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Abstract.

The cold ion limit of the local gyrokinetic model is rigorously taken to produce

a nonlinear system of fluid equations that includes background flow shear. No fluid

closure is required. By considering a simple slab geometry with magnetic drifts, but no

magnetic shear, these fluid equations reduce to the Charney-Hasegawa-Mima model

in the presence of flow shear. Analytic solutions to this model are found to study the

impact of E×B flow shear on the stability of a single Parallel Velocity Gradient (PVG)

driven mode. Additionally, the model is used to investigate the effect of background

E×B flow shear on the basic three-mode nonlinear coupling, which reveals differences

between zonal and non-zonal modes. These analytic results agree with gyrokinetic

simulations and can serve to benchmark the numerical implementation of flow shear

and nonlinear coupling.

PACS numbers: 52.30.-q, 52.30.Gz, 52.35.Mw, 52.35.Ra, 52.65.Tt

1. Introduction

The presence of sheared flow can significantly alter the turbulence in a magnetized

plasma. Sheared flow is thought to be important for tokamak experiments [1, 2, 3]

as well as many astrophysical phenomena [4, 5, 6, 7, 8]. However, its effect is not

straightforward to understand. A gradient in the flow parallel to the magnetic field is

able to drive turbulence through what is called the Parallel Velocity Gradient (PVG)

instability [9, 10]. On the other hand, shear in the flow perpendicular to the magnetic

field line has been shown to stabilize turbulence and reduce its ability to transport heat

and particles [11, 12].

Perpendicular flow shear in tokamaks is particularly important as it may enable

the improved confinement regime H-mode [3]. H-mode is a robust plasma phenomenon

that improves the energy confinement time of the device by roughly a factor of two and

is currently viewed as essential for the success of the ITER experiment [13] as well as
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a future power plant [14, 15]. Thus, a full understanding of perpendicular flow shear is

desirable to ensure that a prospective design can properly exploit H-mode.

To this end, nonlinear gyrokinetic computer codes have recently been employed to

study this problem with unprecedented realism and accuracy [16, 17, 18, 19]. However,

such codes, which can be hundreds of thousands of lines of code [20, 21, 22], are

challenging to write, run, and interpret. Thus, analytic solutions that hold in clearly

defined parameter regimes can be very valuable. They can illuminate aspects of the

underlying physics and serve as benchmarks to verify the code and its execution is

correct.

Such analytic efforts, of course, predate gyrokinetic codes and the supercomputers

they require. The PVG instability was originally discovered using simple fluid equations

in a slab geometry without magnetic shear [9]. Subsequent work rigorously derived

PVG from kinetic theory [23] and included the effect of magnetic shear [10]. A more

recent analytic calculation [24] took the cold ion limit and calculated how PVG can be

stabilized by perpendicular shear flow. References [25, 26, 27] have used fluid equations,

rigorously derived from electromagnetic gyrokinetic theory, to understand the interplay

between the density gradient, temperature gradient, parallel flow shear, perpendicular

flow shear, and magnetic shear. Lastly, several works [28, 29] study how perpendicular

flow shear enables gyrokinetic simulations to exhibit “subcritical” turbulence, which is a

nonlinear instability that is sustained despite the fact that the modes are linearly stable.

As evidenced by all of these separate works, there are several different physical

effects at play that are challenging to include simultaneously and rigorously. First,

the effect of perpendicular flow shear is to take the coherent structures in the plasma

turbulence and, with time, gradually shear them to higher wavenumbers. This

introduces an explicit time dependence that makes the evolution of any turbulence mode

more complex. Previous efforts detailed above (with the exception of reference [28])

have dealt with this time dependence by assuming that the solution is an exponential

with a slowly-varying growth rate. This is useful for developing an intuition for the

dynamics of the system, but is fundamentally an approximation that is only valid when

the mode growth rate is much larger than the perpendicular flow shearing rate. This

approximation breaks down when the perpendicular flow is comparable to the growth

rate, which is necessarily the case to stabilize turbulence [11]. Second, as the modes are

sheared to high wavenumbers, finite gyroradius effects become increasingly important.

These are generally ignored (excepting references [24, 28]), but are important as they

can determine how the mode is ultimately stabilized.

Third, for fusion devices we are fundamentally interested in properties of the

nonlinearly saturated state of turbulence, rather than characteristics about its linear

growth. Studying how modes nonlinearly interact can illuminate the physics of this.

Without perpendicular flow shear, the usual three-wave nonlinear coupling and three-

wave instability analysis only involves time-independent equations, which lead to the

usual instabilities that grow exponentially in time. But, as for the linear problem

described in the previous paragraph, introducing perpendicular flow shear causes the
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equations to gain an explicit time-dependence. Thus, the nonlinear problem gains

complicated time dependence that can exhibit transient growth [25, 27]. Interestingly,

we will see that there is a surprising correspondence between the linear and nonlinear

analysis. Only recently have nonlinear dynamics been considered analytically in the

presence of sheared flows. Reference [30] uses a fluid model (without finite gyroradius

effects) to investigate the stability of zonal flows. Additionally, reference [31] uses the

cold ion limit to study the nonlinear dynamics streamers driven by the PVG instability.

In this work, we take the cold ion limit to explore the impact of parallel and

perpendicular flow shear. This limit, though not physically motivated, is attractive

because it enables simple and exact results. It was used most prominently in deriving

the Charney-Hasegawa-Mima equation from fluid models [32] and was quickly employed

to find nonlinear analytic results [33]. Since then, the cold ion limit of gyrokinetics has

been taken [34, 35] in slab geometry and has potential applications ranging from the

scrape-off layer of tokamak plasmas [36] to the solar wind [37].

In section 2, we start from the full nonlinear local gyrokinetic equation in general

geometry and use the cold ion limit to rigorously derive a simple fluid model that exactly

governs its behavior. No fluid closure is needed because the cold ion limit naturally

provides it. From this point onwards, we consider a simple slab-like geometry without

magnetic shear and show that our fluid equations reduce to the Charney-Hasegawa-

Mima model [32] in the presence of background flow. Ignoring magnetic shear reduces

the realism of the model in space, but enables investigations of the full time evolution

of a single physical Fourier mode driven by PVG and stabilized by perpendicular flow.

This is done in section 3 using a Fourier representation that is very similar to that

used in gyrokinetic codes, making comparison relatively simple. Next, in section 4, we

focus on the nonlinear coupling term and study how three-wave coupling is affected by

perpendicular flow shear. The results of both sections 3 and 4 are compared against

gyrokinetic simulations as they are presented. Section 5 provides some concluding

remarks.

2. Derivation of the model

We begin with the electrostatic, collisionless, local (flux-tube) δf gyrokinetic model in

a general geometry [38, 39, 40]. The electrons are assumed to respond adiabatically

to the motion of a single ion species. We will set the background flow in the center

of our domain to be zero, but allow for the flow to vary in the ~∇x direction, which

is perpendicular to the direction of the magnetic field b̂. We refer to the gradient of

the component of the flow parallel to the magnetic field line as “parallel flow shear,”

while the gradient in the component perpendicular to the magnetic field is called

“perpendicular flow shear.” Including both of these effects enables study of the PVG

instability as well as stabilization by ~E× ~B flow shear. All other gradients of the plasma

quantities are also assumed to vary in only in the ~∇x direction. The binormal spatial

coordinate y is defined such that ~∇y × ~∇x is in the b̂ direction. We will denote the
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real-space coordinate along the field line as z. Note that this coordinate system is not

orthogonal in general and permits the Jacobian to be different from one. However, we

will only encounter J ≡ |(~∇y × ~∇x) · b̂|−1, which is closely related to the coordinate

system Jacobian. Thus, it is appropriate for both a slab representation [25] (i.e. a

Cartesian y, x, and z such that J = 1) or a toroidal ballooning representation [39]

(i.e. y as the binormal angle α, x as the poloidal flux ψ, and z as the poloidal angle θ

such that J = B−1). Note that we have defined the right-handed coordinate system as

(y, x, z) in order to be consistent with the ballooning representation.

In this context, the real-space ion gyrokinetic equation is given by(
∂

∂t
− ωV⊥x

∂

∂y

)(
hi −

ZieFMi

Ti

〈
φ
〉)

+ v||b̂ · ~∇hi + a||i
∂hi
∂v||

+
1

B

(
~∇〈φ〉 × ~∇hi

)
· b̂

+ ~vMi · ~∇hi =
1

B

∂
〈
φ
〉

∂y
FMi

[
1

ln
+

(
miv

2

2Ti
− 3

2

)
1

lT
+
miv||
Ti

ωV ||

]
, (1)

where t is the time coordinate and the velocity-space coordinates are the velocity parallel

to the magnetic field v|| and the magnetic moment µ ≡ v2⊥/(2B) (which is defined with

the perpendicular velocity v⊥). The magnetic drifts are given by

~vMi ≡
v2||
Ωi

b̂× ~κ+
µ

Ωi

b̂× ~∇B (2)

and the linear parallel acceleration (i.e. the mirror effect) is

a||i ≡ −µb̂ · ~∇B, (3)

where ~κ ≡ b̂ · ~∇b̂ is the magnetic field curvature vector. The background gradients are

the shear in the perpendicular flow

ωV⊥ ≡ −
d

dx

(
~E0 × b̂
B

· ~∇y
)

=
∂

∂x

(
1

JB

dΦ0

dx

)
, (4)

the shear in the parallel flow ωV ||, the ion density gradient scale length

l−1n ≡ −J−1d ln (ni) /dx, and the ion temperature gradient scale length l−1T ≡
−J−1d ln (Ti) /dx. The shear in the parallel flow is ωV || ≡ −J−1(RBζ/B)d(V/R)/dx

in toroidal geometry and ωV || ≡ −J−1(b̂ · ζ̂)dV/dx in slab geometry, where V is the

flow velocity, R is the major radius, and ζ̂ is the direction of the flow. Additionally,

B is the magnitude of the magnetic field, ~E0 = −~∇Φ0 is the background electric

field, Φ0 = Φ0(x) is the background electrostatic potential, Zi is the ion charge

number, e is the elementary charge, FMi ≡ ni (mi/2πTi)
3/2 exp (−miv

2/2Ti) is the

background ion Maxwellian distribution function, ni is the background ion number

density, mi is the ion mass, Ωi ≡ ZieB/mi is the ion gyrofrequency, Ti is the

background ion temperature, and v is the particle speed coordinate. The unknowns in

this equation are hi ≡ δf i + (ZieFMi/Ti)φ, the nonadiabatic portion of the fluctuating

ion distribution function in real-space, and φ, the fluctuating electrostatic potential in
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real-space. Note that δf i is the fluctuating ion distribution function in real-space and

〈. . .〉 ≡ (2π)−1
∮ 2π

0
dϕ (. . .) is the particle gyroaverage over gyro-angle (taken at constant

particle guiding center). Since equation (1) has two unknowns, hi and φ, we also require

the real-space quasineutrality equation to close the system:

Zie

∫ ∣∣∣∣
x

d3v hi =

(
Z2
i e

2ni
Ti

+
e2ne
Te

)
φ, (5)

where the species index indicates either i for ions or e for electrons and
∫ ∣∣

x
d3v indicates

that the integral must be taken at constant particle position (not the guiding center

position).

Since we are working in the local flux-tube limit of δf gyrokinetics, the background

gradients are fixed constants and it is appropriate to use periodic boundary conditions

in the directions perpendicular to the magnetic field lines. Thus, it is convenient to

perform a Fourier analysis of hi and φ in the radial and binormal directions (e.g.

φ =
∑

kx

∑
ky
φ exp (ikxx+ ikyy)). This has the advantage of converting the averages

over gyro-angle into Bessel functions [39, 41]. The only caveat is that, because the

nonlinear term includes a product of hi and φ, the Fourier transform includes a

convolution (which involves three modes). In Fourier-space, equation (1) becomes

[39, 41](
∂

∂t
+ ωV⊥ky

∂

∂kx

)
gi + v||b̂ · ~∇gi + i~k⊥ · ~vMigi + a||i

∂gi
∂v||

(6)

+
1

B

∑
~k′

(
~k′ × ~k′′

)
· b̂
(
g′i +

ZieFMi

Ti
φ′J0 (k′⊥ρi)

)
φ′′J0 (k′′⊥ρi)

= −ZieFMi

Ti

[
v||b̂ · ~∇ (J0 (k⊥ρi)φ) + i~k⊥ · ~vMiJ0 (k⊥ρi)φ− a||i

miv||
Ti

J0 (k⊥ρi)φ

]
+ i

ky
B
J0 (k⊥ρi)φFMi

[
1

ln
+

(
miv

2

2Ti
− 3

2

)
1

lT
+
miv||
Ti

ωV ||

]
,

where the summation is performed over the full k′x ∈ (−∞,∞), k′y ∈ (−∞,∞) plane, the

nonlinear coupling condition of the convolution is ~k′′ = ~k−~k′, and the prime and double

prime symbols indicate which wavenumber is used in evaluating the quantity. Here kx
and ky are the x and y Fourier wavenumbers, gi(~k) ≡ hi(~k)− (ZieFMi/Ti) J0 (kρi)φ(~k)

is the complementary ion distribution function in Fourier-space, J0 (. . .) is the 0th order

Bessel function of the first kind, and ρi ≡
√

2µB/Ωi is the ion gyroradius.

In Fourier-space, the quasineutrality equation becomes∫
d3v giJ0 (k⊥ρi) =

eni
Te

{
Zi
Te
Ti

[
1− I0

(
k2⊥ρ

2
thi

)
exp

(
−k2⊥ρ2thi

)]
+ 1

}
φ, (7)

where ρthi ≡
√
Ti/mi/Ωi is the ion thermal gyroradius and the integral is now taken at

constant guiding center position. Such a Fourier representation facilitates comparison

to (and understanding of) gyrokinetic codes, most of which use such a representation.
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Next, we rename the dummy variables ~k′ → ~k′′ and ~k′′ → ~k′ in equation (6), then

sum the result with the original equation (6) to make the (~k′, ~k′′) symmetry of the

nonlinear term explicit. By changing to the double-shearing coordinate system [42, 43],

we can elegantly treat both the effects of flow shear and magnetic shear. This coordinate

system accounts for the fact that magnetic shear causes an eddy to be radially sheared

as you move along a field line, while perpendicular flow shear causes an eddy to be

radially sheared as time progresses. A more detailed explanation is given in reference

[25]. In Fourier-space, this coordinate transform is given by

Kx ≡ kx − kyωV⊥t− ky
z

ls
(8)

Z ≡ z + uf t, (9)

where uf ≡ ωV⊥ls is the velocity at which the unsheared eddy appears to move along

the field line. The parameter ls is the global magnetic shear scale length, which is

l−1s ≡ d(b̂ · ~∇y)/dx in slab coordinates or l−1s ≡ dq/dx in ballooning coordinates (where

q is the safety factor). In these new coordinates, the gyrokinetic equation becomes

∂gi
∂t

∣∣∣∣
Kx

+
(
v||b̂ · ~∇Z + uf

) ∂gi
∂Z

+ i~k⊥ · ~vMigi + a||i
∂gi
∂v||

(10)

+
1

2B

∑
~K′

(
~K ′ × ~K ′′

)
· b̂ (g′iφ

′′J0 (k′′ρi)− g′′i φ′J0 (k′ρi))

=− ZieFMi

Ti

[
v||b̂ · ~∇Z

∂

∂Z
(J0 (k⊥ρi)φ) + i~k⊥ · ~vMiJ0 (k⊥ρi)φ− a||i

miv||
Ti

J0 (k⊥ρi)φ

]
+i
ky
B
J0 (k⊥ρi)φFMi

[
1

ln
+

(
miv

2

2Ti
− 3

2

)
1

lT
+
miv||
Ti

ωV ||

]
,

where the summation is still over the full plane and ~K ′′ = ~K − ~K ′. Note that, since the

time derivative is now taken at constant Kx, the quantities of kx appearing in ~k⊥ and

the Bessel functions have gained an explicit time dependence.

At this point, as in reference [33], we will take the cold ion limit Ti � ZiTe. Note

that we maintain k⊥ρS ∼ 1, where ρS ≡
√
ZiTe/mi/Ωi is the sound gyroradius. In

this limit, J0 (k⊥ρi) → 1, while the quasineutrality condition retains the lowest order

polarization drift. Thus, the gyrokinetic equation becomes

∂gi
∂t

∣∣∣∣
Kx

+
(
v||b̂ · ~∇Z + uf

) ∂gi
∂Z

+ i~k⊥ ·
(
v2||
Ωi

b̂× ~κ+
µ

Ωi

b̂× ~∇B
)
gi − µb̂ · ~∇Z

∂B

∂Z

∂gi
∂v||

+
1

2B

∑
~K′

(
~K ′ × ~K ′′

)
· b̂ (g′iφ

′′ − g′′i φ′) (11)

=− ZieFMi

Ti

[
v||b̂ · ~∇Z

∂φ

∂Z
+ i~k⊥ ·

(
v2||
Ωi

b̂× ~κ+
µ

Ωi

b̂× ~∇B
)
φ+ µb̂ · ~∇Z∂B

∂Z

miv||
Ti

φ

]

+i
ky
B
φFMi

[
1

ln
+

(
miv

2

2Ti
− 3

2

)
1

lT
+
miv||
Ti

ωV ||

]
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and quasineutrality becomes

δn ≡
∫
d3v gi =

eni
Te

(
1 + k2⊥ρ

2
S

)
φ. (12)

It is important to note the finite sound gyroradius effect that survives in the

quasineutrality equation. This is due to the ion polarization drift and will have

important consequences later in this work. Taking velocity-space moments of equation

(11), gives a fluid model. We find that no closure is needed because, in the cold ion

limit, the right-hand side is zero for all except the density and parallel velocity moments.

Thus,
∫
d3v va||µ

bgi = 0 for integers a ≥ 2 and b ≥ 1. The density moment is(
∂

∂t

∣∣∣∣
Kx

+ uf
∂

∂Z

)
δn+ nib̂ · ~∇Z

∂δu||
∂Z

+
1

2B

∑
~K′

(
~K ′ × ~K ′′

)
· b̂ (δn′φ′′ − δn′′φ′) (13)

+ i
eni
Te

(kxρSωMx + kyρSωMy)φ = 0,

where

ωMx ≡ cS

(
1

J

∂ lnB

∂y
+
κy
J

)
(14)

ωMy ≡ −cS
(

1

ln
+

1

J

∂ lnB

∂x
+
κx
J

)
(15)

contain the effect of the magnetic drifts and density gradient, κx ≡ ∂~r/∂x · ~κ and κy ≡
∂~r/∂y · ~κ are the components of the magnetic field line curvature, and cS ≡

√
ZiTe/mi

is the sound speed. Substituting quasineutrality (i.e. equation (12)) gives an equation

for the evolution of φ:(
∂

∂t

∣∣∣∣
Kx

+ uf
∂

∂Z

)[(
1 + k2⊥ρ

2
S

)
φ
]

+
Te
e
b̂ · ~∇Z∂δu||

∂Z
(16)

+
1

2B

∑
~K′

(
~K ′ × ~K ′′

)
· b̂
(
k′2⊥ − k′′2⊥

)
ρ2Sφ

′φ′′ + i (kxρSωMx + kyρSωMy)φ = 0.

Lastly, the parallel velocity moment, δu|| ≡ n−1i
∫
d3v v||gi, of equation (11) is(

∂

∂t

∣∣∣∣
Kx

+ uf
∂

∂Z

)
δu|| +

1

2B

∑
~K′

(
~K ′ × ~K ′′

)
· b̂
(
δu′||φ

′′ − δu′′||φ′
)

(17)

+
Zie

mi

b̂ · ~∇Z
(
∂φ

∂Z
+
∂ lnB

∂Z
φ

)
− iky

ωV ||
B

φ = 0.

Note that, in the cold ion limit, the effect of the ion temperature gradient vanishes

entirely from the model. In real-space, equations (16) and (17) are(
∂

∂t

∣∣∣∣
Y

+ uf
∂

∂Z

)[(
1− ρ2S∇2

⊥
)
φ
]

+
Te
e
b̂ · ~∇Z∂δu||

∂Z
(18)

+
1

B

(
ρ2S
~∇
(
∇2
⊥φ
)
× ~∇φ

)
· b̂+

(
ωMxρS

∂φ

∂x
+ ωMyρS

∂φ

∂Y

)
= 0
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and (
∂

∂t

∣∣∣∣
Y

+ uf
∂

∂Z

)
δu|| +

1

B

(
~∇φ× ~∇δu||

)
· b̂ (19)

+
Zie

mi

b̂ · ~∇Z
(
∂φ

∂Z
+
∂ lnB

∂Z
φ

)
− ωV ||

B

∂φ

∂Y
= 0,

where ~∇⊥ ≡ ~∇ − b̂(∂/∂z). Note that in real-space, the double shearing coordinate

system [25] is given by equation (9) and Y ≡ y − x(z + uf t)/ls, which means that

∂/∂x = ∂/∂x|Y − (Z/ls)∂/∂Y .

Equations (16) and (17) form a closed system that governs the electrostatic,

collisionless local gyrokinetic model in the cold ion limit. This fluid model

is tremendously simpler than the six-dimensional, integro-differential system of

gyrokinetics. Yet, as long as the limit of Ti � ZiTe is satisfied, the two are equivalent.

This cold ion model is simple enough to enable analytic results for the linear

dynamics in a slab with magnetic shear, as was done by Waelbroeck, et al. [24].

However, in this work we will sacrifice realism in space in order to enable a more realistic

treatment in time. Instead of a slab geometry with magnetic shear, we will use a slab

without magnetic shear (but maintain simple magnetic drifts). Accordingly, instead of

having to solve differential equations in space, as was done by Waelbroeck, we will solve

them in time. This will permit an investigation of the full time evolution of modes under

the effect of finite ωV⊥ as well as their nonlinear interaction.

Without magnetic shear, we can let ls → ∞. Moreover, to prevent the coordinate

system from diverging, we must also set uf = 0. This is physically motivated because,

without magnetic shear, the unsheared eddy no longer has any apparent motion along

the field line. Thus, we can ignore the last term in equations (8) and (9) as well as the

terms containing uf in equations (16) and (17). Importantly, ignoring magnetic shear

allows us to apply a standard periodic boundary condition in the parallel direction,

rather than the more complex twist-and-shift boundary condition [44]. However, this

simplification is also a limitation as it eliminates mode coupling through the parallel

boundary condition. Such coupling occurs in toroidal devices, but will not be included

in our model. Lastly, we will assume that dB/dZ = 0, so that b̂ becomes a direction

of symmetry. We will maintain magnetic drifts, but also assume that they are constant

in Z. This is applicable to geometries like purely toroidal field lines or straight field

lines with a perpendicular gradient in the field strength. With these simplifications, it

becomes useful for notational simplicity to adopt a Cartesian orthonormal coordinate

system such that |~∇x| = |~∇y| = |~∇Z| = 1, b̂ · ~∇Z = 1, and all the metric coefficients are

1. Additionally, we can Fourier analyze in the parallel direction and replace dφ/dZ with

a parallel wavenumber ik||φ. Doing so is only possible because all equilibrium quantities
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have become independent of Z. In this geometry, our model becomes

∂

∂t

∣∣∣∣
Kx

[(
1 + k2⊥ρ

2
S

)
φ
]

+ ik||
Te
e
δu|| +

1

2B

∑
~K′

(
~K ′ × ~K ′′

)
· b̂
(
k′2⊥ − k′′2⊥

)
ρ2Sφ

′φ′′ (20)

+ i (kxρSωMx + kyρSωMy)φ = 0

and

∂

∂t

∣∣∣∣
Kx

δu|| +
1

2B

∑
~K′

(
~K ′ × ~K ′′

)
· b̂
(
δu′||φ

′′ − δu′′||φ′
)

= −i
(
Zie

mi

k|| − ky
ωV ||
B

)
φ, (21)

which is equivalent to the Charney-Hasegawa-Mima model [32] with the addition of

background flow. We note that in the slab limit of most toroidal gyrokinetic codes

ωMx = 0 and ωMy = −cS/ln.

3. Single mode slab results

By restricting our analysis to the evolution of just a single mode, the nonlinear terms

vanish from the φ evolution equation and the parallel velocity moment (i.e. equations

(20) and (21)). Qualitatively similar systems have been analyzed in the past. Some

used computational approaches to investigate realistic geometries [11, 42], while others

obtained analytic results for a simplified fluid model [29]. The physics discussed in these

studies are useful in interpreting the results of this section, which will use the cold ion

limit and above simplifications to enable rigorous analytic results.

Taking the time derivative of the equation (20) and substituting equation (21) as

well as the ansatz

φ = φ̂
(
1 + k2⊥ρ

2
S

)−1
exp

(
−i
∫ ∣∣∣∣

Kx

dt
kxρSωMx + kyρSωMy

1 + k2⊥ρ
2
S

)
(22)

produces

(
1 + k2⊥ρ

2
S

) ∂2φ̂
∂t2

∣∣∣∣∣
Kx

− i (kxρSωMx + kyρSωMy)
∂φ̂

∂t

∣∣∣∣∣
Kx

−
(
k||cSkyρSωV || − k2||c2S

)
φ̂ = 0.

(23)

This ordinary differential equation determines the full time evolution of a single mode in

the presence of parallel and perpendicular velocity shear. While it appears simple, due

to the perpendicular flow shear dependence of kx = Kx + kyωV⊥t (see equation (8)), k2⊥
is quadratic in time and kx is linear. Additionally, we note that the ansatz of equation

(22) is important to keep in mind because, even with ωV || = k|| = 0 the mode will still

evolve due to the variation of the 1+k2⊥ρ
2
S factor as it is advected by perpendicular flow

shear.

While equation (23) is complicated, it still has an analytic solution given by

φ̂ = Cα 2F 1

(
ã, b̃; c̃; t̃

)
+ Cβ t̃

1−c̃
2F 1

(
ã+ 1− c̃, b̃+ 1− c̃; 2− c̃; t̃

)
, (24)
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where 2F 1 is the Gaussian hypergeometric function [45],

t̃ ≡ 2a2t+ a1 +
√
a21 − 4a0a2

2
√
a21 − 4a0a2

(25)

ã ≡
b1 − a2 +

√
(b1 − a2)2 − 4a2c0

2a2
(26)

b̃ ≡ c0
a2

1

ã
(27)

c̃ ≡
−2a2b0 + b1

(
a1 +

√
a21 − 4a0a2

)
2a2
√
a21 − 4a0a2

, (28)

and

a0 ≡ 1 +K2
xρ

2
S + k2yρ

2
S (29)

a1 ≡ 2Kxkyρ
2
SωV⊥ (30)

a2 ≡ k2yρ
2
Sω

2
V⊥ (31)

b0 ≡ −i (KxρSωMx + kyρSωMy) (32)

b1 ≡ −ikyρSωV⊥ωMx (33)

c0 ≡ −
(
k||cSkyρSωV || − k2||c2S

)
(34)

are the coefficients of the polynomials appearing in equation (23). Here Cj for any Greek

letter j is an integration constant that can be calculated from the initial conditions. This

analytic solution has been verified against the numerical solution of equation (23) as

shown in figure 1. Additionally, it has been verified by comparison with the local version

of the gyrokinetic code GENE [46, 47] as shown in figure 2. GENE is one of the most

commonly used gyrokinetic codes with the capacity to solve the full nonlinear gyrokinetic

system of equations in multiple different geometries. Among many capabilities, it can

model collisions, electromagnetic fluctuations, and global effects, although these features

are not used in this work.

All GENE simulations in this work use Zi = 1 and an ion temperature of

Ti = 10−4Te to ensure that the cold ion limit is well satisfied. To be consistent

with the analytic model, all simulations also set the magnetic shear equal to zero and

use the standard slab geometry in GENE. Because this slab model does not include

magnetic drifts, ωMx is forced to be zero in all simulations, but ωMy is varied using

the density gradient. Additionally, for all comparisons it was necessary to set the flux

surface averaged value of the electrostatic potential to zero when GENE calculates the

adiabatic electron response. This is because, without magnetic shear, the standard

parallel boundary condition used by most local gyrokinetic codes causes every field line

to close on itself, so flux surfaces are not formed [44]. All simulations use the same

resolution of 32 grid points in the parallel direction, 32 parallel velocity grid points,

and 24 magnetic moment grid points. To ensure that the “wavevector-remap” scheme
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Figure 1: The numerical solution to equation (23) (thin solid) and the analytic solution

given by equation (24) (thick dotted) for a PVG single mode that is advected by

perpendicular flow shear. The parameters used are ωV⊥ = 0.2cS/Lr, ωV || = 1.75cS/Lr,

ωMx = 0.5cS/Lr, ωMy = 0.9cS/Lr, KxρS = 1, kyρS = 0.3, and k||cS = kyρSωV ||/2, where

Lr is an arbitrary reference length.
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Figure 2: The mode evolution as calculated by GENE (thin solid) and the analytic

solution given by equation (24) (thick dotted) for a PVG single mode that is advected

by perpendicular flow shear. The parameters used are ωV⊥ = 0.5cS/Lr, ωV || = 10cS/Lr,

ωMx = 0, ωMy = −cS/Lr, KxρS = 0, kyρS = 0.3, and k||Lr = 1.

converges to a fairly smooth and continuous mode evolution, 128 radial wavenumbers

were used [48]. Since we will only ever initialize a limited number of individual modes

to be finite, the number of binormal wavenumbers does not have an effect, so very low

values between 2 and 10 were used.

Unfortunately, hypergeometric functions do not provide much physical insight.

Thus, as was done in reference [28], we will find further analytic results by investigating

equation (23) in certain limits. We will focus on |ωV⊥t| � 1 and |ωV⊥t| � 1. The first
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limit can be used to understand the effect of weak perpendicular flow shear or the initial

effect of arbitrary flow shear. The second limit can be used to understand the behavior

of a mode after a long time as it is advected to large kx or the behavior of a mode with

large kx as it is advected towards kx = 0. One could also find solutions in the weak

perpendicular flow shear limit of ωV⊥ � γ, where γ is the mode growth rate. We will

see that this is closely related to the |ωV⊥t| � 1 limit.

3.1. The |ωV⊥t| � 1 limit

By looking in the limit of short time, we can obtain analytic results for situations without

perpendicular flow shear as well as the early time behavior of situations with flow shear.

To lowest order (i.e. ωV⊥ = 0), we see that kx = Kx = const and k⊥ = K2
x +k2y = const,

so the time dependence of the wavenumber coefficients vanish. Thus, equation (23)

becomes a simple 2nd order ordinary differential equation with constant coefficients.

This is solved by an exponential, which can be substituted into equation (22) to find

the full solution (without the hat on φ) to be

φ0 = Cγ exp ((iω + γ) t) + Cδ exp ((iω − γ) t) , (35)

where the numerical subscript represents the quantity’s order in the |ωV⊥t| expansion

and

ω ≡ −1

2

KxρSωMx + kyρSωMy

1 + k∅2
⊥ ρ

2
S

(36)

γ ≡
√
k||cSkyρSωV || − k2||c2S

1 + k∅2
⊥ ρ

2
S

− 1

4

(
KxρSωMx + kyρSωMy

1 + k∅2
⊥ ρ

2
S

)2

(37)

are the mode frequency and growth rate respectively. Here the superscript ∅ indicates

the initial condition of the quantity (e.g. k∅x ≡ kx(t = 0) = Kx, k
∅2
⊥ = K2

x + k2y). When

the mode growth rate is much greater than the perpendicular flow shear (i.e. ωV⊥ � γ),

this solution actually holds for all time. We can simply replace Kx → kx and k∅⊥ → k⊥
to capture their time dependence because they vary slowly in the ωV⊥ � γ expansion.

Note that, when the magnetic drifts and finite sound gyroradius effects are ignored,

equation (37) reduces to the typical PVG growth rate [10, 25].

For instability, the growth rate γ must be real, giving the following condition on

the parallel velocity gradient:

ωV || >
1

k||cSkyρS

(
k2||c

2
S +

1

4

(KxρSωMx + kyρSωMy)
2

1 + k∅2
⊥ ρ

2
S

)
. (38)

This shows that the only possible instability in this limit is PVG. As is intuitive, in the

cold ion limit neither ion temperature gradient (ITG) nor drift wave instabilities can

exist. Without parallel flow shear, equation (35) simply governs stable drift-sound waves

as they oscillate. On the other hand, we see that a sufficiently large parallel velocity
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Figure 3: The mode growth rate as calculated by equation (37) for ωMx = ωMy = 0 (solid

black), ωMx = −0.3cS/Lr and ωMy = 0 (dash-dotted red), ωMx = 0 and ωMy = cS/Lr
(dashed green), and ωMx = −0.3cS/Lr and ωMy = cS/Lr (dotted blue). The other

parameters were set to ωV⊥ = 0, ωV || = cS/Lr, kyρS = 0.3, and k||cS = kyρSωV ||/2.

gradient will always overcome the damping and lead to instability, so long as k|| and ky
are finite. To maximize the growth rate, a mode should have a parallel wavenumber of

k||cS = kyρSωV ||/2, and as large of a ky as possible. Given this value of k||, the stability

criterion becomes

ω2
V || >

1

k2yρ
2
S

(KxρSωMx + kyρSωMy)
2

1 + k∅2
⊥ ρ

2
S

. (39)

Note that, due to finite sound gyroradius effects in equation (37), the growth rate has

a maximum possible value of γ = |ωV |||/2, rather than increasing without bound when

ky →∞ as is the usual result [10, 25].

The dependence of the instability growth rate on Kx is complex as shown in figure 3.

For example, when the magnetic drifts and density gradient are zero such that ωMy = 0,

it is best for KxρS = 0 to minimize the finite gyroradius damping. However, when ωMy 6=
ωMx = 0 the maximum growth rate occurs at KxρS = ±

√
2ω2

My − (1 + k2yρ
2
S)ω2

V ||/ωV ||.

As can be seen from equation (37), when both ωMx and ωMy are non-zero the growth

rate spectrum even becomes asymmetric about KxρS = 0.

If the magnetic drifts, density gradient, and finite gyroradius effects are neglected,

these results match equation (30) of reference [25] and equation (22) of reference [10]

when Ti = 0. This is true even though magnetic shear is included in the analysis of

reference [25]. Additionally, the effect of finite gyroradius effects is in agreement with

references [24, 31].
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Figure 4: The mode evolution for short times as calculated by the numerical solution to

equation (23) (solid black), the lowest order analytic solution of equation (35) (dotted

blue), or the next order solution that includes equation (41) (dashed blue). The

parameters used are ωV⊥ = 0.2cS/Lr, ωV || = 1.67cS/Lr, ωMx = 0.5cS/Lr, ωMy = 0,

KxρS = 0.1, kyρS = 0.3, and k||cS = kyρSωV ||/2.

To next order in |ωV⊥t| � 1, the differential equation for the mode becomes

(
1 + k∅2

⊥ ρ
2
S

) ∂2φ̂1

∂t2

∣∣∣∣∣
Kx

− i (KxρSωMx + kyρSωMy)
∂φ̂1

∂t

∣∣∣∣∣
Kx

−
(
k||cSkyρSωV || − k2||c2S

)
φ̂1

= −
(
k2⊥ρ

2
S

)
1

∂2φ̂0

∂t2

∣∣∣∣∣
Kx

+ i (kxρS)1 ωMx
∂φ̂0

∂t

∣∣∣∣∣
Kx

, (40)

Perpendicular flow shear appears only in the inhomogeneous terms through (k2⊥ρ
2
S)1 =

2Kxkyρ
2
SωV⊥t and (kxρS)1 = kyρSωV⊥t. This equation can be solved analytically. The

solution to the homogeneous equation has the same form as the lowest order solution of

equation (35), while a particular solution to the inhomogeneous equation is

φ̂1 =
1

4γ2

{
Cγ exp ((−iω + γ) t) (1− γt)

[
(−iω + γ)2

(
k2⊥ρ

2
S

)
1
− i (−iω + γ) (kxρS)1 ωMx

]
+ Cδ exp ((−iω − γ) t) (1 + γt)

[
(−iω − γ)2

(
k2⊥ρ

2
S

)
1
− i (−iω − γ) (kxρS)1 ωMx

] }
,

(41)

where we note the hat on φ̂1. Thus, we see that the dominant effect of weak flow shear

(or alternatively the first effect of flow shear to appear) is a quadratic correction to the

lowest order exponential behavior. The lowest and next order analytic solutions are

compared to the exact numerical solution of equation (23) in figure 4. Note that care

must be taken in converting from φ̂1 to φ1 because equation (22) must be expanded to

next order in |ωV⊥t| � 1.
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While equation (41) is fairly complicated, it can be further simplified to give

an expected result about the impact of perpendicular flow shear. Specifically, we

are primarily interested in the behavior after a few e-folding times, rather than the

details of the transients at the very beginning of the evolution. This limit is reached

by assuming that γt � 1 while retaining |ωV⊥t| � 1, which implies that ωV⊥ � γ.

Thus, the dominant terms are those that are quadratic in time, so the factor of

(1± γt) becomes ±γt. Moreover, we are interested in unstable modes (i.e. γ is

real), for which the exp ((−iω + γ) t) term will dominate. In these limits, we can write

φ0 + φ1 = Cγ(1 + εαt
2) exp ((iω + γ) t), where

εα = − 1

4γt

[
(−iω − γ)2

(k2⊥ρ
2
S)1

1 + k∅2
⊥ ρ

2
S

− i (−iω − γ)
(kxρS)1 ωMx

1 + k∅2
⊥ ρ

2
S

]
(42)

is a complex constant that can be calculated from equation (41) and the expansion of

equation (22). To next order in |ωV⊥t| � 1, |φ0+φ1|2 = |Cγ|2(1+2 Real(εα)t2) exp (2γt).

Thus, the sign of the real part of εα indicates if perpendicular flow shear will enhance

or stabilize the growth of the instability. By manipulating the coefficient, we find that

the instability will be enhanced by flow shear if and only if

−
k||cSkyρSωV || − k2||c2S

1 + k∅2
⊥ ρ

2
S

(k2⊥ρ
2
S)1

1 + k∅2
⊥ ρ

2
S

+
1

2

(
KxρSωMx + kyρSωMy

1 + k∅2
⊥ ρ

2
S

)2 (k2⊥ρ
2
S)1

1 + k∅2
⊥ ρ

2
S

(43)

− 1

2

KxρSωMx + kyρSωMy(
1 + k∅2

⊥ ρ
2
S

)2 (kxρS)1 ωMx > 0.

We write the condition in this particular form to facilitate comparison with equation

(37), the instability growth rate. We see that this condition implies that the instability

will be enhanced if the finite flow shear correction to the growth rate is positive. This

is an intuitive result and is consistent with the discussion of the ωV⊥ � γ limit that

followed equation (37). If flow shear is moving the mode to a wavenumber that is more

strongly driven (relative to damping), then it should begin to grow faster. Note that

converting from φ̂1 to φ1 using an expanded version of equation (22) does not end up

having an effect on equation (43). This is because it only introduces terms that are

either linear in t or imaginary.

The solution we have derived in this section will only be valid for a short time.

Our intuition is that a mode will only be unstable for a finite time before flow shear

advects them to high radial wavenumbers, where damping is more effective. However,

this hypothesis will be rigorously investigated in the next section.

3.2. The |ωV⊥t| � 1 limit

We can also obtain analytic solutions to equation (23) in the long time limit. This

reveals the ultimate fate of the mode as it is advected to high kx by flow shear, where

it can be stabilized by finite sound gyroradius effects. Alternatively, it can be used to
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understand the behavior of a high kx mode as it is advected towards kx = 0. In this

limit, equation (23) becomes

(
k2yρ

2
Sω

2
V⊥t

2
) ∂2φ̂
∂t2

∣∣∣∣∣
Kx

− i (kyρSωMxωV⊥t)
∂φ̂

∂t

∣∣∣∣∣
Kx

−
(
k||cSkyρSωV || − k2||c2S

)
φ̂ = 0. (44)

This equation is solved by a polynomial that, when substituted into equation (22), gives

φ = Cεt
iω̃+γ̃+1/2−2 + Cζt

iω̃−γ̃+1/2−2, (45)

where

ω̃ ≡ −1

2

ωMx

kyρSωV⊥
(46)

γ̃ ≡
√

1

4
+
k||cSkyρSωV || − k2||c2S

k2yρ
2
Sω

2
V⊥

− 1

4

ω2
Mx

k2yρ
2
Sω

2
V⊥

+
i

2

ωMx

kyρSωV⊥
. (47)

It is important to note that γ̃ is a complex number. Additionally, since the time

dependence is polynomial rather than exponential as before, the transformation from

φ̂ to φ has been included according to equation (22). The finite gyroradius factor has

introduced a factor of t−2, while the exponential phase factor has changed the sign of ω̃.

From this solution, we can calculate the condition for an unbounded solution as t→∞.

This condition is simply Real(γ̃) > 3/2, which is equivalent to

ωV || >
1

k||cSkyρS

(
k2||c

2
S + 2k2yρ

2
Sω

2
V⊥ +

2

9
ω2
Mx

)
(48)

or

ω2
V || > 8ω2

V⊥ +
8

9

ω2
Mx

k2yρ
2
S

(49)

at the most unstable parallel wavenumber of k||cS = kyρSωV ||/2. If ωV || is greater than

this value, then φ → ∞ as t → ∞, indicating that the stabilizing mechanisms are not

sufficiently strong to restrain the PVG instability. This condition is verified against the

numerical solution to equation (23) in figure 5. Such a condition is interesting as it

indicates what mechanisms are able to saturate PVG turbulence. For weak ωV⊥, the

nonlinear term can be expected to limit the modes. For strong ωV⊥, the flow shear on

its own is capable of damping the modes, without the nonlinear term.

Additionally, equation (49) can be cast into the form of the approximate “ωV⊥ ≈ γ”

quench rule [11], which states that turbulence is quenched when the perpendicular flow

shear becomes approximately equal to the maximum linear growth rate γ in the absence

of perpendicular flow shear. Ignoring the magnetic drifts for simplicity, we can solve

equation (37) for ωV || using the most unstable parallel wavenumber of k||cS = kyρSωV ||/2.

Then we can substitute this ωV || in order to rewrite equation (49) as

|γ| >
√

2kyρS√
1 + k∅2

⊥ ρ
2
S

|ωV⊥| . (50)
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Figure 5: The mode evolution for ωV || = ωCRITV || (solid black), ωV || = 1.05ωCRITV || (dashed

black), and ωV || = 0.95ωCRITV || (dotted black), where ωCRITV || = 1.67cS/Lr is determined

by equation (49). All other parameters are identical to figure 4.

For a typical wavenumber of the most unstable mode, ~KρS = (0, 0.3), we find

the condition |ωV⊥| > 2.5 |γ| for turbulent stabilization. Moreover, the fact that

stabilization becomes impossible as ky → 0 makes sense because perpendicular flow

shear only affects a mode in proportion to its ky (as seen in equation (8)).

Notice that equation (48) is fairly similar to equation (38), the condition for

instability at t = 0. The primary difference is that the stabilizing perpendicular flow

shear term appears and the stability caused by the ωMx magnetic drift term slightly

weakens. Interestingly, this indicates that for large Kx, small (but non-zero) ωV⊥,

and/or large ωMy/ωMx, the mode can be initially stable, but unbounded at long time

after being advected by flow shear. Moreover, due to the finite sound gyroradius effect

contained in equation (22), the mode can actually decay quadratically, but then have an

unbounded limit. In fact, as shown in figure 1, the time dependence can be even more

complex. Initially, the mode is stable according to equation (37) and its amplitude

decreases due to finite sound gyroradius damping as its radial wavenumber changes

(i.e. equation (22)). Shortly thereafter, other effects of flow shear become large enough

to drive the mode unstable according to equation (41). Then, at intermediate times,

both components of the magnetic drifts are important, which reduces the mode growth

sufficiently for the finite sound gyroradius damping to win again. Lastly, at long times,

the ωMy term becomes negligible, allowing the parallel flow shear to slightly overpower

ωMx and the finite sound gyroradius damping according to equation (49). Thus, the

mode grows polynomially without limit.
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3.3. Zonal modes

Lastly, for zonal modes (i.e. ky = 0), we can directly solve equation (23) and find a

simple solution without needing to take any limits. This is because the effects of both

parallel and perpendicular flow shear are proportional to ky, so they vanish. We are left

with a simple 2nd order ordinary differential equation with constant coefficients, just

like in section 3.1. Thus, the solution can be found by setting ky = 0 in equation (35)

to get

φZ =Cη exp

−i
1

2

KxρSωMx

1 +K2
xρ

2
S

+

√
k2||c

2
S

1 +K2
xρ

2
S

+
1

4

(
KxρSωMx

1 +K2
xρ

2
S

)2
 t

 (51)

+ Cθ exp

−i
1

2

KxρSωMx

1 +K2
xρ

2
S

−
√

k2||c
2
S

1 +K2
xρ

2
S

+
1

4

(
KxρSωMx

1 +K2
xρ

2
S

)2
 t

 .

We see that the zonal modes are not driven nor damped linearly [49] and oscillate if

they have a finite k|| and/or there is a magnetic drift in the x direction. Like other

gradient-driven instabilities, the PVG cannot drive the zonal modes directly because its

effect is proportional to ky. Instead the zonal modes must be driven by the nonlinear

interaction of pairs of non-zonal modes (the focus of section 4.1).

4. Nonlinear two-dimensional slab results

To investigate the nonlinear dynamics of turbulence, we will let k|| = 0 in order to

study two-dimensional turbulence. Strictly speaking, this is inconsistent with our

assumption of adiabatic electrons [50]. However, the dynamics should be similar to

a very small value of k|| and setting k|| equal to exactly zero facilitates benchmarking

against gyrokinetic codes. In this section, we will focus on how perpendicular flow

shear alters the fundamental nonlinear drive of small amplitude “driven” modes by

large “pump” modes. The analysis will be kept general for benchmarking purposes, but

the primary physics application is zonal flow dynamics. Zonal flows cannot be directly

driven by background gradients, so they only grow due to the nonlinear coupling of non-

zonal modes. Nevertheless, in many if not most gyrokinetic simulations, the amplitude

of the zonal flows eventually become much larger than the non-zonal modes [51, 52].

Thus, despite the fact that zonal modes do not directly cause transport, the mechanism

by which they regulate non-zonal modes is of much interest.

With k|| = 0, the evolution equation for φ (i.e. equation (20)) can be formulated as

∂

∂t

∣∣∣∣
Kx

((
1 + k2ρ2S

)
φ
)

+
1

2B

∑
~K′

(
~K ′ × ~K ′′

)
· b̂
(
k′2 − k′′2

)
ρ2Sφ

′∗φ′′∗ (52)

+ i (kxρSωMx + kyρSωMy)φ = 0,

where the coupling condition is ~K+ ~K ′+ ~K ′′ = 0. Note that we have redefined ~K ′ → − ~K ′
and ~K ′′ → − ~K ′′ and used the reality condition that φ(− ~K) = φ∗( ~K) (where the
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∗ superscript indicates the complex conjugate). We see that the dependence on the

parallel velocity moment and the parallel velocity gradient has dropped out. This is

not too troubling because the parallel flow shear does not enter into the nonlinear term,

which is the primary focus of our analysis. We note that equation (52) is a generalization

of the Charney-Hasegawa-Mima equation [32] to include the perpendicular flow shear

and simple magnetic drifts.

Substituting the hat notation from equation (22) yields

∂φ̂

∂t

∣∣∣∣∣
Kx

=
1

2

∑
~K′

Λ( ~K, ~K ′, ~K ′′, t) φ̂′∗φ̂′′∗ (53)

× 1 + k2ρ2S
(1 + k′2ρ2S)(1 + k′′2ρ2S)

exp

(
i

∫ ∣∣∣∣
Kx

dt θ( ~K, ~K ′, ~K ′′, t)

)
,

where we have defined

Λ( ~K, ~K ′, ~K ′′, t) ≡ − 1

B

(
~K ′ × ~K ′′

)
· b̂ (k′2 − k′′2) ρ2S

1 + k2ρ2S
(54)

W ( ~K, t) ≡ kxρSωMx + kyρSωMy

1 + k2ρ2S
(55)

θ( ~K, ~K ′, ~K ′′, t) ≡ W ( ~K, t) +W ( ~K ′, t) +W ( ~K ′′, t). (56)

Now, as in a three-wave resonant decay calculation [33], we will consider three

Fourier modes with ~Ka + ~Kb + ~Kc = 0 such that they nonlinearly couple. We will

consider two separate cases: two pump modes such that |φb| ∼ |φc| � |φa| and a

single pump mode such that |φb| � |φc| ∼ |φa|. Here and henceforth the Latin letter

subscript(s) specifies the Fourier modes of the wavenumber arguments. The first case

is straightforward to solve analytically and can model the initial drive of the zonal

modes from zero amplitude. The second case is more complex, but is important for

understanding how dominant zonal modes couple to non-zonal modes.

4.1. Two pump mode case

Linearizing equation (53) in the ratio of the amplitude of the driven mode “a” to the

amplitudes of the two pump modes “b” and “c” produces

∂φ̂a
∂t

∣∣∣∣∣
Kx

= Λabc φ̂
∗
b φ̂
∗
c

1 + k2aρ
2
S

(1 + k2bρ
2
S)(1 + k2cρ

2
S)

exp

(
i

∫ ∣∣∣∣
Kx

dt θ

)
(57)

∂φ̂b
∂t

∣∣∣∣∣
Kx

= 0 (58)

∂φ̂c
∂t

∣∣∣∣∣
Kx

= 0, (59)

where the mode subscripts have been dropped from θ because their order has no effect.

Immediately, we see that the pump modes have the solutions of φ̂b = φ̂∅
b and φ̂c = φ̂∅

c .
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Figure 6: The amplitude (top) and phase (bottom) of the two pump modes “b” (red)

and “c” (blue) calculated by equation (60) (thick dashed) and GENE (thin solid) for

the parameters given in the text.

This result is consistent with our previous analysis, as it satisfies equation (23) when

k|| = 0. With a constant φ̂b, equation (22) tells us that

φb = φ∅
b

1 + k∅2
b ρ2S

1 + k2bρ
2
S

exp

(
−i
∫ ∣∣∣∣

Kx

dt Wb

)
(60)

and the same is true for mode “c”. Hence, we see that the phase of each pump mode

oscillates with a non-constant frequency due to the gradients in the plasma. The only

effect that alters the magnitude of the modes is the perpendicular flow shear, which

enters through the factor (1 + k∅2
⊥ ρ

2
S)/(1 + k2⊥ρ

2
S). This advects the mode in kx and

modifies the finite gyroradius effects that originated in the quasineutrality equation.

However, if a pump mode is zonal the wavenumber is not sheared, so that the mode

maintains a constant amplitude. Lastly, we note that, because we have linearized our

differential equations, our analytic calculations will not exhibit pump depletion (i.e.

losses due to the energy transferred to the driven mode). However, pump depletion is

negligible as long as the amplitude of the driven mode remains much smaller than the

pump modes.

Since φ̂b and φ̂c are known, equation (57) can be integrated directly to find the
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evolution of the driven mode. Substituting the form of Λabc gives

φ̂a = −φ̂∗b φ̂∗c
1

B

(
~Kb × ~Kc

)
· b̂
∫ ∣∣∣∣

Kx

dt

[
(k2b − k2c ) ρ2S

(1 + k2bρ
2
S)(1 + k2cρ

2
S)

exp

(
i

∫ ∣∣∣∣
Kx

dt θ

)]
.

(61)

Thus, we see that for pump modes with fixed amplitudes φ̂b and φ̂c, the driven mode

“a” does not grow exponentially with time, it can only grow polynomially. This is

consistent with the numerical results of reference [52], which used a realistic toroidal

geometry. Equation (61) also shows that, if the three modes are oscillating out of phase

(i.e. θ 6= 0), then the solution will be oscillatory. However, the presence of perpendicular

flow shear (i.e. ωV⊥ 6= 0) causes θ to vary with time. Thus, θ(t) can pass through θ = 0,

allowing the mode to grow temporarily. When ωV⊥ 6= 0 and θ ≈ 0, kx varies linearly in

time for all non-zonal modes, which means that temporarily |φa| can grow quickly (e.g.

if k2ρ2S � 1, |φa| can grow as t3). The condition of θ ≈ 0 is equivalent to the frequency

matching condition that is required for mode growth in three-mode coupling without

background flow shear [33]. For example, when ωV⊥ = 0, the wavenumbers in equation

(61) become constant and |φa| can grow linearly with t, but only if θ = 0.

In the long time limit, the nonlinear drive (i.e. the right side of equation (61)) for a

non-zonal mode “a” is proportional to t−1. This means that |φa| decays away to zero as

t−3. However, the situation of most interest is when mode “a” is zonal. When kay = 0,

the coupling condition requires the other two modes to have the same value of ky, so

they get sheared at the same rate. Thus, the numerator of equation (61) varies linearly

in time instead of quadratically and the drive of a zonal mode decays more quickly than

a non-zonal one (specifically as t−2 instead of t−1). Lastly, when one of the pump modes

is zonal, the drive actually gets stronger with time (specifically it scales linearly with t).

These analytic solutions are again verified by comparison with the gyrokinetic code

GENE as shown in figures 6 and 7. The simulation is initialized with φ̂∅
b /(Bρ

2
S) =

φ̂∅
c /(Bρ

2
S) = cS/Lr, while all other modes are zero. The wavenumbers are chosen to be

~KbρS = (−0.0086, 0.015) and ~KcρS = (0.01, 0.025), while ωV⊥ = −0.002cS/Lr, ωMx = 0,

and ωMy = cS/Lr. Figure 6 shows that the pump mode “b” decreases because flow shear

advects it to large k2⊥, where the finite sound gyroradius effects more effectively average

over it. The pump mode “c” increases briefly because flow shear initially advects it

to a lower value of k2⊥, but then it starts to decay after passing through kx = 0. The

only other mode that grows is the one with ~Ka = −( ~Kb + ~Kc), which is driven by the

nonlinear coupling and is shown in figure 7.

Finally, note that the calculation in this section for the initial drive of zonal modes

can be extended to more than just three modes. This is because, during the initial linear

phase of the drive, the evolution of all the non-zonal modes is determined by the linear

physics (i.e. the drive from the background gradients). Moreover, the zonal modes do

not directly couple with each other nonlinearly because their wavevectors are parallel

to each other such that ~K ′ × ~K ′′ = 0 in equation (54). This means that the non-zonal

modes can be solved without any nonlinearity and the evolution of each zonal mode
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Figure 7: The amplitude (top) and phase (bottom) of the driven mode calculated by

equations (22) and (61) (thick dashed) and GENE (thin solid) for the parameters given

in the text.

can be calculated from equation (61) with a summation over all non-zonal modes out

in front. Because the drive of zonal modes decays more quickly with time, their drive

will tend to be more dominated by the modes near kx = 0 (compared to the nonlinear

drive of non-zonal modes).

4.2. One pump mode case

In this section, instead of having two large amplitude pump modes, we will include

just one: |φb| � |φa| ∼ |φc|. This is appropriate for modeling parametric instability

decay. While the previous section studied the initial growth of a zonal mode from small

amplitude, this section will focus on the opposite situation. In the quasi-steady-state

of nonlinearly saturated turbulence, the amplitudes of the zonal modes are typically

much larger than that of the non-zonal modes [51, 52]. Thus, we would like to study
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Figure 8: The amplitude of the pump mode as calculated by equation (60) (thick

dashed) and GENE (thin solid). The parameters used were φ∅
b /(Bρ

2
S) = 8.5cS/Lr,

~KbρS = (0.3, 0.3), ωV⊥ = −0.002cS/Lr, and ωMx = ωMy = θ = 0.

how a single large-amplitude zonal mode regulates small-amplitude non-zonal modes.

However, we will keep the analysis general to allow for a non-zonal pump mode.

Linearizing equation (53) in the ratio of the driven mode amplitudes (here modes

“a” and “c”) to the pump mode amplitude (here mode “b”) gives

∂φ̂a
∂t

∣∣∣∣∣
Kx

= Λabc φ̂
∗
b φ̂
∗
c

1 + k2aρ
2
S

(1 + k2bρ
2
S)(1 + k2cρ

2
S)

exp

(
i

∫ ∣∣∣∣
Kx

dt θ

)
(62)

∂φ̂b
∂t

∣∣∣∣∣
Kx

= 0 (63)

∂φ̂c
∂t

∣∣∣∣∣
Kx

= Λcab φ̂
∗
aφ̂
∗
b

1 + k2cρ
2
S

(1 + k2aρ
2
S)(1 + k2bρ

2
S)

exp

(
i

∫ ∣∣∣∣
Kx

dt θ

)
. (64)

The pump mode solution is again given by equation (22) with φ̂b = φ̂∅
b , which is

compared to GENE simulations in figure 8. We see good agreement, except for the

subtle step-like behavior in the GENE evolution (which can also be seen in figure 6).

This is an artifact of the “wavevector-remap” scheme used to implement flow shear and

will converge to a continuous evolution in the limit of high radial wavenumber resolution

[48].

Note that strictly speaking equations (62) and (64) should have a second term.

This is because, due to the reality condition of φ(− ~K) = φ∗( ~K), the pump mode is

actually two modes — one at ~Kb and one at − ~Kb. Thus, there is a second set of three

modes involving a new mode ~Kd that satisfies the coupling condition ~Ka− ~Kb+ ~Kd = 0.

However, this second term can be ignored if it does not lead to instability or if mode

“d” is not included in the simulation domain.
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Calculating the evolution of the driven modes “a” and “c” requires considerable

mathematics. Solving equation (62) for φ̂∗c and substituting it into the complex conjugate

of equation (64) yields

∂2φ̂a
∂t2

∣∣∣∣∣
Kx

+ (−iθ +Gabc)
∂φ̂a
∂t

∣∣∣∣∣
Kx

− ΛabcΛcab |φb|2 φ̂a = 0, (65)

where

Gabc ≡
∂

∂t

∣∣∣∣
Kx

ln

(
1

Λabc

(1 + k2bρ
2
S) (1 + k2cρ

2
S)

1 + k2aρ
2
S

)
(66)

= 2ωV⊥

(
−kbxkby − kcxkcy

k2b − k2c
+
kbxkbyρ

2
S

1 + k2bρ
2
S

+
kcxkcyρ

2
S

1 + k2cρ
2
S

)
and we note that |φb|2 can be time dependent. The analogous equation for φ̂c can be

found by swapping the subscripts “a” and “c”. These equations are identical to those in

reference [33], except for the presence of the flow shear ωV⊥ introduces Gabc and makes

θ, Λabc, and |φb|2 depend on time.

Equation (65) is straightforward to solve numerically as it can be written as a 2nd

order, ordinary differential equation with polynomial coefficients. This is done for many

different “a” modes in figure 9, which are compared against GENE simulations. We see

that some modes are unstable for the entire simulation (e.g. ~KaρS = (−0.15, 0.1)), while

others only ever oscillate (e.g. ~KaρS = (−0.35, 0.3)). Certain modes start off unstable,

but then the perpendicular flow shear advects them to wavenumbers that are stable

(e.g. ~KaρS = (−0.25, 0.2)). However, GENE and our numerical solution do not agree

well for several modes. This is because the evolution of these modes is not governed

by simple three-wave resonant decay. For these cases, there is a fourth mode in the

simulation domain that is unstable, which complicates our analysis as discussed at the

beginning of this subsection. These cases have been indicated in figure 9 with gray and

should not necessarily agree well. All the other modes match the numerical prediction.

The most significant source of error was the “wavevector-remap” scheme used to model

perpendicular flow shear, which is only exact in the limit of infinite kx resolution [48].

This error was minimized by using a kx resolution four times denser than the points

shown in figure 9. Note the ~KaρS = (−0.1, 0.2) mode shows good agreement, but

the numerical solution is only plotted for a short time because the numerical solution

encountered convergence issues.

Equation (65) does not have an analytic solution in general because the polynomials

are of very high degree (i.e. the effective coefficient for the second derivative term is

degree 10, the first derivative term is degree 9, and the φ̂a term is degree 6). Nevertheless,

we see that if the nonlinear coupling is weak, then φ̂a = const is a solution. This is

an important and nontrivial solution because the mode will still evolve through the

dependences in equation (22). As in the linear analysis of section 3, further analytic

results can be found by investigating equation (65) in the |ωV⊥t| � 1 and |ωV⊥t| � 1

limits.
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4.2.1. The |ωV⊥t| � 1 limit To lowest order in the short time limit, equation (65)

becomes

∂2φ̂a0
∂t2

∣∣∣∣∣
Kx

− iθ0
∂φ̂a0
∂t

∣∣∣∣∣
Kx

−
(
ΛabcΛcab |φb|2

)
0
φ̂a0 = 0, (67)

where the numerical subscript indicates the quantity’s order in the |ωV⊥t| � 1

expansion. To lowest order, all the coefficients are constant in time and simply equal

to their values without perpendicular flow shear. Surprisingly, this differential equation

has the same form as the one we solved in section 3.1. Using that solution, we find

φ̂a0 = Cι exp ((iω + γ) t) + Cκ exp ((iω − γ) t) , (68)

where

ω ≡ θ0
2

(69)

γ ≡
√(

ΛabcΛcab |φb|2
)
0
− θ20

4
(70)

are the mode frequency and growth rate respectively. Inspecting this solution, we

see that the mode can be nonlinearly unstable (i.e. have a real growth rate) only if

(k2b − k2c )(k
2
a − k2b ) > 0, which is equivalent to ka ≤ kb ≤ kc or kc ≤ kb ≤ ka. Thus,

to lowest order we find the traditional nonlinear coupling present in a resonant three

wave decay process [33]. This solution is verified against GENE simulations in figure

10. Figure 10 shows that, after a short transient in the GENE simulations, there is good

agreement for the mode growth rate. To see the impact of flow shear we must go to

next order in the expansion.

To next order, the differential equation for the driven mode becomes

∂2φ̂a1
∂t2

∣∣∣∣∣
Kx

− iθ0
∂φ̂a1
∂t

∣∣∣∣∣
Kx

−
(
ΛabcΛcab |φb|2

)
0
φ̂a1 (71)

= (iθ1 −Gabc1)
∂φ̂a0
∂t

∣∣∣∣∣
Kx

+
(
ΛabcΛcab |φb|2

)
1
φ̂a0,

where

θ1 = ωV⊥t

(
kayρS(ωMx − 2KaxρSWa)

1 + k∅2
a ρ2S

+
kbyρS(ωMx − 2KbxρSWb)

1 + k∅2
b ρ2S

+
kcyρS(ωMx − 2KcxρSWc)

1 + k∅2
c ρ2S

)
(72)

Gabc1 = 2ωV⊥

(
−Kbxkby −Kcxkcy

k∅2
b − k∅2

c

+
Kbxkbyρ

2
S

1 + k∅2
b ρ2S

+
Kcxkcyρ

2
S

1 + k∅2
c ρ2S

)
(73)

(
ΛabcΛcab |φb|2

)
1

= 2ωV⊥t
(
ΛabcΛcab |φb|2

)
0

(
Kaxkay −Kbxkby

k∅2
a − k∅2

b

+
Kbxkby −Kcxkcy

k∅2
b − k∅2

c

−Kaxkayρ
2
S

1 + k∅2
a ρ2S

− 2Kbxkbyρ
2
S

1 + k∅2
b ρ2S

− Kcxkcyρ
2
S

1 + k∅2
c ρ2S

)
. (74)
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Figure 10: The amplitude (top) and phase (bottom) of the pump mode (black) and

both driven modes (red and blue) as calculated by equation (60) (thick black dashed),

equation (68) (thick red/blue dashed), and GENE (thin solid). The parameters used

were φ∅
b /(Bρ

2
S) = 8.5cS/Lr, ~K1ρS = (−0.2, 0.1), ~K2ρS = (0.3, 0.3), ωV⊥ = ωMx = 0,

and ωMy = 20cS/Lr.

Flow shear enters through θ1 and
(
ΛabcΛcab |φb|2

)
1
, which depend linearly on time, and

Gabc1, which is constant. This equation can be solved analytically. The homogeneous

solution has the same form as the lowest order solution φ̂a0, while the particular solution

is

φ̂a1 =
1

4γ2

{
Cι exp ((iω + γ) t)

×
[
(ω − iγ) ((1− γt) θ1 − 2iγtGabc1)− (1− γt)

(
ΛabcΛcab |φb|2

)
1

]
+Cκ exp ((iω − γ) t) (75)

×
[
(ω + iγ) ((1 + γt) θ1 + 2iγtGabc1)− (1 + γt)

(
ΛabcΛcab |φb|2

)
1

] }
.

Thus, we see that the dominant effect of weak flow shear (or alternatively the first
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Figure 11: The amplitude of the ~KaρS = (−0.15, 0.2) driven mode as calculated by

a numerical solution to equation (65) (solid) and the long time t−2 scaling predicted

by equation (81) (dashed). The parameters used were identical to figure 9 except

ωV⊥ = −0.1cS/Lr.

effect of flow shear to appear) is a quadratic correction to the lowest order exponential

behavior. This is similar to the effect of flow shear on the PVG-driven instability that

we found in section 3.1.

However, we notice that this solution, which is fairly complex, can be simplified.

Specifically, we are primarily interested in the behavior after a few e-folding times (i.e.

γt � 1 while retaining |ωV⊥t| � 1), rather than the details of the transients at the

very beginning of the evolution. This limit is equivalent to ωV⊥ � γ and the dominant

terms are those that are quadratic in time, giving

φ̂a1 =
t

4γ

[
Cι
[(

ΛabcΛcab |φb|2
)
1
− (ω − iγ) θ1

]
exp ((iω + γ) t)

−Cκ
[(

ΛabcΛcab |φb|2
)
1
− (ω + iγ) θ1

]
exp ((iω − γ) t)

]
. (76)

As in section 3.1, for unstable modes (i.e. γ is real), the exp ((iω + γ) t) term will

dominate and the real part of its coefficient indicates if flow shear will enhance or

stabilize its growth. Therefore, the instability will be enhanced by perpendicular flow

shear if and only if
(
ΛabcΛcab |φb|2

)
1
> θ0θ1/2. In other words, the instability is enhanced

if the finite flow shear correction to the growth rate (i.e. equation (70)) is positive. This

result should be expected according to our previous discussions of the ωV⊥ � γ limit.

If flow shear is moving the mode to a wavenumber that is more strongly driven (relative

to damping), then it should begin to grow faster.
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4.2.2. The |ωV⊥t| � 1 limit To lowest order in the long time limit, the coefficients in

equation (65) reduce to

θ0 t =
ωMx

ωV⊥

(
1

kayρS
+

1

kbyρS
+

1

kcyρS

)
∼ O (1) (77)

Gabc0 t = 2 ∼ O (1) (78)(
ΛabcΛcab |φb|2

)
0
t2 =

1

B2

(
~Kb × ~Kc

)
· b̂
(
~Ka × ~Kb

)
· b̂ (79)

×
k2by − k2cy
k2ay

k2ay − k2by
k2cy

(
1 + k∅2

b ρ2S
)2

k4byρ
4
Sω

4
V⊥t

2
|φ∅
b |

2 ∼ O
(
ω−2V⊥t

−2) .
We see that the nonlinear coupling term is small, which means that we can return

to equations (62) and (64) and solve them on their own. As should be expected the

nonlinear coupling term(
Λabcφ̂

∗
b

1 + k2aρ
2
S

(1 + k2bρ
2
S)(1 + k2cρ

2
S)

)
0

t =− 1

B

(
~Kb × ~Kc

)
· b̂ (80)

×
k2by − k2cy
k2ay

k2ay
k2byk

2
cyρ

2
Sω

2
V⊥t

φ̂∗b ∼ O
(
ω−1V⊥t

−1)
is small there too, so that the lowest order solution is simply

φ̂a0 = Cλ (81)

φ̂c0 = Cµ. (82)

This limit is verified against the full numerical solution in figure 11. This means that

the driven modes are not driven at all and simply evolve in isolation according to the

t−2 dependence contained in equation (22). Thus, they either decay as t−2 as they move

towards kx → ±∞ or grow as t2 as flow shear brings them towards kx = 0 from large

|kx|. To next order, the coupling term enters equations (62) and (64), which can be

solved to find

φ̂a1 = −
(

Λabcφ̂
∗
b

1 + k2aρ
2
S

(1 + k2bρ
2
S)(1 + k2cρ

2
S)

)
0

t φ̂∗c0
1 + iθ0t

1 + (θ0t)2

(
t

t∅

)iθ0t
, (83)

where t∅ is the time at which Cλ and Cµ are determined. The expression for φ̂c1 is the

same except the “a” and “c” indexes must be swapped.

From equations (81) and (82), we see that the dominant effect of flow shear at long

times is the t−2 dependence from the ion polarization drift factor in equation (22). The

dominant effect of the nonlinear coupling on the amplitude of a decaying mode is given

by equations (22) and (83), which scales as t−3.

4.2.3. Zonal pump modes When the pump mode is zonal, the solution in the |ωV⊥t| �
1 limit remains largely the same. However, the behavior in the |ωV⊥t| � 1 limit does
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not. In contrast to a non-zonal pump mode, the nonlinear coupling is not small for a

zonal pump mode. Even at long times the nonlinear interaction is still important. To

lowest and next order, the coefficients in equation (65) are

θ0t+ θ1t =
KbxρSωMxt

1 +K2
bxρ

2
S

− (Kax +Kcx)ωMx

k2ayρSω
2
V⊥t

∼ O (ωV⊥t) (84)

Gabc0t+Gabc1t = 0 ∼ O
(
ω−2V⊥t

−2) (85)(
ΛabcΛcab |φb|2

)
0
t2+

(
ΛabcΛcab |φb|2

)
1
t2 (86)

= − K2
bxk

2
ay

B2
|φ∅
b |

2
t2 + 2

K2
bx (1 +K2

bxρ
2
S)

B2ρ2Sω
2
V⊥

|φ∅
b |

2 ∼ O
(
ω2
V⊥t

2
)

and for the equation to balance we require that ∂/∂t ∼ ωV⊥. This means that once

again we must solve equation (65) with constant coefficients (and Gabc = 0). Thus, like

in section 4.2.1, the lowest order solution is given by

φ̂a0 = Cν exp (i (ω + γ) t) + Cξ exp (i (ω − γ) t) , (87)

where

ω ≡ θ0
2

(88)

γ ≡
√
−
(
ΛabcΛcab |φb|2

)
0

+
θ20
4
. (89)

The important distinction, which we have made explicit in equation (87), is that

the lowest order nonlinear coupling term is necessarily negative. Thus, the nonlinear

coupling makes the mode oscillate and modifies the phase of the mode, which can have

important consequences on which other modes it can resonate with. However, it does

not affect the scaling of the mode amplitude. To lowest order, the dominant effect of

flow shear is the t−2 factor from the ion polarization drift in equation (22). This scaling

is verified in figure 12 for a mode that is decaying in amplitude as flow shear advects

it to kx → ∞. The oscillation frequency predicted by equation (87) was also found to

agree.

To the next nontrivial order, O (ω2
V⊥t

2), the differential equation gains time

dependent coefficients. It becomes identical to equation (71), except the first order

coefficients are proportional to t−2 instead of t (and Gabc1 = 0). The inhomogeneous

solution to this is

φ̂a1 = Cν exp (i (ω − γ) t)EI (2iγt)
[
(ω + γ) θ1 −

(
ΛabcΛcab |φb|2

)
1

]
(90)

+Cξ exp (i (ω + γ) t)EI (−2iγt)
[
(ω − γ) θ1 −

(
ΛabcΛcab |φb|2

)
1

]
,

where EI (z) ≡ −
∫∞
−z dt exp (−t) /t is the exponential integral function. As before, we

can expand in γt� 1 to get the behavior after a few e-folding times. We find

φ̂a1 = −Cν exp (i (ω + γ) t)
i

2γt

[
(ω + γ) θ1 −

(
ΛabcΛcab |φb|2

)
1

]
(91)

+Cξ exp (i (ω − γ) t)
i

2γt

[
(ω − γ) θ1 −

(
ΛabcΛcab |φb|2

)
1

]
,
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Figure 12: The amplitude of the ~KaρS = (−0.15, 0.2) driven mode as calculated by a

numerical solution to equation (65) (solid) and the long time t−2 scaling predicted by

equations (22) and (87) (dashed). The parameters used were identical to figure 9 except

ωV⊥ = −0.1cS/Lr and ~KbρS = (0.4, 0).

which has a purely imaginary exponent and is proportional to t−3. Thus, once again,

our solution does not affect the amplitude of the decaying mode. This means that,

factoring in the t−2 dependence from equation (22), the effect of the nonlinear coupling

term on the amplitude of a driven mode decays away more rapidly than t−5.

Comparing to the previous subsection, we find a surprising result. The long time

effect of the nonlinear coupling on the mode amplitude is much weaker when the pump

mode is zonal. Specifically, the coupling from a non-zonal pump scales as t−3, while the

coupling from a zonal pump scales more weakly than t−5. This suggests that coupling

between non-zonal modes has the dominant nonlinear effect on the amplitude of a mode

when it is at large kx. Intuitively, it seems like the opposite should be true because the

zonal pump does not vary much with time, while a non-zonal pump does. Nevertheless,

the coupling with zonal modes still has the dominant effect on the phase and oscillation

frequency of a mode and this effect does not get weaker when the mode is at high kx.

5. Conclusions

In this work we have taken the cold ion limit of local δf gyrokinetics to derive an

exact yet simple fluid model (i.e. equations (16) and (17)). This model was applied to

a slab geometry that included magnetic drifts, but no magnetic shear. The resulting

equations were found to reduce to the Charney-Hasegawa-Mima model in the presence

of background flow. Then, an analytic solution (i.e. equation (24)) was found for the full

time evolution of a single Fourier mode driven unstable by a parallel velocity gradient,

but stabilized by perpendicular flow shear. Studying this solution revealed that quite

complicated behavior is possible (e.g. figure 1). Additionally, we calculated simple
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criteria governing the initial stability (i.e. equation (39)) and long time stability (i.e.

equation (49)) of a mode. These two criteria were found to be somewhat different.

The fluid model was also used to study the basic three-mode nonlinear coupling in

two-dimensional turbulence. The initial nonlinear drive of zonal flows was investigated

using two large pump modes (i.e. equation (61)) and the analytic results were verified

against nonlinear gyrokinetic simulations (i.e. figures 6 and 7). Next, the physics

occurring in the quasi-steady-state of nonlinearly saturated turbulence was studied using

one large pump mode. Specifically, we focused on how a single large zonal mode drives

and regulates non-zonal modes. We found that coupling with a zonal mode has an

important effect on the phase and oscillation frequency of a mode that does not get

weaker as flow shear advects the mode from high kx or to high kx. However, coupling

with non-zonal modes actually has the dominant effect on the amplitude of a mode.

Again, the results were verified against gyrokinetic simulations (i.e. figures 8 through

12).
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