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 Abstract 

III-V semiconductor nanowires are, due to their unique properties, one of the most promising 

nanostructures developed in the last decades. However, the realization of commercial devices 

made of III-V nanowires, such as transistors and solar cells, has not become feasible yet. In fact, 

the incompatibility with the CMOS industrial process and the low control on their crystallographic 

defects, able to strongly reduce the device performance, represent key obstacles to their imple-

mentation. In this thesis, an innovative catalyst-free method called template-assisted selective 

epitaxy (TASE) is used to grow CMOS-compatible nanowires on different Si substrate orienta-

tions by achieving a very high level of confidence on the structural quality at the atomic level. 

The nanowires are grown by metal-organic chemical vapor deposition and characterized in detail 

by various transmission electron microscopy techniques.  

In the first part of this thesis, we demonstrate the first planar defect-free GaAs nanowires grown 

on a CMOS-compatible substrate. The polytypism and the high density of planar defects are 

successfully suppressed thanks to the high degree of freedom allowed by the TASE method. In 

fact, TASE allows for a wide growth parameter window, still maintaining control of the morphol-

ogy and growth direction of the nanowire. We also analyzed the atomic structure and composition 

of stair-rod dislocations, a particular type of defect occurring under certain growth parameters. A 

correlation with the electronic properties of the defect is achieved by the aid of DFT simulations. 

They suggest the possibility to obtain strongly localized mono-dimensional charge channels run-

ning along these particular defects, which could be relevant for electronic applications.  

The second part of the thesis is dedicated to the investigation of the effects induced by p- and n-

dopants on the structure and properties of GaxIn(1-x)P and GaAs nanowires. We demonstrate that 

TASE permits a good control of the doping incorporation and that dopant atoms modify the crys-

tal structure and composition of the nanowires. Moreover, we present a series of off-axis holog-

raphy experiments for the mapping of potential fields in doped nanowires.  

We consider these results to play a key role in the advancement of III-V nanowires integration in 

electronic and optoelectronic devices and anticipate that this innovative growth method will open 

new paths for novel device architectures.  

Keywords: III-V semiconductors, nanowires, doping, transmission electron microscopy, tunnel 

field-effect transistor, solar cells, crystallographic defects, electron energy-loss spectroscopy, en-

ergy dispersive x-ray spectroscopy, off-axis holography 
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 Zusammenfassung 

III-V-Halbleiternanodrähte sind aufgrund ihrer einzigartigen Eigenschaften eine der vielver-

sprechendsten Nanostrukturen, die in den letzten Jahrzehnten entwickelt wurden. Die Realisier-

ung kommerzieller Geräte aus III-V-Nanodrähten wie Transistoren und Solarzellen ist jedoch 

noch nicht möglich. Tatsächlich stellen die Inkompatibilität mit dem industriellen CMOS-Prozess 

und die geringe Kontrolle über ihre kristallographischen Defekte, die die Leistung der Geräte 

stark reduzieren können, wichtige Hindernisse für ihre Umsetzung dar. In dieser Arbeit wird eine 

innovative katalysatorfreie Methode namens TASE (Template-assisted Selective Epitaxy) ver-

wendet, um CMOS-kompatible Nanodrähte auf verschiedenen Si-Substratausrichtungen zu zü-

chten, wodurch ein sehr hohes Maß an Sicherheit der Strukturqualität auf atomarer Ebene erreicht 

wird. Die Nanodrähte werden durch metallorganische chemische Gasphasenabscheidung 

gezüchtet und anschliessend durch verschiedene Verfahren der Transmissionselektronenmikros-

kopie detailliert charakterisiert. 

Im ersten Teil dieser Arbeit zeigen wir die ersten planaren, defektfreien GaAs-Nanodrähte, die 

auf einem CMOS-kompatiblen Substrat gewachsen sind. Der Polytypismus und die hohe Dichte 

an planaren Defekten werden durch den hohen Freiheitsgrad der TASE-Methode erfolgreich un-

terdrückt. TASE ermöglicht ein breites Fenster der Wachstumsparameter, wobei die Kontrolle 

über die Morphologie und die Wachstumsrichtung des Nanodrahts erhalten bleibt. Ebenso haben 

wir die atomare Struktur und Zusammensetzung von sogenannten Treppenstabversetzungen 

analysiert, eine bestimmte Art von Defekt, der unter bestimmten Wachstumsparametern auftritt. 

Eine Korrelation mit den elektronischen Eigenschaften des Defekts wird mit Hilfe von DFT-Sim-

ulationen erreicht. Sie legen die Möglichkeit nahe, entlang dieser speziellen Defekte stark loka-

lisierte, eindimensionale Ladungskanäle zu erhalten, die für elektronische Anwendungen relevant 

sein könnten. 

Der zweite Teil der Arbeit beschäftigt sich mit der Untersuchung der Auswirkungen von p- und 

n-Dotierungen auf die Struktur und Eigenschaften von GaxIn(1-x)P- und GaAs-Nanodrähten. Wir 

zeigen, dass TASE eine gute Kontrolle der Dotierung erlaubt und dass Dotieratome die Kristall-

struktur und Zusammensetzung der Nanodrähte verändern. Darüber hinaus präsentieren wir 

Studie Off-Axis-Holographie zur Abbildung potentieller Felder in dotierten Nanodrähten. 

Wir sind der Ansicht, dass diese Ergebnisse eine Schlüsselrolle bei der Weiterentwicklung der 

Integration von III-V-Nanodrähten in elektronische und optoelektronische Bauelemente spielen 

und gehen davon aus, dass diese innovative Wachstumsmethode neue Wege für neuartige Bauel-

ementarchitekturen eröffnen wird. 
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 Riassunto 

I nanofili a semiconduttore III-V sono, grazie alle loro proprietá uniche, una delle nanostrutture 

piu promettenti sviluppate nelle ultime decadi. Tuttavia, la realizzazione di dispositivi commer-

ciali realizzati con nanofili III-V, come transistor e celle solari, é ancora inattuabile. Infatti, l’in-

compatibilitá con i tradizionali processi CMOS industriali e il basso controllo sulla densitá di 

difetti presenti, in grado di ridurre fortemente la prestazione del dispositivo, rappresentano osta-

coli chiave alla loro implementazione. In questa tesi, un metodo innovativo esente da particelle 

catalitiche chiamato “template-assisted selective epitaxy (TASE)” é usato per crescere i nanofili 

su diversi substrati di silicio in modo del tutto compatibile con gli standard industriali, ottenendo 

inoltre un elevato livello di fiducia sulla qualitá strutturale a livello atomico. In questo progetto, i 

nanofili sono cresciuti tramite deposizione in fase di vapore di elementi chimici organo-metallici 

e caratterizzati attraverso varie tecniche di microscopia elettronica a trasmissione.  

Nella prima parte di questa tesi dimostriamo per la prima volta nanofili di GaAs senza difetti su 

un substrato CMOS compatibile.  Il politipismo e l’alta densitá di difetti sono soppressi con suc-

cesso grazie all’alto grado di libertá permesso da TASE. Infatti, TASE permette un ampio range 

di parametri di crescitá, pur mantenendo il controllo della morfologia e della direzione di crescita 

del nanofilo. Abbiamo poi analizzato la struttura atomica e la composizione di dislocazioni-sca-

lino, un tipo particolare di difetto presente con certi parametri di crescitá. Una correlazione con 

le properietá elettroniche del difetto é ottenuta implementando simulazioni DFT. Questo sugge-

risce la possibilitá di ottenere canali mono-dimensionali di carica fortemente localizzati lun-

goquesti difetti, che potrebbero essere di importanza rilevante per future applicazioni elettroniche.  

La seconda parte della tesi é dedicata all’investigazione degli effetti indotti da drogaggi p ed n su 

struttura e proprietá di nanofili GaxIn(1-x)P e GaAs. Dimostriamo che TASE permette un buon 

controllo dell’incorporamento di drogaggio e che gli atomi di drogante modificano la struttura 

cristallina dei nanofili. Inoltre, mostriamo studi sperimentali di olografia fuori asse per la mappa-

tura di campi di potenziale in nanofili drogati.  

Consideriamo questi risultati come un tassello importante verso l’integrazione di nanofili III-V in 

dispositivi elettronici ed optoelettronici e anticipa che questo metodo di crescita innovative aprirá 

nuove strade nella realizzazione di architetture avanzate dei dispositivi.  

 

Parole chiave: semiconduttori III-V, nanofili, drogaggio, micorscopio elettronico a trasmissione, 

transistor a effetto campo tunnel, celle solari, difetti cristallografici, spettroscopia di perdita di 

energia, spettroscopia EDX, olografia fuori asse. 
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 Introduction & Motivation 

 

 

This thesis focuses on the characterization of III-V semiconductor nanowires (NWs) grown by a 

novel epitaxy technique, Template Assisted Selective Epitaxy (TASE), by means of transmission 

electron microscopy (TEM). These nanostructured materials offer new possibilities toward solv-

ing two of the biggest problems affecting the present and the future of our global society: the 

apparent end of the Moore’s Law within the information industry and the unsustainable increase 

in the fossil fuel consumption. Hence, in this research, we address the possibility to integrate 

defect-free III-V NWs on industry-compatible Si (100) substrates -without any metal catalyst- for 

photovoltaic and optoelectronic applications. Since the properties of these nanostructures are 

strongly related to the presence of electronic inhomogeneities, a particular focus is laid on the 

characterization of structural defects and compositional variations.   

The present chapter mainly aims at introducing the two challenges of the modern era in the elec-

tronic and photovoltaic industry, highlighting the political, social, economic and scientific as-

pects. Then, it is explained why semiconductor nanowires are expected to play a critical role in 

future electronic and photovoltaic devices. Their beneficial properties, as well as the difficulties 

of integrating them on Si, are thoroughly described. 

In the second chapter, the TEM techniques used in this project are described. The cathodolumi-

nescence (CL) setup employed in the scanning electron microscope (SEM) is also discussed. 

Then, a description of the different steps performed to prepare the TEM lamellas for atomic-

resolution imaging and compositional analysis is given. Finally, the last part is dedicated to the 

description of the 3D atomic modeling and density-functional theory (DFT) simulations used to 

simulate the influence of structural defects on the physical properties of the material. 

Chapters 3 and 4 contain the core of the thesis and give a thorough overview of the results 

achieved during the entire doctoral project. Chapter 3 concerns the integration of defect-free gal-

lium arsenide (GaAs) horizontal NWs on a complementary-metal-oxide-semiconductor (CMOS) 

compatible substrate. The obtention of high-quality crystals by tuning specific growth parameters 

represents an important step ahead in this field. A specific type of dislocation occurring in the 

GaAs crystal structure is also analyzed in depth and studied by means of DFT simulations. 

1 
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Chapter 4 describes the first successful catalyst-free growth of indium gallium phosphide (GaxIn(1-

x)P) vertical NWs on a Si substrate for photovoltaic applications. Here, the effects induced by p-

n dopants on the crystal structure, composition, and optical properties are assessed. The second 

part of chapter 4 presents off-axis holography experiments performed on GaAs NWs exhibiting 

different junctions, and a discussion of the limitations and artefacts of the method.  

Finally, in chapter 5, the conclusions and a discussion of possible future developments which 

might take place in the field of III-V NWs on Si are given. 

1.1    The two challenges of the modern era 

Two technological challenges are threatening the modern era more than others: the saturation of 

the Moore’s Law and the lack of efficient and sustainable energy solutions able to satisfy the rapid 

increase in the global energy demand. Even though hundreds of institutions and technology start-

ups around the world have been making an important effort in trying to solve these two issues, 

the solution is still far distant.  

1.1.1  No More Moore’s Law? 

A field effect transistor (FET) is the fundamental building block of all integrated circuits present 

in modern electronic devices [1]. This element is made of four components (i.e. source, gate, 

drain, and body) able to amplify or switch electronic signals and electrical power, by means of an 

applied electric field [2,3]. In this way, logic operations can be performed in virtually all the 

digital devices used nowadays. Integrated circuits have performances which can be directly re-

lated to the number of single transistors present on it. Every engineer working in the electronic 

industry in the early ‘60s was aware of the following apparently simple empirical relationship: 

the higher is the transistors’ density, the higher will be the performance of the integrated cir-

cuit [4]. It was in 1965 when Dr. Gordon Moore, co-founder of Intel Corporation and considered 

as one of the fathers of the semiconductor era, described the increase in the number of transistors 

per chip with the so-called “Moore’s Law”. He predicted a doubling every year (which was in 

1975 corrected at 18-24 months) [5]. On the other side, the cost per component was nearly in-

versely proportional to the number of components themselves [6]. This trend was perfectly 

matched for decades thanks to the continuous miniaturization process [7]. Thus, billions of silicon 

(Si) FETs were successfully integrated on commercial integrated circuits (Figure 1). This enabled 

a large increase in the number of logic operations while reducing the costs per single chip. For 

example, the Intel Xeon Broadwell chip, with one of the latest 14 nm technologies, implements 

around 7.2 billion transistors on a 456 mm2 chip area. 

However, the entire information industry is currently living one of the most challenging periods 

since the invention of the first computer. In fact, in the imminent future, some fundamental phys-

ical and technological limitations are expected to slow down or even arrest the pace of the above-

mentioned trend  [8–10]. The continuous reduction in the size of the transistor’s gate can lead to 

the leakage of current through the very narrow dielectric layer even in the off-state  [11–13]. On-

chip interconnect scaling has also become a bottleneck to high-performance integrated 
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circuits [14–16]. In fact, this process is physically limited by the electron scattering at the edges 

of the metallic wires, which becomes inevitable at the atomic scale [17]. Another crucial point is 

the saturation of the energy supply which cannot be sustained to be doubled every year [18]. All 

these factors are the main obstacles for the continuation of Moore’s law. Indeed, it is Intel itself 

to predict the ultimate Si node size limit to 7 nm [19] while modern laptops mount a 14 nm.  

 

 

Figure 1.1 – Graphical representation of the Moore’s Law. The number of transistors per chip is 

plotted with respect to the year of introduction of the specific commercial processor models. The 

linear trend and the saturation reached in the last years are both clearly visible [20] .  

 

In order to solve these issues, new strategies addressing the use of novel materials for the channel 

and the dielectric, new device operation mechanisms and innovative device architectures are 

needed [21]. One of the possibilities is to use semiconductor materials combined with a tunnel 

FET (TFET) technology. This is expected to reduce the supply voltage needed to perform opera-

tions while maintaining a high ION and low IOFF current  [22,23]. This could lead to a reduction in 

the so-called subthreshold slope (SS), actually limited at 60 mV/decade for metal-oxide-semicon-

ductor FETs (MOSFETs) technologies  [24,25]. In fact, thermally injected carriers in MOSFETs 

have a SS limited by equation (1.1) where kB is the Boltzmann constant, T is the temperature in 

Kelvin and q is the magnitude of the electrical charge [26].  

 

𝑆𝑆 = 2.3𝑘𝐵𝑇𝑞 ~ 60 𝑚𝑉 𝑑𝑒𝑐⁄             (1.1) 
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In TFETs, charge carriers tunnel from one energy band to another through quantum–mechanical 

Band-To-Band-Tunneling (BTBT) [27], rather than being thermally injected into the channel. In 

this respect, recent results show that this new approach could potentially reduce the supply voltage 

to 0.3 V  [28], as compared to the present 0.5 V. However, beside the use of new physical princi-

ples to perform logic operations, a modification in the structures and materials used to build a 

transistor can greatly contribute to the continuation of the Moore’s Law.   

 

1.1.2  Towards an energy crisis? 

Since the industrial revolution of the 18th century, the energy industry is experiencing one of the 

most challenging periods in human history due to the constant growth of the world population. In 

fact, the world inhabitants are growing at unprecedented rates and it is expected to reach around 

10 billion in 2050 [29]. This phenomenon will certainly lead to a higher demand of energy, espe-

cially in the non-OECD (Organisation for Economic Co-operation and Development) countries, 

for industrial production and for the normal domestic economy (Figure 1.2). At the moment, the 

global energy consumption is around 150 PWh but it is expected to increase by more than 30% 

within the next decades and reach 200 PWh by 2050 [30]. Besides the inability to produce enough 

energy, environmental and climate concerns arise on the use of the present type of energy re-

sources. Currently, more than 85% of the world energy production comes from oil, gas and coal 

resources [30]. However, the headlines of the most notable newspapers from around the world 

report every day about abnormal meteorological events caused, among others, by the extremely 

high CO2 emissions. This phenomenon is leading to a mutation of the climate at an increasing 

pace. For example, the global average temperature has raised constantly in the last decades and 

the polar ice caps are melting at an unprecedented rate [31–33]. This is expected to cause a rise 

of the water level of the oceans within a few years [34]. All these interconnected phenomena 

represent a serious threat for the Earth’s geological, biological and ecological systems. For this 

reason, increasing the amount of produced energy in order to satisfy the global demand is not a 

feasible solution if the CO2 emissions related to the present technology generation are not strongly 

decreased.  
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Figure 1.2 – Energy consumption predictions for OECD and non-OECD members. The distribu-

tion of the different energy resources is also plotted as a function of time. The image is adapted 

from [35]. 

 

It was in December 2015, at the United Nations Climate Change Conference (COP 21) in Paris, 

when a first tangible tentative to act against this crisis was planned. With the so-called “Paris 

Agreement”, 174 countries agreed to pursue efforts to limit the increase in the global temperature 

by 1.5°C. This will require zero emissions sometime between 2030 and 2050 and a radical mod-

ification of the energy production industry. For this reason, more than 1 trillion dollars were in-

vested globally since 2015 in the research and development of renewable energies [36] such as 

wind, biofuel and solar photovoltaics (PV). In particular, the latter is considered to be the most 

promising technology to overcome the energy and pollution issues and to generate a virtually 

infinite amount of clean energy. Solar cells are, indeed, able to convert the solar radiation captured 

on their surface in working current  [37]. By considering the annual solar radiation hitting the 

surface of the earth, an infinitesimal portion could supply enough energy to meet the entire global 

demand.  This is one of the reasons why more than half of the investments in renewable energies 

were assigned to solar energy technologies.  

However, the current Si solar cells mounted on the roofs of private and industrial buildings have 

rather low efficiencies as compared to the theoretical maximum efficiency that a perfect device 

could reach, and the reasons are multiple. First of all, Si p-n junction solar cells are intrinsically 

limited by the Schockley-Queisser limit which gives a maximum level of efficiency of 30% by 

absorbing a wavelength of 1.12 μm from the solar spectrum [38–40]. Second of all, there are 

many recombination mechanisms limiting the conversion efficiency. Many of them, unfortunately 

the most effective ones, are given by the material quality at the atomic level, the device design 

and the fabrication process [41,42].  Different strategies have been studied and developed with 

concept devices in all the major institutions and laboratories achieving very high efficiencies up 
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to 45% [43]. However, costs are still one of the most important limiting factors preventing the 

photovoltaic technology to overcome the fossil fuel energy generation.  

 

1.2     A unique solution with semiconductor nanowires 

In the last decade, III-V semiconductor nanowires (NWs) have been regarded as the definitive 

solution for both the electronic and the photovoltaic industry. The III-V prefix is related to the 

type of atomic species they are composed of. In fact, they are made of combinations of elements 

from the group IIIA (13) and VA (15) of the periodic table. Typical binary compounds are GaAs, 

GaSb, InP, etc. Ternary compounds are also possible such as InGaAs and GaAsSb. Compared to 

group IVA elements (Si, Ge), III-V materials exhibit very unique properties. For example, in 

specific combinations of group III and V, they show a direct bandgap which is crucial for optoe-

lectronic applications [44]. As opposed to Si, a direct bandgap allows the conservation of the 

momentum during recombination processes without the use of phonons, leading to higher radia-

tive recombination coefficients. The possibility to engineer their bandgap is also a fundamental 

aspect of III-V materials, especially in ternary compounds. The combination of these properties 

with a high surface-to-volume ratio, high miniaturization and strain relaxation of the nanowires 

makes them very appealing for a huge variety of applications. In fact, a lot of effort was given to 

apply these nanostructured materials to the two above-mentioned industries, namely in TFET and 

PV devices. 

TFETs devices have been built from III-V NWs by several research groups. TFETs with InAs 

NW/p-Si and InAs-InAlAs/p-Si heterojunctions were proposed by Tomioka et al. in 2011 [45]. 

They demonstrated one of the first working devices made of III-V NWs. However, the quality of 

the nanostructures was far from excellent and several crystallographic defects, especially misfit 

dislocations at the different interfaces, were present. The performance of the fabricated devices 

was certainly degraded by the inhomogeneities present in it resulting in a subthreshold slope under 

reversed bias conditions of 104 mV/dec. In the same year, n-i-p InAs-Si-Si gate-all-around NW 

TFETs were fabricated at IBM-Research in Zürich by Schmid et al [46]. As in the previous cases, 

growth defects and unperfect device contacts limited the drive current to ~ 0.4μA/μm and the SS 

to 220 mV/dec. The potential of III-V heterostructures in TFETs was demonstrated for the first 

time by Dey et al. and Ganjipour et al. of the Department of Information Technology and the 

Department of Solid State Physics at the Lund University in Sweden  [47,48]. A record high ION 

current of 110 μA/μm and a minimum SS equal to 50 mV/dec represented important results for 

the research community, proving the real potential of this combination between new engineering 

technology and novel materials as a new building block for future low-power electronics. How-

ever, the strong temperature dependence of SS and ION current suggested a trap-assisted tunneling 

and a thermal emission from the traps. Once again, the low quality of the grown structures had a 

significant influence on the overall device performance. Zhao et al. in 2014 performed other ex-

periments on ternary heterostructures made of InAs/InGaAs, confirming the high potential of such 

a structure in electronic devices  [49]. In fact, he was able to reach an average value of SS equal 

to 79 mV/dec at Vds=0.3 V and a ION current of 0.27 μA/μm in the best performing device. Then, 
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in 2016 a triple structure device made of vertical InAs/GaAsSb/GaAs heterostructures NWs was 

demonstrated by Memisevic et al., again at the Department of Solid State Physics at the Lund 

University [50]. Here, a minimum SS of 48 mV/dec was obtained, confirming the promising na-

ture of III-V NWs for TFETs devices. With these reported examples, it becomes clear that the 

growth of high-quality NWs is crucial for the realization of efficient TFETs devices and more 

research focusing on the optimization of NWs growth on a CMOS compatible substrate is needed. 

III-V nanostructures could represent a further step ahead also for the photovoltaic technologies. 

In fact, recent years have seen the realization of multi-junction solar cells made of III-V semicon-

ductor thin films [51]. The efficiency of these devices reached 45% by absorbing different wave-

lengths of the solar spectrum under concentrated sunlight illumination  [43]. This value is about 

twice the highest value achieved with crystalline Si solar cells  [52]. Being NWs a high aspect 

ratio crystalline structure, when implemented on a Si platform they would allow to significantly 

reduce III-V material usage and the associated costs. At the same time, they can ensure an ex-

tremely high absorption of light thanks to the optimal light coupling [53,54]. Additionally, the 

small interface area of the NWs is very effective at minimizing stresses commonly arising during 

the epitaxial growth of lattice and thermal mismatched thin films [55,56]. Thus, the efficient strain 

relaxation in thin nanowires allows extending the possible material combinations needed to grow 

NW heterostructures. GaxIn(1-x)P NWs are currently attracting great interest as a promising 

nanostructured material system for efficient photovoltaic solar cells [57,58]. Due to their direct 

and tunable bandgap over a wide range of compositions (1.35-2.26 eV), GaxIn(1-x)P NWs, inte-

grated on a Si substrate (1.12 eV), can be designed to absorb light from the major part of the 

visible solar spectrum [59–61]. Thus, by intentionally varying the composition, the dopant type 

and concentration along the NWs, different parts of the spectrum can be absorbed and loss of 

energy through carrier thermalization minimized. These properties have important economic im-

plications to meet the demand for both high efficiency and low-cost solar cells. However, as in 

the case of TFETs devices, two critical aspects connected to the growth of the materials still need 

to be optimized in order to obtain high-efficient NWs solar cells: i) the demonstration of compo-

sition controlled high-quality GaxIn(1-x)P nanowires on Si substrates and ii) the effect of doping 

on the NW composition, microstructure, and morphology.  

Since a critical step towards the optimization of TFET and PV devices is the investigation of the 

defect formation mechanisms, a complete description of the structural defects that occur in sem-

iconductor heterostructures is given in detail in the next section. It treats, in particular, crystallo-

graphic defects caused by discontinuities in the stacking sequence of the atomic layers as well as 

defects arising when growing III-V NWs on different substrates. 

 

1.3     Crystal structure of III-V nanowires 

III-V NWs are elongated crystals with diameters typically below 100 nm and lengths up to several 

micrometers. This quasi mono-dimensional structure allows, unlike in thin films, to relax the pos-

sible stresses arising at the interface between different materials [62]. They can either exhibit 

zincblende (ZB) or wurtzite (WZ) crystal structure depending on the stacking sequence of the 
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atomic bilayers in a cubic or hexagonal crystal packing as shown in Figure 1.3, respectively [63]. 

ZB can be described as two interpenetrating systems of close-packed cubic structures located at 

(0,0,0) and (1/4, 1/4, 1/4), respectively. The stacking sequence of the atomic bilayers in the ZB 

structure is ABCABC… in the <111> direction. WZ is the equivalent hexagonal structure with a 

stacking sequence of atomic bilayers of the type ABABAB… in the [0001̅] direction.  

 

 

 

Figure 1.3 – Schematic representation along the [1̅01] zone axis of the Zincblende and the Wurtz-

ite stacking sequence of atomic planes. The green spheres correspond to the IIIA atoms while the 

blue ones to the VA atoms.   

 

III-V NWs are mainly affected by two types of discontinuities: mono-dimensional and bi-dimen-

sional defects. The first type, also called dislocations, corresponds to the front of propagation of 

a line defect due to the sliding of atomic planes over each other. A dislocation is characterized by 

two parameters: the direction of the propagation of the dislocation in the crystal, namely disloca-

tion line, and its Burgers vector. The Burgers vector defines the magnitude and direction of the 

slip. It can be identified by making a closed circuit around the hypothetical dislocation by jumping 

from one lattice point to the neighboring one until the starting point is reached again. If the circuit 

fails to close, then a dislocation is surrounded, and the lattice vector needed to complete the circuit 

is the Burgers vector of the dislocation. Two main types of dislocations can be distinguished: edge 

and screw dislocation. The first one has the Burgers vector perpendicular to the dislocation line 

while in the second case it is parallel.  

Besides, mixed dislocations where the line direction and Burgers vector are neither perpendicular 

nor parallel can also be found; they have both screw and edge character. In the case of nanowires, 

misfit edge dislocations are commonly observed [64], and they form, as the name suggests, due 

to the misfit at the interface between two crystals. This can occur either at the substrate-nanowire 

interface or between two different semiconductors in nanowire heterostructures. Then, an extra 

half-plane of atoms is present in the crystal causing the region around it to be in compression and 

the region at the other side of the dislocation to be in tension. Both dislocations are represented 

in Figure 1.4. 

The presence of dislocations in semiconductor crystals used for electronic devices can result in a 

complete failure of performance [65–67]. The benefit in using a nanowire geometry is that, as 
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opposed to thin films, the range of critical dimensions below which we can have defect-free nan-

owires is higher, allowing a more efficient growth. These critical dimensions are the nanowire 

diameter and axial distance, along the nanowire growth direction, after the interface with the Si 

seed [55]. Another type of dislocations which often occur when growing III-V NWs are the so-

called stair-rod dislocations and, given the importance in this project, they will be discussed ahead 

in a dedicated chapter.  

 

 

Figure 1.4 – Schematic diagram showing a screw and an edge dislocation with the Burgers vectors 

and the dislocation line indicated by the blue arrows and the dashed line, respectively. Adapted 

from [68]   

 

When considering planar defects, we can distinguish stacking faults (SFs), rotational and mirror 

twins (TWs) and antiphase boundaries (APBs). They are all related to the stacking of the atomic 

bilayers and can be associated to dislocations, caused by a high thermal expansion coefficient 

mismatch or by the high susceptibility of the (111)B surface to twinning [69,70]. A SF is the local 

interruption in the regular stacking sequence which continues in the same manner after it; SFs can 

be either intrinsic (a single missing layer) or extrinsic (a single additional layer). A rotational TW, 

also denoted as ortho-twin, can be illustrated by considering a segment with a ZB crystal structure 

and then rotating it 60° around the <111> axis. The bond over the twin is heteroatomic and the 

polarity of the crystal is maintained. A mirror twin, also called para-twin, occurs due to a 180° 

rotation in the twin plane. In this case, the bond over the twin is homoatomic (III-III or V-V) and 

the polarity is therefore reversed. An APB is a special case of planar defect in which two non-

equivalent polar orientations of the III-V structure associated with the interchange of the group 

III and V sublattices are in contact. This can occur due to intrinsic single steps of a/4 <001> high 

on the Si surface or simply due to mixed nucleation on Si. Hence, between domains in anti-phase 

Screw dislocation 

𝑏 ⃗⃗⃗  // 𝑑 ⃗⃗  ⃗ 

Edge dislocation 
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relation, the crystal polarity and bonding directionality are reversed. The presence of all these 

defects in III-V nanowires can highly affect the efficiency of the final device. In fact, they act as 

preferred sites for impurities, high diffusivity paths for dopants and non-radiative recombination 

centers [66,71] resulting, for example, in an increased leaking current in TFET devices [72]. Ad-

ditionally, the band gap energy might also be modified since twinning can induce the alternation 

of ZB and WZ sections [63,73,74], not allowing a good control of the optical properties for PV 

applications. The described planar defects are shown in Figure 1.5. 

 

 

 

 

 

 

 

Figure 1.5 – Graphical representations of the planar defects that can be encountered in semicon-

ductor NWs. Reproduced after [75,76]   

 

Two main methods have been developed to grow III-V NWs and, in the following section, I will 

explain the benefits but especially the limitations associated to each technique.  
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1.4     Growth techniques 

Performing high-quality growth of III-V NWs on different substrates is pivotal in order to obtain 

high-performance devices. Indeed, the NW quality depends strongly on the growth technique and 

process conditions. Here, we introduce the two main techniques used so far, i.e. vapor-liquid-

solid growth (VLS - the most common) and selective-area growth (SAG).  

VLS This technique is the most widely used because of its simplicity and versatility. In this 

method, the metal catalyst, usually a gold particle, forms liquid alloy droplets at a high tempera-

ture by adsorbing vapor components from the precursors. Given their continuous supply, the com-

ponents coming from the precursors will reach a concentration higher than the equilibrium one, 

reaching the so-called supersaturation. At this stage, in order to return to the minimum free energy 

of the system, the molecules of the vapor precursor will start to precipitate forming the solid part. 

This happens directly at the interface with the liquid particle. This leads to the growth of the 

mono-dimensional structure which continues as long as the gas precursors are kept active. Since 

this process takes into account the three different states of the matter (the vapor precursor, the 

liquid metal particle and the solid precipitate), it is called VLS growth [77]. The diameter and 

position of the 1D structures are related to the size and position of the catalyst, as the liquid phase 

is confined to the area of the precipitated solid phase. However, the VLS technique has some 

important drawbacks: (i) the growth direction is strictly related to the substrate orienta-

tion [78,79], (ii) there is no precise control on nanowire location, and (iii) the gold is not compat-

ible with the industrial standards [80]. Furthermore, the alloy particle can act as a trapping site 

for carriers, affecting the device performance [81,82].  

The amount of publications reporting on the growth of III-V nanowires obtained with this method 

is very large. The very high flexibility in growing axial heterostructures, for example, is one of 

the key benefits in using the VLS method. In fact, modifying the nature of the precursor during 

the growth allows to obtain heterointerfaces in the range of few nanometers but with a high den-

sity of dislocations [83–88]. Similarly, radial heterostructures can be grown as well. However, 

the temperature must be increased such that the axial growth is suppressed and the precipitation 

of the solid component occurs on the lateral sides of the NW [89]. The direction of the growth 

corresponds to the one that minimizes the total free energy of the system, which is generally given 

by the free energy at the S-L interface between the NW and the metal particle. For example, cubic 

lattices like InP and GaAs, present for most of the growth conditions the formation of a single 

(111) plane at the S-L interface, which leads to a growth in the <111> direction [90]. Depending 

on the stacking sequence of the atomic planes, there can be a <111> A or B growth direction, i.e. 

Group-III or group-V terminated. The latter is the most common one since leads to a higher re-

duction in the free energy [91]. However, the growth in the <111>B direction often leads to a 

very high density of planar defects which are able to affect most of the optical and electrical 

properties of devices integrating NWs. Since the optical, electrical and mechanical properties of 

the nanowires are strongly dependent on their growth direction, much research has been con-

ducted to control their orientation. In fact, a lot of interest is dedicated to the growth in other more 

uncommon directions which could lead to defect-free nanostructures [92]. One efficient and sim-

ple way to do this resides in modifying the growth conditions of the NW itself, at the initial stage 

of the process, as a sort of in-situ method. The main parameters to be tuned during the growth 
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process are generally the partial pressure of the precursors, their molar ratios (the so-called V/III 

ratio) and the growth temperature. Several examples on how these parameters are able to affect 

the growth orientation have been reported in literature [93].  

Concerning the device integration, the possibility to grow co-planar III-V nanowires directly on 

the substrate is highly desirable. Using metal organic chemical vapor deposition (MOCVD), the 

temperature variation has been one of the metrics mostly used to modify growth orientation of 

GaAs NWs on GaAs substrates. In fact, when grown on the (100)-oriented substrate at low tem-

peratures (∼ 420 °C), the common growth direction is the <111>B. On the other hand, if the 

temperature is raised above 450 °C, the preferred reported growth direction is the <110>, i.e. the 

two directions along the plane of the substrate [94]. Similar growth orientations were recently 

demonstrated with GaAs NWs grown on a (001) GaAs substrate by using the atmospheric pres-

sure MOCVD [95]. Similar planar NWs were also observed by Zhang et al. when growing InAs 

NWs on a (111)B-oriented GaAs substrate. In this case, the Au catalyst plays a key role since it 

maintains the {111} interface with the InAs NW and the (111)B interface with the GaAs of the 

substrate. In this way, the NW is forced to grow in one of the <112> six equivalent directions of 

the substrate surface [96].  

Concerning the V/III ratio of the precursors flow rates, it has been already demonstrated how they 

can significantly affect the growth rate and overall morphology of the NWs [97–99]. High V/III 

ratios induced kinking and non-<111>B growth directions when using AsH3 and Trimethylgal-

lium (TMGa). The possible reason was proposed by Joyce et al. [100]. In fact, he suggested that 

stable As trimers forming on the (111)B surface might modify the surface free energy, allowing 

other growth directions. Moreover, the high V/III ratio could also modify the eutectic alloy com-

position of the metal catalyst particle and, as a consequence, the growth direction [100]. Several 

groups achieved also a good level of control of the polytypism in III-V NWs. The possibility to 

tune the presence of planar defects along the nanowire in order to obtain ZB or WZ sections has 

been demonstrated and used for bandgap engineering [63,101,102]. Both vertical and horizontal 

TFETs obtained with III-V VLS-nanowires were demonstrated showing high Ion current and low 

SS  [72,103]. However, industrial compatibility and perfect crystal quality are still the major chal-

lenges of the VLS method. 

SAG This technique uses a different approach in which top-down and bottom-up methods are 

combined. In Selective-Area Growth, a patterned oxide mask is deposited on the III-V substrate 

and the nanowires are allowed to grow only where the apertures are located [80]. The important 

benefits of this method are the absence of a metal catalyst and the precise location of the nan-

owires.  

The first GaAs and InGaAs nanowires were grown directly on (111) III-V substrates having very 

small diameters (50 nm) and high aspect ratios closely related to the mask opening size. No ta-

pering and atomically flat lateral surfaces were observed. Any inhomogeneity of the oxide mask 

can, however, be transferred to the nanowires giving rise to the formation of defects [104]. The 

control of the growth conditions can lead to the realization of axial and radial heterostruc-

tures [105] but with the formation of non-intentional core-shell features at the heterointer-

face [106]. Some problems arise when SAG is applied to non-polar substrates like Si since growth 

occurs in four equivalent <111> directions. This results in the formation of NWs tilted with 
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respect to the (111) surface, which is not advantageous for attaining high-density integration of 

NW-based devices on Si [107,108]. This problem was overcome by surface pretreatment obtain-

ing a Si (111)B top surface allowing the vertical integration of III-V nanowires [109]. The ob-

tained nanowires contain, as expected, a high density of planar defects and dislocations at the 

substrate-nanowire interface. Polytypism was also observed [110].  

Concerning device integration, III-V heterojunction interface is used for steep-SS switches thanks 

to the pseudo-staggered type-II band discontinuity. When the voltage is applied and the TFET is 

turned on, band-to-band tunneling occurs. A SS=12mV/decade for InGaAs nanowire on Si (111) 

at room temperature was reported [111]. Anyway, the coexistence of steep SS and large SS was 

observed where the latter was due to trap-assisted tunneling through the defect level originated 

from misfit dislocations. A relationship with the channel length (Lch) was also verified, showing 

a steepness in SS with decreasing Lch [112]. A relationship between nanowire diameter and the 

presence of misfit dislocations was observed also for this technique. In fact, for different Si/III-V 

heterojunctions (InAs, InGaAs and GaAs) a critical diameter (~ 18nm) below which no misfit 

dislocations occur was reported. In this way tunneling via dislocations level is suppressed and 

BTBT dominates [113]. Finally, even if high-performance TFET were demonstrated with a very 

small SS [114],  [111], (i) a very small growth rate and (ii) a high substrate dependence remain 

key challenges for their implementation in the semiconductor industry since no nanowires grown 

on top of Si (100) have been successfully reported. 

All the drawbacks reported for VLS and SAG techniques could be overcome by the use of a novel 

epitaxy technique developed in the recent years at IBM-Zurich called Template Assisted Selective 

Epitaxy (TASE). 

 

1.5     Solving the Si integration issue with TASE 

This newly developed technique is very similar to SAG in avoiding any form of catalyst particles 

which could affect the sharpness of the interfaces and contaminate the nanowire. Basically, the 

nanostructures are grown in nanotube templates by MOCVD on Si wafers at temperatures ranging 

from 450°C to 650°C. A typical procedure to fabricate the vertical templates is the following and 

is illustrated in Figure 1.6. A sacrificial amorphous α-Si layer is sputtered on the wafer’s surface. 

The thickness of the α-Si layer determines the height of the templates, while the diameter (30-500 

nm) and position of the templates are defined by patterning hydrogen silsesquioxane (HSQ) dots 

by electron beam lithography. Inductively-coupled plasma reactive-ion etching using HBr/O2 is 

employed to etch out vertical Si nanowires. SiO2 is then subsequently deposited on the Si nan-

owires by plasma enhanced chemical vapor deposition at 400 °C. In order to empty the nanotube 

templates and to obtain a pristine (111)-terminated crystalline Si surface at the bottom, a patterned 

resist mask is deposited to protect the substrate and a 25% tetramethylammonium hydroxide so-

lution is used to selectively etch away the Si sacrificial nanowires. The III-V semiconductor NW 

is then grown inside the remaining cavity by MOCVD.  

The TASE technique offers highly valuable advantages compared to VLS and SAG since no metal 

particle is used as catalyst, there is no dependence on the substrate orientation [115] and the 
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growth parameters can be modified still maintaining the same nanowire shape and direction [116]. 

Furthermore, with this method any substrate-dependency on the NW morphology is avoided since 

the nanotube template defines the shape of the targeted NW, preventing also the formation of non-

intentional core-shell structures at the interface in axial-heterostructures [117].  

At the first stage, InAs on Si (111) and InAs/InSb heterostructures were studied [117]. In both 

cases, a relationship between the nanotube filling and the V/III ratio was observed. Thus, for a 

low V/III ratio, partial filling of the template is achieved, while with higher ratios, complete filling 

of the structures is obtained [116]. These results show that the TASE method allows using a larger 

window of growth parameters compared to a template-free NW growth. This allowed to com-

pletely avoid the formation of non-intentional core-shell structures as in the case of normal SAG. 

The InSb sidewalls reflect the hexagonal facets of the six equivalent <110> directions given by 

the InAs NW structure. TEM analysis showed a close contact between the template and the de-

posited InSb with no voids. The chemical transition between the two semiconductors occurs over 

a distance of ~2 nm, so much smaller than in the case of the VLS technique where the transition 

for the same heterostructure was observed to be ~20 nm [118]. The use of the Geometric Phase 

Analysis (GPA) allowed measuring and mapping the displacement and strain fields at the hetero-

interfaces. The formation of periodic misfit dislocations at an average distance of 7 nm along the 

radial direction was observed to release the 7% lattice mismatch between InAs and InSb [117], 

allowing the strain relaxation to happen within 4 nm along the axial direction. It is important to 

differentiate the growth direction of the nanowire inside the template and the final orientation of 

the structure, which is only imposed by the template. To confirm this behavior, InAs nanowires 

were grown on several differently oriented Si substrates, i.e. (100), (110), (112) and polycrystal-

line Si substrate [115]. This demonstrated that the shape, dimension and final orientation of the 

nanostructure are only given by the SiO2 nanotube template down to a diameter of 25 nm. Yet, 

the final facet of the nanowires shows different orientations for the same Si substrate and does 

not seem to be consistent. The possibility to control the final facet orientation would represent an 

additional benefit of this method. By atomic-resolution imaging, planar defects were observed in 

the InAs nanowires [115]. Furthermore, the nanotube diameter was found to be affecting the nan-

owire length since a small diameter (few tens of nm) reduces the length of the nanowire on a Si 

(110) substrate. On the contrary, the NW length was increasing on the Si (111) substrates because 

of a different effective V/III ratio inside the tube [116].  

A key benefit of this technique is the simple realization of nano-devices. The first p-i-n TFET, 

with planar InAs nanowires integrated on Si(100), was demonstrated by Schmid et al. in 2015 

showing that their performances match the ones of devices based on conventional nanowire 

growth process with a SS = 160 mV/dec [119]. Co-planar InGaAs and InAs nanowires directly 

integrated on Si (100) were also fabricated [120]. TEM cross-sectional analysis confirmed a very 

good control over position, dimension and surface roughness also for these lateral samples. The 

possibility to grow vertically stacked 3D structures, nanostructures containing a pre-defined con-

striction and nano-scale cross-junctions were all achieved showing the high versatility of the 

TASE method [120].  
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Figure 1.6 – Graphical scheme showing the different steps in the realization of a vertical III-V 

NW using the TASE technique. The first step is the deposition and the subsequent creation of a 

Si sacrificial NW by e-beam lithographic process. The SiO2 layer is deposited on the surface by 

PECVD. The top facet of the NW is exposed by dry-etching the SiO2 layer while the rest of it is 

protected by a photoresist. The sacrificial NW is then etched away, leaving an empty cavity. Fi-

nally, the III-V NW can be grown inside, and the template is removed by dry-etching. Image 

adapted from  [115]. 

 

Nevertheless, although TASE decidedly offers important advantages, III-V NWs grown with this 

method often present numerous crystallographic defects. Moreover, the effect of dopant incorpo-

ration in TASE grown NWs is a highly significant, yet unexplored, issue. The present research 

project addresses these topics thoroughly and brings out several key results for the future integra-

tion of NWs in electronic and photovoltaic devices. This is achieved by means of several electron 

microscopy techniques. In particular, TEM provides the spatial resolution to study the structure 

and properties of materials at the atomic level. Accordingly, the next chapter is mainly devoted 

to the description of the TEM techniques that were used for this work.  
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 Techniques and methods 

 

 

This chapter contains a thorough description of the different techniques and methods used in this 

research project. Therefore, the main part of this chapter is devoted to the description of the TEM 

techniques utilized to characterize the III-V NWs. Besides, the CL setup is also introduced. The 

physics related to each method is explained in detail. Moreover, a dedicated section explaining 

the necessary steps to obtain optimal TEM specimens for atomic-resolution imaging and spec-

troscopy is included. Finally, the approaches and software used to create the 3D atomic models 

and to perform the DFT simulations to study the electronic properties of the investigated 

nanostructures are presented. Note that as the growth conditions of the studied NWs are very 

specific to each system, they are not given here but in their respective chapters 3 and 4.    

 

2.1     A very brief historical introduction to microscopy 

Mankind has always been interested in observing very small objects which are not visible to the 

naked eye. The early microscopes were optical (or light) microscopes and were developed in the 

late 16th century.  They were compound microscopes, which used two lenses: the objective lens 

positioned close to the object (used to focus a real image of the object inside the microscope) and 

a magnifying lens, or eye piece (used to form an enlarged inverted virtual image of the object). 

These instruments were able to magnify microscopic objects, allowing scientists to reveal very 

small details of the objects surrounding them, like the body components of a bee for exam-

ple [121]. One of the first scientific applications was proposed by Antonie van Leeuwenhoek 

(1700) who was able to image biological organisms like bacteria and protists for the first 

time [122]. Since then, microscopy has evolved exceptionally, in particular, thanks to the techno-

logical and scientific breakthrough in electron optics in the early 20th century. This revolution, 

initiated by Louis de Broglie (1924) and Hans Busch (1926), led to the development of electron 

sources and electron lenses crucial for the realization of the first TEM by Max Knoll and Ernst 

Ruska in 1931 [123]. However, this microscope was far from approaching the theoretical resolu-

tion of 2 Å. The factors hampering the resolution limit of the early TEMS were, among others, 

the brightness of the electron sources, the (mechanical) stability of the systems, and the inherent 

2 
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aberrations of the electrostatic electron lenses. Several decades of research and engineering have 

been necessary to overcome these issues and build electron microscopes able to deliver a spatial 

resolution of even less than 50 pm [124]. Nowadays, a large amount of information can be ob-

tained with a TEM: imaging of structural defects [125], strain mapping [126], elemental compo-

sition [127], doping evaluation [128], optical  [129] and electrical properties [130], etc. On the 

other hand, the realization of samples for TEM analysis can be tedious and often take several 

hours [131]. Additionally, as discussed towards the end of the chapter, special care needs to be 

taken in order to prevent undesirable structural and compositional sample preparation arti-

facts [132]. Finally, TEM has been applied in basically all fields of research, from molecular bi-

ology to materials science and medicine. Given the many imaging and analytical capabilities - at 

a unique spatial resolution - of modern TEMs s, TEM was selected in this thesis as the primary 

tool to characterize III-V NWs. 

In the following sections, I describe the basic working principles of the TEM and the physics 

behind the different techniques used in this research.  

2.1.1   Basic principles in conventional TEM 

The working principle of the TEM is to some extent similar to what happens in conventional 

visible-light microscopes (VLM). In fact, both tools use lenses to direct a wave in a specific di-

rection and to magnify a very small object. However, some important differences are present. In 

optical microscopes, an objective lens is used to create a magnified image of the specimen which 

is magnified further by the use of an eyepiece. This creates an enlarged inverted virtual image of 

the specimen, revealing details which were not visible by naked eye. At the bottom of the micro-

scope, another series of lenses is able to guide the illumination coming from the source directly 

to the sample. In TEMs, light is replaced by electrons. The electron beam is generated from an 

electron source, generally located at the top of the microscope. Several condenser lenses shape 

the electron beam while the condenser apertures, which are placed below the condenser lenses, 

are used to define a specific illuminated area and to set the convergence angle. Then, a series of 

apertures and electromagnetic lenses form, depending on the operation mode, a near-parallel 

(TEM mode and diffraction) or a focused beam (scanning TEM mode). The beam then interacts 

with an electron transparent sample, typically thinner than about 100 nm. Multiple electron-spec-

imen interactions might take place resulting in different emitted signals, as shown in Figure 

2.1 [131]. These signals can be efficiently used for creating images, diffraction patterns, and spec-

troscopic analyses. Thus, TEM techniques can deliver information on the sample’s microstruc-

ture, chemical composition, and electronic and magnetic properties.  
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Figure 2.1 – Graphical representation of the different types of emitted signals occurring when a 

high-energy electron beam interacts with a thin specimen. Reproduced from [131]. 

 

When an electron impinges the specimen, it interacts with the Coulomb potential of the atomic 

columns which causes its diffraction and a change of its propagation velocity. Consequently, the 

sample induces a modification of the amplitude and phase of the incident electron wave which 

leaves the specimen with modified characteristics, resulting in the so-called exit plane wave 

(EPW). The EPW then is projected onto the fluorescent screen or recorded by a charge-coupled 

device (CCD) camera, through another series of apertures and lenses. Depending on the used 

technique and the properties of the material, the final image reveals a contrast arising from dif-

ferent phase and amplitude mechanisms. When working in high-resolution TEM mode, the phase 

contrast is the main image contrast mechanism containing structural information of the sample. 

This contrast is the result of a modification process by which the phase modulation of the EPW 

is transferred to amplitude contrast. This is possible by convoluting the EPW with the so-called 

contrast transfer function (CTF) which is specific for each microscope and is given by equation 

2.1 where the different contributions are highlighted. 

 

𝜁 [𝑡(𝒒)] = 𝑡𝑎(𝒒)𝑡𝑐(𝒒)𝐸𝑡(𝒒)𝐸𝑠(𝒒)           (2.1) 
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The different contributions are: ta(q) is a top hat function describing the effect of the objective 

aperture, tc(q) is the exponential of the aberration function and Et(q), ES(q) are envelope functions 

related to the partial temporal and partial spatial coherence, and q represents a two-dimensional 

vector in the reciprocal space. There exists an optimal defocus of the objective lens by which the 

CTF can be optimized and the highest amount of information can be extracted from the EPW. 

This condition occurs at the so-called Scherzer focus [133,134]. Finally, a highly magnified rep-

resentation of the sample or its diffraction pattern is revealed, depending on whether the projector 

system is focused on the image plane or on the back focal plane, respectively. The image intensity 

is then given by equation 2.2 where ψep(r) is the wave function of the exit plane wave and t(r) is 

the complex transfer function in the real space r. 

 

𝐼(𝒓) = |𝜓(𝒓)|2 = |𝜓𝑒𝑝(𝒓) ⊗ 𝑡(𝒓)|
2
           (2.2) 

 

The ray diagrams showing how the different lens/apertures are used in combination when the 

TEM is operated in imaging or in diffraction mode are shown in Figure 2.2.  

 

 

Figure 2.2 – Schematic diagram showing the ray diagrams in two different setups available in 

TEM mode. 
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TEMs allow reaching much higher resolutions than normal VLMs or other techniques such as x-

ray diffraction (XRD). This can be explained by the use of the Rayleigh criterion showed in equa-

tion 2.3, where λ is the ray wavelength, μ is refractive index of the medium in between the lenses 

and α is the convergence semi-angle of the aperture [131]. This formula defines, in diffraction-

limited imaging, the smallest distance at which two different features can be resolved. Wave-

lengths of electrons accelerated by typical TEM voltages are shorter than those of x-rays (0.01-

10 nm) and thus electron microscopes have a highest resolving power. Furthermore, due the par-

ticle nature of electrons, they have a much higher interaction with the atoms (nuclei + electron 

cloud) as compared to x-rays in which the interaction is just between the electromagnetic wave 

and the electron cloud [131].  

  

 

𝑟 = 
0.61λ

μ sin α
               (2.3) 

 

The wavelength of an electron can be calculated with the de Broglie relation given in equation 

2.4, where h is the Planck constant, m0 is the rest mass of the electron, e is the electron charge, V 

is the accelerating potential and c is the speed of light. Considering that the velocities of electrons 

in typical commercial TEMs (with operating voltages of 60-300kV) approach the speed of light, 

relativistic effects need to be taken into consideration. These effects, considered in equation 2.4, 

include significant length contraction, time dilation and an increase of mass. 

 

𝜆 =
ℎ

√2𝑚0𝑒𝑉(1+𝑒𝑉 2𝑚0𝑐
2⁄ )

            (2.4) 

 

Thus, for a typical operating voltage of 300 kV, the wavelength of the electron equals to 1.97 pm 

and the resolution achievable by the TEM is 48 pm, i.e. smaller than the average distance between 

two atoms in a solid. From equations 2.3 and 2.4 it is inferred that in order to increase the resolu-

tion of the TEM, one should employ electrons of high energy. This is only partially true since 

equation 2.3 gives the resolution criterion of an optical system which is solely limited by diffrac-

tion. Indeed, several TEMs were fabricated with very high accelerating voltages up to 3 

MV [131], but no substantial improvement in their resolving power was demonstrated. This was 

partially due to the sample knock-on damage by the high-energy electrons [135]. However, there 

are many other  resolution limiting factors affecting the TEM microscopes, mainly related to the 

brightness of the electron sources, the mechanical stability of the systems and the unavoidable 
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aberrations of round electromagnetic lenses [134]. These limitations and how they can be over-

come are discussed in the next section when describing the STEM operation mode and the asso-

ciated analytical techniques.   

 

2.1.2   STEM techniques 

The working principle of STEM is very different from that of the conventional TEM method. In 

fact, when working in STEM mode, the condenser lenses and the condenser apertures between 

the source and the specimen create a strongly focused beam, the so-called electron probe  [136]. 

A series of deflection coils then guide the convergent beam onto the sample which is scanned 

sequentially within a specific rectangular area, as shown in Figure 2.3. The wave function ψin 

incident on the sample is given by equation 2.5. Here, r is a two-dimensional vector located in the 

sample plane (rx,ry), k is the vector composed of (kx,ky) located in the reciprocal space of the 

Fourier transform F(k), shown in equation 2.6 and 2.7 [137]. 

 

𝜓𝑖𝑛(𝒓) =  𝐹{𝜓(𝒌)}(𝒓)            (2.5) 

 

𝐹{𝑓(𝒓)}(𝒌) =  ∬ 𝑓(𝒓)𝑒−2𝜋𝑖𝒌∙𝒓𝑑2𝒓
∞

−∞
          (2.6) 

 

𝐹−1{𝑓(𝒌)}(𝒓) =  ∬ 𝑓(𝒌)𝑒2𝜋𝑖𝒌∙𝒓𝑑2𝒌
∞

−∞
          (2.7) 

 

When the electron wave interacts with the sample, the amplitude and phase will be altered by the 

so-called transmission function T(r), reported in equation 2.8. 

 

𝑇(𝒓) =  𝑒𝑖𝜑(𝒓)             (2.8) 

 

The wave, after the interaction with the sample, is defined by equation 2.9 where rp is the position 

of the probe (rpx,rpy) with respect to the sample. 

 

𝜓𝑜𝑢𝑡(𝒓, 𝒓𝑝) =  𝜓𝑖𝑛(𝒓) ∙ 𝑇(𝒓 + 𝒓𝑝) = 𝜓𝑖𝑛(𝒓)𝑒
𝑖𝜑(𝒓+𝒓𝒑)

        (2.9) 
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The lenses present below the sample, guide the wave to the detector located in the far field and 

perform a second Fourier transform, defining the so-called detected wave ψD(k,rp) shown in equa-

tion  2.10. 

 

𝜓𝐷(𝒌, 𝒓𝑝) =  𝐹{𝜓𝑜𝑢𝑡(𝒓, 𝒓𝑝)}(𝒌) = 𝐹{𝜓𝑖𝑛(𝒓)𝑒
𝑖𝜑(𝒓+𝒓𝒑)}(𝒌)                  (2.10) 

 

Since we are dealing with a convergent electron beam, there are no diffraction spots like in normal 

TEM mode. Indeed, a diffraction disk (also called bright-field disk) is formed, and its size is 

related to the convergence angle created with the optical system. The intensity of the diffraction 

disk is given by equation 2.11. 

 

𝐼𝐷(𝒌, 𝒓𝑝) =  |𝜓𝐷(𝒌, 𝒓𝑝)|
2

          (2.11) 

 

With the detection step 2.9 the phase of the electron wave at the detection plane is lost but, as 

explained later, there are different techniques to retrieve this component. The transmitted and 

scattered electrons are typically collected at various concentric annular detectors with different 

ranges of collection angles located at the diffraction plane. In this way, different information about 

the sample can be collected simultaneously. Usually, three main detectors are present in STEMs. 

The bright field (BF) detector is placed in the center of the optical axis and records the forward-

scattered electrons. If we consider the principle of reciprocity, BF STEM and conventional TEM 

imaging generate an equivalent phase contrast governed by the aberration of the lenses and their 

associated CTF  [138]. In BF STEM, the atomic columns appear as dark spots, but the contrast 

can be altered due to variations in the sample thickness. This makes the interpretation of the im-

ages more complicated. The second detector is the annular dark field (ADF) detector. In ADF, 

electrons scattered at higher angles (few tens of mrad) are collected and the incoherency of the 

signal is enhanced. Lastly, the high-angle annular dark field (HAADF) detector a shape similar 

to that of ADF but with a higher collection angle range, usually from 100 to a few hundreds of 

mrads. This high angle allows detecting nearly only incoherent Rutherford scattered electrons and 

obtaining images with strong   chemical contrast. The image intensities are proportional to Z~1.6, 

where the phase information cancels out, allowing a much easier interpretation of the recorded 

micrographs. These three detectors are shown in Figure 2.3. There are also some other imaging 

modes such as the annular bright field (ABF). In some microscopes, this imaging mode makes 

use of the BF detector but the central part of the disk is removed. ABF imaging can also be 

achieved by using a combination of two annular dark field detectors. These approaches allow 

detecting the light atoms present in the sample. 
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Figure 2.3 – Schematic diagram of a typical STEM setup showing how the electron beam is de-

flected by the scanning coils and the transmitted and scattered electrons are collected at different 

angles by the three detectors. 

 

Concerning the achievable resolution, we saw in the previous section that, in conventional TEM 

imaging, the information limit transferred in phase contrast is related to the CTF of the lenses 

affecting the EPW. In STEM mode, the resolution achievable in the microscope is given mainly 

by the size of the electron probe scanned on the specimen plane, which is defined by an illumina-

tion (or condenser aperture), as shown in Figure 2.3 [134]. However, this aperture leads to the 

formation of an Airy pattern at the objective plane, characterized by a central maximum sur-

rounded by several concentric lobes of decreasing intensity. We can choose the first zero of the 

Airy pattern as the radius δD of the diffraction-limited electron probe. This value, δD, expresses 

the size of an electron probe solely determined by the geometry of the coherent illumination and 

is given by the Rayleigh criterion reported in the equation 2.3 in the previous section. Thus, the 

width of an electron probe increases with increasing λ and decreasing convergence angle α. It is 

important to highlight that, in order to resolve certain lattice spacings, the convergence angle must 

be large enough such that the diffraction disks at the diffraction plane overlap. For example, in 

BF STEM imaging there are two regions of overlap given by the direct beam and two opposite 

diffracted beams. The overlap is described by the 0.61 factor present in the Rayleigh 
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criterion  [134]. When the diffraction disks do not overlap, the lattice spacing cannot be resolved. 

These considerations about the diffraction limit of the electron probe are purely geometrical and 

do not take into account the microscope specifications. In fact, as introduced in the previous sec-

tion, there are other factors limiting the resolution of the electron probe, i.e. the aberrations [134]. 

Spherical aberration in STEM arises because the rays passing the pre-field of the objective lens 

in a distance from the optical axis are brought to focus closer to the lens than rays that run near 

the optical axis. Thus, the different rays do not meet in a single focal point after the lens, but they 

form a broad disk. This results in an increased electron beam radius, reducing in the resolution of 

the instrument. In fact, in a certain distance from the Gaussian focal plane, there is an area where 

the rays form a disc which is distinctly smaller. This is the so-called disk of least confusion and 

defines the smallest achievable electron probe. Its radius is given by the equation 2.12, and the 

constant CS describes the spherical aberration of the pre-field lens. 

 

 𝛿𝑆 = 1 4⁄  𝐶𝑆𝛼
3            (2.12) 

 

It is important to note that the relationship between the probe size and the convergence angle is 

opposite to the one described in the diffraction-limited electron probe; see equation 2.3. So, the 

reduction in probe size occurring when the aperture angle is increased in the diffraction limit is 

actually increasing the effect induced by the spherical aberration, and vice-versa. Then, it is very 

important to find the correct balance in order to optimize the two relationships.  An optimal con-

vergence angle exists and, at the Scherzer focus, is given by equation 2.13. 

 

𝛿𝑚𝑖𝑛 = 0.43√𝐶𝑆𝜆34
            (2.13) 

 

Nowadays, state-of-the-art microscopes are able to correct the spherical aberrations in the micro-

scope, allowing a net improvement in the resolution of TEMs. The spherical aberration correctors 

present in the microscopes exploit an important property of geometrical aberration which is the 

possibility to sum them up [134]. In this way, if we consider the lens A with spherical aberration 

SA and lens B with spherical aberration SB, the total spherical aberration will be simply given by 

the sum of two. This aspect, known as “Addition Theorem”, allows us to concatenate several 

lenses such that the final spherical aberration output is null. This correction is based on the use of 

multi-pole lenses in two specific ways: correctors with two hexapoles and correctors combining 

quadrupole and octupole elements. These multi-pole correctors induce a negative spherical aber-

ration, able to counter-balance the intrinsic spherical aberration of the microscope.   

In the presence of a spherical aberration corrector system, the resolution of the microscope will 

be limited by another type of aberration called chromatic aberration. The electrons emitted by the 

source will have a distribution of energies rather than a single energy. When reaching the 
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electromagnetic lenses, they will be deflected in different ways depending on their wavelength. 

In this way, only those electrons perfectly matching the nominal energy will be deflected in the 

correct image plane. All the others will find the focal point behind or in front of that plane, hence 

resulting in a disk of confusion instead of a point-like image of the source. As in the case of the 

spherical aberration, the probe size will become larger the more chromatic aberration is present 

in the microscope and the relationship is described by equation 2.14.  

 

𝛿𝐶 =  𝐶𝐶𝛼
𝛥𝐸

𝐸⁄             (2.14) 

 

Here, Cc represents the chromatic aberration constant of the lens, α is the convergence angle and 

ΔE corresponds to the energy spread of the electron source. A lot of research and engineering 

methods have been applied in order to limit as much as possible the effects induced by chromatic 

aberrations. The main strategy relies on the use of electron sources with very narrow energy dis-

tribution. Initially, thermionic sources like W or LaB6 have been used to generate the electron 

beam but, nowadays, they have been replaced mostly by Schottky emitters and cold field emission 

guns (cFEG). The latter, in particular, can create a highly coherent beam with a very high bright-

ness and a very low spread of the emission energy, usually around 0.3 eV [131]. The implemen-

tation of an electron monochromator allows to further reducing the energy spread below 100 meV.  

Finally, being the electron source of finite dimensions, the electron probe cannot have a lower 

size than that. The only way to reduce its dimensions to a point-like image of the source would 

be to increase the demagnification to infinite but this would lead to a zero-current beam. In Figure 

2.4, the probe size is represented as a function of the semi-convergence angle by taking into ac-

count all the limiting factors explained up to now.  

Now that the working principle of a TEM in scanning mode has been explained, I list all the 

different techniques associated to STEM that have been used in this research project, such as 

energy-dispersive x-ray (EDX) spectroscopy and electron energy-loss spectroscopy (EELS). An 

explanation of their working principle and the information that can be extracted with them is 

explained.  
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Figure 2.4 – Graphical representation of how the diffraction limit and the different aberrations 

can affect the electron probe size as a function of the semi-convergence angle. For spherical-

aberration corrected microscopes, the chromatic aberration becomes the most limiting factor. Ul-

timately, this can be corrected by using a strongly coherent source or a monochromator (repro-

duced after  [134]). 

 

EDX This technique is one of the most widely used to extract the chemical composition of a 

specimen. It is based on the inelastic interaction of the electron beam with the electrons present 

in the atom’s inner shell or core [131]. Each shell is classified depending on the distance from the 

nucleus with K being the closest shell, L the intermediate and M the farthest shell. Basically, some 

of the highly energetic electrons of the electron beam interact with those of the atoms present in 

the sample. If more than a certain amount of critical energy Ec is transferred to an electron located 

in a specific shell, it will be ejected from the atom, leaving an empty hole. Since the atom is now 

energetically unstable, an electron from the outer shells will decay to occupy the vacant site, de-

creasing the overall energy to the ground state and nearly stabilizing the system. The reality is 

that this process occurs by multiple transitions and not by a single event, depending on the com-

plexity of the electronic structure and the number of electrons occupying the different shells [131]. 

This relaxation process will induce the emission of either an X-ray or an Auger electron. The 

latter is an electron with typically low binding energy to which a certain amount of energy has 

been transferred allowing it to escape the shell. In general, it is easier to detect x-rays than Auger 

electrons since they have a much higher energy. In fact, most of the x-rays generated during the 
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decay process are able to escape the specimen. It is important to note that the associated emitted 

energy both for x-rays and Auger electrons has a characteristic value equal to the difference be-

tween the energy at the vacant site and the energy of the original shell of the decaying electron. 

This process can be observed in Figure 2.5.  

 

 
Figure 2.5 – Diagram showing the different energy levels for K and L shells in a Ne atom. The 

incoming electron transfers a sufficient amount of energy to an electron in the K shell such that it 

can escape the potential of the atom and be released in the vacuum. An electron from the outer 

shell L3 decays at the K level releasing an x-ray of characteristic energy equal to the difference 

between these two levels. 

 

The energy of the emitted x-rays can be detected by means of a detector located at a short distance 

above the sample. The characteristic energy will reveal which element emitted those specific ra-

diations. Beside the generation of x-rays and Auger electrons, the electrons can also interact with 

the Coulomb field of the atom creating a background emission of non-characteristic energy called 

Bremsstrahlung radiation. 

The amount of energy needed to ionize an atom strongly depends on its atomic number and it 

increases with the number of protons binding the core electrons to the nucleus. For example, 

ionizing an atom with fully occupied K, L and M shells like in the case of Nickel will require a 
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much larger amount of energy with respect to the ionization of a Nitrogen atom in which only the 

K and L shells are occupied. However, providing an energy Ec can be not enough to ionize an 

atom since a higher amount of energy must be provided. This value can be defined with the over-

voltage U which is given by the ratio between the beam energy E0 and the critical energy Ec [131]. 

The absolute value of the ionization cross section can be calculated by the use of equation 2.15 

where e is the electron charge, bs and Cs are constants related to the specific shell and ns are the 

number of electrons in that specific shell. 

    

 σT =  (
πe4bsns
E0Ec

) (
csE0
Ec

)          (2.15) 

 

A very important advantage of using EDX in STEM is the strong localization of small features 

thanks to the very fine probe. Single atomic column detections have been demonstrated [139]. 

Beside single point acquisitions, the spectra can be acquired also along specific trajectories along 

different interfaces or over an entire area of the sample. Then, the intensities of the emission peaks 

can be plotted as a function of their position, obtaining line profiles or intensity distribution maps. 

The number of emitted x-rays can be increased by illuminating the sample for a longer time with 

a higher beam current. This procedure can improve the efficiency of the detection process. It is 

important, however, to understand that a very high resolution, especially when performing 

atomic-resolution STEM, a high exposure time and a high current performed on a very small 

region, can increase drastically the probability of damaging the sample [140]. For this reason, it 

is always critical to find a good balance among the different parameters. EDX can be used also to 

quantify the amount of a specific element present in a specific region. Usually, the transitions 

related to the K shells are used for this purpose since they have a higher detection efficiency with 

respect to the L or M transitions [141]. Different types of detectors have been developed in the 

last decades but, in state-of-the-art microscopes, x-rays are normally detected by the use of Si-

drift detectors (SDD) [131,138]. This element is composed of a series of concentric rings of p-

doped Si implemented in a n-doped Si crystal disk. When x-rays enter the surface of the detector 

opposite to the Si rings, a certain number of electrons are produced and collected by the p-rings 

which will convert them in an electric signal. This tool allows obtaining higher detection efficien-

cies at a reduced applied voltage.   

EELS As explained in the previous section, some of the high energetic electrons can interact in 

an inelastic way with the atoms of the sample by transferring a certain amount of energy to the 

electrons present in the shells. After this interaction, the incoming electrons will have an energy 

lower than their initial one. Depending on their energy, a magnetic prism disperses the electrons 

by exploiting the Lorentz force. Then, a CCD camera acquires a spectrum called electron-energy-

loss spectrum where the electron counts are plotted as a function of the energy they have lost due 

to the inelastic process [131]. A microscope with a typical post-column EELS setup is depicted 

in Figure 2.6.  As a first approximation, the spatial resolution achievable with EELS can be de-

fined by the dimension of the electron probe. However, other aspects are significant to the spatial 
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resolution of EELS, such as the mechanical and electric stability of the instrumentation, and the 

elastic scattering in the specimen, particularly in thicker specimens. Aside, inelastic scattering 

itself is somewhat delocalized, especially at lower energy loss [142]. Energy resolution depends 

on the design and stability of the microscope and spectrometer, the type of electron source and 

whether a monochromator is used. Additionally, the resolution of core-loss fine structures is con-

siderably affected by the core-level width and scattering of the excited electron, that is the initial-

state and final-state broadening [142]. Thus, EELS-dedicated STEMs are often equipped with 

aberration correctors, cFEG sources and monochromators, leading to an energy resolution in the 

order of tens of meV [143–146]. Such a high energy resolution is opening up new possibilities in 

the determination of vibrational states and energy gaps [147–152].   

 

 
Figure 2.6 – Scheme of a typical TEM with a post-column spectrometer. The beam enters the 

spectrometer through an entrance aperture and pre-prism focusing and alignment coils. Then, the 

electrons are deflected by means of a 90° magnetic prism which disperses the electrons depending 

on their energy. A series of lenses is finally used to guide the electrons to a CCD camera from 

which a spectrum profile can be extracted through vertical integration. The energy slit located 

right after the magnetic prism can be used to filter the dispersed electrons in order to select only 

specific energy ranges. 

 

The incoherent scattering event leading to an energy-loss of the incoming electrons can be de-

scribed with the dielectric formalism, where the probability σ that an electron is scattered into a 

solid angle ∂Ω suffering from an energy loss equal to ∂E by equation 2.16 [153]. Here, it is 
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assumed that the electron beam interacts with the entire solid via Coulomb interactions. The term 

Ϛ represents the energy-loss function of the material, θ is the scattering angle, t is the foil thickness 

and ε is the dielectric function equal to ε1+iε2, i.e. the sum of the real and imaginary part of the 

dielectric function.  

 

∂
2
𝜎

𝜕𝛺𝜕𝐸
 ∝ Ϛ (

−1
𝜀(𝐸,𝜃)

)
𝑡

𝜃
2
+𝜃𝐸

2           (2.16) 

 

Different types of information can be obtained with EELS and are in some way complementary 

to those of the EDX. In fact, also by performing EELS line profiles and maps it is possible to 

extract compositional information of the specimen, with the advantage that lighter elements are 

easier to detect [154]. However, as described in the previous equation, many other properties can 

be investigated depending on which range of the spectrum is analyzed. The EELS spectrum can 

be mainly divided in two regions: the low-loss and the core-loss sections. The low-loss region 

spans from 0 to ~ 50 eV and its analysis is often referred to as valence EELS (VEELS) because 

the electron beam interacts inelastically with the valence electrons of the material, inducing a 

limited loss of energy [155]. Here, the electronic and optical properties of the specimen can be 

extracted. The investigation of VEELS allows also to determine the energy gap of the mate-

rial [148].   

The low-loss region of the spectrum is mainly constituted by five contributions:  

• Zero-loss peak (ZLP): this feature is given by the forward elastically scattered electrons 

which did not lose any amount of energy when interacting with the atoms in the sam-

ple [131]. The number of detected electron counts associated with the ZLP is the highest 

in the entire spectrum. The intensity of the ZLP may be used to obtain the specimen 

thickness by measuring its relative intensity with respect to the rest of the EELS spec-

trum [131,156]. This feature can also be used to give a rough estimation of the energy 

resolution by measuring the full width at half maximum (FWHM) [157].  

• Dielectric losses: this type of contribution occurs in the 0-10 eV range and it is given by 

the loss of energy due to the excitation of single valence electrons to the conduction 

band [153]. Since this feature is present immediately after the ZLP, it is necessary to use 

a monochromator, which enables energy resolutions in the meV range and a clear sepa-

ration from the ZLP. 

• Volume/surface plasmon losses: when a highly energetic electron beam is transmitted 

through the sample, a certain amount of energy can be transferred to the electron cloud 

of the atoms which can undergo a displacement from its original position. The amount of 

energy lost by the incoming electron is in the 2-30 eV range and it has the second most 

pronounced intensity after the ZLP [157]. After the incoming electron has passed by, the 

loosely bound electrons of the atoms start to oscillate collectively in order to relocate to 

their original position. This oscillation is called bulk or volume plasmon and can give 

information on the electron density of the atoms present in the material [155]. The bulk 
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plasmon is related to the free-electron density cloud, which changes with the chemistry 

and the bonding state of the specimen. Hence, this feature has been used to quantify in an 

indirect way the fractions of elements present in the sample [158]. In fact, the volume 

plasmon energy is linearly proportional to the composition, as described in the empirical 

equation 2.17, where Ep(0) is the plasmon energy loss for the pure component and C is 

the composition [159–163]. In TEM thin samples, the transmitted beam can also induce 

electron oscillations on the surface or at the interfaces. These oscillations are called sur-

face plasmons [164]. The associated energy losses are lower with respect to the bulk plas-

mon losses and can be visible around 1-5eV. 

 

𝐸𝑝 = 𝐸𝑝(0) ± 𝐶 (
𝑑𝐸𝑝

𝑑𝐶
⁄ )         (2.17) 

 

• Radiation losses: The oscillation of loosely bound electrons can occur also through the 

TEM sample thickness inducing the creation of guided light modes which can be both 

radiative and non-radiative depending on the material, its geometry and its attitude to 

emit light when undergoing a decay process. Cherenkov radiations are another type of 

beam-induced radiations which may generate energy losses in the electron beam [157]. 

Basically, when a high energy electron goes through the material, its velocity can become 

even higher than that of the light, if the real part of the dielectric function is large enough. 

The electron is then retarded in the material releasing a certain amount of energy. This 

energy loss is also called retardation loss. The position of this loss peak in the spectrum 

is right after the ZLP and can overlap with the one of the energy gap. The latter can also 

experience a slight shift to higher energies due to the Cherenkov radiation [148,165]. 

• Phonons: Vibrational excitations are also responsible for energy losses usually in the 

range of 10-100 meV, but this extremely low value did not allow their visualization in 

EELS spectra. Recently, thanks to the use of dedicated STEM instruments, they have 

been demonstrated [149,152]. This was possible by using a specific monochromator de-

sign able to reduce the energy resolution of the spectrum down to 9 meV [152]. In this 

way, the phonon peaks were resolved and separated from the strong intensity of the ZLP. 

This feature can be particularly important for the development of low-loss infrared nano-

photonic devices and the investigation of thermal properties at the atomic scale [149,166]. 

The second region of the EELS spectrum, i.e. the core-loss region (Eloss > 100 eV), is mainly used 

to determine the composition of the specimen. However, this part of the spectrum presents also 

other features which provide important information on the analyzed material [131]. Electron en-

ergy-loss near edge structures (ELNES) provide information on the bonding and valence state of 

the atoms. Another type of feature is the extended energy loss fine structure (EXELFS) from 

which the local coordination of atoms can be extracted. 

In order to obtain the larger amount of information from the acquired EELS, it is important to 

consider some practical aspects related to the data analysis. For example, in order to determine 
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the exact energy-loss of the plasmon peaks, the subtraction of the ZLP is necessary since it could 

induce a small shift in energy [167]. This can be done by applying some pre-defined subtraction 

models, such as the inverse power law function, the Gaussian or Lorentzian function or a combi-

nation of them [148]. However, this step is more critical during the determination of the energy 

gap. 

 

2.1.3   Off-axis electron holography 

An electron wave interacting with an electromagnetic potential undergoes a modification of its 

amplitude and phase [131]. However, being the intensity of the signal at the detector given by the 

square modulus of the transmitted wave, the phase shift is lost together with all the information 

connected to the electric and magnetic potentials of the specimen. A way to investigate the local 

electric and magnetic fields in nanostructured materials, by retrieving the phase component of the 

transmitted wave, is to use the so-called off-axis holography in TEM (in both conventional or 

Lorentz modes) [168]. Due to the charged states of dopants in semiconductors, holography can 

give information on their distribution inside nanostructures by measuring the local electric fields 

and potential variations [169–176]. In this technique, a positively charged electrostatic biprism 

(also called Möllestedt biprism) placed below the specimen plane is able to overlap two different 

electron waves: one which has passed through the specimen and represents the object wave and 

a second one guided through the vacuum only that represents the reference wave. The overlapped 

wave will be recorded on the camera as a fringe pattern, the so-called electron hologram. With 

respect to other techniques like differential phase contrast, electron holography allows a quanti-

tative measurement of the phase variation, thus making possible quantitative estimation of local 

electrostatic potential and magnetic fields.  

In order to explain the procedure to extract the phase from the hologram, one should consider the 

intensity distribution in normal BF-TEM imaging mode. When dealing with the coherent image 

formation in BF-TEM mode, the electron wave ψi(r) in the image plane is given by equation 2.18, 

where Ai(r) and φi(r) are the amplitude and phase components, respectively [177]. 

 

𝜓𝑖(𝒓) =  𝐴𝑖(𝒓)𝑒
𝑖𝜑𝑖(𝒓)          (2.18) 

 

As explained in the previous section, the intensity recorded by the detector is given by the square 

modulus of the wave function and, in particular, by the square modulus of its amplitude, as re-

ported in equation 2.19. Here, it is clear that the information regarding the electron phase is lost 

in conventional imaging.  

 

𝐼(𝒓) =  |𝜓𝑖(𝒓)|
2 = |𝐴𝑖(𝒓)|

2         (2.19) 
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However, in electron holography, an additional term related to the reference wave that did not 

pass through the specimen contributes to the recorded intensity in the image plane. Therefore, the 

reference beam that can be expressed by a tilted wave has to be added to the incident wave term, 

as in equation 2.20. Expanding the right term of the expression we obtain equation 2.21, where 

three separate contributions can be extracted. 

 

𝐼ℎ𝑜𝑙(𝒓) =  |𝜓𝑖(𝒓) + 𝑒2𝜋𝑖𝑘𝑐∙ 𝒓|
2
          (2.20) 

 

𝐼ℎ𝑜𝑙(𝒓) = 1 + 𝐴𝑖
2(𝒓) + 2𝐴𝑖(𝒓) cos[2𝜋𝑘𝑐𝒊 ∙ 𝒓 + 𝜑𝑖(𝒓)]      (2.21) 

 

The components are: the intensity of the electron wave through the vacuum, the intensity of the 

electron wave transmitted through the sample and a set of interference fringes given by the cosine 

term. In order to extract the phase and amplitude information from the hologram, a Fourier trans-

form should be applied to the recorded hologram. Equation 2.22 shows the different contributions 

present in the reciprocal space obtained when performing such Fourier transformation. 

 

𝐹𝑇[𝐼ℎ𝑜𝑙(𝒓)] = δ(𝑘) +  F𝑇[𝐴𝑖
2(𝒓)] + δ(𝑘 + 𝑘𝑐) × 𝐹𝑇[𝐴𝑖(𝒓)𝑒

𝑖𝜑𝑖(𝒓)] + 

     + δ(𝑘 −  𝑘𝑐) ×  𝐹𝑇[𝐴𝑖(𝒓)𝑒−𝑖𝜑𝑖(𝒓)]       (2.22) 

 

The first contribution is a peak located at the origin of the reciprocal space which corresponds to 

the Fourier transform of the reference image; the second peak centered at the origin represents 

the Fourier transform of a conventional BF-TEM image of the specimen; the third term centered 

at -kc corresponds to the Fourier transform of the desired image wavefunction; the fourth term 

centered at +kc represents the complex conjugate of the wavefunction. The obtained complex 

image is then processed in such a way that only one of the two side bands is selected and shifted 

to the center. Then, an inverse Fourier transform is performed, obtaining the complex wavefunc-

tion. Considering equations 2.23 and 2.24, it is possible to calculate the amplitude and the phase 

images from the complex image  [177]. After performing the reconstruction, a reference window 

is selected at the vacuum close to the region of interest to set the phase value in vacuum to zero. 

In the present reconstruction process we used a commercially available plug-in implemented in 

digital micrograph [178]. 
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A = √𝑅𝑒2 + 𝐼𝑚2             (2.23) 

 

φ = 𝑡𝑎𝑛−1 (
𝐼𝑚
𝑅𝑒)           (2.24) 

 

Being the amplitude image comparable to an energy-filtered BF-TEM image [177], its contrast is 

affected by dynamical scattering effects and can give information about the thickness homogene-

ity of the sample. On the other hand, the phase image can give important information on the 

sample since the phase shift is sensitive to electromagnetic fields present in the specimen. In fact, 

the phase shift can be written as the sum of two different contributions related to the electrostatic 

and magnetic fields (equation 2.25). 

 

 φ(𝑥, 𝑦) = 𝐶𝐸 ∫ 𝑉(𝑥, 𝑦, 𝑧)𝑑𝑧
∞

−∞
− 𝑒

ħ⁄ ∫ 𝐵𝑍(𝑥, 𝑦, 𝑧)𝑑𝑧
∞

−∞
      (2.25) 

 

𝐶𝐸 = (
2π
𝜆

) (
E+𝐸0

𝐸(E+2𝐸0)
)          (2.26) 

 

In this equation, CE is a constant (equation 2.26) that depends on the microscope’s accelerating 

voltage, V is the electrostatic potential, e is the electron charge, ħ is the Planck’s constant and BZ 

is the z-component of the magnetic field present in the sample. E is the nominal energy of the 

electron beam and E0 is the rest mass energy of the electrons. In the case that no applied electric 

fields or magnetic potentials are present along the electron beam path, then the phase variation 

originates from the mean inner potential Vo of the sample which can be calculated from the equa-

tion 2.27, where t represents the thickness variation along the x and y directions. Some artifacts 

can be introduced by biprism or magnetic lenses imperfections and instabilities [177]. For this 

reason, a second hologram of the vacuum is taken immediately after the one acquired on the 

specimen, without modifying the electro-optical parameters of the microscope. Then, a subtrac-

tion between the phase images of the sample and the one of the vacuums is performed and allows 

correcting for such artifacts. This process will give phase shifts ideally related only to the variation 

of the mean inner potential. Since this project deals with III-V semiconducting NWs, we skip the 

analysis of the magnetic contributions to the phase shift, which are still a matter of discussion for 

nanomaterials.   

 

φ𝑒(𝑥, 𝑦) = 𝐶𝐸  𝑉0 𝑡(𝑥, 𝑦)          (2.27) 
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However, other contributions to the phase are often present which could increase the difficulty of 

interpretation of the obtained phase maps. These additional contributions could be stray fields in 

the vacuum, dopant-induced variations and dynamical diffraction effects. Other than that, it is 

important to define some crucial parameters and experimental conditions necessary to obtain op-

timal holograms. In order to do that, we will use Figure 2.7, where a scheme of a typical off-axis 

holography setup is depicted.  

 

 
 

 

Figure 2.7 – Diagram showing the working principle of a typical off-axis holography setup in 

Lorentz mode. Half of the electron wave interacts with the sample while the other half is trans-

mitted in the adjacent vacuum. A series of apertures and lenses guide the beam through a biprism 

which then overlaps the reference beam with the interacted beam in the image plane. This process 

gives rise to an interference fringe pattern from which information on the electrostatic and mag-

netic potentials of the sample can be extracted. Adapted from [177]. 
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A cFEG electron source is typically preferred in order to have a highly coherent beam. The co-

herency is necessary to have an interference fringe pattern of sufficiently high quality within a 

reasonable acquisition time. Moreover, the microscope stability plays a key role in the quality of 

the recorded holograms, in particular for atomic-resolution holograms. There exist then three ex-

perimental parameters extremely important to obtain a high-quality reconstructed phase image. 

The first one is the overlap width (W) which represents the overlapping distance between the 

reference wave and the object wave. This value is given by the equation 2.28 where d1 is the 

distance between the focal plane and the biprism, d2 is the distance between the biprism and the 

image plane, R is the radius of the biprism and γ is the deflection angle imposed by the voltage of 

the biprism. In general, a higher voltage of the biprism induces a larger overlapping region. How-

ever, the latter can also change depending on the applied strength of the projector and objective 

lenses. A smaller radius of the biprism wire can also give less Fresnel fringes coming from the 

external parts, increasing the simplicity of the hologram interpretation. 

 

  𝑊 = 2 (
𝑑1+𝑑2

𝑑1
) (𝛾

𝑑1𝑑2
𝐸(𝑑1+𝑑2)

− 𝑅)          (2.28) 

 

Another crucial parameter is the interference fringe spacing s which gives the distance between 

two consecutive fringes and it is given by equation 2.29. As opposed to the overlap width, this 

value is inversely proportional to the voltage of the biprism wire. The spatial resolution in the 

final phase image is approximately three times the fringe spacing, and, for this reason, it is im-

portant to choose a certain value of the biprism voltage so that the dopant-induced features can 

be resolved. The reason for this spatial resolution limit has been demonstrated by Völkl et 

al. [179] and it is connected to the complex wavefunction reconstruction process. By assuming 

that the image wave is limited in bandwidth of spatial frequencies ranging from 0 to kmax, and that 

the autocorrelation function is centered around k = 0 extending as far as 2kmax, the isolation of one 

sideband can only be achieved for those spatial frequencies which do not overlap with the auto-

correlation. Since each sideband is covering a circle with radius kmax, then the maximum recon-

structable spatial frequency is limited by klim =kc - 2kmax  ≤ kmax which holds only if kc ≥ 3kmax. For 

this reason, the mask applied in the previously mentioned reconstruction process is significantly 

important to determine the final spatial resolution of the reconstructed phase and amplitude im-

ages. 

 

  𝑠 = λ (
𝑑1+𝑑2
2𝛼𝑑1

)           (2.29) 

 

The last parameter to take into account is the achievable visibility of the fringes (μ). This value, 

associated with the contrast of the image, is related to the number of electrons (Nel) collected per 
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pixel and it is able to determine the lowest phase resolution (φmin) by equation 2.30 and 2.31. Here, 

SNR represents the signal-to-noise ratio, and Imax and Imin are the maximum and minimum inten-

sities of the interference fringes, respectively. However, the fringe contrast is inversely propor-

tional to the applied voltage of the biprism and, for this reason, it is important to find a balance 

between achievable spatial resolution (given by fringes spacing) and the phase resolution (given 

by fringes contrast). A longer acquisition time will result in a larger electron count, an increase 

of the SNR and, thus, an improvement of the fringe visibility. It is however important to under-

stand that longer acquisition times require very stable instruments, so that an interference pattern 

of sufficient quality can be recorded during which specimen and/or beam drifts must be negligi-

ble. Also, there exists the additional risk of saturating the camera. 

 

  𝜑𝑚𝑖𝑛 = (
SNR
μ )√2

𝑁𝑒𝑙
⁄           (2.30) 

 

  𝜇 = (
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛

)           (2.31) 

 

2.1.4   TEM instrumentation 

JEOL JEM ARM-200F This microscope is installed in the noise-free labs of the IBM-Research 

laboratory in Rüschlikon (ZH). These labs were developed to eliminate disturbances arising from 

external electromagnetic fields, mechanical and seismic vibrations, acoustic noise, and tempera-

ture and humidity fluctuations.  The instrument has a cFEG electron source and is operated at 80, 

120 and 200 KV acceleration voltages. It is equipped with two correctors for the spherical aber-

ration, one for the STEM mode and one for the broad-beam transmission mode. This microscope 

was mainly used for imaging and EDX spectroscopy at the atomic level in STEM mode. This was 

performed with a convergence semiangle of 25 mrad in combination with a HAADF detector with 

inner and outer collection semiangles of 90 and 170 mrad, respectively. In typical operation con-

ditions for the experiments described in this thesis, the microscope provides an estimated spatial 

resolution of 80 pm. Atomically resolved EDX maps were performed by using a JEOL Dry 

SD100GV Si drift detector with a 100-mm2 detection area. Moreover, EELS analysis were carried 

out by using a Gatan Enfinium EELS spectrometer. For the EELS data acquisition, the conver-

gence and collection semi-angles were set to 25.3 and 33 mrad, respectively. An exposure time 

of 0.4 s and a dispersion of 0.05 eV/channel were used in combination with a current of about 4.8 

μA. For these values, the energy resolution measured at the FWHM of the zero-loss peak in vac-

uum was ~0.55 eV. 

FEI Titan Themis This microscope is equipped with an X-FEG electron source working at 

80/300 kV. This type of source provides a high total current, stability and long lifetime with a 

considerable increased brightness which permit maximizing the performance in each mode of 

operation. Quantitative EDX mapping was performed in STEM mode by using a SuperEDX 
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system (ChemiSTEM technology) equipped with four Si drift detectors. The spectra were rec-

orded with a beam current of 0.3 nA, 0.8 nm pixel spacing and a dwell time of 10 μs per pixel. 

Holography experiments were performed in conventional TEM mode. Given the dimensions of 

the nanostructures, the Lorentz lens was used as image forming lens instead of the objective lens 

(as shown in the optical scheme in Figure 2.7) in order extend the field view over the entire region 

of interest. The microscope is equipped with a Möllenstedt biprism covered with a gold layer 

whose applied potential was set between 120 and 190 V depending on the specific hologram, 

orientation of the NW and used magnification. The obtained fringe spacing was then in the 2-3 

nm range with a resulting spatial resolution of 6-9 nm. Concerning the phase contrast, we noticed 

an improvement by increasing the acquisition times and consequently the number of electrons 

impinging on the camera. However, the longer the acquisition time, the more relevant became the 

microscope’s instabilities, able to decrease the overall phase contrast. For this reason, acquisition 

periods ranging from 5 to 13 seconds were used and the recorded phase contrast was in the 30-

45% range depending on the specific hologram and experimental conditions. The camera is a FEI 

Ceta 16M 4k x 4k CMOS-based camera with fiber optic coupled scintillator. The number and size 

of the pixels is 4000 and 14 μm, respectively, with a dynamic range larger than 16 bit.  

 

2.2    Cathodoluminescence  

When the amount of energy transferred to the energy levels of the atoms in the material is large 

enough, an electron can be promoted from the valence band (VB) to the conduction band (CB), 

creating a so-called electron-hole pair  [131,180]. Since this state is unstable, an electron can de-

cay from the CB to the VB, releasing a photon with a specific energy. This energy corresponds 

to the difference between the CB and the VB and equals the energy gap of the material E=hυ 

where h is the Planck’s constant and υ is the frequency of the emitted photon. Since semiconductor 

materials have an energy gap around 1 eV, the frequency of the emitted photons will be in the 

visible light range. This is of practical importance in the study of semiconducting materials since 

the energy gap can be determined by measuring the frequency of the cathodoluminescence radi-

ation [131]. Indeed, this technique was applied to semiconductor materials and in particular to 

determine the variations in the energy gap due to strain-induced phenomena [181]. In this project, 

CL was performed by means of a SEM in order to determine the effect of the doping implemen-

tation on the energy gap of III-V NWs. The CL experiment was performed with an Attolight 

SEM-CL microscope, operated at a temperature of 12 K. The system was equipped with a Newton 

CCD and an iHR320 spectrometer with a wavelength accuracy of ± 0.20 nm. An acceleration 

voltage of 10 kV and a current in the order of 1 nA were used. The exposure time and the pixel 

size were 100 ms and 2 nm, respectively. The emitted light from the NWs was captured by a 

dispersive spectrometer with a focal length of 32 cm and a grating of 150 l/mm and detected by a 

Peltier-cooled CCD camera, resulting in a spectral resolution of 1.6 nm. 
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2.3   Sample preparation 

TEM lamellas for atomic-resolution imaging and EDX spectroscopy were prepared with an FEI 

Helios Nanolab 450S focused ion beam (FIB) instrument by means of the following process. In 

order to minimize gallium implantation by the Ga+ ion beam, the region of interest was protected 

with a 100-nm-thick platinum layer deposited by electron beam induced deposition at a voltage 

of 5 kV and 100 pA of current. After isolating the primitive lamella with rough U-cuts and the 

creation of fiducials for the automated cutting process employing a voltage of 30 kV and decreas-

ing currents (Figure 2.8a), a tungsten Omniprobe probe was used to extract the section from the 

substrate (Figure 2.8b). Then, the sample was attached to an Omniprobe TEM copper grid (Figure 

2.8c). Finally, the lamella was thinned down to electron transparency (i.e. below 100 nm) with a 

voltage and current of the Ga+ ion beam of 5 kV and 41 pA, respectively (Figure 2.8d). For the 

quantitative EDX, EELS and off-axis holography, the NWs were transferred to a holey carbon-

coated TEM copper grid simply by rubbing it against the wires in a very gentle way. Thus, gallium 

contamination due to FIB sample preparation was avoided. The same process has been applied 

for the structures investigated by SEM-CL.  

 

 
Figure 2.8 – SEM images representing the different steps in the creation of a TEM lamella by 

FIB. (a) First, the U-cuts are performed around the isolated area of interest. (b) Then, by means 

of a probe, the primitive lamella is removed from the substrate and (c) attached with Pt to a TEM 

copper grid. (d) Finally, a gentle Ga polishing at 5 kV and 41 pA of current is performed to thin 

down the lamella to electron transparency. 
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2.4   3D modeling and simulations 

Simulations based on 3D models allow studying the influence of crystallographic defects on the 

physical properties and electronic structure of nanomaterials. In the last decade, they have been 

of fundamental importance in order to understand the behavior of materials at the nanoscale with 

or without a first experimental interpretation [182–184]. In this project, we have replicated the 

crystal structure of III-V NWs by means of a 3D modeling tool called Rhodius, developed by the 

University of Cadiz [185]. This software allows creating supercells of complex systems by con-

trolling specific parameters like crystal orientation, crystal tilting and the different facets present 

in the material. Moreover, distortions, defects, and displacements of the lattice can be realized in 

the model [186]. Figure 2.9 is an example of a III-V core-shell structure built with Rhodius. These 

3D models have been used as an input for the DFT simulations. DFT was introduced by Hohen-

berg and Kohn in 1964 [187] and it has been frequently used to make solid-state calcula-

tions  [188–190]. In this theory, the properties of atoms, molecules or condensed phases, i.e. 

many-electron systems, can be determined by the use of functionals of the electron density. In 

particular, DFT is based on the Kohn-Sham formalism stating that “The total energy of a many-

electron system is uniquely determined by the electron density function; the minimum of the en-

ergy functional corresponds to the correct ground state electron density for the system”. This 

defines an effective potential of the system called Kohn-Sham potential. Two main approxima-

tions were introduced to the energy functional of the system. The first one is the local density 

approximation (LDA) which assumes that the energy functional in a specific point of the crystal 

depends solely on the value of the electron density in that specific point and it is taken to be that 

of a homogeneous electron gas [191]. However, this approximation fails in systems where the 

density undergoes a rapid change, such as in molecules. In order to address this pitfall, the gener-

alized gradient approximation (GGA) was introduced by taking into account the entire gradient 

of the electron density. However, this method is well known to fail in determining accurately the 

bandgap of materials  [184,192]. In order to improve this aspect single point calculations were 

performed using the hybrid functionals developed by Heyd-Scuseria-Ernzerhof (HSE06) [193]. 

These types of functionals are able to express the exact exchange energy among different electron 

density systems.  

In this project, DFT calculations were performed within the Gaussian plane-wave method as im-

plemented in the CP2K package with double-zeta valence polarized (DZVP) basis sets for the 

representation of the Kohn-Sham orbitals, with plane-wave cut off for the charge density of 600 

Ry. An initial geometry optimization was performed using the Perdew-Burke-Ernzerhof (PBE) 

with GGA exchange correlation functional. Then, in order to obtain a more accurate energy gap 

value, single-point calculations using hybrid functionals were performed. To speed up the calcu-

lations, the auxiliary density matrix method with FIT6 auxiliary basis sets was employed. Maxi-

mally localized Wannier functions were extracted using CP2K.  
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Figure 2.9 – 3D model realized with Rhodius representing a core-shell structure with an inner 

InAs NW core and an outer GaSb shell. The yellow atoms represent a small slice of the Si seed. 

The interface between the core and the shell is colored in green. 

In the next chapter, the investigations performed on different sample systems are presented. Chap-

ter 3 comprises the study performed on the monolithic integration of GaAs NWs on a Si (100) 

substrate for electronic application. The experiment led to the demonstration of the first defect-

free structures reported in literature. Then, a particular type of defect which takes place when non-

optimal growth conditions are applied, and the effect induced on the materials properties are an-

alyzed in detail. Chapter 4 addresses the study of doped GaxIn(1-x)P and GaAs NWs integrated on 

Si for photovoltaic applications. The modifications induced by p-n dopants on the crystal struc-

ture, composition, and optical properties of the TASE grown NWs are here studied for the first 

time.               
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 Integration of planar GaAs nanowires on 

a CMOS compatible substrate 

 

 

The continuous scaling down of electronic devices has brought Si-based CMOS technology close 

to its limits, requiring novel materials and approaches to increase device performance, measured 

in terms of switching speed, and manufacturing profitability depended upon reduced cost per good 

device built. As previously explained, III−V NWs have evolved as promising candidates due to 

their superior properties and the possibility of integrating them with Si in heterostructures. Be-

sides, they have great potential for use in active photonic devices. However, epitaxial integration 

of III-Vs on Si(100) remains challenging, mainly due to the formation of crystal defects, signifi-

cantly reducing device performance. SAG [194,195] and epitaxial lateral overgrowth 

(ELO) [196–198] have both been demonstrated to reduce defects arising from lattice mismatch. 

The TASE method has the potential to minimize or even eliminate these structural imperfections, 

while entirely controlling the shape and dimension of the NWs by the template geometry. 

MOCVD is particularly well-suited for TASE because of the high selectivity of the deposition 

and the long surface diffusion length of the precursors, which facilitates filling of the template 

cavities. However, up to now, a high density of planar defects has been observed in TASE grown 

InAs and GaAs material systems  [116,120] resulting in polymorphism or in the formation of 

charged defects when planar defects meet and merge. Therefore, the aim of this study is to gain 

an understanding of the III-V crystal growth in SiO2 templates, to study the occurrence of stacking 

and mono-dimensional defects and their dependence on the growth conditions. In this research 

project, GaAs on Si is used as a model material system, with some results expected to be trans-

ferable to other III−V semiconductor material systems.   

 

3.1    Nanowires growth  

Templates were patterned by electron beam lithography at 100 keV (EBPG 5200+, Vistec) along 

the [110] direction on Si-on-insulator (SOI) wafers with (100) crystal orientation. First, Si fins 

are formed using dry etching (ICP, Oxford) (Figure 3.1a) and covered by SiO2 using atomic layer 

3 



Chapter 3.  Integration of planar GaAs nanowires on a CMOS compatible substrate 

44 

deposition (Flexal, Oxford) and plasma enhanced chemical vapor deposition (System100, Ox-

ford) (Figure 3.1b). The SiO2 is removed at one end, and the Si fin within is partly back etched 

using tetramethylammonium hydroxide (TMAH). This results in {111}-terminated crystalline Si 

seed surfaces (Figure 3.1c). The detailed process is described elsewhere [120]. For this study, the 

templates investigated had a thickness of 40 nm (± 5 nm), width of 100 nm (if not otherwise 

specified), and a length of approximately 1000 nm with a spacing between parallel nanowires of 

100 nm. The GaAs NW growth was performed by MOCVD using trimethylgallium (TMGa) and 

tertiary butylarsine (TBAs) precursors and a H2 carrier gas at a total pressure of 8000 Pa (60 Torr). 

The group III partial pressure was kept constant at 29 mPa, while the group V pressure was varied 

to obtain nominal V/III ratios between 20 and 120. Just before growth, the substrates were im-

mersed in diluted hydrofluoric (HF) acid (1:20 in H2O) to remove the native oxide on the Si{111} 

seed surfaces inside the templates. Upon loading, the reactor was heated to 700 °C in a TBAs 

atmosphere and then ramped down to a growth temperature of 500−650 °C. Growth started with 

the introduction of a TMGa flow, with a typical growth time of 40−60 min. After growth, the 

substrates were cooled under a TBAs flow until reaching a temperature below 300 °C. 

 

 
Figure 3.1 – TASE fabrication steps. (a) Si fin etching. (b) Template oxide deposition and one-

sided oxide removal. (c) Si back-etching illustrated are the two possible (111) planes. (d) Epitaxy 

step and removal of template. 

 

GaAs nanowires were initially characterized using a Hitachi SU8000 SEM. The SiO2 shell sur-

rounding the nanowires was removed using a HF solution. The GaAs structures were then closely 

investigated under various different angles in the SEM to determine the formed growth facets. 

For each growth run, a total of 60 randomly chosen nanowires were analyzed and classified into 

one of five types, to constitute a sufficient statistical sample. To allow for comparison of different 

growth runs, it was further ensured that the position of the nanowires analyzed was always in the 

a) b) 

d) c) 
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center of the growth substrate and at the same location within the growth reactor. The length of 

all 60 nanowires was measured, and the average growth rate was calculated and matched with the 

corresponding faceting prototype. Data points presented in this study correspond to median values 

and the error bars to one standard deviation. The crystal quality of the single nanowires was in-

vestigated by HAADF-STEM both from the front and lateral view. The sample lamellas were 

prepared by FIB and inspected with a double spherical aberration-corrected JEOL JEM-

ARM200F microscope operated at 200 kV.  

 

3.2    Defect-free GaAs nanowires and tuning of their front facets  

Analysis of growth facets forming during crystal growth yields valuable insights into the under-

lying crystal growth mechanism. Therefore, the dependence of facet formation on the growth 

parameters and orientation of the mask opening in ELO was studied very early on [199]. How-

ever, a detailed study on facet formation for TASE is missing so far. Here, the effect of facet 

formation and crystal morphology is studied by varying the growth conditions, i.e. growth tem-

perature and nominal V/III precursor ratio. The results are statistically quantified. This leads to 

an improved understanding of the formation of twin defects and opens a path to reduce them. 

Figure 3.2 displays SEM images of GaAs nanowires, where various end facets are visible. The 

samples were grown at different growth temperatures and nominal V/III precursor ratios. In Fig-

ure 3.2a the wires can be identified within the partially filled SiO2 nanotubes. Here, the GaAs 

appears brighter than the Si fins, which act as nucleation centers during the epitaxy process. At 

different growth conditions, different facet morphologies and growth rates appear. In the topmost 

image, an array of 20 nanowires is presented. The two SEM images in the center show facets at 

higher magnification and with added labels indicating the facet types. For the tilted images in 

Figure 3.2b, the SiO2 oxide surrounding the nanowires was removed, allowing for a better iden-

tification of the nanowire facets. In order to analyze the growth, we have classified the end facets 

into five groups according to their specific geometry (Type I− V), and an additional group where 

growth failed (Type X). Figure 3.2c displays schematic illustrations of the three most common 

facet types observed in this study, labeled Type I, II, and III. The classifications are based on the 

following specific characteristics: Type I appears as a pointy tip when seen in the top view along 

[001], forming a 90° angle of two {110} facets and a 45° angle with the template walls. Accord-

ingly, they have two large {110} facets and a small (111)B facet, suggesting that the [111]B 

growth rate is high, while the <110> growth rate is low. Two different versions of the same type 

are often observed which differ only by either pointing up- or downward as illustrated schemati-

cally in Figure 3.2c for Type I and II. The formation of these two versions depends on the geom-

etry of the Si seed surface. The Si seed surface can consist of one large or two smaller {111} 

planes after TMAH etching, which means there are always two possible directions of {111} 

planes, as illustrated in Figure 3.1d. In addition, GaAs can nucleate on Si in (111)A or (111)B 

orientation, although As termination on Si is more likely to occur in the growth conditions used 

in this experiment. Correspondingly, (111)B facets can be formed in two directions on these 

Si{111} planes.  
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Figure 3.2 – (a) Secondary electron (SE) SEM plane view images of GaAs nanowires arrays 

grown in SiO2 templates on a Si(001) SOI wafer. The nanowires grow in-plane and along the 

[110] template direction. (b) SEM tilted view images where the SiO2 templates have been re-

moved. (c) Schematic illustration of the most common facet types. The flipped facets reflect the 

Si seed plane geometry. Type I: dominating {110} facets, small (111)B facet; Type II: small 

{110} facets, dominating (111)B facet; Type III: single (110) facet, no (111)B facets. Type IV 

with {112} facets is not illustrated. 

 

Type II appears as a blurry edge forming a 90° angle with the template walls when seen in top 

view (Figure 3.2a). They have a large (111)B and two small {110} facets as illustrated in Figure 

3.2c. In this case, the <111>B growth rate is suppressed and the <110> growth rate enhanced, 

resulting in large (111)B facets. This behavior has been attributed to a high As surface coverage 

at a high V/III ratio, leading to the formation of As trimers which prevents (111)B 

growth [200,201]. Type III appears as a sharp edge in a top view image, forming a 90° angle with 

the template. It can be described by a single (110) growth facet, perpendicular to the nanowire 

tube oriented in the [110] direction. In a study of vertical epitaxy of InAs nanowires on Si(110) 

via TASE, the occurrence of a (110) facet has also been observed [116]. In addition to these three 

most common facet types, two less frequent types are observed. Type IV features a (112) facet, 

forming an 18° angle with the template wall. This facet was also noted in GaSb epitaxy via 

TASE  [202]. Type V nanowires are characterized by forming a 32° angle between the facet and 

a) 

b) 

c) 
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a base perpendicular to the [110] (growth) direction. STEM analysis revealed the presence of a 

large (111)B facet, and a crystal orientation rotated with respect to the Si lattice. Finally, we also 

observed instances where the nanowire failed to fill the entire template width or nucleation, was 

initiated on the template sidewalls rather than the Si seed. Both cases are classified as Type X in 

this study.  

Structural characterization at the atomic scale of the GaAs samples of Type I, II, III, and V was 

performed using aberration-corrected STEM. For all samples investigated, no threading disloca-

tions or antiphase boundary defects were observed. However, the presence of TWs and SFs was 

often abundant in Type I, II, and V. Since the nanowires are grown along the [110] direction, 

formation of <111> planar defects either parallel or perpendicular to the growth direction can be 

observed. It is, therefore, crucial to analyze both the lateral and front cross sections of the crystal 

in order to conclude whether it is free of planar defects. The STEM analysis of a Type I nanowire 

is shown in Figure 3.3.  

 

 
Figure 3.3 – HAADF-STEM images of a nanowire with end facet Type I. (a) Lateral overview of 

the nanowire. (b) Interface between GaAs and Si showing the presence of SFs (marked with red 

lines). The angle between the (110) and (111̅) planes is indicated. (c) Atomic resolution image 

of a highly defective region with red semitransparent sections highlighting the change in orienta-

tion of the GaAs dumbbells due to the presence of planar defects. (d) Nanowire end facet exhib-

iting an inclined growth front highlighted by a dashed white line. 

 

Figure 3.3a shows a low magnification image of the entire nanowire, while panel (b) illustrates 

the interface between GaAs and the Si with the Si(111) seed facets resulting from the TMAH etch 

step described above. Different planar <111> defects can be observed at the interface region, 

highlighted with red solid lines. Figure 3.3c presents an atomic resolution image of a representa-

tive region of the nanowire with a high density of planar defects. The clearly resolved GaAs 

dumbbells switch orientation during growth by the formation of planar defects in the semi-

a) 

b) c) d) 
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transparent red regions (both twin boundaries and intrinsic and extrinsic SFs). Here, we adopt the 

definition of Caroff et al. [101] where two sequential twin planes are considered to form a single 

wurtzite segment. This interrupts the stacking sequence, thus creating a single SF. Figure 3.3d 

presents the growth front of this Type I nanowire. The two coinciding {110} facets form a wedge 

when seen from the side along the [1̅10] zone axis, as indicated by the white dashed line. The 

(111)B facet cannot be distinguished in this cross-section due to the very reduced dimensions. In 

Figure 3.4, we displayed the defect density (number of twins per nanometer) along the entire 

nanowire shown in Figure 3.3. We observe a strong fluctuation of the number of planar defects 

but the overall average calculated along the entire length for multiple nanowires was circa 1.1 

twins/nm and it is represented by the black solid line. Very similar results were obtained for Type 

II samples, also showing a similar density of planar defects along the whole structure.  

 

 
Figure 3.4 – Number of planar defects per nanometers along the length of the nanowire with an 

average of 1.1 twins/nm. 

 

The structural analysis of a Type III nanowire with a (110) growth front is presented in Figure 

3.5. Panels (a) and (e) show an overview of the lateral and front cross sections of the nanowire, 

respectively. Directly at the interface with the Si (Figure 3.5b), a total of four planar defects were 

detected, with the rest of the nanowire appearing entirely defect-free. Planar defects, running 

along the [110] direction, were observed in a previous work on InAs nanowires [115] and ex-

pected to occur here as well. Therefore, high-resolution images from both lateral and front direc-

tions were acquired as shown in Figure 3.5c and Figure 3.5f. In these micrographs, the GaAs 

dumbbells are clearly resolved in both viewing directions, clearly demonstrating the absence of 

any buried planar <111> defects within the STEM lamella. Figure 3.5d shows the nanowire (110) 

front facet, which appears sharp when viewed along the [1̅10] zone axis. The overlying brighter 

spots in this area are Pt residues deposited on top of the nanowire during the FIB lamella prepa-

ration. The selected STEM results presented in Figures 3.3 and 3.5 could be confirmed for a total 

of 10, 12, 9, and 1 nanowire with facet Type I, II, III, and V respectively. No defect analysis was 
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performed for nanowires with {112} facets (Type IV), as their occurrence was very small. Over-

all, we observed that nanowires having a (111)B facet, i.e., Type I, II, and V, were highly twinned, 

irrespective of the (111)B facet size. Nanowires where such a facet is absent, i.e., Type III, were 

found defect-free.  

 

 

 
Figure 3.5 – HAADF-STEM images of nanowires with end facet Type III, grown at 550 °C and 

V/III ratio 120. (a) Lateral overview of the nanowire. (b) Si/GaAs interface. Four twin defects are 

directly located at the interface region. (c) No additional planar defects are present along the nan-

owire. (d) End of the nanowire with a (110) facet. (e) Front view overview of a similar nanowire 

grown at identical conditions. The darker shell around the GaAs nanowire is depleted in As (as 

identified by energy dispersive X-ray spectroscopy) caused by sample heating during optical 

spectroscopic experiments. (f) Enlarged view of the square indicated in panel (e). The clearly 

resolved GaAs dumbbells in these images are evidence of the absence of buried planar defects. 
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In order to quantify our findings, a statistical study on the dependence of the end facet on the 

growth parameters was performed. Having identified Type III as the preferred structure to result 

in a defect-free GaAs crystal, it is obviously desirable to find a parameter space to yield a high 

number of nanowires with the Type III facet. A series of epitaxy runs was accordingly designed. 

Most relevant in the epitaxy process are nominal V/III precursor ratio and temperature in the 

MOCVD chamber. Table 3.1 lists the overall growth runs performed for this study.  

 

 
Table 3.1 – Investigated growth parameters for GaAs nanowire epitaxy by varying temperature 

and V/III precursor ratio. 

 

First, the influence of the V/III ratio for two growth temperatures was investigated. The results 

are displayed in Figure 3.6. The occurrence of the various types in percent is plotted for three 

different V/III ratios at 550 °C (a) and 650 °C (b).  
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Figure 3.6 – Facet occurrence (%) as a function of V/III ratio at 550 °C (a) and 650 °C (b). Each 

data point represents 60 nanowires. Type I: large {110} facets, small (111)B facet; Type II: small 

{110} facets, large (111)B facet; Type III: single (110) facet, no (111)B facet; Type IV: {112} 

facets; Type V: large {111} facet, unidentified small facets; Type X: non epitaxial growth and/or 

not filled template. 

 

All facet types containing (111)B facets, which were observed in STEM to be highly twinned, are 

displayed in different shades of red, e.g., Type I, II, and V. Nanowires with facets of Type III, 

observed as twin-free, are displayed in green. Overall the nanowire yield is consistently very high, 

as indicated by only a few nanowires denoted as Type X. However, at 550°C, the yield drops 

significantly with increasing V/III ratio, as nanowires fail to fill out the complete 100 nm wide 

template. A clear shift from Type II being prominent at 550 °C to Type I at 650 °C is observed. 

This indicates an abrupt change of these facet types with temperature and is more detailed in 

Figure 3.7 at a constant V/III ratio of 120. Here, the facet type abruptly changes from Type II to 

I between 600 and 625 °C. A more detailed analysis of the influence of growth temperature and 

V/III ratio is shown in Figure 3.8(a, b). The influence of the growth temperature from 500 to 650 

°C on facet occurrence is displayed for V/III 20 and 120, respectively. At both high and low V/III 
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ratio the change from Type I facets to Type II occurs abruptly, being shifted 50 °C higher at high 

V/III ratio (namely from 575 °C to 625 °C). We expect the occurrence of type I or II facets to be 

governed by the degree of As trimer formation on the (111)B facet of the nanowire, which pre-

vents growth on this facet [200,201]. 

 

 
Figure 3.7 – SEM plane view images illustrating the transition from nanowire facet Type II to 

Type I with increasing growth temperature. Facet types are indicated. An increase of 25 °C 

(namely from 575 °C to 625 °C) leads to a well-defined transition from Type II to Type I. The 

V/III ratio, in this case, was 120 with 60 min growth time. 

 

The desorption of As from the (111)B facet is an activation energy driven process with an expo-

nential dependence on the growth temperature. The sudden change from facet type II to I with 

increased temperature thus reflects the onset of significant As trimer desorption from the (111)B 
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facet. A higher V/III ratio shifts this onset to higher temperatures, where As desorption outweighs 

the higher As pressure. From this, we can conclude that a shift from V/III ratio 20 to 120 roughly 

corresponds to the effect of a temperature change of roughly 50 °C at the nanowire growth front. 

The overall yield of nanowire growth drops with decreasing growth temperatures. This effect, as 

shown in Figure 3.8b, is more pronounced at a high V/III ratio, occurring at higher growth tem-

peratures. Yield for twin-free nanowires (Type III) is highest at a low growth temperature and 

low V/III ratio, where the (110) facet nanowires become the prevailing facet type with approxi-

mately 40% yield. However, we cannot deduce a simple trend of Type III formation with growth 

conditions. In Figure 3.8(c, d), the corresponding growth rates for nanowire Types I + II and Type 

III are presented. The growth rate of nanowires with a {111} facet (Type I + II) increases with 

higher temperature; for nanowires with a single (110) facet (Type III) it decreases. This is similar 

at both high and low V/III ratio; however, growth rates for Type I + II are slightly increased at 

low V/III. This effect is attributed to the increasing As-trimer formation on As-terminated (111)B 

facets at lower temperatures and higher V/ III ratios, as described above. For {110} facets, both 

Ga- and As-terminated, the opposite effect occurs, and growth rates are enhanced for a high As 

coverage. It should be noted that nanowire growth rates are significantly more inhomogeneous at 

a low V/III ratio, resulting in larger error bars, as reported in Figure 3.8c. Overall, the highest 

growth rates for nanowires with Type III facets are obtained at low growth temperatures. As such, 

it is favorable to grow Type III at a low growth temperature and a low V/III ratio. 

In early discussions on defect formation in planar epitaxial growth [203], and in more recent 

works [204,205], it was shown that impurities located on the (hetero-) epitaxial interface can trig-

ger bonding errors and SFs in {111} planes. The considered impurities can be extrinsic, e.g., 

carbon contamination, or intrinsic from a group III overdose, e.g., Ga cluster. Therefore, rigorous 

surface cleaning and adjusted growth conditions were found to be critical to achieve defect-free 

epitaxy [204,205]. In ELO the crystal grows laterally over a SiO2 stripe and thus follows a SiO2- 

III−V interface, which could also trigger SFs. For InP ELO on InP no SFs were observed in the 

overgrown layers, while in the heteroepitaxial case on a Si(001) substrate, rare occurrence of SFs 

was noticed  [206] and is suggested to stem from residual stress of the Si-InP heterojunction area. 

Similarly, for GaSb ELO on (001) substrates no SFs for homoepitaxy as well as for heteroepitaxy 

on GaAs substrates were observed [207]. In TASE, SF-free growth of GaSb and InP was 

shown  [115,202]. These observations indicate that impurities located on the SiO2 surface are less 

critical as compared to impurities on semiconducting growth substrates. The absence of available 

chemical bonds on the oxide surface, as compared to the growth surface, might reduce the sus-

ceptibility for perturbing nucleation or distorted bond formation. 
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Figure 3.8 – Facet types and average growth rates as a function of growth temperature at V/III 

ratio 20 (a) and 120 (b). Each data point represents 60 nanowires, with each error bar correspond-

ing to one standard deviation. Definition facets same as in Figure 3.6. Temperature-dependent 

growth rates of Type I, -II, and -III at V/III = 20 (c) and V/III = 120 (d). 

 

In a mixed ELO/SAG approach of InGaAs on Si(111) [208], a shift from highly twinned to a 

twin-free InGaAs layer was observed by increasing the Ga flux during growth. The examples 

above have in common that the structure (growth plane) was ≥1 μm long and appears less affected 

by twin defects than smaller ones, likely because large and off-cut surfaces facilitate step-flow 

growth, which suppresses planar defect formation. The demonstration of a twin-free InGaAs layer 

on <111> oriented InGaAs was ascribed to the transition from a layer-by-layer to an island-like 

growth at high Ga flux [208]. Nanowire structures were not reported using ELO, but for SAG 

typically employing <111> oriented substrates. Under the assumption that the SiO2 interface is 

not dominating twin formation, results from SAG experiments can provide valuable information 

on the occurrence of twinning in nanostructures. The origin of twin formation in SAG GaAs nan-

owires was investigated and attributed to growth parameter dependent surface reconstructions on 

the (111)B surface [209] and critical size of the nucleus [210]. While twin-free nanowires were 
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not achieved, a transition to twin-free material for larger structures and for higher growth temper-

atures was predicted. A more general approach to suppress twins is modifying the material com-

position, as was shown by adding Sb to InAs which suppressed twin-defect formation in InAsSb 

nanowires [211]. However, while effective, this approach is not always desirable.  

For our nanowire structures studied here, we observe a strong correlation of twin defects with 

growth conditions that form (111)B growth facets. The twinning energy of the small GaAs (111)B 

surface is apparently not high enough to lead to twin-free nanowires. We find that a (110) growth 

facet results in defect-free nanowires since twins are not formed on this plane. The facet-depend-

ent material defectivity further indicates that formation of twins is unlikely to derive from strain 

effects due thermal expansion mismatch, SiO2 (template wall)−GaAs interactions or surface im-

purities. As the formation of nanowires with (111)B planes could not be completely suppressed 

under the conditions investigated in this work, further studies could explore the diameter depend-

ence and/or surface preparation strategies for efficient formation of nuclei with a single (110) 

plane toward a high yield of twin-free nanowires. 

In conclusion, we conducted a comprehensive study on in-plane GaAs nanowire growth on 

Si(001) substrates along the [110] direction via TASE. Growth parameters (V/III ratio and tem-

perature) were correlated with crystal growth facets and structural analysis. The resulting nan-

owires were classified into five groups based on the shape of the end facets. STEM analysis re-

vealed that nanowires containing a (111)B facet are always highly twinned, while exclusively 

those with a Type III single (110) facet were found to be defect-free. Yield for Type III nanowires 

was highest (40%) at low growth temperature and V/III ratio. However, a simple correlation of 

Type III facets with the growth parameters explored could not be established. Overall, these ob-

servations strongly indicate that twin formation does not derive from strain effects, SiO2−GaAs 

interactions, or surface impurities, but are solely the result of the underlying growth mechanism, 

more specifically to the high susceptibility of the (111)B surface to twinning. 

 

This section is adapted with permission from M. Knoedler et al. Observation of Twin-free GaAs 

Nanowire Growth Using Template-Assisted Selective Epitaxy. Cryst. Growth Des., 2017, 17 

(12), pp 6297–6302. Copyright (2017) American Chemical Society. 

 

3.3    Study of dislocation cores as mono-dimensional potential channels  

As explained in the previous sections, III-V NWs might exhibit superior properties with respect 

to the thin films counterparts. Thus, their implementation with Si in heterostructures could lead 

to improved electronic and optoelectronic devices. However, the presence of crystallographic de-

fects (i.e. partial dislocations, stacking faults, etc.) might play a decisive role on the device per-

formance. In order to implement III-V nanowires in state-of-the-art devices, it is crucial to analyze 

and control the occurrence of all lattice imperfections as they can lead to the formation of electri-

cally active states within the band gap with the consequent reduction of carrier mobil-

ity [212,213]. For example, a particular class of steps in twin boundaries has been demonstrated, 
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via DFT, to be nonradiative recombination centers, inducing deleterious effects in GaAsP nan-

owires [214]. On the other hand, it has been proven that crystallographic defects can also have a 

beneficial effect on the device properties. DFT calculations performed on II-VI CdTe thin films 

for solar cells reported the presence of electrically inactive states in defective regions. In particu-

lar, a charge transfer between two nearby 90° partial dislocation cores was observed, increasing 

the separation of the carriers by band bending. This phenomenon should theoretically improve 

the cell efficiency [215,216]. A first step in evaluating the impact of a particular defect on the 

device performance is to investigate its exact atomic configuration. For this purpose, TEM pro-

vides the optimal lateral spatial resolution to study the structure of nanodevices at the atomic level 

and has been successfully used over the last decades in the study of semiconducting materials. A 

correlation with the electronic properties of the defect is achieved by the aid of theoretical mod-

eling and ab initio methods.  

In this work, we used aberration-corrected STEM and EDX spectroscopy to characterize two 

stair-rod dislocation cores formed at the intersection of three intrinsic stacking faults in a GaAs 

nanowire. Based on the experimental observations, a 3D atomic model was developed and used 

to perform DFT calculations. Our simulations reveal the presence of quasi-sp2 hybrid orbitals at 

the two defect cores and the presence of highly localized projected density of states (PDOS) shift-

ing along the stacking fault from the valence band in the gallium core to the conduction band in 

the arsenic core. This confirms the antithetical nature of these two types of defects, suggesting for 

this particular case the creation of parallel localized potential paths along the nanowire.  

Figure 3.9a shows a low-magnification HAADF-STEM micrograph of a GaAs nanowire front 

section projected along the [110] zone axis. This front section exhibits an average width and 

height of 100 and 38 nm, respectively. Unless otherwise specified, the same orientation and zone 

axis of the nanowire is maintained for all subsequent micrographs and models. An atomically 

resolved image of the inset marked with a white square in Figure 3.9a is displayed in Figure 3.9b. 

 

 
Figure 3.9 – HAADF-STEM micrographs, recorded along the [110] zone axis, showing (a) the 

front section of the nanowire and (b) an enlarged view of the white square indicated in panel (a). 

The intrinsic stacking faults intersecting at 70.5° are visible as v-shaped planar defects. The stair-

rod dislocations at the vertexes are highlighted with red circles. The two cores are ∼15nm apart. 

 

a) b) 
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Three intrinsic stacking faults on different {111} glide planes intersect at an acute angle of 70.5° 

and create the dislocation cores highlighted with two red circles, labeled as 1 and 2. These two 

cores, connected via an intrinsic stacking fault, are about 15 nm apart and are expected to propa-

gate along the whole length of the nanowire. The dumbbell atomic columns in the intrinsic stack-

ing faults exhibit the typical change in orientation due to the removal of one close-packed plane 

from the perfect zinc-blende crystal structure. The Burgers circuits performed on both cores were 

used to determine the Burgers vectors of the dislocations. The identification of the Burgers vectors 

of a stair-rod dislocation is obtained by subtracting the vectors of two circuits; the first circuit 

runs around one stacking fault and the second one around both the second stacking fault and the 

stair-rod dislocation, considering the crystal unfaulted at the position of the first stacking fault. A 

detailed analysis of the Burgers vectors performed on both dislocation cores is shown in Figure 

3.10(a, b).  

 

 
Figure 3.10 – Finish-to-start clockwise Burgers circuits of the two stair-rod dislocations formed 

by the intersection of intrinsic stacking faults at 70.5° forming v-shaped defects. Both cores are 

obtained by the interaction of two 30° Shockley partial dislocations with the half-planes indicated 

by the red arrows. In the first case (a), the Burgers vectors are 𝑏⃗ =1/6[211] and 𝑏⃗ =1 6⁄  [121̅̅ ̅̅ ̅] 

(highlighted with the green arrows). The total Burgers vector is equal to 𝑏⃗ =1/6[11̅0]. In the sec-

ond case (b), the partial dislocations have Burgers vectors equal to 𝑏⃗  =1/6[21̅̅̅̅ 1] and 𝑏⃗ =1/6[121̅]. 

The total Burgers vector is 𝑏⃗ =1/6[1̅10]. In both cases an energy reduction (a2/3 > a2/6) takes 

place. 

 

In this case, the cores are formed by the interaction of 30° Shockley partial dislocations annihi-

lating each other in two different stair-rod dislocations. Their interaction results in an energy re-

duction. This particular type of stair-rod dislocation was previously reported in nanostructured 

metals and semiconductors [217,218] and is commonly observed in the GaAs nanowires grown 

a) b) 
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in the planar SiO2 templates investigated here. Stair-rod dislocations are characterized by the 

presence of single unpaired atomic columns [218], clearly visible in Figure 3.11(a, b), where the 

two dislocation cores, marked as 1 and 2 in Figure 3.9b, are illustrated at higher magnification. 

The mirrored symmetry between the two structures with the unpaired atomic columns (marked 

with white circles) located on different lattice sites is distinctly visible. Due to the small atomic 

number difference between Ga (Z = 31) and As (Z = 33), the Z2 contrast intensity difference, 

usually used to recognize atomic species in HAADF micrographs, was not significant enough to 

safely determine the nature of the single elements. For this reason, atomic-scale EDX chemical 

maps were recorded in the red dashed area of the two cores. As illustrated in Figure 3.11c, the 

first core exhibits Ga single-atomic columns, while Figure 3.11d shows As single-atomic columns 

for the second core, where gallium and arsenic atoms are colored in blue and green, respectively.  

 

 

Figure 3.11 – HAADF-STEM atomically resolved images of the first (a) and second (b) disloca-

tion cores. (c, d) Atomic-scale EDX chemical maps corresponding to the red dashed area in panels 

(a) and (b), respectively. The nature of the unpaired single-atomic columns, i.e., gallium (blue) 

for core 1 and arsenic (green) for core 2, is distinctly revealed.  

 

Subsequently, 3D atomic models of the dislocation cores were created with the RHODIUS soft-

ware and used as input for the DFT calculations in order to study the effect they might induce on 

the band gap and on its electronic structure. DFT calculations were performed within the Gaussian 

plane-wave method as implemented in the CP2K package with DZVP basis sets for the represen-

tation of Kohn-Sham orbitals, with plane-wave cutoff for the charge density of 600 Ry. An initial 

geometry optimization was performed using the PBE-GGA exchange-correlation functional. 

This, as it is well known, fails, however, to determine the band gap accurately  [184,192]; there-

fore, single-point calculations were performed using the hybrid functional developed by HSE06, 

a) 

d) c) 

b) 
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with the exchange screening parameter ω set to 0.11 as recommended in literature [193]. To speed 

up the calculations, the auxiliary density matrix method with FIT6 auxiliary basis sets was em-

ployed. Maximally localized Wannier functions were extracted using CP2K. In order to investi-

gate the effect of the stair-rod defects on the electronic properties of GaAs, DFT calculations were 

performed on two different models. A 6 × 6 × 6 supercell (corresponding to 16.96 Å in each 

direction) with 1728 atoms was adopted for the bulk structure, while the defective area was in-

corporated in a supercell with 924 atoms consisting of 12 × 12 × 2 unit cells. After properly 

relaxing the structure, the models were imported in STEM_CELL and used to simulate HAADF 

images. Strain mapping was performed by the use of GPA within the FRWR plugin in order to 

verify the validity of the model (Figure 3.13(b, c)). Subsequently, the GPA maps of the modeled 

structure were compared with the experimental ones (Figure 3.12(b, c)). Concordantly, both ex-

perimental and simulated data show quantitatively comparable strain and rotational maps at the 

intrinsic stacking faults with no long-range strain field contributions stemming from the disloca-

tion cores. This confirms the structural validity of the adopted DFT model.  

 

 
Figure 3.12 – (a) HAADF-STEM micrograph showing the three different intrinsic stacking faults, 

labeled with 1 and 2 depending on the glide plane, merging together to form two distinct stair-rod 

dislocations. Panels (b) and (c) illustrate the εxy strain and the rotational rxy maps, respectively. 

The lattice deformation was determined relative to an internal reference lattice selected at an area 

close to the upper stair-rod dislocation. While the detected strains and rotations are attributable to 

the intrinsic stacking faults, no long-range strain fields are detected at the vicinity of the disloca-

tion cores. 

 

a) b) c) 
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Figure 3.13 – (a) HAADF-STEM simulated micrograph obtained from the relaxed model. As in 

the previous case, the intrinsic stacking faults creating the dislocation cores are labeled with 1 and 

2 depending on the glide plane. (b, c) GPA maps (obtained using the same parameters used for 

the experimental data) of the modeled structure reproducing the εxy strain and rotational rxy mag-

nitude. Also in this case, no strain fields are detected in the proximity of the dislocation cores; 

only the planar defects contribute to the strains and rotations. The similarity of these results with 

the experimental ones of Figure 3.12, confirm the structural validity of the model employed to 

perform the DFT calculations. 

 

Figures 3.14(a, b) show the bulk and defective supercells simulated with DFT to investigate the 

effect induced by the defects on the GaAs electronic properties. Both structures were relaxed 

using the PBE functional until the force acting on each atom was less than 0.01 eV/Å. The PBE 

band gap of the bulk GaAs was 0.53 eV, highly underestimated with respect to the 1.43 eV ex-

perimentally reported in the literature [219] with a difference of 63%. A single-point calculation 

with hybrid functional HSE06 was then performed to correct the error, and a band gap of∼1.14 

eV with a difference of 21% was obtained. This is still underestimated but the value is now closer 

to the literature. The PDOS for the bulk structure is shown in Figure 3.14c. Here and in the other 

PDOS plots the energy zero is set to the Fermi level, and the projections are normalized to the 

number of atoms involved. The majority of valence states are equally contributed by both Ga and 

As atoms, with a signature of empty antibonding states rising at +1.14 eV. This is visible in the 

inset in Figure 3.14c. Note here that the lowest unoccupied molecular orbital (LUMO) peak ap-

pears isolated from the conduction band, which is in contrast with calculations conducted with a 

large number of k points (corresponding to a much larger supercell in our real-space representa-

tion). However, the presence of such an undesired feature at the bottom of the conduction band 

can be due to the finite system-size effects [220]. A similar effect has also been reported for GaN 

in a study by Meng et al. [221]. Figure 3.14c, supporting this explanation, shows the increase in 

the density of states (with unchanged band gap) near the conduction band for bulk GaAs with two 

different supercell sizes. We also verified that the character of the first unoccupied states remains 

unchanged by increasing the system size. The majority of the unoccupied states contribute above 

+2.0 eV with a slightly higher intensity from the Ga atoms. 

 

a) b) c) 
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Figure 3.14 – (a) Bulk structure model of GaAs and (c) associated PDOS plot. Gallium (blue) and 

arsenic (green) states equally contribute along the whole energy range with a slight difference for 

the unoccupied states above 2.0 eV only. The first localized state is observed at ∼1.14 eV and it 

is shown in detail in the inset with an energy range between 1.0 and 1.3 eV. The orbital simulation 

represented in panel (c) illustrates, along a different zone axis, the Wannier sp3 orbitals present 

around the Ga and As atoms. (b) Model used to investigate the DOS projected on the Ga core 

(blue), As core (green), entire stacking fault (red), and remaining crystal (gray) atoms. The asso-

ciated PDOS plot (d) shows, with the same color codes, the reduction in energy gap and the pres-

ence of valence and conduction band states. All plots are normalized to the involved number of 

atoms in the projection. 
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Figure 3.15 – Projected density of states (PDOS) for bulk GaAs using the HSE06 functional for 

different supercell sizes: top (16.96 Å, 16.96 Å, 16.96 Å) and bottom (33.92 Å, 33.92 Å, 33.92 

Å). Green and blue represent the projection on As and Ga atoms, respectively. 

 

The bonding hybridization simulation (Wannier localization) for the defect-free bulk is shown in 

the inset of Figure 3.14c. The model is here oriented along the [100] zone axis to better exhibit 

the Wannier orbitals geometry. As expected, four different sp3 hybrid orbitals connecting the Ga 

atom to the neighboring As atoms and separated by 109.5° are obtained. The same hybridization 

is also visible for the As atom connected with the four Ga atoms.  

The defects revealed by the experiment are then inserted in the structure. The distance between 

the two dislocations in the modeled defective structure is not equal to the experimental observa-

tions due to the complexity to perform the calculations on such big crystal. For this reason, the 

distance in the simulated model is around 1/3 of the experimental one. Figure 3.14b illustrates 

how the defect model is divided with different colors into four parts; they correspond to the As 

core (green), Ga core (blue), intrinsic stacking faults (red), and the remaining atoms in the bulk 

(gray). The HSE06 calculated band gap, previously observed at +1.14 eV for the bulk structure, 

decreases to + 0.54 eV, as illustrated in Figure 3.14d. The peaks, present in all the areas taken 
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into consideration in the structure, suggests an overall influence by the dislocation cores on the 

electron cloud of the entire modeled crystal. A comparison of the PDOS contributions coming 

from the Ga and As dislocation core atoms is also presented in Figure 3.14d. Ga core atoms (blue 

line) show a major contribution in the upper part of the valence band (above −0.7 eV) while the 

projection on the As core atoms (green line) has a predominant distribution in the bottom of the 

conduction band states with multiple peaks appearing between 0.54 and 1.25 eV. Major contri-

butions in this interval are due to the As core atoms followed by the contributions from the atoms 

on the intrinsic stacking faults (red) and then from the remaining atoms (gray line). For the Ga 

core atoms, the effective contribution to the empty states starts only after +1.7eV. We interpret 

the two peaks at the edges of the valence and conduction bands (blue and green lines in Figure 

3.14d) as signatures of a band localized along the defect channels (see Figure 3.17, explained 

below). Our supercell representation allows us to sample the band only at the gamma point. As in 

the defect-free bulk model, the bonding orbitals were simulated in correspondence of the two 

dislocation cores. The results are illustrated in Figures 3.16(a, b) for the Ga and As single atoms, 

respectively. The dislocation cores develop a configuration in between sp3 and sp2 where three 

hybrid orbitals separated by 120° are obtained. The presence of an unpaired orbital generates a 

distortion in the three orbitals geometry not allowing the standard sp2 planar configuration. This 

can be connected to the difference in PDOS on the valence and conduction band present in the 

single Ga and As atoms. 

 

 

Figure 3.16 – The Wannier orbitals (in red) showing the quasi-sp2 geometry are illustrated in 

panels (a) and (b) for the Ga and As dislocation core, respectively. The black dashed ellipses 

highlight the position of the stacking faults. 

a) b) 
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Figure 3.17 – (a) Model of the defective structure built with a 12 × 12 × 2 supercell and used to 

investigate (b) the DOS projected on the Ga core (blue), As core (green), entire stacking fault 

(red), and remaining crystal (gray) atoms. (c), (d) The analysis is also performed by further divid-

ing the intrinsic stacking faults in three distinct segments. The segments and the associated PDOS 

are shown with the same color codes. 

 

Similarly, in Figures 3.17(c, d), the analysis is performed by further dividing the intrinsic stacking 

fault into three parts: Ga core proximity (pink block 1), intermediate stacking faults (orange block 

2), and As core proximity (black block 3). As done previously, the single-point calculation with 

HSE06 functional was performed for the defective structure. The PDOS distribution of block 1 

(pink line) is very similar to that of the Ga core atoms where there is a minimum contribution in 

the conduction band after +1.7 eV and a significant increase in the states below the Fermi level. 

Similarly, block 3 (black line) follows the trend of the As core atoms where the majority of un-

occupied states are concentrated at +1.0 eV and almost zero states in the valence band. Atoms in 

block 2 (orange line) have a distribution in between the As and Ga core PDOS plots. In fact, both 

conduction and valence band states are visible with a lower intensity with respect to both block 1 

and 3. This effect is probably emphasized as a consequence of the shorter distance with respect 

to the experimental structure, but the same qualitative behavior is expected.  

 

b) a) 

d) c) 
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Figure 3.18 – (a) Electron density map with an isosurface value of 4.1 × 10−3 e/ Å and potential 

color-gradient scale in red (max) 3 and blue (min) along the [110] zone axis. (b) Distribution of 

the electrostatic potential in the [001] direction along the stacking fault with average potential 

energy represented with a magenta line. (c) Graphical representation, along the [11̅1] zone axis 

perpendicular to the intrinsic stacking fault showing the charge nanochannels generated by the 

two dislocations. 

 

Furthermore, an analysis of the electrostatic potential is performed in Figure 3.18a where the 

electron density map of the two dislocation cores with potential color scale is shown. Figure 3.18b 

represents the electrostatic energy along the stacking fault line with the As core showing the high-

est potential energy acting as LUMO and the Ga core with the lowest potential energy acting as 

highest occupied molecular orbital (HOMO). This investigation clearly shows the formation of 

an electric field between the Ga core and As core confirming the role of the stair-rod dislocation 

cores as charge wires. This could lead to an improved carrier separation upon doping and a re-

duction in detrimental recombination. Since the dislocation cores in both cases are assumed to 

propagate along the whole length of the nanowire, the highly localized nature of the density of 

states can induce the formation of charge nanochannels, as shown in Figure 3.18c and 3.19, where 

we plot the integrated charge (hole) density around the PDOS peaks at the top (bottom) end of 

the valence (conduction) band (up to the Fermi level in both cases). This suggests the possibility 

of facilitated the transport of electrons and holes for the Ga and As core, respectively. In this case, 
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since the localized channel states do not close the band gap, doping of the material would be 

necessary in order to accommodate free carriers in the channels. This phenomenon (but with the 

defect band developing within the gap) was recently studied for a different class of materials; i.e. 

a transition-metal dichalcogenide [222]. Even though the electronic states in [219] are considera-

bly different to those in GaAs, the simulated physical behaviors are comparable. This could be 

further analyzed and exploited in the future for the realization of innovative devices where the 

combination of different growth conditions and materials (including doping) can lead to the for-

mation of preferential paths for improved mono-dimensional carrier transport. 

 

 

Figure 3.19 – Isosurface (0.012 a.u.) of the integrated charge in the energy interval corresponding 

to the localized peaks for electrons (red) and holes (blue) in the density of states (“Ga core” and 

“As core” in Figure 3.14d), forming the one-dimensional charge channels. 
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In conclusion, aberration-corrected STEM has been used to assess the atomic structure of two 

stair-rod dislocations obtained by merging multiple stacking faults in v-shaped defects. Elemental 

EDX mapping has been employed to unambiguously identify the nature of the single-atomic col-

umns at the dislocation cores, revealing that they consist of either entirely gallium or arsenic. 

Their effect on the electronic properties has been investigated by means of DFT calculations 

showing a reduced energy gap with respect to the bulk material. Furthermore, the development 

of charge channels along the defect channels, with a corresponding strong electric field between 

the channels, is probably attributable to the unpaired p orbitals in the quasi-sp2 bonding configu-

ration of the single-atomic columns. These results suggest the possibility to obtain strongly local-

ized potential paths within the nanowire which might host free carriers upon appropriate doping 

and improve the carrier separation along the two dislocation cores.  

 

This section is adapted with permission from N. Bologna et al. Stair-rod dislocation cores acting 

as one-dimensional charge channels in GaAs nanowires. Phys. Rev. Materials 2, 014603 (2018). 

Copyright (2018) American Physical Society. 
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 Doping investigation of vertical nanowires 

for PV applications 

 

 

Today, Si is the most used material in photovoltaics, with the maximum conversion efficiency 

getting very close to the Shockley−Queisser limit for single-junction devices. Integrating Si with 

higher band-gap ternary III-V absorbers is the path to increase the conversion efficiency. Here, 

we report on the first monolithic integration of GaxIn(1−x)P vertical nanowires, and the associated 

p-n junctions, on Si by the Au-free TASE method. We demonstrate that TASE allows for a high 

chemical homogeneity of ternary alloys through the nanowires. We then show the influence of 

doping on the chemical composition and crystal phase, the latter previously attributed to the role 

of the contact angle in the liquid phase in the vapor-liquid-solid technique. Finally, the emission 

of the p-n junction is investigated, revealing a shift in the energy of the intraband levels due to 

the incorporation of dopants. These results clarify some open questions on the effects of doping 

on ternary III-V nanowire growth and provide the path toward their integration on the Si platform 

in order to apply them in next-generation of photovoltaic and optoelectronic devices.  

 

4.1    Nanowires growth  

The nanostructures were grown in nanotube templates by metal−organic chemical vapor deposi-

tion on Si (111) wafers at a temperature of 550 °C. The vertical templates were fabricated with 

the following procedure. A sacrificial amorphous α-Si layer was sputtered on the wafer’s surface. 

The thickness of the α-Si layer determines the height of the templates, while the diameter (∼150 

nm) and position of the templates are defined by patterning hydrogen silsesquioxane dots by elec-

tron beam lithography. Inductively coupled plasma reactive-ion etching using HBr/O2 was em-

ployed to etch out vertical Si NWs. SiO2 was then subsequently deposited on the Si NWs by 

plasma-enhanced chemical vapor deposition at 400 °C. To empty the nanotube templates and to 

obtain a pristine (111)-terminated crystalline Si surface at the bottom, a patterned resist mask was 

deposited to protect the substrate, and a 25% tetramethylammonium hydroxide solution was used 

to selectively etch away the Si sacrificial NWs. The growth of the GaxIn(1−x)P NWs was carried 

4 
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out using trimethylindium (TMIn),trimethylgallium (TMGa), and tertiarybutylphosphine with a 

V/III ratio of 310. A group III molar flux ratio of TMGa/(TMGa + TMIn) of 0.6−0.25 was used. 

The doped NWs were grown with the same conditions but with a V/III ratio of 42. The n-type 

doping, induced in the first half of the NWs, was obtained by using disilane (Si2H6) with a molar 

flux ratio Si/(TMIn + TMGa) of 0.0023, while for the p-type doping, induced in the second half 

of the NWs, diethylzinc (DEZn) was employed with a ratio DEZn/(TMIn + TMGa) of 3 resulting 

in doping concentrations above 1.0 × 1018 cm−3 for both sections  [223]. In general, the observed 

growth rate was about 10 nm/min for the undoped and doped samples. 

Concerning the samples used for the off-axis holography, the GaAs NWs were grown in the SiO2 

templates on Si(111) using TMGa and TBAs. Different combinations of dopant were used (n-p, 

i-n-i) and their growth procedures are the followings. The p-n NW was obtained by introducing 

as in the previous experiment Zn and Si as dopants, at a V/III ratio of 40 and 600 °C. The growth 

was performed for 10 minutes in the p-segment and 30 minutes in the n segment. The expected 

depletion region should be around 60-70 nm. The i-n-i NW was grown, as it will be explained in 

section 4.3, by a double growth method, i.e. TASE and SAG. The first TASE section, which 

included the doping atoms, was grown at 600 °C with a V/III ratio of 40. Then, Zn atoms were 

introduced for 10 minutes, before switching the growth to SAG for another 20 minutes with no 

dopants.  

 

4.2    Dopant-induced modifications of GaxIn(1-x)P p-n junctions mono-

lithically integrated on Si (111)  

To the best of our knowledge, catalyst-free and high-quality growth of doped GaxIn(1−x)P NWs on 

(111)-oriented Si substrates has not been achieved, mainly due to the compositional inhomoge-

neities occurring during dopant incorporation [224–228]. In addition, it is widely reported that 

the use of dopants during NW growth, apart from modifying the chemical composition, can also 

affect in some cases the morphology (i.e. NW diameter) and the crystal structure (e.g. crystal 

polytypism). For example, Zn doping modifies the wetting angle of the metallic seed particle 

during NW growth favoring the zinc-blende crystal structure in InP and GaxIn(1−x)P 

NWs [229,230]. On the contrary, the addition of Zn and Sn dopants in GaAs NWs causes either 

an increase in the wurtzite proportion or no effect at all [231–233]. Moreover, as previously ex-

plained, the use of Au nanoparticles as catalyst in the VLS growth might compromise the Si PV 

cell performance. First attempts to grow GaxIn(1−x)P NWs without the use of any catalyst particle 

were realized by SAG with good control of the NW morphology and composition [60,234], but 

this work relied on the use of InP substrates. As explained in chapter 1, the TASE technique 

allows for the growth of shape- and size-controlled nanostructures by means of a Si oxide nano-

tube template offering a wide growth parameter window (as compared to SAG) and well-defined 

growth direction. These characteristics render the TASE technique attractive to obtain NW struc-

tures on Si for solar cell applications. In the present work, we demonstrate the first successful 

monolithic integration of GaxIn(1−x)P NWs on (111)-oriented Si substrates using TASE. Further-

more, we present a comparative study between intrinsic and doped GaxIn(1−x)P NWs including p-



Chapter 4.  Doping investigation of vertical nanowires for PV applications  

71 

n junctions using aberration-corrected HAADF-STEM in combination with EDX spectroscopy 

and EELS. Thus, the effect of doping on the microstructure and composition of the NWs is re-

vealed. Finally, the optical properties of individual doped NWs are probed by CL spectroscopy. 

 

 
Figure 4.1 – Top (a) and tilted (b) view SEM micrograph of a highly ordered GaxIn(1−x)P NW 

array grown on a Si(111) substrate. A magnified view of a single NW is shown in the right panel. 

The SiO2 nanotube template (partially empty), the Si seed, and the GaxIn(1−x)P NW are indicated. 

a) 

b) 
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Overview SEM images of an array of TASE-grown vertical GaxIn(1-x)P NWs on a Si(111) sub-

strate acquired from the top and with an angle are displayed in Figure 4.1(a, b), respectively. The 

right panel shows a magnified image of a single GaxIn(1-x)P NW grown onto the Si seed crystal 

into the predefined SiO2 nanotube template. Site-specific TEM lamellae for STEM characteriza-

tion were prepared by using a FIB instrument. The lift-off process is described in chapter 2.3. A 

typical undoped NW is shown along the [1̅10] zone axis in the STEM micrograph of Figure 4.2a. 

On average, these NWs possess a diameter of about 150 nm with a flat front facet and a sharp 

interface with the Si substrate. Concerning the crystal structure, the zinc-blende type dominates 

the entire length of the NW with a high density of planar defects (stacking faults and twins) lying 

on the (111̅̅ ̅̅ ̅) plane. This is clearly visible in the atomic-resolution images of Figure 4.2(b, c) 

obtained at the top (red window in Figure 4.2a) and at the bottom (blue window in Figure 4.2a) 

of the NW. No difference in the type of planar defects has been observed between the two regions.  

 

 
Figure 4.2 – HAADF-STEM overview image showing a typical undoped GaxIn(1-x)P NW. Atomic-

resolution HAADF-STEM detail of the crystal structure at the top (b, red) and at the bottom (c, 

blue) of the NW. Both areas exhibit a zinc-blende crystal structure with a high density of planar 

defects. (d) Magnified image of a region at the GaxIn(1-x)P/Si interface corresponding to the green 

square. Three misfit dislocations are marked with blue arrows and appear in panel (e) as butterfly-

like features in the out-of-plane (εyy) strain map obtained by GPA. 

 

a) b) c) 

e) d) 
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A detailed analysis of the interface with the Si seed was performed by GPA in order to detect 

possible defect formation due to the lattice mismatch. Figure 4.2d shows a magnified view of the 

green squared region highlighted in Figure 4.2a. The corresponding εyy strain map along the out-

of-plane direction is displayed in Figure 4.2e. Here, the GaxIn(1-x)P NW appears to have a positive 

deformation (red color) as the lattice parameter is larger than the Si used as reference, which is 

aSi = 5.431 Å. The value for the strain measured at the GaxIn(1-x)P area is (6.5 ± 0.3)%, resulting 

in a lattice constant of (5.78 ± 0.1) Å. Three blue arrows in the HAADF image indicate the regions 

of the interface exhibiting a lower contrast due to an interruption of the atomic stacking continuity. 

In the strain map of Figure 4.2e, these regions are clearly recognizable by the three compressive-

tensile butterfly-like strain features separated by an average distance of about 4.5 nm. They are 

interfacial misfit dislocations that, as explained in chapter 1.3, form to release the mismatch strain 

between both systems. The compositional homogeneity of the undoped NWs was then investi-

gated by STEM-EDX. For this analysis, the NWs were transferred to a holey carbon-coated TEM 

copper grid by gently rubbing it against the NW array. Thus, gallium contamination due to the 

FIB sample preparation was avoided. An HAADF-STEM image of a typical undoped NW and 

the corresponding elemental maps calculated from a EDX spectrum image using the P Kα1, In 

Lα1, and Ga Kα1 lines are shown in Figure 4.3(a-d). As revealed in Figure 4.3c, d, the composi-

tion of the undoped NWs shows some local variations up to 5%. However, the overall composi-

tion performed within the same growth run was reasonably homogeneous with very small devia-

tions ( < 0.5%) in both the longitudinal and radial directions with In, Ga, and P nearly constant 

across the entire structures. The compositional line profiles obtained by averaging the integrated 

intensities over the whole diameter of the NW are given in Figure 4.3e. While small oscillations 

are perceptible in the indium and gallium line profiles (most likely due to variations in the growth 

rates of {111}- and {110}-type facets during the growth process), an average GaxIn(1-x)P compo-

sition with x = 0.25 ± 0.03 can be obtained for the undoped NWs. This corresponds to a lattice 

constant of (5.77 ± 0.02) Å, leading to a lattice mismatch of (6.1 ± 0.4)% with Si. Similarly, p-n 

homojunction NWs were also characterized by employing HAADF-STEM and STEM-EDX.  
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Figure 4.3 – (a) HAADF-STEM image of an undoped NW and the corresponding elemental maps 

of (b) phosphorous, (c) indium, and (d) gallium obtained from an EDX spectrum image. (e) Com-

positional line profiles of P, In, and Ga obtained by averaging the integrated intensities over the 

whole diameter of the NW. 

 

Figure 4.4a shows an overview image of a representative doped NW exhibiting a sharp interface 

with the Si substrate, comparable to the undoped structures. For this particular NW, the front facet 

is not regular, probably due to the milling process during the FIB preparation, and therefore no 

particular faceting can be recognized. For the doped NWs, two features are readily observed: the 

first one, indicated with a yellow arrow in Figure 4.4a, is a sharp change of contrast along the 

growth direction arising at about 260 nm from the Si interface, which can be associated with the 

switch from the n- to the p-region of the NW combined with a change in composition as it will 

be discussed below. The second feature is highlighted with two white arrows in the upper left area 

of Figure 4.4a. Two dark stripes propagate from the top of the NW to the left sidewall. The atom-

ically resolved HAADF-STEM image of Figure 4.4c (obtained from the blue squared region in 

Figure 4.4a) unveils a zinc-blende structure with a high density of twins (about 1twin/nm) lying 

on the(111̅̅ ̅̅ ̅) plane, similar to the undoped structure. This morphology is observed from the inter-

face with the Si until the previously mentioned change in contrast at 260 nm. Then, the upper half 

of the NW presents also a zincblende structure, but with a much lower density of planar defects 

(five twins in the entire upper segment) lying on parallel (11̅1) planes. These twins are visible as 

darker stripes in the overview image of Figure 4.4a (white arrows) and are highlighted with red 

dashed lines in the atomically resolved HAADF-STEM image of Figure 4.4b, which corresponds 

to the red area in panel (a). This change in crystal structure from the bottom to the top of the NW 

is related to the transition from the n-doped (Si) to the p-doped (Zn) segment. A preferential 

growth of the zinc-blende crystal structure was previously attributed to a variation in the wetting 

angle of the gold seed particle caused by the introduction of Zn dopant atoms in NWs grown by 

VLS [229]. Likewise, changes in the NW diameter were attributed to the seed particle wetting 

a) b) c) d) e) 
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angle. However, our results demonstrate that a change in the crystal structure also occurs when 

no metal catalyst particle is used for the NW growth. Additionally, as the TASE method employs 

nanotube templates for the growth of the NWs, the diameter of neither doped nor undoped struc-

tures is altered by the introduction of dopants, maintaining the original aspect ratio necessary for 

high-performance solar cells. Additionally, our observations unveil that the addition of dopant 

atoms in the NWs affects the density of misfit dislocations at the GaxIn(1-x)P/Si interface. In the 

HAADF-STEM image and the corresponding εyy strain map of Figure 4.4(d,e), respectively, it 

can be seen that the distance between misfit dislocations is here increased to about 5.5 nm, while 

the experimentally measured strain difference between the NW and the Si substrate is only ∼ (4.5 

± 0.3)%. This value corresponds to a lattice constant of (5.68 ± 0.1) Å, which is smaller than in 

the undoped structure. 

 

 
Figure 4.4 – (a) HAADF-STEM overview image showing a representative p−n-doped GaxIn(1−x)P 

NW. Atomic-resolution HAADF-STEM detail of the crystal structure of the top (b, red) and at 

the bottom segment (c, blue) of the NW. A yellow arrow indicates the transition from the top p 

doped (Zn) segment and the bottom n-doped (Si) section exhibiting a high density of planar de-

fects (highlighted by red dashed lines). (d) Magnified image of a region at the GaxIn(1−x)P/Si in-

terface corresponding to the green square. Two misfit dislocations are marked with blue arrows 

and appear in panel (e) as butterfly-like features in the out-of-plane (εyy) strain map obtained by 

GPA. 

a) b) c) 

e) d) 
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To confirm these results and to unveil the origin of the sharp contrast change observed at the 

middle of the doped NWs, we acquired EDX spectrum images of several wires. Similar to the 

undoped NWs, the sample for EDX analysis was prepared by gently rubbing the TEM grid against 

the chip’s surface. A representative doped NW is shown in Figure 4.5a, while the elemental maps 

calculated from the EDX spectrum image (P Kα1, In Lα1, and Ga Kα1 lines) are presented in 

Figure 4.5(b-d). It is evident that the bottom part of the NW contains a higher amount of indium, 

while the top segment is gallium rich. This effect was further studied on six different doped NWs 

by recording the amount of indium, gallium, and phosphorus in three different positions along the 

structures, that is, at 50, 150, and 500 nm from the Si seed. The obtained results are shown in 

Figure 4.5e, where each data point corresponds to the average value of six wires, and the error 

bars are given by the calculated standard deviation (±1σ). While the phosphorus is constant along 

the whole length of all six NWs, the indium and gallium profiles show a drastic change from the 

bottom to the top of the NW. The region close to the Si seed has an average GaxIn(1-x)P composi-

tion with x = 0.33 ± 0.05, that is, a lattice constant of (5.73 ± 0.03) Å. This experimental value is, 

as expected, smaller than the one observed for the undoped NW (5.85 Å), explaining the larger 

dislocation spacing. Instead, at the upper segment, the trend is reversed, and we find a maximum 

Ga content with an average x = 0.55 ± 0.03, corresponding to a lattice constant of (5.64 ± 0.01) 

Å. The change in composition takes place within ∼40 nm at the p-n interface (Figure 4.5f) and 

results in a lattice mismatch of -1.6%. However, no structural defects are detected at any of the 

investigated p-n junctions. Finally, although the change from n to p doping is typically observed 

at about 150 nm from the Si interface (coinciding with a similar concentration of Ga and In), p-n 

junctions are occasionally detected at a longer distance from the Si interface (as in the NW dis-

played in Figure 4.4a) due to different growth rates of the n-segments. Our observations concern-

ing the influence of doping on the chemical composition of p-doped GaxIn(1-x)P NWs are in agree-

ment with previous works stating that DEZn increases the incorporation of Ga due to the enhanced 

pyrolysis of the trimethylgallium TMGa-related species [229,235]. Furthermore, our results pro-

vide the first experimental evidence that Si doping also boosts the incorporation of Ga in the n-

doped section, as compared to the undoped structure, while a high density of stacking faults per-

pendicular to the growth direction is still present. 
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Figure 4.5 – (a) HAADF-STEM image of a p−n-doped GaxIn(1-x)P NW and the corresponding 

elemental maps of (b) phosphorus, (c) indium, and (d) gallium obtained from an EDX spectrum 

image. (e) Bar chart showing the In, Ga, and P contents at three different positions (50, 150, and 

500 nm from the Si seed) averaged for six different NWs. The P content (pink) is constant in all 

NWs, while the In (light blue) and Ga (green) profiles display a reverse trend with a comparable 

composition at about 150 nm. (f) Averaged line profiles of the EDX elemental maps shown in 

panels b-d showing the variation in the atomic fraction of In, Ga, and P along the doped nanowire. 

Note that the In and Ga content are reversed at the p-n junction within 40 nm. 

 

The incorporation of dopants is expected to also modify the overall electron density in the doped 

NWs since the resulting number of valence electrons is different from that of the undoped mate-

rial. Here, EELS was applied to determine changes of the valence electron density across the 

NWs. In particular, in the low-loss region of the EELS spectrum, the most prominent feature 

corresponds to plasmon losses. Plasmon losses are collective oscillations of the valence electrons, 

and their energy is related to the density of the valence electrons. Therefore, changes in the va-

lence electron density will be reflected by changes in the plasmon energy peak [155]. The doped 

NW displayed in Figure 4.6a is the same as the one investigated by EDX in Figure 4.5a. The 

green rectangle indicates the area in which the EELS spectrum was acquired. After aligning the 

spectrum image by using the zero-loss peak, the spectra were background subtracted by fitting a 

decaying power-law function to an energy window just in front of the plasmon peaks. Thus, two 

a) b) c) d) e) 

f) 
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distinct plasmon peaks were obtained for the n- and p-doped sections of the NW at plasmon en-

ergies Ep,n = 15.0 eV and Ep,p = 15.6 eV, respectively (see Figure 4.6c). The same analysis per-

formed on six different NWs gave average plasmon energy values of (15.0± 0.09) and (15.51 ± 

0.07) eV for the n- and p-doped sections, respectively. Figure 4.6b shows the plasmon energy 

map obtained by performing a nonlinear least-square fitting to the acquired spectrum image and 

corresponding to the region in the green rectangle in Figure 4.6a. The difference in bulk plasmon 

energy at the bottom and at the top of the NW is evident, demonstrating that the distinct doping 

incorporation affects both the chemical and electronic properties of the material. However, from 

the EDX results obtained previously, we infer that this energy shift is mainly caused by a change 

in the Ga/In ratio across the NW rather than merely by the presence of dopant atoms. For this 

reason, as the bulk plasmon energy Ep varies linearly with composition [236], we used the two 

extreme compositions (InP and GaP) as standards to check the validity of our measurements. The 

reference spectra (acquired using the same experimental conditions) from bulk InP and GaP ex-

hibit bulk plasmon peaks at Ep = 14.37 eV and 16.55 eV, respectively. By performing a linear 

regression, we obtained the following equation for the plasmon energy in electron volts: 

 

Ep (eV) = 0.0218x + 14.37         (4.1) 

 

where x is the gallium percentage. Thus, by using the Ep values extracted from the plasmon map, 

an average composition of x = 0.29 ± 0.04 and 0.52 ± 0.03 is obtained, corresponding to a lattice 

constant equal to (5.74 ± 0.02) and (5.64 ± 0.01) Å for the n- and the p-doped segment, respec-

tively. These values are in excellent agreement with the data derived from the EDX measure-

ments. No remarkable changes in the width of the plasmon peak (∼3.0 eV) were detected between 

the top and the bottom of the NW. The GaxIn(1-x)P lattice parameters obtained by GPA, STEM-

EDX and STEM-EELS from the undoped and doped NWs are summarized in Table 4.1. 

 

 GaxIn(1-x)P lattice parameter (Å) 

 undoped n-segment p-segment 

GPA 5.78 ± 0.10 5.68 ± 0.10 - 

EDX 5.77 ± 0.02 5.73 ± 0.03 5.64 ± 0.01 

EELS - 5.74 ± 0.02 5.64 ± 0.01 

Table 4.1 – GaxIn(1-x)P lattice parameters of undoped and doped NWs obtained by GPA, STEM-

EDX, and STEM-EELS. 
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Figure 4.6 – HAADF-STEM micrograph of a p-n-doped NW with overlaid green rectangle cor-

responding to the area used for EELS spectrum image acquisition. (b) Bulk plasmon map ex-

tracted from the EELS spectrum image evidencing the presence of two distinct regions with dif-

ferent plasmon energies. (c) Bulk plasmon peaks extracted from the spectrum image at the n-

doped (green) and p-doped (red) sections. 

 

CL measurements were carried out in order to access the optical characteristics of the p-n junction 

and to link them to the compositional characterization previously presented. In Figure 4.7, red 

corresponds to the emission centered at 1.73 eV, green to1.93 eV, and blue to 1.98 eV. This color 

coding identifies three different regions of emission along the NW long axis, which overlap with 

the positions of the n- and p-doped sides of the junction as well as with the transition region 

between these two. Figure 4.7c shows CL spectra representative of the three distinct areas 
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observed in Figure 4.7b. The CL data in both Figure 4.7(b, c) shows that the emission energy 

from the n-doped segment is lower (1.73 eV) than from the p-doped one (1.93 eV). The emission-

energy difference between the p- and n-type regions can be mainly explained by the different 

alloy compositions observed by EDX and EELS [237]. Yet, the experimental emission energy is 

lower than the expected band gap; in particular, in the p-doped segment, the emission is a few 

tens of milli-electron volts lower than the low-temperature band-gap values reported in the liter-

ature [237,238]. The exciton binding energy of bulk GaInP is too small to justify this red-

shift [239]. On the contrary, in both the p- and n- regions, we estimate high concentrations of 

dopants (exceeding 1018 cm−3), which can cause a narrowing of the optical band gap and account 

for the observed redshift. It is also interesting to notice that the redshift is less pronounced in the 

n-type NW segment. Since Si is used as a dopant in this segment, this is probably a consequence 

of the compensation that affects the Si doping [240]. At the interface, both peaks are visible and 

show a blueshift with respect to those observed farther from the interface. Such a blueshift is more 

pronounced in the case of the emission-related with the p-type segment (1.98 eV) than the one 

related with the n-type segment (1.74 eV). Here, the CL beam mainly probes the depletion region 

of the p-n junction. As a result, the emission energy blueshifts and approaches the electronic band-

gap energy (2.04 eV for the p-type Ga0.55In0.45As segment and 1.74 eV for the n-type Ga0.33In0.67As 

segment [237]). Other phenomena may also contribute to the shift of the emission energy in CL. 

For instance, the high-power density of the electron beam can blueshift the emission by band-gap 

filling [241], and alloy reordering is reported to redshift the GaInP emission by 100 meV [242]. 

However, the fact that the CL signal blueshifts at the p-n interface and redshifts elsewhere with 

respect to the intrinsic band gap supports the role of the dopant levels as a mediator of the ob-

served luminescence. 

In conclusion, we have demonstrated the first monolithic integration of GaxIn(1-x)P vertical NWs 

on (111)-oriented Si substrates by using TASE. By employing a combination of aberration-cor-

rected HAADF-STEM imaging and spectroscopy techniques, we have measured the structural 

and compositional properties of intrinsic and doped GaxIn(1-x)P NWs. We show that, in the absence 

of dopants, TASE allows growing highly homogeneous NWs with a zinc-blende structure and a 

high density of planar defects. Next, our observations show that the addition of Zn atoms as p-

dopants results in a clear reduction of the number of stacking faults with a subsequent increase of 

the Ga incorporation, proving that the preferential growth of the zinc-blende phase is not uniquely 

associated with a modification of the wettability of the metal nano-catalyst, as previously re-

ported [229,243]. Finally, by performing CL measurements, we provide experimental evidence 

that donor and acceptor energy levels are introduced in the energy gap by the dopant atoms. The 

results presented here provide new insights into the integration and doping of ternary III-V NWs 

on the Si platform for the next generation of photovoltaic and optoelectronic devices. 

 



Chapter 4.  Doping investigation of vertical nanowires for PV applications  

81 

 

Figure 4.7 – SEM image of the doped NW investigated by CL. (b) False-colored CL map corre-

sponding to the green window in panel (a) extracted from the CL spectrum image evidencing the 

presence of three distinct regions with different emission energies. (c) Emission bands extracted 

from the spectrum image at the bottom n-doped (green) segment, top p-doped (red) segment, and 

the interface (blue). The dashed lines highlight the emission peaks 1.73 eV (red),1.93 eV (green), 

and 1.98 eV (light blue) used for the CL map. 

 

This section is adapted with permission from N. Bologna et al. Dopant-Induced Modifications of 

GaxIn(1–x)P Nanowire-Based p–n Junctions Monolithically Integrated on Si(111). ACS Appl. Ma-

ter. Interfaces, 2018, 10 (38), pp 32588–32596. Copyright (2018) American Chemical Society. 
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4.3    Investigation of electrostatic potential in doped GaAs nanowires 

by off-axis holography  

The off-axis holography investigations were performed on GaAs NWs instead of the previous 

GaxIn(1-x)P samples. In fact, the ternary compounds showed compositional inhomogeneities able 

to affect the phase variations. Such compositionally induced variations of the MIP  are of the 

order of 0.08 V (calculated using the equations given in [244,245]) - i.e. smaller than the expected 

variation for the built-in potential due to p-n doping implementation. Nevertheless, we still de-

cided to perform the holography measurements on the binary samples to avoid having to deal with 

compositional variations within the same NW and between different NWs.  Holography experi-

ments were performed on GaAs NWs with different dopants and concentrations. The first inves-

tigation was performed on p-n junctions with Zn and Si as p- and n-dopants, respectively. The 

nominal concentrations were the same as those reported in the previous section of this chapter, 

i.e. above 1.0 × 1018 cm−3. The microscope was set with a spot size 3 and average electron beam 

current density equal to 0.45 nA nm-2, and the applied biprism voltage was chosen in the 120-190 

V range, corresponding to 6-9 nm in spatial resolution. In order to avoid saturating the camera, 

exposure times were set in the 5-13 second range depending on the applied voltage and selected 

magnification. Figure 4.8a shows the electron hologram of a 1112 nm long NW. The extraction 

of the amplitude and phase components from the acquired holograms was carried out by the pro-

cedure explained in detail in section 2.1.3. Panels (b) and (c) display the amplitude and phase 

images extracted from the hologram, and the corresponding line profiles averaged over 17 pixels 

obtained along the white dashed lines are shown in panels (d) and (e), respectively. The line pro-

file of the amplitude image does not show large variations in intensity revealing that the diameter 

of the nanowire does not change significantly from the p- to the n-section, although a slight de-

crease in thickness is perceptible. In general, the amplitude modulation can be induced by differ-

ent factors that could influence at the same time the phase image, adding more difficulty to the 

data interpretation. For example, inelastic interaction and thickness distribution can modify the 

amplitude image. Furthermore, interference effects in the crystal, like dynamic and Fresnel dif-

fraction effects could affect the overall interpretability [246]. In fact, the dark contrast regions 

present in all the following amplitude images, especially at the edges of the NWs, can be con-

nected to these effects rather than crystallographic imperfections of the NWs. In fact, HAADF-

STEM imaging has been performed on each sample dismissing any correlation between the dark 

contrast and the local crystal structure. In the particular NW of Figure 4.8, at around 900 nm from 

the beginning of the NW, a sudden decrease in the intensity of the profile in Figure 4.8d related 

to the presence of the Lacey carbon support is visible. 
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Figure 4.8 – (a) Hologram of a GaAs NW exhibiting a not well-defined p-n junction. (b) Ampli-

tude and (c) phase images reconstructed based on the hologram shown in panel (a). (d, e) Corre-

sponding line profiles averaged over 17 pixels obtained along the white dashed lines indicated in 

panels (b, c), respectively. The color bar indicates the phase in radians.  
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On the other hand, a continuous decrease in the phase line profile in Figure 4.8e is visible from 

the beginning of the nanowire to about 750 nm, where the phase undergoes a rise until the top end 

of the nanostructure. Moreover, the carbon support contributes to the profile with a strong phase 

decrease in a limited region of the sample from 900 to 1000 nm. Surprisingly, the line profile 

extracted from the phase image (Figure 4.8e) does not reveal any sharp p-n transition in the nan-

owire, as shown in other published experiments [247]. For this type of composition and doping 

amount, the built-in potential should be around 1.53 V, corresponding to a phase variation of circa 

1 rad. However, this is not detectable in our phase profile. This could be attributed to the diffusion 

of Zn dopants from the p- to the n-segment, caused by a too high growth temperature or too long 

growth time. However, a careful inspection of the line profile reveals a possible depletion region 

at around 650-750 nm from the Si-NW interface.  

A magnified image of the white square in Figure 4.8c is shown in Figure 4.9a. At this higher 

magnification, it is possible to uncover the contribution of structural planar defects on the phase 

component. In fact, in the corresponding line profile of Figure 4.9b, overlaid with the gradual 

phase decrease, three small peaks are perceptible at 140 nm, 220 nm and 310 nm from the inter-

face with the Si seed. They are twin boundaries and stacking faults and are highlighted with three 

arrows. Each planar defect contributes to the phase profile with a reduction of ~0.2 rad. The var-

iation in phase due to the presence of planar defects has already been studied on similar sys-

tems [248–250]. In fact, it has been demonstrated that potential fluctuations might be present at 

the interface between planar defects due to a variation of the stacking sequence and segregation 

phenomena. The observation of these phase variations due to planar defects confirms that the 

experimental parameters used in the holography measurements allows for a spatial resolution of 

6-9 nm. Such spatial resolution would allow us to localize the depletion region whose lateral 

extension is expected to be in the range of 60-70 nm.   

 

    

Figure 4.9 – (a) Magnified phase image of the white square in Figure 4.8c showing a high density 

of planar defects present in the NW. (b) Line profile acquired along the dashed line in panel (a) 

highlighting the contribution of the planar defects on the phase information. The location of three 

a) b) 
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major planar defects is indicated with arrows in both panels although many other planar defects 

are also visible. The color bar indicates the phase in radians.  

 

As the thickness (and geometry) of the NW can have a significant effect on the phase shift, and 

in order to differentiate it from the one induced by the doping atoms, a simulation of the phase 

changes through a cylindrical NW with same experimental dimensions was performed. As ex-

plained in chapter 2.1.3, the phase shift in the vacuum surrounding the NW is zero. Thus, we 

applied a threshold value to the phase image in order to extract the variations in the NW diameter. 

In particular, we first applied a rotation to the phase image in order to vertically align the NW. 

Then, for each horizontal row of pixels in the image, we extracted the NW diameter and derived 

the corresponding thickness profiles by using the coversine function assuming a cylindrical sym-

metry for the NW. By merging all the thickness profiles a two-dimensional thickness map t(x,y) 

was obtained and used for the calculation of the phase map. For this particular NW, we simulated 

the SiO2 template as well since it also contributes to the reconstructed phase. Actually, our simu-

lation comprises both a cylindrical core representing the GaAs and an outer hollow cylinder cor-

responding to the template. The Si seed was neglected for the present analysis. In order to simulate 

the phase variation of this core-shell nanostructure, equation 2.27 was applied with the following 

values: CE = 6.5414x106 rad V-1 m-1 (calculated based on the microscope’s parameters), VGaAs = 

14.1 V and VSiO2 = 10 V, which are standard values for this type of materials [244,251], and the 

calculated t(x,y). Therefore, the simulated phase map shall only reflect the phase variations due 

to changes in thickness and geometry of the NW as no dopant atoms are considered in the calcu-

lations (the same is true for the successive phase maps). The resulting simulated phase map is 

shown in Figure 4.10b together with the experimental one in panel (a). The line profiles in Figures 

4.10 (c) and 4.10(d) extracted along the black dashed transversal lines show the good agreement 

between the simulated and experimental data. In both graphs the silicon oxide shell is clearly 

visible from the saddle points of the line profiles.   

More interesting, however, are the phase variations along the NW longitudinal direction as they 

shall provide information about the incorporation of dopants in the structure. This is shown in 

Figure 4.10e, where the blue and green profiles were extracted from the longitudinal dashed lines 

indicated in the experimental and simulated maps, respectively. Note that both profiles display a 

similar behavior with a continuous decrease of the overall phase from the Si-GaAs interface to 

the region right before the carbon strip. This effect can be reasonably associated to a thickness 

variation from the bottom to the top of the NWs. However, the difference between the two profiles 

is not constant and is particularly larger at the bottom part of the NW. At this position the dis-

crepancy is about 1.4 rad and might be connected to the doping levels in the material which would 

further raise the phase magnitude at the n-segment with respect to the p-segment. However, no 

conclusive statement about the presence of a p-n junction in this NW can be made from the present 

data.  
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Figure 4.10 – (a) Experimental and (b) simulated phase maps of the NW in Figure 4.8. The color 

bar indicates the phase in radians. (c) Experimental and (d) simulated line profiles obtained along 

the transversal black dashed lines indicated in panels (a) and (b), respectively. (e) Comparison 

between the longitudinal line profiles obtained along the blue and green dashed lines indicated in 

the experimental and simulated phases of panels (a) and (b). 
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Given the small length of the NWs (~1000 nm), it was very challenging to transfer them on the 

carbon grid by gently rubbing it against the chip’s surface. This procedure resulted in a very low 

success rate. Moreover, only very few of the transferred structures were suitable to be investigated 

by off-axis holography as it is required the presence of vacuum regions close to the area of inter-

est, so that the reference wave (propagating in vacuum) could be overlapped with the object wave, 

as explained in section 2.1.3. Finally, we also had to disregard those NWs whose initial part 

(where the p-n junction was expected) was lying on top of a strip of Lacey carbon because, as 

seen in Figure 4.8, carbon induces a strong phase change. Therefore, a new strategy to obtain 

longer NWs without increasing too much the growth time was adopted. It consisted in growing 

an additional GaAs SAG segment on top of the TASE grown NW. This strategy allowed trans-

ferring many more NWs from the Si substrate to the carbon grid, increasing the probability to find 

suitable structures for the holography experiments.  

The TASE/SAG grown hybrid nanostructures are shown in the SEM images of Figure 4.11. Panel 

(a) is an overview image of the sample showing the obtained vertical NWs, while in panel (b) a 

magnified image of a single NW exhibits the sections grown with the two different methods: the 

first part (consisting of Si and GaAs) is grown with TASE and the second part (GaAs) is grown 

with the SAG process. Then, Figure 4.11c reveals the hexagonal faceting of the SAG section 

highlighting the six equivalent {112} facets (not present when the NWs are grown with the TASE 

growth technique). 

 

 

Figure 4.11 – (a) SEM overview image of the GaAs NWs grown with the TASE/SAG hybrid 

growth. (b) High magnification image of a single NW showing the TASE and SAG sections.       
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(c) Detail of a hybrid NW, whose SAG grown section clearly exhibits hexagonal faceting with 

six equivalent {112} facets.  

 

The GaAs NWs grown in this fashion consisted of a n-doped section (with Si) between two in-

trinsic/undoped regions. A typical NW investigated by holography is shown in Figure 4.12. Both 

the amplitude and phase images are shown in panels (b) and (c), respectively, and were extracted 

from the electron hologram of panel (a). The line profiles acquired along the white dashed lines 

of the phase and amplitude images are given in panels (d) and (e). From the amplitude image in 

Figure 4.12b, the NW appears very homogeneous without any detectable difference between the 

TASE and SAG sections. Only a slight increase in the diameter is visible in the amplitude image 

and perceptible in the corresponding line profile at ~425 nm, as highlighted by the black arrows. 

However, different segments are visible in the phase image of Figure 4.12c and clear phase vari-

ations are revealed in the line profile of Figure 4.12e. Thus, three distinct regions can be identified: 

a first region with a constant phase decrease; then a second region with a plateau from 275 to 400 

nm; and finally, a third region exhibiting a sharp increase of the phase before stabilizing at ~7.5 

rad. Similarly to the NW shown in Figure 4.8, a phase gradient is present in the TASE section, 

which might be associated to a variation in the NW diameter. However, the second and third parts 

of the phase map deserve a more insightful discussion on the possible causes inducing such vari-

ations. First of all, the plateau defining the second region might correspond to the n-doped seg-

ment of the NW, which is found, as expected, in the last region of the TASE grown segment. 

However, the i-n-i doping incorporation should induce an enhanced phase shift for the n-doped 

region with respect to the intrinsic ones. Additionally, it is highly unlikely that the sharp phase 

jump observed at 400 nm is caused by a n-i transition. Finally, a bump can be identified within 

the plateau region, which could potentially be related to an i-n transition. However, from these 

preliminary data, it was difficult to advance more concrete conclusions. 
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Figure 4.12 – (a) Electron hologram acquired from a GaAs NW exhibiting i-n-i junctions. (b) 

Amplitude and (c) phase images reconstructed from the hologram shown in panel (a). (d, e) Cor-

responding line profiles obtained along the white dashed lines indicated in panels (b, c), respec-

tively. The color bar indicates the phase in radians. 
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In order to clarify the charge-doping-induced phase variations present in this NW, a simulation 

study similar to the one performed for the NW in Figure 4.8, was here conducted applying the 

same procedure. However, the current NW presented a very different geometry. As explained 

above, the first TASE segment grown with TASE has a cylindrical shape, while the second section 

grown with the SAG approach presents a hexagonal geometry. For this reason, the implementa-

tion of the coversine function was suitable only for the first section. For the second part, it was 

necessary to first understand the orientation of the {112} facets with respect to the incident elec-

tron beam, i.e. whether the hexagonal nanowire was lying on a facet or on an edge of the hexagon. 

A transversal line profile of the phase map across the SAG segment is shown with the blue color 

in Figure 4.13c and it clearly demonstrates that the nanowire sits on an edge. Once the orientation 

of the hexagon is known, the simulated phase map shown in Figure 4.13b can be built by adding 

together the cylindrical and hexagonal segments. In order to highlight the two different geome-

tries, present along the NW, two different pairs of line profiles were acquired in two different 

regions and compared in panels (c) and (d). Panel (d) shows the simulated and experimental phase 

profiles in the first region of the NW, i.e. the cylindrical region at the bottom grown by TASE. 

The agreement between the two profiles is very good (note here that the SiO2 template is not 

present in this NW). Panel (c) displays a similar comparison for the SAG NW section with hex-

agonal geometry. Also in this case, an excellent agreement is achieved throughout the entire sec-

tion without any particular discrepancy between the blue and the green lines. Here, smoothing 

functions for the edges of the simulated hexagon were necessary to improve the overlapping of 

the profiles. 

Then, we compared the phase profiles obtained along the longitudinal direction of the NWs in 

order to differentiate the phase variations due to changes in geometry/thickness from those in-

duced by the doping elements. The comparison is shown in Figure 4.13e. The overall trend of the 

two profiles is fairly similar but a few differences can be noted. As earlier suggested in the dis-

cussion of Figure 4.12, the sharp phase jump observed at 400 nm is here confirmed to be uncon-

nected to any effect induced by the dopant atoms. In fact, the same abrupt phase change is visible 

across the simulated profile between the cylindrical and hexagonal sections of the NW, where 

only the electrostatic potential of GaAs was used. This result suggests that this phase jump is 

purely due to a change in the geometry/thickness of the NW as it transitions from a cylindrical to 

a distorted hexagonal geometry. Another difference is observed in the middle “plateau” region. 

The simulation shows, as expected, a completely flat profile because in this area both the geom-

etry and thickness of the NW are constant. However, as previously discussed, the experimental 

profile shows a small bump in the phase magnitude which might be related to the presence of n-

dopants in this specific region. 
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Figure 4.13 – (a) Experimental and (b) simulated phase maps of the NW in Figure 4.12. The 

TASE (SAG) section is located at the bottom (top). The color bar indicates the phase in radians. 

Comparison of the transversal experimental and simulated line profiles in the TASE (d) and SAG 

(c) regions. (e) Comparison between the longitudinal experimental and simulated line profiles 

acquired along the blue and green dashed lines of panels (a) and (b), respectively. The same color 

code applies to all graphs. 
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Another NW with the same doping profile (i-n-i) and geometrical characteristics, i.e. grown using 

the TASE/SAG hybrid approach, was analyzed in order to confirm the observations advanced for 

Figure 4.13. The acquired hologram is shown in Figure 4.14a where the Si seed is visible in the 

lower left corner. The reconstructed amplitude and phase images are presented in panels (b, c). 

Even though the amplitude contribution looks less homogeneous than the previous case due to 

the presence of planar defects, the overall trend is constant with a slight increase of the intensity 

from left to right due to a reduction in thickness. However, a local minimum is visible in the line 

profile of panel (d) at around 500 nm and it is also visible in the amplitude image as a short dark 

segment. This might be induced by a very high concentration of planar defects located in that very 

small region or due to a local thickness/geometrical variation. The phase image of the NW can be 

separated in three different regions from left to right: (I) a constant phase region in the TASE 

segment; (II) a plateau with a lower phase value in the TASE segment; (III) a flat region display-

ing a larger phase shift in the SAG segment. This becomes clearly visible in the corresponding 

phase line profile shown in panel (e). However, some discrepancies with respect to the NW ana-

lyzed in Figure 4.12 are observed and are here addressed. First, the initial TASE segment does 

not exhibit a gradual phase decrease as observed in the two previous NWs; instead it shows a 

roughly flat phase of about 8 rads. Second, the plateau region in this particular NW is much more 

visible than in the previous NW and it spans from 350 from 500 nm. Then, at 500 nm, the TASE 

to SAG transition takes place as observed by the abrupt phase jump.   

The region II with its pronounced bump, visible in the NWs of both Figs. 4.12 and 4.14, is pre-

sumably caused by the presence of dopant atoms. However, at this stage it is not clear why two 

minimums are observed at the I-II and II-III interfaces. 
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Figure 4.14 – (a) Electron hologram of a second GaAs NW exhibiting the same characteristics (i-

n-i junctions and TASE/SAG segments) as in the previous NW. (b) Amplitude and (c) phase 

images reconstructed from the hologram shown in panel (a). The color bar indicates the phase in 

radians. (d, e) Amplitude and phase profiles extracted along the white dashed lines indicated in 

panels (b, c), respectively. 
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Again, for this NW we attempted to interpret the observed phase variations by simulating the 

phase map by taking into account the shape of the NW and the built-in potential of GaAs only, 

and by comparing it with the experimental one. In order to replicate the same geometry, we veri-

fied, through the acquisition of transversal line profiles, the shape of each NW section. The trans-

versal lines are visible as black dashed arrows in the experimental phase image of Figure 4.15a 

and the corresponding extracted profiles are displayed in blue in Figure 4.15(c) and 4.15(d). Here, 

it is evident that the segment II of the NW, as well as the third one, has a hexagonal geometry, 

while section I is cylindrical. Moreover, the orientation of the hexagon is different with respect 

to the one in the previous NW. In fact, here the {112} facet, and not the edge, is oriented upwards. 

This geometry was taken into consideration for simulating the phase image of the NW and is 

presented in Figure 4.15b. The experimental and simulated line profiles in panels (c) and (d) show 

a very good agreement along both transversal sections obtained in segments I and II. In Figure 

4.15e a comparison between the longitudinal experimental (blue) and simulated (green) profiles 

is shown. Several conclusions can be extracted from comparing these data: 

1. At ~350 nm, the observed abrupt phase shift separating regions I and II is mainly due to a 

change in the NW geometry from cylindrical to hexagonal. Thus, this jump appears to be uncon-

nected to any effect induced by the dopant atoms. However, as opposed to the results obtained 

for the previous NW in Figure 4.13, here the change in geometry induces an increase in the phase 

shift. This might be attributed to the different orientation of the hexagon with respect to the inci-

dent electron beam. 

2. At 500 nm, the observed net phase shift separating regions II and III cannot be related to 

changes in the geometry and the thickness of the NW as they are here constant. Thus, we suspect 

that the n-dopant species were incorporated in this particular NW in the SAG segment instead 

than in the TASE segment. 

3. Finally, as mentioned above, a i-n-i type junction should display an increase in the phase shift 

for the n-doped segment relative to the intrinsic segments. However, in all the NWs examined in 

the present study we observe the opposite behavior. Here, it is also important to recall that de-

pending on their concentration, Si dopants can act either as n- and p-dopants. In fact, for high 

doping concentrations (higher than 1018)  the Si dopants are incorporated as acceptors on the As 

lattice sites [240]. As the Si concentration in our NWs is ~ 1018, we cannot rule out that the Si 

dopants are incorporated as acceptors leading to p-type conductivity.   
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Figure 4.15 – a) Experimental and (b) simulated phase maps of the NW in Figure 4.14. The TASE 

(SAG) section is located at the bottom (top). The color bar indicates the phase in radians. Line 

profiles extracted from the experimental and simulated phase maps along two different transversal 

directions in the TASE and SAG segments (indicated with black dashed lines) are presented and 

compared in panels (d) and (c), respectively. (e) Comparison between the experimental and sim-

ulated profiles along the longitudinal direction. Blue and green lines correspond to experimental 

and simulated profiles, respectively. 
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In conclusion, a couple of additional aspects on the holography experiments here performed must 

be discussed. For example, the use of EELS to estimate the thickness distribution along the NW 

could help to discriminate the thickness contribution to the MIP with respect to the one induced 

by the active dopants present in the NWs [153]. Alternatively, a calibration of the amplitude im-

age can be performed. In fact, it is known that in holograms where vacuum is used as a reference, 

the amplitude image can be normalized to yield unity in the vacuum. In absence of strong dynam-

ical diffraction effects, the normalized amplitude is an exponentially decreasing function with the 

specimen thickness [252,253]. In this way, being the inelastic mean free path and the theoretical 

MIP of the semiconducting material constituting the NW known, the phase contribution of the 

nominal undoped sample can be subtracted from the experimental phase to isolate the contribution 

due to the active doping. These approaches are alternative methods to the geometrical reconstruc-

tions applied during our simulations. However, it must be taken into account that our samples 

present strong diffraction effects which might hinder the use of the alternative approaches. More-

over, the application of reverse biasing at the NWs directly in the microscope by in-situ experi-

ments could increase the built-in potential at the p-n junction. This last approach, which was al-

ready studied in literature [254,255], would certainly reduce the difficulties in mapping active 

dopant regions in our III-V NWs.  

Finally, it is important to consider that, given the high surface-to-volume ratio of our nanostruc-

tures, inactive layer thickness and surface charging could play a key role in making the interpre-

tation of the phase profiles extremely complicated. In fact, the surface states and inactive layer 

thickness effects have already been demonstrated experimentally and with simulations and their 

effect is to reduce the overall phase variation and consequently the detectable potential of the 

sample [256–261]. Moreover, in the first nanowire investigated in this work by off-axis holog-

raphy, the SiO2 template nanotube is still present and could represent an additional source of 

surface charging [259]. Lastly, the presence of defects at the NW-SiO2 interface could also impact 

the detected phase. Even though dopant profiling has been measured by off-axis holography in 

similar samples with comparable dopant concentrations [247], our NWs could be more affected 

by surface states and superficial defects due to the SiO2-NW interface. Methods to overcome these 

issues have been demonstrated during the last few years, where the use of high dopant concentra-

tions and the thermal annealing might reduce these detrimental effects [260,262]. These ap-

proaches might improve the quality of the NWs and, consequently, the interpretation of the phase 

maps also in our samples.  In conclusion, I would like to mention the issue of the sample prepa-

ration. For the present experiments, the NWs were directly transferred to a TEM carbon grid by 

scratching the chip’s surface. For this reason, intrinsic geometrical effects arise while observing 

the entire nanostructure, i.e. different cross-sectional geometries and changes in the projected 

thicknesses. By preparing a cross-section TEM specimen by FIB allows to reduce these effects. 

Indeed, several studies show that the use of the FIB might reduce the effects induced by an inho-

mogeneous thickness of the sample [170,255]. On the other hand, damage induced by FIB prep-

aration, especially on the surface of the specimen, could increase the detrimental effects associ-

ated with surface state and, consequently, reduce the detected variation in phase. However, it is 

not excluded that surface charging and inactive layers are still present in our samples and that 

might be one of the reasons why the interpretability of the phase maps is so challenging for our 
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experiments. One last remark is that we cannot exclude band bending phenomena at the wire 

surface which could add an additional level of complexity to the interpretation of the recon-

structed phase maps [259,262]. For all these reasons, the measurements performed in this section 

concerning off-axis holography, especially the one reported in Figure 4.14, must be considered 

as preliminary results which require further investigations by optimizing the sample growth and 

its characterization. 
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 Conclusion & Outlook 

 

 

In this thesis, we have employed various TEM techniques to characterize III-V NWs grown by 

TASE. More specifically, we have focused on the analysis of structural defects and on the local 

electronic properties of different binary and ternary alloy NW systems grown on several differ-

ently oriented Si substrates. To this end, this thesis shall play a key role in the III-V NW integra-

tion in electronic and optoelectronic devices by using this novel epitaxy technique. 

In the first part of the thesis, we have shown that the wide growth parameter window tolerated by 

TASE allows obtaining planar defect-free GaAs NWs on a CMOS compatible substrate. In par-

ticular, varying temperatures and V/III ratios were applied in order to find the proper combination 

to achieve defect-free NWs. Moreover, as the NWs are grown in lateral hollow SiO2 templates, 

the morphology of the nanostructure remains unaffected regardless of the parameters used. This 

advantageous situation is not given in conventional growth methods like VLS and SAG, where 

both substrate and growth parameters might influence the final NW shape. Further, our findings 

strongly indicate that the formation of planar defects does not derive from strain effects, SiO2-

GaAs interactions, or surface impurities, but are solely consequence of the high susceptibility of 

the (111)B facet to twining. The realization of the first defect-free GaAs NW on a CMOS com-

patible substrate without the use of any metal catalyst represents an important step towards the 

integration of III-V NWs in commercial nanodevices such as MOSFETs or TFETs. These obser-

vations are expected to be transferable to other III-V semiconductor material systems, like InGaAs 

or InAs, for the development of industry-oriented devices. In fact, present efforts at IBM-Re-

search are placed to integrate ternary compounds like InGaAs in template oxides with shapes 

different from the classic cylindrical ones. The idea is to demonstrate InGaAs FinFETs integrated 

on Si by means of a novel template shape, i.e. planar oxide cavity. In theory, the continuous flow 

of precursors would allow to fill the entire oxide template and, by optimization of the various 

growth parameters, reduce the number of planar defects present in the device. Large improve-

ments concerning the ION current and the SS are foreseen. Moreover, III-V semiconductors grown 

on CMOS compatible substrates in SiO2 template ring cavities are planned in order to demonstrate 

optically active devices. In fact, defect-free GaAs and InGaAs nanostructures could be easily 

grown in such geometries creating micro-cavity lasers. These are only two among the possible 

innovative applications that TASE might bring to the present technology.  

5 
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In this thesis, a particular type of defect formed at the intersection of stacking faults, namely stair-

rod dislocations, occurring in planar GaAs NWs under certain growth parameters was also inves-

tigated. Stair-rod dislocations are characterized by the presence of single unpaired atomic columns 

which were identified as either Ga or As single-atomic columns by means of atomically-resolved 

EDX. Their effect on the electronic properties was investigated by means of DFT simulations. Ab 

initio calculations revealed an overall reduction in the energy gap with respect to the bulk material 

and the development of charge channels along the line defects, with a corresponding strong elec-

tric field between the channels. Thus, our results suggest the possibility to obtain strongly local-

ized potential paths within the NWs which might host free carriers upon appropriate doping and 

help improve the carrier separation along the different dislocation cores. The next step shall be to 

intentionally generate NWs with this type of line defects and to experimentally verify, through 

the use of bias spectroscopy and field-effect measurements, the validity of the simulated results. 

This could result in devices displaying strongly localized potential channels with improved con-

ductivity in the one-dimension. Recent studies have been performed in our group on InAs NWs 

integrated on CMOS compatible substrate, demonstrating ballistic mono-dimensional 

transport [263]. However, a stronger focus on the possible relationship with respect to the intrinsic 

atomic structure of such material could reveal a connection with the studies presented in this 

thesis. 

The second part of this research project dealt with the investigation of doping incorporation in 

different III-V NWs systems. To start with, we investigated the effects induced by p- and n-do-

pants on the composition, structure and properties of p-n GaxIn(1-x)P NWs by comparing undoped 

and doped samples. We observed a reduction in planar defect density due to the incorporation of 

Zn atoms in the p segment. Although this effect was previously reported to be connected to a 

variation in the wettability angle of the metal seed particle, our results demonstrate that this effect 

is also observed for catalyst-free grown NWs, suggesting that other phenomena might be respon-

sible for the stacking sequence. Moreover, we observed a larger incorporation of Ga and In atoms 

in the p and n segments, respectively. Thus, should be taken into account when targeting a specific 

composition for a certain device. Finally, CL measurements carried out on these NWs revealed a 

variation in the band gap along the p-n junction, providing the first experimental evidence for the 

presence of dopant-induced energy levels in these nanostructures. Our results about the influence 

of doping on the chemical composition of the GaxIn(1-x)P NWs is of paramount importance to 

improve the TASE synthesis and growth processes, and to optimize the performance of the solar 

cells made therefrom.  

The feasibility of off-axis electron holography for quantitative electrostatic potential mapping of 

GaAs NWs with different doping profiles was evaluated towards the end of thesis. Our prelimi-

nary holography results suggest that many of the observed phase shifts arise from thickness and 

geometry changes occurring along the NWs grown with a hybrid TASE/SAG approach. Thus, the 

analysis of the experimental holography data required the construction of simulation models to 

help single out the phase shifts induced by the incorporated dopants. However, due to the com-

plexity and inhomogeneity of the analyzed NWs, there remain still many open questions and 

challenges to address. These could be addressed with more homogeneous GaAs nanowires with 

controlled shape and dopant incorporation and by verifying the holography results with other 
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experimental techniques, such as Raman spectroscopy and CL-TEM. Moreover, the possibility to 

perform in-situ electrical measurements in the TEM can open new possibilities to study doping 

incorporation in TASE grown GaAs NWs.   

In summary, this research project has addressed thoroughly two main topics, namely the growth 

of defect-free NWs and the effect of dopant incorporation by TASE and has brought up several 

key results for the future integration of NWs in electronic and photovoltaic devices. This has been 

possible by means of several TEM techniques, as TEM provides the spatial resolution to study 

the structure and properties of materials at the atomic level. We consider these results to play a 

key role in the advancement of III-V nanowires integration in electronic and optoelectronic de-

vices and anticipate that TASE will open new paths for novel device architectures, although fur-

ther research efforts are certainly needed to further optimize the quality and homogeneity of the 

NWs.   
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