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Supplementary Note 1: Electromagnetic-based topological equation solver 

This section describes the extension of the proposed acoustic equation solver to its electromagnetic 

counterpart. Consider a SSH-like array of silicon rods placed inside a metallic rectangular 

waveguide whose width and height are 20	𝑐𝑚 (Supplementary Figure 1). Through a topological 

phase transition, a topological edge mode appears at the interface between the two crystals. Upon 

its excitation, this topological edge mode creates a resonance in the transmission of the waveguide 

(Supplementary Figure 1a (middle inset)) at the frequency of 𝑓' = 	1.279	𝐺𝐻𝑧. The resonance line 

shape can be well estimated with the following transfer function for 𝐴 = 2.8 × 103 and 𝑄 =

1.78 × 1056𝑓' 

  (S1) 

which corresponds to the following ODE 

  (S2) 

Now consider a Gaussian type ( 1 MHz) input signal 𝑔(𝑡)	modulated at the carrier frequency 

f0 (left panel). Applying the transfer function 𝐻(𝑓) (middle panel) to the input signal, one obtains 
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the corresponding output signal 𝑓;(𝑡) (right panel), whose envelope is indeed the solution of the 

differential equation in Eq. S2 (dashed black line).  The inset of panel b repeats the same analysis 

when some disorder is added to the sample by randomly moving the silicon rods. It is observed 

that, despite the large level of the disorder, neither 𝐻(𝑓) nor 𝑓;(𝑡) has significantly changed, 

confirming the high stability of the equation solver.    

 
Supplementary Note 2: Finite difference time domain simulation of the proposed equation 

solver 

This section reports on the finite difference time domain (FDTD) simulations of the proposed 

topological acoustic equation solver. As mentioned, the output signals 𝑓;(𝑡) in Fig. 2 of the main 

manuscript were all obtained by applying the corresponding transfer functions 𝐻(𝑓)	to the input 

signal 𝑔<(𝑡), ignoring the time delay between 𝑓;(𝑡) and 𝑔<(𝑡). An alternative approach is to obtain 

𝑓;(𝑡) directly from FDTD simulations using Comsol Multiphysics (see Supplementary Figure 2). 

One notices that the obtained results are identical to those reported in the main text which were 

obtained from frequency domain simulations. 

   
 

Supplementary Note 3: Response of the proposed equation solver to a Gaussian input 

signal 

This section examines the behavior of the proposed topological equation solver when a Gaussian 

input signal modulated at f0 is considered as the input, instead of the complex pulse chosen in the 

main text. Supplementary Figure 3 repeats the results of Fig. 2 of the main manuscript for an input 

signal 𝑔<(𝑡) with a Gaussian time profile ( ).  The output signal is obtained by applying the 

transfer function of the system to the input. It is observed that the topological equation solver 

60s =



works properly with or without position shift disorder, offering a strong stability. As always, the 

trivial equation solver only works properly in the absence of position shift disorder.  

 

Supplementary Note 4: Measured response of the fabricated equation solver to a Gaussian 

type input signal 

In this section, we experimentally examine the behavior of the fabricated topological equation 

solver for a Gaussian type input signal. Supplementary Figure 4 repeats the results of Fig. 4 of the 

main manuscript for a Gaussian type input signal  with .  Again, the topological 

equation solver survives large level of disorder, whereas the performance of the trivial equation 

solver severely affects when the disorder is added to the system.  

 

Supplementary Note 5: Approaches to control the ODE constant coefficients 

Here we discusses different approaches to control the coefficients of the ODE solved by the 

equation solver.  The first and easiest way to do so is to increase the dissipation losses of the system 

so as to change the quality factor of the topological resonating state. Consider again the SSH array 

of cylindrical obstacles (Supplementary Figure 5a) used to solve our desired first order differential 

equation. As already mentioned in the main text, we have neglected the dissipation losses in this 

configuration. Now we increase the dissipation losses a little bit and plot the resulting transfer 

function in Supplementary Figure 5b. As expected, the total quality factor of the resonance has 

been decreased with respect to the lossless case. The new transfer function of the system can indeed 

be well estimated with (𝑓) = 1 (𝑗(𝑓 − 𝑓') + 2)⁄  , which corresponds to an ODE of the form 

𝑓A(𝑡) + 4𝜋𝑓(𝑡) = 2𝜋𝐴𝑔(𝑡).   
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The second approach to control the quality factor of the topological resonance is to change the 

distances between the cylinders. Supplementary Figure 5c and Supplementary Figure 5d represent 

how the transfer function of the system changes from 	𝐻(𝑓) = 1 (𝑗(𝑓 − 𝑓') + 1)⁄  to 𝐻(𝑓) =

1 (0.5𝑗(𝑓 − 𝑓') + 1)⁄  when moving from a SSH array with largely detuned array to a less 

deformed one. The corresponding ODE to the latter case takes the form of 𝑓A(𝑡) + 4𝜋𝑓(𝑡) =

4𝜋𝐴𝑔(𝑡). 

The third approach is to increase or decrease the number of unit cells of the SSH array. Obviously, 

smaller number of unit cells gives rise to a topological resonance with a broader linewidth (or 

smaller quality factor). This is evident from the results of Supplementary Figures 5e and f, where 

the transfer function of the system is changed from 𝐻(𝑓) = 1 (𝑗(𝑓 − 𝑓') + 1)⁄   to 	𝐻(𝑓) =

1 (0.125𝑗(𝑓 − 𝑓') + 1)⁄   as a result of decreasing the number of unit cells from 3 to 2. The ODE 

corresponding will be of the form  𝑓A(𝑡) + 16𝜋𝑓(𝑡) = 16𝜋𝐴𝑔(𝑡).  

We also highlight that, employing a combination of these approaches, allows one to have a wide 

control over the constant coefficient of the ODE solved by the equation solver. 

 
Supplementary Note 6: Higher order ODE solvers 

 
The scheme described in the main text for solving a second order differential equation is readily 

extendable to higher order equation solvers. Consider a differential equation of order nth of the 

form 

  (S3) 

Taking Fourier transform of both sides of equation yields the following expression for the transfer 

function 
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  (S4) 

which can again be decomposed into partial fractions as 

  (S5) 

where  

  (S6) 

Where , in which  are the complex poles of the following nth order polynomial  

   (S7) 

and  is of the form 

   (S8) 

 Eqs. S5 and 6 suggest a straightforward approach to solve a differential equation of nth order: one 

has to first realize (first order) differential equation solvers corresponding to the transfer functions, 

and then add (or subtract) their output signals using rat race couplers as it is accomplished in 

Supplementary Figure 6.  
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Supplementary Note 7: Constructing higher order filter transfer functions using 

topological insulators 

In this section, we discuss the possibility of making transfer functions of arbitrary orders making 

use of topological insulators, by cascading topological boundaries. We start with mentioning the 

fact that the proposed equation solver in the main text can indeed be pictured as a first order pass-

band filter, whose pole is topologically protected by the chiral symmetry of the SSH array. A 

straightforward approach to achieve higher order filter transfer functions, already discussed in the 

main text, is to add or subtract the responses of first order filters to or from each other. Here we 

suggest an alternative route to this goal, based on cascading several SSH arrays with each other.  

Shown in Supplementary Figure 7a (top) is two cascaded SSH arrays, each of which supports a 

topological edge mode (resonating at 𝜔'	with some decay rate of γ for example) at its phase 

transition boundary. Assuming the coupling coefficient between the two topological edge modes 

to be 𝜗, for example, the transfer function of the overall chain then reads  

  (S9) 

which is nothing but the transfer function of a second order pass-band filter. Supplementary Figure 

7a (bottom) represents the transfer function of the coupled SSH chain under investigation, 

calculated by means of standard tight binding formalism. The obtained transmission coefficient 

can be fitted with the theoretical relation given in Eq. S9. To assess the robustness of such a 

topological filter, we add some disorder to the coupling coefficients between the resonators, and 

plot in Supplementary Figure 7b the evolution of the (averaged) transfer function versus disorder 

strength. It is apparent that the filter response is affected very minorly by the disorder. To make a 

comparative case, we couple two trivial resonating defect modes, forming at the boundaries 

between crystals with opposite on-site potential organizations, as shown in Supplementary Figure 
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7c. Inset of Supplementary Figure 7d manifests the extreme sensitivity of such a topologically 

trivial filter to the applied disorder (note that we have used same type and amount of disorder in 

both trivial and topological cases).  

It should be noted that the system under investigation can be treated as a second order equation 

solver as well. More specifically, the transfer function given in Eq. S9 corresponds to the following 

second-order ODE 

   (S10) 

To demonstrate such functioning, we consider in Supplementary Figure 8b an input signal with a 

Gaussian temporal evolution to be applied to the array, and calculate the corresponding output 

(Supplementary Figure 8d) by applying the transfer function of the array (Supplementary Figure 

8c) to the input signal. Comparing the obtained output signal with the solution of Eq. S10 (its 

envelope) proves the expected functioning of the system. Notice that such an equation solver is 

protected to perturbation of the hopping amplitudes as already demonstrated in Supplementary 

Figure 7b.     

Supplementary Note 8: Possibility of spatial analog computing using topological insulators 

In this section we provide a proposal for performing spatial analog computing using topological 

insulators. Consider a SSH array of plasmonic graphene ribbons, placed on top of a silicon dioxide 

substrate (Supplementary Figure 9a). Such an array of resonators supports a topological edge mode 

whose profile is represented in Supplementary Figure 9b. Suppose now that an incident field Ei 

impinges the structure at the resonance frequency of the topological edge mode. Supplementary 

Figure 9c shows the reflection coefficient of the structure versus the incident angle 𝜃, calculated 

via full-wave numerical simulations. It is apparent that, at the incident angle of around 𝜃 = 8°, the 

reflection coefficient vanishes. Such a zero in the reflection coefficient of the structure (which is 
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due to the impedance matching between the topological edge mode and the incident field), can be 

leveraged to differentiate the impinging signal as described in [1-3]. To verify such a functionality, 

we consider a Gaussian beam to be incident on the structure (Supplementary Figure 9d), and 

analytically calculate the corresponding reflected field (Supplementary Figure 9e). It is obvious 

that the reflected field possesses a Gaussian derivative spatial distribution, approximating well the 

spatial differentiation of the incident field.  

 
Supplementary Note 9: Comparison between the proposed topological and trivial equation 

solvers 

In this section, we demonstrate that adding disorder to a trivial equation solver severely affects its 

functioning. To this end, we start with considering a trivial defect mode forming at the interface 

between two crystals with opposite on-site potential organizations (referred to as A-B and B-A in 

Supplementary Figure 10). The spectrum of the array is analytically calculated using tight binding 

equations and represented in Supplementary Figure 10a (bottom panel), showing a resonance peak 

inside the band gap of the crystal. Supplementary Figure 10b illustrates how the line-shape of this 

resonance evolves when some disorder (same type and amount as Fig. 3 of the main text) is added 

to the hopping amplitudes between the resonators. In contrast to the result of Fig. 3 of the main 

text, we observe that the line-shape is not robust to the added disorder, manifesting the superiority 

of topological analog signal processing over trivial one. Likewise, we report in Supplementary 

Figures 8c and d the behavior of the line-shape of the Bragg defect mode versus disorder strength. 

Comparing the results of these figures with Fig. 3e of the main text, one realizes that the spectral 

line-shape of the trivial resonance is much more sensitive to the applied disorder than that of the 

topological one (notice that we have used the same type and amount of disorder in both cases).          

 



 
Supplementary Figures 

 

 
 
Supplementary Figure 1: Demonstration of a topological microwave equation solver, a, A 
Gaussian ( 1 MHz) input signal (left panel) modulated at f0 is applied to the proposed 
topological resonator with the transfer function 𝐻(𝑓) (middle panel). The envelope of the output 
signal 𝑓;(𝑡) (right panel) is the solution of the ODE in Eq. S2. b, Same as panel a except that some 
disorder is added to the system by randomly moving the cylinders. Thanks to its topological 
properties, the equation solver provides a strong stability against position disorder. 
 

 
Supplementary Figure 2: Demonstration of the proposed topological equation using direct 
FDTD simulations. The figure repeats the results of Fig. 2 of the main manuscript, for a Gaussian 
input signal, except that the output signals are obtained by direct FDTD simulations. a, Response 
of the topological equation solver to a Gaussian input signal. b, Response of the trivial equation 
solver to the same signal.  
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Supplementary Figure 3: Demonstration of the proposed topological equation for a Gaussian 
type input signal. The figure repeats the results of Fig. 2 of the main manuscript for a Gaussian 
type input signal with . a, The topological equation solver works properly with or without 
position shift disorder, offering a strong stability. b, In contrast, the trivial equation solver only 
works properly in the absence of disorder.   
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Supplementary Figure 4:  Experimental demonstration of the fabricated topological 
equation solver for a Gaussian type input signal. The figure repeats the results of Fig. 4 of the 
main manuscript in the case of a Gaussian input signal. a, The topological equation solver works 
properly with or without position shift disorder, offering a strong stability. b, In contrast, the trivial 
equation solver only works properly in the absence of disorder.   
 
  



 
 
Supplementary Figure 5: Approaches to control the coefficient of the first order ODE solved 
by the proposed topological equation solver, a,b The transfer function of the equation solver is 
changed by increasing the dissipation losses of the system. c,d The transfer function of the ODE 
solver is changed by detuning the hopping distances between the cylinders. e,f The transfer 
function of the ODE solver is changed by decreasing the number of unit cells in the SSH array. 
 

  
 
Supplementary Figure 6: Realizing higher order topological ODE solvers: The output signals 
of n different first order ODE solvers are subtracted using rat race couplers. The overall transfer 
function of the system 𝐻(𝑓)  corresponds to the transfer function of the nth order ODE.  



 

Supplementary Figure 7: Demonstration of a second-order topological pass-band filter, a, 
Two SSH chain are coupled to each other. The transfer function of the whole chain can be 
approximated by the theoretical relation given in Eq. S9, corresponding to a second-order pass 
band filter. b, Evolution of the transfer function of the chain, averaged over 20 different 
realizations of disorder (applied to the hopping amplitudes), versus disorder strength. c,d, Same as 
a,b but for a trivial second order filter.   

 

 

Supplementary Figure 8: Realization of a second order ODE solver by coupling two SSH 
arrays to each other. a, Two distinct SSH arrays are coupled to each other. b, An input signal 
with a Gaussian distribution is applied to the array. c, Transfer function of the whole array. d, 
Output signal of the array, approximating well the solution of the ODE given in Eq. S10.  



 
Supplementary Figure 9: Spatial optical computing using topological insulators, a, 
Consider a SSH array of graphene ribbons placed on top of a silicon dioxide substrate. b, Mode 
profile of the topological edge mode forming at the phase transition boundary of the array, c, 
Reflection coefficient of the structure versus the incident angle. d, A Gaussian spatial 
distribution is assumed for the impinging field. e, The reflected field from the structure is 
analytically calculated, which possesses a Gaussian derivative distribution, approximating well 
first order differentiation of the incident signal.    



 

Supplementary Figure 10: Comparison between the topological and trivial equation 
solvers, a, A trivial defect resonance is achieved by forming an interface between two crystals 
with opposite on-site potential organizations. b, Evolution of the (averaged) spectrum of the 
trivial resonance versus disorder strength. c,d, Same as panel a and b but for a trivial resonance 
induced by defect tunneling through an acoustic Bragg band gap. Comparing the results of this 
figure with Fig. 3 of the main text reveals the superiority of topological analog signal 
processing over trivial one.  
 

 
 



 

Supplementary Figure 11: Band structure of the proposed acoustic lattice crystal. The figures 
represents the comparison between the crystal band structures obtained from the semi-analytical 
model based on the transfer-matrix approach (black lines) and from full-wave finite-element 
simulations. 

 

Supplementary Figure 12: Effect of vertical disorder on the scattering parameters. Vertical 
shifts negligibly affect the scattering parameters of the obstacle in the frequency range of interest, 
effectively preserving the symmetry 𝑀KLMM

N = 1. 

 



 

 
Supplementary Figure 13: Experimental setups a, Experimental setup used to measure the 
transfer function of the proposed equation solver, b, Experimental setup used to create an input 
signal with an arbitrary time profile and measure the corresponding output signal from the equation 
solver.  
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