational resources available to process real-time JET data [19, 20, 27]. 

A real-time implementation of the proposed modes detection method requires not only an efficient 

optimization algorithm to minimize eq.(A4) but also, and even more importantly for a frequency-

degenerate spectrum, an efficient automated tuning of the penalization parameter λ. The penalization 

parameter  is related to the noise level [16] and requires an appropriate tuning, since it increases the 

penalty for those solutions which invoke a larger number of modes. The first order necessary and 

sufficient optimality conditions for convex non-differentiable functions (often known as the Karush-

Kuhn-Tucker optimality conditions [A11-A13]), provide a physical interpretation for λ: (a) for 

   max max
H

MAX k k MIN k kw y W x Y n           
, the minimizer xMIN of eq.(A4) is identically 

zero, i.e. the unique solution has no detected modes; (b) for a given , the minimizer xMIN of eq.(A4) 

satisfies    max max
H

k k k kw r R n      , where MINr y W x   is called the residual (data minus 
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the model corresponding to the estimated modes). Hence  can be interpreted as the maximum peak 

amplitude allowed in the FT modulus of the residual, and choosing  to be a fraction λNORM[0, 1] 

of the maximum of the FT of the data =NORMmax(|WHy|), ensures the FT of the residual r to be 

lower up to this fraction relative to the maximum of the data FT. Hence knowledge of the noise level 

in the measurements helps to determine the optimum value for NORM to be used for real-time and 

post-pulse analysis of the magnetic fluctuation data. 
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Appendix-B: Applications of a Sparse Representation method and of the SparSpec algorithm to 

the analysis of magnetic fluctuations in JET tokamak plasmas. 

The overall accuracy of the SparSpec code for the analysis of post-pulse and real-time data is 

evaluated using simulations performed on a synthetic dataset SIN(n): 

         1 2 3 4exp
MAX

MAX

k L

IN n k k n k SIG k k MEAS n n n
k L

S A jl j r jr r jr     




 
        
 
 . (B1) 

Here n[0, 2] is the position of each sensor, and the input signal SIN(n) is constructed as an 

arbitrary superposition of different components at the integer mode numbers lk, k[-LMAX, LMAX], 

where LMAX is the highest mode number in the spectrum. Each lk spectrum component has a fixed or 

randomized amplitude Ak and relative phase k. The quantities SIG[0, 1] and MEAS(n)[0, 1] 

represent the standard deviation in the background noise on each spectral component and on the 

measurement itself at each sensor, respectively, and are known a priori (i.e. they have a fixed and 

unique value for each simulation) as they can in principle be measured directly on the system when 

installed. The quantities {r1k, r2k, r3n, r4n} are random numbers chosen from a uniform distribution in 

the interval [0.0  1.0]; note that the random seed used for {r1k, r2k} can be different from the one 

used for {r3n, r4n}. With this approach, the noise has independent and un-correlated complex 

components satisfying the circularity property. In general, SIG and MEAS can be different and, more 

importantly, MEAS can have different values for different sensors. Intuitively, SIG can be associated 

to background noise from the plasma, for instance due to un-coherent turbulence; conversely, MEAS 

is associated with “engineering” errors, such as tolerances on the position and alignment of the 

sensors, calibration errors, and various effects such as cross-talk, drifts, offset, signal pick-up and bit-

noise in the cabling and electronics. These accuracy tests are performed using Matlab R14 on a 2GHz 

laptop with 1024MB of RAM. 

The “confidence level” in the SparSpec calculations is then defined by comparing the output results 

for {Ak, lk} to their input value: 

 
 

2

2confidence level exp
OutputData InputData

TotalVarianceInputData

 
  

 
 

. (B2) 

In eq.(B2) the total variance on the input data is taken as TOT (P being the total number of sensors): 
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This definition of a confidence level is a very stringent criterion to measure whether the scientific 

requirements for the accuracy of the SparSpec code are satisfied. A normal distribution of the output 

data centred on an expectation value provided by the input data, with the variance taken as the total 

variance on such data, i.e. precisely as the ones given in eqs.(B2, B3), meets the accuracy 

requirements provided we achieve a confidence level in excess of e-1/4=0.7788. This value for the 

confidence level is obtained when the absolute difference between output and input data is less than 

half the total variance on the input data. 

We have translated this theoretical definition of a confidence level for the analysis of simulated data 

into the required accuracy for the analysis of actual data by matching the nominal tolerances for the 

ITER measurement requirements for high-frequency instabilities [22-24], specifically with respect to 

the accuracy of the toroidal mode number determination. This is very important as, for instance, a 

nominal 10% or a 1 tolerance on the toroidal mode number determination leads to very different 

requirements for the system depending on which “specific” mode number this tolerance is applied to. 

In terms of physics interpretation and for real-time plasma protection and control applications, 

wrongly interpreting the n=1 mode as an n=0 or an n=2 mode (i.e. n=n1) clearly does not have the 

same implications as wrongly interpreting the n=10 mode as an n=11 or an n=9 mode, i.e. still having 

a 1 error on n. Hence, the confidence level defined in eq.(B2) corresponds to the ability of obtaining 

the requested quantity with an accuracy given by the ITER measurement requirements for high-

frequency instabilities. 

Hence, we have decided to consider that the acceptable error is 0 on the toroidal mode number and 

15% on the measured mode amplitude |BMEAS| for low-|n|5 modes of importance for plasma 

protection and control and for real-time measurements. Examples of these modes are the precursor 

for sawteeth, Edge Localized Modes and disruptions, and radially extended MHD instabilities such 

as global Alfvén Eigenmodes, Neoclassical Tearing Modes, Resistive Wall Modes and Alfvén 

Cascades. Conversely, a mode number measurement error ranging from 1 to 3 is deemed to be 

acceptable for MHD instabilities which are only of “physics” interest, for instance core localized 

Alfvén Eigenmodes with |n|=620, for which the amplitude |BMEAS| only needs to be measured 

within 30%. The required post-pulse measurement accuracies on the mode amplitude and toroidal 

mode number and can then be summarized as follows in TableB1: 
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toroidal mode 

number 

acceptable error on toroidal mode 

number 

acceptable error on mode 

amplitude 

|n|5 
error=0  CORRECT 

error0  WRONG 

error15%  CORRECT 

error15%  WRONG 

|n|>5 
|error|min(|n|/10, 3)  CORRECT 

|error|min(|n|/10, 3) WRONG 

error30%  CORRECT 

error30%  WRONG 

TableB1: the measurement requirements on the toroidal mode number and mode amplitude which 

are used to define correct and wrong mode detection with the SparSpec algorithm. 

FigureB1 shows the confidence level in achieving the ITER measurement requirements for the 

evaluation of the toroidal mode number and mode amplitude when applying the SparSpec algorithm 

to a synthetic dataset defined as in eq.(B1) using the high-frequency magnetic sensors available in 

JET in 1997, 2013 and 2016 (as for the spectral window data shown in figA4). More technical details 

on this method can be found in [25, 26]. The result shown in figB1 represent an overall summary of 

in excess of 50’000 simulation runs, using a frequency-degenerate input mode spectrum that consists 

of up to 10 (toroidal) modes with the same mode frequency, with randomized relative amplitudes in 

the range 0.05 1.00kA    and relative phase in the range 0 1.95k    , and input toroidal mode 

numbers in the range 30n  . The two main SparSpec run-time analysis parameters NORM and fMAX, 

where fMAX is the size of the dictionary, were scanned in the range 0.05 0.95NORM   and 

60 200MAXf  , respectively. For the 1997 and 2013 setups with 11 and 7 magnetic sensors, 

respectively, we note that the confidence level in the SparSpec calculations is very high, exceeding 

the nominal threshold value =0.7788=e-1/4, up to at least |n|=15, and only drops significantly below 

this threshold for higher mode numbers |n|>25. These very high-|n| modes are of no concern for real-

time control applications in JET, and are also of relatively minor interest for JET physics but for in-

coherent turbulence studies. Conversely, the confidence level is very poor already for 5n   for the 

current configuration of 2016 with only 4 surviving magnetic sensors. Clearly, this configuration is 

no longer sufficient for the analysis of magnetic instabilities in JET. 

It is also important to note that, strictly speaking, the sparsest solution minimizes the LS criterion 

penalized with the L0 (pseudo) norm, i.e. the number of non-zero components in the solution. 

However, minimizing such a criterion requires an exploration of all possible combinations of modes 

in the input dataset, similarly to the SVD technique proposed in [7], which is very demanding in terms 

of CPU-time consumption. Such an exploration is in fact avoided in SparSpec by considering the L1-

norm, i.e. the sum of the absolute values of the mode amplitudes, instead of the L0 (pseudo) norm 

penalization. In practice, minimizing this L1-norm penalized LS fitting criterion is much easier than 
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minimizing the original one based on the L0 (pseudo) norm, and many computationally efficient 

algorithms have been developed, some of which can be made compatible with a real-time system 

using a 1kHz clock-time. However, minimizing a penalization criterion based on the L0 pseudo-norm 

does not necessarily lead to the same solution as minimizing a penalization criterion based on the L1-

norm, i.e. sufficient conditions for the equivalence between the L0 (pseudo) norm and L1-norm need 

to be satisfied. Much theoretical work has been performed to determine the conditions of equivalence 

between the L0 (pseudo) norm and the L1-norm penalization criteria (see for instance [41, 43, 44]). 

For example, it can be shown that if the signal can be represented with  1 1 2x    components, 

with  max
H

k l k lw w  , where wH is the Hermitian transposition of w, then minimizing both 

penalization criteria will lead to the selection of the same atoms. Hence, the accuracy of our 

calculations (both real-time and post-pulse) is also guaranteed by the comparison between a model 

input spectrum (with/out background noise) and the output spectrum as calculated by SparSpec using 

the actual geometry of magnetic sensors. 

Figure4 and fig5 in the main text of this paper shows an overview of the measurement of the damping 

rate, mode frequency and mode amplitude for TAEs with different toroidal mode numbers for various 

JET discharges. These results were obtained using the real-time and the post-pulse implementation 

of the SparSpec algorithm. A few points need to be noted for these results. 

 SparSpec-RT SparSpec-PP 

calibration fixed value at 200kHz full frequency-dependence 

input data 

up to 8 complex-valued signals from 

magnetic measurements 

only one normalization signal for the 

antenna drive 

up to 16 complex-valued signals from 

magnetic and turbulence measurements 

selection between many normalization 

signals for the antenna drive 

output 

data 

many amplitude and phase pairs, one pair 

for each selected mode number 

many amplitude and phase pairs, one 

pair for each selected mode number 

algorithm 
least-square renormalization of output 

amplitude not implemented 

least-square renormalization of output 

amplitude implemented 

CPU limit 850sec @1GHz un-limited (user choice of hardware) 

RAM limit 512MB un-limited (user choice of hardware) 

maximum 

|n| 

|n||fMAX|=15: mode number determined 

in real-time with relative error |n/n|0.1

|n||fMAX|=30: mode number determined 

post-pulse with relative error |n/n|~0.1 
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TableB1: comparison and differences between the real-time and post-pulse implementation of the 

SparSpec algorithm. 

The main differences between the real-time and post-pulse implementation of the SparSpec algorithm 

are described in details in [27] and can be summarized as follows in TableB1, where we use the labels 

“RT” and “PP” to indicate the real-time and post-pulse implementations of this algorithm. These 

differences are essentially due to the CPU and RAM limitations of the real-time analysis, which is 

performed in JET by the AELM system using a commercial real-time off-the-shelf Emerson Network 

Power VMEbus 5500 card with a 1GHz PowerPC and 512MB RAM, executing software running 

under the Wind River VxWorks operating system (i.e. the same software used in the NASA’s Mars 

rovers, Spirit and Opportunity). The CPU time limit of <850sec is related to the AELM being a hard 

real-time embedded system: the results of missing a deadline are classed as a failure. For JET 

operation this results in missing data or a wasted experiment, but avoids the worst case, which would 

be damage to the AEAD or to the JET machine itself. This is contrary to a soft real-time embedded 

system, which would simply produce a reduced quality of service, such as a Graphical User Interface 

suffering sluggish mouse response. Post-pulse processing does not suffer of these limitations in 

computing power, hence allows for a much greater flexibility and scope in the analysis, but at the 

expense of a much longer computational time. 

The typical uncertainty on the measurement of the mode frequency is within 50Hz, due to the 

accuracy of the digital synchronous detection used in the AEAD system. For the accuracy on the 

determination of the mode numbers one has to consider the possible statistical and systematic errors 

due to the algorithm used to extract such data. Typically, the toroidal mode number can be determined 

exactly (i.e. n=n0) up to |n|~10, and it is then subject to at least a 1 or ~10% error for higher-|n| 

modes. The amplitude of such |n|<10 modes is then known to within a factor ~2, and the damping 

rate is subject to an uncertainty of the order of 15% for the typical cases that we have considered in 

this analysis. Many different toroidal mode numbers are present in the frequency-degenerate spectrum 

of stable TAEs, and these modes have amplitude and damping rate that can easily vary by up to a 

factor 10 at any given time point. Hence, an accurate real-time mode number discrimination is clearly 

an essential ingredient for obtaining damping rate and (at least relative) amplitude data that could 

meaningfully be used for plasma control purpose. 
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Appendix-C: Optimization of the design of the ITER HF magnetic diagnostic system. 

The 2 arrays for toroidal mode number detection are made with 2x18=36 equi-spaced sensors each 

(indicated by red dots in fig9a in the main text) and are positioned at two different heights with respect 

to the geometrical centre of the machine, using the corners of each equatorial port on the low field 

side of the vacuum vessel wall. Hence, these two arrays have by construction a 20deg/18-fold 

periodicity, giving an intrinsic (pseudo-) Nyquist number |n|=18 on each of the two periodic sub-

assemblies, whereas the ITER measurement requirements specify accurate detection of modes up to 

|n|=30. (We use here the wording pseudo-Nyquist as in fact W(|n|=18)=0.2 and not =1 as for a true 

Nyquist value: this occurs because the two equi-spaced sub-assemblies with 18 sensors each are 

spatially separated and do not correspond to a single equi-spaced assembly with 36 sensors, which 

would indeed have W(|n|=18)=1 exactly). This system design has another weakness, namely the 

absence of sensors for n-number detection on the high field side of the ITER vacuum vessel. This 

does not allow distinction between ballooning and anti-ballooning instabilities, nor can these arrays 

be used to diagnose MHD modes during start-up plasmas limited on the high-field side wall. 

The poloidal mode number detection system is built around 18 un-evenly spaced sensors located on 

six (out of the nine) machine sectors, covering the entire poloidal cross-section but for the divertor 

region. The addition of the in-vessel active ELM coil assemblies to the ITER design would reduce 

the six m-number arrays to 16 sensors each, as the position of two of the sensors clashes with that of 

the ELM assemblies. This poloidal mode number detection system uses a large number of sensors, 

but not optimized: the array redundancy is significant, but the measurement system essentially suffers 

from a limited number of sensors in each one array. 

The toroidal and poloidal mode number detection systems can be improved in the ITER original 

design layout, with initial provisions already being made for this, by adding a high-resolution mini-

array on the horizontal (toroidal analysis) and vertical (poloidal analysis) edges of some of the 

equatorial ports on the low-field side, as shown in fig9b in the main text of this paper. For toroidal 

mode number analysis, the addition of such high-resolution arrays will in principle remove the n=18 

toroidal Nyquist value by adding un-evenly spaced sensors to the two baseline periodic sub-

assemblies. For poloidal mode number analysis, only one high-resolution array can be added, and this 

will increase the number of sensors that can be used for such measurements. 

Finally, note also that the ensemble of the m-numbers measurement arrays in the six machine sectors 

give rise to 14x 6-sensors arrays for n-number detection (two of the sensors in the poloidal 

measurement arrays are in fact located at the corners of the equatorial ports, hence are common with 

the toroidal measurement arrays). These arrays can in principle be used to detect, and possibly 
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remove, low-n modes up to |n|3 from the measured spectrum, for instance for real-time control and 

plasma protection applications. 

We have performed the baseline analysis and optimization of the ITER HF magnetic diagnostic 

system using a new approach based on the SRS method. The SparSpec algorithm has been applied to 

a model dataset of input modes for various implementations of the ITER HF magnetic sensor 

geometry for n(m)-number detection. The ITER measurement requirements and the expected 

measurements’ errors and tolerances, as highlighted in TableC1, are explicitly considered in this 

algorithm to define the correct and the wrong detection of the modes. 

toroidal mode 

number 

acceptable error on toroidal mode 

number 

acceptable error on mode 

amplitude 

|n|5 
error=0  CORRECT 

error0  WRONG 

error15%  CORRECT 

error15%  WRONG 

|n|>5 
|error|min(|n|/10, 3)  CORRECT 

|error|min(|n|/10, 3) WRONG 

error30%  CORRECT 

error30%  WRONG 

TableC1: the measurement requirements on the toroidal mode number and mode amplitude which 

are used to define correct and wrong mode detection with the SparSpec algorithm. 

As the ITER vacuum vessel is still undergoing design changes, a system optimization that takes fully 

into account in-vessel engineering constraints is not yet possible. Hence, in addition to the physics 

constraints for the measurement requirements, a cost function has been included in the optimization 

algorithm to reflect the currently foreseen procurement and installation costs for the sensors. This 

cost function is constructed as follows: 

(1) each individual sensors costs 710 cost-units end-to-end, i.e. from the initial R&D, to the 

detailed design and manufacturing, and from installation to the final data acquisition; 

(2) each high-resolution sensor in any of the equatorial ports bears an additional installation cost of 

12 cost-units due to the different needs for mechanical fixing, requiring further R&D work 

and additional mechanical interfaces with the vessel structure; 

(3) each poloidal sensor located in the regions 60<(deg)<120 and 270<(deg)<315 bears an 

additional installation cost of 12 cost-units, due to more difficult cabling access; 

(4) each high-field side poloidal sensor located in the region 120<(deg)<220 bears an additional 

installation cost of 23 cost-units, again due an even more difficult cabling access; 

(5) each high-field side poloidal sensor located in the divertor region 220<(deg)<270 bears an 

additional installation cost of 47 cost-units, again due to an even more difficult in-vessel 

cabling access and to need for improved RF screening of image and eddy currents; 

(6) finally, if we have more than 8 toroidal sensors (including high-resolution ones) in any one of 
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the 9 machine sectors, the cost increases by 12 cost-units for each additional group of 8 sensors 

due to need of installing one further cabling loom in that sector. 

The ratio between the confidence level in the measurement performance, and the costs necessary to 

achieve this performance, as defined above, can then give an additional indication of the overall 

system performance, one where we have integrated physics and budgetary requirements: the highest 

ratio defines the cheapest (financially) way to obtain a satisfactory measurement performance. 

The baseline analysis and system optimization is performed by scanning various parameters for the 

input mode spectrum: number of components with their relative (truly) randomized amplitude, phase 

and mode number, and standard deviation  in the background (white) Gaussian noise. The different 

elements of the cost function described above are then added for each particular sensors’ arrangement, 

and the overall average is taken as the measure of the cost-normalized measurement performance. 

Finally, various run-time analysis parameters are in principle required for the SparSpec calculations, 

as described in details in [25-27]. However, only the value of NORM and the size (fMAX) of the 

SparSpec dictionary are actually of paramount importance for the simulations reported here: using 

these previous results, we set NORM=0.85 and fMAX to be five times larger than the maximum physical 

mode number present in the input spectrum. 
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1 
 

Figure1, D.Testa et al., PaperPPCF2016. 

Figure1 (reproduced from [27], the original measurements have been reported in [59, 60]). 

Observation for the radial velocity curve of the Herbig Ae star HD 104237. These data correspond 

to five observing nights of high resolution spectroscopy at the South African Astronomical 

Observatory during April 1999. The irregular data sampling due to the day/night alternation is very 

clear, leaving large gaps in the temporal coverage of the measurements. 
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2 
 

Figure2, D.Testa et al., PaperPPCF2016. 

Figure2 (reproduced from [27], the original analysis has been performed in [16, 59, 60]). Top 

frame: Fourier Transform of the data (blue line) presented in fig1 and SparSpec detection results. 

Various peaks have been detected (indicated by the red vertical lines terminating in a red circle), the 

lower frequency ones being related to various orbital movements residuals. The black dotted line 

corresponds to the FT of the estimation residuals. Bottom frame: the (zoomed) spectral window for 

the measurements presented in fig1: there are very clear 1 secondary lobes corresponding to the 

one-day periodicity in the lack of measurements. The sidebands peaks at 1 day are therefore 

removed from the FT data in the detection results shown in the top frame. 
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3 
 

Figure3, D.Testa et al., PaperPPCF2016. 

Figure3 (reproduced with the Author’s permission from [30]). An histogram showing the results of 

the SparSpec and CLEAN (with and without prior filtering) frequency analyses of 100 irregularly 

sampled time series constructed so as to match the photometric observations using the input 

frequencies marked as vertical green lines, in comparison with the results obtained from the MAP 

method. Note that only in the frequency range between ~2800Hz and ~3400Hz the four methods 

give similar results, and therefore only 21 of the 52 pulsation modes originally detected with MAP 

are deemed to be sufficiently reliable to be employed for further astero-seismology analyses. 
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4 
 

Figure4, D.Testa et al., PaperPPCF2016. 

Figure4. Measurement of the mode damping rate (frame-b), mode frequency (frame-c), and mode 

amplitude (frame-d) for TAEs with different toroidal mode numbers for the He4 discharge #79216. 

These results were obtained using the post-pulse implementations of the SparSpec algorithm. The 

main plasma parameters are shown in frame-e: q(r/a) is the value of the q-profile at different 

normalized radial positions r/a (where a is the plasma minor radius), Te0 and ne0 are the electron 

temperature and electron density on the magnetic axis (at r/a=0). Frame-a show the antenna driving 

frequency, and the value of the central frequency of the n=1 TAE gap as computed using the real-

time and the post-pulse data. 
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5 
 

Figure5, D.Testa et al., PaperPPCF2016. 

Figure5. Comparison between the real-time and post-pulse measurement of the mode damping rate 

(frame-b), mode frequency (frame-c), and mode amplitude (frame-d) for TAEs with different 

toroidal mode numbers for the D2 discharge #77417. The post-pulse analysis was performed using 

NORM=0.65 and |fMAX|=150, whereas for the real-time analysis we set NORM=0.85 and |fMAX|=20 to 

satisfy the CPU and RAM limits. The antenna driving frequency, the value of the central frequency 

of the n=1 TAE gap as computed using the real-time and the post-pulse data and the main plasma 

parameters are shown in frame-a and frame-e, respectively, using the same format of fig4. 
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6 
 

Figure6a, D.Testa et al., PaperPPCF2016. 

Figure6a. Measurement of the toroidal (top frame) and poloidal (bottom frame) mode numbers for 

unstable TAEs driven by an energetic ion population. The toroidal mode numbers are measured 

using magnetic probes located on the low-field-side wall, whereas for the poloidal mode number 

analysis we combine low- and high-field side probes and use the  correction [58] to the probes’ 

position to map the probe geometrical location on the vessel wall onto the corresponding one on the 

(not-purely circular) resonant flux surface given by rRES. Here the analysis is performed using the 

post-pulse implementation of the SparSpec algorithm, allowing for multiple components at any 

given time and frequency point, setting NORM=0.65 and |fMAX|=150 for the toroidal mode number 

analysis, and NORM=0.35 and |fMAX|=300 for the poloidal mode number analysis, respectively. 
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7 
 

Figure6b, D.Testa et al., PaperPPCF2016. 

Figure6b. The same data and plotting conventions of fig6a, but here the analysis is performed using 

a standard Least Square Fit (LSF) algorithm, which effectively forces the detection of the one single 

“dominant” component that best fits the data in a LS sense. 
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8 
 

Figure6c, D.Testa et al., PaperPPCF2016. 

Figure6c. Comparison of the mode radial position, defined as the peak in the radial Eigenfunction, 

obtained through cross-correlation analysis and using qRES(rRES)=(2m+1)/2n, with the toroidal and 

poloidal mode numbers provided by the SparSpec and LSF algorithms. The vertical “error bar” for 

the cross-correlation data indicates the estimated width of the radial mode Eigenfunction. We also 

show the EFIT reconstruction of the q-profile. The three estimates of rRES are broadly consistent 

with each other, but we note that as the current profile relaxes and the q-value drops across the 

entire plasma cross-section, the cross-correlation analysis shows that the mode radial location 

progressively and smoothly shifts inwards towards the magnetic axis, and this trend is only captured 

correctly when using the SparSpec data to obtain rRES. 
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9 
 

Figure7, D.Testa et al., PaperPPCF2016. 

Figure7. Summary of the turbulence spectral data for the alpha heating experiment during the JET 

DTE1 campaign. The data are shown as function of the toroidal mode number for three discharges 

with different densities of  particles, and separately for two phases in the discharge: before 

(time=13.15sec) and after (time=14.20sec) full thermalization of the s. For the discharge #41069 

(bottom frame), which does not have s, the data have been analysed at the same two time points 

used for the discharges #42847 and #43011, which had s. These results were obtained using the 

post-pulse implementation of the SparSpec algorithm, with NORM=0.15 and |fMAX|=500. 
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Figure8, D.Testa et al., PaperPPCF2016. 

Figure8. Three different estimation of the island width for the TCV discharge #48799 using the 

magnetic measurements made with Mirnov coils mounted on the vacuum vessel wall. The first 

estimate (symbol = (blue) squares) is obtained when considering only a pure m/n=2/1 mode at 

around 4kHz, the second (symbol = (black) diamonds) summing up this mode and a pure m/n=4/2 

mode at around 8kHz, and the third (symbol = (red) circles) including the contribution of the 

sideband m/n=5/2 component at 8kHz obtained through the SparSpec analysis. We note that by 

considering only the m/n=2/1 mode at 4kHz the estimate of the island width oscillate significantly 

over the time window of interest, from ~1.47cm to ~1.70cm. By also considering the contribution of 

the same helicity m/n=4/2 mode at 8kHz, not only the island width estimate increases to ~1.8cm, 

but it is also much more stable over time. Finally, when also including the sideband mode at 8kHz 

with different helicity m/n=5/2, we obtain a larger estimate for the island width, increasing from 

~1.8cm to ~2.2cm over the time window of interest. 
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Figure9a, D.Testa et al., PaperPPCF2016. 

Figure9a. The proposed layout for the ITER HF magnetic diagnostic system as in 2009, for toroidal 

(filled red circles) and poloidal (filled red square) mode number; the filled blue lozenges indicate 

the HF magnetic sensors in the divertor region, blacked-out in this analysis as the presence of the 

divertor and shaping coils induces parasitic and eddy currents in the surrounding metal structures 

that prevent reliable measurements of HF instabilities using magnetic pick-up sensors; the filled 

blue stars indicate the sensors that have been removed because their position clashes with that of the 

newly designed active coils for ELM control. 
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Figure9b, D.Testa et al., PaperPPCF2016. 

 

Figure9b. The proposed implementation for the high-resolution toroidal and poloidal arrays 

(indicated by the small red dots) to be located on the horizontal and vertical edges of some of the 

equatorial ports. The poloidal mode number measurement arrays, indicated by the big red dots, are 

located in the sectors [#1, #3, #4, #6, #7, #9], whereas the toroidal mode number measurement 

arrays, indicated by the big green stars, are only located on the low-field side at the two Z-heights of 

the horizontal edges of the equatorial ports. 
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Figure10a, D.Testa et al., PaperPPCF2016. 

Figure10a. Some representative examples of the test geometries used for the performance analysis 

for the ITER toroidal mode number measurement array. The baseline geometry BT1 represents the 

nominal ITER design as in 2009, with NN=2x18 equi-spaced sensors. The BT5 geometry adds to 

this baseline design 3 arrays of 5 high-resolution sensors each in the equatorial ports [#3, #10, #14]. 

The US5 geometry replaces the NN=2x18 equi-spaced (baseline) sensors of the BT5 geometry with 

NN=25 un-evenly spaced sensors. Finally, the US1 geometry uses NN=30 un-evenly spaced 

sensors without high-resolution arrays. Note that only the BT1 geometry with equi-spaced sensors 

has W()=0 exactly for all mode numbers except n=0 and the pseudo-Nyquist value |n|=18. 
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Figure10b, D.Testa et al., PaperPPCF2016. 

Figure10b. Some representative examples of the test geometries used for the performance analysis 

for the ITER poloidal mode number measurement array. The baseline geometryBT6 represents the 

nominal ITER design as in 2009, with NN=16 un-evenly spaced sensors. The BT8 geometry adds to 

this baseline design one array of 7 high-resolution sensors in the equatorial port [#10]. The US3.01 

and US3.02 geometries replace the NN=16 baseline sensors of the BT6 geometry with NN=25 un-

evenly spaced sensors, but located at different test positions. As the sensors are not equi-spaced, no 

geometry has W()=0 exactly for any mode numbers. 
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Figure11, D.Testa et al., PaperPPCF2016. 

Figure11. Cost-normalized confidence level for noise rejection for evenly (ES#) and un-evenly 

(US#) spaced sensors, comparing the data with the baseline toroidal (BT1) and poloidal (BT6) 

assemblies. The data are plotted as a function of the total number of sensors. We note a 

characteristic bell shape in the cost-normalized confidence level, which is obtained because above a 

certain number of sensors, the cost increases much more rapidly than the confidence level for noise 

rejection, which remains almost constant. For this analysis we used NORM=0.05 (i.e. so as to detect 

“all” modes) and set fMAX to be five times larger than the maximum physical mode number present 

in the input spectrum, i.e. |fMAX|=150 and |fMAX|=300 for toroidal and poloidal mode number 

analysis, respectively. 
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Figure12, D.Testa et al., PaperPPCF2016. 

Figure12. Cost-normalized false alarm fraction for evenly and un-evenly spaced geometries, and 

also comparing the results with those for the baseline toroidal and poloidal assemblies. The 

labelling format for the different geometries is the same as in fig11. We note again the characteristic 

(in this case inverted up-down) bell shape in the cost-normalized fraction of false alarms, which is 

obtained because above a certain number of sensors, the cost increases much more rapidly than the 

false alarm rejection, which remains almost constant. For this analysis we used NORM=0.85 and set 

fMAX to be five times larger than the maximum physical mode number present in the input spectrum, 

i.e. |fMAX|=150 and |fMAX|=300 for toroidal and poloidal mode number analysis, respectively. 
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Figure13, D.Testa et al., PaperPPCF2016. 

Figure13. The confidence level in achieving the same measurement performance of the installed 

assembly after a [10%, 20%, 30%] loss of sensors. The labelling format for the different geometries 

is the same as in fig11. As in fig12, for this test we used NORM=0.85 and |fMAX|=150 and |fMAX|=300 

for toroidal and poloidal mode number analysis, respectively. The threshold values =0.85, =0.75 

and =0.65 associated to a nominal [10%, 20%, 30%] loss of sensors, respectively, for acceptance of 

this test are explicitly shown by the horizontal (magenta) lines to guide the eye. For toroidal mode 

number analysis, the nominal ITER geometry satisfies the requirements for the resilience in the 

measurement performance when adding at least 1x12 high-resolution sensors, for a total of 48 

sensors. Conversely, an assembly with 25 un-evenly spaced sensors in total, comprising 3x5 high-

resolution arrays, satisfies these requirements. For poloidal mode number analysis, only an 

assembly with 30 to 35 un-evenly spaced sensors in total, comprising one array of 12 high-

resolution sensors, satisfies the requirements for resilience in the measurement performance. 
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Figure14, D.Testa et al., PaperPPCF2016. 

Figure14. The average positional shift required to optimize the measurement performance given an 

initial sensors’ arrangement. The horizontal axis is slightly displaced for the different geometries to 

improve the clarity of the graphical presentation, and the vertical error-bar indicates the standard 

deviation on the average value of the required sensor shift. The labelling format for the different 

geometries is the same as in fig11. As in fig12, for this test we used NORM=0.85 and |fMAX|=150 and 

|fMAX|=300 for toroidal and poloidal mode number analysis, respectively. The threshold values 

=2.5deg and =3.5deg for acceptance of this test are explicitly shown by the horizontal (magenta) 

lines to guide the eye. We find that the nominal ITER geometry for toroidal mode number analysis 

satisfies the optimization requirements only when adding at least 1x7 high-resolution sensors, i.e. 

for a total of 43 sensors, whereas an assembly with 25 un-evenly spaced sensors in total, comprising 

3x5 high-resolution arrays, satisfies these requirements. The nominal ITER geometry for poloidal 

mode number analysis does not satisfy the optimization requirements, whereas an assembly with 25 

un-evenly spaced sensors in total, comprising 12 high-resolution sensors, satisfies them. 
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Figure15a, D.Testa et al., PaperPPCF2016. 

Figure15a. Summary results of the measurement performance analysis for some representative 

geometries usable for toroidal mode number detection. The green vertical lines separate the mode 

numbers into classes, corresponding to different measurement requirements for HF instabilities in 

ITER. Similarly, the horizontal magenta lines reflect changing desiderata in the required confidence 

level. Both sets of lines can be moved to reflect changing physical understanding and measurement 

specifications. 
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Figure15b, D.Testa et al., PaperPPCF2016. 

Figure15b. Summary results of the measurement performance analysis for some representative 

geometries usable for poloidal mode number detection, using the same plotting format as in fig15a. 
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Figure16, D.Testa et al., PaperPPCF2016. 

Figure16. Expected measurement performance for the HF magnetic diagnostic system on TCV, 

toroidal LFS array. With the addition of only three out of five LTCC-3D sensors, the best 

measurement performance is obtained by installing them in the sectors [#2, #14, #16], as we have 

W(|n|=16)=0.72 and W(|n|=32)~0.84, marginally below the bad detection limit. All other selection 

of three sectors out of five give rise to W(|n|=32)>0.87, marginally above the bad detection limit. 

For comparison purposes, the measurement performance of the TCV toroidal-LFS array with the 

addition of the five new LTCC-3D sensors has W(|n|=16)=0.61 and W(|n|=32)~0.79. With only the 

original 17 Mirnov-1D sensors, W(|n|=16)~0.88, already above the bad detection limit. 
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Figure17, D.Testa et al., PaperPPCF2016. 

 

Figure17. On the left, an example of a ziro with its content: a canopo, the black cinerary urn inside 

the ziro, and the objects found accompanying the canopo: a bronze daggar, two bronze rings, 

probably used to close the garments, and a ceramic dish. On the right, a decorated canopo that was 

found during the excavation of the proto-Villanovian necropolis of Poggio della Pozza. 
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Figure18, D.Testa et al., PaperPPCF2016. 

 

Figure18. A schematic drawing illustrating the principle of electrical prospection. Assuming an 

otherwise uniform ground resistance, the effect of a large object buried under the AC current-

driving electrode C1 is shown on the equi-potential contours measured with the potential electrodes 

P1 and P2. The underground object distorts the current flow patterns, which significantly modifies 

the potential measurements made with P1, but only little those made with P2. By moving electrodes, 

a map of the perturbation can be obtained, which can be modelled as the superposition of point 

sources, due to the current-carrying electrodes and the localized underground objects. 

[image credits [97]: Neil Linford, English Heritage, Rep. Prog. Phys. 69 (2006), 2205] 
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Figure19, D.Testa et al., PaperPPCF2016. 

 

Figure19. A modified copy of original field drawings illustrating the ground situation of the proto-

Villanovian necropolis of Poggio della Pozza as of the 1988 excavations. The site is limited by a 

dense forest on three sides and by sparse trees leading to an abrupt downhill slope on the fourth 

side. Only a fraction of the site was excavated up to 1988 and in this area a number of ziri were 

found, indicated by larger and smaller surrounding circles. The lozenges indicate the position of a 

ziro as determined from the analysis of the electrical survey performed in 1988. In the excavated 

area, when the estimated position of a ziro matches within 3m the position of one actually found, 

the circle is inscribed with the letter “Z”, and no lozenge is drawn, otherwise the circles and the 

lozenges are inscribed with an “X” if the two are not too far apart (within 10m), or with a question 

mark if no correspondence is found. 
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FigureA1, D.Testa et al., PaperPPCF2016. 
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Frequencies (in 1/day) 

FigureA1. Simulated data for a difficult spectral analysis problem. Top frames: time series (left) 

and Fourier spectrum (right) of the data with the true spectral lines indicated as crosses. Bottom 

frames: spectral window for frequencies between fs=0.1/day (left) and a close up for frequencies 

between fs=0.02/day (right). 
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FigureA2, D.Testa et al., PaperPPCF2016. 
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FigureA2. Results of greedy algorithms for the frequencies estimation from the data of figA1: 

Fourier spectrum of the data (--), true spectral lines (x), estimated lines (o) and estimation residual 

(-). For the MP, OMP and OLS algorithms, the order of the frequencies detection is indicated. In the 

case of Clean, the detected frequencies are represented as well as the final spectrum obtained after 

convolution with a Gaussian kernel (-.). 
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FigureA3, D.Testa et al., PaperPPCF2016. 

L1-norm minimization 

Frequencies (in 1/day) 

L1-norm minimization with a-posteriori correction 

 

Frequencies (in 1/day) 

FigureA3. Results of convex relaxation for the frequencies estimation from the data of figA1: 

Fourier spectrum of the data (--), theoretical lines (x), estimated lines (o) and estimation residual (-

). Results given with the L1-norm penalized least squares criterion (left frame) and after 

barycentric frequencies correction and least squares amplitude re-estimation (right frame). 
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FigureA4, D.Testa et al., PaperPPCF2016. 

FigureA4 (partially reproduced and adapted from [27]). The spectral windows W() for the original 

(1997) and complete set of 11 high-frequency magnetic sensors of JET usable for toroidal mode 

number analysis, and for the 7 and 4 surviving sensors between them that could be used in 2013 and 

currently (2016). Note that the original secondary lobe at n=10 with W()=0.70 was supplemented 

already in 2013 by an even higher secondary lobe at n=4 with W()=0.87, which is much more 

difficult to deal with. Moreover, the failure of three additional sensors between 2013 and the end of 

2015 means that now there is an even more problematic secondary lobe at n=1 with W()=0.62. 
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FigureB1, D.Testa et al., PaperPPCF2016. 

FigureB1. The confidence level in achieving the ITER measurement requirements for the 

evaluation of the toroidal mode number and mode amplitude when applying the SparSpec algorithm 

to a synthetic dataset defined as in eq.(B1) using the high-frequency magnetic sensors available in 

JET in 1997 (initial configuration, bottom frame), 2013 (middle frame) and 2016 (top frame). The 

simulation results are symmetric with respect to the toroidal mode number within the simulation 

accuracy, hence only the positive-n half spectrum is plotted. In excess of 50’000 simulation runs for 

each setup were performed to produce this graph, using a frequency-degenerate input mode 

spectrum that consists of up to 10 modes, with randomized relative amplitudes Ak=0.051.00, 

relative phase k=01.95 and input toroidal mode numbers up to |n|30. The two main SparSpec 

run-time analysis parameters NORM and fMAX were scanned in the range 0.05NORM0.95 and 

60|fMAX|200, respectively. 
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