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ABSTRACT

Lake productivity is fundamental to biogeochemical budgets as well as estimating ecological state and
predicting future development. Combining modelling with Earth Observation data facilitates a new
perspective for studying lake primary production. In this study, primary production was modelled in
the large Lake Geneva using the MEdium Resolution Imaging Spectrometer (MERIS) image archive
for 2002-2012. We used a semi-empirical model that estimates primary production as a function of
photosynthetically absorbed radiation and quantum yield of carbon fixation. The necessary input
parameters of the model—concentration of chlorophyll a, downwelling irradiance, and the diffuse
attenuation coefficient—were obtained from MERIS products. The primary production maps allow
us to study decennial temporal (with daily frequency) and spatial changes in this lake that a single
sample point cannot provide. Modelled estimates agreed with in situ results (R* = 0.68) and showed
a decreasing trend (~27%) in production in Lake Geneva for the selected decade. Yet, in situ
monitoring measurements missed the general increase of productivity near the incoming Rhone
River. We show that the temporal and spatial resolution provided by satellite observations allows
estimates of primary production at the basin-scale. The phytoplankton annual primary production
was estimated as ~302 (SD 20) g C m™2 yr' for Lake Geneva for 2003 to 2011. This study
demonstrates that maps of primary production can be obtained even with reduced resolution
(1200 m) MERIS data and relatively simple methods, and thereby calls for deeper integration of
remote sensing products into conventional in situ observation approaches.
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Introduction

Earth has more than 117 million lakes and reservoirs
>0.002 km? (Verpoorter et al. 2014). These waterbodies
comprise only ~4% of the Earth’s land surface, but
they contain ~85% of the global freshwater resource
society relies on for drinking water, agriculture, fisheries,
energy, transport, and landscape elements. Lakes are also
important components of global biogeochemical cycles
in their role in storage and transformation of carbon
(Tranvik et al. 2009). They contribute significantly to cli-
mate regulation via the production and release of glob-
ally significant quantities of greenhouse gases (Tranvik
et al. 2009, Bastviken et al. 2011, Raymond et al. 2013)
and are recognized as valuable “sentinels” of global
environmental change (Williamson et al. 2014).
Despite the importance of lakes, the lack of human and
financial resources strongly hampers sufficient systematic
and high frequency monitoring. Today, using satellite
data for such high frequency monitoring is common,
especially on land and open oceans (Kutser 2004, Klemas
2012). Monitoring lakes with satellites is more challen-
ging because most lakes are optically complex. The

concentrations of water constituents vary independently
from each other and in wide ranges, leading to an ill-
posed, inverse problem in which many combinations of
water constituents can produce identical remote sensing
signals (Defoin-Platel and Chami 2007). Developing
remote sensing algorithms that perform well over a var-
iety of lakes may be impossible, although approaches
have been proposed in which lakes are first split into
different classes, and class-specific algorithms are then
applied as the second processing step (Spyrakos et al.
2018). Lake remote sensing has also been hampered by
the absence of suitable sensors (Palmer et al. 2015). The
technical situation (spectral and temporal resolution,
optimum band choice, satellite revisiting time) has
improved significantly in recent years with the launch of
Landsat-8, Sentinel-2A and 2B (Toming et al. 2016),
and Sentinel-3A and 3B. OLCI on-board Sentinel-3 is a
follow-up sensor for MEdium Resolution Imaging Spec-
trometer (MERIS) and could therefore be used most effec-
tively once MERIS analysis is completed. The usefulness
of MERIS for remote sensing of different lake parameters,
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such as water transparency, biota, and lake hydrology, has
been demonstrated in the past decade (Gons et al. 2008,
Mishra and Mishra 2012, Odermatt et al. 2012,
Augusto-Silva et al. 2014, Dérnhofer and Oppelt 2016).

Rapid development of in situ sensors and platforms
allows higher frequency measurements of fluorescence,
turbidity, oxygen, and other parameters on moorings or
even on autonomous underwater vehicles (AUVs), creat-
ing 3D scans of lake parameters (Cremona et al. 2016,
Meinson et al. 2016). Still, some measurements that
require lab work will remain difficult to carry out at
high frequency, such as measuring phytoplankton pri-
mary production (PP). PP is crucial because it is the direct
result of the photosynthesis and represents the sum of all
photosynthetic rates in an ecosystem (Fee 1998). In large
lakes, phytoplanktonic PP can represent a major input of
new organic matter and potential energy that drives the
ecosystem (Wetzel 2001). Remote sensing products
could make a clear difference here by compensating the
expensive and time-consuming measurements.

Studies estimating PP from light intensity and phyto-
plankton pigments with remote sensing in marine and
ocean waters (Platt and Sathyendranath 1988, Smith
etal. 1989, Wozniak et al. 1995, Siegel et al. 2001, Behren-
feld et al. 2005) have a long history compared with similar
studies in large lakes (Arst et al. 2008, Bergamino et al.
2010, Shuchman et al. 2013, Fahnenstiel et al. 2016,
Deng et al. 2017). The general aim of this study was to
demonstrate the usefulness of remotely sensed data for
monitoring spatiotemporal variations of phytoplankton
PP in a lake. We used a model developed for large, well-
mixed, shallow, and eutrophic lakes based on only satellite
data as input (Arst et al. 2008, 2012, Kauer et al. 2009,
2013, 2015, Noges et al. 2011). Studies that determine
whether similar methods can be applied in deep stratified
lakes are needed. We chose Lake Geneva as a test site
because it is well studied and in situ PP estimates are avail-
able. We aimed to find the most accurate yet simplest way
to quantify spatial and temporal variations of PP. There-
fore, the specific objectives of this study were to (a) assess
the performance of a semi-empirical PP model that uses
input data from satellite products instead of in situ data;
(b) study the spatial variability of PP; and (c) generate
time series of PP from 2002 to 2012 by using the full
MERIS image archive of Lake Geneva.

Methods
Study site

Lake Geneva (Lac Léman) is the largest lake in Western
Europe. It is socioeconomically important because it pro-
vides freshwater for >800 000 people. Lake Geneva covers

580 km?, has an average and maximum depth of 154 m
and 310 m, respectively, and has 3 distinguishable basins:
(1) Upper Lake (Haut Lac), the eastern part in front of the
Rhone Delta; (2) Large Lake (Grand Lac), the widest and
deepest basin; and (3) Small Lake (Petit Lac), the most
southwest, narrowest, and shallowest part. Based on its
physical, chemical, and biological characteristics, Lake
Geneva is perceived as a meso-/eutrophic lake (or
eutrophic, in the case of the Upper Lake). Lake Geneva
receives water from various tributaries, with River
Rhone as the primary contributor. The path of river
waters into the lake is complex, typical for many peri-
alpine lakes fed by glacier water. River water mixes only
little with lake water in the surface layer because most of
the sediment-rich river waters sink to deeper layers within
~100 m from the river mouth and intrude into the lake
waters, either into the thermocline or even deeper layers,
initiating complex biogeochemical interactions along its
path (Bouffard and Perga 2016).

In situ measurements

Chlorophyll a (Chl-a) and PP are measured for the
Commission International pour la Protection des Eaux
du Léman (CIPEL) by scientists of INRA (a European
scientific news source) year-round, typically twice (or
at least once during the winter) per month. The monitor-
ing station is in the middle of the lake (46°27'09.4"N,
6°35'19.5”E). Reports of the in situ monitoring are avail-
able at www.cipel.org.

PP was measured as the incorporation of '“C by the
phytoplankton (Steeman-Nielsen 1952) at 10 depth levels
(0 to 30 m). One dark and 2 light glass bottles (120 mL
each) were used at 10 fixed depths following a long-term
monitoring program initiated in the 1960s. The incubation
time was at midday for a duration corresponding to the
“median third” of the photoperiod. The use of dark and
transparent bottles allowed estimates of net PP. The
measured PP was converted to daily production using a
factor of 2.22 (Pelletier 1983). For interannual comparison,
PP profile values were integrated in the 0-30 m surface
zone. Annual net PP was estimated on the basis that the
sample station represents 60% of the measured annual
PP (i.e., gross output; www.cipel.org). Chl-a was analyzed
in a spectrophotometer using methodology by Strickland
and Parsons (1968). Together with PP measurements, the
transparency of the water was measured with a 30 cm
diameter white Secchi disk (Zgecch)-

Bio-optical primary production model

We used a bio-optical model developed for estimating
lake PP from remote sensing data (Kauer et al. 2013,
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2015). The basic equation of the semi-empirical model
describes PP as a function of photosynthetically
absorbed radiation and quantum yield of C fixation
(Smith et al. 1989, Arst et al. 2008):

PP(z) = WQjzr(2)Frar(2), oy

where ¥ is the factor 12000 for converting moles to
milligrams of C; Q*par(z) is the photosynthetically
absorbed radiation at depth z (mol photons m™> h™")
determined on the basis of scalar quantum irradiance;
and Fpar(2) is the quantum yield of C fixation (mol C
(mol photons)™") in the photosynthetically active radi-
ation (PAR) range of 400-700 nm.
We used equations 2-10 to determine Q*par(2):

Qpar(?) ~ C(2)Qpar(2). 2)

Here, C(z) is a correction factor between scalar and pla-
nar photosynthetically absorbed radiation, and Qpar(z)
is photosynthetically absorbed radiation at depth
z based on planar quantum irradiance (mol photons
m~ h™Y). C(z) was determined using the Chl-a concen-
tration Cg (mg m™) and the light attenuation coeffi-
cient Kqpar (m™) values (Arst et al. 2008) according
to equations 3-5:

C(z) = Ciexp(Cy2), (3)

where
Ci = 1.32Kgpay. and (4)
C, = 0.0023C.y + 0.016. (5)

The main formula to calculate Qpar(z) was:
Qrar(2) ~ gpar(2)aph,par, (6)

where gpar(2) is the planar quantum irradiance at depth
z in the PAR region. We used the well-known equation:

grar(2) = gpar(—0)exp(—Kgparz), (7)

where gpar(—0) is the incident planar quantum irradi-
ance just below the water surface, and

qrar(—0) = (1 —0.06)gpar(40), (8)

where 0.06 is the mean albedo of the water surface. The
second parameter in equation 6, Aph,PAR, IS an average of
the specific absorption coeflicient of phytoplankton, a’ph
in m®> mg~', across wavelengths in the range of 400-
700 nm, calculated using equation 9:

700
I a’ph(/\)CCh;d)\
A ph,PAR = MT . )

[ dA

400
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For the absorption coefficient of phytoplankton, @', an

algorithm with wavelength-dependent coefficients A and
B from Steehr and Markager (2004) was used:

@ (A) = AN Cyi™. (10)

The second parameter of equation 1, Fpagr(z), was calcu-
lated according to equation 11:

Finax (11)
(1 +MqPAR(Z))1'S’

Fpar(2) =

where F,,x = 0.08 mol C (mol photons) ~1 and M is the
parameter that can depend on incident irradiance as well
as on the bio-optical characteristics of the waterbody. In
this study we used algorithms by Arst et al. (2012) to cal-
culate M according to the C, values:
a) if Cyqy < 35 mg m~>, then
M=3.18 - 0.2125K77,p+ 0.34 gpar(+0);
b) if Cqy > 35 and < 80 mg m ™, then
M =3.58-0.31gpar(+0) — 0.0072Cy;
¢) if Cayy > 80 and < 120 mg m >, then
M =2.46-0.106gpr(+0) - 0.00081C;3; and
d) if Cgqy > 120 mg m~>, then M =0.67.

The model, originally intended for optically complex
well-mixed lakes, requires 3 input parameters: (1) Chl-a
concentration Cg, (mg m™); (2) incident planar down-
welling irradiance (in mol photons m2 h™'); and (3)
the underwater light diffuse attenuation coeflicient,
Kapar (m™). In this study, we used the latest version
of the integral model (Arst et al. 2012), performing a
new quantification of the model with updated spectra
of the specific absorption coefficient of light by phyto-
plankton (Cg, in the test database varied from 0.03 to
88.1 mg m™>). Despite the simplicity of the semi-
empirical models, the comparison of measured and
modelled PP yielded a coefficient of determination,
R? in the range of 0.79-0.96, and p was always
<0.00001. The quantification of the model was con-
ducted in meso- or eutrophic lakes in which the con-
centrations of Chl-a ranged from 4 to 389 mg m .
The details of the model are explained in previous
studies by Arst et al. (2008, 2012) that describe the
development of this model.

The Chl-a values in the model equations 4-10 were
taken either as the measured values of CIPEL or the sat-
ellite data products. For the K, par values, we used a con-
version from Secchi depth (equation 12 by Holmes 1970,
Schwefel et al. 2016) for in situ inputs, and for satellite
data inputs used the Kj499 product (equation 13 by
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Table 1. Maximum daily PAR irradiance® for Lake Geneva.

Month Jan Feb Mar Apr May Jun

Irradiance, umol 397 634 979 1179 1217 1336
photons m™2 h™"

Month Jul Aug Sep Oct Nov Dec

Irradiance, umol 1402 1282 1079 730 447 323

photons m™2 h™"

*www.soda-pro.com

Morel et al. 2007):
1.44

ZSecchi

Kd,PAR = and (12)

= 0.0864 + 0.884 x Kg400
_ (0.00137) (13)
K90

For incoming irradiance, we used a PVGIS-CMSAF
solar radiation database (www.soda-pro.com). From
the average daily solar irradiance estimates of Lake Gen-
eva, a maximum daily global irradiance (W m™?) for each
month was selected and converted to PAR incident irra-
diance (umol photons m™> h™'; Table 1).

For daily PP calculations, the hourly production was
multiplied by photoperiod (in h) and by the coefficient
0.75; because of the daily light curve, maximum daily
incoming irradiance cannot be applied throughout the
photoperiod. For the monthly PP estimations, the miss-
ing days, due to absent overpasses of the satellite or
cloudy images, were calculated by interpolation, and all
days were summarized. Annual estimates were obtained
by summarizing the monthly estimates.

For the entire lake PP temporal integration, we
included images with >50% of the lake pixels. All missing
lake pixels were taken as the average of the available pixels
of a given day. To calculate the daily, monthly, and yearly
productions, previously described methods were applied.

Kapar

Satellite data

The 3 necessary input parameters were obtained from
MERIS-appropriate products over the entire mission
(2002-2012). Reduced resolution (each image pixel rep-
resents an area of 1040 x 1160 m) satellite images were
obtained from 2 different databases: Optical Data Pro-
cessor of the European Space Agency (ODESA; http://
www.odesa-info.eu/process_basic/basic.php) and the
CoastColour Calvalus Portal (http://www.coastcolour.
org/ccprocessing/calvalus.jsp).

We used 6 different processors to determine the best
input parameters for Lake Geneva: (1) MERIS standard
Level 2 processing, MEGS 8.1 (MEGS; Morel and Antoine
2011); (2) Lakes Processors (Boreal and Eutrophic; Doerfter
and Schiller 2008); (3) Case-2 Regional algorithm (C2R,

Doerfler and Schiller 2007); (4) CoastColour OC4 (Morel
and Antoine 2011); (5) Free University Berlin (FUB) pro-
cessor (Schroeder et al. 2007); and (6) Maximum Chloro-
phyll Index (MCI; Gower et al. 2005). These processors
are different imagery-treating tools that use the water-leav-
ing reflectance as input and compute different water quality
products. After determining Chl-a products with all 6 pro-
cessors and comparing them with in situ results, we chose
the best performing processor to continue the analysis.

For K4 par, as the second input parameter, we used the
model (equation 13) described in Morel et al. (2007) using
K4,490 product from CoastColour L2 processing.

Results
Validation of the model

Over the decade of MERIS operational time (May 2002
to April 2012), 192 in situ PP measurements have been
carried out in Lake Geneva. During that period, 42
measurements had a same-day satellite overpass with a
matching cloud-free MERIS image. The nearest pixel
to the in situ sampling point was taken from each image.

The PP model calculations were performed with pro-
ducts of 6 different MERIS processors. We present only
the best results in this paper. The best performer for
Chl-a was CoastColour OC4 processor (R*=0.56; n=
42; Fig. la, Table 2). MEGS algal 1 also showed good
correlation (R*=0.53; n=21), but this algorithm gave
results on only half of the match-up days.

To estimate the in situ Kqpag in Lake Geneva we used
the relationship between Kypar and Secchi depth
(equation 12), and for satellite-derived Kypar estimates
we used Ky 499 products from the CoastColour processor
(equation 13). We compared the in situ and estimated
K4par (Fig. 1b) and identified some statistical parameters
(Table 2), but this additional calculation added little to the
results. The difference between Ky par and Ky 499 products
compared with in situ Ky par wWere minor (R? values were
the same in the current study; mean absolute percentage
error [MAPE] was 40.3% and 36.3%, respectively; and sys-
tematic error [BIAS] was 0.004 and —0.049 m™*, respect-
ively). This result was previously demonstrated by Kauer
et al. (2015). Only remote sensing data with in situ
match-ups were used for the PP model and compared
and summarized (Fig. 1c, Table 2).

The measured profiles of PP in Lake Geneva were
compared with modelled PP profile results (Fig. 2). In
general, the model fits the PP profiles well, although
the vertical structure of PP can have complex shapes
that are difficult to model. Interestingly, integral PP
(PPjy,) can be highly accurate, despite the disagreements
in the vertical structure of the profile of PP (Fig. 2).
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Figure 1. Comparison of (a) MERIS-derived and in situ sampled Chl-a; (b) MERIS-derived and in situ Ky.par; and (c) satellite-based and in

situ PP;, in Lake Geneva on match-up days.

When comparing the profiles, the incoming irradiance is
crucial in the modelled profiles because it is affected by
low illumination conditions during the in situ measure-
ments. For every month during this study, a maximum
daily PAR irradiance was used (Table 1) instead of in
situ incoming irradiance.

Spatial and temporal variability of primary
production

We generated 1122 PP;,, maps from 2252 MERIS
images. Lake Geneva has spatial variations perennially,
and therefore one measuring point in the middle of the
lake does not represent the entire lake (Fig. 3). The
same conclusion was drawn by Kiefer et al. (2015) in
their studies of the Chl-a distribution.

Lake Geneva has high variability in the spatial distri-
bution of PP (the mean over the entire study period
PP, was 86 [SD 113] mg C m~2 h™). In more extreme
cases, the PP;,, range can reach 900 mg C m 2 h™! within

a lake (Table 3). Generally, higher PP occurs near the
main inflow of the River Rhone (in Upper Lake), yet
Small Lake (western part) commonly has a higher PP
than Upper Lake.

In addition to the spatial information, satellite images
provide high temporal frequency data (for cloud-free
weather). Therefore, using remote sensing allows moni-
toring short time events, such as phytoplankton blooms
that could be missed by regular in situ monitoring (Kie-
fer et al. 2015). An example of such a phytoplankton
bloom in March 2012 (Fig. 4) showed that, as typical
for this lake, the bloom started from the east part of
the lake. The biggest change was observed between 21
and 24 March, when the bloom developed rapidly
along the southern coast to Small Lake, where PP became
even higher than in Upper Lake. By 1 April, the entire
lake doubled its productivity within 3 weeks (Fig. 4).
Two in situ measurements were carried out during that
time, yielding a PPy, of 68 mg C m™> h™' on 8 March
and 150 mg C m > h™" on 19 March.

Table 2. Statistical parameters (coefficient of determination [R?], root mean square error [RMSE], systematic error [BIAS], mean absolute
percentage error [MAPE], probability value [P-value]) of modelled primary production PP;,,, Chl-g, and diffuse attenuation coefficient Ky

from CoastColour (CC) products. n marks the number of match-ups used.

n Regression R? RMSE BIAS MAPE P-value
Modelled PP,y (mg C m™2 h™") 42 y=0.79x — 1.48 0.68 34.54 -22.85 29.52 <0.00001
Chl-a (CC 0C4) (mg m™3) Iy} y=0.84x — 0.05 0.56 3.14 -0.89 49.89 <0.00001
Kypar (CC) (m™") 42 y=049%+0.14 033 0.12 0.004 40.26 0.00012
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Figure 2. Comparison of selected samples of the measured and modelled PP profiles (mg C m™> h™") and PP, (mg Cm~2h™") in Lake

Geneva. Panels are ordered according to decreasing productivity.

To analyze the trends in the lake over the MERIS mis-
sion time (2002 to 2012), we added 2 points of obser-
vation (East and West points) to Upper and Small
lakes, accordingly, located at the corners of the French
and Swiss border in the lake (East point coordinates
46°25'37.9"N, 6°49'15.1"E; West point 46°18'42.9"N,
6°13'10.2"E; Fig. 5, upper-right corner). The Centre
point is the in situ monitoring station in Large Lake
(46°27'09.4"N, 6°35'19.5"E).

The average annual production over 10 years (May 2002
to March 2012) was estimated as 245 [SD 68] g C m™> yr_1
(at Centre point), 263 [43] g C m™> yr_1 (at East point), and
203 [38] g C m 2 yr ' (at West point). The difference
between the East and West points was 59 g C m ™ yr '
(~23%) of an average annual production (Fig. 5).

The lake demonstrated inner-annual seasonal vari-
ations (Fig. 5). In winter the entire lake had lower pro-
ductivity, yet, interestingly, PP only dropped by a

factor of ~2 in winter despite the much colder lake con-
ditions and weaker solar radiations. The West point
exhibited a significantly lower productivity than the
rest of the lake while the East point had a generally
higher productivity. Therefore, a noticeable longitudinal
productivity gradient existed between the western and
eastern part of the lake, possibility due to the River
Rhone inflow, where 75% of the lake water and most
of the phosphorus originates.

A decisive advantage of remote sensing data is the abil-
ity to calculate the total surface area integrated production
over the entire lake, taking into account all available pixels,
not only single points. The mean total annual PP;,; of the
lake for the entire period from 2003 to 2011 was 175
[SD 12] Gg Cyr ', or 302 [20] g C m ™ yr " (Fig. 6).

We compared satellite with in situ estimates based on
single station measurements (Fig. 6). Black dots mark the
in situ estimates for annual PP, grey dots mark the PP
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Figure 3. Selected samples of spatial variations of PP;,, (mg C m™2 h™") in Lake Geneva. Circle represents the in situ measurement (on 4
match-up days). Note the difference in the maximum PP;, values between upper and lower 2 rows of sub-figures.

based on satellite data from Centre point, and white dots
mark the PP based on satellite data including all the lake
pixels. In general, the annual production estimates
closely agreed with the annual PP estimates from Centre
point. The error in estimating annual production during
the study period was 23% (SD 9%; MAPE = 22.9; root
mean square error [RMSE] =70.4; BIAS=17.2g Cm >
yr ). The trend line of annual PP is decreasing for
both in situ and remote sensing estimates, with a faster
decrease (slope=11.1g C m™ yr?) for satellite

Table 3. Descriptive statistics for spatial PP;,, of Lake Geneva (in
mg C m™2 h™"). SD = standard deviation. Parameters shown for
entire observation period (May 2002 to April 2012) and for 2
example dates.

Mean  Median  SD Range

Confidence

PPicinmg Cm2h™ level 95%
May 2002 to Apr 2012 85.8 59.9 113 1090 39
22 Oct 2003 203 174 120 877 123
23 May 2011 39.7 38.7 7.2 50.5 0.7

estimates because of the absence of peaks in 2007 and
2009 (Fig. 6). Years 2002 and 2012 were removed
from the comparison because of the incomplete set of
imagery.

The comparison of the satellite-based results (with all
pixels) and the in situ estimates showed that the differ-
ence in estimating the annual production of the lake is
19% (SD 6%; MAPE =19; RMSE =68.3; BIAS=399 g
C m™? yr'). The difference between satellite results
(from single point extrapolation and all pixels, grey
and white dots on Fig. 6, accordingly) was approximately
the same, 18% (SD 5%; MAPE = 18.5; RMSE = 63.7;
BIAS=57 g C m™ yr '). Underestimation is similar in
all years from Centre point, except during 2007 and
2009, where the center of the lake accurately represented
the entire lake. The trend line of all pixels follows the
same decline as the production obtained from Centre
point. The decrease in PP over the 9 years was ~27%
(from 2003 to 2011, ~100 g C m 2 yr ).
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Figure 4. Development of a spring phytoplankton bloom (PP, mg C m™2 h™") in 2012.

Discussion

Overall, the CoastColour OC4 was the best performing
algorithm of the 6 we tested (Table 2, Fig. 1a). The results
of this study can immediately be extended to OLCI data
to allow studies on long-term trends in lake PP. Unlike
MERIS (a technical demonstration mission), the Sentinel
missions are planned and funded for decades to come.
We used reduced resolution (1200 m) MERIS data,
but the study can be extended to full resolution
(300 m) OLCI data, which will allow estimating PP in
smaller lakes. The model results could be further
improved if more suitable algorithms for deriving
Kg.490 were developed (Fig. 1b). Testing wide ranges of
different Ky algorithms was not our main goal because
in situ K4 data were lacking.

The relationship between the in situ and modelled PP
with satellite products were satisfactory (R*=0.68;
Fig. 1c), especially because the model used is a simple
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Figure 5. Estimated seasonal primary production (PP, g C m™2
season”') and error bars at 3 observation points in Lake Geneva.
Upper-right corner: Lake Geneva and 3 observation points (West,
Centre, and East) of the study.

semi-empirical model developed for turbid unstratified
lakes. The model calculates PP profiles over depth, and
the integral productivity was calculated from the PP
profiles, allowing us to compare the calculated PP
profiles with the measured profiles (Fig. 2). Based only
on the incoming light, C,, and Ky in water, the model
accurately replicated the measured PP profiles. One
reason the model, which is intended for well-mixed
waters, worked well in stratified Lake Geneva could be
that the nutrients are homogeneously distributed along
the euphotic zone, which is often shallower than the
depth of the thermocline. A small gradient of nutrients
(increasing with depth) might explain deeper PP peaks.
In addition, the river intrusion in the thermocline is a
nutrient source in Upper Lake (CIPEL; www.cipel.org).
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Figure 6. Estimated annual primary production (PP;,, g C m™>

yr”) in Lake Geneva from 2003 to 2011. Black: in situ estimation;
grey: satellite data from Centre point; and white: satellite data
including all the available lake pixels; the secondary y-axis
shows the values of total annual primary production (PP, G g
C yr™") and is marked with white dots. Parallel to the decline
in PP, the phosphorus content in the lake decreased from 32
(in 2003) to 22 (in 2010) mg m™>.


http://www.cipel.org

No other PP modelling study has been conducted in
Lake Geneva based solely on Earth Observation data,
and we therefore cannot compare current results. How-
ever, a study on Earth Observation on Lake Geneva C,;
(Kiefer et al. 2015) found R? values between satellite esti-
mates and in situ Chl-a observations approximately
similar to those in our current study (0.62 vs. 0.56).
The stratus cloud conditions are often characteristic of
the Swiss Plateau in late autumn and winter, and they
strongly affect the ability to monitor the lake with remote
sensing during this period. The lack of cloud-free ima-
gery can also influence the results of monthly PP esti-
mates, and in the worst cases only a few images can be
used; however, the number of suitable dates per months
(~10) still exceeds the number of monthly in situ
sampling periods (1 or 2). The number of cloud-free
dates is low in winter, but PP during this period is not
as important as in spring and summer in Lake Geneva.

Satellites provide details at both temporal and spatial
scales that classic in situ monitoring data cannot achieve
(Fig. 3 and 4). The PP maps generated clearly show that
one measuring station does not accurately represent the
entire lake, and more in situ sampling stations or the
use of remote sensing are needed to estimate PP over
the whole lake because its lateral variability (SD 113 mg
C m™> h™") is large. The east to west gradient in pro-
ductivity, where Upper Lake is more productive than in
the rest of the lake, is probably due to the nutrient input
from the main tributaries River Rhone. Yet, the pattern
can change over time, and Small Lake can become more
productive, as occurred during April 2012 (Fig. 4). For
example, higher productivity in Upper Lake can occur
when the bloom is ending, but it peaks in Small Lake
(Fig. 4; 01 April 2012) because of its frequent upwelling
events (Bouffard et al. 2018). Another disruption from
the general trend can be observed with PP increasing
only in Small Lake and Upper Lake. Nevertheless, the gen-
eral trend indicates that Small Lake has a significantly
lower PP than the rest of the lake (Fig. 5).

The annual estimates of PP by in situ and satellite data
at the center are in close agreement (Fig. 6, black and
grey dots), except for 2007 and 2009 when annual in
situ PP was estimated almost double the average. In
situ measurements were probably carried out during
phytoplankton biomass peaks, resulting in higher than
actual annual production. A clear decreasing trend in
PP of the modelled data occurred during the study
period (evident in the center and also in the entire
lake, when all the lake pixels are included; Fig. 6). Unex-
pectedly, Kiefer et al. (2015) found the same trends
(~27%) in the surface values of Chl-a and phosphate
concentrations in the center of the lake and in the out-
flows of the northern coast for 2002 to 2010.
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Modelled estimates might be lower in those years
because the in situ measurements were taken during
periods of high peaks that would overestimate the annual
results, and/or they are not correctly capturing the C, of
Mougeotia gracillima from the deeper layers of the lake.
Years 2007 and 2009 were indeed characterized by unu-
sually strong deep-biomass accumulation events. Mou-
geotia gracillima tolerates low light conditions and can
grow in deeper layers (Reynolds 2006). These deep
blooms are difficult to observe from satellites because
their potential impact on remote sensing signals is low
or negligible, which is not a problem during years
when Mougeotia gracillima is absent. The general trend
from 2003 to 2011 satellite estimates shows a decline.
The in situ data trend is not as evident because of the
unusual years of 2007 and 2009. This decline may be
linked to the decline in phosphorus concentration
initiated in the 1970s (Schwefel et al. 2016).

The high peak years of in situ measurements (2007 and
2009) were not obvious when considering all available pix-
els in calculating annual PP (Fig. 6). The reasons might be
the same: the phytoplankton bloom was too deep to derive
with remote sensing; or the annual estimate based on the
in situ measurements overestimated annual production
because the single in situ measurement captured the high-
est PP peak, which was not typical over a longer period.
The latter case is more probable because we had slightly
more than 1000 cloud-free scenes over 9 years (average
114 images per year), while in situ estimates for the
same period were based on 173 measurements (19
measurements per year). Fewer measurements per year
give more weight to a single measurement on the yearly
estimation of PP. For example, measurements during a
bloom will raise the yearly estimates, but the in situ sam-
plings just before or after the blooms lead to the underes-
timation of yearly PP. Remote sensing provides
significantly more frequent data about the lake, and there-
fore important events are less likely to be missed. Conse-
quently, our modelling results represent the actual
annual PP better than, or atleast as good as, the in situ esti-
mates from a single point (center of the lake). Generally,
the error in estimation of annual PP with semi-monthly,
single-point measurements is ~20% (Fig. 6). The error
does not change much if comparing results from satellite
data from Centre point and satellite data including all
the available lake pixels because we removed the differ-
ences between in situ measurements and modelling. How-
ever, the overall trends (years with lower and higher PP) of
the in situ and modelled estimates closely agree.

Studies on lake PP based on satellite data are rare, but
PP in the Great Lakes is well studied with remote sensing
(Shuchman et al. 2013, Fahnenstiel et al. 2016), and some
recent studies on Lake Taihu used satellite data to
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Table 4. Some examples of different lakes by their surface areas
(5), mean daily primary production per surface area (PPgay),
mean annual lake primary production (PPy), and observation
period (t) in years.

S PPda”¥ PPy, t
km? mgCm™“d"' TgCyr' year
Upper Great Lakes 199718 261 19.05 2010-2013
Lake Michigan 58030 401° 8.57 1998-2008
Lake Taihu 2250 1094 0.89* 2003-2013
Lake Geneva 580 828 0.18 2003-2011
Lake Vértsjarv 271 558 0.055° 1982-2009

“Converted into comparable units by authors.

estimate PP (Deng et al. 2017). For a more global picture
of Lake Geneva’s position among other lakes, we com-
pared the mean annual PP for the lake (0.18 Tg C
yr_l) with other lakes around the world (Table 4).

If examining an entire lake as a producer of carbon,
then the size of the lake is obviously an important factor.
For example, the entire Upper Great Lakes (including
Lakes Erie, Huron, Michigan, Ontario, and Superior,
all in the top 15 largest lakes in the world) in North
America are larger than Lake Geneva by a factor of
300 and have >120 times higher annual production, yet
they have lower values for mean daily production (Fah-
nenstiel et al. 2016). Lake Michigan is about 2 orders of
magnitude larger and has 50 times higher production
than Lake Geneva (Shuchman et al. 2013). Lake Taihu
(in China), known as a shallow, eutrophic, and pro-
ductive lake, is almost 4 times larger than Lake Geneva
and has 6 times higher production (Deng et al. 2017).
The most eutrophic lake in our comparison (Table 4),
the shallow Lake Vortsjarv in Estonia, has ice cover
more than 4 months per year and productivity close to
zero (Noges et al. 2011); and the fact that the annual car-
bon production in Vértsjirv is lower than in Lake Gen-
eva by the factor of 2.7 is not only caused by the size of
the lake but also by the climate conditions. Therefore,
depending on the subject, it would be better to describe
the lake with production per unit area during a certain
productive period (e.g., one summer month), not the
total PP of the lake in a year.

Initially, smaller lakes seem to play a small role in the
global carbon cycle; however, ~117 million lakes exist
around the world, covering ~5 million km? of the
Earth (Verpoorter et al. 2014), and only about 29% of
this area is composed of the 225 biggest lakes in the
world (surface area >1000 km?). Moreover, their waters
can be relatively poor in phytoplankton, and the photic
zone comprises a relatively small portion of their total
volume (Table 4). Consequently, their PP per unit of
study area is relatively small. Most lakes in the world
have areas 0.1-1 km?, with a global coverage of <1 million
km? (19% of the total area estimated), and 36% of the
lakes have a surface area 1-1000 km? (~353 000 lakes

with total area >1.8 million km?* Verpoorter et al.
2014). Nevertheless, relatively few smaller lakes are
included in monitoring programs, which excludes a
vast part of the actual productivity of the lakes in the
world. Therefore, remote sensing is clearly an inevitable
tool to study global carbon cycle and PP in lakes.

Conclusions

The current study comprises 2 main parts: first, the vali-
dation of a simple bio-optical PP model that requires 2
main inputs both available as satellites products (Chl-a
and Kj); and the second to study the spatial and tem-
poral productivity over a decade (MERIS 2002-2012).
CoastColour processor products performed the best in
Lake Geneva. Our results show that satellite products
can be successfully used as input data to model primary
production in lakes of mesotrophic to eutrophic pro-
ductivity level. Thus, the model is also applicable in
deep mesotrophic lakes, not just in shallow eutrophic
lakes as has been demonstrated previously. Even reduced
resolution satellite data (with 1 x 1.2km pixel size)
showed significant variability in PP throughout the
lake, meaning that infrequent, single-point in situ
measurements are insufficient to understand the behav-
ior of primary production in medium- to large-sized
lakes (possibly leading to errors of 20%). Despite the
cloud cover limitation, the new remotely sensed Earth
Observation dataflow is today more frequent than
monthly to semimonthly in situ observations, and
thereby less impacted by contingencies. The in situ
monitoring would benefit from high frequency buoy sys-
tems, although it would still not cover the spatial varia-
bility. Therefore, the future to understanding lake
systems should focus on a deeper coupling between
remote sensing and high frequency in situ observation.
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