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Abstract
Gold and copper are the only two elemental metals that show a characteristic colour, due to

the presence of a drop in the reflectivity curve inside the visible range. Reflectivities of all other

metals are in general high and flat for all visible frequencies, making they appear shiny and

silvery white. Nowadays, with state-of-the-art theoretical methods, it is possible to calculate

reflectivity and colour of a material by means of first-principles simulations and, as a conse-

quence, predict the colour of new metal alloys. The computational approach for materials

design can be, for example, useful for applications related to jewellery and the high-end watch

industry, where there is the demand, due to market and fashion trends, for precious-metal

alloys with specific optical properties. The simulations can therefore substitute or, at least,

reduce the use of expensive and inefficient trial-and-error experiments, which is otherwise the

common route followed by researchers and manufacturers in order to identify novel materials.

Because of its unique properties (i.e. characteristic red-yellow colour, high corrosion re-

sistance, high density and considerable malleability), since ancient times gold and, as a

consequence, its alloys have been of particular interest for jewellery applications. In particular,

gold alloys and intermetallics show a broad spectrum of colours (yellow, red, purple, white

and others), which can be tuned by varying the alloying elements in the material.

In this thesis, we first discuss the physical approach used to simulate the optical properties

of metals, that is the independent particle approximation for the evaluation of the dielectric

function, based on the calculation of both interband and intraband contributions from the

electronic structure obtained with density-functional theory simulations. We also describe

in some detail the computational approach developed to perform in practice first-principles

simulations in both an efficient and automatic way. For this purpose, on one hand we have

developed a code, named SIMPLE, to calculate optical properties using Shirley’s interpolation

method, which is an efficient and robust automatic procedure. On the other hand, in order to

have reliable band structures as the starting ingredients for the evaluation of the dielectric

function, we have exploited the results of a protocol, named SSSP, developed by us to test the

precision and performance of pseudopotentials for all elements.

Using the results above, we then show through a systematic study on elemental metals and

extensive comparisons with experimental data that the chosen computational approach is

able to reproduce the correct behaviour of the reflectivity curve and to capture the main

differences in optical properties among several elements of the periodic table.

Finally, we perform a similar study on metal alloys by considering different types of com-

pounds, i.e. ordered intermetallics, disordered solid solutions and heterogeneous alloys.
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In particular, we show through a comparison with several experimental results that, if the

appropriate methods are used for the simulation of the different types of compounds, (i)

the simulated colours of known coloured intermetallics are often in quantitative agreement

with experiments, (ii) the main mechanisms that modify the colour of bulk gold in alloys

are qualitatively captured and that (iii) we manage to reproduce the main colour trends in

noble-metal-based binary alloys.

Keywords: optical properties, dielectric function, colour, independent particle approximation,

first principles, density-functional theory, Drude plasma frequency, automation, metal alloys,

noble metals.
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Riassunto
Oro e rame sono gli unici due metalli puri a mostrare un colore caratteristico dovuto alla

presenza di un calo repentino nella curva di riflettività all’interno dell’intervallo di luce visibile.

La riflettività di tutti gli altri metalli puri è generalmente alta e piatta per tutte le frequenze

visibili, e ció li fa così apparire brillanti e di colore argentato. Oggigiorno, è possibile calcolare

riflettività e colore di un materiale mediante simulazioni da principi primi con metodi teorici

all’avanguardia e, come conseguenza, predirre il colore di nuove leghe metalliche. L’approccio

computazionale per il design di materiali può essere utile, ad esempio, per applicazioni legate

alla gioielleria e all’industria di orologi di alta fascia, dove c’è domanda dovuta al mercato e

a tendenze di moda di leghe a base di metalli preziosi e con specifiche proprietà ottiche. Le

simulazioni possono quindi sostituire o almeno ridurre l’uso di esperimenti trial-and-error

costosi e inefficienti, i quali sono altrimenti alla base del metodo comunemente seguito da

ricercatori e fabbricanti per identificare nuovi materiali.

A causa delle sue proprietà uniche (cioè caratteristico colore rosso-giallo, alta resistenza alla

corrosione, alta densità e notevole malleabilità), fin dai tempi antichi l’oro e, di conseguenza,

le sue leghe sono state di particolare interesse per applicazioni nel campo della gioielleria.

In particolare le leghe e gli intermetallici d’oro mostrano un ampio spettro di colori (giallo,

rosso, viola, bianco e altri), i quali possono essere regolati variando gli elementi aggiunti nel

materiale.

In questa tesi, per prima cosa discutiamo l’approccio teorico usato per simulare le proprietà

ottiche di metalli, cioè l’approssimazione di particelle indipendenti per la valutazione della

funzione dielettrica, basata sul calcolo dei contributi interbanda e intrabanda a partire dalla

struttura elettronica ottenuta con simulazioni di teoria del funzionale densità. Descriviamo in

dettaglio anche l’approccio computazionale sviluppato per eseguire in pratica le simulazioni

da principi primi in modo sia efficiente che automatico. Per questo scopo, da un lato abbiamo

sviluppato un programma, chiamato SIMPLE, per calcolare le proprietà ottiche utilizzando il

metodo dell’interpolazione di Shirley, che è una procedura automatica, efficiente e robusta.

D’altra parte, al fine di avere delle strutture a bande affidabili come ingredienti di partenza per

la valutazione della funzione dielettrica, abbiamo sfruttato i risultati di un protocollo, denomi-

nato SSSP, da noi sviluppato per testare la precisione e l’efficienza degli pseudopotenziali per

tutti gli elementi.

Usando i risultati descritti sopra, mostriamo poi attraverso uno studio sistematico sui metalli

semplici e un ampio confronto con dati sperimentali che l’approccio computazionale scelto

è in grado di riprodurre il corretto comportamento della curva di riflettività e di trovare le
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principali differenze nelle proprietà ottiche tra diversi elementi della tavola periodica.

Infine, eseguiamo uno studio simile anche su leghe metalliche considerando diversi tipi di

composti, cioè composti intermetallici ordinati, soluzioni solide disordinate e leghe eteroge-

nee. In particolare, mostriamo attraverso un confronto con diversi risultati sperimentali che,

se vengono utilizzati i metodi appropriati per la simulazione dei diversi tipi di composti, (i) i

colori simulati di noti composti intermetallici colorati sono spesso in accordo quantitativo

con gli esperimenti, (ii) i principali meccanismi che modificano il colore dell’oro nelle leghe

sono qualitativamente descritti e che (iii) riusciamo a riprodurre i trends principali del colore

in leghe binarie a base di metalli nobili.
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1 Introduction

1.1 Optical properties of metals: applications

The measurement of the optical constants of a material is a fundamental tool to understand

and characterize its physical properties from a microscopic point of view. Knowledge of

the optical properties gives insights into the electronic structure of a material and on its

elementary excitations, such as excitons, plasmons and lattice vibrations. Furthermore, optical

properties are an important link between theory and experiments in materials science. On

one hand, optical measurements can lead to a deeper or even new understanding of the

fundamental properties and interactions within a material while, on the other hand, models

and/or simulations can help in interpreting these same experimental data in terms of the

known elementary interactions in matter. The study of the optical properties is therefore

relevant both for fundamental research in basic science and for the study and characterization

of materials.

In addition, optical properties are important for novel technological applications where the

optical response of a material needs to be engineered for specific purposes. Focusing only

on metals, the study of optical properties is for example relevant for potential plasmonic

devices (e.g. in spectrally-selective coatings [18, 19]), optoelectronics devices (e.g. in ultra thin

films for transparent conductive electrodes [20, 21]), but also for microscopy and optical data

storage based on the magneto-optical Kerr effect of magnetic metallic surfaces [22].

Furthermore, the optical properties of metals, and more in specific their colour (which is

related to the optical properties within the visible range of the electromagnetic spectrum),

play an important role in jewellery and watch industry, decoration and dentistry. For these

applications, in particular for jewellery, the most interesting materials are metallic alloys based

on gold [23] or other precious metals, such as silver, palladium and platinum.

The focus of this thesis is mainly on this last application of the optical properties of metals.

1



Chapter 1. Introduction

1.2 Colours in metals

1.2.1 Elemental metals

Reflectivities of most elemental metals are high and flat for all visible wavelengths [9]. This

means that these materials effectively reflect most of the visible light impinging on their

surface, making them appear shiny and whitish (see aluminum in Fig. 1.1 for an example).

However, there are a few notable exceptions to this behaviour, the most notorious ones being

gold and copper which show a strong characteristic colour due to the presence of a drop in

the reflectivity curve inside the visible range1. As shown in Fig. 1.1, the reflectivity of gold

falls abruptly from around 100% to less than 40% at a frequency corresponding roughly to

2.4 eV (or, equivalently, to a wavelength of 520 nm). Therefore it reflects almost completely

red and yellow light and it absorbs all the higher frequencies of the visible spectrum. This

peculiar feature is at the origin of the red-yellow colour of gold and it is due to the onset of

interband electronic transitions from the occupied 5d bands of gold at that particular energy.

In copper the reflectivity edge is at slightly lower energies (∼ 2.1 eV) so that the yellow light is

also absorbed and thus the colour of copper is red. On the contrary silver appears shiny and

white because the drop in the reflectivity is in the ultraviolet (close to 4 eV) and almost 100 %

of the visible light is reflected.

Figure 1.1 – Reflectance of some elemental metals as a function of the wavelength of light (in
µm) and real samples of pure aluminum, copper and gold.

1A few other elements in their pure metallic form show some degree of colouration. In particular cesium,
osmium and tantalum appear yellowish, bluish and blue-gray, respectively.
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1.2. Colours in metals

1.2.2 Gold alloys

Gold alloys are known to assume a broad spectrum of colours (yellow, red, purple, pink,

blue, white, etc.) and are of particular interest for jewellery applications [24]. Because of the

characteristic behaviour of the reflectivity curve of gold inside the visible spectrum, colours

of gold alloys can be tuned by varying the alloying additions and thus modifying the shape

of the reflectivity curve. Different intrinsic mechanisms exist that are responsible for the

modification of the reflectivity curve of gold. These mechanisms depend not only on the

physical and chemical properties of the alloying element and on its concentration, but also

on the atomic structure of the alloy, and, as we will show below with a few examples, these

influence the final colour of the material in different ways2.

The basis of the most common jewellery and dental alloys is the ternary Au-Ag-Cu system.

As can be seen in Fig. 1.2, a large variety of colours can be produced in this system by simply

varying the ratios of the three constituent elements. Indeed, the drop in the reflectivity

curve of gold at ∼ 2.4 eV is gradually shifted to lower energies if alloyed with copper and

to higher energies if alloyed with silver, giving so a broad range of colours to the Au-Ag-Cu

ternary system [16, 25]. As a consequence, with copper additions to gold the alloy gradually

assumes reddish tints while, with silver additions, it assumes more yellow tints. The similarity

in the physical and chemical properties of the three noble-metals elements allows one to

qualitatively interpret the optical properties of the Au-Ag-Cu alloy as simply rising from the

weighted-average of the electronic structure of the constituents elements, where the weight

is given by the relative atomic concentration. In terms of the band structure, it means that

the position of the occupied d bands with respect to the Fermi level, and thus the onset of

interband electronic transition, is modified by varying the relative concentrations in Au-Ag-Cu.

White gold alloys

Silver, if used in large quantities as shown in Fig. 1.2 in weight percent (wt %), makes the

Au-Ag-Cu alloy white by shifting the reflectivity edge at energies above the end of the visible

spectrum. However, since for high-end jewellery applications high-carat3 alloys are required,

commercial white gold alloys are based on palladium and nickel as bleaching elements [26, 27]

(but because of skin allergies, the use of nickel-based jewellery is restricted in Europe). Indeed,

generally speaking, transition metals are more effective bleachers at smaller concentrations

compared to silver, as shown in Fig. 1.2 for the case of palladium (Au-Pd-Ag system). The

decolourising effect of these elements is produced in a qualitatively different way with respect

to the case of silver. Indeed the reflectivity edge is not shifted but it is instead “flattened” by

lowering the reflectivity in the low-energy part of the visible spectrum. In fact, transition metals

introduce additional d states close to the Fermi level that give rise to new interband transitions

at energies that are smaller compared to the onset of interband transitions in pure gold. In

2In this work we consider only bulk colours of alloys, i.e. that are related to the intrinsic properties of the
material, and not colours due to particular surface treatments (e.g. due to surface oxide layers).

3The carat is a measure of the proportion in weight of gold inside an alloy, expressed as the number of parts of
gold in 24 parts of the alloy. Therefore pure gold is 24 carat while an alloy with, for example 75 wt. % Au, is 18 carat.
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particular, as confirmed both by experiments [28, 29] and first-principles simulations [30],

nickel and palladium are known to introduce so-called virtual bound states [31], i.e. tightly

bound states between the Fermi level and the 5d bands of gold, that increase the absorption

processes at low energies. Instead, the position of the gold 5d bands is left nearly unchanged

by alloying additions of Pd and Ni so that the position of the characteristic absorption edge of

gold is roughly the same while the width of the virtual bound states, and therefore the optical

absorption at low energies, increases as the content of the alloying element increases. For

these systems, the electronic structure of the alloy cannot be simply interpreted as a mixture

of the electronic structure of the constituent elements, as in the case of Au-Ag-Cu, and the

effect of the impurity atoms on the optical properties of the alloy can be understood only with

more complex models (i.e. Friedel [31] and Anderson [32] impurity models).

Figure 1.2 – Ternary plots showing the range of colours of the Au-Ag-Cu (left panel) and of the
Au-Pd-Ag (right panel) systems.

Intermetallic compounds

Special intrinsic colours can be sometimes observed in intermetallic compounds [12, 24, 33].

In contrast with the disordered alloys described above, intermetallic compounds have a very

narrow homogeneity range and are ordered structures with a simple stoichiometric ratio

among the components. Coloured intermetallic compounds usually present highly symmetric

crystal structures (mostly cubic). They display particular electronic band structures that, in

general, do not bear any resemblance with the band structures of their constituent elements.

Because of this, they can show selective absorption of light in particular parts of the visible

range while being highly reflective in the remaining parts, and hence present special intrinsic

colours [12]. The most striking and known example of a coloured intermetallic compound is

AuAl2 which has a strong purple colour (see Fig. 1.3). Because of the presence of a pseudogap

in the density of states [34], this compound strongly absorbs light in the yellow-green-blue

range while it is reflective in the red and violet part of the spectrum, thus resulting in a purple
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1.2. Colours in metals

colour. The compounds AuGa2 and AuIn2, that have the same cubic crystal structure as

AuAl2, are bluish because the dip in reflectivity is shifted to slightly lower energies and is less

pronounced [4].

Since intermetallic compounds can present band structures that are qualitatively different

from their constituent elements, various other intermetallic compounds other than the Cu-

based and Au-based ones can be coloured. Indeed, other known examples are, to name a few,

the yellow PtAl2, blue NiAl, red PdIn, bluish gray NiSi2 and dark blue CoSi2. However the use of

intermetallic compounds in traditional jewellery is severely limited because these are typically

very brittle. Alloying additions of other elements can improve their mechanical properties but

at the cost of a loss in colour.

Figure 1.3 – The intermetallic compound AuAl2, which has the fluorite (CaF4) crystal structure
(right panel), shows a striking purple colour (left panel). Adapted from [1].

Summarizing, we can distinguish three main mechanisms that modify the intrinsic colour

of gold alloys (see Fig. 1.4). In the first one, the reflectivity edge of gold is rigidly shifted so

that different portions of the visible spectrum are reflected (as it happens, for example, in

the Ag-Au system). In the second one, the reflectivity edge is “flattened" while the position

of the edge is left roughly unchanged (Au-Ni, Au-Pd and Au-Pt are typical examples of this

bleaching mechanism). In the third one, new colours are obtained by introducing completely

new features in the reflectivity curve within the visible range (as it can happen in some

intermetallic compounds).
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Chapter 1. Introduction

Figure 1.4 – Reflectivity curves of three example systems illustrating the three main mecha-
nisms that permit to modify the intrinsic colour of gold through alloying additions: Ag-Au [2]
(shift of the reflectivity edge), Au-Pt [3] (“flattening" of the reflectivity edge) and AuX2 inter-
metallics [4] with X = Al, Ga, In (introduction of new features in the reflectivity curve).
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1.3. Previous simulations

1.3 Previous simulations

We now want to briefly discuss some of the relevant studies found in literature about first-

principles simulations of optical properties of both elemental metals and metallic alloys, with

a particular focus on coloured intermetallics based on precious-metal elements (mainly on

gold). If not specified otherwise, the dielectric function is always obtained within the IPA

and using as input the electronic band structure computed at the DFT level with the PBE

functional.

A few systematic studies of the optical properties of elemental metals have been performed.

Already in 1988, Maksimov et al. [35] computed the optical properties, in particular dielectric

function, electron energy loss function and reflectivity, of 15 elemental metals for energies

ranging up to 35 eV whereas, more recently, Werner et al. [36] performed a similar study on 17

elemental metals extending the energy range up to 80 eV.

In the literature there are also a few systematic studies of the optical properties of intermetallic

compounds. In Ref. [37] the authors calculated the optical properties of several intermetallic

compounds, with a particular focus on alkali-noble intermetallics, for new possible candidates

as plasmonic materials. In a similar work, Keast et al. [38] computed the density of states and

dielectric function of gold intermetallics compounds and gold binary alloys. Regarding the

simulation of specific coloured intermetallic compounds, the reflectivity and colour of the

three coloured gold intermetallics AuAl2, AuGa2 and AuIn2 has been simulated in Ref. [34],

while Keast et al. [10] also studied the influence of alloying elements on the reflectivity and

colour of compounds with the Au1−x Ptx Al2 composition, for x = 0,0.5,0.75,1 (similar results

have been obtained by Kecik [39]). The calculated and experimental [40] reflectivity curves

and colours show a good agreement for these compounds and the trends in the colour as a

function of the composition are well reproduced.

First-principles studies performed on the noble-metal alloys Ag-Al [41], Al-Cu [42], Al-Au [14]

and Au-Ni [30] all show an increase in the optical absorption in the infrared region, as also

observed in experiments [43, 44, 14, 29, 41]. This effect produces the typical decrease of the

reflectivity in the low-energy part of the spectrum in metallic alloys and gives the characteristic

bleaching effect in gold alloys, as shown in Fig. 1.4 for Au-Pt.

Finally, the effect of disorder on the optical properties of Au0.5Cu0.5 has been studied by

comparing the dielectric function of the random solid solution, simulated using the supercell

approach, with that of the ordered intermetallic compound [45].

Noble metals

For noble metals, the IPA approach from PBE band structures gives only qualitative agreement

with respect to experiments. The general redshift of the spectra with respect to experiments

is due to the failure of standard DFT approximations (e.g. LDA or GGA) to reproduce the

true band structures of materials (in particular the position of the occupied d bands). This

discrepancy can be corrected using approaches above DFT, such as the GW approximation

from many-body perturbation theory (MBPT). IPA results show the correct features and shape
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but also a redshift of the optical spectra when compared to experiments. By correcting the

DFT band energies at the G0W0 level, a quantitative agreement with respect to experiments is

obtained for the optical spectra of Cu [46] and Ag [47] but not for Au, for which G0W0 gives

very similar results to the PBE ones [48]. Only within the quasi-particle self-consistent GW

(QSGW ) [49, 50] approach the occupied 5d bands of gold are lowered in energy and the

correct colour of gold is reproduced while the inclusion of spin-orbit coupling, both at the

DFT and GW level, does not change significantly the optical spectra [48] (in gold the main

relativistic effects are already taken into account by the scalar-relativistic contribution [51]).

This discrepancy with respect to experiments is due to the deficiency of the PBE functional to

describe correctly the positioning of the 5d bands of gold. In particular the underestimation

of the 5d −6sp interband gap is the main reason why a redshift of the drop in the reflectivity

curve of ∼ 0.4 eV is found compared to experiments. Indeed, the onset of absorption is due to

interband transitions from the 5d bands to the 6sp conduction bands above the Fermi level.

The main transitions occur in the vicinity of the high-symmetry points X and L in the BZ [52].

The drop in the reflectivity curve of gold that gives to the material its characteristic yellow

colour is due to the onset of these interband transitions.

Figure 1.5 – Band structure of bulk gold computed at the DFT-PBE level along high-symmetry
lines of the face-centered cubic (FCC) BZ. The red arrows close to the points X and L of the BZ
schematically show the main 5d −6sp interband transitions that give rise to the characteristic
colour of gold. The Fermi level is set to the zero of energy.

1.4 Outline

The thesis is organized as follows:

• Chapter 2 contains a basic overview of the theoretical methods used in the thesis for

the first-principles calculation of materials properties. Density-functional theory (DFT)
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and time-dependent density-functional theory (TDDFT) for the study of ground-state

properties and excited-states properties, respectively, are briefly reviewed, focusing on

their practical implementation within the framework of the plane-wave pseudopotential

method.

• Chapter 3 contains the theory underlying the first-principles calculation of the optical

properties of materials:

– Section 3.1 and 3.2 give an overview of the macroscopic optical constants accessi-

ble in optical experiments. In particular we show the link between the macroscopic

dielectric function and all the optical constants measurable in optical experiments,

such as the reflectivity, by solving the Maxwell’s equations for a monochromatic

electromagnetic wave propagating inside a dispersive medium.

– Section 3.3 instead shows how the macroscopic dielectric function of a material can

be computed from its underlying microscopic electronic structure, by using linear

response theory within the framework of TDDFT for the estimation of the linear

response function. We then give the explicit expression linking the macroscopic

dielectric function to the linear response function for a periodic crystal while we

consider the simple independent particle approximation (IPA) for the evaluation

of the linear response function.

– Section 3.4 eventually considers the IPA macroscopic dielectric function in the

optical limit. We show that in metals it can be divided in an interband contribution

and an intraband (Drude-like) contribution and we discuss how the two terms

are related one to the other by the f -sum rule and how the non-local part of

pseudopotentials affects the calculation of optical properties.

• Chapter 4 contains a basic description of the theoretical tools necessary in order to

quantify and standardize colour measurements, focusing on trichromatic theory and

CIE colour spaces. We show how the tristimulus values of the CIE-X Y Z colour space

can be computed once the reflectivity of a material within the visible range is known and

how these colour coordinates can be transformed into the more convenient uniform

CIELAB colour space. We then briefly discuss photorealistic rendering, which is instead

useful for the simulation of the actual appearance of real objects in 3D scenes under

realistic conditions.

• Chapter 5 describes in detail the computational approach developed in the thesis for

the practical evaluation of the reflectivity and colour of metals:

– Section 5.1 describes the SIMPLE code developed by us for the computation of the

IPA dielectric function and which implements the Shirley’s interpolation method

for the efficient evaluation of integrals in reciprocal space.

– Section 5.2 describes briefly the workflow designed in order to compute automati-

cally reflectivity and colour of a material from its initial crystal structure.

9



Chapter 1. Introduction

– Section 5.3 instead describes the SSSP protocol developed by us in order to test

pseudopotentials both in terms of precision and performance, and its application

for reliable calculations of the IPA dielectric function with SIMPLE.

• Chapter 6 contains the first-principles results obtained for the systematic study of the

optical properties of 45 elemental metals:

– Section 6.1 shows the convergence studies of the IPA dielectric function with

respect to k-points sampling and spectral broadenings, and gives the relevant

computational parameters used in the simulations.

– Section 6.2 shows the main IPA results obtained for the reflectivity and colour of

several elemental metals, focusing mainly on the comparison with experimental

data for reflectivity and colour, but considering also the Drude plasma frequency

and the actual appearance of the metals (photorealistic rendering).

– Section 6.3 and Section 6.4 discuss the consistency of the simulations through

the use of the f -sum rule and the validity of the empirical Drude model for the

estimation of the optical properties of elemental metals, respectively.

– Section 6.5 instead discusses the effect of the inclusion of the relativistic spin-

orbit coupling and of the neglect of the non-local commutator deriving from the

pseudopotential approximation in the estimation of the IPA optical properties.

• Chapter 7 contains the first-principles results obtained for the study of the optical

properties of binary metallic alloys, in particular focusing on gold-based compounds:

– Section 7.1 briefly discusses the different types of alloys (i.e. intermetallics, solid

solutions and heterogeneous alloys) and the main computational methods used

for the first-principles simulation of these systems. In particular we describe in

some detail the virtual crystal approximation (VCA) and the supercell approach

based on the use of special quasi random structures (SQS) for the study of solid

solutions, and the Bruggeman model for the study of heterogeneous alloys.

– Section 7.2 focuses on the effect on the optical properties of the lowering of the

symmetry in supercell calculations, both due to numerical errors related to the

Shirley’s interpolation method and intrinsic to supercell simulations of alloys. It

contains also the convergence studies of the IPA dielectric function with respect to

k-points sampling and spectral broadenings, and with respect to the supercell size

for SQS simulations of alloys.

– Section 7.3 shows the main IPA results obtained for the reflectivity and colour

of binary intermetallic compounds known to be coloured and of some binary

gold alloys, focusing on the comparison with experimental data available in the

literature.

– Section 7.4 instead shows the comparison of the results for binary gold alloys

among the different computational methods used in the thesis to simulate the
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optical properties of alloys, i.e. the supercell approach based on the use of SQS’s,

the VCA method and the Bruggeman model.

• Chapter 8 contains the conclusions of the thesis.
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2 Electronic-structure theory

Here we give a brief overview of the methods used for the first-principles calculation of the

electronic structure in condensed matter. In particular, we discuss density-functional theory

and time-dependent density-functional theory for the study of ground-state properties and

excited-states properties, respectively. The treatment is by no means exhaustive and only the

concepts most relevant for this thesis are described in some detail.

2.1 Overview of DFT and TDDFT

2.1.1 DFT

Nowadays, the method most widely used to calculate the ground-state properties of a generic

many-body system made of electrons and nuclei interacting through the Coulomb interaction

is density-functional theory (DFT) which was formally developed in the two seminal works

of Hohenberg and Kohn in 1964 [53] and of Kohn and Sham in 1965 [54]. In a nutshell,

according to DFT a fundamental quantity describing a generic system is not only the many-

body wavefunction, as in the standard formulation of quantum mechanics, but instead also

the ground-state electronic density. All the difficulties related to the complex many-body

interactions among electrons are confined inside the exchange-correlation contribution to the

total energy. This term, that is for the time being unknown, can be approximated by models

based on the homogeneous electron gas, such as the local density approximation (LDA) or the

generalized gradient approximation (GGA). In fact, DFT has shown in the last three decades

to be an extremely powerful theory to quantitatively predict ground-state properties of real

materials.

The Hohenberg-Kohn (HK) theorem states that there is a one-to-one correspondence between

ground-state electronic density n(r) and external potential V ext(r). The somehow surprising

result of the HK theorem is that the ground-state density determines the external potential

that gives rise to it. As a consequence, the energy of the system is a functional of the density,

whose minimum is at the ground-state density and provides, in principle, the exact ground-

state energy. The implementation of DFT for numerical simulations is instead based on the
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Chapter 2. Electronic-structure theory

Kohn-Sham (KS) approach. It consists in the use of an auxiliary system of non-interacting

particles that is constructed in order to reproduce the density of the true many-body system.

The basic idea of the approach is to replace the interacting many-body problem with a set

of independent particle problems in presence of a self-consistent effective potential (as in

mean-field methods). From the minimization with respect to the density of the total energy

functional, a set of one-particle Schrödinger equations, called KS equations, is found. The

interacting density can be then be computed by solving the KS equations[
−1

2
∇2 +V ext(r)+V H(r)+V xc(r)

]
ψα(r) = Eαψα(r) (2.1)

with eigenvalues Eα and eigenvectors ψα(r), and density given by

n(r) =∑
α

fα|ψα(r)|2, (2.2)

where fα is the occupation function of the wavefunction ψα(r). The KS equations have to be

solved self-consistently because the effective KS potential V KS(r) = V ext(r)+V H(r)+V xc(r)

entering in the KS Hamiltonian H KS =−1
2∇2 +V KS(r) depends itself on the density.

As said before, V ext(r) is the external potential given by the Coulomb interaction between

electrons and nuclei while V H(r) = ∫
dr′ n(r)

|r−r′| is the Hartree potential and V xc(r) is the unknown

exchange-correlation potential and is defined as the functional derivative of the exchange-

correlation energy with respect to the density. In the local density approximation (LDA) the

exchange-correlation energy is assumed to depend locally on the electronic density and to be

equal to that of an homogeneous electron gas, while in the general gradient approximation

(GGA) a dependence on the gradient of the electronic density is also added.

We note here that the KS theory is constructed to reproduce only the interacting ground-state

density and total energy and no other quantities are in principle correctly computed. For

example, KS wavefunctions and energies do not in general correspond to the quasiparticle

states and energies measured in photoemission experiments.

2.1.2 TDDFT

Time-dependent DFT (TDDFT) is the generalization of DFT to time-dependent problems [55].

It is an exact reformulation of the many-body time-dependent Schrödinger equation for the

calculation of neutral excitations (i.e. when the number of electrons in the system is kept

fixed). The Runge-Gross theorem published in 1984 [55], which plays the same role of the

HK theorem for static DFT, states that there is a one-to-one correspondence between time-

dependent electronic density n(r, t) and time-dependent external potential V ext(r, t)1. As

for the KS approach of static DFT, we then introduce an auxiliary system of non-interacting

1We assume that the time-dependent external perturbation is switched on at a time t = t0 and that the system
is initially at rest in a static potential, so that V ext(r, t ) =V ext(r) at all times t < t0.
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particles that reproduces the time-dependent density of the true many-body system. The

time-dependent density can be found by solving the time-dependent KS equations[
−1

2
∇2 +V ext(r, t )+V H(r, t )+V xc(r, t )

]
ψα(r, t ) = i~

∂ψα(r, t )

∂t
(2.3)

with density given by

n(r, t ) =∑
α

fα(t )|ψα(r, t )|2, (2.4)

where fα(t ) is the time-dependent occupation function of the wavefunction ψα(r, t ). V H(r, t )

and V xc(r, t ) are the time-dependent generalizations of the Hartree and exchange-correlation

potentials defined in static DFT.

2.2 DFT in practice

A common approach used to numerically solve the KS equations in periodic systems is the

plane-wave pseudopotential method. Since it is the method used in this work, we briefly

describe it below.

2.2.1 Pseudopotential approximation

In the pseudopotential approximation, we replace the Coulomb potential due to the nuclei

and the explicit description of the tightly bound core electrons with an effective potential V PS

acting only on the valence electrons. In this way, we avoid to describe the strong oscillations

of the true valence wavefunctions close to the nuclei by replacing them with smooth pseudo

wavefunctions. The pseudopotential approximation therefore assumes that core electrons

do not contribute significantly to chemical bonding and are not substantially changed as a

result of structural modifications, so that they can be safely considered frozen in the atomic

nuclei (frozen core approximation). The price to pay for this computational simplification is

that pseudopotentials are non-local in space, i.e.

V PS(r,r′) =V loc(r)+V nl(r,r′), (2.5)

where we indicate with V loc(r) the local contribution and with V nl(r,r′) the non-local contribu-

tion. First-principles pseudopotentials are constructed from all-electron atomic calculations

with the goal to reproduce as accurately as possible the scattering properties of the true atomic

potential by imposing that atomic all-electron and pseudo wavefunctions are identical after a

chosen core radius and that they have the same atomic eigenenergies.

These types of pseudopotentials are distinguished in three main categories: norm-conserving

(NC) [56], ultrasoft (US) [57] and projector-augmented wave (PAW) [58]. In the construction of
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NC pseudopotentials, the norm of each pseudo wavefunction is imposed to be identical to its

corresponding all-electron wavefunction. The constraint of norm conservation is instead re-

laxed in the US and PAW formalisms so that smoother pseudo wavefunctions can be obtained

but at the expenses of a more complex mathematical formalism.

2.2.2 Plane waves basis set

In periodic systems the KS wavefunctions satisfy Bloch theorem and can be written in the form

ψnk (r) = e i k ·r unk (r ), where n and k are the band index and the crystal wavevector, respectively.

The function unk (r ) is periodic with the periodicity of the lattice, i.e. unk (r +R)=unk (r ) for

each Bravais lattice vector R of the crystal.

The numerical solution of the KS equations in periodic systems using the pseudopotential

method is efficiently obtained by expanding the wavenfunctions in a basis of plane waves as

ψnk(r) =∑
G

e i (k+G)·rcnk(G), (2.6)

where the summation runs over the reciprocal lattice vectors G and {cnk(G)} identifies the

set of Fourier coefficients of ψnk(r). In practice, only a finite number of plane waves can

be included in real numerical simulations and the total number of plane waves used in the

expansion is specified by the condition

|k+G|2
2

< Ec, (2.7)

where Ec, called wavefunction cutoff, is the parameter that controls the extension of the

plane-waves basis and so the accuracy of the simulations.

When expanded in a plane-waves basis set, the KS equation H KS |ψnk〉 = Enk |ψnk〉 is rewritten

in matrix form as a secular equation and eigenvalues and eigenvectors are computed with

efficient iterative diagonalization algorithms. In the non-collinear case where the spin-orbit

coupling is explicitly included in the DFT calculation, n has to be understood as a spinorial

band index and |ψnk〉 as a two-component spinor. Besides, for each matrix element and scalar

product, this implies that we perform both an integration over the space variable r and a

summation over the spin variable.

2.3 Response function in TDDFT

A possible way to solve the time-dependent KS equations of Eq. 2.3 is with time propagation

methods. In principle, this approach gives the exact (i.e. valid at all orders in perturbation

theory) time-dependent density n(r, t) at all times. Here we consider instead the simpler

situation in which the external time-dependent perturbation is small compared to the static

external potential so that linear response theory can be applied [59]. The linear response
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function allows one to calculate the neutral excitations of the system in terms of the solution

of the static KS problem.

The response function is defined as the functional derivative of the density with respect to the

external potential

χ(r,r′, t − t ′) = δn(r, t )

δV ext(r′, t ′)

∣∣∣∣
V ext(r′,t ′)=V ext(r′)

. (2.8)

To calculate the response function in practice, we use the chain rule

χ(r,r′, t − t ′) =
∫

d t1

∫
dr1

δn(r, t )

δV KS(r1, t1)

δV KS(r1, t1)

δV ext(r′, t ′)
. (2.9)

We define

χKS(r,r′, t − t ′) = δn(r, t )

δV KS(r′, t ′)

∣∣∣∣
V KS(r′,t ′)=V KS(r′)

, (2.10)

which is the response function of the non-interacting KS electrons. It can be obtained in

frequency space as a straightforward exercise of time-dependent perturbation theory in terms

of the solutions of the static KS equations (see Eq. 2.1)

χKS(r,r′,ω) = ∑
α,β

(
fα− fβ

) nα,β(r)nβ,α(r′)
ω− (Eβ−Eα)+ iη

, (2.11)

where nα,β(r) = 〈ψα| n̂(r) |ψβ〉 =ψ∗
α(r)ψβ(r). Given that the Hartree and the exchange-correlation

potentials are functional of the density, after applying again the chain rule and moving to

frequency space we obtain a Dyson-like equation for the first-order response function in

TDDFT [60]

χ(r,r′,ω) =χKS(r,r′,ω)+
∫

dr1

∫
dr2χ

KS(r,r1,ω)

[
1

|r1 − r2|
+ f xc(r1,r2,ω)

]
χ(r2,r′,ω), (2.12)

where we define the exchange-correlation kernel as

f xc(r1,r2, t1 − t2) = δV xc(r1, t1)

δn(r2, t2)

∣∣∣∣
n(r2,t2)=n(r2)

. (2.13)

All many-body effects due to the interaction among electrons are in principle taken into ac-

count by the unknown exchange-correlation kernel.

We notice here that TDDFT is a theory valid only for longitudinal perturbations that couple

scalar potentials to the density and not for transverse perturbations, such as photons, that

instead couple vector potentials to the current density. Therefore, the extension of TDDFT to
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currents, i.e. time-dependent current density-functional theory (TD-CDFT), should in princi-

ple be used in order to deal with transverse perturbations [61, 62]. However, the equivalence

of longitudinal and transverse approach in the optical limit [63, 64, 65] makes the TDDFT

treatment described up to now valid also for the study of optical properties.
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3 Optical properties in linear response

In this Chapter, we first show the expressions that link measurable optical constants, such

as the reflectivity, to the material parameters that characterize the medium, in particular to

the macroscopic dielectric function. These expressions are found by solving the Maxwell’s

equations for electromagnetic waves propagating inside the medium. Subsequently we cal-

culate the charge density induced in the system by the external perturbation in terms of the

electronic structure of the material by using linear response theory within the framework of

TDDFT. The induced charge density is then connected to the macroscopic dielectric function

by performing a macroscopic average appropriate for periodic systems.

Since we are only interested in the optical properties of metals we calculate the response

function within the independent particle approximation, which corresponds to neglect ef-

fects related to the electron-hole interaction (excitonic effects) as well as those related to the

rapidly varying microscopic electric fields inside the material (local field effects). Since the

momentum of optical photon is negligible, we can consider the optical limit, i.e. the limit

of zero transferred momentum, of the expression for the macroscopic dielectric function in

the independent particle approximation. In metals we show that the macroscopic dielectric

function is conveniently divided in an interband and in an intraband contribution. Eventually

we discuss how the two contributions are related one to the other by the f -sum rule and how

the pseudopotential approximation affects the calculation of the optical properties.

The theoretical treatments discussed in this Chapter can be found in several textbooks, in

particular we cite Refs. [66, 67, 68].

3.1 Optical measurements

Typical optical measurements give access to optical constants, such as absorption coefficient

and reflectivity, as a function of the wavelength of light. These quantities can be assumed

to be macroscopic (i.e. that vary on a macroscopic scale) because the spatial resolution of

optical experiments is related to the wavelength of optical photons, which is of the order of

hundreds of nanometers. Solids can then be approximated as continuous when studying

optical experiments.
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Chapter 3. Optical properties in linear response

In practice, the reflectivity can be for example measured1 with a spectrophotometer, where

monochromatic light is shined onto a sample and the fraction of light that is reflected is then

assessed. From more complex optical measurements such as ellipsometry, where the reflectiv-

ity of polarized light at oblique angles of incidence is measured, it is possible to indirectly have

access also to more “fundamental" material properties, such as the full macroscopic dielectric

function, which completely describe the optical properties of the material. From the point of

view of colour perception, instead, it is the human eye the optical instrument that “measures"

the incoming light and transforms it in bioelectrical signals that are sent to the brain and that

allows us to “see" the colours.

3.2 Maxwell’s equations

3.2.1 Microscopic equations

The physical phenomenon that we have to describe in order to compute by first-principles

the optical properties of a material is the interaction of light with matter from a microscopic

point of view. The interaction between electromagnetic fields and matter is described by the

microscopic Maxwell’s equations, which are

∇·Etot(r, t ) = 4πρtot(r, t ) (3.1)

∇×Etot(r, t ) =−1

c

∂Btot(r, t )

∂t
(3.2)

∇·Btot(r, t ) = 0 (3.3)

∇×Btot(r, t ) = 4π

c
Jtot(r, t )+ 1

c

∂Etot(r, t )

∂t
. (3.4)

In Maxwell’s equations, Etot(r, t ) and Btot(r, t ) are the total microscopic electric and magnetic

fields, respectively, while Jtot(r, t) and ρtot(r, t) are the total current and charge densities,

respectively. We divide current and charge densities in external and induced contributions,

Jtot(r, t ) = Jext(r, t )+ Jind(r, t ) (3.5)

ρtot(r, t ) = ρext(r, t )+ρind(r, t ), (3.6)

and we do the same for electric and magnetic fields. Local charge conservation follows directly

from Maxwell’s equations (combining Eq. 3.1 and Eq. 3.4) and is expressed as a continuity

equation:

∇· Jtot(r, t )+ ∂ρtot(r, t )

∂t
= 0. (3.7)

1Strictly speaking it is the reflectance and not the reflectivity that is measured in experiments. However, in the
limit of thick opaque materials, reflectivity and reflectance are equivalent, but the two values can be substantially
different when performing optical experiments on, for example, thin films.
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3.2. Maxwell’s equations

3.2.2 Macroscopic equations

As explained at the beginning of this Chapter, typical optical experiments measure quantities

that vary on a macroscopic scale. A macroscopic version of the Maxwell’s equations can

be derived from the microscopic ones written above and that retains the same form of the

microscopic version. Macroscopic quantities are obtained by an appropriate spatial average

of the corresponding microscopic quantities over distances large compared to the dimension

of the primitive cell but small compared to the wavelength of light (the actual average proce-

dure used for periodic crystals will be discussed later in Section 3.3.2 and in Appendix A). To

distinguish a macroscopic quantity from its microscopic counterpart, we use the notation for

which we add a capital letter M as a subscript for the given quantity (e.g. ρtot(r, t ) −→ ρtot
M (r, t )

for the total charge density).

It is common practice to write the macroscopic Maxwell’s equations by introducing a polariza-

tion field that is defined by the equation

Jind
M (r, t ) = ∂P(r, t )

∂t
. (3.8)

Because of the continuity equation (see Eq. 3.7) it also follows that ρind
M (r, t ) =−∇·P(r, t ) and

thus we write the external electric field2 in terms of this polarization field as

Eext
M (r, t ) = Etot

M (r, t )+4πP(r, t ). (3.9)

Using Eq. 3.8 and Eq. 3.9 and neglecting any magnetic effect, the macroscopic Maxwell’s

equations obtained from the microscopic ones through the appropriate average procedure3

are

∇·Eext
M (r, t ) = 4πρext

M (r, t ) (3.10)

∇×Etot
M (r, t ) =−1

c

∂Btot
M (r, t )

∂t
(3.11)

∇·Btot
M (r, t ) = 0 (3.12)

∇×Btot
M (r, t ) = 4π

c
Jext

M (r, t )+ 1

c

∂Eext
M (r, t )

∂t
, (3.13)

which are written in terms of the external charge and current densities.

2In standard textbooks on electromagnetism, the external electric field is usually called displacement field and
is indicated with the symbol D(r, t ).

3We only assume that the derivative of the macroscopic average is equal to the macroscopic average of the
derivative. This property holds for the average procedure used in Section 3.3.2 for periodic crystals and described
in Appendix A.
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Chapter 3. Optical properties in linear response

3.2.3 Electromagnetic waves and optical constants

In order to describe the interaction of light with matter, no external sources are present,

that is ρext
M (r, t) = 0 and Jext

M (r, t) = 0 in Maxwell’s equations. For simplicity, we consider the

experimental situation in which light impinging on the material is a monochromatic wave

with wavevector q and frequencyω and we assume that the system responds, macroscopically,

with the same behaviour as the external perturbation, so that the solution for the total electric

field can be written as4

Etot
M (r, t ) = Etot

M e i (q̃q̂·r−ωt ), (3.14)

where q̂ is a unit vector giving the direction of propagation of the wave and Etot
M is the ampli-

tude of the field. We allow the wavevector amplitude q̃ to be complex in order to describe

dissipation mechanisms inside the material.

In linear response, the total and external macroscopic electric fields are assumed to be pro-

portional to each other and the linear coefficient linking the two is the complex macroscopic

dielectric function. It is defined (for a monochromatic wave with wavevector q and frequency

ω) by the equation

Eext
M = εMEtot

M . (3.15)

The macroscopic dielectric function describes the screening induced inside a material when

an external perturbation is applied in order to reduce the total internal electric field and it is

the principal material parameter characterizing the propagation of light inside a medium5.

From Eq. 3.10 in the absence of external charges, we immediately notice that the only possible

solutions are transverse plane-waves, because q̂ ·Eext
M = q̂ ·Etot

M = 0. Taking the rotor of Eq. 3.11

and inserting Eq. 3.13 in the resulting right-hand side, we obtain the following wave equation

for light propagating inside an energy-absorbing material6

∇2Etot
M (r, t ) = εM

c2

∂2Etot
M (r, t )

∂t 2 , (3.16)

4We work with complex quantities for convenience in the mathematical manipulations. It is understood that
the true physical quantities are obtained by taking the real part of the corresponding complex quantities (e.g. the
true total electric field is given by ℜ[Etot

M (r, t )], where ℜ indicates the real part).
5Instead of the macroscopic dielectric function we could equivalently work with the macroscopic optical

conductivity, which is defined (always for a monochromatic wave with wavevector q and frequencyω) as the linear
coefficient linking the total electric field to the induced current density

Jind
M =σMEtot

M .

From Eq. 3.9 and Eq. 3.8 it follows that the macroscopic optical conductivity is related to the macroscopic dielectric
function by the equation

σM = i
ω

4π

(
1−εM

)
.

6We have made use of the general vector relation: ∇×∇×Etot
M (r, t ) =∇(∇·Etot

M (r, t ))−∇2Etot
M (r, t ).
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3.2. Maxwell’s equations

which leads to the following condition for the complex wavevector amplitude inside the

material:

q̃2 = ω2

c2 εM. (3.17)

It is convenient to define also a complex refractive index ñ = n+i k as ñ ≡ cq̃/ω or, equivalently,

ñ2 ≡ εM. (3.18)

The real part n is what it is commonly known as the refractive index while the imaginary part k

is the so-called extinction coefficient. We can then write the solution for the total electric field

as a damped wave for which n is related to the dispersion of the wave and k to the damping:

Etot
M (r, t ) = Etot

M e i (ωc nq̂·r−ωt )e−
ω
c kq̂·r. (3.19)

Having found the solution for an electromagnetic wave propagating inside a material, we can

now eventually find the explicit expressions for the macroscopic quantities measurable in

optical experiments in terms of the macroscopic dielectric function. The decrease in intensity

of the propagating wave inside the medium is described by the absorption coefficientα, which

is defined as

α=−1

I

d I

dr
, (3.20)

where I is the intensity of the wave and it is simply the modulus squared of the total electric

field. Because of Eq. 3.19 and Eq. 3.18 we get that7

α= 2ωk

c
= ωℑ[εM]

nc
. (3.21)

Similarly we can also obtain the reflectivity R , i.e. the ratio between the reflected and incident

intensities, from the Fresnel equations

R = (n −1)2 +k2

(n +1)2 +k2
, (3.22)

that is valid at normal incidence and at a vacuum-material interface (see for example Ref. [69]).

As can be seen from Eqs. 3.18, 3.21 and 3.22, the knowledge of the macroscopic dielectric

function gives access to all the optical constants measurable by optical experiments. The

7For simplicity, we assume that the absorption coefficient is measured along the direction of propagation of the
wave so that q̂ ∥ r.
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Chapter 3. Optical properties in linear response

main purpose of the following Section is to show how to determine εM from the underlying

electronic structure of a material using linear response theory.

3.3 Response function

We now show how the macroscopic dielectric function of a material is linked to its underlying

electronic structure. Indeed, from a theoretical point of view, the macroscopic dielectric

function is the natural quantity to consider for the description of elementary excitations of a

material induced by photons.

For this purpose we need to find the induced response of a material to the external electro-

magnetic perturbation produced by the incoming light starting from the knowledge of the

electronic structure of the material. From a microscopic point of view, a solid is an ensemble

of electrons and nuclei interacting through the Coulomb interaction and governed by the

law of quantum mechanics. The electromagnetic perturbation is typically weak compared

to the electrostatic interactions due to the atomic nuclei (e.g. valid for sunlight but not for

very intense lasers) so that the response of the system can be expanded into a Taylor series

with respect to the perturbation. In this work we consider only the first order response, i.e. we

assume that the response is proportional to the perturbation. In this regime, called of linear

response, the linear coefficient linking the response to the perturbation is called response

function and it has the important property that it depends only on the unperturbed system

and not on the perturbation itself.

3.3.1 Linear-response theory

We consider a system of M interacting electrons at zero temperature described by the time-

independent many-body Hamiltonian Ĥ (M) and satisfying the static Schrödinger equation

Ĥ (M) |Ψs〉 = E (M)
s |Ψs〉 , (3.23)

where E (M)
s and |Ψs〉 are the M-electron eigenvalues and eigenstates of the system, respectively.

Let’s then suppose to switch on a generic external time-dependent perturbation so that the

complete time-dependent Hamiltonian of the system becomes Ĥ (M)(t) = Ĥ (M) + Ĥ (M)
int (t).

The additional term Ĥ (M)
int (t ) is the time-dependent interaction Hamiltonian rising from the

perturbation. For convenience, we consider only longitudinal perturbing fields so that we are

allowed to write an external perturbing electric field as the gradient of a scalar potential

Eext(r, t ) =−∇V ext(r, t ). (3.24)
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3.3. Response function

In this case the interaction Hamiltonian Ĥ (M)
int (t ) is

Ĥ (M)
int (t ) =

∫
dr n̂(r)δV ext(r, t ) (3.25)

in which the number density operator is defined as

n̂(r) =
M∑

i=1
δ(r− r̂i ) (3.26)

and where the external potential

V ext(r, t ) =V ext(r)+δV ext(r, t ) (3.27)

is given by the sum of the static Coulomb electron-nucleus interaction V ext(r) and the time-

dependent external perturbation δV ext(r, t). The fact that the external perturbation is weak

with respect to the electrostatic interactions due to the atomic nuclei means that |δV ext|¿
|V ext| in every point inside the material and at every time.

As shown by Eq. 3.25, longitudinal fields have the clear advantage that they are coupled

with the density of the system, which is the fundamental variable in DFT and TDDFT (see

Chapter 2). Nonetheless, it is important to notice that a theoretical treatment restricted to deal

only with longitudinal fields is in principle not correct for an electromagnetic perturbation

because photons are a transverse perturbation (indeed the electric field is perpendicular

to the direction of propagation E⊥q̂, as shown in Section 3.2). The longitudinal approach

is instead correct in the description of electron energy loss spectroscopy (EELS) where the

perturbation is given by a beam of electrons which, indeed, produces longitudinal fields.

However, the longitudinal and transverse approaches are equivalent in the optical limit q → 0.

In this case the two types of perturbation give the same response [63, 64, 65] so that optical

and EELS experiments furnish the same physical information. The equivalence of the two

approaches follows from the gauge invariance between length gauge and velocity gauge due

to the continuity equation (see Eq. 3.7).

In linear response theory, i.e. assuming that the response of the system is linear in the

perturbation, the change in density δn(r, t ) due to the external perturbation is given by [68]

δn(r, t ) =
∫ ∞

−∞
d t ′

∫
dr′χ(r,r′, t − t ′)δV ext(r′, t ′). (3.28)

The function χ(r,r′, t − t ′) is called density-density response function and it is formally defined

as

χ(r,r′, t − t ′) ≡− i

~
Θ(t − t ′)〈Ψ0| [n̂(r, t − t ′), n̂(r)] |Ψ0〉 , (3.29)
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Chapter 3. Optical properties in linear response

where Θ(t) is the Heaviside step function and ensures causality (indeed χ(r,r′, t − t ′) = 0 if

t < t ′), n̂(r, t ) ≡ e
i
~ Ĥ (M)t n̂(r)e−

i
~ Ĥ (M)t is the density operator in the Heisenberg picture and |Ψ0〉

is the many-body ground-state wavefunction. Within this formalism the induced charge

density appearing in the microscopic Maxwell’s equations is ρind(r, t ) = (−e)δn(r, t ).

Because of the translational invariance of the response function with respect to time, if we use

the convolution theorem for the time integration we get that in frequency space

δn(r,ω) =
∫

dr′χ(r,r′,ω)δV ext(r′,ω). (3.30)

Starting from Eq. 3.29, the response function can be easily written in terms of the solutions of

the M-electron many-body Schrödinger equation given in Eq. 3.23

χ(r,r′,ω) = ∑
s 6=0

[
〈Ψ0| n̂(r) |Ψs〉〈Ψs | n̂(r′) |Ψ0〉

ω− (E (M)
s −E (M)

0 )+ iη
− 〈Ψs | n̂(r) |Ψ0〉〈Ψ0| n̂(r′) |Ψs〉

ω+ (E (M)
s −E (M)

0 )+ iη

]
, (3.31)

in which η is a broadening introduced to perform the adiabatic switching-on of the perturba-

tion [68]. The expression above shows that the poles of the response functions correspond

to the excitation energies of the system. However it is not useful for numerical simulations

because we do not know how to calculate in practice the many-body wavefunctions and

their corresponding eigenenergies. As a consequence we need alternative ways to compute

the response function. A possible approach, as described in Section 2.3, is to calculate the

response function within the framework of TDDFT.

3.3.2 Microscopic-macroscopic connection

From now on, we focus on the study of crystals which are periodic systems having the discrete

periodicity of the lattice. To effectively exploit this symmetry it is convenient to perform a

Fourier transform and to work in reciprocal space. We define the spatial Fourier transform of

χ(r,r′,ω) as

χ(q,q′,ω) = 1

V

∫
dr e−i q·r

∫
dr′ e i q·r′χ(r,r′,ω) (3.32)

where V is the volume of the crystal. In periodic crystals the density-density response function

has the periodicity of the lattice, i.e. χ(r+R,r′+R,ω) =χ(r,r′,ω) for each Bravais lattice vector

R. This means that the Fourier transform χ(q,q′,ω) is different from zero only if q and q′

differ by a reciprocal lattice vector [68]. For convenience we use the notation χG,G′(q,ω) ≡
χ(q+G,q+G′,ω) so that the Fourier expansion of the response function is

χ(r,r′,ω) = 1

V

∑
q∈BZ

∑
G,G′

e i (q+G)·rχG,G′(q,ω)e−i (q+G′)·r′ , (3.33)
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3.3. Response function

and we can write Eq. 3.30 in reciprocal space as

δn(q+G) =∑
G′
χG,G′(q,ω)δV ext(q+G′,ω). (3.34)

In terms of scalar potentials (see Eq. 3.24) the macroscopic dielectric function defined in

Eq. 3.15 is given by

εM(q,ω) ≡ δV ext
M (q,ω)

δV tot
M (q,ω)

, (3.35)

where we now explicitly write the dependence on the wavevector q and the frequency ω.

To link the macroscopic dielectric function to the response function it is convenient to first

introduce a microscopic (inverse) dielectric function ε−1(r,r′, t ) that links total and external

microscopic potentials

δV tot(r, t ) =
∫ ∞

−∞
d t ′

∫
dr′ε−1(r,r′, t − t ′)δV ext(r′, t ′). (3.36)

As done in Maxwell’s equations for the electric field, the total microscopic potential is divided

in an external and an induced part. The induced potential seen by a test charge is the Hartree

potential produced by the change in density due to the external perturbation [70] so that

δV tot(r, t ) = δV ext(r, t )+δV ind(r, t ) = δV ext(r, t )+
∫

dr′
δn(r′, t )

|r− r′| . (3.37)

Moving to frequency space and inserting the expression of Eq. 3.30 for the change in density

in Eq. 3.37, we obtain the following expression for the microscopic dielectric function defined

in Eq. 3.36

ε−1(r,r′,ω) = δ(r− r′)+
∫

dr′′
χ(r′′,r′,ω)

|r− r′′| , (3.38)

which, in reciprocal space, becomes

ε−1
G,G′(q,ω) = δG,G′ + 4π

|q+G|2χG,G′(q,ω). (3.39)

In order to calculate the macroscopic dielectric function from the corresponding micro-

scopic dielectric function, we need to use an appropriate average procedure, as described

in Appendix A for periodic systems, that smooths out the rapidly varying fluctuations of the

microscopic quantities. For monochromatic optical photons of wavevector q and frequency

ω, the external perturbation is already macroscopic and δV ext(q+G,ω) = δV ext(q+0,ω)δG,0.
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From Eq. 3.36 we have that in reciprocal space

δV tot(q+G,ω) =∑
G′
ε−1

G,G′(q,ω)δV ext(q+G′,ω) (3.40)

= ε−1
G,0(q,ω)δV ext(q+0,ω) (3.41)

As shown in Appendix A, for small q the macroscopic average of a microscopic quantity is

simply given by the Fourier component G = 0 of the corresponding microscopic quantity. Thus,

if we consider the G = 0 component of the total potential, δV tot(q+0,ω) = ε−1
0,0(q,ω)δV ext(q+

0,ω). In conclusion, because of Eq. 3.35, the macroscopic dielectric function is linked to the

microscopic dielectric function and therefore to the response function through the relation

εM(q,ω) = 1

ε−1
0,0(q,ω)

= 1

1+ 4π
|q|2χ0,0(q,ω)

. (3.42)

3.3.3 Independent particle approximation in TDDFT

In order to evaluate εM(q,ω) the next step required is to find an expression for χ0,0(q,ω)

that can be used for first-principles simulations. There are two main rigorous approaches

to calculate the response function commonly used for the first-principles simulations of

materials: TDDFT and MBPT [71]. Here we only discuss the approach based on TDDFT and

linear-response theory, in particular applied to the study of periodic systems. In Section 2.3

we have shown that the response function in TDDFT satisfies a Dyson-like equation written in

terms of the non-interacting KS response function (see Eq. 2.12). Since we are dealing with

periodic crystals, we again move to reciprocal space so that we rewrite Eq. 2.12 in a matrix

form where the basis functions are plane waves

χG,G′(q,ω) =χKS
G,G′(q,ω)+ ∑

G1,G2

χKS
G,G′

[
4π

|q+G1|2
δG1,G2 + f xc

G1,G2
(q,ω)

]
χG2,G′(q,ω). (3.43)

In the independent particle approximation (IPA) the exchange-correlation kernel f xc is as-

sumed to be zero and only the long-range contribution of the Coulomb interaction G1 = 0 is

considered in Eq. 3.43. The terms with G1 > 0 take into account the effects due to the micro-

scopic oscillations of the total potential (called local field effects), which in elemental metals

are completely negligible (e.g. see Ref. [72] for the case of elemental copper) while in alloys

they can affect the intensity of the optical absorption, especially in strongly ionic compounds

(see Ref. [73] for a discussion on alkali-noble intermetallics), but in general they do not modify

the main spectral features of the material (such as position of the onset of absorption and/or

of the main peaks/valleys in the spectra). Furthermore, in metals we can also safely neglect

static electron-hole interactions because they are screened by the conduction electrons, so

that f xc = 0 is a reasonable approximation (only dynamical excitonic effects can possibly affect

the intensity of the optical absorption spectra in metals [74]). The main inaccuracies of the IPA
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approximation for the first-principles calculation of the optical properties of metals are due to

the errors introduced in the evaluation of χKS
G,G′(q,ω) by the use of the PBE electronic structure.

As already mentioned in Section 1.3, improvements in the accuracy of the band structures can

be obtained by computing the quasi-particle corrections on top of the PBE results (typically

at the GW level [75, 71, 76] of MBPT), albeit at a largely increased computational cost. On

the other hand, in finite-gap systems, where the electron-hole interaction gives in general an

important contribution to the optical properties, the exchange-correlation kernel needs to be

properly included when solving Eq. 3.438.

Within the IPA we can invert Eq. 3.43 and write explicitly the head (i.e. the matrix element

G = G′ = 0) of the IPA response function, that we indicate as χIPA
G,G′(q,ω), as

χIPA
0,0 (q,ω) =

χKS
0,0(q,ω)

1− 4π
|q|2χ

KS
0,0(q,ω)

. (3.44)

Thus, according to Eq. 3.42, the macroscopic dielectric function in the IPA is given by

εIPA
M (q,ω) = 1− 4π

|q|2χ
KS
0,0(q,ω). (3.45)

From Eq. 2.11 transformed into reciprocal space we find that the KS response function for

Bloch states is

χKS
G,G′(q,ω) = 1

V

∑
k,k′

∑
n,n′

(
fnk − fn′k′

) 〈ψnk|e−i (q+G)·r |ψn′k′〉〈ψn′k′ |e i (q+G′)·r |ψnk〉
ω− (En′k′ −Enk)+ iη

(3.46)

= 1

V

∑
k

∑
n,n′

(
fnk − fn′k+q

) 〈ψnk|e−i (q+G)·r |ψn′k+q〉〈ψn′k+q|e i (q+G′)·r |ψnk〉
ω− (En′k+q −Enk)+ iη

,

(3.47)

where the last step follows by noticing that the matrix elements entering in Eq. 3.46 are non

zero only if k′ = k+q because of the conservation of crystal momentum [77]. Unless specified

otherwise, the summations over the bands (with indices n and n′ in Eq. 3.46) are over all

occupied and unoccupied bands. Finally, we are able to write the explicit expression of the

frequency- and wavevector-dependent IPA dielectric function of Eq. 3.45:

εIPA
M (q,ω) = 1− 4π

|q|2
1

V

∑
k

∑
n,n′

(
fnk − fn′k+q

) | 〈ψn′k+q|e i q·r |ψnk〉 |2
ω− (En′k+q −Enk)+ iη

. (3.48)

8Alternatively, within the framework of MBPT, the electron-hole interaction is taken into account by solving the
Bethe-Salpeter equation (BSE) [64], which, as of today, it is the method of choice for the calculation of the optical
properties of semiconductors and insulators.
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3.4 Optical limit

Since we are interested in the optical properties of solids, we need to study the optical limit,

q → 0, of Eq. 3.48. Indeed, the momentum of optical photons (∼ 10−3 −10−4 Å−1) can be safely

assumed negligible compared to the size of a crystal BZ (∼ 1 Å−1). We note that εIPA
M (q,ω),

as given in Eq. 3.48, is not defined for q = 0 because of the diverging term 1/|q|2.Therefore,

we need to explicitly study the q → 0 limit by expanding εIPA
M (q,ω) in a Taylor series around

q = 0. In general the macroscopic dielectric function depends on the direction q̂ = q/|q| of the

perturbing electric field, but for crystals with cubic symmetry it is the same in every direction.

From this point on, we simplify the notation and drop the subscript M and superscript IPA

in εIPA
M (q,ω). If not specified otherwise, in the following we always deal with the macroscopic

dielectric function within the IPA.

To calculate the optical limit, we first expand the matrix elements to first order in q [66]:

〈ψn′k+q|e i q·r |ψnk〉
q→0' δn′,n + (1−δn′,n)i q · 〈ψn′k|r |ψnk〉+O(q2) (3.49)

At this point it is convenient to divide the IPA dielectric function into two parts by splitting the

double summation over the bands in an interband contribution coming from different bands

(n′ 6= n) and in an intraband contribution coming from the same band (n′ = n):

ε(q̂,ω) = εinter(q̂,ω)+εintra(q̂,ω). (3.50)

Because of the term ( fnk − fn′k+q), only transitions between occupied and unoccupied bands

give non-vanishing contributions to the interband contribution. Regarding the intraband

term instead, only transitions within partially-filled bands are non-vanishing. It is clear that in

insulating crystals, i.e. having a finite band gap, the intraband contribution is always zero at

zero temperature.

In the following we give the explicit expressions in the optical limit of the interband and

intraband contributions to the IPA dielectric function that will be used in the thesis for the

first-principles simulation of the optical properties of metals.

3.4.1 Interband contribution

As shown in Eq. 3.49, the square modulus of the matrix element in the interband case (n′ 6=
n) gives a contribution proportional to |q|2 that removes the 1/|q|2 divergence in Eq. 3.48.

However, the position operator is ill-defined in periodic boundary conditions. Hence we use

the equivalent expression

〈ψn′k|r |ψnk〉 =
〈ψn′k| [r, H KS] |ψnk〉

Enk −En′k
. (3.51)
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3.4. Optical limit

From Eq. 3.48, Eq. 3.49 and Eq. 3.51, it follows that the interband contribution to the dielectric

function in the optical limit is

εinter(q̂,ω) = 1− 4π

V

∑
k

∑
n,n′

n 6=n′

| 〈ψn′k| q̂ ·v |ψnk〉 |2
(En′k −Enk)2

fnk − fn′k

ω− (En′k −Enk)+ iη
, (3.52)

by recalling that the velocity operator is given by v ≡ dr/d t = −i [r, H KS]. The infinitesimal

broadening η is not set to zero but it is used, in practice, as an empirical broadening with the

purpose to account for scattering processes, always present in real materials, and/or finite

experimental resolution.

Eq. 3.52 shows that the interband contribution to the dielectric function is a sum of indepen-

dent vertical transitions between the pairs of all possible occupied and unoccupied KS states

weighted by the matrix elements of the velocity operator.

3.4.2 Intraband contribution

The derivation of the expression for the intraband contribution to the IPA dielectric function is

more tedious and it is given in Appendix B. The final result is that the intraband contribution

has the same form as in the simple Drude model, that is

εintra
1 (q̂,ω) =−ω

2
D(q̂)

ω2 , (3.53)

where the IPA Drude plasma frequency is defined as

ω2
D(q̂) = 4π

V

∑
k

∑
n

fnk
∂2Enk

∂k2
α

(3.54)

= 4π

V

∑
k

∑
n

(
− ∂ f

∂Enk

)∣∣∣∣∂Enk

∂kα

∣∣∣∣2

(3.55)

Within the IPA approach ω2
D(q̂) is not an empirical parameter as in the Drude model but it is

derived from the electronic structure of the material, i.e. by first principles. To obtain Eq. 3.55

from 3.54, we have made use of the Green’s theorem for periodic functions since En(k) is
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Chapter 3. Optical properties in linear response

periodic in reciprocal space9 [78]:∫
dk f (Enk)

∂2Enk

∂k2
α

=
∫

dk
(
∂Enk

∂kα

)2 (
− ∂ f

∂Enk

)
. (3.56)

Moreover, because of Helmann-Feynman theorem, the gradient of the bands can be rewritten

as the expectation value of the velocity operator, i.e.

∂Enk

∂kα
= 〈ψnk|vα |ψnk〉 . (3.57)

At zero temperature, −∂ f /∂E = δ(E −EF), where EF is the Fermi level, and the IPA Drude

plasma frequency is proportional to the integral over the Fermi surface of the band velocities.

No dissipation is included in this treatment (e.g. due to scattering with phonons, impurities

and electrons) and therefore the imaginary part of the dielectric function, also called optical

absorption, is non vanishing only at ω= 0. Therefore, in order to include absorption also at

non-zero frequencies, we reintroduce a dissipation term, given by the empirical broadening γ,

in the same way as in the Drude model:

εintra(q̂,ω) =− ω2
D(q̂)

ω(ω+ iγ)
=− ω2

D(q̂)

ω2 +γ2 + i
ω2

D(q̂)γ

ω(ω2 +γ2)
. (3.58)

The intraband contribution to the dielectric function is actually a ground-state property

because it depends only on the occupied states [79, 80] as it is evident from Eq. 3.54 and it

is related to the inertia of the conduction electrons. The interband contribution is instead a

linear response property and requires the knowledge of excited states (see Eq. 3.52).

3.4.3 Drude plasma frequency

We show here how the IPA Drude plasma frequency, as given in Eq. 3.54, is linked to the

classical Drude plasma frequency ω2
D of the Drude model in which the conduction electrons

are simply modelled as a classical gas of non-interacting free electrons10. From perturbation

9 In order to apply Green’s theorem we replace the discrete summation over the BZ in Eq. 3.54 with an integral.
Infact, in the thermodynamic limit, discrete summations over the BZ can be transformed into integrals according
to the relation

1

V

∑
q
−→

∫
BZ

dq

(2π)3
.

10With the term “non-interacting” we mean that the electron-electron interaction is neglected while with the
term “free” we mean that the electron-ion interaction is also neglected.
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3.4. Optical limit

theory we know that the curvature of the bands can be expanded as [81]

∂2Enk

∂k2
α

= 1+2
∑
n′

n′ 6=n

| 〈ψn′k|vα |ψnk〉 |2
Enk −En′k

. (3.59)

We underline here that the equation above is not exact if the potential entering in the KS

Hamiltonian is non-local. It is correct only if we assume that the contribution coming from

the double commutator of the non-local part of the potential with the position operator is

negligible. The generalization of Eq. 3.59 for the curvature of Enk in presence of a non-local

potential can be found in Ref. [81].

By inserting Eq. 3.59 in Eq. 3.54 we get that

ω2
D(q̂) = 4π

V

∑
k

∑
n

fnk +
8π

V

∑
k

∑
n,n′

n′ 6=n

| 〈ψn′k| q̂ ·v |ψnk〉 |2
Enk −En′k

fnk (3.60)

=ω2
D − 8π

V

∑
k

∑
n,n′

n<n′

| 〈ψn′k| q̂ ·v |ψnk〉 |2
En′k −Enk

( fnk − fn′k) (3.61)

where ω2
D = 4πn and n = 1/V

∑
k,n fnk is the total electronic density11. Since n < n′, it is clear

that the summation in the second term of the right-hand side of Eq. 3.61 gives a positive

contribution and thus the IPA Drude plasma frequency is always smaller than the classical

one. As we will see later, this behaviour is closely related to the f -sum rule and has practical

consequences in the simulations.

It is convenient to define a classical Drude plasma frequency of the valence-conduction

electrons only, as it is done in the Drude model where the electronic density is estimated from

the nominal number of valence electrons Z (nval = Z /V ). Because fully occupied bands do

not contribute to Eq. 3.54, the summation over all the occupied and empty bands n can be

equivalently performed starting from the first valence-conduction band, i.e. excluding the

low-lying bands due to the core electrons. From Eq. 3.54 we have that

ω2
D(q̂) =ω2

D,val −
8π

V

∑
k

∑′
nv ,n′

nv<n′

| 〈ψn′k| q̂ ·v |ψnv k〉 |2
En′k −Env k

( fnv k − fn′k). (3.62)

where, analogously to Eq. 3.61, ω2
D,val = 4πnval and nval = 1/V

∑′
k,nv

fnv k is the density of the

valence-conduction electrons. With the notation
∑′ it is understood that the summation over

the new band index nv is performed over all bands but excluding the core bands.

Eq. 3.62 gives the mathematical link between the IPA Drude plasma frequency ωD(q̂) and the

classical Drude plasma frequency ωD,val estimated from the Drude model.

11In S.I. units ω2
D = e2n

mε0
where ε0 is the permittivity of vacuum and m is the mass of the electron.
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Chapter 3. Optical properties in linear response

3.4.4 Non-locality

The non-locality of the pseudopotentials has some important consequences on the evaluation

of the velocity matrix elements needed for the calculation of the IPA dielectric function.

The velocity operator can be written as the sum of a local contribution due to the kinetic

term of the KS Hamiltonian and a non-local contribution due to the non-local part of the

pseudopotential V nl (see Section 2.2.1):

v =−i [r, H KS] = p− i [r,V nl]. (3.63)

The local contribution is simply given by the momentum p =−i∇ while the non-local contri-

bution is given by the commutator of the position operator with V nl.

The inclusion of the non-local contribution to the velocity matrix elements can have a non neg-

ligible impact on the calculation of optical spectra. Generally speaking, a uniform reduction in

the intensity of the spectra is typically observed by including this term but with no substantial

alteration of the main spectral features. Nonetheless, the effect is strongly pseudopotential

dependent (e.g. it depends from the local component V loc chosen) and in some cases, as for

example in copper, spectral features could also change.

Besides, we underline here that all the equations considered above for the first-principles

calculation of the IPA dielectric function are valid only for NC pseudopotentials and not

for US or PAW pseudopotentials. Indeed, in the US and PAW formalism, we have to deal

with a generalised eigenvalue problem H KS |ψα〉 = EαS |ψα〉 including the overlap operator

S, such that 〈ψα|S |ψβ〉 = δα,β. This modification increases substantially the complexity of

the formulation and gives rise to additional terms that should be in principle included for a

correct calculation of the optical properties in the US and PAW case. In particular, Eq. 3.51 and

Eq. 3.57 are no longer valid and need to be corrected by taking into account the fact that the

pseudo wavefunctions are not anymore orthogonal and that their norm is in general smaller

than one (see e.g. Ref. [81] for the correction to Eq. 3.57 for a generalised eigenvalue problem

and Ref. [82] for a detailed discussion about the evaluation of optical properties within the

PAW formalism).

3.4.5 f -sum rule

The optical constants verify multiple sum rules, of which the best known is the f -sum rule.

From a practical point of view, sum rules are useful in order to test the consistency of the

optical constants obtained, both in experimental and computational studies. In particular,

the f -sum rule states that12

∫ +∞

0
dωωε2(q̂,ω) = π

2
ω2

D. (3.64)

12We use the standard notation ε(q̂,ω) = ε1(q̂,ω)+ iε2(q̂,ω) to indicate the real and imaginary part of the
dielectric function.
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3.4. Optical limit

In fact, by writing explicitly the interband and intraband contributions to the imaginary part

of the dielectric function, we obtain that∫ +∞

0
dωωε2(q̂,ω) =

∫ +∞

0
dωω [εintra

2 (q̂,ω)+εinter
2 (q̂,ω)]

= π

2

ω2
D(q̂)+ 8π

V

∑
k

∑
n,n′

n<n′

| 〈ψn′k| q̂ ·v |ψnk〉 |2
En′k −Enk

( fnk − fn′k)


= π

2
ω2

D.

The last equality follows immediately from Eq. 3.61. To perform the energy integration we

have made use of Eq. 3.58 and of the fact that, in the limit η→ 0, the imaginary part of Eq. 3.52

is given by

εinter
2 (q̂,ω) = 4π2

V

∑
k

∑
n,n′

n 6=n′

( fnk − fn′k)
| 〈ψn′k| q̂ ·v |ψnk〉 |2

(En′k −Enk)2 δ(ω− (En′k −Enk)). (3.65)

The imaginary part εinter
2 (q̂,ω), which gives the optical absorption due to interband transitions,

is simply a sum of δ-functions centered at the transition energies En′k −Enk and it is positive

defined for every positive frequency ω (if η> 0, the δ-function is replaced with a Lorentzian

function and εinter
2 (q̂,ω) is still positive defined).

We underline here once again that, also in the derivation of the f -sum rule, we have assumed

that the potential entering in the KS Hamiltonian is local. In presence of a non-local potential,

as it is in the case of pseudopotential calculations, the f -sum rule does not hold anymore and

the integral in the left-hand side of Eq. 3.64 can in principle overestimate the classical Drude

plasma frequency (e.g. see Ref. [83] for a study on the alkali metals). This effect is essentially

due to the fact that, in the pseudopotential formalism, the core electrons are not explicitly

taken into account13.

Eq. 3.62 and Eq. 3.64 show that interband and intraband contributions are coupled together

and that there is a conservation of the spectral weight between the two contributions (for a

given electronic density). In particular, the presence of interband transitions (especially of

transitions between bands with small energy differences close to the Fermi energy) reduces

the value of the Drude plasma frequency ωD(q̂) with respect to ωD,val.

For the simple case of non-interacting free electrons, no interband transitions are allowed, i.e.

εinter
2 (q̂,ω) = 0 and therefore ωD(q̂) =ωD,val. This explains the somewhat surprising success of

13For a discussion about the correction to the f -sum rule coming from the nonlocality of the potential see
Ref. [84, 85]. For completeness, here we report the modified version of Eq. 3.64 that includes this additional
correction:∫ +∞

0
dωωε2(q̂,ω) = π

2

(
ω2

D − ∑
k,n

fnk 〈ψnk|
[[

V nl, q̂ · r
]
, q̂ · r

] |ψnk〉
)

. (3.66)
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Chapter 3. Optical properties in linear response

the classical Drude model in describing some transport and optical properties of simple metals

(see Section 6.4 for further discussion on the topic). Nonetheless, when the periodic electron-

ion interaction is switched on, interband transitions become possible andωD(q̂) <ωD,val while

εinter
2 (q̂,ω) is larger than zero at frequencies corresponding to allowed vertical transitions (i.e.

when the matrix elements of the velocity operator, 〈ψn′k| q̂ ·v |ψnk〉, are different from zero).
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4 Colour perception

We now want to relate the optical properties of a material to its perceived surface appearance

and colour.

The process of colour vision is produced by the stimulation, through the absorption of light,

of the colour-sensitive photoreceptor cells present in the retina of the human eye, called

cones. There are three different types of cones that are distinguished by their sensitivity to

different parts of the visible spectrum: L-cones are sensitive to short wavelengths, M-cones to

medium wavelengths while S-cones to short wavelengths (corresponding approximately to

red, green and blue colour, respectively). The stimulation of the cones is then converted in

bioelectrical signals that are processed by the brain. Therefore, considered as a pure visual

stimulus, light can be specified in terms of three parameters that are related to the three

different colour-sensitive photoreceptors and that unambiguously define the character, or

colour, of light.

The process of colour perception can be schematically portrayed as the interaction between a

light source of visible light, i.e. electromagnetic radiation with wavelenghts from 380 nm to

780 nm, an object and an observer (see Fig. 4.1, left panel). Depending on the light source,

form and characteristics of the object, the angle of observation and the observer, the colour

perception might be quite different. The need of standard measurements of colours brought

the CIE (Commission Internationale de l’Eclairage) [86] to the definition of standard conditions

(standard illuminants, standard observers) and to the introduction of the tristimulus values

and the CIE colour spaces for a quantitative measure of colour. To simulate instead the

actual appearance of an object made of a certain material with a certain colour under realistic

conditions (i.e. within a scene with realistic illumination, surface properties and shape, and

environment), photorealistic rendering is required.

4.1 Trichromatic theory

As briefly explained above, the process of colour perception is a complex and is an intrinsically

subjective phenomenon. It depends not only on several external parameters but also on

the individual features of the observer that perceives the colour. The goal of trichromatic
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Chapter 4. Colour perception

theory is to describe quantitatively this phenomenon by measuring the stimuli that have as a

consequence the colour perception.

In the following we briefly explain the basic concepts of trichromatic theory by following the

treatment of Ref. [87].

CIE 1931

Trichromatic theory is based on the empirical laws of additive colour mixing formulated by H.

G. Grassman in 1853. According to Grassman laws a colour stimulus can be matched by the

additive mixture of three independent stimuli, i.e. none of the stimuli can be matched by the

additive mixture of the other two stimuli. In Fig. 4.1 (right panel) we show a basic experiment

of colour match. The test stimulus and the additive mixture of the three matching stimuli (e.g.

monochromatic red, green and blue lights can be used) illuminate a white screen on the two

side of a partition. The light flux of the three matching stimuli are then adjusted to obtain a

colour appearance match between the test and the three matching stimuli1.

Figure 4.1 – (Left panel) The process of colour perception is the result of the interaction
between a light source, an object and an observer (adapted from Ref. [5]). (Right panel)
Schematic picture of a basic colour matching experiment: the three matching stimuli are
adjusted until the colour of the test stimulus is undistinguishable to the observer from the
colour produced by the three matching stimuli.

For a generic non-monochromatic colour stimulus defined by a spectral power distribution

(SPD), φ(λ), we can describe the colour match between the unknown stimulus, [C], and the

three matching stimuli through the relation

[C] =
780nm∫

380nm

dλ r̄(λ)φ(λ) · [R] +
780nm∫

380nm

dλ ḡ(λ)φ(λ) · [G] +
780nm∫

380nm

dλ b̄(λ)φ(λ) · [B] , (4.1)

1In general, two matched colour stimuli that look indistinguishable to a human observer can have different
spectral power distributions (SPDs).

38



4.1. Trichromatic theory

where [R], [G] and [B] are the units of the three monochromatic matching stimuli red, green

and blue. The three functions r̄(λ), ḡ(λ) and b̄(λ) are called colour-matching functions (CMFs)

and describe the chromatic response of the observer and are related to the sensitivity of the

three types of cones in the human retina.

The need of reproducibility for additive colour match experiments led in 1931 to the introduc-

tion of the CIE 1931 standard colorimetric observer for which the observation conditions were

standardized choosing a 2° foveal field of observation with a dark surround. The disadvantage

of using monochromatic red, green and blue lights as matching stimuli is that the curves

contain negative values, which refer to the fact that in some part of the spectrum a match

can be obtained only if one of the matching stimuli is added to the test stimulus. To solve

the problem the CIE decided to transform from the real [R], [G] and [B] primary set to a set of

imaginary primaries [X], [Y] and [Z] where the corresponding CMFs, indicated as x̄(λ), ȳ(λ)

and z̄(λ), have no negative values (see Fig. 4.2).

Figure 4.2 – Plot of the colour matching functions (CMFs) r̄(λ), ḡ(λ) and b̄(λ) (left panel) and
x̄(λ), ȳ(λ) and z̄(λ) (right panel) of the CIE 1931 standard colorimetric observer. From Ref. [2].

The amounts of the primaries needed to achieve a match with the test stimulus are called

tristimulus values and, in analogy with Eq. 4.1, are defined as

X = k

780nm∫
380nm

dλ x̄(λ)φ(λ) , Y = k

780nm∫
380nm

dλ ȳ(λ)φ(λ) , Z = k

780nm∫
380nm

dλ z̄(λ)φ(λ), (4.2)

where k is a constant. The tristimulus values (X , Y , Z ) completely describe a colour stimulus

and define the so called CIE-X Y Z colour space. Because we are mostly interested in the

colour of metals, which are non self-luminous reflecting materials, the SPD φ(λ) entering in

Eq. 4.2 is given by φ(λ) = R(λ)S(λ), where R(λ) is the reflectivity of the object and S(λ) is the

SPD of the illuminant2. The constant k is chosen so that Y = 100 for objects for which R(λ) = 1

for all visible wavelengths.

2For the calculation of the tristimulus values of precious-metal alloys, the most commonly used illuminant is
the D65 illuminant which corresponds to average daylight as defined by CIE standards. Other illuminants still in
use today are the B and C illuminants.
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Chapter 4. Colour perception

CIELAB

The CIE-X Y Z colour space is not suitable to describe colour differences because it is not

uniform, that is colour differences depend on the position within the colour space. Several

attempts have been made to find uniform colour spaces, so that a given colour difference

is independent from the position in the colour space. One of the most used colour spaces,

which is nearly uniform, is the CIE 1976 (L∗ a∗ b∗), or CIELAB colour space. It is defined by

the following equations

L∗ = 116 f (Y /Yn)−16 (4.3)

a∗ = 500
[

f (X /Xn)− f (Y /Yn)
]

(4.4)

b∗ = 200
[

f (Y /Yn)− f (Z /Zn)
]

(4.5)

where Xn , Yn and Zn are the tristimulus values of a specified white object. The function f is

defined as

f (t ) = t
1
3 if t > (24/116)3 (4.6)

f (t ) = 841

108
t + 16

116
if t ≤ (24/116)3. (4.7)

In this colour space (see Fig. 4.3) the three coordinates represent:

• L∗: brightness (black if the value is 0, white if the value is 100)

• a∗: red colouring if the value is positive, green if the value is negative

• b∗: yellow colouring if the value is positive, blue if the value is negative

Since the CIELAB colour space is nearly uniform, euclidean distances can be used to ap-

proximately represent the perceived magnitude of colour differences between two objects

in the same external conditions. Therefore, if (L∗
1 , a∗

1 , b∗
1 ) and (L∗

2 , a∗
2 , b∗

2 ) are the CIELAB

coordinates of two objects, their colour difference is simply given by

∆E =
√

(L∗
1 −L∗

2 )2 + (a∗
1 −a∗

2 )+ (b∗
1 −b∗

2 )2. (4.8)

In order to be perceivable by the human eye, ∆E > 1−2.

Thrichromatic theory gives a rigorous framework that permits to estimate the colouration of a

material by knowing the optical constants of the material (in particular R(λ)) and to condense

this information in three numbers, i.e. the colour coordinates. In this section we have sum-

marized the principal systems of colour coordinates developed by CIE in order to quantify

and standardize colour measurements. These tools permit the quantitative measurement of
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4.2. Photorealistic rendering

Figure 4.3 – CIELAB colour space. The corresponding colour coordinates L∗, a∗ and b∗ are
shown.

colour of metallic alloys and the comparison of the colour of different alloys (e.g. to compare

different compositions or to compare experimental and simulated results).

4.2 Photorealistic rendering

The goal of photorealistic, or physically-based, rendering is to create a simulated image that

is as similar as possible to a photograph of a real 3D scene. For physically-based rendering

we mean that general and reasonable physical models are used to simulate the propagation

of light in a scene and its interaction with objects inside the scene. The basic physical model

adopted in photorealistic rendering is geometrical optics, where light is approximated as a

particle travelling in straight lines. Geometrical optics is an approximation of wave optics, in

which light is described as an electromagnetic wave, that is valid when the wavelength of light

is much smaller than the size of the objects in the scene being rendered. Ray tracing is the

principal algorithm used in photorealistic rendering and consists in following the path of rays

of light through a scene as they propagate and bounce off objects within an environment. In

mathematical terms this has been formalised in the framework of the light transport equation

(also called rendering equation [88]) whose solution gives the light entering in the camera

(observer eye). For the rendering of an object made of a particular material, we need to

specify its main wavelength-dependent optical constants (e.g. refractive index and extinction

coefficient in the visible spectrum) and a model that describes the characteristics of the surface

of the material under investigation (e.g. conductor, dielectric, plastic, etc.). By also specifying

the light source(s), the environment of the scene, and the camera we can then render the

scene using a photorealistic rendering software (e.g. the Mitsuba renderer [6]), as shown in

Fig 4.4.
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Figure 4.4 – Example of photorealistic rendering of a metallic surface performed with the
Mitsuba renderer [6].
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5 Computational approach

In this Chapter we describe the computational approach developed and used in the thesis for

the first-principles simulation of the reflectivity and colour of metals. In particular, we describe

in detail the code developed in order to compute the IPA dielectric function (Section 5.1), the

workflow developed in order to perform automatic simulations (Section 5.2) and the protocol

developed in order to test the precision and performance of pseudopotentials (Section 5.3).

Part of the results discussed here have been already described in Ref. [89] and published in

Ref. [90].

5.1 SIMPLE code

Eq. 3.52 and Eq. 3.55 for the calculation of the IPA dielectric function require a dense sampling

of the BZ in order to obtain converged optical spectra for metals. Therefore we choose to use an

interpolation method to calculate optical properties that is both efficient and straightforward

to use, having as complementary goal also the automation of the simulations.

For this purpose we exploit the method originally developed by E. L. Shirley in 1996 [91], which

is based on the use of an optimal basis (OB) set to represent the periodic part of the Bloch

wavefunctions. Since, notably, the OB set is systematically improvable, accurate results can be

obtained at a strongly reduced computational cost.

It is worth mentioning here that an alternative powerful approach for the interpolation of

band-structure properties is the interpolation method based on the use of maximally localized

Wannier functions (MLWF) as basis [92]. Wannier functions are physically appealing since they

are localized in real space and can be used as an exact tight-binding basis. Moreover, Wannier

interpolation is both an efficient and precise method for the evaluation of quantities that

require a fine sampling of the BZ; in particular, in the Wannier representation the k-dependent

KS Hamiltonian does not need to be explicitly constructed and the matrix elements of the

velocity operator are analytic if written in terms of Wannier functions [93]. On the other

hand, the method has the drawback that the construction of the MLWF’s is not an easily

automatizable procedure, especially for metals, for which an additional disentanglement step

of the empty bands is required [94]. However, in recent years there have been promising
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advances towards the development of an automatic procedure for the “Wannierization" of

periodic systems [95], including also the more complex case of metals [96]. Once these new

approaches will be interfaced with DFT engines, it would be interesting to systematically

assess and compare performance and precision of Shirley’s and Wannier’s interpolations.

We now briefly describe the OB method and its implementation in the SIMPLE code1.

5.1.1 Optimal basis method

The basic idea of the OB method [91] is to obtain a reduced set of basis functions, indicated

with the notation {bi }, for representing the periodic part unk (r) of the Bloch wavefunctions

ψnk (r) = e i k ·r unk (r ) at any k-point inside the BZ. The OB {bi } are constructed starting from

the periodic KS states {unk} calculated on an initial coarse k-grid, and then using a Gram-

Schimdt orthonormalization algorithm with a threshold sb , which proceeds k-point by k-point.

With this approach we disregard basis vectors which would contribute only marginally (i.e.

below the threshold) to the periodic KS states and the dimension Nb of the OB is directly

governed by the threshold sb .

Using this basis we can approximate a generic periodic KS state with wavevector k and band

index n as

unk(x) '
Nb∑
i=1

b̃nk
i bi (x). (5.1)

Once the OB is constructed it is possible to obtain the periodic part of the Bloch wavefunctions

at a generic k-point by following the interpolation procedure described in Ref. [97]. For

this purpose, we need to construct the matrix elements of the k-dependent KS Hamiltonian

H KS(k) ≡ e−i k·rH KSe i k·r in terms of the OB. By diagonalizing this matrix we can then obtain

the coefficients b̃nk
i and the band energies Enk for each point k in the dense interpolation

k-grid.

Band interpolation

The operator H KS(k) is divided into three separate contributions (kinetic energy, local potential

and non-local potential):

H KS(k) = (−i∇+k)2

2
+V loc +V nl(k). (5.2)

1In SIMPLE a generalization of the OB method is also implemented, which allows the calculation of the dielectric
function at the BSE level for finite-gap systems. This part of the code is not relevant for the thesis and it is not
discussed in further detail here (see Ref. [89] for additional informations).
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In our implementation the OB functions are expanded in a plane-wave basis as

bi (x) =∑
G

e i G·r bi (G), (5.3)

where the sum is over the reciprocal lattice vectors G and {bi (G)} is the set of Fourier co-

efficients of bi (r). By using the expression above we obtain the matrix elements of the KS

Hamiltonian

H KS
i j (k) = 〈bi |H KS(k) |b j 〉 = 1

2

[
k2δi j +k ·K(1)

i j +K (0)
i j

]+V loc
i j +V nl

i j (k). (5.4)

The terms inside the square brackets in Eq. 5.4 refer to the matrix elements of the k-dependent

kinetic energy that have a simple quadratic polynomial dependence on k. For convenience,

we define two additional quantities, K(1)
i j and K (0)

i j , in terms of the Fourier coefficients bi (G):

K(1)
i j = 2

∑
G

b∗
i (G) G b j (G), (5.5)

K (0)
i j =∑

G
b∗

i (G) G2 b j (G). (5.6)

The matrix elements of the local potential do not depend on k and are easily obtained in real

space using fast-Fourier transforms:

V loc
i j =

∫
drb∗

i (x) V loc(r) b j (x). (5.7)

For the non-local potential, we only consider NC pseudopotentials so that the non-local part

of the pseudopotential can be written as

V nl
i j (k) =∑

λ

β∗
λi (k) Dλ βλ j (k), (5.8)

where the index λ= (I ,n,m, l ) refers to the sites I of the ions in the cell together with the asso-

ciated atomic quantum numbers (n,m, l ) and Dλ are the coefficients of the pseudopotential.

In the expression above βλi (k) = 〈βλ|e i k·r |bi 〉, where |βλ〉 are the pseudopotential projector

functions centered on each ionic site I .

Since K(1)
i j , K (0)

i j and V loc
i j do not depend on k, they need to be calculated only once after the

OB is built. The matrix elements V nl
i j (k) of the non-local part of the pseudopotential instead

have a non-analytic dependence over k and thus they should be calculated for every k. The

calculation of the matrix elements H KS
i j (k) and the subsequent diagonalization of the matrix

for each point k give the coefficients b̃nk
i and the band energies Enk for all the bands n ≤ Nb .
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Dielectric function

Once the coefficients and the band energies at all the needed k-points are known, we have

almost all the elements necessary to calculate the IPA dielectric function through Eq. 3.52

and Eq. 3.58. For this purpose we also need the matrix elements of the k-dependent velocity

operator

v(k) =−i [r, H KS(k)] =−i∇+k− i [r,V nl(k)]. (5.9)

In terms of the OB these are given by

〈unk|v(k) |un′k〉 =
1

2

Nb∑
i , j=1

(b̃nk
i )∗ b̃n′k

j K(1)
i j +k〈unk|un′k〉+

+ (−i )
Nb∑

i , j=1
(b̃nk

i )∗ b̃n′k
j 〈bi | [r,V nl(k)] |b j 〉 .

(5.10)

The local contribution to the velocity matrix elements (first two terms in the right-hand side of

Eq. 5.10) are easily obtained once the KS Hamiltonian matrix in Eq. 5.4 is diagonalized. On the

other hand the matrix elements 〈bi | [r,V nl(k)] |b j 〉 of the commutator of the non-local part

of the pseudopotential need to be computed and, having a non-analytic dependence over k,

they should be calculated for each k.

5.1.2 Details of the code

The OB method described above is implemented in the SIMPLE code, which is included as a

package within the Quantum ESPRESSO (QE) distribution [98]. It is divided into two different

executables: simple.x and simple_ip.x. The executable simple.x builds the OB and saves

to disk all the relevant matrix elements needed for the calculation of the optical properties.

The actual IPA calculation is then performed by simple_ip.x.

Throughout the SIMPLE code, MPI parallelization is exploited and linear algebra operations

are efficiently performed through calls to BLAS and LAPACK libraries. Spin-orbit interaction is

implemented and the code works only with NC pseudopotentials.

More in detail, simple.x relies, as starting point, on the results of a nscf calculation of QE

performed on a uniform grid of k-points without the use of symmetry. The k-grid should

include also the seven periodic images of Γ in order to better preserve the periodicity in

reciprocal space of the k-dependent Hamiltonian (see Ref. [97] for a more detailed discussion

on the topic). After the construction of the OB functions, the k-independent matrix elements

K(1)
i j , K (0)

i j and V loc
i j (see Eq. 5.5, Eq. 5.6 and Eq. 5.7 respectively) of the KS Hamiltonian in the

OB are computed. For the non-local part of the pseudopotential we store the k-dependent

projectors βλ j (k) of Eq. 5.8, as originally proposed in Ref. [97], at each k-point k on a uniform

interpolation k-grid in the BZ, as well as the matrix elements 〈bi | [r,V nl(k)] |b j 〉 giving the
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non-local contribution to the velocity operator (see last term of Eq. 5.10).

The IPA dielectric function is then computed by simple_ip.x on the uniform interpolation

k-grid, proceeding k-point by k-point. The empirical interband and intraband broadenings, i.e.

η of Eq. 3.52 and γ of Eq. 3.58, are specified in input. Besides, in order to ease the convergence

of the value of the IPA Drude plasma frequency, the Fermi-Dirac derivative in Eq. 3.55 is

replaced with a Gaussian function centered at the Fermi level and having a user-defined

broadening σ.

The code then writes in standard output the Drude plasma frequency ωD(q̂), computed in

the limit q → 0 along the three Cartesian limits (i.e. with q̂ = x̂, ŷ, ẑ), and provides two data

files with the real and imaginary parts of the interband contribution to the IPA dielectric

function, εinter
1 (q̂,ω) and εinter

2 (q̂,ω), also computed along the three Cartesian directions. The

code writes to disk also the real and imaginary part of the total IPA dielectric function (see

Eq. 3.50) and the EELS spectrum, which is given by −ℑ[
ε−1(q̂,ω)

]
(i.e. by the imaginary part of

the inverse dielectric function).

5.1.3 Validation and performance of the code

We consider, as test system, bulk silver in the FCC primitive cell with lattice parameter a =
7.869 bohr. The DFT calculations with the pw.x code of QE are performed with the PBE

approximation [99] for the exchange-correlation functional at a wavefunction cutoff of 55 Ry

and using the scalar-relativistic NC pseudopotential for Ag from the SG15 library [100]. For the

ground-state calculation (scf calculation in pw.x) we use a 24×24×24 Monkhorst-Pack [101] k-

grid while the periodic functions {unk} needed for the construction of the OB are obtained on a

2×2×2 uniform k-grid including the seven periodic images ofΓ and considering 11 conduction

bands2 (nscf calculation in pw.x). The IPA optical properties are calculated on a 44×44×44

uniform k-grid with the inclusion of the non-local contribution to the velocity matrix elements

and broadening parameters (i.e. η, γ and σ) of 0.1 eV. Because we are considering a FCC cubic

crystal, the dielectric function is isotropic and is simply a scalar (i.e. independent from the

direction q̂).

Convergence with the optimal basis

First, we investigate the convergence of the IPA dielectric function with respect to the thresh-

old sb which controls the quality of the OB used for representing the periodic part of the

Bloch wavefunctions. In Fig. 5.1 we show how both εinter
1 (q̂,ω) and εinter

2 (q̂,ω) of Ag are fully

converged at sb = 0.01 a.u., or equivalently with Nb = 103 basis functions (to be compared with

the value Nb = 315 corresponding to the complete basis, i.e. to sb = 0.0 a.u.). Similar results

are found for the convergence of ωD(q̂), and are shown in Table 5.1, where we also notice that

in poorly converged calculations the cubic symmetry of bulk Ag is not preserved.

2Convergence of the optical spectra with respect to the nscf k-grid was also studied. In a primitive cell a 2×2×2
k-grid is more than sufficient to reach convergence while in a supercell the sole Γ point is already sufficient (in
both cases including the periodic images of Γ).
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Figure 5.1 – Convergence of the interband contribution to the IPA complex dielectric function
of bulk Ag with respect to the number of OB functions Nb , which is controlled by the parameter
sb . We show both the real (right panel) and imaginary parts (left panel) of εinter(q̂,ω).

Nb ωD(x̂) ωD(ŷ) ωD(ẑ)
71 8.70 8.50 8.59
86 8.85 8.83 8.83
103 8.97 8.97 8.97
124 8.98 8.98 8.98

Table 5.1 – Convergence of the IPA Drude plasma frequency (in eV) of bulk Ag with respect to
the number of OB functions Nb , computed along the three Cartesian limits (i.e. with q̂ = x̂, ŷ, ẑ).
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Validation with respect to other codes

We validate the IPA implementation of the SIMPLE code by comparing the results obtained

for Ag with respect to equivalent simulations performed with the Yambo code [102] for the

interband contribution to ε(q̂,ω), and with the BoltzWann module [103] of the Wannier90

code [104] for the intraband contribution to ε(q̂,ω). As both codes are interfaced with the QE

distribution we can perform a straightforward comparison starting from the same DFT ground-

state density used for the SIMPLE calculation using all the same relevant computational

parameters (k-grid, number of bands, broadenings, etc.). To note that, in order to calculate the

optical properties, Yambo does not use any interpolation method in k-space while BoltzWann,

instead, uses the Wannier’s interpolation method [105]. For the SIMPLE calculation we use

an OB constructed setting sb = 0.01 a.u. that, as shown above, gives well converged spectra.

Fig. 5.2 shows that SIMPLE and Yambo give almost identical results for εinter(q̂,ω). For the

intraband contribution we find that the Drude plasma frequency of Ag is ωD(q̂) = 8.93 eV with

the SIMPLE code while it is ωD(q̂) = 8.96 eV with the BoltzWann code. Therefore we conclude

that for both the interband and intraband contributions the agreement between SIMPLE and

the other codes is excellent.

Figure 5.2 – Comparison of the interband contribution to the IPA complex dielectric function
of bulk Ag calculated with the SIMPLE code and with the Yambo code. We show both the real
(right panel) and imaginary parts (left panel) of εinter(q̂,ω).

Scaling with the optimal basis

As the core of the present approach is the reduction of the basis sets for representing wave-

functions, we are compelled to assess how such reduction improves the computational per-

formance. In the calculations we have to deal with matrices of dimension Nb ×Nb (i.e. the

k-dependent Hamiltonian H KS
i j (k) of Eq. 5.4) and the computational cost is dictated by the

construction (or “filling") of this matrix through the computation of the k-dependent contribu-
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tions coming from the non-local part of the pseudopotentials rather than by its diagonalization.

For this reason the wall time of a IPA calculation is expected to scale quadratically with respect

to Nb .

We study the computational cost of the IPA approach performed with the SIMPLE code as the

number of OB functions Nb is varied, as shown in Fig. 5.3 for bulk silver. We set as reference

time the computer time (or wall time) of the calculation with the smallest number of OB

functions. As expected, the time of computation scales with the square of Nb . In Fig. 5.3 we

also show how the inclusion of the non-local commutator in the computation of the velocity

matrix elements significantly slows down the calculation.

Figure 5.3 – Relative computational time for a IPA calculation performed with the SIMPLE
code on bulk Ag, both including and not including the non-local commutator in the evaluation
of the velocity matrix elements, with respect to the square of the number of OB functions
Nb . The reference wall time is set as the one resulting from the calculation with the smallest
number of vectors.

Core scaling

In order to assess the performances of the SIMPLE code for its use in parallel architectures, we

investigate the speedup of the code as a function of the number of single processing units. We

consider Ag in a 4×4×4 FCC supercell with 64 atoms and 1216 electrons. The total number of

OB functions considered in the simulations is 2687, corresponding to sb = 0.01 a.u. In general,

a significant part of the total computational cost is due to the simple.x run. Therefore the

speedup is calculated by summing the wall times of the simple.x and simple_ip.x runs

performed with the same number of cores. In Fig. 5.4 we show the results for the case in which

the number of cores corresponds to the number of MPI tasks and we compare simulations

performed including and not including the computation of the non-local commutator entering

in the estimation of the velocity matrix elements. In order to obtain similar wall times for
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a given number of cores, we use an interpolation k-grid of 8×8×8 and 16×16×16 when

including and not including the non-local commutator, respectively. Although the scaling of

simple_ip.x alone is close to a linear behaviour, the total scaling of the combined simulations

deviates from the ideal linear scaling, mainly because of the computations of the k-dependent

matrix elements due to the non-local part of the pseudopotentials (see Eq. 5.8 and Eq. 5.10)

performed by simple.x. Indeed, if the calculation of the non-local commutator of Eq. 5.10 is

avoided, the scaling is significantly improved, as shown in Fig. 5.4.

Figure 5.4 – Speedup of an IPA calculation performed with the SIMPLE code (simple.x and
simple_ip.x) as a function of the number of cores for bulk Ag in a 4×4×4 supercell with 64
atoms including and not including the contribution to the velocity matrix elements coming
from the non-local commutator. The test is performed on Intel® Skylake® processors.

The systematic improvement of the OB set and, as a consequence, of the accuracy of the results

by simply increasing the number of included basis functions, gives the notable advantage that

our code can be used to perform efficient computations in a straightforward way from the user

point of view (the accuracy is controlled simply by a single input parameter, i.e. sb). Moreover,

the simplicity of the method and the fact that all the calculations needed to obtain the optical

properties from a generic initial crystal structure can be run within a single open-source

software, i.e. the QE distribution, makes easier the automation of the required sequence of

computational steps and thus the systematic evaluation of the dielectric function for a large

number of materials.

5.2 Workflow

Most of the calculations needed for this thesis are performed using AiiDA [106], an open-source

Python infrastructure for computational science that can track the provenance of data and

calculations and that allows one to implement workflows that can run automatically complex
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sequences of calculations. AiiDA prepares and submits calculations and then retrieves and

stores the results inside a database, all automatically, thus ensuring the reproducibility of all

results obtained. The database can be subsequently queried to extract the necessary data

and informations. AiiDA is particularly useful for high-throughput computational studies for

which a large number of simulations needs to be performed for many different materials and

a high-degree of automation of the computational procedure is desirable and often necessary.

As described below, the steps of calculations required by our computational approach in order

to simulate the reflectivity and colour of a material from the initial crystal structure are fully

implemented as an AiiDA workflow, named ColourWorkflow, and schematically depicted in

Fig. 5.5. Thanks to the ColourWorkflow it is possible, giving as input a generic crystal structure,

to obtain directly as output the reflectivity and colour of a given material.

Our procedure to obtain the reflectivity and colour of a metal at the IPA level from an intial

crystal structure (e.g. extracted from experimental databases such as ICSD [107], COD [108] or

Pauling file [109]) can be divided into three main steps.

In the first step we compute the ground-state electronic density of the system by solving the

KS equations and, if needed, by also relaxing the internal atomic positions and/or the external

coordinates of the simulation cell representing the initial crystal structure. Afterwards, starting

from the computed ground-state density, we obtain the KS energies and wavefunctions for the

number of empty bands and k-points necessary for the subsequent calculation of the optical

properties with the OB method. The DFT simulations are performed with the QE distribution

and are in practice handled by the PwWorkflow, a robust lower-level AiiDA workflow called by

the ColourWorkflow, that can restart QE calculations in case the user-specified wall time is

reached before the simulation is completed or in case of common QE errors for which a small

adjustment of the input parameters allows the simulation to end successfully [90].

In the second step we compute the dielectric function at the IPA level using the OB method

as implemented in the SIMPLE code. As described in Section 5.1.2, SIMPLE first builds the

OB and computes the relevant matrix elements on a dense uniform k-points grid (performed

by the simple.x executable), and then it computes the IPA dielectric function, including

both interband and intraband contributions, and other derived optical constants such as the

reflectivity (performed by the simple_ip.x executable).

In the last step the colour is obtained from the reflectivity through a python module. The

integral involved in the calculation of the tristimulus values (see Eq. 4.2) is estimated by dis-

cretizing the wavelengths inside the visible range in steps of 1 nm and using the CIE 1931

standard colorimetric observer and the spectral power distribution of the D65 illuminant. The

tristimulus values are then converted to other standard systems of colour coordinates such

as CIELAB and sRGB colour spaces. If needed, photorealistic rendering of a surface with the

simulated optical constants is then performed with the Mitsuba renderer [6].
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Figure 5.5 – Schematic representation of the ColourWorkflow which is designed to simulate the
reflectivity and colour of a metallic material giving as input its crystal structure. The workflow
is implemented within the framework of the AiiDA infrastructure.
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5.3 Precision and efficiency of pseudopotential simulations

Our goal is to perform a systematic study of the reflectivity and colour of several metallic sys-

tems and we ideally want to have reliable results at the lowest possible computational cost for

the precision required by our application. In DFT calculations performed with the plane-wave

pseudopotential method, this means that we would like to always employ pseudopotentials

that reproduce the true all-electron results at the smallest possible wavefunction cutoff (see

Eq. 2.7) for all elements of the periodic table considered.

For this purpose we exploit the results of the SSSP protocol developed by us [90] to test pseu-

dopotentials. Pseudopotential and corresponding wavefunction cutoff for each element of

the periodic table relevant for this thesis are selected according to the SSSP results in order to

perform efficient and reliable IPA calculations with SIMPLE.

5.3.1 SSSP protocol

Here we discuss a pseudopotential testing protocol, named SSSP (standard solid-state pseu-

dopotential) testing protocol, which is based on several independent criteria in order to

assess both the precision and the efficiency of pseudopotentials for solid-state pseudopo-

tential calculations. The SSSP protocol is made of a verification part, based on the ∆−factor

test [110, 111], and an extensive performance-oriented part based on plane-wave convergence

tests for phonon frequencies, band structures, cohesive energies and stress tensors. Adopting

these criteria we identify two curated pseudopotential libraries for 85 elements of the periodic

table that we target for high-throughput materials screening (called “SSSP efficiency” library)

and high-precision materials modelling (called “SSSP precision” library).

In practice, we investigate the precision and performance of several pseudopotential libraries

publicly available for the QE distribution. All the tested pseudopotential libraries are based

on the generalized gradient approximation (GGA) for the PBE exchange-correlation func-

tional [99] at the scalar-relativistic level, and they include the three main pseudization ap-

proaches: NC, US and PAW (see Table 5.2 for a list of all the pseudopotential libraries tested).

Verification and convergence tests

Equation of state. In order to assess the precision of pseudopotentials, we compute the

∆-factor, i.e. the integral of the difference between the equations of state calculated with pseu-

dopotential simulations and with reference all-electron results for elemental crystals. For this

purpose we use the protocol introduced in 2014 by Lejaeghere et al. [110]. This protocol was

exploited to compare 15 different DFT codes, including both all-electron and pseudopotential

codes, in order to verify the reproducibility of the PBE equations of state of elemental crystals

across different methods and implementations [111]. The protocol consists in calculating

the energy-versus-volume at 7 equidistant points centred around the reference equilibrium

volume and then performing a Birch-Murnaghan fit. From the parameters of the fit some

important physical quantities related to the structural and elastic properties of the system are
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Full name Short name Method Reference
pslibrary.0.3.1 US 031US US [112]

pslibrary.0.3.1 PAW 031PAW PAW [112]
pslibrary.1.0.0 US (high acc.) 100US US [113]

pslibrary.1.0.0 PAW (high acc.) 100PAW PAW [113]
GBRV-1.2 (US) GBRV-1.2 US [114]
GBRV-1.4 (US) GBRV-1.4 US [114]
GBRV-1.5 (US) GBRV-1.5 US [114]

SG15 (NC) SG15 NC [100]
SG15-1.1 (NC) SG15-1.1 NC [100]

RE Wentzcovitch (PAW) Wentzcovitch PAW [115]
Goedecker (NC) Goedecker NC [116]

PseudoDojo (NC) Dojo NC [117]
THEOS (US) THEOS US

Table 5.2 – Pseudopotential libraries tested with the SSSP protocol. The short names cor-
respond to the name used in the convergence pattern plots (see Fig. 5.6) to identify the
pseudopotential libraries.

extracted: the equilibrium volume V0, the bulk modulus B0 and the first derivative of the bulk

modulus B1. The ∆-factor, that is reported in units of meV/atom, gives an overall estimate of

the discrepancy between pseudopotentials and all-electron results in terms of these structural

properties.

The reference all-electron results of the equation of states are the ones of the WIEN2k code [118]

reported in Ref. [111], with the exception of the rare-earth nitrides for which we use the

WIEN2k results reported in Ref. [115]. All pseudopotential calculations needed for the ∆-

factor estimation are performed at the reference wavefunction cutoff of 200 Ry using a dense

Monkhorst-Pack [101] k-grid of 20×20×20 and a Marzari-Vanderbilt smearing [119] of 2 mRy.

Magnetism is included for the equations of state of oxygen and chromium (antiferromag-

netism), manganese (antiferrimagnetism) and iron, cobalt, nickel and the rare-earth nitrides

(ferromagnetism).

For the efficiency of pseudopotentials instead, within the SSSP testing protocol we study the

convergence of four different quantities as a function of the wavefunction cutoff Ec , i.e. of

the number of plane-waves used in the expansion of the KS states. The tested quantities are

phonons frequencies at the zone-border, cohesive energies, pressure, and band structures.

All the calculations are performed on the ground-state structures of elemental crystals at 0 K,

as provided in Ref. [120], with the exception of fluorine for which the SiF4 structure is used

because of convergence issues of the elemental fluorine structure and of lanthanides that are

not included in the test set of Ref. [120] and for which the nitride structures of Ref. [115] are

used. In total we test 85 different elements of the periodic table.

In all pseudopotential frameworks, a plane-wave representation of the charge density re-

quires a cutoff, Eρ , higher than the wavefunction cutoff, Ec . Typically, convergence tests are
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performed by varying Ec and keeping the dual, i.e. the ratio Eρ/Ec , fixed. Also the SSSP con-

vergence patterns are obtained at fixed duals (equal to 4 for NC pseudopotentials and to 8 for

US and PAW pseudopotentials) and taking E ref
c = 200 Ry as the reference wavefunction cutoff.

All the quantities are considered as differences with respect to the corresponding reference

value calculated at E ref
c . An example of the calculated convergence pattern plot is shown in

Fig. 5.6 for the case of palladium. We perform all the tests on the elemental crystals using a

relatively coarse 6×6×6 Monkhorst-Pack k-grid (except for oxygen and all the lanthanides

where a 10×10×10 k-grid is used instead) because in our protocol for convergence we are not

directly interested in the absolute values of the tested quantities but rather on their difference

with respect to the reference values computed at E ref
c . We also disregard spin-polarization in

all the convergence tests but we have verified for the magnetic structures that the convergence

patterns are not substantially altered by the inclusion of magnetism.

Phonon frequencies. The convergence of vibrational properties of elemental crystals is per-

formed by calculating, within the framework of density-functional perturbation theory (DFPT),

the phonon frequencies at the zone-border of the BZ, i.e. at the point Q = ( 1
2 , 1

2 , 1
2 ) in relative

coordinates of the reciprocal lattice vectors. While the ∆-factor test is related to the structural

and elastic properties of the system, by considering phonon frequencies at the border of the

BZ we have access to information related to both acoustic and optical modes.

The number of phonon frequencies depends on the number of atoms in the unit cell, and

so on the element under investigation. In the convergence pattern plots of the SSSP testing

protocol we condense the information related to the several phonon frequencies into a single

number δω̄. It is defined as a relative average deviation (in percentage) among all the phonon

frequencies ωi calculated at Q for each wavefunction cutoff Ec

δω̄=
√√√√ 1

N

N∑
i=1

∣∣∣∣ωi (Ec )−ωi (E ref
c )

ωi (E ref
c )

∣∣∣∣2

, (5.11)

where N is the total number of phonon frequencies. The maximum relative deviation is

similarly defined as

δω̄er r or = max
i

∣∣∣∣∣ωi (Ec )−ωi (E ref
c )

ωi (E ref
c )

∣∣∣∣∣ , (5.12)

and it is represented as an half error bar in the convergence pattern plots.

If the highest phonon frequency ωmax of an elemental crystal at Q is smaller than 100 cm−1 at

E ref
c , the absolute average deviation and the corresponding maximum deviation are computed

instead of the relative ones, since a precision of a few cm−1 is often the reasonable target for a

DFPT calculation.

Cohesive energy. We investigate the convergence of the energy difference between the crys-

talline solid and the corresponding individually isolated atoms, i.e. the cohesive energy of the
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elemental crystals. The quantity δEcoh considered in the SSSP testing protocol is defined as

the absolute difference between the cohesive energy at a given wavefunction cutoff Ec and the

one at the reference wavefunction cutoff E ref
c , i.e. 200 Ry (in units of meV per atom).

Pressure. We evaluate the convergence of the stress by computing the hydrostatic pressure,

which is defined as P = 1/3Tr(σ), where σ is the stress tensor. Rather than checking conver-

gence directly on the pressure itself (the magnitude of which depends strongly on the stiffness

of the material) we evaluate it through its conversion into an equivalent volume. This allows

the definition of a stiffness-agnostic and hence material’s independent convergence criterion.

Starting from the Birch-Murnaghan equation of state for the pressure fitted on the reference

all-electron calculations

PBM(V ) =3B0

2

[(
V0

V

) 7
3 −

(
V0

V

) 5
3

]
×

×
{

1+ 3

4

(
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0 −4
)[(
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V

) 2
3 −1

]}
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(5.13)

we define the deviation volume V ′ as the one closest to the equilibrium volume V0 such that

PBM(V ′) = δP , where δP = P (Ec )−P (E ref
c ) is the residual pressure of a calculation performed at

the cutoff Ec . With this definition, fully converged values of pressure give δP = 0 and therefore

V ′ =V0. Once V ′ is known we can eventually find the relative volume deviation (in percentage)

due to the residual pressure: δVpr ess = (V ′−V0)/V0, which is the quantity considered in the

SSSP testing protocol.

Band structure. The tests discussed so far deal with ground-state quantities only, computed

either using DFT or DFPT. However, pseudopotential calculations are often employed to

study optical, transport and other properties that involve charged or neutral excitations. The

majority of excited-states calculations are based on MBPT, e.g. G0W0 and self-consistent

GW [75, 71, 76], the Bethe-Salpeter equation (BSE) [64], or dynamical mean field theory

(DMFT) [121], and are performed on-top of a DFT calculation, which provides the starting

point for both self-consistent and one-shot approaches. Hence, we include band structures

in our testing protocol, taking into account both the occupied bands and some of the lower

lying unoccupied bands. Here, we outline a protocol for performing both convergence tests

and verification of band structures by defining a bands distance (a similar idea has been

proposed independently in Ref. [122]). The aim is to quantify how much two band structures

“differ” by introducing a simple and computationally inexpensive metric in the band structures

space. We call our bands distance η and consider two cases that are distinguished solely by

the number of bands taken into account. The ηv (or “eta valence”) considers the occupied

bands only, while in the η10 (or “eta conduction 10”) all the bands up to 10 eV above the Fermi

level are considered. We choose a uniform Monkhorst-Pack mesh, in the full BZ and with

no symmetry reduction. Choosing a high-symmetry path could result in an unsatisfactory

arbitrary choice, as different recipes for the standardization of paths have been introduced

in the recent literature [123, 124] and interesting features of the band structure may occur
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far from the high-symmetry lines (such as Weyl points) [125, 126]. A uniform mesh is also

more appropriate from the point of view of electron’s nearsightedness [127]: if the energy

eigenvalues are known on a sufficiently fine uniform k-points mesh, it is possible to get an

exact real-space representation of the Hamiltonian in a Wannier function basis [105] and then

interpolate to an arbitrary fine mesh.

Let us suppose we have two sets of bands E A
nk and E B

nk; we define the distance between the

two sets of (valence) bands as

ηv (A,B) = min
ω

√√√√∑
nk f̃nk(E A

nk −E B
nk +ω)2∑

nk f̃nk
, (5.14)

where

f̃nk =
√

fnk(E A
F ,σ) fnk(E B

F ,σ), (5.15)

fnk(E ,σ) being the Fermi-Dirac distribution and σ the smearing width. The Fermi ener-

gies, E (A,B)
F , for the two band structures A and B are obtained from the relation N (A,B)

el =∑
nk f (A,B)

nk (E (A,B)
F ,σ), where Nel is the number of electrons. In order to properly align the two

sets of bands, ηv is defined as the minimum with respect to a rigid energy shift ω.

We now consider also the low-lying conduction bands by introducing η10, defined as in Eq.

5.14 but with a Fermi level up shift of 10 eV. In this way, η10 measures the bands distance of

the valence bands plus the conduction bands up to 10 eV above the Fermi energy.

Finally, we also take into account the possibility that significant differences between band

structures may occur only in subregions of the BZ or in small energy ranges. After computing

the η, we check the slowest converging band by computing max η, defined as

max η= max
nk

|E A
nk −E B

nk +ω|, (5.16)

and request that is has to be converged with a slightly higher threshold than η itself.

In the SSSP testing protocol we use η10 and max η10 (in units of meV) as criteria to quantita-

tively study the convergence of band structures.

Selection criteria

The selection criteria used to build our two optimal pseudopotential libraries, namely the

SSSP efficiency and SSSP precision libraries (version 1.1), are listed in Table 5.3. The main idea

behind the SSSP precision library is to provide the pseudopotentials that are the closest to

all-electron calculations in terms of ∆-factor computed at the reference wavefunction cutoff

E ref
c , without much consideration on the computational cost and the wavefunction cutoffs

actually needed to converge all relevant quantities. On the other hand, the SSSP efficiency

library is designed for practical applications that should remain affordable, and therefore
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5.3. Precision and efficiency of pseudopotential simulations

Figure 5.6 – SSSP testing protocol applied to palladium. For each pseudopotential the con-
vergence w.r.t. the wavefunction cutoff of the zone-boundary phonons (δω̄), cohesive energy
(δEcoh), pressure (δVpr ess) and bands structure (η10 and max η10) is monitored. The hori-
zontal dashed lines correspond to the thresholds of the SSSP selection criteria (efficiency or
precision); here precision is shown. On the right-hand side we report the number of valence
electrons of the pseudopotential (Z), the ∆-factor and the ∆′-factor [7] with respect to the
reference all-electron results and the converged value of the highest phonon frequency (ωmax ).
The circle marks the pseudopotential and wavefunction cutoff chosen for the SSSP library
(version 1.1).
All convergence pattern plots of the 85 elements tested are available on the Materials Cloud
platform [8].
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Figure 5.7 – Band structure of FCC Pb along a high-symmetry path, for several pseudopotential
libraries (top panel). The valence bands are almost identical to each other, while some
differences appear in the conduction bands: the SG15 bands deviate from the other bands
around 7-10 eV over the Fermi level and a flat ghost state in the GBRV bands is clearly visible
at around 8 eV. These differences between band structures can be compressed into the bands
distances ηv and η10, reported in units of meV (bottom panel). In addition, ghost states in
the band interval considered can be automatically detected as peaks in the η function, hence
simplifying greatly the verification of spectral properties.
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5.3. Precision and efficiency of pseudopotential simulations

pseudopotentials are chosen such that wavefunction cutoffs are as low as possible while

keeping the precision reasonable.

For SSSP efficiency, when possible we select pseudopotentials with a rather small ∆-factor

(below 1 meV/atom). The phonons δω̄ should be converged within 2% (or within 2 cm−1 if

the highest phonon frequency is smaller than 100 cm−1), the cohesive energy δEcoh within

2 meV/atom, the pressure within 1% for δVpr ess (i.e. 0.33% on the lattice parameter of a cubic

crystal) and the band structure within 10 meV for η10 and within 20 meV for max η10. For the

SSSP precision, the criteria are slightly stricter (see Table 5.3) and we systematically opt for the

pseudopotential with the smallest ∆-factor. Therefore the wavefunction cutoffs of the SSSP

precision are typically higher than the ones proposed for the SSSP efficiency.

SSSP efficiency SSSP precision notes
Phonon frequencies (δω̄) < 2% < 1% < 1 cm−1 if ωmax < 100 cm−1

Cohesive energy (δEcoh) < 2 meV/atom < 2 meV/atom
Pressure (δVpr ess) < 1% < 0.5% in terms of volume differences
Band structure (η10) < 10 meV < 10 meV
Band structure (maxη10) < 20 meV < 20 meV
Equation of state (∆-factor) < 1 meV/atom (if possible) smallest

Table 5.3 – Selection criteria for the SSSP efficiency and SSSP precision libraries.

Ghost states. We use the bands distance η10 defined above not only for the convergence tests

but also to compare the band structures of the tested pseudopotentials for all the elemental

crystals considered. However different pseudopotentials are often generated with different

combinations of semi-core states in the valence band. Hence, we compare only the bands they

have in common, by taking the minimum number of electrons of all the sets and removing the

exceeding low-energy bands accordingly. By means of this additional criterion it is possible

to automatically detect ghost states [128] in a pseudopotential in the valence and in the

conduction up to the chosen threshold (here 10 eV above the Fermi energy), as they are

signalled by extremely large values (of the order of eV or more) of the band distances when

computed with respect to other ghost-free pseudopotentials (see Fig. 5.7 for an example).

We refer to Ref. [90] for additional information and discussions on the SSSP protocol, and for

the list of pseudopotentials and corresponding suggested wavefunction cutoffs of the two

SSSP libraries (version 1.1) selected according to the selection criteria given in Table 5.3. On a

more general level, apart from the SSSP testing protocol and libraries, all the data obtained

through the application of the SSSP protocol to the tested pseudopotential libraries provides

a database of verification data and convergence tests that facilitates the optimal choice of

pseudopotentials and wavefunction cutoffs for custom applications. For example, some

physical properties may be implemented only for some pseudopotential types (typically only

NC) or some applications may require convergence of just a subset of the quantities that

we consider in the SSSP testing protocol. By a look at our plots and data, see for instance

the condensed plot for palladium shown in Fig. 5.6, a user can quickly select the optimal

pseudopotential and wavefunction cutoff tailored for the specific application.
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In fact, this is what we do for IPA calculations performed with SIMPLE.

5.3.2 IPA calculations with SIMPLE

In IPA calculations performed with SIMPLE, we cannot simply use the two pseudopotential

libraries proposed in the SSSP with the corresponding suggested wavefunction cutoffs chosen

according to the SSSP selection criteria because the SSSP libraries are a mixture of NC, US and

PAW pseudopotentials. The SIMPLE code, instead, supports only NC pseudopotentials and so

we are restricted to use exclusively this type of pseudopotentials. For the selection of the NC

pseudopotentials and corresponding converged wavefunction cutoffs to be used in our work,

we focus our attention only on the plane-wave convergence of band structure and pressure,

and on the precision of structural properties estimated through the ∆-factor test. In particular,

the electronic band structures are a fundamental ingredient in the determination of the IPA

dielectric function and thus, for our work, it is important to have reliable and well-converged

band structures. Differences between two sets of band structures are quantitavely measured

through the η function, as defined within the SSSP protocol (see Section 5.3.1), that can be

used to compare both band structures obtained at two different wavefunction cutoffs for the

same pseudopotential and band structures obtained with two different pseudopotentials.

We check the precision of pseudopotentials in the estimation of the equilibrium volume by

means of the equation of state and we disregard those that have a∆-factor that is too large com-

pared to all-electron results. Because we often want to relax both cell-internal and cell-external

degrees of freedoms of the considered crystal structures, it is necessary to have converged

stresses and forces. For our purposes, we are less interested in having fully converged phonon

frequencies and cohesive energies and thus we do not consider their convergence, as it is

instead performed in the SSSP protocol for the selection of pseudopotentials.

Moreover, we also check the comparison of band structures of a given elemental crystal among

different pseudopotentials (see chessboard plots in Fig. 5.7). If a single pseudopotential shows

discrepancies with respect to all the other pseudopotentials considered in the SSSP (which are

generated with different codes and by different authors), it is likely the sign of inaccuracies

related to that particular pseudopotential and its use should therefore be avoided. However,

because of the absence of reference all-electron band structures data, we cannot be sure that

the pseudopotential we choose has the true PBE band structure. Finally, with the help of chess-

board plots and band structure diagrams, we check for the presence in the pseudopotentials

of ghost states in empty bands up to 10 eV above the Fermi energy and, if any ghost state is

found, avoid to employ those pseudopotentials.

By inspecting all these data from the SSSP database of tests, we decide to use the SG15 [100]

(version 1.0 and 1.1) NC pseudopotential library for most of the elements of the periodic

table because it is, in most of the cases, both precise and efficient. We select the converged

wavefunction cutoffs to be used in our simulations such that each KS energy Enk in the valence

and in the conduction up to 10 eV above the Fermi level3 is converged at least within 20 meV

3For our work, we are mainly interested in the calculation of the optical properties within the visible range.
Therefore the convergence of the band structure up to 10 eV above the Fermi level is a safe choice for a reliable
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(max η10) and that the pressure gives discrepancies in the equilibrium volume of less than

0.5 % (δVpr ess). The average ∆-factor is 0.8 meV/atom and the average wavefunction cutoff

is 64 Ry for all the elements considered. For a few elements, i.e. Mn, Cr and Fe, the SG15

pseudopotentials do not give a satisfactory equilibrium volume. For these elements we use

the Pseudo Dojo [117] (version 0.4) pseudopotentials with the wavefunction cutoff suggested

by the authors for accurate simulations. Moreover, we use the Pseudo Dojo pseudopotentials

instead of the SG15 ones also for Hf, due to a very large number of electrons in the valence

of the SG15 pseudopotential, and for Zn, due to convergence problems in the self-consistent

solution of the KS equations for some DFT simulations. No ghost states up to 10 eV above the

Fermi energy are present in the pseudopotentials selected.

The list of all pseudopotentials and corresponding wavefunction cutoffs used for all the ele-

ments of the periodic table considered in this work is shown in Table 5.4.

estimation of the reflectivity at the IPA level within this range.
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Element Pseudopotential Cutoff [Ry]
Li SG15 70
Be SG15 60
B SG15 55
C SG15 80
N SG15 80
Na SG15 100
Mg SG15 90
Al SG15 80
Si SG15-1.1 50
P SG15-1.1 65
K SG15 55
Ca SG15 55
Sc SG15 55
Ti SG15 60
V SG15 70
Cr Dojo 100
Mn Dojo 100
Fe Dojo 100
Co SG15 70
Ni SG15 80
Cu SG15 90
Zn Dojo 90
Ga SG15 90
Ge SG15 70
As SG15-1.1 50
Rb SG15 50
Sr SG15 55

Element Pseudopotential Cutoff [Ry]
Y SG15 55
Zr SG15 55
Nb SG15 90
Mo SG15 50
Tc SG15 55
Ru SG15 50
Rh SG15 55
Pd SG15 55
Ag SG15 55
Cd SG15 55
In SG15-1.1 80
Sn SG15-1.1 65
Sb SG15-1.1 60
Te SG15-1.1 55
Cs SG15-1.1 60
Ba SG15 60
Hf Dojo 65
Ta SG15 65
W SG15 55
Re SG15 90
Os SG15 70
Ir SG15 50
Pt SG15 65
Au SG15 55
Hg SG15 65
Tl SG15 60
Pb SG15 50
Bi SG15 50

Table 5.4 – List of pseudopotentials (using the short names of Table 5.2) and corresponding
wavefunction cutoffs chosen for each element considered in this work.
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6 Reflectivity and colour of elemental
metals

In this Chapter we discuss the results of the simulations of the reflectivity and colour of all 45

elemental solids up to atomic number 83 (i.e. up to the element bismuth) that are metallic in

their ground-state crystal structures, with the exclusion of lanthanides1. All the simulations

are performed following the computational approach described in Chapter 5.

6.1 Computational details

As discussed in Section 5.3.2, we always use the PBE scalar-relativistic pseudopotentials and

wavefunction cutoffs reported in Table 5.4, that have been selected for both precise and ef-

ficient DFT calculations and with a particular focus on the convergence of band structures.

All calculations on elemental metals are performed on the ground-state crystal structures at

zero temperature, as provided in Ref. [110] (and available online [120]). The equilibrium vol-

ume of each structure corresponds to the reference PBE value obtained by extensively tested

all-electron calculations for the equation of state [111]. If needed, the crystal structures are

reduced to the primitive cell using the spglib library [129]. Spin-polarization is not included

in our calculations, so that the effect of magnetism on the optical properties of the magnetic

crystals Cr, Mn, Fe, Co and Ni is neglected.

When considering anisotropic cristals, we always deal with the dielectric function ε(ω) aver-

aged over the three Cartesian directions:

ε(ω) = ε(x̂,ω)+ε(ŷ,ω)+ε(ẑ,ω)

3
. (6.1)

We define a corresponding average IPA Drude plasma frequency as ω2
D = [ω2

D(x̂)+ω2
D(ŷ)+

ω2
D(ẑ)]/3. In fact, the most typical experimental situation is to have polycrystalline materials

in which grains have random orientations, and the average procedure described before is

justified.

The dielectric function is evaluated by always including the non-local commutator in the

1Lanthanides are disregarded because DFT-PBE calculations are known to fail in correctly describing, even
qualitatively, f electrons due to strong correlation effects.
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computation of the velocity matrix elements. The effect of the inclusion of spin-orbit coupling

and of the neglect of the non-local commutator in the estimation of the IPA optical properties

is discussed in more detail in Section 6.5.

The convergence of the IPA dielectric function with respect to all the relevant computational

parameters has been studied. In Fig. 6.1 we show the dependence of the IPA Drude plasma

frequency of Au and Pd with respect to the Gaussian broadening, named σ, used for the evalu-

ation of the Fermi-surface integral in Eq. 3.55. The calculations are performed with different

uniform interpolation k-grids for the summations over the BZ entering in the estimation of

the interband and intraband contributions to the IPA dielectric function. We choose Au and

Pd as test examples because they are representative of the two limiting cases in which a single

free-electron-like band crosses the Fermi energy (sp metals) and in which are instead the flat

d bands that cross the Fermi energy (transition metals), respectively. For large values of σ, the

different k-grids give all very similar results but the discrepancies increase by decreasing σ. In

Au a large σ and a relatively coarse k-grid (i.e. 0.4 eV and 30×30×30, respectively) give already

a good estimate of the value of ωD extrapolated for vanishingly small σ but in Pd the increase

of the broadening introduces a significant error with respect to the value at the limit σ→ 0.

Similarly, we also study the convergence of εinter
2 (ω) with respect to k-points grids at different

values of the empirical interband broadening η. As shown in Fig. 6.2, coarse k-grids and small

values of η give rise to spurious oscillations in the spectra. Clearly, by increasing η we observe

a faster convergence of εinter
2 (ω) with k-points sampling and a corresponding broadening of

all the spectral features2. We then calculate the reflectivity R(ω) from εinter(ω) and εintra(ω)

obtained using the same value for the respective broadenings, i.e. η= σ (see Fig. 6.3). The

spurious oscillations observed in εinter
2 (ω) are, to some degree, attenuated in R(ω). Most im-

portantly, if a dense enough interpolation k-grid is used (e.g. 64×64×64), we note that R(ω) is

nearly independent from the values of η and σ chosen.

As a compromise between accuracy of the results and computational cost, we make the

choice to employ an interpolation k-grid of 64×64×64 and η=σ= 0.1 eV for each elemental

metal considered, if not specified otherwise. An exception is elemental aluminium for which,

because of a very slow convergence of εinter(ω) with respect to k-points sampling, the interpo-

lation k-grid used is 80×80×80 and η is set to 0.2 eV.

The additional computational parameters reported below are used for all the elemental metals

studied. In the scf calculation of QE for the evaluation of the ground-state density we use

a Monkhorst-Pack k-grid of 24×24×24 and a Marzari-Vanderbilt smearing of 0.02 Ry. In

the nscf calculation of QE needed for the construction of the Shirley’s OB we use a uniform

k-grid of 2×2×2 including the seven periodic images of Γ. We make the safe choice to use

sb = 0.0075 a.u. for the construction of the OB in SIMPLE. We compute the dielectric function

ε(ω) for frequencies in the range [0, 20] eV using at least 30 empty conduction bands3. The

2The convergence behaviour of εinter
1 (ω) is very similar to the one of εinter

2 (ω) and it is not shown here.
3If the number of valence bands Nv is larger than 30, we consider Nv empty conduction bands rather than 30.

Although εinter
2 (ω) converges fast with respect to the number of empty bands since only the conduction bands

up to 20 eV above the Fermi energy give a non-negligible contribution in the range of frequencies [0, 20] eV, the
convergence of εinter

1 (ω) is slower and requires a larger number of bands.
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occupations fnk of the KS states are computed according to the Fermi-Dirac distribution at

room temperature (i.e. 0.025 eV) whereas the empirical dissipation γ entering in Eq. 3.58 for

the evaluation of εintra(ω) is set equal to 0.1 eV, which is of the order of typical experimental

values for metals [130, 131]. The effect of using a larger value of γ on the dielectric function is

to increase the optical absorption (see imaginary part of Eq. 3.58). In terms of the reflectivity

of simple elemental metals such as potassium, for which the Drude model of Eq. 3.58 is a

good approximation to the true optical properties (see Section 6.4 and Fig. 6.9 therein), an

increase of the dissipation γ translates in a reduction of the intensity of the reflectivity below

the classical Drude plasma frequency ωD,val and to a smoothening of the reflectivity edge

appearing at the frequency ωD,val.

Figure 6.1 – Dependence of the IPA Drude plasma frequency ωD for elemental Au and Pd on
the Gaussian broadening σ for different interpolation k-points grids.
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Figure 6.2 – Dependence of εinter
2 (ω) for elemental Au and Pd on the interpolation k-points

grids for different values of the empirical interband broadening η.
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Figure 6.3 – Dependence of R(ω) for elemental Au and Pd on the interpolation k-points grids
for different values of η and σ (with η=σ).
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6.2 Comparison with experiments

6.2.1 Reflectivity and colour

We show in Fig. 6.4 the comparison between IPA results and experimental data for the reflec-

tivity curve of 18 elemental metals, and focusing in a range of frequencies centered around

the visible range (i.e. [1.65, 3.26] eV). Experimentally, we observe high and flat reflectivities

along the visible spectrum for the “precious" transition metals (i.e. Rh, Ir and Pd) while we

observe flat but less high reflectivities for the other transition metals considered (i.e. V, Nb, Ta,

Cr, Mo and W). As a consequence, in terms of CIELAB colour coordinates, the first have large

CIELAB brightness L∗ and thus whitish colour while the others have smaller brightness and

thus a more greyish colour. An interesting exception among the transition metals is osmium,

that shows a reflectivity curve that is low in the low-energy part of the visible spectrum but

then suddenly rises in the blue-violet part, thus giving a bluish tint to pure osmium. A similar

behaviour is found also in tantalum but the rise of the reflectivity curve in the blue-violet

region is significantly smaller and, consequently, also the bluish tint of the material. Instead,

the simple sp metals lithium, potassium and aluminium all have very high and nearly flat

reflectivity curves in the visible range (and therefore whitish colour) while in beryllium the

intensity of the reflectivity is lower, and comparable to that of the transition metals (and thus

having a greyish colour). Interestingly, the reflectivity curve of cesium decreases significantly

within the visible range, so that red and yellow light are strongly reflected while the other

visible frequencies are absorbed, giving a yellow tint to the material. As clearly shown in

Fig. 6.4, the IPA simulations reproduce these different features of the elemental metals. For

noble metals instead, the characteristic drop in the reflectivity curve in the visible range (for

Cu and Au) or in the ultraviolet (for Ag) is also reproduced by the simulations, but at smaller

energies compared to experiments due to the well-known underestimation of the interband

gap of DFT-PBE band structures (see Chapter 1 and discussion therein).

We can quantitatively compare experiments and simulations in terms of colour coordinates by

converting the reflectivity curves in the visible range to CIE colour spaces. In Fig. 6.5 we show

the comparison between simulated colours and experimental colours in CIELAB space for

some elemental metals. The colour differences between simulations and experiments for 22

elemental metals are summarized in Table 6.1. The average colour difference is <∆E >= 6.0

over these 22 elements (<∆E >= 3.8 if not including the three noble metals).

The IPA approach applied on top of PBE band structures predicts the reflectivity and colour of

elemental metals surprisingly well. Although the colour is not always in quantitative agree-

ment with experiments (see Table 6.1 and Fig. 6.5), we conclude that the shape and the main

features of the experimental reflectivity curve are reproduced in elemental metals.

These results are somewhat surprisingly because we know that quasiparticle corrections mod-

ify significantly the DFT-PBE band structure in metals and the corrections are known to be

k-dependent [46, 47] (i.e. they do not act as a simple scissor operator). Nonetheless, our

approximated simulations manage to capture the correct features of the optical constants,

intuitively because the dielectric function is given by the sum of all possible vertical transi-
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tions over all the BZ and small differences in the positions and features of the bands (like

gradient and curvature) are averaged out in the spectra. In the special case of noble metals the

position of the occupied d bands in PBE is not correct and, since there are no other allowed

interband transitions in that energy range, the onset of absorption in PBE is also not at the

correct position (similar to the case of semiconductors for which the DFT-PBE band gap is

systematically underestimated). On the other hand, the shape of ε2(ω) for noble metals is

reasonably well reproduced. This points to the fact that the PBE KS states, although giving an

inaccurate description of the energy of the d bands, are a reasonable approximation of the

true quasiparticle states.

Element ∆E
Li 5.1
Na 1.2
K 2.9
Cs 12.5
Be 3.6
V 3.7
Nb 3.4
Ta 2.4
Cr 4.0
Mo 2.4
W 3.4
Os 6.5
Co 5.5
Rh 1.8
Ir 2.9
Ni 4.6
Pd 0.5
Pt 5.2
Cu 11.8
Ag 12.4
Au 33.9
Al 1.4

Table 6.1 – Colour differences (∆E) in CIELAB colour space between simulations and experi-
ments for 22 elemental metals.
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Figure 6.4 – Simulated (solid lines) and experimental (dot-dashed lines) reflectivities for 18
elemental metals. Experimental data are taken from Ref. [9]. The two vertical dashed lines
show the limits of the visible range.
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Figure 6.5 – Comparison of simulated (green) and experimental (blue) colours for eight ele-
mental metals in CIELAB colour space (i.e. Ag, Au, Cs, Cu, Nb, Os, Rh and Ta). Experimental
colours are derived from the optical data of Ref. [9].

6.2.2 Plasma frequency

We report in Fig. 6.6 the IPA Drude plasma frequency for all the 45 elemental metals studied.

For anisotropic crystals, the average value ωD is shown. We observe the trend that for the

alkali metals (Na, K, Rb, Cs) the IPA Drude plasma frequency decreases moving down in the

column of the periodic table. This is explained by the fact that the volume of the primitive

cell increases going down the column and that, for these simple metals, ωD 'ωD,val ∝ 1/
p

V .

In lithium the situation is not so simple due to stronger interband transitions (see Table 6.3).

Moreover, as a foreseeable general rule, elements in the same column of the periodic table

and sharing the same crystal structures typically have similar values of ωD.
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Figure 6.6 – Periodic table with the IPA Drude plasma frequency for 45 elemental metals
computed in their ground-state crystal structures. The space group number of each crystal
structure is also reported.

As shown in Table 6.2, our IPA results are in good agreement both with experiments and with

the simulations performed by J. Harl [17] at the same level of theory for several elemental

metals4. The small discrepancies found between the simulations most likely originate from the

fact that in Ref. [17] the IPA Drude plasma frequency is evaluated at the experimental lattice

parameter while we instead use the PBE lattice parameter. Indeed our values are systematically

smaller than the ones in Ref. [17]. The remaining discrepancies are probably due to small

differences in the details of the two implementations.

6.2.3 Photorealistic rendering

Photorealistic rendering is performed with the software Mitsuba [6]. In Fig. 6.7 we show the

rendering of a metallic surface of elemental gold, osmium and cesium using the IPA optical

constants and the comparison with the appearance of experimental samples of the same

materials.

In gold, the shift of the reflectivity edge in the simulations with respect to experiments makes

the rendered colour more reddish than the true colour of pure gold. On the other hand the

bluish colour of osmium and the yellow colour of cesium are reasonably well reproduced by

the IPA simulations.

4For transition metals there are no experimental data available because, due to the presence of interband
transitions even at vanishingly small frequencies, the Drude plasma frequecy cannot be extracted by fitting
experimental optical data to the Drude model, even at very low energies.
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6.2. Comparison with experiments

Figure 6.7 – Comparison between the rendering of a metallic surface of pure gold (top),
osmium (center) and cesium (bottom) obtained using the simulated optical constants (left
panel) and real samples of the three materials (right panel).
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Element This work J. Harl [17] Exp.
Cu 8.8 9.1 8.8, 8.9
Ag 8.9 9.2 8.9 ± 0.2 [130], 8.9
Au 8.6 9.0 8.45 [131], 8.7
Li 6.4 6.5 6.4
Na 6.0 5.9 5.7
Ca 4.1 4.3 5.7
Al 12.5 12.6 12.3 , 12.5
Rh 9.6 10.1
Pd 7.0 7.4
Pt 8.4 8.8

Table 6.2 – Computed values of the IPA Drude plasma frequency (in eV) compared to previous
simulations performed by J. Harl [17] and experiments (Exp.). The experimental values with
no explicit reference are extracted from the data reported in Ref. [17], where all the original
experimental references can be found.

6.3 Verification of the f -sum rule

We perform a check a posteriori of the consistency of our simulations by verifying the f -sum

rule. In real simulations we can calculate the dielectric function in an finite energy range and

not up to infinity, so that the numerical integration required in Eq. 3.64 is in practice truncated

at a cutoff energy ωc. We can define an energy-dependent effective classical Drude plasma

frequency ω2
D,eff(ωc) as:

ω2
D,eff(ωc) = 2

π

∫ ωc

0
dωωε2(ω). (6.2)

In case the transitions coming from the valence electrons can be considered essentially ex-

hausted above the cutoff energy ωc, such that ε2(ω>ωc) ' 0, we can do the approximation

ωD,eff(ωc) 'ωD,val. For a given elemental metal, the number of valence electrons per atom is

assumed to be equal to the nominal valence Z of the element. However, if the pseudopotential

contains also semi-core states in its valence the cutoff energy should be lower than the energy

of the onset of absorption for the included semi-core electrons. If not, the electrons in the

semi-core states should also be included in the valence Z in order to satisfy the f -sum rule for

the valence electrons.

As already discussed in Section 3.4.5, the f -sum rule is valid for the total number of electrons

and does not exactly hold for the valence-conduction electrons only. Indeed, in the pseudopo-

tential formalism, the core electrons are frozen inside the nucleus and the f -sum rule can

be slightly violated due to the non-locality of the pseudopotentials (see Section 3.4.5). The

truncation of the integral always gives an underestimation of ω2
D,val while the effect of the

non-local potential can instead bring to an overestimation of ω2
D,val. In practice, it has been

verified both in experimental [132] and computational studies [83, 35] on elemental metals

that the f -sum rule is nearly verified also for the valence-conduction electrons only.
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Our calculations of ε(ω) in elemental metals are performed up to 20 eV. Therefore we check

the consistency of our calculations through the valence f -sum rule for elements in which we

can assume that the transitions from the valence are exhausted above 20 eV and that eventual

semicore states of the pseudopotential are more than 20 eV below the Fermi level. In most

of the transition metals and in the noble metals as well, the interband transitions from the

valence d electrons are not yet exhausted at 20 eV and these elements are not considered.

Instead, for K, Rb, Cs, Sr and Ba, transitions from the semicore p states starts below 20 eV

and so they are also not included5. In Fig. 6.8 we show the comparison between ωD,val and

ωD,eff(ωc) with ωc = 20 eV for thirteen elemental metals that satisfy the aforementioned condi-

tions. The values of the classical Drude plasma frequency are extracted from Ref. [78] in which

the experimental volume is used together with the nominal valence Z of the element. As it is

clear from Fig. 6.8 the valence f -sum rule holds reasonably well.

Figure 6.8 – Verification of the valence f -sum rule. ωD,eff is computed by truncating the energy
integration at 20 eV. We report in parentheses the nominal number of valence electrons Z
used in the evaluation of ωD,val.

6.4 Validity of the Drude model

In the empirical Drude model, developed by Paul Drude in 1900, the valence electrons in

a metal are assumed to be a gas of free and charged classical particles. The application of

the kinetic theory of gases to this system allows one to estimate the optical properties of

a metal once the density of valence electrons in the material is known. The Drude model

can furnish a reasonable estimation of the IPA Drude plasma frequency, i.e. ωD 'ωD,val, in

simple metals for which the conduction electrons can be assumed to be nearly free. Indeed,

Table 6.3 shows that the Drude model gives reliable results for elemental metals with only

5However, for these elements, we have checked that the valence f -sum rule holds if the integral is truncated
before the onset of the transitions from the p semicore states.
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one valence electron per atom, such as the alkali metals. Because of the free-electron-like

behaviour of these metals, interband transitions from the partially-filled conduction band are

very weak, with the exception of Li, and the second term in the right-hand side of Eq. 3.62

can be neglected. Indeed we notice that the error of the Drude model has a clear trend and

increases by moving down in the periodic table from Na to Cs due to a corresponding increase

of the interband absorption processes (see Appendix C.1). A behaviour similar to alkali metals

is shown by the noble metals. The s electrons in the partially-filled conduction band can still

be assumed nearly free and are not substantially perturbed by the occupied d states lying

lower in energy so that the Drude model is again in good agreement with IPA results.

In Fig. 6.9 we compare the reflectivity obtained from the Drude model using the values for

ωD,val reported in Table 6.3 and the reflectivity from IPA simulations. Interband transitions

in potassium are very weak up to 15 eV and IPA simulations and Drude model give similar

results and both reproduce the experimental behaviour. Infact the material is highly reflective

for energies below the plasma frequency while it is roughly transparent for higher energies6.

On the other hand, for cesium, interband transitions in the visible range are stronger and IPA

simulations and Drude model differ. In aluminum, IPA simulations and Drude model give

similar results but, of course, the Drude model does not reproduce the dip in the experimental

reflectivity curve at around 1.5 eV that is due to interband transitions. In gold the reflectivity

curve in the visible range is dominated by interband transitions involving the 5d electrons

that strongly reduce the reflectivity at energies smaller than the Drude plasma frequency.

Therefore the Drude model, although giving the correct Drude plasma frequency, does not

reproduce the experimental behaviour of the reflectivity of gold (and, similarly, of copper and

silver) which is instead captured by the IPA simulations.

Summarizing, in order to be predictive in the estimation of the optical properties of metals,

both interband and intraband contributions need to be computed ab initio.

6To notice that, in general, the Drude plasma frequency does not coincide with the plasma frequency corre-
sponding to the true plasmon resonance of the material, which is defined as the frequencyωp for which ε1(ωp) = 0.
But in the case of elemental potassium, for which interband transitions are negligible, the two values are nearly
equal.
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Element ωD ωD,val Error (%)
Li 6.4 8.1 (1e) 27
Na 6.0 6.0 (1e) 0.0
K 4.2 4.4 (1e) 4.8
Rb 3.7 4.0 (1e) 8.1
Cs 3.0 3.5 (1e) 17

Cu 8.8 10.8 (1e) 23
Ag 8.9 9.0 (1e) 1.1
Au 8.6 9.0 (1e) 4.6

Mg 7.7 10.9 (2e) 42
Al 12.5 15.8 (3e) 26

Table 6.3 – Comparison of the classical Drude plasma frequency from the Drude model (ωD,val)
and the IPA Drude plasma frequency (ωD). We report in parentheses the nominal number of
valence electrons Z used in the evaluation of ωD,val. The error given by the Drude model with
respect to the IPA results (in percentage) is also shown.

Figure 6.9 – Comparison of the reflectivity obtained with IPA simulations (solid lines), Drude
model (dashed lines) and from experiments [9] (dot-dashed lines) for K, Cs, Al and Au.
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6.5 Additional effects on the optical properties

We now study the effect of the inclusion of SOC and of the neglect of the non-local commutator

in the evaluation of the IPA optical properties.

6.5.1 Spin-orbit coupling

All the calculations in this work are performed at the scalar-relativistic level. Here we want to

study the effect of the inclusion of an additional relativistic correction, namely the spin-orbit

coupling (SOC).

The Schrödinger equation is an non-relativistic approximation of the more general relativistic

Dirac equation in the limit in which relativistic corrections can be neglected. Relativistic cor-

rections are typically added to the Schrödinger equation as a perturbation and are divided into

three terms: the mass-velocity and Darwin terms, that are included at the scalar-relativistic

level, and the SOC. The mass-velocity and Darwin terms usually give the largest relativistic

contributions but for heavy-elements SOC can be relevant too.

Here we study the effect of SOC on the optical properties of two heavy elements relevant for

our work, i.e. gold and platinum (see Fig. 6.10). In gold the largest relativistic effects come

from the mass-velocity and the Darwin terms while SOC gives only a small correction [51]. In

particular, the splitting of the bands induced by the SOC reduces the interband gap so that the

absorption edge appears at a slightly lower energy. However, the shape of the reflectivity curve

is not changed and the shift of the absorption edge leads, as a consequence, to a drop in the

reflectivity curve a bit redshifted with respect to the scalar-relativistic calculation. Similarly,

the SOC only reduces the IPA Drude plasma frequency by 0.2 eV (from 8.6 eV to 8.4 eV), given

that the conduction band crossing the Fermi level is almost left unmodified by the inclusion of

SOC [52]. However, because of the shift of the reflectivity edge, there is a perceivable change

in colour between scalar-relativistic and fully relativistic simulations (∆E = 3.6). We notice

that the correction in R(ω) due to the SOC is in the wrong direction compared to experiments

and the simulated colour moves further way from the yellow part of the colour space (in terms

of CIELAB colour space it means that b∗ decreases).

In platinum the effect of SOC is more dramatic. The low-energy peak in εinter
2 (ω) at 0.2 eV in

the scalar-relativistic simulation due to d-d interband transitions is shifted by 0.6 eV to higher

energies by including the SOC. This gives rise to a reduction in the reflectivity curve at around

0.8 eV that well reproduces the experimental data and that is absent in the scalar-relativistic

case. The inclusion of SOC also reduces the Drude plasma frequency by nearly 20 %. Besides,

we note in passing that our results are in very good agreement with previous all-electron

calculations [51].

For platinum the effect of SOC is large but it modifies the optical properties in the infrared

region of the spectrum and not in the visible so that the colour remains almost unchanged

(∆E = 1.0)7 .

7We computed also the optical properties of the heavy element tungsten including SOC. However, for this
material, no significant differences with respect to the scalar-relativistic case are found in the reflectivity curves for
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6.5. Additional effects on the optical properties

Figure 6.10 – Comparison between the dielectric function and reflectivity for platinum and gold
computed including (’Relativistic’, solid lines) and not including (’Scalar-relativistic’, dashed
lines) SOC. Experimental data of the reflectivities (dot-dashed lines) are also reported [9].
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6.5.2 Non-local commutator

The neglect of the non-local commutator gives a systematic overestimation of the velocity

matrix elements, both of the diagonal (intraband) and off-diagonal (interband) terms. As a

consequence, the reflectivity curve R(ω) is also overestimated by neglecting this contribution.

However the absorption edge and the position of the peaks in the spectra, that are given by

the energy differences between unoccupied and occupied bands, are not modified by this

contribution. In Fig. 6.11 we study the effect of the non-local commutator on the optical

properties of vanadium and copper for which this correction is particularly large. The IPA

Drude plasma frequency is overestimated by 33 % for vanadium and by 35 % for copper. We

performe the same test also for other elements, for which the effect is less pronounced but

still noticeable. In silver, palladium and rhodium the overestimation is of 7-9 %, while in gold

it is negligible. The interband optical absorption, given by εinter
2 (ω), is also overestimated and

the discrepancies are, in general, energy dependent. However, for all the materials tested, the

main spectral features of εinter
2 (ω) are not modified by the neglect of the non-local commutator,

as explained before, with the notable exception of copper. In copper, as already noted by

Marini et al. [72], the shape of εinter
2 (ω) is significantly altered, and at the absorption edge,

the overestimation is more than 100 %. In the case of copper, the non-local commutator is

actually needed to reproduce the experimental data.

The effect on the colour of the inclusion of the non-local commutator for vanadium and

copper is small but perceivable: ∆E = 2.2 for vanadium and ∆E = 6.2 for copper.

energies up to 10 eV, and thus the data are not shown here.
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Figure 6.11 – Comparison between the dielectric function and reflectivity for vanadium and
copper computed with (solid lines) and without (dashed lines) including the non-local com-
mutator. Experimental data of the reflectivities (dot-dashed lines) are also reported [9].
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7 Reflectivity and colour of alloys

In Chapter 6 we have discussed the results of the simulations of the reflectivity and colour

of elemental metals and we have compared the simulated optical data with experiments. In

this Chapter we perform a similar study on metallic alloys, focusing mainly on noble-metal

binary compounds, and considering different types, i.e. intermetallics, solid solutions and

heterogeneous alloys.

7.1 Simulation of alloys

7.1.1 Binary alloys

We consider binary alloys, that we indicate with the nomenclature A1−x Bx , where A and B are

the two constituent elements and x is the atomic concentration of element B. According to

the atomic configuration and microstructure, these can be schematically divided into three

main categories: solid solutions, intermetallic compounds and heterogeneous alloys. In solid

solutions the atoms of the two constituent elements are randomly distributed over the sites

of the lattice and with a probability of occupation given by the concentration of the element

in the alloy1. Intermetallic compounds are ordered structures that have a defined crystal

structure and simple stoichiometric ratios (or, more correctly, a narrow homogeneity range).

Heterogeneous binary alloys instead consist of a mixture of two phases due to the presence of

a solubility gap in the phase diagram. Pure solid solutions and intermetallic compounds are

single-phase alloys while heterogeneous alloys are two-phase alloys, and the single phases

coexisting in a heterogeneous alloy can be either solid solutions or intermetallic compounds.

1There is also a fourth category that is not considered in this work, the so-called metallic glasses. As in solid
solutions, atoms of the constituent elements in metallic glasses are randomly distributed but, in this case, the solid
is amorphous, i.e. there is no underlying periodic lattice. These could be studied with the methods descibed here,
but would require large supercells and realistic, microscopic atomistic models.
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7.1.2 Computational methods

Intermetallic compounds

In first-principles simulations, intermetallic compounds can be treated as elemental crystals

because they have a defined crystal structure and simple stoichiometric ratios. They are truly

periodic systems and can be simply simulated in their primitive cell in the same way as it is

done for elemental crystals.

Solid solutions

The first-principles simulation of disordered solid solutions is not as straightforward as the

simulation of ordered intermetallic compounds. Indeed, from a practical point of view, the

random occupation of the lattice sites and thus the lack of a truly periodic potential in these

systems does not allow for the definition of a primitive cell that can be periodically repeated

in order to build an infinite crystal. From a conceptual point of view, this actually means

that Bloch theorem and thus the reciprocal space formalism underlying band theory is not in

principle applicable to solid solutions. If we consider the disorder introduced by the addition

of alloying elements in the periodic lattice as a perturbation with respect to the pure elemental

crystal, Bloch states are no longer eigenstates of the Hamiltonian of the system but they scatter

into other states with a certain finite lifetime. However, Bloch states can still be considered as

approximate eigenstates if the broadening of the state is much smaller than the width of the

corresponding electronic band.

Several methods exist to model the properties of disordered alloys. We distinguish between

effective-medium approaches and supercell approaches. In effective-medium methods, all

the possible microscopic configurations of the random system are averaged into an effective-

medium having the same crystal structure of the constituent elements. In the supercell

approach instead, the basic idea is to simulate the effect of disorder by building large enough

simulation cells that are able to reproduce the properties of the true random alloy. Here we

briefly describe the virtual crystal approximation (VCA) and the method of the so-called special

quasi random structure (SQS) [133, 134] for the effective-medium and supercell approaches,

respectively; these are the two main computational methods considered in this work for the

simulation of solid solutions.

The VCA method assumes that each atomic site of the parent crystal structure is composed by

“virtual" atoms. The potential generated by these virtual atoms, VVCA, is given by a composition-

weighted average of the potentials VA and VB of the two constituent elements A and B:

VVCA = (1−x)VA +xVB. (7.1)

The VCA is valid in the weak-scattering limit, i.e. when the difference in potential of the

two constituents is small compared to their bandwidth. Depending on the application, it

can sometimes be an adequate approximation mainly for isoelectronic alloys, i.e. when the
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constituent elements belong to the same column of the periodic table, and their potentials are

similar. However the VCA approach does not take into account effects related to structural

relaxation. Indeed, it is a model that assumes the alloy has the same symmetry of the parent

crystal structure and does not include effects related to local symmetry lowering. However,

in a real solid solution, an A atom may be coordinated locally by varying numbers of A and B

neighbours. This modifies the local environment of each site and, in general, lowers the local

symmetry with respect to that of the parent lattice.

An even simpler model that it is worth to briefly describe, is the rigid band model. According to

this model, the potentials VA and VB of the two constituent elements A and B are approximated

as equal, i.e. VA =VB. This means that the band structures of the two elemental crystals of A

and B are assumed to be the same while the position of the Fermi energy is allowed to change

according to the number of electrons per atom, which depends on the concentrations of the

two constituent elements in the alloy.

For completeness, we also mention that more sophisticated methods that go beyond the

VCA approximation and that do not require the use of supercells exist: the coherent potential

approximation (CPA) [135] and the so-called “computational alchemy" method [136] are two

notable examples. However, due to their significant additional complexity, these methods are

not considered in this work and therefore are not discussed in further detail here.

Contrary to the effective-medium techniques, the supercell approach does not rely on any

mean-field model and the effect of disorder is simulated in a “brute-force" way by employing

large simulation cells (supercells). The supercell representing the random alloy A1−x Bx is

occupied by an appropriate number of atoms of elements A and B corresponding to the atomic

concentration x. However, in practice, supercells always have a spurious periodicity because

of the periodic boundary conditions imposed in the simulations. Therefore, convergence of

the properties under investigation with respect to the supercell size must always be carefully

performed. The naive construction of supercells by randomly occupying the lattice sites with

atoms of element A or B (with the probability of occupation given by the atomic concentration

of the alloy) is not the most efficient solution. A systematic improvement, both in terms of

accuracy and computational cost, can be obtained through the use of SQSs. A SQS can be seen

as the supercell that best represents the true random alloy for a given number of atoms per

supercell. The theory underlying the construction of SQSs is based on the cluster expansion

(CE) [137] method, which is a rigorous approach for the first-principles simulation of both

ordered and disordered alloys. Without going into details, the main idea of the SQS method is

to build “special" finite supercells that reproduce the structural correlation functions of the

perfectly random alloy. The goal is therefore to build structures that locally resemble the true

random alloy. However, it is worth mentioning that for SQSs of relatively small size (N ∼O(10),

where N is the number of atoms in the supercell), only the first pair correlation functions

of the random alloy can be exactly reproduced. Hence this approach is appropriate if the

physical properties under investigation depend only on the local environment and are not

influenced by long-range interactions.

The SQS method, since it is based on the CE method, can be used in principle for any property
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that is defined on a fixed lattice. Nonetheless, for each alloy property computed, one should

always study the convergence of the given property with respect to the number of correlation

functions of the random alloy that are reproduced by the SQS (to give a practical example, con-

vergence of the total energy does not necessarily imply convergence of the optical properties

or viceversa). In practice, SQSs with only 16 atoms or less have been successfully applied to

calculate, for instance, thermodynamic and magnetic properties of metallic alloys [138] and

also the band gap of semiconductor alloys [134].

When dealing with the simulation of optical properties within the framework of the super-

cell approach, the effect of alloying additions on a pure elemental crystal is to give rise to

new electronic interband transitions due to zone folding effects (pseudodirect transitions),

degeneracy breaking of electronic states (crystal-field splittings due to symmetry lowering)

and localised impurity states (sublattice localisation), which cannot be found in simple VCA

calculations [134]. Moreover, since SQSs electronic states have lower symmetry than VCA ones

and can correspond to a combination of VCA states of different character, also the oscillator

strengths of optical transitions are modified if compared to VCA calculations2. In general,

these effects could lead to substantial differences between SQS and VCA optical spectra.

In this work we use the supercell approach, based mainly on the use of SQSs, to simulate the

reflectivity and colour of solid solutions. As we will show below, the SQS approach is able to

qualitatively capture the main trends in the reflectivity curve, and thus in the colour, of gold-

based solid solutions. In our opinion, it is the method that gives the best compromise between

accuracy and computational cost and, at the same time, allows one to perform systematic

first-principles studies in a relatively straightforward way.

Heterogeneous alloys

We assume that the grain sizes within the heterogeneous alloy are macroscopic so that we can

define a macroscopic dielectric function of the phase within a grain. We use the Bruggeman

model (e.g. see Ref. [140]) to estimate the dielectric function, that we indicate as εBr, of the

alloy made of the two phases α and β. If the total concentration x of the alloy is known, we

can calculate the amounts of the two phases present, xα and xβ (xα+xβ = 1), by applying the

lever rule to the phase diagram of the system. The dielectric function of the mixture within the

Bruggeman model is given, in terms of the dielectric functions εα and εβ of the single phases,

by the following expression:

(1−xβ)
εα−εBr

εα+2εBr
+xβ

εβ−εBr

εβ+2εBr
= 0. (7.2)

The dielectric function of the single phases can be obtained with the methods described above

2As formalized in Ref. [139], the new features appearing in the band structure of alloys simulated with the
supercell approach can be described in terms of an effective alloy band structure of a fictitious primitive cell having
the symmetry of the parent lattice, and these lead, in practice, to bands with a finite broadening.
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for intermetallic compounds and solid solutions.

In Table 7.1 we summarize the computational methods used in this work in order to simulate

the reflectivity and colour of different types of binary alloys.

Binary alloys Computational method
Intermetallic compounds Primitive cell
Solid solutions Supercell (SQS)
Heterogeneous alloys Bruggeman model

Table 7.1 – Different types of binary alloys and corresponding computational method used for
the first-principles simulation of these systems.

7.2 Optical properties in supercell simulations

We discuss the effects on the optical properties of the lowering of symmetry in supercells

with respect to the case of primitive cells. Indeed, supercells of alloys have lower symmetry

compared to the corresponding pure crystals. Furthermore, the approximated Shirley’s OB

method reduces the symmetry even in supercells that are in principle equivalent to the

primitive cell.

7.2.1 Effects of the optimal basis

According to the equations shown in Section 3.4, the computed IPA optical properties should

not dependent on the size of the simulation cell. In other words, the dielectric function of, e.g.

pure gold, should be identical if computed in a primitive cell or in an equivalent supercell.

In fact, if the cubic symmetry of pure Au is preserved in supercell calculations, pseudodirect

transitions would be forbidden by symmetry (they would correspond to indirect transitions

between different k-points in the BZ of the primitive cell, which are not allowed because

of crystal momentum conservation [77]). However, the introduction of some amount of

disorder in the supercell, e.g. by internal displacement of the atomic positions, would break

the symmetry of the system and the matrix elements of the velocity operator would not be

exactly zero anymore. Moreover, because of the presence of the squared difference of band

energies in the denominator of Eq. 3.65, weak transitions between states just below and just

above the Fermi level would give a large contribution to εinter
2 (ω) for small energies3.

This is what actually happens in the OB method, where a tiny amount of disorder is always

inevitably present. Indeed, the OB method is an approximate interpolation method that does

not preserve the symmetry of the system, even if the supercell has the full symmetry of the

primitive cell. Interpolated bands have always some small numerical errors so that band

degeneracies are not exactly preserved as well as the equivalence due to crystal symmetry of

k-points in the BZ. In practice, as shown below, this numerical error affects only the low-energy

3Unless specified otherwise, in this Chapter we always deal with the dielectric function averaged over the three
Cartesian directions as defined in Eq. 6.1.
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part of εinter(ω).

To numerically assess these effects we consider two test examples: elemental gold and the

intermetallic compound AuGa2. In particular, we study elemental gold in the primitive FCC

cell and in an equivalent 2×2×4 FCC supercell with 16 atoms. Similarly, for the intermetallic

compound AuGa2, we consider both the primitive cell containing 3 atoms and a 2×2×2

supercell containing 24 atoms. For a meaningful comparison we use same broadenings (i.e.

η, σ and γ) and equivalent k-points grids and number of empty bands between primitive

cells and supercells calculations. In Fig. 7.1 we notice for both examples the presence of a

spurious peak centered at around 0.1-0.2 eV in εinter
2 (ω) for supercell calculations. The effect

is dramatic in Au while in AuGa2, where real low-energy interband transitions exist, it is less

pronounced (for Pd, where a strong low-energy peak is present in the primitive cell, as shown

in Fig. 6.2, primitive cell and supercell results are basically identical). Moreover, as we can see

in Fig. 7.1, this spurious effect does not modify significantly the total dielectric function and, as

a consequence, the reflectivity curve. Quantitatively, we verify this with the help of the f -sum

rule. Indeed, if the results obtained for the total dielectric function in the primitive cell and in

the supercell can be considered consistent, the integral entering in the evaluation of the f-sum

rule should give nearly the same number in the two cases. In fact, the numerical evaluation

of the integral in the primitive cell and in the supercell gives values that differ by less than

0.2 % for both Au and AuGa2. Therefore we can state that the true physical quantities, i.e. the

total dielectric function and the reflectivity, are numerically independent from the size of the

supercell. Instead the interband and intraband contributions, if considered separately, can

show some differences due to the intrinsic amount of disorder introduced by the OB method.

Nonetheless, depending on the system studied and on the amount of disorder introduced (i.e.,

for our simulations, on the size of the OB as discussed in Section 5.1), the spurious peak could

in principle have a small impact in the low-energy part of the spectrum and thus to result in a

small reduction of the reflectivity.

As we will see in the following, the absorption peak in εinter
2 (ω) at low energies is present also

in supercell simulations of alloys where the symmetry lowering of the system with respect to

the pure crystal is intrinsically related to the alloying additions inside the simulation cell, and

not just due to the disorder introduced by the OB method4. Computing the optical properties

of a perfect crystal with the OB method can therefore be seen as equivalent to the simulation

of a perfect crystal perturbed with a small amount of disorder5.

4Similar results have been found in first-principles studies on Au [141] and Al [142] thin films performed with
the supercell approach, in which case the intensity and position of the low-energy peak depend on the number of
layers considered.

5From this point of view we can say that the peak at low energies is not spurious but it is a real effect due to the
introduction in the system of an “artificial" (because given by numerical errors) disorder.
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Figure 7.1 – Comparison of the IPA optical properties of Au and AuGa2 computed with the OB
method in the primitive cell (solid lines) and in a supercell (dashed lines). The total dielectric
function and the reflectivity are numerically independent from the size of the simulation cell
while the interband and intraband contributions, taken separately, are not.
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7.2.2 Convergence with k-points sampling and broadening

Similarly to Section 6.1 for elemental metals, we now study the convergence of the dielectric

function and of the reflectivity for supercells with respect to k-points sampling and broadening,

i.e. η and σ. As test examples for supercell simulations of gold-based alloys, we perform the

convergence studies on two 2×2×4 FCC supercells of gold with 16 atoms, AgAu15 and Au15Pd,

in which an atom of Au is replaced with an atom of Ag and an atom of Pd, respectively.

Fig. 7.2 shows that the convergence of the IPA Drude plasma frequency in supercells is less

straightforward compared to the case of elemental metals. The value of ωD depends more

strongly on the interpolation k-grid and converges slowly to a common value, even for large

σ. This behaviour can be explained by the fact that in supercells there are several bands that

cross the Fermi level due to zone folding. Therefore the complex shape of the Fermi surface

requires denser k-grids to be accurately sampled. Moving to the interband contribution, we

observe in Fig. 7.3 a general blurring of all the features of εinter
2 (ω) by increasing η, as for

elemental metals (see Fig. 6.2), and an increase of the optical absorption in the low-energy

range (roughly up to 2 eV). Similarly to the supercell calculations of elemental Au and of the

AuGa2 intermetallic shown in Section 7.2.1, we observe the presence of a peak at low energies

in the optical absorption of AgAu15 and AuPd15. However, in contrast with the case described

before, the appearance of the peak is not only due to the disorder introduced by the numerical

inaccuracies of the OB method but it is due to allowed interband transitions. Indeed, when

considering supercells for the simulation of alloys, the symmetry of the system is truly reduced

if compared to the symmetry of the pure crystal (e.g. of elemental gold when considering gold

alloys) and thus new interband transitions become possible, as explained in Section 7.1.26.

The effect of η on the optical spectra in supercell calculations of gold alloys is similar to the

effect of γ in elemental metals. We also notice that the low-energy optical absorption in

Au15Pd is significantly stronger and extends to higher energies compared to AgAu15. Indeed Pd

impurities in the Au matrix give rise to virtual bound states below the Fermi level that increase

the absorption at frequencies below the interband gap of elemental gold and makes the

absorption edge characteristic of elemental gold smoother. The features of εinter
2 (ω) within the

visible range or at higher energies converge fast with respect to k-points (already a 16×16×11

k-grid gives reasonably converged results), but not the low-energy peak whose intensity is

strongly k-points dependent (see insets in Fig. 7.3). At a fixed value of the broadenings (for

simplicity we consider η=σ given thatωD changes by less than 5 % in both systems by varying

σ), we observe that the reduction of the intensity of the peak by increasing the density of the

k-points grid is compensated by a corresponding increase of the value ofωD. This explains why

the reflectivity curves shown in Fig. 7.4 converge significantly faster than the single interband

and intraband contributions with k-points sampling. On the other hand the reflectivity is

6These considerations, resulting from simulations performed with the SIMPLE code, have been verified by
performing the same supercell calculations also with Yambo. In a 2×2×2 supercell of elemental Au, no low-energy
peak is present in εinter

2 (ω) calculated by Yambo because the symmetry of the primitive cell is preserved (contrarily
to SIMPLE, no interpolation methods are used in Yambo). Instead, in supercells calculations of alloys (e.g. for
Ag-Au) where the symmetry is lower than the primitive cell, the same low-energy peak appears also in the interband
optical absorption computed with Yambo.
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more sensitive to the value of η chosen. A larger value of η produces a stronger smoothening

of the reflectivity edge of elemental gold in AgAu15 and Au15Pd (similar to the effect that γ

has on the reflectivity). And the reflectivity edge of elemental gold is more strongly flattened

in AuPd15 compared to AgAu15 due to the stronger interband optical absorption below the

interband gap of pure gold.

Unless specified otherwise, for the simulation of all binary compounds shown below, we

always use as wavefunction cutoff the largest value between the wavefunction cutoffs of the

two constituent elements, as taken from Table 5.4. We choose the interpolation k-grid to

be used in the evaluation of the dielectric function in terms of a k-point density, which is

defined as the maximum distance between adjacent k-points along the reciprocal axes (in

Å−1). In order to calculate the dielectric function in the frequency range [0, 10] eV, we always

make the over-conservative choice to consider a number of empty bands equal to Nv , i.e. to

the number of valence bands. For the simulation of gold solid solutions with the supercell

approach, we fix γ= 0.001 eV given that the low-energy absorption is controlled by η. In the

case of intermetallic compounds we instead set γ= 0.1 eV as done in Chapter 6 for elemental

metals. Other relevant computational parameters used in all intermetallics and supercell

simulations are: sb = 0.01 a.u., η= 0.15 eV, σ= 0.1 eV.

Figure 7.2 – Dependence of the IPA Drude plasma frequency ωD for AgAu15 and Au15Pd on the
Gaussian broadening σ for different interpolation k-points grids.
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Figure 7.3 – Dependence of εinter
2 (ω) for AgAu15 and Au15Pd on the interpolation k-points grids

for different values of the empirical interband broadening η. Insets show the behaviour of
εinter

2 (ω) zoomed in the low-energy range, i.e. in the interval [0, 1] eV.

94



7.2. Optical properties in supercell simulations

Figure 7.4 – Dependence of R(ω) for AgAu15 and Au15Pd on the interpolation k-points grids
for different values of η and σ (with η=σ).
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7.2.3 Convergence with supercell size

We simulate the effect of disorder in the optical properties of solid solutions by employing the

supercell approach, and using in particular the SQS approach for the simulation of simple

stoichiometric ratios. We now study the convergence of the reflectivity with the size of the

supercell and, as a consequence, with the number of structural correlation functions of the

random alloy that are exactly reproduced by the SQS.

We perform this study by considering Ag0.25Au0.75 and Au0.75Pd0.25 in SQSs with N = 8,16

and 32. All the SQSs considered in this work are generated with the ATAT package [143, 144].

We relax both cell-internal and cell-external degrees of freedom and, in order to perform

a consistent convergence study of the SQSs sizes, we use equivalent k-points grids for the

different supercells (always defined in terms of k-point density). As shown in Fig. 7.5 for

εinter
2 (ω) and ωD, the interband and intraband contributions, taken separately, depend on the

size of the simulation cell. Similarly to the supercell calculations for AgAu15 and Au15Pd shown

in Section 7.2.2, we observe the presence of a peak at low energies in the interband optical

absorption of the SQS simulations for Ag0.25Au0.75 and Au0.75Pd0.25. In particular, the increase

of the size of the supercell moves the spectral weight from the intraband to the interband

contribution by introducing more interband transitions at low energies. This is the reason

why the intensity of the low-energy peak in εinter
2 (ω) increases by increasing N while, on the

other hand, the IPA Drude plasma frequency decreases. Nonetheless the total spectral weight

does not significantly depend on the size of the supercell, as can be verified through the f-sum

rule. Indeed, the integral in Eq. 3.64 provides the same number for the different supercell sizes

within 0.1% for Ag0.25Au0.75 and within 0.4% for Au0.75Pd0.25.

Although the low-energy peak in the interband optical absorption is centred well below 1 eV

and thus εinter
2 (ω) in the visible range is nearly independent from N , it has a stronger effect on

εinter
1 (ω), which instead shows a slow −1/ω2 decay [17] that extends inside the visible range

(see Fig. 7.6, left panel). However, the features of the total dielectric function inside the visible

range or in the ultraviolet are not sensitive to the different sizes and atomic configurations of

the SQSs and converge quickly with N . For example, in Ag0.25Au0.75 the total dielectric function

can be considered fully converged already at N = 16 (see Fig. 7.6, right panel). Hence, also

the reflectivity converges fast with the size of the SQS both for Ag0.25Au0.75 and Au0.75Pd0.25,

as Fig. 7.7 clearly shows. For Au0.75Pd0.25 instead, the convergence of the low-energy part

(up to 1.5 eV) of the total dielectric function and of the reflectivity is slower; nonetheless all

the different simulation cells give the same results for larger energies. As already noticed

in Chapter 7.2.2 for AgAu15 and AgAu15, the interband optical absorption in Au0.75Pd0.25

below the visible range is stronger compared to Ag0.25Au0.75 because of additional interband

transitions due to tightly bound Pd impurity states (i.e. virtual bound states).

Similarly to the convergence study on the size of the supercells shown above, we have also

verified that SQSs with a fixed number of atoms (i.e. N = 16) but with different atomic

configurations and/or cell shapes give very similar optical properties among them, as it would

be expected from the previous results on the fast convergence with the cell size. Similarly the

effect of the relaxation of the atomic positions inside the cell is also negligible.
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7.2. Optical properties in supercell simulations

Indeed, only very symmetric crystal structures, as in the case of cubic intermetallic phases,

can have a significant effect on the optical properties since the high symmetry of the structure

could give rise to characteristic features in the band structure and density of states. For

example, the presence of pseudo gaps in the density of states, as it happens for the AuAl2

intermetallic compound, can introduce absorption peaks and valleys in specific regions of the

visible spectrum.

At this point, we would like to highlight that the division of the IPA dielectric function in

interband and intraband contributions is more a theoretical construction than a real physical

distinction. In supercell calculations of alloys, as shown by the preceding analysis, it is the sum

of the two contributions that is physically meaningful and can be compared with experimental

data and not the single contributions. This effect, relevant for the first-principles simulation of

optical properties in supercells, has been already noticed and discussed by J. Harl et al. [145]

in the study of Cu surfaces.

Figure 7.5 – Dependence of εinter
2 (ω) and ωD on the size of the SQS for Ag0.25Au0.75 and

Au0.75Pd0.25 (with N being the number of atoms in the supercell).
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Figure 7.6 – Dependence of the real (dashed lines) and imaginary (solid lines) parts of the
dielectric function on the size of the SQS for Ag0.25Au0.75 (with N being the number of atoms
in the supercell). We show both εinter(ω) (left panel) and ε(ω) (right panel).

Figure 7.7 – Dependence of the reflectivity on the size of the SQS for Ag0.25Au0.75 and
Au0.75Pd0.25 (with N being the number of atoms in the supercell).
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7.3 Comparison with experiments

We show that the computational approach described in Chapter 5 applied to the methods of

Table 7.1 for the simulation of different types of alloys is able to reproduce the correct trends

in the optical properties of metallic alloys. In particular, we show through a comparison with

several experimental results that the three main mechanisms that modify the colour of gold

in alloys (see Fig. 1.4 and discussion therein) are captured by our simulations and that we

manage to reproduce the main colour trends in the Au-Ag-Cu ternary system.

Although, due to the approximations used, we often do not have quantitative agreement with

experiments (with the notable exception of the coloured intermetallic compounds for which

the simulations are often accurate), we instead find the correct qualitative trends with respect

to composition and alloying elements.

7.3.1 Coloured intermetallic compounds

We simulate the reflectivity and colour of intermetallic compounds that are experimentally

known to be coloured. The compounds studied are the purple AuAl2, blue AuIn2, bluish AuGa2,

yellow PtAl2, red PdIn, blue-grey NiSi2 and dark blue CoSi2. All these intermetallic compounds

have cubic symmetry: AuAl2, AuGa2, AuIn2, PtAl2, CoSi2 and NiSi2 crystallize in the FCC CaF2

prototype structure (space group Fm3̄m) while PdIn crystallizes in the BCC CsCl prototype

structure (space group Pm3̄m). To compare our results with previous computational results,

we perform the simulations at the experimental lattice parameter7.

The interpolation k-grid to be used in the evaluation of the dielectric function is defined by

using a k-points density equal to 0.04 Å−1. With this choice the number of k-points included in

the uniform k-grids is of the order O(105) for all the cubic intermetallic compounds considered

(corresponding to uniform k-grids in the range from 46×46×46 up to 56×56×56). Other

computational parameters used in the simulations are given in Section 7.2.2.

As shown in Fig. 7.8, the experimental shape of the reflectivity curve for the coloured in-

termetallics is well reproduced by the simulations. In Fig. 7.9 we show the corresponding

comparison between simulated and experimental colours in CIELAB colour space for the

seven intermetallics studied. The colour differences between our simulations and experiments

are summarized in Table 7.2, where the comparison with previous first-principles simula-

tions [34, 10] is also reported. The agreement with previous simulations is satisfactory and,

moreover, we reproduce the true colour of the intermetallic compounds studied. For example,

the comparison between photorealistic rendering and real material samples clearly shows

that the simulations predict the correct colours of purple AuAl2, bluish AuGa2 and yellow PtAl2

(see Fig. 7.10). The agreement is worse only for PdIn because, although experimental and

simulated reflectivity curves are very similar, the experimental reflectivity edge is at the border

of the visible spectrum (i.e. in the red region) and the small redshift shown by the simulations

7The effect of the variation of the lattice parameter on the optical properties of these intermetallics is relatively
small. However, in some cases there can be a shift in the spectra: in AuAl2, for example, the shift of the dip in the
reflectivity between the curve obtained at the PBE lattice parameter and at the experimental one is ∼ 0.1 eV.
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has a strong impact on the resulting colour.

The characteristic colours of these intermetallic compounds is due to selective optical absorp-

tion in confined regions of the visible spectrum [12] (see Appendix C.2 where the simulated

ε2(ω) and other relevant optical constants for these intermetallics are reported). For the gold

compounds, the optical absorption inside the visible range is given by transitions from sp

conduction states below the Fermi level to unoccupied states above the Fermi level. The

bands originating from the 5d states of gold, that are problematic in the study of elemental

noble metals, are at around 5 eV below the Fermi level and these do not contribute to the

characteristic colours of these compounds [146]. This explains the better agreement with

experiments found for the gold intermetallics compounds compared to the case of elemental

gold (see Section 6.2).

Figure 7.8 – Simulated (solid lines) and experimental (dashed lines) reflectivities of coloured
intermetallics. Experimental data are taken from Ref. [4] for AuAl2, AuGa2 and AuIn2, from
Ref. [10] for PtAl2, from Ref. [11] for NiSi2 and from Ref. [12] for CoSi2 and PdIn. The two
vertical dashed lines show the limits of the visible range.

Compound ∆Eexp ∆Esim

AuAl2 11 [4] 8 [10], 4 [34]
AuGa2 2 [4] 1 [34]
AuIn2 4 [4] 1 [34]
PtAl2 12 [10] 2 [10]
CoSi2 3 [12]
NiSi2 5 [11]
PdIn 10 [12]

Table 7.2 – Colour differences in CIELAB space between simulated colours and experimental
colours derived from reflectivity data, ∆Eexp, and between simulated colours and previously
published simulations, ∆Esim.
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Figure 7.9 – Comparison of simulated (green) and experimental (blue) colours of known
coloured intermetallics compounds in CIELAB colour colour space.

7.3.2 Binary gold alloys

We now simulate the reflectivity of binary gold alloys for different alloying elements and at

different compositions, and compare our results with experimental data. We consider four

gold-based alloy systems that show different behaviours of the optical properties in the visible

range and for which there are available in the literature experimental data on the reflectivity

and/or on the optical absorption. The systems studied are Ag-Au, Al-Au, Au-Pt and Au-Cu.

Concerning the phase stability of these systems [13] (see Fig. 7.11 for the corresponding phase

diagrams), Ag is completely soluble in Au thus Au and Ag form solid solutions for each com-

position and no long-range order is observed at low temperatures. Also Au and Cu form

solid solutions over all concentrations at high temperatures but, for certain composition

ranges, ordered intermetallic phases can be obtained at lower temperatures. In particular

the known intermetallic compounds are the cubic AuCu3 and Au3Cu (space group Pm3̄m),

the low-temperature phase AuCu(I) (space group P4/mmm) and the high-temperature phase

AuCu(II) (space group Imma). Au-Pt also forms a complete series of solid solutions at high

temperatures but a miscibility gap appears with decreasing temperature. Al is instead soluble

in Au up to about 14 at. % and several intermetallic compounds occur in the phase diagram,

such as the already mentioned purple AuAl2.

The experimental reflectivity data reported below for Ag-Au [2], Au-Pt [3] and Al-Au [14] are all

measured on samples made of solid solutions. The measurements of optical absorption for dif-

ferent concentrations of Au-Cu are also performed on solid solutions but, for the composition

x = 0.81, there are available measurements for both the solid solution and the intermetallic

compound AuCu3 [15].
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Figure 7.10 – Comparison between the rendering of a metallic surface of the intermetallic
compounds AuAl2 (top), AuGa2 (center) and PtAl2 (bottom) obtained using the simulated
optical constants (left panel) and real samples of the three materials (right panel).
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As discussed before, we use the supercell approach to simulate the optical properties of solid

solutions. It is an approximate method to study random alloys and we expect less good agree-

ment with respect to experiments if compared to the case of intermetallic compounds. In

the following, we use FCC SQSs with 16 atoms per cell for the simple stoichiometric ratios

x = 0.25,0.5,0.75 (for Ag-Au and Au-Cu). As explicitly shown in Section 7.2.3 for Ag0.25Au0.75,

the total dielectric function and thus the reflectivity are both well converged with respect to

the size of the SQS at N = 16. To simulate the effect of small concentrations of the alloying

element on gold we use instead, as done for the convergence study in Section 7.2.2, a simple

FCC supercell with 16 atoms in which an Au atom is replaced with an atom of the alloying

element, i.e. having an atomic concentration x = 0.0625 of the alloying element8 (for Al-Au

and Au-Pt). The interpolation k-grid is set according to a k-point density of 0.04 Å−1 (corre-

sponding roughly to 11’000 points) while other relevant computational parameters used in

the simulations are given in Section 7.2.2.

(a) Ag-Au. (b) Au-Cu.

(c) Al-Au. (d) Au-Pt.

Figure 7.11 – Experimental phase diagrams of (a) Ag-Au, (b) Au-Cu, (c) Al-Au and (d) Au-Pt.
Adapted from [13].

8We have verified that supercells with 32 atoms and same composition yield very similar results to the supercells
with 16 atoms used.
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Ag-Au

We study the effect of composition on the reflectivity of the Ag-Au system and compare exper-

imental data of solid solutions with SQS simulations. The Ag-Au system is the prototypical

example of the first mechanism discussed in Section 1.2.2 by which it is possible to modify the

colour of gold in alloys. Fig. 7.12 shows that the gradual shift to lower wavelengths of the re-

flectivity edge of gold by increasing the Ag content is reproduced by the simulations. However,

as already discussed in Section 6.2 for the case of elemental noble metals, the position of the

reflectivity edge in IPA simulations based on DFT-PBE band structures does not correspond to

the experimental one, but it is instead systematically shifted to longer wavelengths for each

concentration x considered.

Although the simulations are not in quantitative agreement with experiments, the qualitative

trends in reflectivity, and thus in colour, with respect to the alloy composition of Ag-Au are

reproduced.

Figure 7.12 – Comparison of the trends in composition of the reflectivity inside the visible
spectrum for Ag-Au solid solutions between SQS simulations (left panel) and experiments [2]
(right panel). For reference, we also report the reflectivity curves of elemental Au and elemental
Ag (dashed lines). To note that the alloy compositions of experiments and simulations are not
exactly the same.

Al-Au and Au-Pt

After having investigated the effect of the composition on the reflectivity of the Ag-Au system,

we now study how different alloying elements, in particular we consider Pt and Al, affect

the reflectivity of gold for small alloying concentrations. As explained before, we simulate

the effect of small alloying additions of Al (resp. Pt) on the reflectivity of Au by employing

supercells with 16 atoms in which an Au atom is replaced with an Al (resp. Pt) atom.

The Au-Pt system is an example of the second mechanism discussed in Section 1.2.2 by which
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it is possible to modify the colour of gold in alloys, and that produces a bleaching effect by

reducing the reflectivity in the long-wavelength region of the visible spectrum. A similar

bleaching effect is observed also alloying gold with elements that are in the same column as Pt

in the periodic table, i.e. in the Au-Pd and Au-Ni systems, and which are the alloys traditionally

used in the jewellery industry for the production of white gold alloys [24]. The Al-Au system

shows instead a combination of the first (as in Ag-Au) and second mechanisms.

As shown in Fig. 7.13, Pt additions in Au strongly smoothen the reflectivity curve but the

position of the edge is not substantially modified9. Al additions in Au produce both a reduction

of the reflectivity in the long-wavelength region (similar to the effect of Pt additions, although

the reduction in intensity is less strong) and a small but clear shift to lower wavelengths of the

reflectivity edge (similar to the effect of Ag additions). The supercell simulations qualitatively

capture these two different effects and the qualitative differences between the two alloying

elements.

Figure 7.13 – Comparison of the reflectivity inside the visible spectrum between supercell
simulations and experiments for Au-Pt and Al-Au solid solutions. Experimental data are taken
from Ref. [3] for Au0.90Pt0.10 and from Ref. [14] for Al0.112Au0.888. For reference, we also report
the reflectivity curve of elemental Au (dashed lines). To note that the concentrations of the
alloying element in experiments are larger than those in the simulations.

We notice that, for a given alloy composition, the smoothening of the reflectivity edge in the

simulations is stronger than in experiments (in Fig. 7.13, concentrations of the alloying element

in experiments are larger than those in simulations). For this reason we use a slightly smaller

concentration with respect to experiments in order to compare the colour trends in gold alloys

with respect to the alloying element. The addition of alloying elements gives a too strong

bleaching effect by attenuating the onset of interband absorption of elemental gold more

than in experiments. The strong low-energy optical absorption can be marginally reduced

and tuned by decreasing η but not eliminated because intrinsic to supercell simulations. The

9Pd and Ni additions to gold give the same qualitative behaviour [29, 30].
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increase of optical absorption in metallic alloys is actually observed experimentally [43, 44, 14,

29, 41] but to a smaller degree compared to supercell simulations.

Au-Cu

Similarly to what we have previously done for the reflectivity of Ag-Au, we now study the

effect of composition on the optical absorption of Au-Cu. We observe in Fig. 7.14 a gradual

deformation of the features in the optical absorption by varying the alloy composition from

one elemental metal to the other. In particular, we notice a shift to lower energies of the

onset of absorption in Au-Cu by varying the composition from elemental Au to elemental

Cu. But, since the absorption edge of Cu is nearly at the same energy of the absorption edge

of Au (roughly 0.3 eV lower in energy), the effect is less evident compared to Ag-Au, where

the absorption edges of the two constituent elements are instead separated by roughly 1.5 eV.

Nonetheless, the small shift to lower energies of the onset of absorption by increasing the Cu

content in Au gives rise to a corresponding shift of the reflectivity edge that changes the colour

of the Au-Cu alloy from the red-yellow colour of pure gold to the red colour of pure copper,

and which corresponds to the first mechanism by which it is possible to modify the colour of

gold in alloys. In the simulations, this effect is reproduced but it is partially attenuated by a

stronger absorption in the infrared region and, similarly to Ag-Au, for a given composition the

onset of absorption is systematically shifted by ∼ 0.4 eV compared to experiments.

Therefore we conclude that the noble-metal elements Ag and Cu behave in a similar way as

alloying elements on the reflectivity and colour of gold. The gradual shift of the reflectivity

edge, as measured in experiments and qualitatively reproduced by our simulations, gives rise

to the broad range of colours of the Au-Ag-Cu system shown in Fig. 1.2. In the Ag-Cu binary

system the behaviour of the reflectivity curve is instead different and it is discussed in more

detail below.

We then compare also the optical absorption of the Au1−x Cux solid solution, at x = 0.81 for

experiments and at x = 0.75 for simulations, with the optical absorption of the intermetallic

compound appearing around the composition x = 0.75, i.e. the cubic AuCu3 phase. The

purpose of this comparison is to study the differences in optical properties between ordered

and disordered phases10. As shown in Fig. 7.15, the optical absorption of the intermetallic

compound is very similar to the one of the random alloy with the notable exception of the

presence of an additional peak at around 3.6 eV, which is missing in ε2(ω) for the solid solution.

The comparison of the SQS results for the disordered alloy with the simulated results of the

intermetallic compound shows that the simulations clearly capture this small difference.

Nonetheless we underline that there is no significant change in the resulting colour between

ordered and disordered alloy for this system because the position of the onset of absorption is

not modified by the presence of long-range order, and thus neither is the colour.

10A similar study has been already performed on Au-Cu at the intermediate composition x = 0.5 [45].
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Figure 7.14 – Comparison of the trends in composition of the optical absorption inside the
visible spectrum for Au-Cu solid solutions between SQS simulations (left panel) and experi-
ments [15] (right panel). The Drude-like intraband contribution to ε2(ω) has been subtracted
from the experimental data. For reference, we also report ε2(ω) of elemental Au and elemental
Cu (dashed lines). To note that the alloy compositions of experiments and simulations are not
always the same. Experimental and simulated curves have been arbitrarily shifted along the
vertical axis for clarity in the comparison.

Figure 7.15 – Comparison of ε2(ω) for Au1−x Cux between simulations (left panel) and exper-
iments [15] (right panel) for both the solid solution and the intermetallic phase AuCu3 (at
x = 0.75 in the simulations and at x = 0.81 in the experiments). For reference, we also report
ε2(ω) of elemental Cu (dashed lines). Experimental and simulated curves have been arbitrarily
shifted along the vertical axis for clarity in the comparison.
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7.3.3 Ag-Cu

Up to now we have dealt only with solid solutions and intermetallic compounds. In order to

treat also the case of heterogeneous alloys, we consider the Ag-Cu system. In fact, as shown

in Fig. 7.16, the phase diagram of Ag-Cu exhibits eutectic behaviour with a wide miscibility

gap and the system tends to segregate in phases of nearly pure Ag and pure Cu at room

temperature [13].

The experimental reflectivity data reported below for Ag-Cu are measured on two-phase

alloys made of nearly pure Cu and Ag phases [16]. However, for the composition x = 0.30,

there are also available experimental data of optical absorption obtained from measurements

performed on both a segregated two-phase sample made of a pure Cu phase and a pure Ag

phase, and on a metastable solid solution obtained by vapor quenching [15].

We simulate the optical properties of Ag1−x Cux two-phase alloys by employing the Bruggeman

model described in Section 7.1.2. The α and β phases entering in the expression for the alloy

dielectric function εBr of Eq. 7.2 are assumed to be elemental Ag and elemental Cu, respectively.

And the dielectric functions of the two constituent elements are taken from the simulations of

elemental metals reported in Chapter 6. As shown in Fig. 7.16, Ag additions in Cu increase the

reflectivity at wavelengths shorter than the reflectivity edge of elemental Cu but do not shift

the position of the edge. The Bruggeman model provides the correct trend with composition

but the effect on the drop in the reflectivity is less evident because the reflectivity edge of

elemental Cu in the IPA simulations is less steep than the experimental one. As a verification

of the validity of the Bruggeman model to describe the optical properties of Ag-Cu two-phase

alloys, we apply the model using experimental data of the dielectric function of elemental Ag

and elemental Cu [9] for the two-phase alloy instead of the data from IPA simulations, and we

find very good agreement with the experimental reflectivity data of the Ag-Cu samples [16]

(see Fig. 7.18).

We then compare in Fig. 7.19 also the optical absorption of the Ag1−x Cux two-phase alloy, at

x = 0.70 for the experiments and at x = 0.75 for the simulations, with respect to the metastable

solid solution having the same composition. In the two-phase alloy, where the alloy optical

properties are well approximated by a combination of those of pure Cu and pure Ag (Brugge-

man model), we observe two onset of absorption: the first one at ∼ 2.1 eV corresponding to the

absorption edge of pure Cu and the second one at ∼ 4.0 eV corresponding to the absorption

edge of pure Ag. The optical absorption of the solid solution instead is very similar to the

one of pure Ag but, in addition, we observe the presence of a supplementary broad peak at

energies below the onset of absorption of pure Ag due to Cu impurity states. The SQS results

for the solid solution and the results of the Bruggeman model applied on the IPA dielectric

function of elemental Ag and Cu reproduce the two different trends, although the SQS shows a

small blueshift of the peak that follows the absorption edge of pure Ag which is not observed

experimentally.
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Figure 7.16 – Experimental phase diagram of Ag-Cu. Adapted from [13].

Figure 7.17 – Comparison of the trends in composition of the reflectivity inside the visible
spectrum for Ag-Cu two-phase alloys between simulations (left panel) and experiments [16]
(right panel). The results of the simulations are obtained using the Bruggeman model in which
the two phases of the system are assumed to be elemental Ag and elemental Cu (dashed lines).
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Figure 7.18 – Comparison of the trends in composition of the reflectivity inside the visible
spectrum for Ag-Cu two-phase alloys between experiments [16] (right panel) and results of
the Bruggeman model applied to experimental data of the dielectric function of elemental Ag
and elemental Cu [9] (left panel).

Figure 7.19 – Comparison of ε2(ω) for Ag1−x Cux between simulations (left panel) and experi-
ments [15] (right panel) for both the solid solution and the two-phase alloy (at x = 0.25 in the
simulations and at x = 0.30 in the experiments).
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7.3.4 Au-Ag-Cu

Based on the comparison performed above between experimental data and first-principles

simulations, we can now give a more complete interpretation of the different colour trends

observed in the Au-Ag-Cu ternary system and shown in Fig. 1.2. Indeed, we have studied how

the different trends in reflectivity (and thus in colour) of the constituent binary systems, i.e.

Ag-Au, Au-Cu and Ag-Cu, can be interpreted in terms of the different phases (ordered phases,

disordered phases and mixture of phases) present in the three systems. The combination of

these data related to the constituent binaries thus furnishes an overview of the colour trends

in Au-Ag-Cu.

Summarizing, for Ag-Au solid solutions, where we have a gradual shift of the reflectivity edge by

varying alloying additions from elemental Au to elemental Ag, the colour of the alloy changes

from red-yellow to yellow, pale greenish-yellow and eventually white of pure Ag. Au-Cu solid

solutions show a similar behaviour and the colour of the alloy changes from red-yellow to

reddish and eventually red of pure Cu. Instead, in Ag-Cu two-phase alloys there is no shift of

the reflectivity edge but, for all wavelengths in the visible range below the reflectivity edge

of elemental Cu, the reflectivity curve rises roughly uniformly so that the colour of Ag-Cu

changes from the red of pure Cu to reddish and then directly to whitish and white [24].

The extensive comparison between experimental data and first-principles simulations has

shown that the computational approach of Chapter 5 applied to the methods of Table 7.1 for

the simulation of different types of alloys qualitatively reproduces all the main colour trends

of the Au-Ag-Cu ternary system.
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7.4 Comparison among different methods

We compare the results on the optical properties of alloys computed with different methods

and show the main differences among them, with a particular focus on the effect in the

resulting colour of the alloy. We consider the supercell approach, principally based on the use

of SQSs, an effective-medium approach, i.e the VCA method, and the Bruggeman model. We

discuss in more detail the physical effects that give rise to the different features of the optical

properties. We show that it is important to use the appropriate computational method in

order to predict the correct trends in the optical properties of metallic alloys.

VCA simulations are performed by following the implementation described in Ref. [147]. VCA

pseudopotentials are generated from the NC pseudopotentials of the SG15 or Pseudo Dojo

libraries and convergence of the VCA results with respect to the wavefunction cutoff has been

inspected. From the convergence studies performed we opt to use the SG15 pseudopotentials

and wavefunction cutoff of 70 Ry for both Ag-Au and Au-Pd alloys while, for Ag-Cu, we use

the Pseudo Dojo pseudopotentials and wavefuntion cutoff of 100 Ry (see Section 6.1 for the

other computational parameters used). The IPA dielectric function is always computed at the

equilibrium volume of the VCA alloy11.

We have seen that, for the systems considered above, the supercell approach reproduces the

correct experimental trends in reflectivity of noble-metal-based solid solutions. As discussed

in Section 7.1.2, the VCA method is a simple effective-medium approach for the simulation

of solid solutions which is significantly less expensive than the SQS approach in terms of

computational resources, so it is worth to assess its predictive power.

We compare the results obtained with the SQS method and with the VCA approach for the

simulation of the optical properties of Ag-Au, Ag-Cu and Au-Pd solid solutions, by considering

different alloy concentrations x.

7.4.1 Ag-Au

In Ag-Au the qualitative behaviour and trends of the VCA and SQS optical absorption and

reflectivity are very similar for all compositions considered (see Fig. 7.20). In both methods

we observe a gradual shift of the onset of absorption in ε2(ω) to higher energies by increasing

the Ag content in Au, to which corresponds a gradual shift of the reflectivity edge. The d-

bands lower gradually with respect to the Fermi level by increasing the concentration of Ag.

Indeed, a band structure analysis performed on the VCA results for Ag-Au shows that the

interband transition energy at the high-symmetry point X of the BZ between the top valence

d-band and the conduction band above the Fermi level (see Fig. 1.5) increases gradually by

increasing the Ag content from 2.77 eV for elemental Au to 4.44 eV for elemental Ag. The good

agreement between SQS and VCA results is explained by the fact that the weak-scattering limit

11The VCA equilibrium lattice parameters of Au-Pd and Ag-Cu follow the ideal Vegard’s law while in Ag-Au there
are small deviations from the ideal behaviour. However, Ag and Au have almost the same PBE equilibrium lattice
parameter and the relative deviations at intermediate compositions are less than 0.5% with respect to the two end
points.
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is a reasonable approximation for the isoelectronic Ag-Au system (and similarly for Au-Cu) and

the electronic structure of the alloy can be considered as a mixture of the electronic structure

of the single constituents. There is however a small discrepancy between the two approaches,

given that a small lowering of the reflectivity in the low-energy part of the spectrum with

respect to the pure elements is observed in the SQS simulations but not in the VCA simulations.

This behaviour is experimentally measured in Ag-Au [44, 148] and it is actually a general effect

observed in metallic alloys. It is due to the fact that the scattering of the conduction electrons

in alloys is increased with respect to pure elemental crystals because of disorder. A similar

effect is observed also in the electrical resistivity of metals since the resistivity in metallic alloys

is larger than in elemental metals (Matthiessen’s rule).

Figure 7.20 – Comparison of the trends in composition of optical absorption and reflectivity
for Ag-Au between SQS and VCA simulations. We report also the results for the elemental
constituents, i.e. Ag and Au (dashed lines).

113



Chapter 7. Reflectivity and colour of alloys

7.4.2 Ag-Cu

In Fig. 7.21 we compare supercell and VCA simulations for the Ag-Cu system at different

compositions. Supercell results for Ag-Cu at relatively small Cu concentrations (x = 0.0625 and

x = 0.25) show a broad absorption peak centred at around 2.4 eV, i.e. below the absorption edge

of elemental Ag, that is due to Cu impurity states and that is found also in the experimental

data for Ag-Cu solid solutions (see Fig. 7.19). For higher Cu concentrations (x = 0.50 and

x = 0.75) the broad peak moves to lower energies and gradually deforms into the absorption

edge of elemental Cu. However, in terms of reflectivity, this trend roughly corresponds to a

shift of the reflectivity edge to lower frequencies by increasing the Cu content in Ag. On the

other hand, in VCA simulations, we observe a simple gradual shift of the onset of absorption

to lower energies by varying the concentration of the alloy from elemental Ag to elemental Cu,

which is very similar to the situation encountered in VCA simulations for the Ag-Au system.

Because of this behaviour of the optical absorption, there is a corresponding gradual shift of

the reflectivity edge to lower energies by increasing the Cu content in Ag. The broad absorption

peak centered at around 2.4 eV is instead not observed in VCA simulations.

Since the d-bands of elemental Cu and Ag are more separated in energy, in Ag-Cu the weak-

scattering limit is not as good as an approximation compared to Ag-Au and Au-Cu and thus the

VCA method does not give the correct trend in optical absorption with respect to composition

for solid solutions. Nonetheless, despite supercell and VCA optical absorptions show some

differences, the two methods give similar trends in terms of the reflectivity curve (i.e. a similar

simple shift of the reflectivity edge).

As discussed in Section 7.3, the Ag-Cu system is a two-phase alloy at normal experimental

conditions and the Bruggeman model correctly describes the optical properties of the hetero-

geneous system. Therefore, for completeness, we compare also the results of the Bruggeman

model with the SQS results (see Fig. 7.22). In the Bruggeman model the alloy optical absorption

is given by a mixture of the dielectric functions of the two constituents elements12, as given by

Eq. 7.2. Cu additions to Ag gradually increase the optical absorption at around 1.8 eV, which

corresponds to the onset of absorption in elemental Cu. This gives rise to the “shoulder" in

the reflectivity curve at around that energy, which is the feature observed in the experiments

performed on two-phase samples of Ag-Cu. In contrast with supercell and VCA simulations,

no shift of the reflectivity edge is observed in the results for the Bruggeman model.

In Ag-Cu the three methods considered, i.e. SQS, VCA and Bruggeman model, all give qualita-

tively different results for the optical absorption.

12In practice, the simple composition-weighted average, εAvg, of the dielectric functions of the two constituent
elements A and B, i.e.

εAvg = (1−x)εA +xεB, (7.3)

gives very similar results to the dielectric function εBr obtained from the Bruggeman model for the same concen-
tration x of the alloy.
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Figure 7.21 – Comparison of the trends in composition of optical absorption and reflectivity
for Ag-Cu between supercell and VCA simulations. We report also the results for the elemental
constituents, i.e. Ag and Cu (dashed lines).
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Figure 7.22 – Comparison of the trends in composition of optical absorption and reflectivity
for Ag-Cu between supercell simulations and Bruggeman model results applied on elemental
Ag and elemental Cu (dashed lines).
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7.4.3 Au-Pd

For Au-Pd, the supercell and VCA approaches show larger discrepancies in the trends with

composition of the optical properties at energies within the visible and infrared spectrum (see

Fig. 7.23). Supercell simulations for small Pd concentrations (x = 0.0625) show a substantial

increase of the optical absorption in the low-energy range that significantly flattens the absorp-

tion edge of pure gold. In terms of reflectivity this leads to a smoothening of the reflectivity

edge compared to pure gold while the position of the absorption edge is not significantly

modified. It should be noted here that the supercell results for Au0.9375Pd0.0625 in Fig. 7.23 are

almost identical to those for Au0.9375Pt0.0625 shown in Fig. 7.13. As already mentioned in Sec-

tion 7.3.2, supercell simulations give results in qualitative agreement with the trends found in

the experiments for Au-Pd solid solutions. In SQS simulations with higher Pd concentrations

(x = 0.25,0.50,0.75) the absorption edge of pure gold in ε2(ω) is not any longer distinguishable

and the optical absorption assumes a featureless behaviour more similar to that of elemental

Pd, which in turn gives a nearly flat reflectivity curve in the visible range. On the other hand,

in VCA simulations for relatively small Pd concentrations (Au0.938Pd0.062 and Au0.75Pd0.25 in

Fig. 7.23), we observe a simple gradual shift of the onset of absorption to lower energies by

varying the concentration of the alloy from elemental Au to elemental Pd, which is the same

behaviour already encountered in VCA simulations for the Ag-Au and Ag-Cu systems. In this

case the trend is significantly different to what observed in supercell simulations of Au-Pd

at the same compositions. For larger quantities of Pd instead (Au0.50Pd0.50 and Au0.25Pd0.75

in Fig. 7.23), ε2(ω) in the visible range assumes a featureless behaviour comparable to the

one found in elemental Pd, and SQS and VCA results are, for these compositions, in good

agreement. As a consequence, by looking at the VCA reflectivity, we notice first a gradual shift

of the reflectivity edge to lower energies by increasing the Pd content in Au (x = 0.062,0.25)

which then deforms towards the flat reflectivity curve of elemental Pd (x = 0.50,0.75).

The VCA results for Au-Pd can be interpreted within the framework of the simple rigid band

model. Indeed, since Pd has one electron less in the valence compared to Au, the Fermi

level lowers in energy and moves closer to the d bands by increasing the Pd content, so that

the onset of interband transitions also moves to lower energies. As a confirmation, a band

structure analysis shows that the Fermi level gradually moves towards the occupied d-bands

by increasing the Pd content (x = 0.062,0.25). At the composition x = 0.50 the Fermi level

moves below the top valence d-band and the optical properties of Au-Pd then resemble those

of elemental Pd for larger Pd content (x = 0.75).

As shown by this comparison with experimental data and supercell simulations, the VCA

method is not adequate to describe the effects of Pd additions in Au, and more generally,

of any transition metal. For this system, the electronic structure of the alloy is not simply a

mixture of the electronic structure of the single constituents, as in the case of Ag-Au, because

Pd introduces virtual bound states below the Fermi level that increase the optical absorption

in the low-energy range. Clearly, this effect cannot be captured by the simple mean-field VCA

approach.
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Figure 7.23 – Comparison of the trends in composition of optical absorption and reflectivity
for Au-Pd between supercell and VCA simulations. We report also the results for the elemental
constituents, i.e. Au and Pd (dashed lines).
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7.4.4 Trends in VCA

The comparative studies performed in this Section and in Section 7.3 show that the supercell

approach is more predictive than VCA in order to study the optical properties of solid solutions.

We have seen that the optical absorption computed with the VCA method for gold alloys give

always a simple shift of the absorption onset to lower or higher energies, depending on the

alloying element considered, compared to the position of pure gold, which does not often

correspond to the experimental situation.

The VCA approach gives the correct trends in gold alloys if the alloying element is an isoelec-

tronic element in the same column of Au in the periodic table, i.e. Cu and Ag. In Ag-Au and

Au-Cu solid solutions, the main effect of alloying additions on the electronic structure is a

rigid shift of the occupied d-bands with respect to the Fermi energy which is captured by the

VCA model of Eq. 7.1. In Ag-Cu solid solutions instead, since the d-bands of the consituents

elements are more separate in energy, the rigid shift of the d-bands given by the VCA model

is not in agreement with experiments and supercell simulations, because of the presence of

localized Cu impurity states in the Ag matrix. For binary alloys of gold with transition-metal

elements the disagreement is more significant. Indeed no shift of the onset of absorption is

observed in experiments on Au-Pd and Au-Pt alloys; instead the presence of d impurity states

increases the optical absorption in the low-energy range of the spectrum and smoothens the

reflectivity edge of pure gold.

We now discuss in more detail the trends in the optical properties with respect to the alloying

element for VCA results of binary gold alloys. As already briefly discussed for the case of Au-Pd,

the VCA method provides results that can be explained in terms of the simple rigid band

model for elements not in the same column of the periodic table. For this purpose we show

in Fig 7.24 the VCA optical absorption and reflectivity of the alloys Ag-Au, Au-Pd and Au-Zn,

and compare the results with supercell results at the same concentration (x = 0.062). In the

simple rigid band model the band structures of the two constituent elements are assumed to

be equal and the position of the Fermi level is simply given by the following equation

nval(EF) = ZA(1−x)+ZBx, (7.4)

where nval(EF) is the valence electronic density and the dependence on the Fermi level EF is

explicitly written, and ZA and ZB are the number of valence electrons of the A and B element,

respectively. Zn has one electron more than Au in the valence, thus the Fermi energy is shifted

upwards in energy and, as a consequence, the onset of interband transitions in VCA results

is also shifted to higher energies. SQS results provide a qualitative behaviour of the optical

spectra similar to the one given by VCA and in agreement with experimental data and first-

principles results obtained for the Cu-Zn alloy at small concentrations of Zn [149]. However,

similarly to the case of Al-Au, in supercell results there is not only a shift of the absorption

edge but also an increase of the optical absorption in the low-energy range, not observed in

VCA. On the other hand, Pd has one electron less than Au in the valence, thus the Fermi energy

is shifted downwards in energy and, as a consequence, the onset of interband transitions in
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VCA is also shifted to lower energies but, as already discussed in Section 7.2 and Section 7.3,

supercell results show a different behaviour. In Ag-Au instead we find a behaviour comparable

to the Au-Zn case. But in this case, Ag and Au have the same number of valence electrons

and the shift is explained not by the rigid band model of Eq. 7.4 but in terms of a shift of the

position of the occupied d-bands by means of Eq. 7.1.

Figure 7.24 – Comparison of the optical absorption and reflectivity of Au0.938X0.062, with X = Pd,
Ag and Zn, between supercell and VCA simulations. For reference, we report also the results
for elemental Au (dashed lines).
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7.5 Computational screening of gold-based intermetallics

We have used the computational approach described in this thesis in a project in collaboration

with industry. The purpose of the project is to identify novel gold alloys with the desired

colours by employing, for the screening of possible promising candidate compounds, both

experiments and first-principles simulations.

For this project we systematically study the optical properties of experimentally known gold

binary intermetallic compounds of gold and the effect of different alloying elements and

different compositions on the reflectivity curve in the visible range (and thus on the colour)

of gold. In the following we briefly describe the approach followed for the computational

screening of binary intermetallics of gold.

We select the experimental crystal structures of binary intermetallic compounds of gold from

the Inorganic Crystal Structure Database (ICSD [107]) and from the Crystallography Open

Database (COD [108]). In our selection, we neglect structures with more than 20 atoms per

cell, compounds containing elements harmful to human health (e.g. Hg, Cd, As, etc.) and

compounds containing rare-earth elements. After this preliminary screening we end up with

92 binary intermetallics of gold that are listed in Table 7.3 and Table 7.4. Of these compounds

we simulate reflectivity and colour, using the computational approach and workflow described

in Chapter 5 and the same computational parameters used for the coloured intermetallics

studied in Section 7.3.1.

We show in Fig. 7.25 the resulting CIELAB colour coordinates of the 92 compounds considered.

Among these we have identified a few compounds with possibly interesting features in the

optical properties within the visible range and that thus could possibly show interesting bulk

colours.
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Compound SG # Database ID
Au16Al4 198 1523317 (COD)
Au4Al4 11 1523318 (COD)
AuAl 221 57495 (ICSD)
AuAl2 225 9008999 (COD)
AuB2 191 1510576 (COD)
Au5Ba 191 1510547 (COD)
Au2Ba 191 1510358 (COD)
Au4Ba4 62 1510584 (COD)
Au6Ba9 148 611635 (ICSD)
Au5Ca 216 1510549 (COD)
Au4Ca2 74 1510368 (COD)
Au8Ca6 148 54547 (ICSD)
Au2Ca2 63 54978 (ICSD)
Au8Ca10 14 1510534 (COD)
Au6Ca10 140 1510483 (COD)
Au4Ca10 15 1510371 (COD)
Au4Ca12 62 1510066 (COD)
Au4Cr 87 611737 (ICSD)
Au3Cu 221 1510492 (COD)
AuCu 123 1510113 (COD)
AuCu3 221 9013496 (COD)
Au4Ga4 62 9008926 (COD)
AuGa2 225 9009000 (COD)

Compound SG # Database ID
Au16Hf4 62 611961 (ICSD)
Au6Hf2 59 611955 (ICSD)
Au2Hf 139 611956 (ICSD)
Au2Hf2 129 611959 (ICSD)
AuHf2 139 1510176 (COD)
Au6In2 59 1510500 (COD)
Au3In2 164 612019 (ICSD)
AuIn2 225 9009001 (COD)
Au5K 191 1510565 (COD)
Au8K4 194 2018869 (COD)
Au3K2 71 7209415 (COD)
Au3Li 221 1510505 (COD)
AuLi3 225 1510223 (COD)
Au4Mg8 62 1510233 (COD)
AuMg 221 1510230 (COD)
Au2Mg6 194 1510237 (COD)
Au4Mn 87 107998 (ICSD)
Au5Mn2 12 2310085 (COD)
Au2Mn 139 2310083 (COD)
AuMn 221 109348 (ICSD)
AuMn2 139 2310077 (COD)
Au3Mn9 123 150552 (ICSD)
Au4Na2 227 1510444 (COD)

Table 7.3 – List of binary intermetallics of gold extracted from ICSD and COD databases (part
I). We report chemical formula, space group number (SG #) and database ID.
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Compound SG # Database ID
Au2Na4 140 1510247 (COD)
Au2Nb 191 1510446 (COD)
Au8Nb12 213 612191 (ICSD)
Au2Nb3 139 1510447 (COD)
Au2Nb6 223 1510253 (COD)
Au4P6 12 2105391 (COD)
Au5Rb 191 1528238 (COD)
Au7Rb3 65 1510588 (COD)
Au3Rb2 71 1510510 (COD)
AuRb 221 1517938 (COD)
Au4Sb8 205 9016730 (COD)
AuSb2 225 9009002 (COD)
AuSb3 229 1510290 (COD)
Au4Sc 87 612300 (ICSD)
Au2Sc 139 612299 (ICSD)
AuSc 221 1510291 (COD)
Au5Sn 155 1510571 (COD)
Au2Sn2 194 1510301 (COD)
Au2Sn8 41 1510307 (COD)
Au5Sr 191 1510572 (COD)
Au4Sr2 74 1510467 (COD)
Au6Sr9 148 1510468 (COD)
Au6Sr14 186 1510514 (COD)

Compound SG # Database ID
Au4Ti 87 109132 (ICSD)
Au2Ti 139 1510471 (COD)
Au2Ti2 51 612407 (ICSD)
Au2Ti2 129 612415 (ICSD)
AuTi 221 1510312 (COD)
Au2Ti6 223 1510314 (COD)
AuTi3 221 2310078 (COD)
Au4V 87 612460 (ICSD)
Au4V2 63 1510476 (COD)
Au2V6 223 612459 (ICSD)
AuV3 221 2310079 (COD)
Au6Y2 59 612464 (ICSD)
Au2Y 139 612466 (ICSD)
Au2Y2 63 169022 (ICSD)
AuY 221 1510318 (COD)
Au4Y6 127 2018283 (COD)
Au4Y8 62 2018284 (COD)
AuZn 221 1510322 (COD)
Au16Zr4 62 1510543 (COD)
Au6Zr2 59 612509 (ICSD)
Au2Zr 139 612510 (ICSD)
AuZr2 139 1510330 (COD)
Au2Zr6 223 1510331 (COD)

Table 7.4 – List of binary intermetallics of gold extracted from ICSD and COD databases (part
II). We report chemical formula, space group number (SG #) and database ID.
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Figure 7.25 – Simulated CIELAB colour coordinates of 92 binary intermetallics of gold extracted
from ICSD and COD databases of experimental crystal structures.
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8 Conclusions

In the course of the thesis we have developed a code, named SIMPLE [89], to calculate optical

properties of metals within the independent particle approximation and exploiting Shirley’s

optimal basis method for interpolations in reciprocal space. The code takes, as starting

ingredient, the electronic structure computed solving the Kohn-Sham equations of density-

functional theory (considering the semi-local PBE exchange-correlation functional) within the

framework of the plane-wave pseudopotential method. SIMPLE computes both interband and

intraband contributions to the complex dielectric function. Furthermore the matrix elements

of the velocity operator are correctly calculated by including the non-local contribution of the

pseudopotentials.

Subsequently, for the purpose of automation of the simulations, all the steps of calculations

required to simulate the reflectivity and colour of a material from the initial crystal structure

have been implemented as an AiiDA workflow. Thanks to the latter, it is possible, giving as

input a generic crystal structure, to obtain directly as output the reflectivity and colour of a

given material.

In order to perform efficient and reliable calculations of the dielectric function with SIMPLE,

pseudopotentials and wavefunction cutoffs for all the elements of the periodic table consid-

ered in this thesis have been selected according to the results of the SSSP protocol developed

by us in order to test pseudopotentials for solid-state calculations. The SSSP protocol consists

of a verification part, based on the ∆-factor test to assess the precision of the pseudopotential

equations of state, and an extensive performance-oriented part based on plane-wave conver-

gence tests for phonon frequencies, band structures, cohesive energies and stress tensors. The

protocol has been applied to test several pseudopotential libraries available for the Quantum

ESPRESSO distribution on 85 elements of the periodic table (the results of this study have

been published in Ref. [90]). In particular, by inspecting the data of the SSSP database of tests,

we ensure convergence of the band structures with respect to wavefunction cutoff and a good

precision of the pseudopotentials used for the simulations of the optical properties of metals.

As a first application and benchmark study we have applied the described computational

approach, combining the use of the SIMPLE code, of the AiiDA workflow and of the results of
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Chapter 8. Conclusions

the SSSP protocol, to systematically compute the reflectivity and colour of 45 elemental metals

in their ground-state crystal structure. By means of an extensive comparison with optical

experimental data, we have assessed the predictivity of the computational approach used. We

have found that, although the colour is not always in quantitative agreement with experiments

(e.g. we observe a systematic shift of the reflectivity edge in noble metals), the shape and

the main features of the experimental reflectivity curve are reproduced by the simulations

together with the trends and main differences among elemental metals. Furthermore, we have

verified the consistency of the simulations with the help of the f -sum rule and we have shown

that the inclusion of spin-orbit coupling in heavy elements does not modify significantly the

optical properties around the visible range. On the other hand the effect of the inclusion of

the non-local contribution to the matrix elements of the velocity operator is, in some cases,

important and improves the agreement with experiments. Finally, by a comparison with the

results of the empirical Drude model we have concluded that, in order to be predictive in the

estimation of the optical properties of metals, both interband and intraband contributions

need to be computed ab initio.

In the last part of the thesis we have studied the optical properties of different types of metallic

alloys, focusing in particular on the simulation of gold-based binary compounds. Disordered

solid solutions have been simulated with the supercell approach, based mainly on the use of

special quasi random structures, while instead we have employed the Bruggeman model to cal-

culate the dielectric function of macroscopically heterogeneous alloys (ordered intermetallic

compounds can be trivially simulated within their unit cell). Before performing a comparison

between simulations and experiments, we have studied the interplay between interband and

intraband contributions in supercell simulations of disordered alloys. In particular we have

numerically analyzed the transfer of spectral weight from intraband contribution (i.e. from

the Drude plasma frequency) to interband contribution when increasing the supercell size

and the conservation of the total spectral weight by means of the f -sum rule. Thus we have

demonstrated that in the simulation of alloys within the supercell approach only the sum of

the two contributions, that is the total dielectric function, is meaningful. Through a compari-

son with several experimental data, we have then shown that the simulations give accurate

results for the coloured intermetallic compounds. Our calculations also reproduce the three

main mechanisms by which it is possible to change the bulk colour of gold in alloys (i.e. shift

of the reflectivity edge, flattening of the reflectivity edge and new features of the reflectivity

curve). Furthermore we manage to describe the main colour trends in the Au-Ag-Cu ternary

system if the correct computational methods are used for the different types of compounds.

Although, due to the approximations used, we do not have in general quantitative agreement

with experiments (with the notable exception of the coloured intermetallic compounds for

which the simulations are often in quantitative agreement with experiments), we have in-

stead found the correct qualitative trends with respect to composition and alloying elements.

Moreover, we have discussed how the simple virtual crystal approximation is not in general

adequate to describe the colour trends in disordered binary alloys of gold and that the more

computationally expensive supercell approach is usually necessary in order to find the correct
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trends in optical properties. Additionally, as a verification test for the computational approach

deployed in this thesis, we have compared the optical properties obtained for several elemen-

tal metals and coloured intermetallic compounds with previous first-principles simulations

available in the literature and we have found good agreement with our results.

We would like to point out here that the work performed in this thesis can be seen as a starting

point for more advanced studies that could be built on top of the results discussed here. For

example, the systematic study performed on the convergence of band structures obtained

at the PBE level can be relevant for further studies going beyond the simple independent

particle approximation for the calculation of optical properties and that include many-body

effects, such as GW band structures and/or optical spectra calculated from the Bethe-Salpeter

equation. Furthermore, the systematic validation of the approach performed for elemental

metals and binary alloys is an important preliminary step for the simulation of the optical

properties of more complex alloys having a larger number of constituent elements, such

as ternaries, quaternaries, etc., which are more relevant for technological applications (e.g.

superalloys and high-entropy alloys).

In conclusion, we underline that the computational approach discussed can be used in sys-

tematic studies on the optical properties of metals in order to predict trends in real metallic

systems and to help the search for novel materials with specific optical properties by exploring

the composition space through the computational screening of materials. In fact, at the

end of the thesis, we have briefly described some of the results obtained from the compu-

tational screening of the colour of binary intermetallics of gold extracted from databases of

experimental crystal structures.
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A Macroscopic averages in crystals

As discussed in Chapter 3, in order to obtain the macroscopic quantities entering in the macro-

scopic Maxwell’s equations we have to average the corresponding microscopic quantities over

distances large compared to the diameter of the primitive cell of the crystal but small com-

pared to the wavelength of light. This is equivalent to perform an average over the primitive

cell centered around the Bravais lattice vector R and then to consider the discrete variable R

as the continuous coordinate entering in the macroscopic Maxwell’s equations.

In practice, we define the macroscopic average of an arbitrary crystal function F (r,ω) as the

average over the primitive cell of the function itself [67]

FM(R,ω) ≡ 1

Vc

∫
Vc (R)

drF (r,ω), (A.1)

where Vc (R) is the volume of the primitive cell centered around the Bravais lattice vector R. To

calculate the integral in Eq. A.1 we expand F (r,ω) in reciprocal space as

F (r,ω) =∑
q

∑
G

F (q+G,ω)e i (q+G)·r. (A.2)

We deal here with the general situation in which we have a sum over the BZ of different

wavevectors q. For monochromatic perturbations however, as for example for a monochro-

matic electromagnetic wave, only a single component q in the sum over the BZ is different

from zero. The assumption that the discrete variable R can be considered continuous is appro-

priate for functions that contain only small Bloch wavevectors in the BZ, i.e. when |q|¿ |G|.
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Appendix A. Macroscopic averages in crystals

Indeed the macroscopic average is

FM(R,ω) = 1

Vc

∫
Vc (R)

drF (r,ω) (A.3)

= 1

Vc

∑
q

∑
G

F (q+G,ω)
∫

Vc (R)
dre i (q+G)·r (A.4)

'∑
q

∑
G

e i q·RF (q+G,ω)δG,0 (A.5)

=∑
q

e i q·RF (q+0,ω), (A.6)

where we have made use of the approximation that, if |q|¿ |G|, the factor e i q·r in Eq. A.4 can

be moved outside the integral over the primitive cell because it is nearly constant and equal to

e i q·R. In reciprocal space this reads

FM(q,ω) ≡ FM(q+G,ω) = F (q+0,ω)δG,0. (A.7)

In conclusion, only the Fourier component G = 0 contributes to the macroscopic average

FM(R,ω).
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B Derivation of the intraband contribu-
tion to the IPA dielectric function

In order to derive the optical limit of the intraband contribution to the IPA dielectric function

we follow the treatment of Ref. [66]. It is convenient to start from the real part of the intraband

contribution in the limit η→ 0 (see Eq. 3.48), i.e.

εintra
1 (q,ω) =− 4π

|q|2
1

V

∑
k

∑
n

(
fnk − fnk+q

) | 〈ψnk+q|e i q·r |ψnk〉 |2
ω− (Enk+q −Enk)

. (B.1)

First of all, we notice that the intraband (n′ = n) matrix elements in Eq. 3.49 are equal to 1.

Then, we rewrite the summation over the KS states as

∑
k

∑
n

fnk − fnk+q

ω− (Enk+q −Enk)
=∑

k

∑
n

fnk

ω− (Enk+q −Enk)
−∑

k

∑
n

fnk+q

ω− (Enk+q −Enk)
(B.2)

=∑
k

∑
n

fnk

ω− (Enk+q −Enk)
−∑

k

∑
n

fnk

ω− (Enk −Enk−q)
(B.3)

=∑
k

∑
n

fnk

[
1

ω− (Enk+q −Enk)
− 1

ω− (Enk −Enk−q)

]
(B.4)

=∑
k

∑
n

fnk

[
ω+ (Enk+q −Enk)

ω2 − (Enk+q −Enk)2 − ω+ (Enk −Enk−q)

ω2 − (Enk −Enk−q)2

]
(B.5)

where we have performed the substitution k+q → k in the second term of the right-hand side

of Eq. B.2. For small q, ω2 >> (Enk+q −Enk)2 and, similarly, ω2 >> (Enk −Enk−q)2. Moreover

we can expand Enk+q and Enk−q around k assuming that the transferred momentum is along

a generic q̂ = α̂ direction (e.g. α̂ can be one of the three Cartesian directions x̂, ŷ or ẑ):

Enk+q ' Enk +|q|∂Enk

∂kα
+ 1

2
|q|2 ∂

2Enk

∂k2
α

, (B.6)

Enk−q ' Enk −|q|∂Enk

∂kα
+ 1

2
|q|2 ∂

2Enk

∂k2
α

. (B.7)

(B.8)
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Appendix B. Derivation of the intraband contribution to the IPA dielectric function

Thus the summation becomes

∑
k

∑
n

fnk − fnk+q

ω− (Enk+q −Enk)
= 1

ω2

∑
k

∑
n

fnk
[
(Enk+q −Enk)− (Enk −Enk−q)

]
(B.9)

= 1

ω2

∑
k

∑
n

fnk|q|2
∂2Enk

∂k2
α

(B.10)

and the real part of the intraband contribution to the dielectric function is therefore

εintra
1 (q̂,ω) =− 4π

Vω2

∑
k

∑
n

fnk
∂2Enk

∂k2
α

. (B.11)

In conclusion, we can rewrite εintra
1 (q̂,ω) in the same form as in the Drude model

εintra
1 (q̂,ω) =−ω

2
D(q̂)

ω2 , (B.12)

by defining the IPA Drude plasma frequency as

ω2
D(q̂) = 4π

V

∑
k

∑
n

fnk
∂2Enk

∂k2
α

. (B.13)
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C Optical data

Here we report the IPA optical properties (computed with the computational approach de-

scribed in Chapter 5) of the 45 elemental metals studied in Chapter 6 and of the seven coloured

intermetallic compounds studied in Section 7.3.1.

We show the full dielectric function ε(ω) = ε1(ω)+ iε2(ω) (real and imaginary parts), the reflec-

tivity R(ω), the interband optical absorption εinter
2 (ω), the EELS spectrum −ℑ[ε−1(ω)], and the

reflectivity zoomed inside the visible range together with the corresponding CIELAB colour

coordinates and colour appearance.
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Appendix C. Optical data

C.1 Elemental metals

Figure C.1 – Optical properties of Ag simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.2 – Optical properties of Al simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.3 – Optical properties of Au simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.4 – Optical properties of Ba simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.5 – Optical properties of Be simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.6 – Optical properties of Bi simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.7 – Optical properties of Ca simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.8 – Optical properties of Cd simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.9 – Optical properties of Co simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.10 – Optical properties of Cr simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.11 – Optical properties of Cs simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.12 – Optical properties of Cu simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.13 – Optical properties of Fe simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.14 – Optical properties of Ga simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.15 – Optical properties of Hf simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.16 – Optical properties of Hg simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.17 – Optical properties of In simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.18 – Optical properties of Ir simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.19 – Optical properties of K simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.20 – Optical properties of Li simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.21 – Optical properties of Mg simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.22 – Optical properties of Mn simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.23 – Optical properties of Mo simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.24 – Optical properties of Na simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.25 – Optical properties of Nb simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.26 – Optical properties of Ni simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.27 – Optical properties of Os simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.28 – Optical properties of Pb simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.29 – Optical properties of Pd simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.30 – Optical properties of Pt simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.31 – Optical properties of Rb simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.32 – Optical properties of Re simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.33 – Optical properties of Rh simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.34 – Optical properties of Ru simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.35 – Optical properties of Sc simulated at the IPA level starting from the DFT-PBE
electronic structure.

168



C.1. Elemental metals

Figure C.36 – Optical properties of Sr simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.37 – Optical properties of Ta simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.38 – Optical properties of Ti simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.39 – Optical properties of Tc simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.40 – Optical properties of Tl simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.41 – Optical properties of V simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.42 – Optical properties of W simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.43 – Optical properties of Y simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.1. Elemental metals

Figure C.44 – Optical properties of Zn simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.45 – Optical properties of Zr simulated at the IPA level starting from the DFT-PBE
electronic structure.

178



C.2. Coloured intermetallics

C.2 Coloured intermetallics

Figure C.46 – Optical properties of PtAl2 simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.47 – Optical properties of CoSi2 simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.2. Coloured intermetallics

Figure C.48 – Optical properties of PdIn simulated at the IPA level starting from the DFT-PBE
electronic structure.
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Appendix C. Optical data

Figure C.49 – Optical properties of NiSi2 simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.2. Coloured intermetallics

Figure C.50 – Optical properties of AuAl2 simulated at the IPA level starting from the DFT-PBE
electronic structure.

183



Appendix C. Optical data

Figure C.51 – Optical properties of AuGa2 simulated at the IPA level starting from the DFT-PBE
electronic structure.
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C.2. Coloured intermetallics

Figure C.52 – Optical properties of AuIn2 simulated at the IPA level starting from the DFT-PBE
electronic structure.
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