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As you set out on the way to Ithaca

hope that the road is a long one,

filled with adventures, filled with understanding.

The Laestrygonians and the Cyclopes,

Poseidon in his anger: do not fear them,

you’ll never come across them on your way

as long as your mind stays aloft, and a choice

emotion touches your spirit and your body.

The Laestrygonians and the Cyclopes,

savage Poseidon; you’ll not encounter them

unless you carry them within your soul,

unless your soul sets them up before you.

Hope that the road is a long one.

Many may the summer mornings be

when—with what pleasure, with what joy—

you first put in to harbors new to your eyes;

may you stop at Phoenician trading posts

and there acquire fine goods:

mother-of-pearl and coral, amber and ebony,

and heady perfumes of every kind:

as many heady perfumes as you can.

To many Egyptian cities may you go

so you may learn, and go on learning, from their sages.

Always keep Ithaca in your mind;

to reach her is your destiny.

But do not rush your journey in the least.

Better that it last for many years;

that you drop anchor at the island an old man,

rich with all you’ve gotten on the way,

not expecting Ithaca to make you rich.

Ithaca gave to you the beautiful journey;

without her you’d not have set upon the road.

But she has nothing left to give you any more.

And if you find her poor, Ithaca did not deceive you.

As wise as you’ll have become, with so much experience,

you’ll have understood, by then, what these Ithacas mean.

(Ithaca, C.P. Cavafy, translated by D. Mendelsohn)
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Abstract
Covariance operators play a fundamental role in functional data analysis, providing the canon-

ical means to analyse functional variation via the celebrated Karhunen-Loéve expansion.

These operators may themselves be subject to variation, for instance in contexts where multi-

ple functional populations are to be compared. Statistical techniques to analyse such variation

are intimately linked with the choice of metric on the space of such operators, as well as with

their intrinsic infinite-dimensionality.

We will show that we can identify the space of infinite-dimensional covariance operators

equipped with the Procrustes size-and-shape metric from shape theory, with that of centred

Gaussian processes, equipped with the Wasserstein metric of optimal transportation. We then

describe key geometrical and topological aspects of the space of covariance operators en-

dowed with the Procrustes metric. Through the notion of multicoupling of Gaussian measures,

we establish existence, uniqueness and stability for the Fréchet mean of covariance operators

with respect to the Procrustes metric. Furthermore, we provide generative models that are

canonical for such metrics.

We then turn to the problem of comparing several samples of stochastic processes with respect

to their second-order structure, and we subsequently describe the main modes of variation

in this second order structure. These two tasks are carried out via an Analysis of Variance

(ANOVA) and a Principal Component Analysis (PCA) of covariance operators respectively. In

order to perform ANOVA, we introduce a novel approach based on optimal (multi)transport

and identify each covariance with an optimal transport map. These maps are then contrasted

with the identity with respect to a norm-induced distance. The resulting test statistic, cali-

brated by permutation, outperforms the state-of-the-art in the functional case. If the null

hypothesis postulating equality of the operators is rejected, thanks to a geometric interpre-

tation of the transport maps we can construct a PCA on the tangent space with the aim of

understanding sample variability. Finally, we provide a further example of use of the optimal

transport framework, by applying it to the problem of clustering of operators. Two different

clustering algorithms are presented, one of which is innovative. The transportation ANOVA,

PCA and clustering are validated both on simulated scenarios and real dataset.

Keywords: Fréchet mean, functional ANOVA, functional clustering, functional data analysis,

functional PCA, optimal transportation, phase variation, Procrustes distance, Wasserstein

distance.
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Résumé
Les opérateurs de covariance jouent un rôle fondamental dans l’analyse de données fonc-

tionnelles, car ils fournissent le moyen canonique d’analyser la variation fonctionnelle via la

célèbre expansion de Karhunen-Loéve. Ces opérateurs peuvent eux-mêmes être sujets à des

variations, par exemple dans des contextes où plusieurs populations fonctionnelles doivent

être comparées. Les techniques statistiques permettant d’analyser une telle variation sont

intimement liées au choix de la métrique sur l’espace de ces opérateurs, ainsi qu’à leur dimen-

sionnalité infinie.

Nous montrons que nous pouvons identifier l’espace des opérateurs de covariance à dimen-

sion infinie équipé avec la métrique procustéenne de “size-and-shape”, avec celle des proces-

sus gaussiens centrés, équipé de la metrique de Wasserstein. Nous décrivons ensuite les prin-

cipaux aspects géométriques et topologiques de l’espace de opérateurs de covariance dotés de

la métrique procustéenne. À travers la notion du couplage-multiple des mesures gaussiennes,

nous établissons l’existence, unicité et stabilité pour le moyenne de Fr échet des opérateurs

de covariance par rapport à la distance de Procrustes. De plus, nous fournirons des modèles

génératifs canoniques pour une telle métrique.

Nous passons ensuite au problème de la comparaison de plusieurs échantillons de processus

stochastiques via leur structure de second ordre puis de la description des principaux modes

de variation de cette structure de second ordre. Ces deux tâches sont effectuées via une Analyse

de variance (ANOVA) et analyse en composantes principales (PCA) des opérateurs de cova-

riance, respectivement. Afin de réaliser une ANOVA, nous introduisons une nouvelle approche

basée sur un (multi) transport optimal suivi d’une identification de chaque covariance avec

une carte de transport optimale. Ces cartes sont ensuite contrastées avec l’identité par rapport

à une dis- tance induite par une norme. Le test statistique résultant, calibré par permutation,

surpasse la l’état-de-l’art dans le cas fonctionnel. Si l’hypothèse nulle postulant l’égalité des

opérateurs est rejetée, grâce à une interprétation géométrique du transport optimal, nous

pouvons construire une PCA sur l’espace tangent dans le but de comprendre la variabilité de

l’échantillon. Enfin, nous fournissons un autre exemple d’utilisation du transport optimal, en

l’appliquant au problème de partionnement (clustering) des opérateurs de covariance. Deux

algorithmes différents sont présentés, dont l’un est innovant. Ces méthodes d’ANOVA, de PCA

et de partionnement via transport optimal sont validés sur des scénarios simulés et sur des

données réelles.

Mots clefs : moyenne de Fréchet, Analyse de données fonctionnelles, transport optimal, va-
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riation de phase, distance de Wasserstein, distance de Procrustes, ANOVA functionelle, PCA

functionelle, clustering functionell
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Introduction

Thanks to advances in science and technology, more and more datasets over the last decades

are being sampled with increasingly high precision and are recorded in increasingly complex

forms. Examples of such complexity comprise data that are sampled so finely as to be assumed

to be smooth curves, or surfaces. These data are called functional and from a mathematical

perspective they are taken to be random elements of an infinite-dimensional space. Examples

of datasets include growth and temperature curves, electricity consumption curves, density

functions, speech recordings, satellite images, brain images, or DNA mini-circles vibrating in

solution [Ramsay and Silverman, 2005a, Pigoli et al., 2014b, Tavakoli and Panaretos, 2016].

Functional data analysis (FDA) is a branch of statistics dealing with the analysis of these

complex (functional) data objects. Most recently, research has been carried out on inferential

procedures concerning not only the functional curves but also their covariance operators

[Panaretos et al., 2010a, Fremdt et al., 2013, Pigoli et al., 2014a]. Covariances are key elements

in FDA. Their spectrum provides a singular system that allows to separate stochastic and func-

tional fluctuations of random elements, via the renowned Karhunen–Loève expansion. Such

singular systems also allow to write optimal finite-dimensional approximations of functional

data. Through these, we obtain means to carry out inferential procedures like functional

Principal Component Analysis (PCA), as well as regression and testing, both of which would

be otherwise ill-posed in infinite dimensions [Panaretos et al., 2010a, Tavakoli and Panaretos,

2016].

One may conceive of statistical applications where covariance operators may exhibit variation

of their own, and thus be taken to be the main object of statistical inference. Situations

displaying this kind of variability comprise cases when data curves are supposed to stem from

different functional populations (Pigoli et al. [2014a], Tavakoli and Panaretos [2016], see also

Chapter 3 of this thesis).

Research in this direction aims to quantify and understand their level of variability. First-order

variation is a classical problem in FDA, and concerns the variability across populations of their

mean structure. A further type of variation is manifested when the populations differ in their

smoothness and fluctuation properties. We call this second-order variation, and it arises when

the covariance operators of the various populations are distinct. Early studies concerning

this second-order variation were motivated through financial and biophysical applications
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[Benko et al., 2009, Panaretos et al., 2010a] and were followed by many more contributions

with a diverse span of applications (e.g. Horváth et al. [2013], Gabrys et al. [2010], Fremdt et al.

[2013], Kraus [2014]).

Most of these works, though different in the techniques they propose, share a common

assumption: they imbed covariance operators in Hilbert–Schmidt space, and carry out the

statistical inference with respect to the corresponding metric. The issue with employing the

Hilbert–Schmidt metric is that it implicitly assumes a linear structure, while covariances can

be seen as “squares” of Hilbert–Schmidt operators, and as such they are not closed under linear

operations. It is therefore desirable to employ statistical methods respecting this non-linear

geometry of the space.

In finite dimensions and in the statistical analysis of covariance matrices, the curved nature

of the space is well-documented, especially due to its connection with shape theory and the

problem of diffusion tensor imaging [Dryden et al., 2009, Schwartzman, 2006].

In infinite dimensions, the first steps in the direction of a non-linear analysis of covariances

were taken by Pigoli et al. [2014a]. With the goal of analysing phonetic variations across

Romance languages, they described a 2-sample testing procedure which is respectful of the

intrinsic geometry of covariances. To this purpose, they defined a functional extension of the

so-called Procrustes size-and-shape metric (abbreviated to just Procrustes metric hereafter)

and derived some of its properties: they showed that it is well-behaved with respect to finite-

dimensional projections and that is computationally valid in applications. They went on to

discuss Fréchet means – that is, the extension of linear averages to general metric spaces –

with respect to the Procrustes metric, arguing that they can be successfully computed via a

version of the Generalised Procrustes Algorithm [Gower, 1975]. In summary, their contribution

inaugurated the non-Euclidean statistical analysis of covariance operators. While doing so,

it produced many further questions about the Procrustes metric. For example, one might

wonder whether it is possible to deduce theoretical properties of the Fréchet mean, such

as existence and uniqueness, or whether the inference can be expanded into more general

procedures beyond 2-sample testing, such as functional Principal Component Analysis (fPCA).

Perhaps an even more relevant issue concerns the geometrical and statistical interpretation of

the Procrustes metric: the Procrustes size-and-shape distance for covariance matrices stems

from shape theory, and in view of that it comes with a well-rooted geometrical interpretation.

Can we establish an equivalent connection in the infinite-dimensional case, and gain a similar

understanding of the geometry of covariances under the Procrustes metric? This thesis sets

out to address these questions. In particular we will show that some of these problems can

be read through the lens of optimal transport and can be answered thanks to the intimate

connection between the Procrustes distance and the Wasserstein metric between Gaussian

processes.

The detailed structure of the thesis and a summary of its main contributions are given in the

next paragraph. The innovative results are mostly collected in Chapter 2 and Chapter 3 (with

the exception of Section 2.1.2 in Chapter 1). Chapter 2 is largely based on Masarotto et al.

[2018], while Chapter 3 is based on Masarotto et al. [2019], and it extends the application
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results found there.

Detailed structure of the thesis.

Chapter 1. Following the review of widely-known notions of operators on Hilbert spaces, we pro-

ceed towards reviewing basic concepts of (inference for) functional data (Section 1.1).

We pay special attention to the covariance structure of these data, which is highlighted

as a statistically interesting quantity in itself. Paragraph 1.1.4 addresses the problem of

registration of curves, which will be revisited in Chapters 2 and 3 due to its connection

with tangent space PCA.

Subsequently we describe the geometry of the space of covariances, both finite- and

infinite- dimensional (Section 1.2). This will require some concepts of statistical shape

theory (Section 1.2.3), of Wasserstein spaces and Optimal Transport (Section 1.3 with

a special focus on Gaussian processes 1.4). We conclude by treating the problem of

computing means in general metric spaces in Section 1.5.

Chapter 2. This chapter collects most of the theoretical contributions of the thesis. As mentioned

in the introduction, Pigoli et al. [2014a] initiated the study of second-order variation

across populations of functional data in a non-linear manner. Some of the research

questions (implicitly or explicitly) generated by their work were addressed in Masarotto

et al. [2018]. The chapter begins by making the connection between the Procrustes and

Wasserstein metrics explicit (Section 2.1). This will allow us to benefit from the rich

theory of Optimal Transport, which in turn will lead us to establish new results related

to existence, uniqueness and stability of the Fréchet mean of Gaussian measures on a

Hilbert space (Section 2.2). Section 2.3 gives details on the convergence and the practical

implementations of a gradient descent algorithm to compute the Fréchet mean, while

in Section 2.4 we present a generative statistical model compatible with the Procrustes

metric and linking it with the problem of registration (Paragraph 1.1.4).

Chapter 3. This chapter contains methods and results regarding the applied analysis on a dataset

of populations of covariances.

We begin by considering the problem of testing the hypothesis of equality of covari-

ances across the different populations. We view the testing problem through the lens of

the optimal multicoupling of Gaussian processes. Specifically, we adopt a novel trans-

portation perspective to introduce a new ANOVA test, translating the task of testing the

hypothesis of equality of covariance operators into that of testing whether the optimal

multicoupling between the corresponding centered Gaussian measures is “trivial”.

The 2-sample testing procedure of Pigoli et al. [2014a] has been generalised into K -

sample testing by Cabassi et al. [2017]. They present simulations illustrating state-of-

the-art performance of their method. We will show that the (multi)transport perspective

allows us to construct a 2- and K -sample test that is more powerful than other ap-

proaches when applied to functional data. Hypothesis testing is reported in Section 3.1.
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If the null hypothesis is rejected, Principal Component Analysis (PCA) offers a useful

tool to understand the differences within the data and describe the main mode(s) of

variation. The understanding of the Wasserstein geometry allows us to perform PCA on

the tangent space. To the best of our knowledge, this is the first instance of a functional

PCA on covariance operators that respects their intrinsic geometric features as trace-

class positive operators. We describe tangent space PCA in Section 3.2.

Clustering of operators is treated in Section 3.3. Two different clustering methods for

covariances are presented, one of which, coined soft clustering, is innovative.

Each Section in this Chapter contains a description of the methodology and data analy-

sis. Simulations are performed in a variety of scenarios. For convenience, we collected

them in Section 3.1.1.
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1 Overview

Functional data analysis is the field of statistics that treats the cases where the single data

atoms are continuous curves. In this chapter we review the basic literature regarding operators

in Hilbert spaces and (inference for) functional data (Section 1.1) with a special focus on

their covariance structure, which is highlighted as a statistically interesting quantity in itself.

We will then move to the geometrical structure of the space of covariances, both finite- and

infinite-dimensional (Section 1.2). This will require some concepts of Statistical Shape Theory

(Section 1.2.3) and of Wasserstein spaces and Optimal Transport (Sections 1.3 and 1.4). We

conclude by treating the problem of computing means in general metric spaces in Section 1.5.

1.1 Functional data analysis

A data set is called functional when its individual elements are of infinite dimension. Hence

these are distinct from high-dimensional data, whose dimension is larger than the sample

size, yet still finite. Functional data are thus taken to be random elements of an infinite-

dimensional space. Such space can be (and will often be, as we will see) non-linear. Another

identifying characteristic that separates functional from high-dimensional data, is that they are

assumed to vary smoothly in their domain. It makes sense therefore to consider notions such

as derivatives and continuous transformations of the domain (such as deformations) which

otherwise make no sense in the high-dimensional setting. The most common mathematical

setting for functional data consists of having a collection of independent realisations of a

random element X taking values on a separable Hilbert space H , most usually assumed to be

L2[0,1] or some reproducing kernel Hilbert subspace thereof. Before moving forward in the

characterisation of X , we recall some basic notions of operators on Hilbert spaces.

1.1.1 Operators on Hilbert Spaces

We follow Hsing and Eubank [2015] to recollect some basic facts about operators on Hilbert

spaces.
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Chapter 1. Overview

Let H be a real separable Hilbert space with inner product 〈·, ·〉H : H ×H →R, and induced

norm ‖ · ‖H : H → [0,∞). A linear map A : H → H is said to be bounded, or equivalently

continuous, if its operator norm is finite 1, i.e.

‖A‖∞ := sup{‖Ax‖H : ‖x‖H ≤ 1} <∞.

We might denote the operator norm simply by ‖·‖ if this does not give rise to misunderstanding.

The space of bounded operators on H equipped with the operator norm forms a Banach

space. A bounded operator A is called

• self-adjoint if A = A∗, where A∗ is the unique operator such that 〈A f , g 〉H = 〈 f , A∗g 〉H ,

for all f , g ∈H ;

• compact if for any bounded sequence { fn}n∈N ∈ H there exists a convergent subse-

quence of {A fn}n∈N.

A non-negative operator is a self-adjoint, possibly unbounded operator A, such that 〈Au,u〉H ≥
0 for all u in the domain of A. If in addition A is compact, then there exists a unique square

root, that is a non-negative operator whose square equals A. This will be denoted by either

A1/2 or
p

A. For any bounded operator A, A∗A is non-negative.

Associated with a linear map A : H →H there are the spaces:

• Dom(A) = the subset of H on which A is defined;

• Im(A) = {Ax : x ∈ Dom(A)};

• ker(A) = {x ∈ Dom(A) : Ax = 0};

called the domain, image and kernel of A respectively. We will also use the notation range(A)

for Im(A) and call it alternatively the range of A. Unless otherwise stated, we will take Dom(A)

to be the entire H space.

The rank of A is defined to be

rank(A) = dim(Im(A))

and it can be infinite. The closure of a set E will be denoted as E .

For a pair f , g ∈H , the tensor product f ⊗ g : H →H is the linear operator defined by

( f ⊗ g )u = 〈g ,u〉H f , u ∈H .

1In general the domains of definitions of A can be different, A : H →Y , but we restrict ourselves to a single
space here for clarity and relevance to the purposes of this thesis.
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1.1. Functional data analysis

In the following, to lighten the notation we will drop the subscript in 〈·, ·〉H unless there is a

risk of misinterpretation.

Similarly to what happens in finite dimensions, a compact, non-negative definite operator is

“diagonalizable”, in the sense of the next proposition, known as the Spectral Theorem:

Proposition 1. Let A be a compact, self-adjoint and non-negative operator. Then it admits a

spectral decomposition given by

A =
∞∑

i=1
λi (ϕi ⊗ϕi ) =

∞∑
i=1

λi 〈ϕi , ·〉ϕi ,

with {λi }∞i=1 and {ϕi }∞i=1 called the eigenvalues and the (orthonormal) eigenfunctions of A

respectively. Moreover, the set of non-zero eigenvalues is either finite or constitutes a sequence

decreasing to zero, and the associated set of eigenfunctions forms a basis for Im(A).

Note that λi and ϕi behave as in finite dimensions, in the sense that Aϕi =λiϕi , for any i .

A linear mapping A is one-to-one if ker(A) = {0}, and surjective if range(A) =H . When A is both

one-to-one and surjective it is said to be bijective. Bijective linear mappings are invertible, in

the sense that there exists a linear map A−1 : H →H such that A−1 A = I= A−1 A, I denoting

the identity operator in H . In general A−1 is only defined on a subspace (often dense) of H .

A bounded and compact operator is Hilbert–Schmidt (HS) if its Hilbert–Schmidt norm ‖ · ‖2 is

finite, where

‖A‖2 =
√

tr(A∗A).

The space of Hilbert–Schmidt operators equipped with the inner product

〈A1, A2〉HS =
∞∑

i=1
〈A1ei , A2ei 〉H

is itself a separable Hilbert space. Here {ei }∞i=1 can be taken to be any orthonormal basis of H .

A Hilbert–Schmidt operator is trace-class or nuclear if it has finite trace (nuclear) norm, i.e. if

‖A‖1 = tr
(p

A∗A
)

is finite.

It is well-known that

‖A‖∞ ≤ ‖A‖2 ≤ ‖A‖1

for any bounded linear operator A.
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Chapter 1. Overview

1.1.2 Random elements in Hilbert spaces and their covariance operators

For a random element X in a separable Hilbert space H , we define its mean or expectation as

the unique element EX such that for all continuous linear functionals f in H , f (EX ) = E f (X ),

if E‖X ‖ <∞.

The covariance operator of X is defined as

R = E[
(X −µ)⊗ [(X −µ)

]
if E‖X ‖2 <∞.

The covariance operator is a trace-class non-negative operator, and since the trace is continu-

ous and linear we have the following relation between the total variance and the nuclear norm

of X ,

trR = E[
tr(X−µ)⊗ (X−µ)

]= E‖X−µ‖2.

A typical setup to perform inference on functional data is based on an independent sample

X1, . . . , Xn ∼ X , where X is a random function on the Hilbert space H such that E‖X ‖2 <∞.

To clarify the concept of random variable in a general Hilbert space, H can be thought to be

the space of real-valued measurable and square integrable functions L2([0,1],R) and X can be

thought of as a collection of random variables {X (t ) : t ∈ [0,1]}.

We point out that for the evaluation X (t ) on a specific point t ∈ [0,1] to be well-defined, one

of the following assumptions is required: either a Reproducing Kernel Hilbert Space (RKHS)

structure on H (see Berlinet and Thomas-Agnan [2011]) or, following Hsing and Eubank

[2015], the interpretation of X as a (mean-square continuous) stochastic process. In the rest

of the thesis we adopt this second point of view. The notation when X takes value in L2[(0,1)]

is fixed below.

Let X :Ω→ L2[(0,1),R] be a continuous stochastic process on the probability space (Ω,B,P),

and assume that E‖X ‖2 <∞. The mean function of µ ∈ L2[(0,1),R] of X is defined by

µ(t ) = E[X (t )], t ∈ [0,1],

while its covariance kernel is r ∈ L2[(0,1),R], defined by

r (t , s) = E[
(X (t )−µ(t ))(X (s)−µ(s))

]
, t , s ∈ [0,1].

The operator

Rh(t ) =
∫ 1

0
r (t , s)h(s)d s, h ∈ L2[(0,1),R]; t ∈ [0,1],

is a well-defined, non-negative, self-adjoint and trace class operator in L2[(0,1),R] called the

8



1.1. Functional data analysis

covariance operator of X . If X also respects

lim
n→∞E

[
(X (tn)−X (t ))2]= 0, t ∈ [0,1],

for any sequence {tn}n∈N converging to t in [0,1], then X is said to be mean-square continuous.

A mean-square continuous stochastic process with continuous sample paths t → Xω(t ), for

all ω ∈ Ω, is a random element of L2[(0,1),R] ([Hsing and Eubank, 2015, Theorem 7.4.1]),

and we can therefore establish the desired equivalence between random objects in Hilbert

spaces and stochastic processes. Moreover X is mean square continuous if and only if its

mean and covariance functions are continuous [Hsing and Eubank, 2015, Theorem 7.3.2]. As

a consequence, if the mean is continuous, then the covariance function is continuous at all

(s, t ) if and only if it is continuous at all “diagonal points” (t , t ).

We now turn our attention to covariance operators. Covariance operators are key elements in

functional data analysis because they are a canonical means to study the variation of random

functions. We already know that they admit the spectral decomposition as in Proposition 1.

Furthermore, their spectrum provides a way to separate the stochastic and the functional fluc-

tuations of a random function, through the Karhunen–Loève expansion (see, e.g., Karhunen

[1947]).

Theorem 2 (Karhunen–Loève expansion). Let X be a mean square continuous process on

L2[(0,1),R] with E‖X ‖2 <∞ and with covariance operator R. Let R = ∑∞
n=1λnϕn ⊗ϕn be the

singular value decomposition of R, where λn denotes the n-th largest eigenvalue (i.e. λ1 ≥λ2 ≥
. . .0) andϕn its corresponding eigenfunction. The random function X admits the decomposition

X =µ+
∞∑

n=1
ξnϕn , (1.1)

where ξn = 〈ϕn , X −µ〉, Eξn = 0 and E[ξnξm] =λnδn,m with δn,m = 1 if n = m and 0 otherwise.

It holds that

sup
t∈[0,1]

E

[
(X −µ−

K∑
n=1

ξnϕn)2

]
−−−−→
K→∞

0.

The Karhunen–Loève expansion allows the separation of X into a sum of random variables

(ξn)∞n=1 times orthogonal deterministic functions (ϕn)∞n=1. The random variables (ξn)∞n=1 in

(1.1) are uncorrelated and, if X is Gaussian, independent.

Furthermore, it holds the best basis property, that is, the truncation of the series (1.1) at any

finite level K yields the best K−dimensional linear approximation of X . For this reason the

Karhunen–Loève expansion plays a crucial role in FDA, in particular in dealing with functional

Principal Component Analysis (fPCA, see e.g. Grenander [1950b], Dauxois et al. [1982]) or as

natural means of regularisation for inference problems such as regression and testing, which

are ill-posed in infinite dimensions (Panaretos and Tavakoli [2013], Wang et al. [2016]).
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1.1.3 Estimation of functional data

In practice, when performing inference on functional data, one has to deal not with the fully

observed curves, but with discrete measurements, arising for example when the full curves

are observed on a discrete grid of points. Often, such measurements are corrupted by noise,

and are subjected to an extra level of smoothing.

To fix the notation, we assume that we have observed a sample of discrete realisations

Yk ( j ) = Xk (ti j )+εi j ,

of a smooth continuous process Xk , with ti 1, . . . , ti ni ∈ [0,1] and εi j being mean zero and

covarying according to some Σ.

The two main approaches to deal with estimation of the Xk ’s are:

• (first smooth then estimate) popularised by Ramsay and Silverman [2005b]. This ap-

proach consists of initially reconstructing the functional smooth version of the data

X̃k and subsequently constructing a smoothed version of the covariance operator R̃.

From R̃ it is then possible to approximate the functions Xk by their Karhunen–Loève

expansion.

Common methods to perform the smoothing step are kernel smoothing, localised basis

or polynomial expansions (see e.g. Wand and Jones [1995], Fan et al. [1996], Efromovich

[2008] ) or again via a least squares estimation of the functions Xi through a finite basis

expansion. This latter method is the most popular, and the most commonly chosen

basis are the Fourier basis, the B-spline basis and more recently a wavelet basis (Yao and

Lee [2006], Pigoli and Sangalli [2012] and references therein).

A high number of basis functions will possibly capture local features of the curves Xk ,

and to prevent this, an additional penalty is often imposed on the roughness of the

eigenfunctions ([Ramsay and Silverman, 2005b, Silverman, 1996]).

• (first estimate then smooth) estimate multivariate versions of the mean and covariance

operators of Xk ’s and successively smooth these quantities into functions. We refer to

the work of Staniswalis and Lee [1998], Yao et al. [2003] among others and to Descary

[2017] and especially the references in Section 1.2.2.

1.1.4 The problem of registration

In addition to dealing with discrete measurements, often we have to deal with perturbed data

as well. Intuitively speaking, such a perturbation implies that the “peaks” and the “valleys” of

given functions are not aligned properly. Figures 1.1 shows a subset of four growth velocity

curves from the Berkeley growth study data set [Jones and Bayley, 1941]. It is visible from the

picture that the curves show similar behaviour (a growth spurt between the ages of 10 and

15) but with a difference in the magnitude of the peaks as well as a misalignment with respect
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1.1. Functional data analysis

to the x-axes. These horizontal perturbations might come from an uncertainty in the data

sampling process or they can represent inherent variability of the process itself that needs to

be separated from the variability along the y-axes.
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Figure 1.1: Growth velocity curves of four girls from the Berkeley growth study dataset

Formally, we talk of amplitude and phase variation while referring to the variation along

the y- and x-axes respectively. Amplitude variation captures stochastic deviations of the

random vector X1, . . . , XN from its mean, while phase variation implies that rather than a

random sample X1, . . . , XN from X , we observe X̃1, . . . , X̃N from a perturbed random element

X̃ = X (T (·)), where T is a random invertible function taking values in an often non-linear space

and often called a warping function. Mathematically they can be more precisely described as

follows:

• Amplitude variation: realisations of a process X with Karhunen–Loève expansion

X =
∞∑

n=1
λ1/2

n ξnϕn
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Chapter 1. Overview

fluctuating around fixed (deterministic) modes ϕn . Here {λn ,ϕn} are eigenvalues and

eigenfunctions of the covariance operator R , and {ξn}n is a sequence of random variables

as in Theorem 2.

• Phase variation: the realisations from X are warped into realisations from X̃ via bounded

non-negative operator T (usually uncorrelated with X ),

X̃ = T X =
∞∑

n=1
λ1/2

n ξnTϕn

with T such that X̃ has finite variance.

Now if each of the observed X̃1, . . . , X̃N is warped through the functions T1, . . . ,TN , the goal

of registration is to separate the functions X1, . . . , XN from the warping functions T1, . . . ,TN .

Whether or not phase variation is a problem for the statistical inference depends on the

specific application. In general, the Karhunen–Loève expansion of X̃ is very different from that

of X and an unaccounted-for warping can introduce errors and artefacts into the statistical

analysis. There is no canonical way to solve the curve registration problem. Kneip and Gasser

[1992], Liu and Müller [2004], Tang and Müller [2008], Panaretos and Zemel [2016] and others

offer a variety of different registration methods. We will see later when talking of optimal

transport that the Wasserstein distance offers a natural way to deal with the non-linearity of

the phase variation (Section 1.3 and Section 2.4) and that principal component analysis can

offer a way to recover the warping map T (Section 3.2).

1.2 Geometry of covariances

Performing inference on random objects in a general metric space is deeply connected with

the metric structure of the space itself. Even the most basic operations, like normalising

or computing linear averages, implicitly assume a way to compare objects in terms of their

proximity, and consequently a way to compute distances. Covariances themselves are a way

to encapsulate variation, and are computed with respect to an inner product. In classical

multivariate analysis, the ambient inner product is taken to be the standard Euclidean one.

We can imagine situations, however, where the single data atom is a covariance matrix itself

(or, in infinite dimension, a covariance operator), and we wish to perform inference on a

collection of covariances. This happens for example in longitudinal data analysis [Daniels and

Pourahmadi, 2002] or diffusion tensor imaging [Schwartzman, 2006, Alexander et al., 2007].

Diffusion Tensor Imaging (DTI) is a form of Magnetic Resonance Imaging (MRI) that measures

the diffusion of water molecules in tissue. In DTI, the data contained at every 3D pixel is not a

scalar, but rather it is identified through a 3×3 positive definite matrix.

Inference for symmetric positive definite matrices has been investigated under a variety of

possible metrics. The purpose of this section is to describe the intrinsic non-linearity of
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1.2. Geometry of covariances

the Riemannian manifold structure of the space of symmetric positive definite matrices,

and therefore the need to introduce a metric structure beyond Euclidean. We will follow

Schwartzman [2006] and Bhattacharya and Patrangenaru [2003, 2005]. We then describe some

of the metrics employed when studying variations of symmetric positive definite matrices,

devoting special attention to the Procrustes size-and-shape distance. The latter distance,

inspired by statistical shape theory, unlike many other metrics generalises easily and naturally

to infinite dimensions, and plays a crucial role in the rest of this thesis.

1.2.1 Covariance matrices as a non linear space

Denote as Sym+n the set of symmetric positive definite matrices in Rn×n . Sym+n forms a

differentiable manifold of dimension n(n +1)/2. The tangent space to such a manifold at

the identity In×n has dimension n(n +1)/2 and can be identified with a copy of the space of

symmetric matrices [Schwartzman, 2006, Prop. 2.2.1].

A Riemannian manifold is a differential manifold endowed with an inner product on the

tangent space that varies smoothly from point to point. The most straightforward way to

turn Sym+n into a Riemannian manifold would be to consider it as a subset of the Euclidean

space of symmetric matrices (not constrained to be positive) endowed with the Frobenius

(Hilbert–Schmidt) inner product. This generates a “flat” manifold, where the geodesics, that is,

the shortest paths between two points of the manifold, are straight lines.

For illustration, consider the set of 2×2 symmetric positive definite matrices of the form

X =
(

a c

c b

)
.

The set of triples {(a,b,c) ∈ R3 : a > 0,b > 0, ab − c2 > 0} giving rise to Sym+(2) is an open

subset of R3 shaped as a cone. According to the Euclidean metric the geodesic between

two matrices X1 and X2 would result in a straight line cutting through the cone. Therefore

extrapolation along a geodesic might return a matrix which is not lying on the cone surface

and might not be positive definite. This happens because positivity is a not-linear constraint,

and imposing a linear geometry on a non linear space might distort the statistical analysis. In

Section 3.2.3 we provide an example of what can happen when the non-linearity of the space

is ignored in favour of the Euclidean distance.

A final important point about Sym+ is that its elements are related to each other by an action

of the general linear group GL(n). This action is manifested through the transformation

φ : GL(n) × Sym+(n) → Sym+(n), φG (X ) = G XG∗, where GT denotes the transpose of G .

Moreover, it is transitive (i.e., for every X ,Y ∈ Sym+ there exists a non-unique G that allows

one to travel from one to the other) and it translates into a similar group action between the

tangent spaces at X and φG (X ). Intuitively, the group action allows one to travel through the

space of positive definite matrices and can be thought of as a data-generating mechanism: any
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set of covariances X1, . . . , XN can be seen as a perturbation of a generating matrix X via a set

of linear invertible transformations G1, . . . ,GN . We will see in Section 2.4 how the Procrustes

distance allows us to write a similar generating mechanism for covariance operators.

The rest of this section is devoted to the introduction of different metrics which respects the

“curved” nature of the Riemannian manifold of covariances. Here curved means that geodesics

starting at a point p may meet for a second time in the cut locus of p, in contraposition to

flat manifolds, where geodesics, being straight lines, meet at most once. Geodesics defined

according to this curved geometry will in return be fully contained in the manifold itself.

1.2.2 Non-linear distances for covariance matrices

We report the definition of several non-linear metrics which have been used to perform

inference on covariance matrices. We mostly follow Dryden et al. [2009].

Given a sample X1, . . . , XN of observations and a distance d we can extend the notion of linear

average to a more general concept of mean X in the following way,

X = arginfX

N∑
i=1

d(Xi , X )2. (1.2)

Such generalised means are called Fréchet means and will be described in detail in Section 1.5.

However, some distances d allow us to write an estimator for (1.2) explicitly, and when possible

we will report the relevant expressions here.

• Log-Euclidean distance. The logarithm and the exponential of the symmetric posi-

tive definite matrix X with SVD X = UΛU T are log(X ) = U log(Λ)U T and exp(X ) =
U exp(Λ)U T respectively, where log(Λ) and exp(Λ) are diagonal matrices with logarithm

and exponential of the elements ofΛ on the diagonal. The log-diagonal distance [Arsigny

et al., 2007] between the covariance matrices X1 and X2 is defined as,

dL(X1, X2) = ‖ log(X )1 − log(X )2‖. (1.3)

An estimation of the mean covariance matrix according to dL is

X L = exp

{
1

N

N∑
i=1

log(Xi )

}
.

Geodesics computed with respect to dL are fully contained in the manifold. As a draw-

back, dL cannot be computed for matrices which are not full rank.

• Riemannian distance [Schwartzman, 2006]. Also known as trace metric [Lawson and

Lim, 2013]. It is a log-based distance as dL and is defined as

dR (X1, X2) = ‖ log(X −1/2
1 X2X −1/2

1 )‖. (1.4)
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1.2. Geometry of covariances

Again, extrapolations along geodesics with respect to dR are fully contained in the

manifold. dR does not admit a closed-form expression for the Fréchet mean and one

has to rely on numerical estimation. However, the sample Fréchet mean computed with

respect to dR is unique, a fact that is in general not true for generic Fréchet means.

• Cholesky distance and square root distance. Both of these distances are based on the

decomposition of the matrices Xi as Xi = Li L?i . For the Cholesky distance [Wang et al.,

2004], Li is the lower triangular matrix with positive diagonal yielding the Cholesky

decomposition of Xi . We denote it as Lchol
i . In the square root distance [Dryden et al.,

2009], Li represents the positive square root of Xi . The distances are respectively given

by

dC (X1, X2) = ‖Lchol
1 −Lchol

2 ‖, (1.5)

and

dC (X1, X2) = ‖X 1/2
1 −X 1/2

2 ‖. (1.6)

They both admit a least squares estimator for the Fréchet mean,

X C /H =
(

1

N

N∑
i=1

Li

)(
1

N

N∑
i=1

Li

)T

,

with Li being Lchol
i or X 1/2

i depending on the distance considered.

The most relevant metric for the purposes of this work is the Procrustes-size-and-shape

distance, and we will dedicate the next sections to its description. The Procrustes-size-and-

shape distance is also based on a decomposition of the kind Xi = Li L?i , just in this case the Li

are optimised over rotations and reflections. In order to introduce it, we first need to lay out

the background and talk about the field of Statistical Shape Analysis.

1.2.3 Statistical shape analysis and Procrustes size-and-shape distance

Statistical shape analysis uses statistical methods to study the geometrical properties of some

given set of shapes. It was pioneered by the work of Kendall [1989]. Other relevant works

were done by Bookstein et al. [1986] and more recently, and more relevantly to our context, by

Dryden and Mardia [1998] and Dryden and Mardia [2016]. This section reviews some relevant

results from Dryden and Mardia [1998]. No extended knowledge of Riemannian geometry is

required. However, the reader who wishes to have further insights can find them in Barbosa

and Carmo [1976] and Lang [2012].

The definition of shape in statistical shape analysis is the intuitive one. From Kendall [1989],

the shape of an object is all the geometrical information that remains when location, scale

and rotational effects are filtered out. We talk of size-and-shape when there is an interest
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in retaining scale information, as well as shape of the object. Two objects have the same

size-and-shape when one of the two is a rigid body transformation of the other.

The way a shape is described mathematically is through a set of landmarks: salient points

on each shape outline that match across and within populations. A landmark can be either

anatomical, mathematical or a pseudo-landmark. Anatomical landmarks are biologically

meaningful points, normally assigned by experts. Mathematical ones are location points on

the object that retain some mathematical or geometrical meaning. Pseudo-landmarks are

constructed points on an object either on the outline or between landmarks. Landmarks

are encoded into k ×m matrices X ∈Rk×m called configuration matrices, where k gives the

number of landmarks in m dimensions.

To obtain a shape representation of an object according to Kendall [1989]’s definition, location,

scale and rotations should be filtered out. This is done through establishing a coordinate

reference. A common tool to obtain such a coordinate reference is turning shapes into shape

spaces, that is, the sets of all possible shapes of the objects in question. More formally, denote

by Z the pre-shape of a configuration matrix X , that is, the geometrical information about X

which stays when location and scale are removed [Dryden and Mardia, 1998, Definition 4.4].

Mathematically we can write Z as

Z = H X

‖H X ‖ ,

where H is the Helmert sub-matrix H whose j−th row is given by

(h j , . . . ,h j︸ ︷︷ ︸
j times

,− j h j , 0, . . . ,0︸ ︷︷ ︸
k− j times

), h j =−[ j ( j +1)]1/2, for j = 1, . . . ,k −1. (1.7)

The shape of X can be represented as

[X ] = {ZG : G ∈ SO(m)},

with SO(m) being the special orthogonal group of rotations. The shape of X is therefore an

equivalence class under the action of SO(m) and can be visualised by picking out a repre-

sentative from the class (called an icon). The shape space Sk
m ≡Rk×m/SO(m) is the set of all

orbits [X ] of the k-point set configurations in Rm under the action of the (Euclidean) similarity

transformations [Kendall, 1989, Dryden and Mardia, 1998].

The set of shapes forms a Riemannian manifold containing the class object in question, and

as such, is inherently not Euclidean (see Dryden and Mardia [1998, Chapters 1-4] for more

details).

We talk of size-and-shape (or form) of a configuration matrix X to indicate all the geometrical

information about X which is invariant under location and rotation (but not scale). The
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1.2. Geometry of covariances

size-and-shape of X can be represented by the equivalence class

[X ]S = {H XG : G ∈ SO(m)}.

Quotienting out the size will return the shape of X . If moreover we remove reflections, we

obtain the so called reflection size-and-shape of a configuration matrix X , represented as

[X ]RS = {H X R : R ∈O(m)},

where O(m) is the set of orthogonal transformations in m-dimensions.

Establishing a relationship between distances in shape space and the Euclidean distance in

the original space will yield a shape metric. A commonly used shape metric is the so called

Procrustes (size and shape) distance, which we will as well abbreviate Procrustes distance for

convenience.

By an abuse of language, call X1, X2 two k−points configurations pre-multiplied by the Helmert

submatrix of equation (1.7). This pre-multiplication will remove location information. The

(squared) Procrustes size-and-shape distance between the size-and-shapes of X1 and X2 is

found by minimising the Euclidean distance over rotations as in the following definition

d 2
P (X1, X2) = inf

G∈SO(m)
‖X1 −X2G‖2 (1.8)

= tr (XT
1 X1)+ tr (XT

2 X2)−2 sup
G∈SO(m)

(XT
1 X2G). (1.9)

dP is a Riemannian distance in the size-and-shape space, which is the space of all size-and-

shapes of k-points configurations in m dimensions.

Defining a metric allows us to define the concept of the average shape of shapes X1, . . . , XN as

arg min
Y ∈Sk

m

N∑
i=1

d 2
P (Y , Xi ).

The average shape is a Fréchet mean (Section 1.5) of X1, . . . , XN . We will see in Section 1.5

that Fréchet means are computable through a generalised Procrustes algorithm, in this case

called generalized Procrustes analysis. The algorithm has been shown to converge quickly to a

solution [Dryden and Mardia, 1998, Gower, 1975] and it consists of an iterative procedure that

involves translating and rotating the configurations relative to each other as to superimpose

them “one on top of the other” and minimize the total sum of squares of their respective

Euclidean distances [Dryden and Mardia, 1998, Chapter 5].

When G takes values in O(m) rather than SO(m) in (1.8), we talk of Procrustes reflection

size-and-shape distance. Dryden et al. [2009] extended the notion of Procrustes reflection

size-and-shape distance from reflection size-and-shapes to covariance matrices, and this is

the topic of the next section.
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1.2.4 Procrustes size-and-shape distance for covariance matrices

Covariance matrices play a fundamental role in many statistical applications. For example

in Diffusion Tensor Imaging (DTI) [Schwartzman, 2006, Alexander et al., 2007] every 3D

pixel contains a data atom identifiable with a 3×3 positive definite matrix and inference is

performed on a dataset constituted of covariance matrices. In longitudinal data analysis

[Daniels and Pourahmadi, 2002] we find similar datasets of covariances.

The positivity of the matrices sets a crucial constraint in the inferential procedure as it implies

non-linearity. Consider, for example, a basic operation like computing the mean. A very

common approach to estimate the mean covariance matrix is to assume that the data are

sampled according to a scaled Wishart. In this case, the mean covariance can be found as a

least squares (Euclidean) estimator, and coincides with the maximum likelihood estimator

of the population covariance matrix. However, minimising the objective function in order

to compute the least square estimator implies a choice of a metric, which in this case is the

Euclidean one, while non-linearity should be taken into consideration for a better statistical

analysis.

Dryden et al. [2009] compared several metrics on the space of covariance matrices (Sec-

tion 1.2.2), favouring especially the Procrustes size-and-shape metric inspired by shape theory.

Dryden et al. [2009] defined the Procrustes distance between covariances S1,S2 ∈Rk×k as

Π(S1,S2) = inf
R:RT R=I

‖S1
1/2 −S2

1/2R‖2. (1.10)

The unique non-negative matrix roots S1/2
i in (1.10) can be replaced by any matrices Yi such

that Si = Yi Y T
i . For example, the Yi can be chosen via the Cholesky decomposition of Si .

The optimal matching in (1.10) is attained at

R̂ =VRV T
L , (1.11)

where Y T
1 Y2 =VLΛV T

R is the SVD of Y T
1 Y2 with VL ,VR ∈O(k) orthonormal matrices and Λ a

diagonal matrix of positive singular values.

To make the connection with shape theory and Section 1.2.3,Π is the reflection size-and-shape

distance between the configurations H T S1/2
1 and H T S1/2

2 , where H is the Helmert sub-matrix

in (1.7).

The connection between shapes and covariances is better understood through the concept

of Gram matrices: the Gram matrix of a set of vectors X = {x1, . . . , xk } (stored by column) is

S = X T X , i.e. the matrix encoding all possible inner products between the Xi ’s. S can be

thought of as a way to parametrize the shapes X1, X2 of two configurations of k points in Rm .

From (1.8) we know that the Procrustes matching between two configurations H X1, H X2

depends only on the Gram matrices S1 = X1X T
1 and S2 = X2X T

2 of X1 and X2 and the mixed

term X T
1 X2. Since Gram matrices are symmetric and non-negative definite, it is possible to
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1.2. Geometry of covariances

deduce a metric on the space of covariance matrices Si by taking inspiration from distances

between shapes X in Rk×k .

Dryden et al. [2009] also describe the geometry induced by the Procrustes size-and-shape

distance. The tangent space provides a linearized approximation to a manifold in the neigh-

bourhood of a particular point. Exploiting the tangent space linearity, one can apply Euclidean

metric on tangent space coordinates and use it as an approximation to a non-linear metric

onto the manifold (or, in this case, the shape space).

In the notation Si = Yi Y T
i , i = 1,2, the horizontal tangent coordinates T of Y2 with pole Y1 are

given by [Kendall et al., 2009]

T = Y2R̂ −Y1, R̂ = inf
R∈O(k)

‖Y1 −Y2R‖,

and satisfy Y1T T = T Y T
1 . Here R̂ is the matrix giving the optimal matching as in (1.11).

As the tangent space provides only a local linear approximation to the manifold, the tangent

space coordinates depend on the specific point where the tangent space is computed. For a

sample S1, . . . ,SN a natural choice of pole is given by the Fréchet mean of equation (1.2) (see

also Section 1.5). If Σ̄ = Ȳ Ȳ T is the decomposition of the Fréchet mean, then the tangent

space coordinates of Si with pole Σ̄ are expressed as

Ti = Ȳ −Yi R̂i ,

where R̄i gives the rotation optimally matching Yi onto Ȳ , i = 1, . . . , N [Dryden et al., 2009].

The minimal geodesic starting from Y1 and ending at Y2 is the minimal length path between

the two points which is fully contained in the manifold, and can be expressed as

t1Y1 + t2Y2R̂,

where t1 + t2 = 1, t1, t2 ≥ 0.

In order to analyse linguistic data, Pigoli et al. [2014a] pointed out how one can be interested

in the variation that can be found in speech frequency intensity within different languages.

Such variations are better captured by covariance operators, and therefore it is required to

have a suitable metric to compare such operators. To this purpose, Pigoli et al. [2014a] showed

that the Procrustes distance (1.10) can be generalised to the infinite-dimensional space of

covariances on L2(0,1). In the next sections, we will describe the extension of the Procrustes

distance to the functional case and we will explore its connection to the field of optimal

transportation and the Wasserstein metric between Gaussian distributions.
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1.2.5 Procrustes distance for operators

Inference on the analysis of the variation of functional data in their covariance structure is

well-documented, e.g. in Gabrys et al. [2010], Horváth et al. [2013], Paparoditis and Sapatinas

[2014], Kraus [2014]. What is common among these works is that they exploit the immersion of

the space of covariances into the wider Hilbert–Schmidt space, implicitly ignoring the intrinsic

non-linearity of these operators.

Section 1.2.2 gave a summary of various distances which can be employed while doing in-

ference on covariance matrices. When moving to the operator case, the trace-class structure

of the covariances entails that not all matrix-based distances admit a well-defined infinite

dimensional correspondent. The difference of logarithms entering into the log-Euclidean

distance for example, is not readily extendable to operators whose eigenvalues decay to zero. A

similar argument holds for the Riemannian distance, as it includes square root inverses, which

are generally unbounded. Pigoli et al. [2014a] showed that the Procrustes distance favoured

by Dryden et al. [2009] admits a well-defined functional generalisation, and we devote this

section to its description.

From the definition of the nuclear and HS norm in Section 1.1.1, we can observe that trace

class operators can be seen as “squares” of Hilbert–Schmidt operators. This establishes a

parallelism between a covariance operator Σ together with its root Σ1/2 and the pair S,S1/2

entering in (1.10). Pigoli et al. [2014a] showed that (1.10) is well-defined when extended to

covariance operators in L2[(0,1),R]. The functional extension of dP does actually apply to

any separable Hilbert space H [Masarotto et al., 2018] and we report here this more general

definition.

Definition 3 (Procrustes Metric on Covariance Operators). For any pair of nuclear and non-

negative linear operators Σ1,Σ2 : H ×H →H on the separable Hilbert space H , we define the

Procrustes metric as

Π(Σ1,Σ2) = inf
U :U∗U=I

‖Σ1/2
1 −Σ1/2

2 U‖2, (1.12)

where {U : U∗U = I} is the set of unitary operators on H .

As already mentioned, the work of Pigoli et al. [2014a] was sparked by the need to analyse

linguistic data. More specifically, their dataset is a series of recordings of people pronouncing

a collection of words in different Romance languages. The covariances on which the test is

applied are estimated from different recorded frequency intensities in the log-spectrogram. Co-

variance operators have been shown to well characterise the phonetic structure of a language

[Aston et al., 2010], in the sense that difference between the operators are linked to phonetic

differences between languages. The investigation of similarities and relationships across

languages typically relies on written documentation, so their methods allow to complement

the textual analysis with a phonetic one.
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They propose a 2-sample testing procedure on covariances which respects the curved geome-

try of the space. Since in practice they observed a finite-dimensional representation of the

operators, they also consider the behaviour ofΠ under finite-dimensional projection, showing

that the distance between two finite-dimensional projections converges to that between the

two infinite-dimensional operators.

Moreover Pigoli et al. [2014a] show that the Fréchet mean with respect to the Procrustes

distance can be computed in practice via a version of the generalised Procrustes algorithm

Gower [1975], which we describe in the next paragraph.

Generalized Procrustes algorithm on operators

Pigoli et al. [2014a] proposed the following adaptation of the Generalized Procrustes Algorithm.

It alternates registration and averaging steps, and a high level description is as follows.

• Initialise the algorithm at L0, taken to be the average of L0
i = Li =Σ1/2

i .

• At step k, compute, for each i , the unitary operator Ri that minimises ‖Lk−1 −Lk−1
i Ri‖2,

and set Lk
i = Lk−1

i Ri .

• Define Lk as the average of {Lk
1 , . . . ,Lk

N } and repeat until convergence.

Pigoli et al. report that in practice, if suitably initialised at N−1 ∑N
i=1Σ

1/2
i , this algorithm con-

verges to a local minimum, which corresponds to an estimate of the Fréchet mean.

The advantage of this procedure is that it only involves successively matching pairs of opera-

tors while minimising ‖Lk−1 −Lk−1
i Ri‖2. This pairwise matching admits an explicit solution

depending on the product of the square roots of the operators in question and their singular

value decomposition. However, for operators, there is no theoretical guarantee of the con-

vergence of the algorithm, and it is not clear whether it converges when {Σ1, . . . ,ΣN } do not

commute.

The work of Pigoli et al. [2014a] has the significant value of pioneering a non-Euclidean analysis

of covariance operators. They give the infinite-dimensional formulation of the Procrustes

distance, showing that it is computationally valid in applications and it behaves well in

terms of finite-dimensional approximation, in the sense that the distance between two finite-

dimensional projections converges to the distance between their functional counterparts.

Their work spawned many further questions about this metric. As we just mentioned, the

theoretical convergence of the Procrustes algorithm is one of them. However, one might also

wonder whether we can derive further properties of the Procrustes Fréchet mean (such as

uniqueness) or whether other inferential procedures (e.g., PCA) can be implemented under

the Procrustes framework. Maybe the most relevant question concerns the geometrical and

statistical interpretation of the Procrustes metric: the size-and-shape distance for covariance

matrices admitted a dual interpretation in terms of shape theory, and we wish to establish
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a similar connection for the functional case and this way gain a better understanding of the

geometry of the space. These topics will be addressed in the next few sections and in the next

chapter. In particular we will show that some of these problems can be better understood

through the lens of optimal transport, and can be answered thanks to the intimate connection

between the Procrustes distance and the Wasserstein metric between Gaussian processes.

In order to do this we need to introduce the relevant notions from Optimal transport and

Wasserstein spaces, and this is done in the next sections.

1.3 Optimal Transport and Wasserstein Spaces

Optimal transport aims at investigating how to transfer one mass distribution into another

at a minimal cost. This problem was formally treated for the first time by Monge [1781],

who heuristically formulated it in terms of a mass of sand and a pit, asking what would be

the optimal way to move such sand into such a pit. The question can be translated into

mathematical terms as follows. Given two probability maps µ and ν on some spaces H and

Y and a cost function c : H ×Y →R, minimize the transportation cost

C (T ) =
∫
H

c(x,T (x))dµ(x)

among all transport maps T , i.e., Borel maps such that µ(T −1(E)) = ν(E) for all Borel subsets

E of Y . In terms of Monge’s sandpit problem, the above conditions state that the amount of

sand to go into a hole of volume ν(E) has to have exactly the mass to fit that volume, that is,

mass cannot be compressed or inflated. Mathematically we say that T pushes µ forward to ν

and write that ν= T #µ.

The push-forward is characterised by the fact that∫
Y

f d(T #µ) =
∫
H

f ◦T dµ,

for every Borel function f : Y →R∩ {±∞}2.

Monge’s problem also admits a probabilistic interpretation, more relevant to this thesis. Before

giving the details, we need to introduce some basic definitions of random elements in general

metric spaces.

We say that X is a random element in a separable Hilbert space H (in any topological space

actually), if X is a measurable function from a probability space (Ω,F ,P) into H . The proba-

bility distribution, or probability law, of X , is the Borel measure µX such that µX (E ) =P(X ∈ E )

for all Borel sets E , that is, µX = X #P. Given two random elements X and Y in H and Y and a

cost function c : H ×Y →R, Monge’s problem is the minimisation of the expected value of c

over all measure preserving measurable functions T , that is, all functions such that T (X ) and

2The above identity implicitly assumes that one of the integral exists, possibly attaining an infinite value, if and
only if the other exists, and in this case the values are equal.
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Y have the same distribution. In mathematical terms, this becomes the minimisation of

C (T ) =
∫
H

c(x,T (x))dµ(x) = Ec(X ,T (X )).

Monge’s problem is mathematically very difficult, starting from the fact that the existence of

a way to optimally transport a mass is not in general guaranteed. For example, for a linear

cost function c(x, y) = |x − y | and µ= δ0, ν= 1
2δ−1 + 1

2δ1 on the interval [−1,1], no transport

map exists. Indeed, the set E = {T (0)} satisfies µ(T −1(E)) > ν(E), so there cannot be such a T .

The key breakthrough in the resolution of Monge’s optimal transport problem was made by

Kantorovich [1942], who proposed a reformulation of Monge’s problem which allows the mass

to be split at each single point x ∈H according to some probability measure µx (rather than

being sent entirely to T (x)).

This work earned Kantorovich the Nobel prize for Economics in 1975 and as a consequence,

the optimal transport problem is now largely known as the Monge–Kantorovich problem.

We now present a more formal description of Kantorovich’s version of the problem. Consider

a measure π on the product space H ×Y and let A ⊆H and B ⊆Y . The total mass sent to A

and B is π(A×Y ) and π(H ×B) respectively. If these quantities equal exactly the masses of A

and B , that is if

π(A×Y ) = ν(A), (1.13)

π(H ×B) = ν(B), (1.14)

for every A ⊆ H and B ⊆ Y measurable sets, then we say that π is a transport plan, or a

coupling of µ and ν. In the latter case, µ and ν are called marginals of the coupling π.

If ν is the push-forward of µ by T , we can define a transport plan π= (i d ×T )#µ via

π(A×B) =µ ({x ∈ A : T (x) ∈ B}) =µ(
A

⋂
T −1(B)

)
.

In other words, transport plans can be seen as joint measures on the product space with given

marginals.

The Kantorovich problem then translates into minimising the total cost

C (π) =
∫
H ×Y

c(x, y)dπ(x, y)

over the class of transport plans

Π(µ,ν) = {
π ∈ P (H ×Y : π(A×Y ) =µ(A) and π(X ×B) = ν(B)

}
,

for every A ⊆H and B ⊆Y measurable sets.

The probabilistic interpretation of the Kantorovich problem can be written as the minimisation
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of

C (π) =
∫
H ×Y

c(x, y)dπ(x, y) = Eπc(X ,Y )

over all couplings π= (X ,Y )#P with marginals X , Y .

To see the connection between a transport plan and a transport map, think that transport plans

can be seen as “multivalued” transport maps: indeed π can be represented as a collection of

probability measures πx ∈ P ({x}×Y ) such that π= ∫
πx dµ(x) (see [Dudley, 2018, 31, Section

10.2]).

The following relationship holds between Monge’s and Kantorovich’s formulation:

C (π) ≤C (T ).

A transport map always induces a transport plan of the same cost: if T #µ = ν then π =
(I d ×T )#µ is a transport plan, making it clear that the set of solutions of the Kantorovich

problem is at least as large as the set of solution of the Monge one. Furthermore the set of

transport plans is never empty, because it always contains the product measure µ⊗ν defined

by [µ⊗ν](A) = µ(A)ν(B) for measurable A ⊆ H , B ⊆ Y , and the objective function is also

linear in π, thus overcoming one of the difficulties in Monge’s problem. Moreover, the set of

transport plans is convex and compact with respect to the narrow topology in P (H ×Y ) [Evans,

1992], and if C is lower semicontinuous and bounded from below, then there always exists a

minimiser of the Kantorovich problem [Zemel, 2017, Villani, 2008]. We call the minimiser of

J (π) an optimal trasport plan.

When an optimal transport map T : H →Y exists, the optimal transport plan and the optimal

transport map are related through∫
H ×Y

c(x, y)dπ(x, y) =
∫
H

c(x,T (x))dµ(x).

The Monge–Kantorovich problem is particularly relevant also for its many connections with

other fields of mathematics, which have emerged in the last couple of decades. Seminal work

in this is due to Benamou and Brenier [2000] on fluids and, earlier, McCann [1997] on gas

mechanics (see also Sections 1.3.1 and 1.4.2 respectively), but applications expands to shape

optimisation, non-linear diffusion, partial differential equations and Riemannian geometry,

to name a few (Benamou and Brenier [2000], McCann [1997], Gangbo and Świȩch [1998], von

Renesse and Sturm [2009], Rüschendorf and Uckelmann [2002], Villani [2003]).
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1.4. Procrustes–Wasserstein distance and optimal transportation of Gaussian processes

1.3.1 Wasserstein distance

The p−Wasserstein space on the separable Hilbert space H is defined by

Wp =Wp (H ) =
{
µ ∈ P (H ) :

∫
H

||x||p dµ(x)∞
}

, p ≥ 1,

where P (H ) is the space of probability measure on H . The p-Wasserstein space is closely

related to the Monge–Kantorovich problem of Section 1.3, since the minimum value in the

latter gives rise to a metric on the space of probability measures of H called the p-Wasserstein

distance. More precisely, the p-Wasserstein distance between µ, ν ∈ P (H ) is defined as

Wp (µ,ν) =
(

inf
π∈Π(µ,ν)

Jp (π)

)1/p

=
(

inf
π∈Π(µ,ν)

∫
H ×H

||x1 −x2||p dπ(x1, x2)

)1/p

; (1.15)

that is, is the minimum of the Kantorovich problem for the cost function cp (x, y) = ‖x − y‖p .

For the purpose of this thesis, unless differently stated, we always assume that 1 ≤ p <∞, and

in fact we will mostly treat the case p = 2. Extension to 0 < p < 1 is possibile by removing the

power 1/p in the definition of W .

We refer to Villani [2003] for a proof that Wp is indeed a metric. However from (1.15) it

follows immediately that Wp is non-negative, symmetric and that Wp (µ,ν) = 0 only along the

“diagonal”, that is, if and only if µ= ν. Finally, the Wasserstein distance between µ,ν ∈Wp (H )

is finite, since

‖x1 −x2‖p ≤ 2p‖x1‖p +2p‖x2‖p .

1.4 Procrustes–Wasserstein distance and optimal transportation of

Gaussian processes

Once the existence of the optimal transport plan is established and attained at some coupling

π for any marginal pair of measures µ,ν ∈W (H ), a natural question is whether this optimal

minimiser is also unique. In general the answer to this question is negative, unless some

regularity conditions on the measures are imposed.

If, moreover, the two measures µ and ν are Gaussian on H , then not only the solution is

unique, but under some regularity conditions, both the Wasserstein distance and the optimal

transport map admit a closed-form expression.

1.4.1 Optimal transportation of Gaussian processes

A random element X in a separable Hilbert space (H ,〈·, ·〉) is Gaussian with mean m and

covariance Σ : H ×H →H if

〈X ,h〉 ∼N (〈m,h〉,〈h,Σh〉)
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Chapter 1. Overview

for all h ∈H . A Gaussian measure is the law of a Gaussian random element.

We say that a Gaussian measure is regular if and only if its covariance operator is injective (for

a more general definition of regularity see Ambrosio et al. [2008, Definition 6.2.2]). Moreover

we say that a couple is deterministic if it is manifested as the joint distribution of (X ,T (X )) for

some optimal deterministic map T : H →H .

Now assume that µ is regular. In this case the optimal coupling is unique and given by a

deterministic coupling π= (I,tνµ)#µ [Villani, 2003], tνµ being the optimal plan pushing µ onto

ν. In addition Brenier’s theorem establishes that the optimal map tνµ can be recovered as a

gradient of a convex function. See Brenier [1991] for a reference of Brenier’s theorem, although

the result was proved independently by other authors (Cuesta-Albertos and Matrán [1989];

Knott and Smith [1984]; Rüschendorf and Rachev [1990]). We underline that as a consequence

of Brenier’s theorem, any (finite) non-negative linear combination of optimal transport maps

remains optimal, as convexity is preserved under such combinations.

Regardless of the useful characterisation of Brenier’s theorem, the optimal transportation map

tνµ for a regularµ and the corresponding Wasserstein distance W (µ,ν) =
√∫

H ‖x − tνµ(x)‖2 dµ(x))

rarely admit closed-form expressions. Gaussian processes are a notable exception to this.

Let µ∼N (m1,Σ1) and ν∼N (m2,Σ2). Then the Wasserstein distance between µ and ν is

W 2(µ,ν) = ‖m1 −m2||2 + tr(Σ1)+ tr(Σ2)−2tr
√
Σ1/2

1 Σ2Σ
1/2
1 . (1.16)

In finite dimension, this result was obtained independently by Dowson and Landau [1982]

and Olkin and Pukelsheim [1982]. For a proof in infinite dimensions, the reader is referred to

Cuesta-Albertos et al. [1996].

We turn now out attention to optimal maps. To lighten the notation, we assume throughout the

rest of the Section that µ and ν are centered, i.e., m1 = m2 = 0. We also adopt the notation tΣ2
Σ1

in place of tνµ. In finite dimension, invertibility of Σ1 guarantees the existence and uniqueness

of a deterministic optimal coupling of µ ∼ N (0,Σ1) and ν ∼ N (0,Σ2), induced by the linear

transport map

tΣ2
Σ1

:=Σ−1/2
1 (Σ1/2

1 Σ2Σ
1/2
1 )1/2Σ−1/2

1 .

Cuesta-Albertos et al. [1996, Proposition 2.2] proved that once some regularity is assumed, the

previous formula also holds in infinite-dimensional Hilbert spaces.

Proposition 4. Let µ ∼ N (0,Σ1) and ν ∼ N (0,Σ2) be centred Gaussian measures in H and

suppose that ker(Σ1) ⊆ ker(Σ2) (equivalently, range(Σ1) ⊇ range(Σ2)). Then there exists a linear

subspace of H with µ-measure 1, on which the optimal map is well-defined and is given by the

linear operator

tΣ2
Σ1

=Σ−1/2
1 (Σ1/2

1 Σ2Σ
1/2
1 )1/2Σ−1/2

1 .

26



1.4. Procrustes–Wasserstein distance and optimal transportation of Gaussian processes

Section 2.1 will make the key observation on how the Procrustes and the Wasserstein distance

coincide on the space of centered Gaussian process. We will therefore focus our attention

to the Gauss–Wasserstein space, i.e., the space of Gaussian measures equipped with the

2-Wasserstein distance.

1.4.2 The tangent bundle and geodesics in Wasserstein space

In differential geometry, a geodesic is a generalisation to what a straight line is in Euclidean

spaces, that is, it is connected to the idea of the shortest path between two points. We say that

a curve γ : [0,1] → X is a constant speed geodesic if d(γt ,γs) = |t − s|d(γ0,γ1), ∀t , s ∈ [0,1]. In

Hilbert spaces, for every two points x, y there is only one constant speed geodesic connecting

them, which is the curve t 7→ (1− t)x + t y (e.g. Villani [2008]). The latter result holds as well

true for Gaussian measures in Wasserstein space.

Let µ,ν ∈ W (H ) be such that the optimal map from µ to ν, tνµ exists. Recall that when µ ∼
N (0,Σ1), ν∼N (0,Σ2) a sufficient condition is that ker(Σ1) ⊆ ker(Σ2). Moreover we know that

in the Gaussian case, the Monge–Kantorovich problem admits a unique solution, namely the

transport map tνµ. Let I : H →H be the identity map on H . We can define a curve

µt =
[
I+ t (tνµ−I)

]
#µ, t ∈ [0,1], (1.17)

known as McCann’s interpolation (McCann [1997, Equation (7)]) and constructed by interpo-

lating the optimal transport map and the identity.

Equation (1.17) defines a constant speed geodesic, since clearly µ0 =µ, µ1 = ν and it respects

W (µt ,µs) = (t − s)W (µ,ν), 0 ≤ s ≤ t ≤ 1.

To better understand the last equality, notice that for any two Borel maps t1, t2 : H → Y ,

(t1, t2)#µ is a valid transport plan for the measures t1#µ and t2#µwith cost
∫

W 2
Y

( f (x), g (x))dµ(x),

and since W 2
2 is minimised by the optimal transport plan we obtain the inequality

W2(t1#µ, t2#µ) ≤
(∫

H
‖t1(x)− t2(x)‖2dµ(x)

)1/2

. (1.18)

Now, applying (1.18) to both W2(µt ,µ) and W2(µt ,ν), we obtain the geodesic condition (see

also Zemel [2017, Subsection 3.3.1]).

1.4.3 The tangent bundle

In this subsection, we describe the tangent bundle of W (H ) and we characterise optimal

transport maps as tangent space elements. We follow von Renesse and Sturm [2009] and

Ambrosio et al. [2008].
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Chapter 1. Overview

We start by introducing the L2-like space and norm of Borel functions f : H →H by

‖ f ‖L2(µ) =
(∫

H
‖ f (x)‖2 dµ(x)

)1/2

, L2(µ) = { f : ‖ f ‖L2(µ) <∞}.

If we now fix a reference measure µ, any other measure ν such that the optimal map tνµ
exists uniquely can be identified with tνµ itself. Subtracting the identity I from tνµ creates a

correspondence between a subset of the Wasserstein space with a subset of the linear space

L2(µ), in such a way that µ itself corresponds to 0 ∈L2(µ).

This motivates the following definition of the tangent space of W (H ) at µ (Ambrosio et al.

[2008, Definition 8.5.1]):

Tanµ = {t (t−I) : t ∈L2(µ);t optimal between µ and t#µ; t > 0}
L2(µ)

.

Tanµ inherits the inner product of L2(µ),

〈s,r〉µ =
∫
H
〈s(x),r(x)〉dµ(x), s,r ∈L2(µ).

Notice that Tanµ is a strict subset of L2(µ). For example, a bounded linear operator A is

always an element of L2(µ), but it belongs to the tangent space if and only if A is self-adjoint.

Moreover, Tanµ is a linear space. Linearity comes from an equivalent definition [Ambrosio

et al., 2008, Definition 8.4.1] of the tangent space in terms of cylindrical functions.

In differential geometry, points on the manifold can be lifted to the tangent space via the

Riemannian logarithm map. Viceversa, tangent space vectors can be retracted onto the

manifold via the Riemannian exponential map.

The exponential map expµ : Tanµ →W (H ) at µ is the restriction of the transformation that

sends r ∈L2(µ) to (r+I)#µ ∈W (H ). Specifically,

expµ(t (t−I)) = [t (t−I)+I)#µ= [tt+ (1− t )I]#µ, t ∈R.

When µ is regular, the log map logµ : W (H ) → Tanµ, is well-defined throughout W (H ), and

given by

logµ(ν) = tνµ−I.

It is the (surjective) right inverse of the exponential map:

expµ(logµ(ν)) = ν, ν ∈W , logµ(expµ(t (t−I))) = t (t−I) t ∈ [0,1],

because convex combinations of optimal maps are optimal maps as well (Masarotto et al.

[2018, Subsection 2.2]), and so the log map is bijectively mapping McCann’s interpolant[
I+ t (tνµ−I)

]
#µ to the line t(tνµ−I) ∈ Tanµ. In Wasserstein space, the tangent space and the
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1.5. Fréchet means in general metric spaces

exponential and log maps can be thought of as Riemannian ones, since optimal maps arise

as minimal tangent vectors to absolutely continuous curves in Wasserstein space [Ambrosio

et al., 2008, Sections 8.4–8.5].

1.5 Fréchet means in general metric spaces

Fréchet means are the extensions to a general metric space of what arithmetic means are in

Euclidean space. Let x1, . . . , xn be elements of a normed vector space or more generally an

Hilbert space H . The empirical mean x of x1, . . . , xn is the unique minimiser of the sum of

squared distances from the x ′
i s, that is

x = argminy F (y) = arg miny

n∑
i=1

‖y −xi‖2, y ∈H .

This definition can be generalized beyond vector spaces. Such generalisation is credited to

Fréchet [1948] and, in the context of Wasserstein spaces, was dealt with for the first time

by Agueh and Carlier [2011], who considered empirical Fréchet means in W2(Rd ). A formal

definition is the following.

Definition 5 (Empirical Fréchet mean and empirical Fréchet functional). . Let µ1, . . . ,µn ∈
W2(H ). A Fréchet mean of (µ, . . . ,µn) is a minimiser in W2(H ) of the associated Fréchet func-

tional F : W2(H ) →R

F (γ) = 1

2N

N∑
i=1

W 2
2 (γ,µi ), γ ∈W2,

if such a minimiser exists.

Fréchet means are also known as of barycenters, and we might use either term in the sequel.

When it comes to covariance operators Σ1, . . . ,Σn , we can define their Fréchet mean with re-

spect to the Procrustes metric as the Wasserstein Fréchet mean of the corresponding centered

Gaussian processes, that is, as the minimiser of the Fréchet functional

F (Σ) = 1

2N

n∑
i=1

Π2(Σ,Σi ) = 1

2N

n∑
i=1

W 2(N (0,Σ),N (0,Σi )).

Empirical Fréchet means extend to their corresponding population version by replacing

summations by expectation:

Definition 6 (Population Fréchet mean). . Let µ be a random measure in W . The Fréchet mean

of µ is the minimiser of the Fréchet functional F : W →W

F (γ) = 1

2
EW 2

2 (γ,µ), µ ∈W
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Chapter 1. Overview

if such a minimiser exists uniquely.

For covariance operators, considering the population mean corresponds to consider the

Fréchet mean of a random operator A , and is given by the minimiser of the functional

F (Σ) = 1

2
EΠ2(Σ,A ).

When A is uniformly distributed over the finite set {Σ1, . . . ,Σn} then the population Fréchet

mean reduces to the empirical one.

1.5.1 Existence, uniqueness and the Gaussian case

Existence and uniqueness of a Fréchet mean is in general not guaranteed. Bhattacharya and

Patrangenaru [2003, 2005] and Karcher [1977] give conditions for the existence and uniqueness

of Fréchet means in a Riemannian manifold. In particular, Bhattacharya and Patrangenaru

[2003] establish the existence of a unique Fréchet mean of a probability measure Q on a

completely metric space (M ,ρ), when M has non-positive curvature and Q is sufficiently

concentrated with bounded Fréchet functional F (p) = ∫
M ρ2(p, x)Q(d x), p ∈ M . In general,

existence proofs are easier, but even if a Fréchet mean exists, there is no guarantee of its

uniqueness. The reader is referred to Bhattacharya and Patrangenaru [2003, 2005], Karcher

[1977] for general Fréchet means, to Zemel [2017] for Fréchet mean in W 2 and to Le Gouic and

Loubes [2016] for W p .

Wasserstein spaces represent a notable exception, since relatively weak assumptions made

it possible to establish existence and uniqueness. When H = Rd , Agueh and Carlier [2011]

provide necessary and sufficient conditions for γ to be the unique Fréchet mean of absolutely

continuous measures µ1, . . . ,µN ∈W∈(H ) in terms of the convex potentials of tγµ. Zemel [2017,

Theorem 4.2.4] gives conditions on the population version.

If µ1, . . . ,µN are Gaussian on Rd , Knott and Smith [1984] show that a Fréchet mean for their

respective covariances Σ1, . . . ,Σn is a positive definite solution Σ to the equation

Σ= 1

n

n∑
i=1

(Σ1/2ΣiΣ
1/2)1/2.

Existence of a solution of this equation was also proved in Rüschendorf and Uckelmann [2002].

Agueh and Carlier [2011] extended this result, proving that (2.10) has as unique invertible

solution the Fréchet mean of Σ1, . . . ,Σn , which turns out to be Gaussian as well. In Masarotto

et al. [2018] we proved that part of their results extend easily to infinite dimensions. The

infinite-dimensional extension is presented in Proposition 16 in the next chapter.
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2 Optimal transport of Gaussian pro-
cesses

Functional datasets are becoming more and more common, and an increasing amount of

literature focusses on dealing with such data [Ramsay and Silverman, 2005b, Hsing and

Eubank, 2015, Horvath and Kokoszka, 2012]. Many of these contributions have dealt with the

problem of the estimation of, and inference for, a mean function. In this Chapter, we present a

collection of results concerning especially the covariance structure of such data. This Chapter

contains most of the theoretical contributions of the thesis.

We begin by establishing the key connection between the Procrustes metric for operators and

the Wasserstein metric for centered Gaussian processes (Section 2.1). We then show how this

will lead to new results related to existence, uniqueness and stability of Fréchet mean, which

are presented in Section 2.2. Section 2.3 gives details on the practical implementations of an

algorithm to compute Fréchet means, while Section 2.4 describes a “canonical” generative

model for functional data giving rise to the Wasserstein–Procrustes metric.

2.1 Equivalence of measures

We set off by establishing the equivalence between the Procrustes and the Wasserstein metric.

This connection will allows us to describe the geometry and derive key properties of the space

of covariance operators.

Let µ ≡ N (m1,Σ1) and ν ≡ N (m2,Σ2) be Gaussian measures (in the sense of Section 1.4.1).

Following Pigoli et al. [2014a] we can write the Procrustes distance between Σ1 and Σ2 of

Equation (1.12) as

Π2(Σ1,Σ2) = inf
R : R∗R=I

tr[(
√
Σ1 −

√
Σ2R)∗(

√
Σ1 −

√
Σ2R)]

=trΣ1 + trΣ2 −2 sup
R : R∗R=I

tr(R∗Σ1/2
2 Σ1/2

1 ). (2.1)
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Chapter 2. Optimal transport of Gaussian processes

Now consider the non-negative product

C = [Σ1/2
2 Σ1/2

1 ]∗Σ1/2
2 Σ1/2

1 =Σ1/2
1 Σ2Σ

1/2
1

and write the singular value decomposition of Σ1/2
2 Σ1/2

1 as Σ1/2
2 Σ1/2

1 =UC 1/2V , for unitary U

and V . The expression for the Procrustes distance in (2.1) becomes

Π2(Σ1,Σ2) = trΣ1 + trΣ2 −2 sup
R : R∗R=I

tr(VR∗UC1/2). (2.2)

By observing that {V R∗U : R∗R = I} is just an alternative definition of the set of unitary

operators, it follows that the Procrustes distance in (2.2) is maximised when V R∗U is the

identity, and (2.2) becomes

Π2(Σ1,Σ2) = tr(Σ1)+ tr(Σ2)−2tr

[√
Σ1/2

2 Σ1Σ
1/2
2

]
,

which is exactly the expression of the Wasserstein distance between µ and ν given in Equa-

tion (1.16).

We have just given a proof of the following theorem, which connects the theory in Sections 1.3.1

and 1.2.5.

Theorem 7. The Procrustes distance between two trace-class covariance operators Σ1 and Σ2

on H coincides with the Wasserstein distance between two second-order Gaussian processes

N (0,Σ1) and N (0,Σ2) on H ,

Π(Σ1,Σ2) = inf
R:R∗R=I

‖Σ1/2
1 −Σ1/2

2 R‖2

=
√

tr(Σ1)+ tr(Σ2)−2tr
√
Σ1/2

2 Σ1Σ
1/2
2 =W (N (0,Σ1), N (0,Σ2)).

It is worth noticing that in finite dimensions, Bhatia et al. [2018] obtain the same conclusion

of Theorem 7 as a variational principle. Furthermore, Bhatia et al. [2018] make a connection

to quantum information, where a related quantity to the Wasserstein distance is known as the

Bures distance [Bures, 1969]. For Gaussian measures, the 2-Wasserstein distance coincides

with the Bures distance.

In view of Theorem 7, we will sometimes call the Procrustes metric the Procrustes–Wasserstein

metric.

Commuting operators

A noteworthy simplification for the expression that the Wasserstein distance takes place when

the operator Σ1 and Σ2 commute, i.e., Σ1Σ2 =Σ2Σ1.

Let tΣ2
Σ1

be the optimal transport map between Σ1 and Σ2. Assume that kerΣ1 ⊆ kerΣ2, to
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2.1. Equivalence of measures

guarantee that tΣ2
Σ1

stays well defined. In the case of commuting operators, tΣ2
Σ1

simplifies to

Σ1/2
2 Σ−1/2

1 and the Wasserstein distance between µ and ν reduces to the Hilbert–Schmidt

distance between the square roots of the covariance operators. To see this, note first that in

this case Σ1/2
1 Σ1/2

2 is self-adjoint. Then

W 2(N (0,Σ1), N (0,Σ2)) = tr(Σ1)+ tr(Σ2)−2tr
√
Σ1/2

2 Σ1Σ
1/2
2

= tr(Σ1)+ tr(Σ2)−2tr
√

(Σ1/2
1 Σ1/2

2 )∗(Σ1/2
1 Σ1/2

2 )

= tr(Σ1)+ tr(Σ2)−2tr(Σ1/2
1 Σ1/2

2 )

= ‖Σ1/2
1 ‖2

2 +‖Σ1/2
2 ‖2

2 −2〈Σ1/2
1 ,Σ1/2

2 〉HS = ‖Σ1/2
1 −Σ1/2

2 ‖2
2.

We can now move and characterise the topology and the geometry of the Gauss-Wasserstein

space and the behaviour of the Procrustes–Wasserstein under finite-rank projection.

2.1.1 Topological properties

The topology of Gaussian measures under the Wasserstein metric can be deduced by means

of the fact that Gaussian measures converge weakly to a Gaussian measure if and only if

their moments also converge. The next paragraphs report the topological properties of the

Wasserstein distance between Gaussian measures. For a proof see [Zemel, 2017] and [Panaretos

and Zemel, To appear].

In order to state the result, we need to recall some basic notions of analysis in Polish spaces.

Recall that a Polish space is a separable completely metrisable topological space.

Definition 8. A sequence µn ⊂ P (H ) converges narrowly (or in distribution) to a measure µ if∫
f dµn 7→

∫
f dµ,

for all bounded and continuous functions f : H →R.

We refer to Villani [2008] for a proof that the topology of narrow convergence is metrizable.

Definition 9. A set K ⊂ P (H ) is called tight provided that for every ε> 0 there exists a compact

set Kε ⊂H such that

µ(H \Kε) ≤ ε, ∀µ ∈ K .

Now we are ready to characterise the topology induced by the Wasserstein distance. Let

{Σn}∞n=1, Σ be covariance operators on H . Then the following statements are equivalent:

1. N (0,Σn)
n→∞−→ N (0,Σ) in distribution.

2. Π(Σn ,Σ)
n→∞−→ 0.
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Chapter 2. Optimal transport of Gaussian processes

3. ‖pΣn −p
Σ‖2

n→∞−→ 0.

4. ‖Σn −Σ‖1
n→∞−→ 0.

More is known about the topology of Wasserstein space, for instance, that W (H ) is homeo-

morphic to an infinite-dimensional convex subset of a Hilbert space L2(µ) (for any regular

measure µ) and has therefore a manifold-like structure inherited from L2(µ). The reader is

referred to [Zemel, 2017, Lemmas 3.4.4 and 3.4.5] and to [Panaretos and Zemel, To appear] for

a more in-depth treatment of this subject.

2.1.2 Finite-rank approximations

Any real-life statistical inference deals with finite-dimensional approximations to their func-

tional counterpart. Therefore, in order to use the Procrustes metric in practice, we need

some sort of stability of the distances across finer finite-dimensional approximations. In

the following Lemma we prove a result on stability of the distance once the operators are

acted upon by any sequence of projections (non-necessarily finite dimensional) converging

strongly to the identity in H . We say that P is a projection operator if P∗ =P=P2, while we

say that a sequence of operators Tn converges to T strongly if Tn x → T x for all x ∈H (Stein

and Shakarchi [2009, p. 198])1. We can now state:

Lemma 10. Let Σ a covariance operator and Pn be a sequence of projections that converges

strongly to the identity. ThenΠ(Σ,PnΣPn) → 0.

The Lemma was given in Masarotto et al. [2018]. Stability of the distance between finite-

dimensional projections of two infinite operators was already considered in Pigoli et al. [2014a],

but their result is a special case of Lemma 10: in the notation of Lemma, simply take Pn =∑n
j=1 e j ⊗e j as the projection onto the span of {e1, . . . ,en}, for {e j } j≥1 an orthonormal basis of

H .

In order to give a proof of Lemma 10 we need the following result (Masarotto et al. [2018,

Lemma 19])

Lemma 11. An operator A ∈ L2(N (0,Σ)), possibly unbounded, is optimal from N (0,Σ) to

A#N (0,Σ) if and only if A is non-negative, and then A#N (0,Σ) = N (0, AΣA).

Proof of Lemma 10. Let µ ∈W (H ) Gaussian with covariance Σ and P be a projection operator.

By Lemma 11, P is an optimal map from µ to P#µ, and if PΣP is the projection of Σ onto the

range of P, we have

Π2(Σ,PΣP) =W 2(µ,P#µ) =
∫
H
‖x −Px‖2 dµ(x) = tr

{
(I−P)Σ(I−P)

}= tr
{
(I−P)Σ

}
.

1This is much weaker than convergence in operator norm, but stronger than requiring that
〈

Tn x, y
〉→ 〈

T x, y
〉

for all x, y ∈ H , which is called weak convergence of Tn to T .
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Now since P converges strongly to the identity, Pn x → x for all x and ‖Pn x‖ ≤ ‖x‖, so the

dominated convergence theorem yields that Pn#µ→µ in W (H ), completing the proof.

Lemma 10 can be actually stated for everyµ ∈W (H ), in which casePn#µ→µ in W (H ). When

the projections are finite-dimensional, the result of Lemma 10 can be strengthened, as in this

case convergence of the finite-dimensional distance will converge uniformly over compacta

to its infinite-dimensional counterpart (Masarotto et al. [2018, Proposition 6]). We report it

here for completeness.

Proposition 12. Let {e j } j≥1 be an orthonormal basis of H and Pn = ∑n
j=1 e j ⊗ e j be the pro-

jection on the span of {e1, . . . ,en}. Let B be a collection of non-negative bounded operators

satisfying

sup
Σ∈B

∞∑
j=n+1

〈
Σe j ,e j

〉→ 0, n →∞. (2.3)

Then,

sup
Σ1,Σ2∈B

|Π(PnΣ1Pn ,PnΣ2Pn)−Π(Σ1,Σ2)|→ 0, n →∞.

Proof. Let K ⊂W (H ) be a collection of measures with Σ(µ) ∈B for all µ ∈K . It suffices to

show that W (µ,Pn#µ) → 0 uniformly and indeed

W 2(µ,Pn#µ) = tr(I−Pn)Σ(µ) =
∞∑

j=n+1

〈
Σ(µ)ej,ej

〉
vanishes uniformly as n →∞.

2.1.3 Geometry of the Gauss–Wasserstein space

Thanks to theorem 7, the geometrical characterisation of the Wasserstein space given in

Section 1.4.2 applies readily to the space of covariance operators (identified with the space

of centered Gaussian processes) equipped with the Procrustes–Wasserstein metric Π. We

translate the results for the space of operators in this section.

Thanks to Lemma 11, the optimal map t is the unique non-negative, possibly unbounded

operator such that tΣt is trace-class. Recalling that trace-class operators can be seen as

“squares” of Hilbert-Schmidt operators, we have that Σ1/2t is Hilbert–Schmidt and thus so is

Σ1/2(t−I).

Using the simplified notation TanΣ for TanN (0,Σ), the inner product on TanΣ is defined as

〈A,B〉TanΣ =
∫
H
〈Ax,B x〉dµ(x) = tr(AΣB) = E[〈AX,BX〉], X ∼µ≡ N(0,Σ). (2.4)
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Chapter 2. Optimal transport of Gaussian processes

We can now write the following description for the tangent space TanΣ,

TanΣ =
{

t (S −I) : t > 0, S º 0, ‖Σ1/2(S −I)‖2 <∞}
, (2.5)

where the closure is taken with respect to 〈,〉TanΣ . Now, observe that if Q is a bounded self

adjoint operator, and t > ‖Q‖∞, then S = I+Q/t is non-negative. In this we can approximate

unbounded Q’s. A self-adjoint operator Q ∈ TanΣ has zero norm if and only if QΣQ = 0 or,

equivalently, QΣ= 0. Thus TanΣ can be turned into an Hilbert space of equivalent classes of

operators Q modulo the relation Q ∼Q ′ ⇐⇒ (Q −Q ′)Σ= 0 2.

Equation (2.5) can be rewritten as

TanΣ =
{
Q : Q =Q∗, ‖Σ1/2Q‖2 <∞}

.

We can also give expressions for the exponential and the log maps on TanΣ, the first being

expΣ(A) = (A+I)Σ(A+I).

For the latter to be well defined, we need one of the following regularity conditions to hold:

ker(Σ0) ⊆ ker(Σ1) or range(Σ0) ⊇ range(Σ1). If µ≡ N (0,Σ0) and ν≡ N (0,Σ1) and using Proposi-

tion 4, fulfilment of the above conditions will yield sufficiency for the existence of

1. the log map of Σ1 at Σ0,

logΣ0
Σ1 = t1

0 −I=Σ−1/2
0 (Σ1/2

0 Σ1Σ
1/2
0 )1/2Σ−1/2

0 −I,

and defined N (0,Σ)-almost surely;

2. a unique (unit speed) geodesic from Σ0 to Σ1,

Σt = [tt1
0 + (1− t )I]Σ0[tt1

0 + (1− t )I] = t 2Σ1 + (1− t )2Σ0 + t (1− t )[t1
0Σ0 +Σ0t1

0],

where again t1
0 =Σ−1/2

0 (Σ1/2
0 Σ1Σ

1/2
0 )1/2Σ−1/2

0 .

2.2 Fréchet means of covariance operators

This section provides the first significant theoretical contribution of this thesis, going beyond

Pigoli et al. [2014a]. It treats the empirical Fréchet mean of a collection of covariance operators

Σ1, . . . ,Σn with respect to the Procrustes–Wasserstein metric. We recall that the empirical

Fréchet mean is given by the minimiser of the Fréchet functional

F (Σ) = 1

2N

N∑
i=1

Π2(Σ,Σi ) = 1

2N

N∑
i=1

W 2(N (0,Σ), N (0,Σi )).

2In this way TanΣ contains all equivalent classes of bounded self-adjoint operators on H , but also certain
unbounded ones. For example, if Σ1/3 is trace-class, then the tangent space inner product is well defined when
taking A = B =Σ−1/3, even though the latter is an unbounded operator.
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2.2. Fréchet means of covariance operators

Thanks to Theorem 7, the minimiser of the Fréchet functional F will also yield the barycenter

of the corresponding Gaussian measures µ1 ≡N (0,Σ1), . . . ,µk ≡N (0,Σ1).

For a collection of Gaussian measures, their Fréchet mean will still be Gaussian, so there is no

need to minimize F (Σ) over the full set of measures in W (H ). See Section 1.5.1 for details.

The population Fréchet mean will minimize

F (Σ) = 1

2
EΠ2(Σ,Y ),

for a random covariance operator Y .

We recall (cf. Section 1.5.1) that existence and uniqueness of Fréchet means in general metric

spaces are not granted, but we will give relatively weak conditions under which they can be

established for Gaussian measures in Wasserstein spaces. In finite dimensions such conditions

can be found in Agueh and Carlier [2011], but there is no straightforward counterpart for

operators.

Results on existence of the Fréchet mean rely on the concept of multicouplings, which are an

extension of the concept of coupling of measures (see Section 1.3) and are defined as follows.

Definition 13 (Multicoupling). Let µ1, . . . ,µN ∈ W (H ). A multicoupling of (µ1, . . . ,µN ) is a

Borel measure on H N with marginals µ1, . . . ,µN .

Multicouplings were studied in connection with the multimarginal Monge–Kantorovich prob-

lem, which is solved by minimising the functional

G(π) = 1

2N 2

∫
H N

∑
i< j

‖xi −x j‖2 dπ(x1, . . . , xN ) =
∫
H N

1

2N

N∑
i=1

‖xi −x‖2 dπ(x). (2.6)

A multicoupling π is optimal if it is a minimiser of G(π). See Gangbo and Świȩch [1998] and

Zemel and Panaretos [2017] for a complete study of optimal multicouplings in Rd .

When N = 2 we retrieve the Kantorovich problem of Section 1.3, and just as in N = 2 an

optimal multicoupling π always exists. Moreover, if µ1 is regular, an optimal multicoupling of

µ1, . . . ,µN ∈W is given by (I,S2, . . . ,SN )#µ1 for some functions Si :Rd →Rd , where

(I,S2, . . . ,SN )#µ1(B1× . . .×BN ) =µ1({x ∈ B1 : S2(x) ∈ B2, . . . ,SN (x) ∈ BN }) =µ1

(
N⋂

i=1
S−1

i (Bi )

)

for any Borel-rectangle B1 × . . .×BN , and S1 = I. Lemma 14 links the optimal multicoupling of

the collection µ1, . . . ,µN ∈W with the existence of their Fréchet mean. The result was originally

proven in Rd by Agueh and Carlier [2011, Proposition 4.2], and here it is extended to infinite

dimension.

Lemma 14 (Fréchet means and multicouplings). Let µ1, . . . ,µN ∈W . Then µ is a Fréchet mean

of (µ1, . . . ,µN ) if and only if there exists an optimal multicoupling π ∈W (H N ) of (µ1, . . . ,µN )
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Chapter 2. Optimal transport of Gaussian processes

such that

µ= MN #π, MN : H N →H , MN (x1, . . . , xN ) = x = 1

N

N∑
i=1

xi .

Proof. Let π be an arbitrary multicoupling of (µ1, . . . ,µN ) and set µ= MN #π. The measures µi

and µ are coupled by (x 7→ xi , MN )#π, so∫
H N

‖xi −MN (x)‖2 dπ(x) ≥W 2(µ,µi ).

Let F (µ) be the Fréchet functional and G(µ) be the multicoupling functional in (2.6). By

summing over i in the above equation, we get G(π) ≥ F (µ) and so infG ≥ infF .

For the other direction, letµ ∈W be arbitrary. For each i , letπi be an optimal coupling between

µ and µi . Since all πi share a common marginal µ, by the gluing lemma (Ambrosio and Gigli

[2013, Lemma 2.1]) we can construct a measure η on H N+1 with marginals µ1, . . . ,µN ,µ and

such that projection π of η on H N is a multicoupling of µ1, . . . ,µN .

Since H is a Hilbert space, the minimiser of y 7→∑‖xi − y‖2 is y = MN (x). Therefore

F (µ) = 1

2N

∫
H N+1

N∑
i=1

‖xi − y‖2 dη(x, y) ≥ 1

2N

∫
H N+1

N∑
i=1

‖xi −MN (x)‖2 dη(x, y) =G(π), (2.7)

from which it follows that infF ≥ infG . Combining the two inequalities, we get the correspon-

dance between multicoupling and Fréchet mean, i.e., infF = infG .

To conclude the proof, we turn our attention to inequality (2.7) above. This inequality holds as

equality if and only if y = MN (x) η-almost surely, which, when true, implies that µ= MN #π. If

this last condition fails and µ does not coincide with MN #π, then it cannot be optimal, as in

this case, F (µ) >G(π) ≥ F (MN #π). Finally, if π is optimal, then

F (MN #π) ≤G(π) = infG = infF

which completes the proof, yielding the required optimality of µ= MN #π.

Now that existence is established we can deal with uniqueness. A Gaussian measure µ with

covariance Σ is regular if and only if Σ is injective. We will show that uniqueness is guaranteed

if at least one of the measures is regular and we will use the fact that, if this regularity condition

holds, the optimal map tνµ exists for any ν ∈W (H ) (including the cases with non-Gaussian ν).

Uniqueness of the Fréchet mean follows from the strict convexity of the Fréchet functional

F . In this case, convexity is not intended with respect to the Wasserstein geometry, but

rather with respect to set-wise addition (also known as mixing, in statistics): given probability

measures µ and ν, we can consider the function defining by assigning to a Borel set A a

measure tµ(A)+ (1− t )ν(A). Such functions define a probability measure tµ+ (1− t )ν for all
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2.2. Fréchet means of covariance operators

t ∈ [0,1].

Proposition 15. Let µ1, . . . ,µN ∈W (H ) and assume that µ1 is regular. Then the Fréchet func-

tional is strictly convex, and the Fréchet mean of µ1, . . . ,µN is unique. In particular, the Fréchet

mean of a collection of covariance operators is unique if at least one of the operators is injective.

Proof. Let ν1,ν2,µ ∈W (H ) and let πi be an optimal coupling of νi and µ. For any t ∈ (0,1) the

linear interpolant tπ1 + (1− t )π2 is a coupling of tν1 + (1− t )ν2 and µ. We have

W 2(tν1+(1−t )ν2,µ) ≤
∫
H 2

‖x − y‖2 d[tπ1 + (1− t )π2](x, y) = tW 2(ν1,µ)+(1−t )W 2(ν2,µ).

(2.8)

Equation (2.8) implies that the squared Wasserstein distance is weakly convex.

Notice that if the inequality was strict, it would lead to the strict convexity of the Fréchet func-

tional, and therefore to the proof of the proposition, since in this case the Fréchet functional

would be a sum of N squared Wasserstein distances that are all convex, and with one of them

strictly convex.

To prove strict convexity, we procede by contradiction, invoking Theorem 2.9 in [Álvarez-

Esteban et al., 2011], which holds true independently on dimension 3. Observe first that for a

regular µ, both π1,π2 are induced by well-defined maps Ti = tνi
µ . Now assume ν1 6= ν2. Then

by Álvarez-Esteban et al. [2011, Theorem 2.9] tπ1 + (1− t )π2 cannot be the optimal coupling

of tν1 + (1− t)ν2 and µ, since there is no map T inducing tπ1 + (1− t)π2 as some (X ,T (X ))

with marginals µ and tν1 + (1− t )ν2. In particular, the inequality above is strict and so is the

convexity of W 2(·,µ).

Uniqueness holds also at the population level for finite matrices, as long as the random

covariance operator is injective with positive probability. Uniqueness for population Fréchet

mean follows from an idea of Álvarez-Esteban et al. [2011], and it was proved inRd by Bigot and

Klein [2012] in a parametric setting, and Zemel and Panaretos [2017] in the non-parametric

one.

We can now move to the Fréchet mean of Gaussian measures, specifically showing that a

Gaussian–Fréchet mean is Gaussian as well.

2.2.1 Fréchet mean of Gaussian measures

Agueh and Carlier [2011, Section 6.3] showed that inRd the Fréchet mean of Gaussian measures

is Gaussian. Making use of the stability result of Section 2.2.2, we now extend their result to

infinite dimensions.

3In our case P1 = P2 (in the notation of Álvarez-Esteban et al. [2011]), hence there is no need to work with
densities.
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Chapter 2. Optimal transport of Gaussian processes

Let Σ1, . . . ,Σn be covariance operators with unique Fréchet mean Σ. Let Pk be a sequence of

finite-dimensional projections converging strongly to the identity. Let Σ̄(k) denote the Fréchet

mean of (PkΣiPk )n
i=1. Following the reasoning in Agueh and Carlier [2011, Theorem 6.1],

Brower’s fixed-point theorem (e.g. [Karamardian, 2014]) implies that there exists a positive

definite solution to the equation

F (k)(Σ) =Σ, (2.9)

where F (k)(Σ) is the functional

n∑
i=1

(
Σ1/2(PkΣiPk )Σ1/2)1/2

.

Now let Σ̄(k) be a k−ranked positive definite solution of (2.9) and define µ̄(k) =N (0, Σ̄(k)). The

optimal transport map between µ̄(k) and µ(k)
i ≡N (0, (PkΣiPk )) is the linear map

T (k)
i = (PkΣiPk )1/2

(
(PkΣiPk )1/2Σ̄(k)(PkΣiPk )1/2

)−1/2
(PkΣiPk )1/2.

Always following Agueh and Carlier [2011], since
∑n

i=1 T (k)
i = I, Σ̄(k) is a barycenter of (PkΣiPk )n

i=1,

making it the unique positive definite barycenter. Now notice that we have a sequence of

Gaussian barycenters that, by the stability result in Section 2.2.2 and as k grows to infinity,

must converge to the barycenter of the limit. This will give a sequence of mean-zero Gaussian

measures with covariance operators (PkΣiPk ) which is convergent in Wasserstein norm, and

by weak convergence of Gaussian measures the limit must be Gaussian. Agueh and Carlier

[2011] make use of the invertibility of Σ̄1/2
k , which is not given for a finite-rank approximation

to an infinite-dimensional operator. However, the range of Σ̄k is completely contained in

range(Pk ), which is a finite-dimensional space, justifying the result.

In Chapter 1 it was mentioned that the Fréchet mean of Gaussian covariances can be found as

a positive-definite solution Σ of the implicit equation [Knott and Smith, 1984, Rüschendorf

and Uckelmann, 2002]

Σ= 1

n

n∑
i=1

(Σ1/2ΣiΣ
1/2)1/2. (2.10)

The result was extended by Agueh and Carlier [2011], who established existence and unique-

ness, and indeed that the Fréchet mean of Gaussian measure is Gaussian. In Masarotto

et al. [2018] we extended part of their results to infinite dimensions, as illustrated by the next

Proposition.

Proposition 16. Let Σ1, . . . ,Σn be covariance operators. Then:

1. Any Fréchet mean Σ of Σ1, . . . ,Σn satisfies (2.10).

2. If (2.10) holds, and ker(Σ) ⊆⋂n
i=1 ker(Σi ), then Σ is a Fréchet mean.
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2.2. Fréchet means of covariance operators

Proof. Let Pk be a sequence of finite-rank projections converging strongly to the identity

I. Then PkΣiPk converges to Σi in Wasserstein distance (Section 2.1.2). The results in Sec-

tion 2.1.1 thus imply that the convergence is also in trace norm. Now call Σk the Fréchet

mean of the projected operators. If we replace Σi by PkΣiPk in Agueh and Carlier [2011,

Theorem 6.1], it follows that Σk satisfies (2.10). But Σk converge to Σ in trace norm due to

the results in Section 2.1.1 and the stability Theorem 18 in the next Chapter. Therefore (2.10)

holds true for Σ by continuity.

Let us now prove the other direction. From the conditions on the kernels it follows that

Ti = tΣi
Σ =Σ−1/2(Σ1/2ΣiΣ

1/2)1/2Σ−1/2 exists and is defined on a dense subspace Di ofΣ-measure

one (Proposition 4). Now D = ⋂n
i=1 Di is a set of full measure and Equation (2.10) yields∑

Ti = nI on Di . Theorem 21 implies that Σ is a Fréchet mean.

Lemma 14 shows that we can deduce the Fréchet mean of a collection of Gaussian measures

from an optimal multicoupling. The following result from Zemel and Panaretos [2017] states

that the proof of Lemma 14 can be used to prove the opposite direction, i.e., that one can

deduce an optimal multicoupling from the Fréchet mean.

Lemma 17. Let Σ1, . . . ,Σn be covariances on H with injective Fréchet mean Σ. Let Z ∼ N (0,Σ)

and define a random Gaussian vector on H n by

(Y1, . . . ,Yn), Yi = tΣi

Σ
(Z ) =Σ−1/2

[Σ
1/2
ΣiΣ

1/2
]1/2Σ

−1/2
Z , i = 1, . . . ,n.

Then the joint law of (Y1, . . . ,Yn) is an optimal multicoupling of N (0,Σ1), . . . , N (0,Σn).

2.2.2 Stability of the Fréchet mean

Much of the theory behind functional data analysis deals with continuously sampled data. In

practice however, the observed data are most likely discretely sampled and only provide a finite-

dimensional approximation to the infinite-dimensional objects. Moreover, the approximation

is often hindered by the use of some kind of smoothing techniques for noise reduction (e.g. Yao

et al. [2005a,b] or Descary [2017]). For this reason it is important to ascertain that the relevant

inference remains stable across finer and finer approximations. In Section 2.1.2 we verified the

stability of the Procrustes distance for progressively more refined finite rank approximations.

The topological knowledge of the Wasserstein space makes it possible to deduce a similar

conclusion for the stability of the Fréchet mean.

The next theorem is phrased in terms of covariance operators. It could be equivalently ex-

pressed in terms of Gaussian measures {N (0,Σi ) : i ≤ N } and finite rank sequences {N (0,Σi
k ) :

i ≤ N , k ≥ 1}, and in terms of Wasserstein barycenters rather than Fréchet means.

Theorem 18 (Fréchet means and projections). Let Σ1, . . . ,ΣN be covariance operators with Σ1

injective, and let {Σi
k : i ≤ N , k ≥ 1} be sequences such thatΣi

k
k→∞−→ Σi in trace norm (equivalently,
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Chapter 2. Optimal transport of Gaussian processes

in Procrustes distance). Then the Fréchet mean of Σ1
k , . . . ,ΣN

k converges in trace norm to that

of Σ1, . . . ,ΣN .

Proof. Call {µi : i ≤ N } and {µi
k : i ≤ N , k ≥ 1} the sequences of centered Gaussian measures

with corresponding covariance operators, i.e. {N (0,Σi ) : i ≤ N } and {N (0,Σi
k ) : i ≤ N , k ≥ 1}

and let Fk and F denote respectively the finite- and infinite-dimensional Fréchet functionals.

The proof will develop by proving the following steps:

1. (µk ) is tight. From tightness paired with Gaussianity we will deduce that (µk ) is pre-

compact in W (H ).

2. Each of the limits of (µk ) is a minimiser of F .

3. There is only one minimiser of F . Therefore µk must converge to the minimiser of F .

Step 1: tightness of (µk ). The equivalent results in Section 2.1.1 provide tightness of the entire

collection K = {µi
k }, since all the sequences converge in distribution. For any ε > 0, there

exists a compact Kε ⊂H such that µ(Kε) ≥ 1−ε/N for all µ ∈K . We can then assume Kε to be

convex by replacing it with its closed convex hull [Masarotto et al., 2018, Lemma 21].

Let πk be any multicoupling of (µ1
k , . . . ,µN

k ). Then the marginal constraints of πk imply that

πk (K N
ε ) ≥ 1− ε. By Lemma 14, µk must take the form MN #πk for some multicoupling πk .

Convexity of Kε implies that M−1
N (Kε) ⊇ K N

ε , and so

µk (Kε) =πk (M−1
N (Kε)) ≥πk (K N

ε ) ≥ 1−ε.

In particular, the sequence (µk ) is tight and up to subsequences. We may assume that it

converges in distribution to a limit µ. By the results in Section 2.1.1 paired with Gaussianity,

they converge as well in Wasserstein distance.

Step 2: a moment bound for µk . Let R i = ∫
H ‖x‖2 dµi (x) denote the second moment of µi . For

a general measure ν,

W 2
2 (ν,δ0) = inf

{(X ,Y ):law(X )=µ,law(Y )=δ0}
EΠ(X ,Y ) = inf

X∼µ
Π(X ,0),

so the squared Wasserstein distance to the Dirac mass at 0 can be interpreted as a second

moment (see also Theorem 7.12 in Villani [2003]). In particular, the second moment of µi
k

converges to R i , and for sufficiently large k is bounded above by R i +1. By Masarotto et al.

[2018, Corollary 9], for k large

∫
H
‖x‖2 dµk (x) ≤ 1

N

N∑
i=1

R i +1 ≤ max(R1, . . . ,RN )+1 := R +1. (2.11)

Step 3: the limit µ is a Fréchet mean of (µi ). We start by proving that the for large k the Fréchet
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2.2. Fréchet means of covariance operators

functionals Fk are uniformly Lipschitz on the Wasserstein ball

B = {µ ∈W : W 2(µ,δ0) ≤ R +1},

with δ0 a Dirac measure at the origin.

By the moment bound in (2.11), for any sufficiently large k, the Fréchet means µk fall into B .

If µ,ν ∈ B then, since µi
k ∈ B for k large,

|Fk (µ)−Fk (ν)| ≤ 1

2N

N∑
i=1

[W (µ,µi
k )+W (ν,µi

k )]W (µ,ν) ≤ 2
p

R +1 W (µ,ν),

which yields the Lipschitz property. Assume that µk → µ in W and let µ ∈ B , ε > 0 and k0

such that W (µk ,µ) < ε/(2
p

R +1) for all k ≥ k0. Since Fk → F point-wise we may assume that

|F (µ)−Fk (µ)| < ε when k ≥ k0. The same holds for µ= µ. Then for all k ≥ k0 and arbitrarily

small ε,

ε+F (µ) ≥ Fk (µ) ≥ Fk (µk ) ≥ Fk (µ)−ε≥ F (µ)−2ε

implying that µ minimises F over B and hence over the entire Wasserstein space W (H ) and

concluding the proof.

Theorem 18 makes it possible to profit from finite-dimensional results, as we can exploit the

stability of the distance and of the Fréchet mean to lift them to infinite dimensions. For exam-

ple, we can deduce that the operator mean does not “swell”. For covariance matrices, swelling

means that the determinant of the arithmetic mean can be larger than the determinant of its

parts. One of the advantages in applications of Wasserstein means is that they do not swell, as

Euclidean estimators occasionally do (see e.g. Masak [2017], Kalunga et al. [2015]). The next

theorem formalizes this result for general covariance operators.

Theorem 19. Let Σ be a unique Fréchet mean of Σ1, . . . ,Σn . Then (Σ1 +·· ·+Σn)/n −Σ is non-

negative.

Proof. For positive Σi , the result can be found in Bhatia et al. [2018, Theorem 9]. If Σi are

non-negative operators in finite dimensions, we can employ a regularisation to exploit the

result for positive Σi : let Σε be the Fréchet mean of the positive operators Σi + εI. Then

(Σ1 +·· ·+Σn)/n +εI−Σε is non-negative for all ε> 0. The result follows by taking ε→ 0. This

proves the result for finite dimensions.

The infinite-dimensional case shares the same ideas as the proof in Section 2.2.1 and can be

deduced from the stability result.

Let Pk be a sequence of finite-dimensional projections that converges strongly to the identity

and let Σk be any Fréchet mean of (PkΣiPk )n
i=1. Any multicoupling assigns probability one to

[range(Pk )]n , and by Lemma 14 the range of Σk is included in the finite-dimensional space
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range(Pk ). The sequence

(PkΣ1Pk +PkΣnPk )/n −Σk

is non-negative for all k. Letting k →∞ gives the result.

2.3 Computing the Fréchet mean through gradient descent

Once existence and uniqueness of the Fréchet mean are established, the next relevant question

is how it can be computed. The main issue in this context is that Fréchet means rarely admit

closed-form expressions. Even in the finite-dimensional Gaussian case, in general a closed-

form expression is obtainable only for a sample of size two, in which case the Wasserstein

mean between Σ1 and Σ2 is exactly the mid-point of the Wasserstein geodesics connecting the

them (see Bhatia et al. [2018] for matrices and Zemel [2017] for operators).

The lack of a closed-form expression entails a need for some sort of numerical computa-

tional scheme, to be applied on some (possibly smoothed) finite-dimensional version of the

operators.

Let Σ1, . . . ,ΣN be covariance operators on a finite dimensional subspace H ′ ⊂H . Assume we

wish to compute a Fréchet mean Σ for Σ1, . . . ,ΣN .

Numerical methods to compute the Fréchet mean have filled the line of work of several

authors. Álvarez-Esteban et al. [2016] and Bhatia et al. [2018] exploited equation (2.10) to

propose a fixed-point iteration algorithm for Gaussian measures. Pigoli et al. [2014a] suggested

an iterative procedure to find L =Σ1/2
based on generalised Procrustes analysis (Gower [1975]

and Dryden and Mardia [1998]), and which is summarised in Section 1.2.5. We adopt a

novel perspective, made possible by the knowledge of the Wasserstein geometry. A similar

perspective will be embraced in Chapter 3 and will be of key importance in applications. Rather

than limiting the algorithm to the manifold of covariance operators, we lift the problem of

computing the mean to its tangent space. More specifically, the algorithm lifts all observations

to the tangent space centered at an initial guess of the Fréchet mean via the log map, and

then averages all the lifted-operators linearly on the tangent space. The retraction through the

exponential map of this linear average onto the manifold provides the next iterate.

The algorithm effectively implements a series of Procrustes-type iterations in the sense of

Gower [1975] and Dryden and Mardia [1998] and was proposed in this tangent space form by

Zemel and Panaretos [2017]. In finite dimensions, these iterations are proved to converge to

the unique Fréchet meanΣ ofΣ1, . . . ,ΣN as soon as one of theΣi is injective, and independently

of the initial point, provided that the initial point is chosen to be injective. Convergence has

been independently proved by Zemel and Panaretos [2017] and Álvarez-Esteban et al. [2016].

We now give a high-level description of the algorithm. We present it in terms of covariance

operators (or equivalently, centered Gaussian measures), however the same procedure applies

to any finite collection of measures in Wasserstein space.
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• Initialise the procedure at some injective covariance Σ0 : H ′ →H ′.

• Denote as Σk the current iterate at step k.

• For each i compute the optimal maps from Σk to each of the operators Σi : H ′ →H ′ via

tΣi

Σk = (Σk )−1/2[(Σk )1/2Σi (Σk )1/2]1/2(Σk )−1/2.

• Compute the average Tk = N−1 ∑N
i=1 tΣi

Σk , which is itself a non-negative matrix on H ′.

• Set the next iterate to Σk+1 = TkΣ
k Tk (guaranteed to be injective on H ′ if at least one Σi

is so).

Álvarez-Esteban et al. [2016] show trΣk to be increasing in k, and Zemel and Panaretos [2017]

show that the optimal maps tΣi

Σk converge uniformly over compacta to tΣi

Σ
as k →∞.

The Wasserstein–Procrustes algorithm shares a connection with gradient descent. In order to

see it, write the finite-dimensional Fréchet functional at iteration k as

F (Σk ) = 1

2N

N∑
i=1

Π(Σk ,Σi ).

By Zemel and Panaretos [2017, Theorem 1], its gradient is

F ′(Σk ) =− 1

N

n∑
i=1

logΣk (Σi ) =− 1

N

N∑
i=1

(
tΣi

Σk −I
)

,

i.e., exactly the (negative) average that enters into the third step of the algorithm. This makes

the Wasserstein–Procrustes algorithm effectively a steepest descent in the space of covariances

endowed with the Procrustes metric, a result that was proved by Zemel and Panaretos [2017].

Finally, it is worth mentioning that when the covariance operators commute, either algorithm

converges to the Fréchet mean after a single iteration. In the Wasserstein-inspired algorithm

this requires to initialise the algorithm at a positive linear combination of the operators in the

sample, or a positive power thereof.

2.4 Phase variation and generative models for deformations

Section 1.2.3 gave the geometrical intuition that led to the choice of the Procrustes distance

as a metric for the space of covariances, namely, the link between Gram matrices and square

roots of covariances, and the consequent connection to shape theory. Throughout this thesis,

we explained how covariance operators can be raised to be the main object of interest in

the statistical analysis. We stressed the importance of picking a suitable non-linear metric,

as to respect the curved geometry on the manifold of covariances. What it might be less

clear to the reader, is how this translates into a motivation to chose to endow the space of

covariance operators specifically with the Procrustes-Wasserstein distance. This section aims
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to make clear the motives behind this choice. More precisely, we show how the connection

between the Procrustes distance and the registration of shapes is echoed by the connection

between the Wassestein distance and the registration of curves, thus making the Wasserstein

metric “natural” when we assume a generative mechanism for the data based on random

deformations.

While dealing with several populations exhibiting second-order variation, it becomes relevant

to be able to quantify and understand this variation. We mentioned in the Introduction and

in Chapter 1 how it is very common to perform statistical analysis on covariances by embed-

ding the operators into a larger, linear, Hilbert–Schmidt space. Inference is then performed

according to the corresponding metric (there is a multitude of references dealing with Hilbert–

Schmidt embedding. For example Benko et al. [2009], Panaretos et al. [2010a]),Horváth et al.

[2013], Paparoditis and Sapatinas [2014], Gabrys et al. [2010], Fremdt et al. [2013], Horváth

and Kokoszka [2012], Jarušková [2013], Coffey et al. [2011], Kraus [2014]). We now try to give

an idea of more subtleties involved in endowing a space with a particular metric. In statistics,

a specific choice of a distance is intimately connected with some sort of model generator for

the data at hand. By imbedding the operators into a Hilbert–Schmidt space, and using the

Hilbert–Schmidt distance, the model that is implicitly assumed considers that the sample of

(different) covariance operators arises as a linear perturbation of an underlying operator, i.e.,

Σk =Σ+Ek . (2.12)

Here Ek is a random zero-mean, self-adjoint, trace-class operator, and the equation is con-

strained so that the left hand side is non-negative definite.

As a random trace-class self-adjoint operator, E admits its own Karhunen–Loève expansion,

which is what usually is employed in the statistical analysis.

However we know that covariance operators lie in a fundamentally non-linear space, and

therefore are not closed under linear perturbations such as (2.12).

One of the main advantages of the Wasserstein distance is having a canonical connection with

the problem of warping (or phase variation). Due to this, the natural “Wassestein” generative

model is the one of random deformations. Let X be a Gaussian process. We have a phase-

variation if instead of X we observe X ∗(·) = X (T −1(·)) for a random invertible function T called

a deformation or warping function (cfr. Section 1.1.4). For data curves, phase-variation is

normally regarded as a “variation in the x-axes”, as opposite to amplitude variation, which

can be viewed as a variation on the y-axes. See for example the plot of the age curves in

the Berkeley growth dataset in Section 1.1.4, where it is possible to identify the two types of

variations quite clearly.

If now X has covariance Σ, and given a random4 non-negative bounded operator T on H , we

know that T X is a Gaussian process with covariance TΣT ∗, conditional upon T . We would

4In the sense that T is Bochner measurable from a probability space Ω to B(H ). In particular T (Ω) will be a
separable subset of (the non-separable) B(H ) [Panaretos and Zemel, To appear].
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like Σ to be the “true average” covariance of T X . A natural (and indeed necessary) assumption

in that direction is that the expected value of the perturbation T is the identity, i.e. ET = I. If

this holds, given Σ together with a collection T1, . . . ,TN , the conjugation perturbations

Σk = TkΣT ∗
k , k = 1, . . . , N

return a generative model for Σ1, . . . ,ΣN which is non-linear on the operator space, but linear

on the tangent space (through the Tk ), and somehow canonical for Procrustes metric. The

next theorem formalises the result.

Theorem 20 (Generative Model). Let Σ be a covariance operator and let T : H → H be a

random non-negative linear map with E‖T ‖2∞ <∞ and ET = I. Then the random operator

TΣT ∗ has Σ as a Fréchet mean in the Procrustes metric,

E[Π2(Σ,TΣT ∗)] ≤ E[Π2(Σ′,TΣT ∗)],

for all non-negative nuclear operators Σ′.

Proof. We follow Zemel and Panaretos [2017, Theorem 5] and replicate their argument, which

uses the Kantorovich duality (Villani [2003, Theorem 5.10]). Define the function ϕ(x) =
〈T x, x〉/2 and its Legendre transform ϕ∗(y) = supx∈H 〈x, y〉−ϕ(x). With an abuse of notation

we write dΣ(x) for integration with the corresponding measure with that covariance. The

strong and weak Kantorovich dualities yield

1

2
W 2(N (0,Σ), N (0,TΣT )) =

∫
H

(
1

2
‖x‖2 −ϕ(x)

)
dΣ(x)+

∫
H

(
1

2
‖y‖2 −ϕ∗(y)

)
dTΣT (x);

1

2
W 2(N (0,Σ′), N (0,TΣT )) ≥

∫
H

(
1

2
‖x‖2 −ϕ(x)

)
dΣ′(x)+

∫
H

(
1

2
‖y‖2 −ϕ∗(y)

)
dTΣT (x).

Now Eϕ(x) = ‖x‖2/2 because ET = I. Taking expectations in the equalities above and using

Fubini’s theorem proves the result. Note that when T takes finitely many values, this provides

a proof for empirical Fréchet means.

We modify the construction in Zemel and Panaretos [2017], adapting it to the unboundedness

of the spaces. Let Ω be the underlying probability space and B(H ) the set of bounded

operators on H with the operator norm topology. Assume that T : Ω→ B(H ) is Bochner

measurable with (Bochner) mean I. Notice that

W 2(N (0,SΣS∗), N (0,TΣT ∗)) ≤
∫
H
‖S(x)−T (x)‖2 dΣ(x) = tr(S−T)Σ(S∗−T∗) ≤ ‖S−T‖2

∞trΣ.

Similarly,∣∣∣∣∫
H
〈(T −S)x, x〉dΣ′(x)

∣∣∣∣= ∣∣tr(T−S)Σ′∣∣≤ ‖T −S‖∞trΣ′

so the integrals with respect toϕ are measurable (fromΩ toR) for allΣ′, and integrable because
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E‖T ‖∞ <∞. In particular (the measure corresponding to) TΣT :Ω→W (H ) is measurable,

because it is a continuous Lipschitz function of T .

Furthermore, the integrals with respect to ϕ∗ are measurable and integrable, because so is

W 2(Σ′,TΣT ), and because they are given by the difference between integrable functionals. To

conclude the proof it remains to show that for all Σ′

E

∫
H
〈T x, x〉dΣ′(x) =

∫
H
〈(ET )x, x〉dΣ′(x).

This is clearly true if T is simple (takes finitely many values). Otherwise, we can find a sequence

of simple Tn : Ω→ B(H ) such that ‖Tn −T ‖∞ → 0 almost surely and in expectation. This

Fubini equality holds for Tn and∣∣∣∣E∫
H
〈T x, x〉dΣ′(x)−E

∫
H
〈Tn x, x〉dΣ′(x)

∣∣∣∣=|Etr(T−Tn)Σ′| ≤ trΣ′E‖T−Tn‖∞∣∣∣∣∫
H
〈(ET )x, x〉dΣ′(x)−

∫
H
〈(ETn)x, x〉dΣ′(x)

∣∣∣∣=|tr(ET−ETn)Σ′| ≤ trΣ′‖ET−ETn‖∞.

By approximation the Fubini equality holds for T , completing the proof.

We would like to stress the fact that the assumption E‖T ‖2∞ <∞ guarantees that the Fréchet

functional EΠ2(A,TΣT ) is finite for any covariance5 operator Σ. When the measures are

defined on Rd and have compact support, the result in Theorem 20 holds in a more general

Wasserstein setup, where µ is a fixed measure and T is a random optimal map with mean

identity (Bigot and Klein [2012]; Zemel and Panaretos [2017]).

The proof of Theorem 20 does not make specific use of linearity of T or Gaussianity. When

Gaussianity is assumed however, the Fréchet functional can be evaluated explicitly due to the

Wasserstein distance formula. In finite dimensions, this allows a more constructive proof of

Theorem 20. We report it in the next paragraph.

Alternative proof of Theorem 20 in finite dimensions. We first evaluate the term Etr(TΣT∗) =
Etr(TΣT) in the Wasserstein distance, using ET = I, as

Etr(T−I)Σ(T−I)+E(trΣT)+E(trTΣ)−EtrΣ= tr[Cov(T)Σ]+ tr(Σ),

where CovT = E[(T −I)(T −I)]. Consequently, the Fréchet functional at Σ equals

EW 2(TΣT ∗,Σ) = tr(Σ)+Etr(TΣT∗)−2Etr(Σ1/2TΣT∗Σ1/2)1/2

= 2tr(Σ)+ tr[Cov(T)Σ]−2Etr(Σ1/2TΣ1/2)

= 2tr(Σ)+ tr[Cov(T)Σ]−2tr(Σ)

= tr[Cov(T)Σ].

5actually, non-negative and nuclear
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We now compute the functional at an arbitrary Σ′:

EW 2(TΣT ∗,Σ′) = tr(Σ′)+Etr(TΣT∗)−2Etr(Σ′1/2TΣT∗Σ′1/2)1/2

= tr(Cov(T)Σ)+E
{

tr(Σ′1/2TΣ′1/2)+ tr(Σ1/2TΣ1/2)−2tr(Σ′1/2TΣTΣ′1/2)1/2
}

.

To prove that F (Σ′) ≥ F (Σ) we just need to show that the term inside the expectation is non-

negative. We will do this by interpreting it as the Wasserstein distance between B = T 1/2Σ′T 1/2

and A = T 1/2ΣT 1/2. Write B1 = Σ′1/2TΣ′1/2, A1 = Σ1/2TΣ1/2. The Wasserstein distance is

non-negative, so

2tr(A1/2BA1/2)1/2 ≤ trA+ trB = trA1 + trB1.

Therefore we must show that tr(A1/2BA1/2)1/2 = tr(Σ′1/2TΣTΣ′1/2)1/2.

We point out that the next step is what makes the proof intrinsically finite-dimensional,

as every argument given so far holds in infinite dimensions as well. We will prove that

tr(A1/2BA1/2)1/2 = tr(Σ′1/2TΣTΣ′1/2)1/2 by showing that these matrices are conjugate. Assume

first that Σ, Σ′ and T are invertible and write

D =Σ′1/2TΣTΣ′1/2 =Σ′−1/2T −1/2[B A]T 1/2Σ′1/2 =Σ′−1/2T −1/2 A−1/2[A1/2B A1/2]A1/2T 1/2Σ1/2.

Thus the non-negative matrices D and A1/2B A1/2 have the same eigenvalues. This stays true

for their square roots, that consequently have the same trace. If now the matrices are singular,

we just need to notice that singular matrices can be approximated by non-singular ones,

making the proof valid without restriction in finite dimensions.

If the law of the random deformation T is finitely supported, Theorem 20 can be strengthened

and we can remove the boundness assumption on T . This is a significant improvement, as

optimal maps are not in general bounded (see Section 3.1).

Theorem 21. Let Σ be a covariance operator corresponding to a centred Gaussian measure

µ≡ N (0,Σ) and let D ⊆H be a dense linear subspace of µ-measure one. If T1, . . . ,Tn : D →H

are (possibly unbounded) non-negative operators such that Ti ∈L2(µ) for all i = 1, . . . ,n and∑
Ti (x) = nx for all x ∈ D, then Σ is a Fréchet mean of the finite collection {TiΣTi : i = 1, . . . ,n}.

Proof. Direct calculations show that the functions ϕi (x) = 〈Ti x, x〉/2 are convex on D and

Ti x is a sub-gradient of ϕi for any i and any x ∈ D. We can therefore use the duality of the

proof of Theorem 20 with the integrals involving ϕi taken on D rather than on the whole of

H . Now ϕ and ϕ∗ are non-negative functions and the Wasserstein distance is finite, which

make these integrals finite too (the integral of ‖x‖2/2−ϕ(x) with respect to Σ′ may be negative

infinite, but this does not hinder the validity of the arguments). Since there are finitely many

integrals, there are no measurability issues and we have F (µ) ≤ F (ν) whenever ν(D) = 1. Now

D is dense in H and continuity arguments yield that F (µ) ≤ F (ν) for all ν ∈W (H ), implying

that µ (hence Σ) is a Fréchet mean.
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3 Applications

Once data come subdivided into several populations, each having its own sample mean and

covariance operators, we can inquire about the possible variations across these populations.

This chapter contains proposals and results regarding the second-order variational analysis

on a dataset of populations of covariance operators. We consider testing the hypothesis of

equality of covariances across different populations in Section 3.1. If the null hypothesis is

rejected, Principal Component Analysis (PCA) offers a valid tool to understand the differences

within the data and describe the main mode(s) of variation. The understanding of the Wasser-

stein geometry allows to perform PCA on the tangent space, and the details are discussed in

Section 3.2. Clustering of operators is treated in Section 3.3. Two different clustering methods

for covariances are presented, one based on lifting the covariances on the tangent space and

using the classical K -means algorithm, the second, coined soft clustering, using directly the

Wasserstein distance.

Each section in this chapter contains a description of the methodology employed and a part

of numerical simulations and data analysis. For convenience, we collected the descriptions of

the simulation setups and the dataset employed in the analysis in Section 3.1.1.

3.1 Transportation-based functional ANOVA of Covariances

Assume we have N populations of curves. Namely, let {Xi ,1}n1
i=1, . . . , {Xi ,N }nN

i=1 be N independent

samples of i.i.d. random elements in a separable Hilbert space H . We aim to investigate the

fluctuations not in the mean structure of the {Xi , j } but rather around their mean, as j varies.

Similar problems have been studied before. For example, Panaretos et al. [2010b], Kraus

and Panaretos [2012], and Tavakoli and Panaretos [2016] considered several groups of DNA

mini-circles vibrating in solution. Here, each sequence corresponds to a different group and

different vibration properties would highlight a dependence of the mechanical properties on

the base pair sequence. Another example lies in the analysis of handwriting [Ramsay, 2000].

Here different authors of different handwritings give rise to populations of written words (seen

as curves), and one may wish to see whether (specific repetitions of) written words come from
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the same author or not.

In analogy to the functional analysis of variance (Benko et al. [2009], Zhang [2013]), which

treats the topic of fluctuations in the mean structure, we named our problem a functional

covariance ANOVA (or transportation ANOVA, for reasons which will soon become clear).

Mathematically, given {Xi ,1}n1
i=1, . . . , {Xi ,N }nN

i=1 centered processes with respective (well-defined)

covariances {Σ j }N
j=1, we are interested in testing the hypothesis

H0 :Σ1 =Σ2 = . . . =ΣN (3.1)

on the basis of the observations {Xi , j } against

H1 :
{
At least one operator is different

}
. (3.2)

Most work in this topic so far employed the Hilbert–Schmidt metric, as seen for example in

Boente et al. [2018], Panaretos et al. [2010b], Fremdt et al. [2013]. The issue with employing

the Hilbert–Schmidt metric is that it implicitly imbeds covariance operators in a larger linear

space, the Hilbert–Schmidt space, while covariances are not closed under linear operations,

as we remarked in Chapter 2.

Driven by the need to analyse cross-linguistic variation of phonetics in Romance languages,

Pigoli et al. [2014a] were the first to consider nonlinear metrics in the two-sample testing. In

finite dimensions, some of these ideas can be found in Dryden et al. [2009].

The testing procedure of Pigoli et al. [2014a] was insightful in the taking into account the struc-

tural geometry of the space. However, it did not bring significant improvements compared

with the results of Panaretos et al. [2010b].

The 2-sample testing procedure of Pigoli et al. [2014a] has been generalised to k-sample

testing by Cabassi et al. [2017]. Their idea is to perform a k-sample permutation test as a

series of partial 2-sample tests, where the partial test statistics are combined through the

non-parametric combination algorithm of Pesarin and Salmaso [2010]. As test statistics, they

consider Ti j = d(Σ̂i , Σ̂ j ), where Σ̂i and Σ̂ j are the sample covariance operators of the corre-

sponding groups, and d can be any metric on the operator space. After performing the global

test, if the null hypothesis H0 is rejected, Cabassi et al. [2017] propose a subsequent analysis to

investigate which covariance operators are indeed different through the techniques explained

in Pesarin and Salmaso [2010]. Their methodology gave rise to the R-package fdcov.

Cabassi et al. [2017] compare their method favourably against other methods, such as the

k−sample test via concentration inequalities of Kashlak et al. [2016], demonstrating an in-

crease in power and illustrating how their performance can be considered state-of-the-art.

We take a completely different approach. Taking advantage of our understanding of the

Wasserstein geometry, we can construct a 2-sample test that seems more powerful than other

approaches, while still respecting the geometry of the data. The test focusses on the transport

maps giving rise to the Procrustes distance, rather than the distance itself. Furthermore, it has

a natural k-sample analogue that comes from the optimal multicoupling problem, and allows
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for a testing procedure that is more powerful than the pairwise method of Cabassi et al. [2017],

at least in the functional case.

The key observation is that under suitable conditions, testing the equality of covariance opera-

tors {Σ1, . . . ,ΣN } translates into a testing problem concerning the existence of a deterministic

multicoupling of the collection of centred Gaussian measures {N (0,Σ1), . . . ,N (0,ΣN )}. In the

following, we show that such a multicoupling can be realised through deterministic optimal

transport maps, and that the problem of testing the equality between covariance operators

can be solved by comparing these transport maps to the identity.

Recall from Section 2.2 that a Gaussian optimal multicoupling is manifested as a joint distri-

bution of a collection of Gaussian processes, such that the marginals are pairwise coupled

as tightly as possible. An optimal multicoupling of a collection of N Gaussian processes

(X1, . . . , XN ) with X j ∼ N (0,Σ j ) is deterministic if (X1, . . . , XN ) arise as the image of a single

process X through a collection of deterministic maps t j : H →H ,

(X1, . . . , XN )
d= (t1(X ), . . . ,tN (X )).

Masarotto et al. [2018] show that an optimal multicoupling of Gaussian measures always

exists, yet the same cannot be said for a deterministic multicoupling. In other words, the

multicoupling may not have only “one degree of freedom”. Nevertheless, Masarotto et al. [2019]

show that the optimal Gaussian multicoupling can always be manifested by deterministic

transport maps, and indeed by bounded linear maps. Furthermore, under the null H0 in 3.1,

this multicoupling becomes the “trivial” one where all maps coincide. We formally state both

results.

Lemma 22. Hypothesis (3.1) holds true if and only if the (unique) optimal multicoupling of

(γ1, . . . ,γN ) can be achieved by transport maps satisfying t1 = ·· · = tN .

Theorem 23. Let {γ1, . . . ,γN } be an arbitrary finite collection of Gaussian measures on H with

mean zero. Then there exists an optimal multicoupling of {γ j }N
j=1 manifested by deterministic

transport maps t j : H →H that are bounded non-negative linear operators satisfying ‖t j‖∞ ≤
N , for all j ≤ N .

Theorem 23 allows us to define our testing method. Before doing that, notice that once a

sample {Σ j }N
j=1 of covariances is given together with their Fréchet mean Σ̄, then each element

Σ j can be identified with the transport map t
Σ j

Σ̄
. If moreover at least one Σ j is injective, then

their Fréchet mean is unique, and the maps t
Σ j

Σ̄
are computable in closed form (see Section 2.2).

The proof of Theorem 23 establishes that the optimal maps t
Σ j

Σ̄
exist and are bounded [Masarotto

et al., 2019], and give rise to the optimal deterministic multicoupling of X1 ∼N (0,Σ1), . . . , XN ∼
N (0,ΣN ). These maps will be also centered around the identity, i.e.

1

N

N∑
j=1

t
Σ j

Σ̄
= I. (3.3)
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To lighten the notation, we denote the optimal maps by t j .

Theorem 23 suggests that rather than considering the null hypothesis (3.1), we can test the

equivalent hypothesis

H ′
0 : t1 −I= . . . = tN −I= 0 (3.4)

where I is the identity on H . Under H0, all differences ∆ j := t j −I are equal to 0, while at least

one of them will be different from 0 under the alternative.

Theorem 23 implies that the ∆ j are bounded, thus their difference from 0 can be quantified in

terms of their operator norm. Notice how this establishes a parallel with ANOVA. We can also

imagine to contrast the ∆ j to 0 by means of a stronger norm, if such norm is finite. By using

the Hilbert–Schmidt norm for example, or again the trace-norm, one can imagine that one

might be able to detect finer differences, and identify weaker departures from H0.

We move now to a description of the implementation procedure. Consider N independent

groups of functional data {Xi j , j = 1, . . . , N , i = 1, . . . ,n j } and let Σ j , j = 1, . . . , N be the covari-

ance operator for each group.

In practice, we only have access to estimated covariances (e.g., the empirical covariance of

smoothed versions of the {Xi j } (Ramsay and Silverman [2005b]), or PACE-type estimators (Yao

et al. [2005a])). Denote as {Σ̂ j } these empirical estimates of the full covariances Σ j , computed

from the n j -sized sample in each group and by Σ̂ their unique empirical (weighted) Fréchet

mean (computed as in Section 2.3):

Σ̂= argmin
Rq×q3Γº0

N∑
j=1

n jΠ
2(Σ̂ j ,Γ).

The corresponding optimal maps are denoted by

t̂ j = Σ̂−1/2(Σ̂1/2Σ̂ j Σ̂
1/2)1/2Σ̂−1/2, j = 1, . . . , N ,

while we write the empirical deviations of these optimal maps from the identity as

∆̂ j = t̂ j −Iq×q , j = 1, . . . , N .

Our test statistics is then

Tr =
N∑

j=1
n j‖∆ j‖2

r . (3.5)

where r ∈ {1,2,∞} to consider the operator norm as well as the Hilbert–Schmidt and the

trace-class norms.

Since we want to perform the test without any parametric assumption on the sample, we

compute the P-value via permutation. The procedures is:
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- reassign the
(∑k

j=1 n j

)
curves {Xi , j , i = 1, . . . ,n j , j = 1, . . . , N } into N groups, respecting

the sizes of the initial groups. Call these new “data” X ∗
i , j .

- Construct the empirical covariance Σ̂∗
j for the j th group {X ∗

i , j }n
i=1, j = 1, . . . , N .

- Compute the empirical (weighted) Fréchet mean Σ̂∗ of {Σ̂∗
1 , . . . , Σ̂∗

N }.

- Construct

t̂∗j = (Σ̂∗)−1/2((Σ̂∗)1/2Σ̂∗
j (Σ̂∗)1/2)1/2(Σ̂∗)−1/2

and compute

T ∗
r =

N∑
j=1

n j‖t̂∗j −Iq×q‖2
r =

N∑
j=1

n j‖∆̂∗
j ‖2

r .

Iterating this procedure for all possible re-assignments of the indexes gives the distribution

of the permuted statistics T ∗
r , which in turn can be used to generate a p-value for Tr under

the null hypothesis. Under H0, all possible permutations of the operators labels have equal

probability p = 1/K !. Obtaining an exact test would thus require K ! permutations of the labels,

making it computationally prohibitive for large K . Therefore, rather than computing an exact

p-value, we resort to a Monte Carlo sample of permutations.

Similar steps would allow for the implementation of a bootstrap-type procedure, simply by

randomly permuting indices with replacement. However, the exchangeability of the permuta-

tion labels under H0 guarantees the exactness of the level of the permutation test for finite

samples (Pesarin and Salmaso [2010]), so we focus on the permutation test only.

3.1.1 Simulation scenarios

Before reporting the simulation results, we describe the synthetic and real datasets employed

in the simulations.

• (Perturbations of ) Berkeley growth study data, Jones and Bayley [1941]. This simula-

tion scenario is taken directly from Cabassi et al. [2017]. It is only considered in the

k-sample testing application, in order to compare our method with Cabassi et al. [2017]

on the same benchmark scenario.

The data set contains the heights of 39 boys and 54 girls from age 1 to 18 and the ages

at which they were collected. It is contained in the R-package fda. We generate N

populations whose covariance is a perturbation on known operators Σ f and Σm , the

sample covariances operators of the male and female subjects in the Berkeley growth

data set (Jones and Bayley [1941]). The perturbations take two different forms:
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1. geodesic perturbations: k1 < N groups have covariance operator Σm . The other

k2 = N −k1 groups have covariance operator

Σ(γ) = [Σ1/2
m +γ(Σ1/2

f R −Σ1/2
m )][Σ1/2

m +γ(Σ1/2
f R −Σ1/2

m )]∗, (3.6)

where R the operator minimising the Procrustes–Wasserstein distance between

Σ f and Σm , and γ ∈ [0,5] is a parameter which controls how far this covariance

operator is from Σm .

2. additive perturbations: k1 < N groups have covariance operator Σm . The other

k2 = N −k1 groups have covariance operator

Σ(γ) = (1+γ)Σm , (3.7)

with γ ∈ [0,5].

In practice, Σ f and Σm are estimated from spline-smoothed growth curves via the R-

package fda. We chose this smoothing method because we wish to exactly replicate the

simulation scenario in Cabassi et al. [2017], which employs smoothed growth curves

to compute Σ f and Σm . Specifically, the original observations are evaluated as a linear

combination of 12 B-spline basis functions via the function create.bspline.basis.

They are smoothed on 31 knots, equally distributed on the range of the curves. Finally,

the use of the command var.fd yields the empirical covariances Σ̂m and Σ̂ f , estimated

from the smoothed curves.

• Generative model. The choice of any metric, and in particular of the Wasserstein

distance, is intrinsically related to the model assumed for the generation of the sample

at hand. The Wasserstein distance links naturally with a generation procedure based

on random deformations, as described in Section 2.4. We report it here for the reader’s

convenience: if T1, . . . ,TN are non-negative operators with mean identity, then any

covariance operator Σ is the Fréchet mean of {Σ j = T jΣT j }N
j=1, and the maps t j in (3.10)

are exactly T j (on the closed range of Σ).

For testing purposes, it is convenient to produce a simulation setup where the dataset

occurs as a series of known perturbations of a (known) Fréchet mean. We also wish for

such perturbations to move away from the commutative case, since assuming that the

generative maps commute would make the computation trivial (cf. Section 2.1).

We build a sample of covariance operators as perturbations of an underlying “true”

Fréchet mean Σ. These perturbations are given by the optimal maps Ti , with ET = I. We

decided to produce a generative setting for such optimal maps {T1, . . . ,TN } as follows:

T j = k−1
∞∑

n=1
δ

( j )
n sin(2nπt −θ( j ))⊗sin(2nπt −θ( j )), j ∈ {1, . . . , N }, δ

( j )
n

i i d∼ χ2
k , (3.8)

where the δ( j )
n are independent of the θ( j ), and k > 0.

This construction guarantees that E[T j ] = E[E[T j |θ( j )] = I regardless of the distribution
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of θ( j ). The parameter k controls the concentration of T ( j ) around the identity.

In practice, we exploit the fact that
{
1,
p

2sin(2πnx),
p

2cos(2πnx) : n ∈N}
is an or-

thonormal basis for L2([0,1],R), and in particular

N∑
n,m=1

p
2sin(2πnx) ·p2sin(2πnx) = N .

The numerical model for the generation corresponds to

T ( j ) =
N∑

n=1
δ

( j )
n sin(2nπt −θ( j ))sin(2nπt −θ( j ))

whose [k, l ] entry is

T ( j )[k, l ] =
N∑

n=1
δ

( j )
n sin(2nπt [k]−θ( j ))sin(2nπt [l ]−θ( j )),

successively scaled by 2/N so that the mean of the T (i ) converges to the identity.

Notice that the mean of any given collection T1, . . . ,TN will not be exactly the identity,

but will be an approximation of it, if k and N are not too small. Moreover, since θi = 0

would return us the commutative case, one can imagine that the θi serve as indicators

on how far we are from this. On this note, a parametric model can be assumed for the θi .

We chose the θi to be sampled from a von Mises distribution with mean 0 and measure

of concentration 1/σ, with the degenerate case of σ→∞ yielding commutativity.

After we generate the collection T1, . . . ,TN , we obtain the subsequent empirical covari-

ances as Σ̂ j = T j Σ̄T?
j . The “population” Fréchet mean Σ̄ is inspired by the simulation

scenario in Kashlak et al. [2016] and chosen to be a matrix with eigenvalue decay rate of

O(n−4):

Σ̄=U

[ ∞∑
n=1

n−4 sin(2nπt )⊗ sin(2nπt )

]
U∗ (3.9)

where U is a randomly-generated unitary operator.

• Phoneme dataset and expanded Phoneme dataset. This dataset includes the collec-

tion of over 4509 phonemes as in Ferraty and Vieu [2004], Hastie et al. [1995]. The file is

available at

https://web.stanford.edu/ hastie/ElemStatLearn/.

The dataset consists of 4509 log-periodograms of length 256, each computed from con-

tinuous speech frames of 50 male speakers with known class (phoneme) memberships.

Each speech frame is 32msec long, sampled at a rate of 16kHz and represents one of

the following five phonemes: “aa” (as in “dark”, nasal a), “ao” (as in “water”), “iy” (as

in “she”), “sh” (as in “she”), “dcl” (as in “dark”, “british” d). The dataset contains 256
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Figure 3.1: Original and smoothed log-periodograms for each phoneme

columns labelled x.1 to x.256, corresponding to the frequencies, a response column

labelled “g”, and a column labelled “speaker” identifying the different speakers.

The log-periodograms, which are quite noisy, are smoothed using a Fourier basis (21

basis functions) and digitalised to 256 equispaced frequencies, giving rise to a 4509×256

matrix. We perform the analysis of the collection of curves identified by the rows of this

matrix.

Figure 3.1 shows the original and smoothed log-periodograms in the original dataset,

while Figure 3.2 shows the mean log-periodograms. Estimated covariance operators for

the 5 phonemes are shown in Figure 3.3. In order to produce a more realistic setup for

classification and PCA, we consider a further scenario in which we artificially enlarge the

phonemes dataset, and produce replicas of the 5 covariance operators. These replicas
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Figure 3.2: Mean Log-periodograms of the phonemes. Colours are as follows: black for “sh”,
red for “iy”, green for “dcl”, blue for “aa”, cyan for “ao”.

59



Chapter 3. Applications

1

2

3

4

5

6

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

aa

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ao

0

1

2

3

4

5

6

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

iy

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

dcl

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

sh

Figure 3.3: Estimated covariances of the log-periodograms in the five phoneme groups.
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are estimated using only a subset of the whole collection of curves. Specifically, for each

of the 5 phonemes, we estimate the covariance operator using 12 distinct subsamples of

50 log-periodograms, for a total count of 60 collections of 50 curves each. The estimation

of the covariance operators for each of these subgroups yields 60 covariance operators,

classified in 5 groups. We then carry out the analysis on these 60 covariances.

3.1.2 Numerical simulations

In this section, we compare our test with the pairwise k-sample permutation test of Cabassi

et al. [2017] and with the concentration-based test in Kashlak et al. [2016]. To perform the two

tests, we used the R-package fdcov. In the comparison, we have considered the version based

on the Procrustes distance of the pairwise test.

Figures 3.4-3.7 show the empirical powers of the different procedures when applied to the

Berkeley growth data, i.e., in the same simulation scenario considered by Cabassi et al. [2017]

and described in the last Section.

For these particular simulations, we chose the dimensions of the covariance matrices to

be 31×31. For each covariance, 20 curves are generated at each replication to estimate the

empirical covariances on which the test is performed. These curves are sampled from mean-

zero processes with the corresponding covariance. We carry out the test both on a Gaussian

and on a t-Student distribution with 5 degrees of freedom. The number of permutation is

100. The power is estimated from a total of 1000 replications. The test statistics employ the

Hilbert–Schmidt norm (r = 2 in Equation (3.5)). The probabilities of false positive (I type error)

are estimated using all the available replications when γ= 0.

The x-axis in Figures 3.4-3.7 represents the value of the γ parameter (see (3.6) and (3.7)),

while on the y-axes is displayed the empirical power. It is evident that our procedure is more

powerful than the competitors. Moreover the plot shows that we achieve near perfect power,

as opposed to the other tests that have nearly no power, for small values of γ, i.e. against local

alternatives.

Furthermore, notice that without knowing the null distribution is not possible to use the

calibration procedure of Kashlak et al. [2016], and that, under these circumstances, the con-

centration test is too conservative and does not respect the nominal level of 0.05 under H0.

However, Cabassi et al. [2017] show that their test outperforms that of Kashlak et al. [2016]. For

this reason, in all the rest of this section we drop the comparison with Kashlak et al. [2016].

One might also wonder what happens when the intensity of the differences ∆i ’s is measured

with respect to the norm induced by the tangent space inner product 〈·, ·〉Σ at Σ̄ (cf. Sec-

tion 1.4.3):

〈A,B〉Σ = tr(A∗ΣB).
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Figure 3.4: Comparison of our method against the Pairwise test of Cabassi et al. [2017] and the
Concentration-based test of Kashlak et al. [2016] with Gaussian data and geodesic perturba-
tions. Dotted horizontal line gives the nominal level under H0.
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Figure 3.5: Comparison of our method against the Pairwise test of Cabassi et al. [2017] and the
Concentration-based test of Kashlak et al. [2016] with Gaussian data and additive perturba-
tions. Dotted horizontal line gives the nominal level under H0.
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Figure 3.6: Comparison of our method against the Pairwise test of Cabassi et al. [2017] and the
Concentration-based test of Kashlak et al. [2016] with t-Student data and geodesic perturba-
tions. Dotted horizontal line gives the nominal level under H0.
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Figure 3.7: Comparison of our method against the Pairwise test of Cabassi et al. [2017] and the
Concentration-based test of Kashlak et al. [2016] with t-Student data and additive perturba-
tions. Dotted horizontal line gives the nominal level under H0.
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Figure 3.8: Empirical power comparison, in Berkeley growth data scenario, for the transport
functional ANOVA test, in the case where the maps are contrasted using the tangent space inner
product rather than the Hilbert–Schmidt one. The black line corresponds to the transport-
based ANOVA, the red line is the pairwise test from Cabassi et al. [2017] and blue line is the
transport based ANOVA with respect to the tangent space metric. Power is estimated via
permutations.

This would imply that instead of computing

tr(T −I)∗(T −I)

we would compute

tr(Ti −I)∗Σ̄(Ti −I),

the latter equation yielding precisely the Procrustes distance between T and Σ̄ i.e., it corre-

sponds to the testing method of Pigoli et al. [2014a] (at least in the 2-sample case).

Figure 3.8 shows that the functional ANOVA picks up power when the comparison is made

with respect to the Hilbert–Schmidt norm rather that the tangent space one. This is to be

expected, as our test is intrinsically functional (see Section 3.1.3 later) and is particularly

responsive to high-frequency departures from the null. Considering the tangent space inner

product corresponds to pre- and post-multiplying the ∆ j by Σ̄1/2, and this might cancel the

difference in the tails of the operators.

Ultimately our goal in testing is to find a way to compare operators, and our testing procedure

does not need to directly make use of the tangent space geometry. Rather, it uses the notion of

multi-transport and that of transport maps.

In Section 3.2 and Section 3.3, we will see how the use of the tangent space inner product will

be of crucial importance for a different purpose, since both PCA and clustering are intrinsically

geometrical methodology.
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3.1. Transportation-based functional ANOVA of Covariances

Finally, equation (3.5) in Section 3.1 suggests that we can use yet another different norm to

contrast the ∆ j to zero. One might expect that the stronger the norm is, the more it will detect

finer differences between the tail of the spectra of the operators.

We ran simulations to this purpose on the Berkeley growth data. Using a stronger norm did not

bring a significant improvement to the power of the test. This is consistent with the intrinsic

finite dimensionality of the dataset and the relatively small dimension of the matrices, as in

finite dimensions all norms are equivalent. A more significant difference is manifested when

we apply the method on the generative model (Section 3.1.3), as we could better emulate a

purely functional setting.

Figure 3.9 shows the results for the geodesic perturbations, and in Figure 3.10 for the additive

ones. As the differences are not so visible from the pictures, the power values are also collected

into Tables 3.2 and 3.1.

Since using different norms does not show a significant difference in practice, the next com-

parisons under this scenario will be limited to the Hilbert–Schmidt norm, as it lies “in between”

the trace-class and the operator norm, as well as allowing an easier parallel with the Euclidean

literature.

γ=0 γ=0.5 γ=1 γ=2
k1=1, k2=2

Trace norm 0.04 0.24 0.99 1.00
HS norm 0.04 0.23 0.99 1.00

Operator norm 0.04 0.22 0.99 1.00
k1=4, k2=4

Trace norm 0.04 0.24 0.99 1.00
HS norm 0.04 0.23 0.99 1.00

Operator norm 0.04 0.22 0.99 1.00
k1=1, k2=3

Trace norm 0.04 0.24 0.99 1.00
HS norm 0.04 0.23 0.99 1.00

Operator norm 0.04 0.22 0.99 1.00
k1=1, k2=7

Trace norm 0.04 0.24 0.99 1.00
HS norm 0.04 0.23 0.99 1.00

Operator norm 0.04 0.22 0.99 1.00

Table 3.1: Comparison of the three different norms, geodesic perturbations, Berkeley growth
data.

3.1.3 Comparison on generative model

We now apply our testing procedure on the generative model as described in Section 3.1.1 and

2.4. Recall that the generative model states that if a collection of nonnegative maps T1, . . . ,TN

has mean identity, then any covariance operator Σ is the Fréchet mean of {Σ j = T jΣT j }N
j=1,
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Figure 3.9: Comparison of empirical powers computed with respect to the the three different
norms (Nuclear, Hilbert–Schmidt and operator) with geodesic perturbations using the Berkeley
growth data. Dotted horizontal line gives the nominal level under H0.
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Figure 3.10: Comparison of empirical powers computed with respect to the the three different
norms (Nuclear, Hilbert–Schmidt and operator) with additive perturbations using the Berkeley
growth data. Dotted horizontal line gives the nominal level under H0.
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γ=0 γ=0.5 γ=1 γ=2
k1=1, k2=2

Trace norm 0.05 0.11 0.40 0.89
HS norm 0.05 0.12 0.36 0.90

Operator norm 0.06 0.13 0.36 0.91
k1=4, k2=4

Trace norm 0.05 0.11 0.40 0.89
HS norm 0.05 0.12 0.36 0.90

Operator norm 0.06 0.13 0.36 0.91
k1=1, k2=3

Trace norm 0.05 0.11 0.40 0.89
HS norm 0.05 0.12 0.36 0.90

Operator norm 0.06 0.13 0.36 0.91
k1=1, k2=7

Trace norm 0.05 0.11 0.40 0.89
HS norm 0.05 0.12 0.36 0.90

Operator norm 0.06 0.13 0.36 0.91

Table 3.2: Comparison of the three different norms, additive perturbations, Berkeley growth
data.

and the maps t j in (3.10) must equal T j (on the closed range of Σ).

Figure 3.11 shows the result of the test. The x-axis represents the value of the von Mises

parameter σ. To simulate a functional case, we increased the size of the matrices with respect

to the scenario on the Berkeley growth data (where the dimension was 31×31), and we have

chosen for the matrices to have size 70×70. The power is estimated from 1000 replications.

The number of permutations is 100. At each replication, we generate two optimal maps T1 and

T2 via the generative model, and two corresponding covariances Σ1 = T1ΣT1 and Σ2 = T2ΣT2,

with Σ given by equation (3.9). For each Σi , i = 1,2, we sample 50 observations of a Gaussian

process with mean-zero and covariance Σi . The empirical covariance computed from these

observations will yield a replica of Σi . We repeat this as to obtain k1 replicas of Σ1, and k2

replicas of Σ2, for a total of k1 + k2 covariances divided into two groups of size k1 and k2

respectively. The values of the pair (k1,k2) are (1,2), (1,3), (1,7) and (4,4). This procedure is

repeated for several values of the Von Mises parameter σ, namely σ= (0.1,1,15). Recall that σ

can be seen as an inverse variance, therefore a smaller value of σ will imply a larger dispersion

of the generated optimal maps Ti ’s.

From Figure 3.11 we can see the our test still outperforms the test of Cabassi et al. [2017], albeit

by less. This is consistent with all tests seeming to be more powerful, and in fact achieving

near perfect power, than in the Berkeley growth data scenario. Indeed, the generative model

produces matrices which are better separated among each others (in contrast, for example,

with data generated for a small value of γ in the Berkeley case), therefore allowing for a better

discrimination against the null. Finally, notice how the dimension of the matrices allows us to

visualize a difference between the norms employed in the test. The operator norm appears to
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Figure 3.11: Empirical power of our and Cabassi et al. [2017]’s tests as a function of the
dispersion parameterσ of the von Mises distribution in the generative model of Equation (3.8).
Our test is performed using three different norms: trace-class, Hilbert–Schmidt and operator
norm.

be the weakest, as expected, and this is particularly evident in the “difficult” case where most

of the matrices are equal.

A genuinely functional test

There is an important observation to be made about the transport-based ANOVA. Specifically,

our test owes its power to the intrinsic functional nature of the data. By considering the

maximum distance, the procedure of Cabassi et al. [2017] is less sensitive to differences in the

tails of the spectra of the covariances, whereas our procedure is able to detect departures from

the null even when they only occur at very high frequencies. In turn, if the data are truncated,

or corrupted by noise, this reflects on the test performance.

The smoothness of the functions is intrinsically connected with the spectral decomposition

of the covariance operators. In applications, we smooth functional data by expressing them

as a linear combinations of basis functions. For clarification, we can keep the notation of

Ramsay and Silverman [2005b] and write the expansion into basis functions in the form
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X (t) = ∑K
k=1 ckφk , where the ck are a vector of weights and the φk are basis elements (cf.

Ramsay and Silverman [2005b, Section 3.3]. See also Section 1.1.3). The degree to which

the data are smoothed (as opposed to interpolated) is regulated by the number K of basis

functions. If the data functions are sufficiently smooth, we can assume that they can be

expressed as a linear combination of a limited number of basis elements.

From an implementation point of view, the transport-based ANOVA compute an estimate

of the transport maps t j going from a Fréchet mean to the data curves at every replication.

The level of smoothness of the curves affects as well the number of observations needed to

estimate the t j , and in particular, needed to achieve a high power of the test. When we contrast

the ∆i = t j −I to 0, we are essentially contrasting the eigenvalues of t j to 1. Therefore, we need

for the number of n observations from which the sample of Σ̂ j ’s is estimated, to be greater

than their rank1, or better, that our curves are in fact linear combinations of a smaller number

of curves. Simulations showed that we need to have at least about 20 observations more of the

number of significant eigenvalues of the tj.

We tested our transportation ANOVA in a scenario which resembles a multivariate case, rather

than a functional one. Differently than in the previous paragraph, the “true barycenter” of

the model Σ̄∗ is taken to be a randomly generated Wishart distribution with d = 70 degrees of

freedom. As such, Σ̄∗ (and consequently corresponding sample Σ1, . . . ,ΣN ) will not display fast

eigenvalue decay as that in Equation (3.9), and which is characterising of trace-class operators.

Figure 3.12 compares the transport ANOVA with the k-sample test of Cabassi et al. [2017]

under the generative model with true barycenter Σ̄∗. The power was estimated via 1000

replications. The number of permutations is 100. The procedure follows step-by-step the one

described above for the generative model: the dimension of the matrices is 70×70, and once

we obtained Σ1 and Σ2 via the generative model, we estimate, for each j = 1,2, k j replicas

from 50 observations from a mean-zero Gaussian process with covariance Σ j . Notice how the

number of eigenvalues of the Σ j which are significantly different from 0 is exactly equal to

their dimension. Therefore, the number of curves we use to estimate the replicas of Σ j is less

than their number of significant eigenvalues.

Figure 3.12 shows how in this case, the permutation test of Cabassi et al. [2017] outperforms the

transport-based ANOVA. This effect is less visible when for the test carried out with respect to

the operator norm, which, similarly to the one of Cabassi et al. [2017], is based on a maximum

distance.

3.1.4 Data Analysis

In order to perform ANOVA on the phoneme dataset, we extract the log-periodograms corre-

sponding to the phonemes “aa”, “ao”, “iy” which are similar and, hence, hard to distinguish.

We performed the test in other situations as well: Table 3.4 shows the results for the phonemes

1Here “rank” is not meant in the formal sense, rather in an empirical one, i.e. the number of eigenvalues
detectably different from 0.
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Figure 3.12: Empirical power of our and Cabassi et al. [2017]’s tests as a function of the
dispersion parameter σ of the Von Mises distribution in the generative model of Equation (3.8)
(3.8). Our test is performed under three different norms: trace-class, Hilbert–Schmidt and
operator norm. The origin for the generative model is taken to be a Wishart distribution with
70 degrees of freedom.
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n Pairwise Concentration Transport Maps
H0 25 0.086 0.000 0.068

50 0.050 0.000 0.046
H1 25 0.271 0.300 0.470

50 0.670 0.944 0.994

Table 3.3: Comparison of the empirical power of the three different testing methods on the
phoneme dataset, when applied on the phonemes "aa", "ao" and "iy".

n Pairwise Concentration Transport Maps
H0 25 0.100 0.000 0.062

50 0.040 0.00 0.061
H1 25 0.870 1.000 1.000

50 0.990 1.000 1.000

Table 3.4: Comparison of the empirical power of the three different testing methods on the
phoneme dataset, when applied on the phonemes

"sh","dcl","iy", but as we see, when we consider phonemes which are very different among

them (such as vowels and consonants) all tests have very high power. Considering other

combinations of phonemes gave similar results. Therefore, we decided to limit ourselves to

the phonemes "aa", "ao", "iy", as to be able to discriminate better among the different test

procedures.

To sample under H0, we sample 3n log-periodograms for the "iy" phoneme which are then

randomly assigned to three groups, each of size n. To sample under the alternative H1, we

sample n log-periodograms for each phoneme. We repeat the test for n = 25 and n = 50, and

for 500 replications and 200 permutations. Again we compare both with Cabassi et al. [2017]

and Kashlak et al. [2016]2.

Results of power computations are given in Table 3.3. Since the different phonemes have

different mean functions (see Figure 3.2), observations must be centered around the sample

mean of the groups, before computing the p-value using the permutation approach. Therefore,

in this case, it is not guaranteed that Cabassi et al. [2017]’s pairwise test and ours respect the

right type I error probability under H0. Regardless, the transport test delivers a level very

close to the nominal 0.05, especially when n = 50 (which is still relatively low compared to

the 256 points where the curves are sampled). Our test results also more powerful under the

alternative hypothesis.

Table 3.4 shows the results for the phonemes "sh","dcl","iy", but as we see, when we consider

phonemes which are very different among them (such as vowels and consonants) all tests

have very high powers. Considering other combinations of phonemes gave similar results.

2When interpreting the results, it is important to treat the outputs carefully, since the procedure of Kashlak et al.
[2016] was unable to produce a result in a small number of cases, as the computation of the distance using SVD
failed.
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3.2 Transportation-based functional PCA of covariances

If the null hypothesis of equality among covariances is rejected, a second order analysis would

entail explaining and understanding the variability of the sample of covariances around its

Fréchet mean, and possibly interpreting the main directions of this variation.

As in multivariate analysis in Euclidean spaces (Jolliffe [2002]), Principal Component Anal-

ysis (PCA) is a good candidate for such tasks. For functional data, this has been extended

to functional PCA (fPCA) by Grenander [1950a], Karhunen [1947], Rao [1958], Ibazizen and

Dauxois [2003]. See also Panaretos and Tavakoli [2013]). A first coarse measure of variance

is readily provided by the minimal value of the Fréchet functional, but PCA provides both a

dimensionality reduction tool and a means to explain the principal modes of variation of a

random vector.

One way of carrying out fPCA in Hilbert spaces is based on the eigenstructure on the co-

variance operator, by analogy to PCA in finite dimensions. More specifically, it relies on the

representation of the data curves given by their Karhunen–Loève expansion [Ramsay and

Silverman, 2005a]. When the space is non-Euclidean, as in the case of a sample of covariances,

one way to carry out PCA is by lifting the analysis on the tangent space. In finite dimension,

this is known as tangent space PCA (see Huckemann et al. [2010], Fletcher et al. [2004], Dryden

et al. [2009]).

To the best of our knowledge, there are no results concerning PCA on covariance operators

that account for the non-linear nature of the space of these operators.

The tangent space provides a local linear approximation to the curved space of covariances.

Once the covariances are mapped onto the tangent space through the log map (Section 1.4.2),

they can be uniquely identified with a tangent vector that belongs to a linear space, and

therefore, a standard linear (functional) PCA can be carried out. The principle behind tangent

space PCA works both in finite and in infinite dimension. However the dimensionality of the

space raises different issues, depending on whether it is finite or not. A finite-dimensional

tangent space approximation is mostly local, in the sense that every small enough neighbour

of a point p on a manifold M of dimension n can be approximated by a copy of Rn and the

log-map is defined locally (see e.g. Lang [2012]). This means that the tangent space definition

depends on the choice of the point where is computed at, and a natural choice is the Fréchet

mean. Therefore the feasibility and the quality of the approximation depend on how much

the observations are spread around their mean.

In infinite dimensions on the other hand, the log-map might not even be defined. However, if

the log-map is well-defined, then PCA can be performed globally on the space of covariance

operators with the Procrustes–Wasserstein distance without any neighbouring restriction,

since, as described in Section 1.4.2, the exponential map is surjective. In Section 1.4.2 it was

established that for a collection of covariance operators Σ1, . . . ,Σn with Fréchet mean Σ̄, the

log-maps logΣ̄(Σi ) are well-defined only if Σ̄ is “more injective” than the observations, that is,

if ker(Σ̄) ⊆ ker(Σi ).

Injectivity of the Σ̄ is not guaranteed and it is conjectured in Conjecture 17 of Masarotto et al.
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[2018] (see also Chapter 4). However, thanks to the recent result by Masarotto et al. [2019] and

Theorem 23, we can entirely bypass the injectivity issue, and recover well-defined log maps at

the Fréchet mean.

Indeed we know from Section 1.4.2 the log-map which lifts the observation Σ1, . . . ,ΣN at the

tangent space at Σ̄ is given by

logΣ̄(Σi ) = tΣi

Σ
−I=Σ−1/2

[Σ
1/2
ΣiΣ

1/2
]1/2Σ

−1/2 −I= t j −I,

that is, is achieved exactly as the differences ∆ j = ti −I, which we know by Theorem 23 to exist

and be bounded linear operators.

Now if 〈,〉Σ̄ denotes the tangent space inner product at Σ (Section 1.4.2)

〈A,B〉Σ = trace(AΣB),

the span of {∆1, . . . ,∆n} equipped with 〈,〉Σ̄ has a Hilbert-space structure as shown in Masarotto

et al. [2019], since

trace(∆iΣ∆ j ) ≤�Σ1/2∆i�2�Σ1/2∆ j�2 =Π(Σi ,Σ)Π(Σ j ,Σ) <∞.

All this implies that we can carry out a tangent space PCA in the following way:

1. Compute the Fréchet mean using the algorithm in Section 2.3

Σ= argmin
Σ

n∑
j=1

Π2(Σ,Σ j )

2. Use the log maps to lift Σ1, . . . ,ΣN to their respective correspondents

∆ j = logΣ̄(Σi ) = tΣi

Σ
−I

on the tangent space at the Fréchet mean.

3. Perform linear PCA of the tangent vectors ∆ j .

4. Retract the resulting components V j onto the manifold via the exponential map

expΣ̄ = (V j +I)Σ̄ j (V j +I).

As in practice we are only given the empirical version Σ̂1, . . . , Σ̂N of Σ1, . . . ,ΣN , the procedure

just described will be applied to Σ̂1, . . . , Σ̂N . Moreover, we will see in the next section how some

extra care is needed when performing PCA on the collection ∆̂1, . . . ,∆̂N , due to the fact that

the inner product of the tangent space is not the standard Hilbert–Schmidt inner product.

Point 3. above relies on the spectral decomposition of the covariance operator for the tangent
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space points {∆1, . . . ,∆N }, which is the non-negative operator

K= 1

N

N∑
j=1

∆ j ⊗Σ̄∆ j = 1

N

N∑
j=1

(
t j −I

)
⊗Σ̄

(
t j −I

)
,

with (A⊗Σ̄B)C = 〈B ,C〉Σ̄A. The Principal Components (PCs) we obtain via the spectral decom-

position of K can be seen as a traditional (Riemannian) tangent space PCA, with respect to

the Procrustean metric tensor

〈Q1,Q2〉Γ = trace(Q1ΓQ2), Γ ∈L

over the barycentric locus L of the operators {Σ j }N
j=1, that is the locus of points which are

weighted means of N reference points,

L=
{

argmin
Γº0

N∑
j=1

α jΠ
2(Σ j ,Γ) :α j > 0&

N∑
j=1

α j = 1

}
.

The operator K constitutes exactly the empirical operator of the collection of differences

{∆i }N
i=1, since by (3.3) the transport maps

t j = Σ̄−1/2(Σ̄1/2Σi Σ̄
1/2)1/2Σ̄−1/2, i = 1, . . . , N , (3.10)

are centered around the identity. In particular

N∑
i=1

∆i = 0.

The retraction of the principal components onto the manifold will give principal geodesics

that describe the main directions of variation of the data on the manifold. More precisely, if E1

is the eigen-operator associated with the largest eigenvalue of K, the retracted curve

t 7→ (I+ tE1)Σ(I+ tE1), t ∈ [−ε,ε],

is a geodesic for sufficiently small ε> 0. This principal geodesic is the visualisation of the main

mode of variation of {Σ j }N
j=1 near their Fréchet mean Σ. Section 3.2.3 provides a visualisation

of the variation along the principal geodesics for the phoneme dataset.

3.2.1 PCA under the tangent space inner product

In the previous section we stated that once the data are lifted to the tangent space, linear

PCA can be performed. In reality the analysis of principal component is dependent upon the

geometry, thus the inner product, and developing a rigorous tangent space PCA requires some

extra care. A different choice of inner product rather than the standard Hilbert–Schmidt one
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affects both the implementation (through the function smoothing) and the interpretation of

the PCs. Specifically, note that when employing the tangent space inner product inducing the

Wasserstein distance (cf. Section 1.4.3), the maximisation problem yielding the first principal

component takes the form

argmax
‖B‖Σ=1

〈KB ,B〉Σ = argmax
‖Σ1/2 A‖2=1

〈KΣ1/2 A,Σ1/2 A〉2 = argmax
trace(AΣA)=1

trace(KΣ1/2 A2Σ1/2),

which is a non-standard version of the maximisation problem. Nevertheless, it can be shown

that PCA with respect to the tangent space inner product is equivalent to the PCA performed

with the Hilbert-Schmidt inner product on suitably transformed data. This problem was first

treated by Silverman et al. [1996] in the case of Sobolev inner products, and then generalised

by Ocaña et al. [1999]. The next paragraph recaps the results from the latter.

Let Σ̂1, . . . , Σ̂N be a collection of covariance operators with empirical Fréchet mean Σ, and let

〈·, ·〉HS be the Hilbert–Schmidt inner product. Assume we want to perform PCA under the

Wasserstein tangent space inner product 〈·, ·〉Σ at Σ̄, 〈A,B〉Σ = tr(AΣB). By Ocaña et al. [1999],

if 〈·, ·〉Σ is continuous for 〈·, ·〉HS then there exists a unique operator T characterised by

〈A,B〉Σ = 〈T(A),B〉HS = tr([T(A)]∗B).

In our case, T is the multiplication from the right by Σ, so

T(A) = (AΣ1/2)Σ1/2

which is trace class and has an adjoint. It follows from Ocaña et al. [1999], thatT is nonnegative,

and the PCA of some collection of data (X1, . . . , Xn) with respect to 〈·, ·〉Σ is equivalent to the PCA

of [T1/2(Xi )]n
i=1 with respect to the Hilbert–Schmidt norm, in the sense that the eigenvalues

(i.e., the variances) remain the same, and the eigenfunctions with respect to 〈·, ·〉Σ are T1/2

applied to the eigenfunctions with respect to 〈·, ·〉HS .

The PCA algorithm presented in Section 3.2 is accordingly modified as follows:

1. Obtain an estimate Σ̂1, . . . , Σ̂N of the operators Σ1, . . . ,ΣN . Compute their Fréchet mean

Σ̂= argmin
Σ

N∑
j=1

Π2(Σ, Σ̂ j ).

2. Use the estimated-log maps to lift Σ̂1, . . . , Σ̂N to their respective correspondants ∆̂ j =
logΣ̄(Σ̂i ) on the tangent space at the Fréchet mean:

∆̂ j = t j −I=Σ−1/2
(Σ

1/2
Σ̂ jΣ

1/2
)1/2Σ

−1/2 −I, j = 1, . . . , N .

3. Multiply ∆̂ j = t j −I from the right by Σ̄1/2.

78



3.2. Transportation-based functional PCA of covariances

4. Perform linear PCA of the tangent space data using the spectral decomposition of

K̃ = K −1 ∑
∆ jΣ

1/2 ⊗∆ jΣ
1/2. Such spectral decomposition is defined on the space of

Hilbert–Schmidt operators with respect to the Hilbert–Schmidt norm.

5. Multiply (from the right) the eigenfunctions of K̃ by Σ−1/2 to obtain the eigenfunctions

of K.

6. Retract the tangent space segments obtained in (3) onto the manifold via the exponential

map expΣ̄.

In the next section we explain how the tangent space PCA admits an elegant interpretation in

terms of the problem of curve registration (Section 1.1.4).

3.2.2 Tangent space PCA and multicoupling

Recall that a multicoupling of a collection of zero-mean Gaussian measures µ1, . . . ,µN is

realised as joint distribution of µ1, . . . ,µN , such that the sum of pairwise squared distances

between the covariances is minimal.

As explained in Section 1.3, optimal multicoupling also admits a probabilistic interpretation.

If we adopt this point of view, in order to achieve an optimal multicoupling, we look for

random vectors on H n with pre-assigned marginals and whose coordinates are maximally

correlated. More formally, we wish to construct a random vector (Y1, . . . ,Yn) on H n with

marginals distributed as random variables Xi ∼µi such that

E
∑
i< j

‖Yi −Y j‖2 is minimal.

The notion of multicoupling is inherently connected with Fréchet means, as seen in Lemmas 14

and 17. Indeed, Lemma 14 shows that an optimal multicoupling yields the Fréchet mean,

while Lemma 17 proves that in turn, the Fréchet mean can yield an optimal multicoupling

(see Zemel and Panaretos [2017] and Masarotto et al. [2018]). Moreover as explained in the

previous Section, an optimal multicoupling can be used to construct a fPCA for the image of a

collection of covariances on the tangent space at Σ.

Consider a Gaussian process X ∼ N (0,Σ) displaying both amplitude variation and phase

variation in the following sense (see Panaretos and Zemel [2016, Section 2] and Section 1.1.4):

1. Amplitude variation (fluctuations around fixed modes): (realisation of) a Gaussian

process X ∼ N (0,Σ) with Karhunen–Loève expansion as

X =
∞∑

n=1
σ1/2

n ξnϕn

fluctuating around fixed (deterministic) modes ϕn . Here {σn ,ϕn} are eigenvalues and

eigenfunctions of Σ, and ξn
i i d∼ N (0,1) a sequence of real standard normal variables.
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2. Phase variation (arising from deformation fluctuations of the modes): the realisation X

are warped into X̃ via bounded non-negative operator T (usually uncorrelated with X ),

X̃ = T X =
∞∑

n=1
σ1/2

n ξnTϕn

such that ‖TΣT ‖1 <∞, in order for the resulting X̃ to have finite variance.

In practice we want to recover the original unwarped covariance Σ and the warping map T . By

doing so we can then separate the amplitude from the phase variation, as unaccounted-for

phase variation might distort statistical inference.

Let us translate the registration problem to the setting of covariances, to see how tangent

space PCA provides a means of registration of the curves.

In terms of covariances, the warped process X̃ has covariance TΣT conditional on T (provided

that T is uncorrelated with X ). That is, the covariance of X̃ is obtained as a perturbation of Σ

that corresponds to a tangent perturbation, which is linear on the tangent space by mean of

the optimal map T , in the sense of Section 2.4. More precisely, the covariance of X̃ corresponds

to the retraction via the exponential map of such linear perturbation. Now, in view of the

intimate link between the exponential map defined in Section 1.4.2 and the geodesics 3, we

can claim that TΣT is a geodesic perturbation of Σ. If E[T ] = I then the perturbations at the

tangent space level have “zero mean”, and theorem 20 tells us that Σ is a Fréchet mean of the

random operator TΣT . But now, retracting the PCs onto the manifold via the exponential

map, will give us exactly a (smoothed) estimate of T . So in practice, if we observe a collection

of perturbed operators Σk = TkΣTk , tangent space PCA provides a means to approximately

recover Σ and {Tk }N
k=1.

3.2.3 Data Analysis

In this section, we illustrate the use of tangent space PCA by applying it to the phoneme

data set described in Section 3.1.1. The five empirical covariances corresponding to the

five phonemes are lifted to the tangent space via the log map at their Fréchet mean Σ̄, and

successively pre-multiplied by Σ̄1/2 as explained in Section 3.2.1. Standard PCA is then run on

these quantities.

Figure 3.13 gives the coordinates of the observations in the principal components space. From

it, we see clearly that the tangent space PCA captures very well the difference among the

phonemes, as each phoneme group is isolated in at least one plot. More precisely:

1. The first PC captures (part of) the difference between “aa, ao and iy” and “dcl and sh”.

2. The second PC captures (part of) the difference between “dcl” and “sh”.

3In general, let v be a tangent vector to a manifold M at the point p. Then there is a unique geodesic γv (t ) such
that γv (0) = p and with v as initial tangent vector. In this case, the corresponding retraction via the exponential
map of v is expp (v) = γv (1).
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PC1 PC2 PC3 PC4 PC5
Standard deviation 5.9365 3.5813 2.4753 1.7213 0.0000

Proportion of Variance 0.6166 0.2244 0.1072 0.0518 0.0000
Cumulative Proportion 0.6166 0.8410 0.9482 1.0000 1.0000

Table 3.5: Importance of each PC for the phoneme dataset

3. The third PC captures (part of) the difference between “aa and ao” and “iy”.

4. The fourth PC captures (part of) the difference between “aa” and “ao”.

The screeplot of the eigenvalues is given in Figure 3.14, and, the corresponding numerical

values are reported in Table 3.5. As there are only five different covariances, the screeplot

shows that four PCs explain the full variance of the data, which is obvious as we only have five

centered data points. The fourth PC is still relevant and explains 5% of the variance.

Since the PCs are ordered according to the magnitude of the eigenvalues of the combined

covariance matrix, the analysis suggests also how important are the differences among the

operators. For example, the main component of variation, corresponding to the first PC,

separates consonant and vowels, that is, quite different sounds, and indeed it captures about

60% of the total variance. On the other hand, the fourth PC discriminates between “aa” and

“ao”, which are very similar sounds, and indeed it only explains a small percentage of the total

variance.

We now move into a more detailed analysis of the differences captured by the eigenvectors.

The retraction of the PCs from the tangent space onto the manifold identifies the principal

geodesics. Traversing these principal geodesics provides a visualisation of the main modes of

variation of Σ j near their Fréchet mean Σ̄. We show that this is actually the case in Figure 3.15.

The first PC captures (part of) the differences between “aa, ao and iy” and “dcl and sh”. Let

γ(1)
t be the first principal geodesic, i.e. the retraction of the first principal component via

the exponential map. We remark that γ(1)
t is traversing the manifold of covariances, so the

evaluation of γ(1)
t at each time instance t∗ yields a covariance operator. We expect that if we

move along γ(1)
t starting from the Fréchet mean, we find, on one end, operators which are

“similar” to the covariance operators corresponding to the phonemes “aa”, “ao” and “iy”, while

if we move in the other direction, we expect to find operators similar to the covariances of “sh”

and “dcl”. This would mean that γ(1)
t captures exactly the main mode of variation, which is

indeed the difference between vowels and consonants.

Figure 3.15 shows on the left-hand side the arithmetic difference Σ̄aa,ao,i y−Σ̄dcl ,sh between the

“true” barycenters Σ̄aa,ao,i y of “aa, ao and iy” and Σ̄dcl ,sh of “dcl and sh”, and on the right-hand

side the arithmetic difference between two covariance operators computed along γ(1)
t if we

move into the two opposite directions. As we can move along γ(1)
t for an arbitrary amount of

time t , we chose two “representatives” corresponding to t = 1 and t =−1. Moving along γ(1)
t

seems to show the expected differences.
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Figure 3.13: PCA scores, as computed from the phoneme dataset. The colours are as follows:
“sh” black, “iy” red, “dcl “green”, “aa” blue, “ao” cyan
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Figure 3.14: Screeplot of eigenvalues, phoneme dataset
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Figure 3.15: Variation along the first principal geodesic. Contour plot of the difference
Σ̄aa,ao,i y − Σ̄dcl ,sh between the barycenters of the covariances of “aa,ao and iy” and “dcl and
sh” on the left-hand side, and the arithmetic difference between two operators computed by
moving in opposite directions along γ(1)

t on the right.

We do a similar analysis for the second PC. The second PC captures part of the differences “dcl”

vs “sh”. Figure 3.16 shows on the left-hand side the difference between the covariance operators

of “dcl” and “sh”, while on the right-hand side the difference between two representative

covariance operators computed along γ(2)
t , if we move into the two opposite directions. Again

moving along γ(2)
t seems to capture the expected differences.

The third PC captures part of the differences between “iy” and “aa and ao”. Figure 3.17 shows on

the left-hand side the difference between the covariance operators of “iy” and the barycenter

of “aa” and “ao”, while on the right-hand side the difference between two representative

covariance operators computed along γ(3)
t if we move into the two positive directions.

The fifth PC captures part of the differences between “aa” and “ao”. Figure 3.18 shows on the

left-hand side the difference covariance operators of “aa” and “ao”, while on the right-hand

side the difference between two representative covariance operators computed along γ(5)
t if

we move into the two positive directions.

We now repeat the analysis on the more realistic extended dataset, as described in Section 3.1.1.

In this case, the phoneme dataset is artificially expanded in order to produce 12 replicas of

each of the 5 phoneme covariances. Each replica is computed from a subsample of 50 log-

periodograms, for a total count of 60 collections of 50 curves each. PCA is carried out on the

resulting 60 covariances.

We plot the first five PC scores in Figure 3.19, while the 3D scatterplot of the first three scores

is in Figure 3.20. The screeplot is given in Figure 3.21 while Table 3.6 contains the values of

explained variance by the first eight principal components.

Although 5PCs only explain 61% of the variance, it is enough to distinguish each phoneme

group. Indeed from Figure 3.19 we see clearly that each group is isolated in at least one plot.

83



Chapter 3. Applications

−1

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a)

−1

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 3.16: Variation along the second principal geodesic. Contour plot of the difference
Σdcl −Σsh between the covariances of “dcl” and “sh” on the left-hand side, and the arithmetic
difference between two operators computed by moving in opposite directions along γ(2)

t on
the right.
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Figure 3.17: Variation along the third principal geodesic. Contour plot of the difference
Σi y − Σ̄aa,ap between the covariances of “iy” and the barycenter of “aa and ao” on the left, and
the arithmetic difference between two operators computed by moving in opposite directions
along γ(3)

t on the right.
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Figure 3.18: Variation along the fifth principal geodesic. Variation along the third principal
geodesic. Contour plot of the difference Σaa −Σao between the covariances of “aa” and “ao” on
the left, and the arithmetic difference between two operators computed by moving in opposite
directions along γ(5)

t on the right.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Standard dev 5.3837 3.5409 2.2804 2.1172 1.5755 1.4561 1.3259 1.3219

Prop of Variance 0.3299 0.1427 0.0592 0.0510 0.0283 0.0241 0.0200 0.0199
Cumulative Prop 0.3299 0.4726 0.5318 0.5828 0.6111 0.6352 0.6552 0.6751

Table 3.6: Importance of each PCs in the expanded phoneme dataset

More precisely:

1. The first PC captures (part of) the difference between “aa, ao and iy” and “dcl and sh”.

2. The second PC captures (part of) the difference between “dcl” and “sh”.

3. The third PC captures (part of) the difference between “aa and ao” and “iy”.

4. The fifth PC captures (part of) the difference between “aa” and “ao”.

It is interesting to remark that if we ignore the geometry of the space, and perform a PCA

according to the standard Euclidean product, we are much less successful in identifying the

different groups of phonemes. See the PC scores shown in Figure 3.22, and, in particular,

compare them with those reported in Figure 3.19. Although the use of the Euclidean inner

products still seems to separate clusters of covariances on the PC space, we cannot identify

the reasons for variation.

We now move into the more detailed analysis of the difference captured by the eigenvectors of

the joint covariance.
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Figure 3.19: PCA scores of the expanded phoneme dataset. The colours are as follows: “sh”
black, “iy” red, “dcl “green”, “aa” blue, “ao” cyan
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Figure 3.21: Screeplot of eigenvalues, expanded phoneme dataset
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Figure 3.22: PCA scores of the 60 covariance operators based on the Hilbert–Schmidt distance.
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Figure 3.23: Variation along the first principal geodesic. Contour plot of the difference
Σ̄aa,ao,i y − Σ̄dcl ,sh between the barycenters of the covariances of “aa,ao and iy” and “dcl and
sh” on the left-hand side, and the arithmetic difference between two operators computed by
moving in opposite directions along γ(1)

t on the right.

The first PC captures part of the differences between “aa, ao and iy” and “dcl and sh”. If

γ(1)
t again indicates the first principal geodesic, we expect that if we move along γ(1)

t starting

from the Fréchet mean, we find on one end operators which are “similar” to the covariance

operators corresponding to the phonemes “aa”, “ao” and “iy”, while if we move in the other

direction, we expect to find operators similar to the covariances of “sh” and “dcl”. This would

mean that γ(1)
t captures exactly the main mode of variation, which is again the difference

between vowels and consonants.

Figure 3.23 shows on the left-hand side the difference between true barycenters of “aa, ao

and iy” and the one of “dcl and sh”, while on the right-hand side the difference between two

representative4 covariance operators computed along γ(1)
t , if we move into the two opposite

directions. Moving along γ(1)
t seems to show the expected differences.

We do a similar analysis for the second PC. The second PC captures part of the differences “dcl”

vs “sh”. Figure 3.24 shows on the left-hand side the difference between the covariance operators

of “dcl” and “sh”, while on the right-hand side the difference between two representative

covariance operators computed along γ(2)
t if we move into the two opposite directions. Again

moving along γ(2)
t seems to capture the expected differences.

The third PC captures part of the differences between “iy” and “aa and ao”. Figure 3.25 shows on

the left-hand side the difference between the covariance operators of “iy” and the barycenter

of “aa” and “ao”, while on the right-hand side the difference between two representative

covariance operators computed along γ(3)
t if we move into the two opposite directions.

4Here “representative” is used in the sense of the previous paragraph, where the same analysis was performed
on the original phoneme dataset.
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Figure 3.24: Variation along the second principal geodesic. Contour plot of the difference
Σdcl −Σsh between the covariances of “dcl” and “sh” on the left-hand side, and the arithmetic
difference between two operators computed by moving in opposite directions along γ(2)

t on
the right.

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a)

−2

−1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 3.25: Variation along the third principal geodesic. Contour plot of the difference
Σ̄aa,ao −Σi y between the barycenters of the covariances of “aa and ao” and the covariance of
“iy” on the left-hand side, and the arithmetic difference between two operators computed by
moving in opposite directions along γ(3)

t on the right.
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Figure 3.26: Variation along the fifth principal geodesic. Contour plot of the difference Σaa −
Σao between the covariances of “aa” and “ao” on the left-hand side, difference between two
operators computed by moving in opposite directions along γ(5)

t on the right.

The fifth PC captures part of the differences between “aa” and “ao”. Figure 3.26 shows on the

left-hand side the difference covariance operators of “aa” and “ao”, while on the right-hand

side the difference between two representative covariance operators computed along γ(5)
t if

we move into the two opposite directions.

3.2.4 Numerical simulation

We can perform PCA as well on operators obtained by the generative model described in

Section 2.4. We generate synthetic datasets which are inspired by the theoretical generative

model and which yields N covariances well separated in K groups. We aim to see whether PCA

is able to differentiate between the groups. Here, the method is validated over two different

simulation experiments. The results seem however reproducible.

In the first experiment, the operators Σ1, . . . ,ΣK are obtained as a conjugation perturbation of

some given Fréchet mean by the generated “optimal” maps T1, . . . ,TK . Recall that the model

for the optimal maps T j is the following:

Ti =
∑
n
δ(i )

n sin(2nπt −θ(i ))sin(2nπt −θ(i ))

where the δ( j )
n are drawn from a χ2 distribution and θ(i ) are sampled from a von Mises dis-

tribution of mean 0 and measure of concentration 1/σ (see Subsection 3.1.1). The Fréchet

mean is chosen to be Σ̄=UΛU∗ as in Kashlak et al. [2016], with U being a randomly generated

unitary operator, and Λ a d ×d diagonal matrix with eigenvalue decay of O(d−4), d being the

dimension of the matrices.
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PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 0.5810 0.1545 0.0966 0.0371 0.0276 0.0216

Proportion of Variance 0.8989 0.0635 0.0248 0.0037 0.0020 0.0012
Cumulative Proportion 0.8989 0.9624 0.9873 0.9909 0.9930 0.9942

Table 3.7: Importance of each PC, first experiment with the generative model.

PC1 PC2 PC3 PC4 PC5 PC6
Standard dev 0.7376 0.5827 0.1277 0.0461 0.0397 0.0281

Prop of Variance 0.5990 0.3739 0.0180 0.0023 0.0017 0.0009
Cumulative Prop 0.5990 0.9730 0.9909 0.9933 0.9950 0.9959

Table 3.8: Importance of each PC, second experiment with the generative model.

The generative model yields optimal maps which are small perturbations of the identity.

Hence, the dimension of the matrices used to approximate the operators needs to be large,

otherwise the estimation errors would overwhelm the intrinsic variability of the sample. We

picked the dimension to be 200, the measure of concentration to be 1 and K = 3. For each of

the Σ j , j = 1,2,3, we generate 100 samples of 50 Gaussian curves each. We then estimate the

empirical covariance of these curves, obtaining a sample of N = 300 covariances. Results of

the PCA are shown in Table 3.7 and Figures 3.27 and 3.28. We see that in this case as well, the

different groups are clearly identified.

In the second experiment, we generate another dataset inspired by the generative model,

but where the “warping” function depends on different parameters. In order for the Σ j to be

different enough, we chose K values for σ and generate only one T for each of these values. To

underline the dependency on the parameter we indicate the maps as Tσ.

For this simulation we have chosen K = 3 and σ ∈ {0.1,1,5}. We then generated the d ×d =
20×20 covariance matrices Σ1,Σ2,Σ3 as TσΣ̄Tσ, where Σ̄ is chosen as above. We remark again

that we are considering a extension of the generative model, since we only have one sample

for each σ. The dataset of covariances obtained this way is then enlarged. For each of the Σi ,

we resample n = 30 Gaussian curves and estimate their empirical covariance matrices. We do

this 12 times, so that in total we have 36 matrices divided in 3 groups. We then perform PCA

on these 36 matrices. Results are shown in Table 3.8 and Figures 3.29 and 3.30. We see that the

first two PCs explain nearly the totality of the variance, and that three groups are evident in

the plot of PC1 vs PC2.

3.3 Clustering of covariance operators

Clustering deals with the problem of classifying observations belonging to K different func-

tional populations into their respective groups. The number of groups can be known or

estimated, and the algorithm aims to assign observations into subsets in such way that similar

objects are in the same group, and dissimilar ones are in different groups.
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Figure 3.27: PCA scores, first experiment with the generative model. Colours correspond to
the three maps generated from the model.
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Figure 3.28: Eigenvalues screeplot, first experiment with the generative model
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Figure 3.29: PCA scores, second experiment with the generative model. The colours are as
follows: black corresponds to σ= 0.1, green to σ= 1 and red to σ= 5
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Figure 3.30: Screeplot of eigenvalues, second experiment with the generative model.
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The literature on the subject offers several functional clustering approaches. Most of the

clustering literature however deals with curve clustering (see, e.g. Abraham et al. [2003] for

B-splines based clustering, Chiou and Li [2007] for a use of truncated Karhunen–Loève ex-

pansion, Jacques and Preda [2014] for a model-based clustering for Gaussian multivariate

functional data, Tokushige et al. [2007] for fuzzy clustering algorithm and Sangalli et al. [2010]

for a clustering method for warped curves). A common way to proceed for most of these

approaches, is to first transform the data into some finite dimensional approximation thereof,

and successively cluster them via methods designed for finite dimension.

As for covariances, in finite dimension, literature on clustering of covariance matrices can be

found especially in statistical shape analysis and diffusion tensor imaging (see, among others,

Lee et al. [2015], Srivastava and Klassen [2016], Srivastava et al. [2005]). Recently, methods for

clustering of functional covariance operators have attracted some attention (see, e.g., Ieva

et al. [2016] for an approach based on the Hilbert–Schmidt distance and limited to the case

of two classes of equal size, and, Kashlak et al. [2016] for a more general approach based on

concentration inequalities). In this section, we investigate two different clustering methods

that are naturally linked to the theory developed in Chapters 1 and 2. The first one, described

in Subsection 3.3.1, is a version of k-means partitioning performed on the tangent space.

k-means partitioning is a widely-used clustering method which relies on the dissimilarity

between the clusters’ centroids, and which was introduced by Hartigan and Wong [1979].

Similarly to Section 3.2 on PCA, this approach shows that lifting the covariances to the tangent

space makes it possible, and indeed interpretable, to use traditional methods based on the

Hilbert–Schmidt distance. The second clustering method that we propose is a penalised

clustering algorithm coined “soft”-clustering, and can be found in Section 3.3.2. In this ap-

proach, which makes direct use of the Wasserstein distance, the in-between cluster variability

is penalised by a term proportional to the entropy of the partition matrix. In this way, each

covariance operators can be partially classified into more than one group.

3.3.1 Tangent space K -means clustering.

The K -means clustering algorithm is an iterative procedure that takes as input the number

K of clusters, and finds the clusters and dataset labels for the particular pre-chosen K . The

algorithm is known to depend on the initiation procedure. However, it is guaranteed to

converge to a local optimum [Hartigan and Wong, 1979], and if the data come from K different

enough groups, such groups are very often identified. Inspired by the discussion in Section 3.2,

we move the analysis onto the tangent space. Given N covariance matrices Σ1, . . . ,ΣN with

Fréchet mean Σ̄, the algorithm works as follows:

1. Obtain an estimate Σ̂1, . . . , Σ̂N of the operators Σ1, . . . ,ΣN . Compute their Fréchet mean

Σ̂= argmin
Σ

N∑
j=1

Π2(Σ, Σ̂ j )

95



Chapter 3. Applications

2. Use the estimated-log maps to lift Σ̂1, . . . , Σ̂N to their corresponding ∆̂ j = logΣ̄(Σ̂i ) on the

tangent space at the Fréchet mean:

∆̂ j = t j −I=Σ−1/2
(Σ

1/2
Σ̂ jΣ

1/2
)1/2Σ

−1/2 −I, j = 1, . . . , N .

3. Classify the N covariance operators in K groups using the standard K -means algorithm

based on the Hilbert–Schmidt distance applied to ∆̃ j = ∆̂ j Σ̂
1/2.

Numerical simulations

We run the K -means algorithm on simulated data created via the generative model described

in Section 3.1.1, according to the following steps:

- generate three “true” Σi of size 200×200 as conjugation perturbations via transport

maps Ti (cfr. Equation (3.8)) of

Σ̄=U

[ ∞∑
n=1

n−4 sin(2nπt )⊗ sin(2nπt )

]
U∗

where U is a randomly generated orthogonal operator.

- Obtain 300 estimated covariances, divided in three groups, repeating the following step

100 times:

− for every Σi , i = 1,2,3, generate 50 Gaussian curves with covariance Σi and

compute the empirical covariance of these collections of curves.

- Classify the 300 covariances into 3 separate groups using the tangent space K -means

algorithm.

The phase shifts θi in Equation (3.8) are assumed to be sampled from a von Mises distribution

with dispersion parameter 1/σ. The previous analysis was repeated 50 times for each of the

following values of σ: σ ∈ {0.1,1,5}, Recall that the lowest the value of the parameter σ, the

higher is the variance of the distribution.

Tables 3.9 and 3.10 give the percentage of misclassifications and exact classification, obtained

in 50 replications of the described simulation experiment. We say that we classify the operators

exactly when the 300 covariances are divided into 3 groups of 100 covariances corresponding

exactly to the 3 “true” operators generated via the generative model. We can see that the

percentage of perfect classification decreases when the dispersion of the warp maps decreases,

since, in that case, the transport operators Ti ’s, and therefore the true covariances of the three

groups, are closer together.

Figure 3.31 illustrates that, as expected, the algorithm works when the three groups are clearly

distinct. Indeed, if the minimum distance between the true covariance operators is small, the

algorithm might not be able to differentiate between them. However, when the minimum
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σ

0.1 1 1.5
0.055 0.059 0.0766

Table 3.9: Mean of the percentage of wrong classification for different values of the von Mises
dispersion σ.

σ

0.1 1 1.5
0.825 0.780 0.725

Table 3.10: Percentage of cases with perfect classification for different values of the von Mises
dispersion σ.

distance between two covariance operators is greater of a threshold, the classification is exact

(at least in the considered cases).

Data analysis

We run the tangent space K -means algorithm on the extended phoneme data set (see Sec-

tion 3.1.1) using K = 2, . . . ,10. For different number of classes, Figure 3.32 shows the value of

the AICc -type criterion (Burnham and Anderson [2002])

AICc (K ) = np log(SSK )+2K p + 2(K p)2 +2K p

(n −K )p −1

where (i) n is the number of estimated covariance operators (60 in our case); (ii) SSK denotes

the within-cluster sum of squares (in our case is the sum of the within-cluster Hilbert-Schmidt

distances of the operators lifted to the tangent space); and (iii) p is the length of each cluster

centroids (the number of entries in ∆̃ j in our case). The criterion suggests to classify the

60 covariances into K = 5 clusters. As shown in Table 3.11, when this number of clusters is

used, the algorithm perfectly identifies the true phonemes. Replications of the simulation

experiment, not reported here, show that the results presented are reproducible.

Phonema
Cluster aa ao dcl iy sh

1 0 12 0 0 0
2 12 0 0 0 0
3 0 0 12 0 0
4 0 0 0 0 12
5 0 0 0 12 0

Table 3.11: Distribution of the true phonemes in the cluster identified by the tangent space
K -means algorithm.
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Figure 3.31: Misclassification as a function of intra-cluster distance.
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Figure 3.32: AICc criterion according to the number of clusters
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3.3.2 Soft clustering

In this Section we propose a new clustering method based on penalisation. Although it is

not interpretable in the sense of optimal transport, we found that in some cases it is more

discriminating than tangent space k-means, so it appears to be a valid alternative.

Assume, as in the previous Section, that we are given N estimated covariance operators

Σ̂1, . . . , Σ̂N , and, that we wish to determine both K prototype covariance operators Σ1, . . . ,ΣK

representative of K classes and to compute a N ×K partition matrix

P = [πi , j ] such that πi , j ≥ 0 and
K∑

j=1
πi , j = 1

where each element πi , j describes the confidence with which the covariance Σ̂i can be as-

signed to the j th class. We can imagine that Σ1, . . . ,ΣK are the Fréchet means of the clusters.

The clustering method presented here relies on computing Σ1, . . . ,ΣK and P as the solution of

the following optimisation problem

min
Σ1,...,ΣK ,P

N∑
i=1

K∑
j=1

πi , jΠ
2(Σ̂i ,Σ j

)+η(
N∑

i=1

K∑
j=1

πi , j log(πi , j )+n log(k)

)
. (3.11)

The first term gives the sum of the Wasserstein distances within the classes, while the second

penalizes partition matrices with zero entropy. In particular, observe that the second term is

zero when the partition matrix is uniform, i.e., πi , j = 1/K for each i and j , and it reaches its

maximum value ηN log(K ) for degenerate partition matrices of the type

πi , j =
0, j 6= ri

1, j = ri

(3.12)

for some ri ∈ {1, . . . ,k}. In (3.11), η is a positive tuning parameter. A zero-entropy solution of

type (3.12) is obtained when η= 0, while η going to infinity yields a uniform partition matrix.

Observe that

1. given the partition matrix P , the desired covariance matrices/operators Σ j , j = 1, . . . ,K ,

are the (weighted) Frechet means

Σ j = argmin
Ω

N∑
i=1

πi , jΠ
2(Σ̂i ,Ω);

2. given Σ j , j = 1, . . . ,K , the partition matrix which minimizes (3.11) is

P = [πi , j ] =
[

e−Π
2(Σ̂i ,Σ j )/η∑K

s=1 e−Π2(Σ̂i ,Σs )/η

]
. (3.13)
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Indeed, (3.13) can be easily obtained introducing the Lagrange multipliers

L =
N∑

i=1

K∑
j=1

πi , jΠ
2(Σ̂i ,Σ j

)+η(
N∑

i=1

K∑
j=1

πi , j log(πi , j )+N log(K )

)
+

N∑
i=1

λi

(
K∑

j=1
πi , j −1

)

and solving the first-order conditions

dL

dπi , j
=Π2(Σ̂i ,Σ j )+ log(πi , j )+1+λi = 0, (i = 1, . . . , N ; j = 1, . . . ,K ),

dL

dλi
=

K∑
j=1

πi , j −1 = 0, (i = 1, . . . , N ).

This suggests the use of a block coordinate descent algorithm (Xu and Yin [2013]). The algorithm

starts from K prototype covariance matrices/operators Σ
(0)
1 , . . . ,Σ

(0)
K and the corresponding

partition matrix P (0) = [π(0)
i , j ] obtained from (3.13), and then for r = 1,2, . . .:

1. compute

Σ
(r )
j = argmin

Ω

n∑
i=1

π(r−1)
i , j Π2(Σ̂i ,Ω)

using the gradient descent algorithm for the Fréchet mean (Section 2.3).

2. Set

P (r ) = [π(r )
i , j ] =

 e−Π
2(Σ̂i ,Σ

(r )
j )/η∑K

s=1 e−Π2(Σ̂i ,Σs )/η

 .

Iterations can be stopped when maxi , j

∣∣∣π(r )
i , j −π(r−1)

i , j

∣∣∣ is sufficiently small.

Equation (3.13) shows that η essentially determines the “cluster sizes” and we have chosen it

to be

exp

(
−1

η
mediani 6= jΠ

2(Σ̂i , Σ̂ j )

)
≈ 10−6,

as this value seems to provide a reasonable performance in a variety of scenarios.

While no probabilistic interpretation for the partition matrix P is possible, we stress the

similarity of the proposed algorithm with the classical EM approach for fitting mixture models

(and performing model-based clustering).

The described algorithm only finds a local minimum of the objective function. Hence, it is

important to choose Σ
(0)
1 , . . . ,Σ

(0)
K so that this local minimum corresponds to a “good” solution.

For this reason, we developed a stochastic algorithm inspired by the initialisation phase of

the kmeans++ (Arthur and Vassilvitskii [2007]) and PAM (Kaufman and Rousseeuw [2009])
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algorithms.

The initialisation attempts to find an approximate solution of the optimisation problem (3.11)

constraining

Σ1 = Σ̂i1 , . . . ,ΣK = Σ̂iK

for some i j ∈ {1, . . . , N }. The reason behind is to avoid computing the Fréchet mean of the data

at each initialisation step , as this is the most time-consuming of all steps.

The idea is that Π2(Σ̂ia , Σ̂ib ) should be large when a 6= b so we randomly sample (i1, . . . , iK )

trying to impose this condition.

For a given nstart repetition of the initialisation procedure and nrefine refinement steps,

the algorithm can be described as follows:

Repeat nstart times the following steps and keep the best subset (i1, . . . , iK ) generated.

− Choose i1 uniformly at random in {1, . . . ,n}.

− For j = 2, . . . ,K , sequentially choose i j from {1, . . . , N } with probability proportional

to min(Π2(Σ̂i , Σ̂i1 ), . . . ,Π2(Σ̂i , Σ̂i j−1 ))

− Repeat nrefine times the following step.

For each j = 1, . . . ,K , sample without replacement from {1, . . . , N } ntry pos-

sible substitutions of i j with probability proportional to mins 6= j Π
2(Σ̂i , Σ̂is ).

Keep the best found value for i j .

We tested that the initialisation indeed tends to select covariances Σ̂i1 , . . . , Σ̂iK belonging to

different groups (if groups really exist).

Data analysis

We test the previous procedure on the extended phoneme dataset described in Section 3.1.1.

To obtain an even more challenging and realistic simulation scenario, from each phoneme

we extract 20 subsamples of different sizes to estimate 20 covariance matrices, as to obtain a

complete dataset of 100 covariances (20 for each of the 5 phonemes). In particular, we use

subsample size of either 25 or 50 curves to estimate the covariance operators. To analyse the

stability of the algorithm, we repeat the classification procedure for 5 times.

Figures 3.33 and 3.34 show the medians of the column of P for the rows corresponding to the

various phonemes, when the subsamples used for the analysis where of size 25 and 50, respec-

tively. Reflecting the distances between the phoneme covariances, (i) the algorithm classify

quite well phonemes “dcl”, “iy” and “sh”, while (ii) the partition matrices show some degree of

uncertainty between the “aa” and “ao” covariances; this uncertainty correctly decreases as the

sample size increases.

The degree of uncertainty is intrinsic in the results produced by the algorithm, as it is not

required by the user to actually know the true classes. In particular, the magnitude of the
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Class
Class 1 2 3 4 5

1 16.3 1.7 0.1 0.1 0.0
2 1.7 19.8 0.1 0.1 0.1
3 0.1 0.1 9.9 8.7 1.8
4 0.1 0.1 8.7 9.9 1.8
5 0.0 0.1 1.8 1.8 15.4

Table 3.12: Uncertainty matrix P∗P (experiment n. 3 with sample size equal to 25). Observe,
from Figure 3.33, that the classes identified by the algorithm correspond to: 1 ↔ “dcl”; 2 ↔
“sh”; 3 ↔ “aa” (or “ao”); 4 ↔ “ao” (or “aa”); 5 ↔ “iy”.

non-diagonal entries of the matrix P∗P gives a measure of the degree of “confusion” between

the corresponding groups. For example, Table 3.12 reports this matrix for the third experiment

conducted with a subsample of size 25. The Table shows that the algorithm produces reason-

ably definite classification results corresponding to the classes of “iy”, “sh” and “dcl” and less

about “aa” and “ao”, which, being very similar sounds, are harder to distinguish.

Once we obtain an estimate of the prototypes Σ1, . . . ,ΣK , further analyses can be done to

understand the differences between the identified classes, e.g., by lifting the estimates to the

tangent space, we can perform a tangent space PCA. As an example, Figure 3.35 shows the

plot of the PCA scores computed from Σ1, . . . ,Σk in the case of the third experiment with a

subsample of size 25. Regardless of the small sample size and the partial classification errors,

and without considering the sign and the colors which are completely arbitrary, the scores

have a spatial distribution similar to those displayed in Figure 3.13, which was based on the

covariances estimates using the entire dataset available for each phoneme. Indeed, an analysis

of the eigenfunctions (not reported here) reveals that the differences between the estimated

class prototypes Σ1, . . . ,Σ5 captures the differences between the “true” covariances.
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Figure 3.33: Classifications into clusters based on a subsample of 25. The picture show the
medians of the column of the partition matrix P for the rows corresponding to the various
phonemes.
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Figure 3.34: Classifications into clusters based on a subsample of 50. The picture show the
medians of the column of the partition matrix P for the rows corresponding to the various
phonemes.
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Figure 3.35: Tangent space PCA of estimated prototypes (experiment n. 3 with sample size
equal to 25).
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4 Conclusions and outlook

After giving a summary of the results presented in this manuscript, we wish to conclude with

an outlook over possibile future research directions.

Covariance operators are crucial elements in FDA, primely due to their connection with the

Karhunen-Loéve expansion. However situations might arise where covariances operators

are highlighted as independently relevant statistical objects. The line of research in this

direction mostly viewed covariances as Hilbert–Schmidt operators, thus ignoring their trace–

class nature and the fundamental non-linearity of the space they lie in. The first steps towards

a non-linear analysis of covariance operators were moved by Pigoli et al. [2014a]. We made

a connection between the Procrustes distance promoted by Pigoli et al. [2014a] and the

Wasserstein metric for Gaussian processes (Section 2.1). This connection allowed us to exploit

the wealth of geometrical and analytical properties of optimal transportation. We illustrated

key geometrical and topological aspects of the space of covariance operators endowed with the

Procrustes metric (Sections 2.1.1 and 1.4.2). Through the notion of multicoupling of Gaussian

measures, we establish existence, uniqueness and stability for the Fréchet mean of covariances

with respect to the Procrustes metric (Section 2.2). Such a Fréchet mean is computable via a

version of the generalized Procrustes algorithm, that provably converges in finite dimension

(Section 2.3). Moreover, we gave generative statistical models for covariances which are: linear

on the tangent space, compatible with the Procrustes metric, and connected with the problem

of curves registration (Section 2.4). This novel perspective on optimal transport allowed us to

introduce a new ANOVA test, which in the functional case seems to dominate in power the

state-of-the-art results of other testing procedures (Section 3.1). The understanding of the

geometry leads to a PCA that respects the nature of the covariance operators (Section 3.2).

Finally we gave another example of applications of the Wasserstein framework, showing two

algorithms for clustering of covariance operators (Section 3.3).

With this work, we also generated new questions which are so far unanswered and that can

offer interesting leads for future research.

The most important issue would be establishing the injectivity (regularity) of the Fréchet mean
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Σ, as it would automatically yield the solution to the multicoupling problem. As shown by

Masarotto et al. [2018, Section 12], injectivity holds for commuting operators. We conjecture

the result to hold true in the general case, as it is in finite dimensions.

Conjecture 24 (Regularity of the Fréchet Mean). Let Σ1, . . . ,Σn be covariances on H with Σ1

injective. Then their Fréchet mean Σwith respect to the Procrustes metricΠ is also injective.

Another relevant question would be to establish the stability of the Procrustes algorithm

presented in Section 2.3 to increasing projection dimensions.

Finally, one more interesting question would be whether the (empirical) Fréchet mean of

Σ1, . . . ,Σn is consistent with respect to its population counterpart, as the sample size grows

to infinity. The Fréchet mean can be seen as a M-estimator [van der Vaart and Wellner,

1996]. When studying properties of these estimators, the theory of empirical properties

comes in naturally. Specifically, to assess consistency of the Fréchet mean, we can employ

argmin theorems as, for example, in van der Vaart and Wellner [1996, Chapter 3.2]). In finite

dimension this has been done by Bigot et al. [2013]. Unfortunately applications of argmin

theorems require convergence or continuity hypotheses not verified for infinite measures.

Under mild conditions on the law of Σ, this population mean is guaranteed to be unique

(see Proposition 15). Thanks to a result from Ziezold [1977], if (uniqueness holds and) a

population mean exists and the sequence of empirical means converge, then the limit must

be the population mean.The problem is that we cannot show that in general a Fréchet mean

exists. Le Gouic and Loubes [2016] showed existence, but their result do not apply in our case

because H is not locally compact.
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