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Abstract

A variety of DNA-binding proteins organizes the chromosomal DNA and
regulates gene transcription, and DNA replication and recombination. In particular, for
gene regulation there is a category of DNA-binding proteins, the transcription factors,
which can detect and bind to a specific set of DNA motifs. For the protein-DNA
complexes there are some solved structures, but for some cases, it is difficult to
define experimentally these structures at the atomistic level. However, there are
various in silico methods, that alone or in combination with experimental techniques,
are capable of predicting proteins structures with high accuracy.

DNA-binding proteins contain DNA-binding domains and unfortunately, there
are few protein-DNA complexes that have been characterized at atomistic resolution.
Here we have developed artificial neural networks to predict the binding sites and the
interface between proteins and the DNA, based on a structure-based approach.
Specifically, we used different interface descriptors and we included a variety of
protein-DNA complexes, in order to predict the correct localizations of the DNA on a
protein.

A large group of proteins that can recognize specific DNA sequences is the
KRAB-ZFP family. DNA recognition by zinc finger proteins (ZFPs) plays an important
role in gene regulation. However, the molecular determinants defining the recognition
of specific DNA nucleotides by ZFP finger repeats has not yet been decoded. Here,
we present a method that can predict which ZF repeats specifically bind to a DNA
target sequence and what is the most probable DNA target sequence for these
repeats. Our method is based on the structural analysis of the binding network of
resolved protein DNA complexes, and is validated on a benchmark set of solved
ZFP-DNA complexes. We also characterized the binding specificity of two KRAB-
ZFPs (ZFP14 and ZNF145) integrating our predictions with SMILE-seq (Selective
Microfluidics-based Ligand Enrichment followed by sequencing) data.

Subsequently, we use our recognition code on ChlP-exo data, in order to give
an insight into the poly-ZF domains binding patterns. We determined the most
probable binding motifs and we separated the ZFPs in two groups: the ones that
have a potential canonical and non-canonical binding.

Altogether, this work gives an insight into the proteins that interact with the
DNA, through a better understanding of the various protein-DNA interfaces and the
predictions of these complexes at the atomistic level.
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Chapter 1 Introduction

Protein polypeptide chains, according to their composition, can fold into a vast
number of different three-dimensional structures, which determine, along with the
dynamic features, their biological functions (Alberts et al.,, 2002). Some of the key
functions proteins regulate are the catalysis of biochemical reactions (i.e., enzymes),
maintenance of mechanical structure in cells (i.e., structural components), protection
from viruses and bacteria (i.e., antibodies), signal transmission to coordinate
biological processes between different cells, tissues, and organs (i.e., messengers),
gene regulation through DNA recognition (i.e., transcription factors), chromatin
packing (i.e., nucleosomes). For the last two functions, proteins that can bind to the
DNA are involved. In particular, DNA-binding proteins organize the chromosomal
DNA and regulate gene transcription, and DNA replication and recombination.
Therefore, characterizing the molecular mechanisms of the protein DNA-interactions,
through their structure, is crucial for understanding their function.

To this aim one needs to understand the physical and chemical properties of
these biomolecules when interacting with their native environment. Recent advances
in X-ray crystallography (Smyth and Martin, 2000), Nuclear Magnetic Resonance
(NMR) spectroscopy, cryo-Electron Microscopy (cryo-EM) and other techniques are
providing a growing body of structural information for protein complexes at atomistic
level of resolution. However, direct experimental determination of protein structures is
often difficult and each experimental technique has some drawback. For example,
protein crystals suitable for X-ray crystallography cannot always be produced when it
comes to large assemblies. On the other hand, cryo-EM can overcome this problem,
but it is limited by resolution, although this has recently started to change.

Therefore, the combined structural information from different experimental
methods can be integrated in computational models in order to build a more accurate
description. Integrative modeling is the combination of all kind of biophysics and
biochemical experimental data, such as X-ray crystallography, NMR, Cryo-EM
structural data and mass spectroscopy (Thalassinos et al., 2013). Molecular
modeling is useful in this context to construct missing parts of the structure (loops or
domains) using homology modeling. Furthermore, experimental inputs and modeling
itself can contribute to define new intermolecular interactions in large assemblies.
Moreover, Molecular Dynamics (MD) simulations can be eventually used in order to
study the different configurations of a structural complex. Consequently, by
combining all these techniques through integrative modeling our understanding of
large macromolecular complexes has been largely advanced in recent times. Lastly,
as the computational power is steadily increasing, integrative modeling is more
widely used, aiding in consistently interpreting a huge amount of data generated from
different and heterogeneous sources.



1.1. DNA function and structure

Nucleic acids, proteins, lipids and complex carbohydrates are the four major
types of macromolecules that are essential for life. Natural nucleic acids, like DNA
(Deoxyribonucleic acid) and RNA (Ribonucleic acid) are long linear macromolecules
that contain the genetic information. These macromolecules consist of one or two
long chains of monomers, called nucleotides. Each nucleotide contains a sugar, a
phosphate group and a nitrogen base. From the natural nucleic acids (DNA-RNA)
artificial nucleic acids (PNA, LNA, GNA, TNA) can be constructed with changes in the
backbone (Alberts B et al., 2014).

DNA is a chain of nucleotides carrying the genetic instructions used in the
growth, development, functioning and reproduction of all known living organisms and
many viruses. Most DNA molecules consist of two biopolymer chains coiled around
each other to form a double helix. Each chain is made by deoxyribonucleotides,
which contain a nitrogenous base, a deoxyribose sugar and a phosphate group
(Figure 1). A base and the 1' carbon of a deoxyribose are connected with a covalent
bond. Also, the nucleotides are joined to one another in a chain, by covalent bonds
between the sugar of one nucleotide and the phosphate of the next nucleotide,
forming an alternating sugar-phosphate backbone. The covalent bonds are formed
between the phosphate group and the 5' deoxyribose carbon, and they are called 3'
to 5' phosphodiester bonds. Always, the first nucleotide of a chain has a free
phosphate group attached to its 5' deoxyribose carbon, and the last nucleotide has a
free hydroxyl group from its 3' deoxyribose carbon. Thus, the orientation of the
nucleotide chain is refereed as 5'-3'. In addition, the two strands of DNA are
antiparallel, since they run in opposite directions to each other. Since the strands are
not symmetrically located with respect to each other, the DNA grooves have different
size. The major groove is 22 A wide and the minor groove is 12 A wide. Moreover,
the distance between two base pairs is 3.4 A (around 10 base pairs per turn) and the
diameter of the DNA is about 20 A (Mandelkern et al., 1981) (Figure 2).

The genetic information is stored in the sequence of the bases along the DNA
chain. In particular, the four nitrogen bases are adenine (A), cytosine (C), guanine
(G) and thymine (T). (Figure 1). Adenine and guanine bases belong in the group of
purines, while cytosine and thymine belong to the group of pyrimidines. The
nitrogenous bases of the two polynucleotide strands are bound together with
hydrogen bonds in order to form the double-stranded DNA. Specifically, an adenine
forms two hydrogen bonds with a thymine, and vice versa, while a cytosine forms
three hydrogen bonds with a guanine, and vice versa (Nikolova et al., 2013). This
base pairing has as a result the formation of a right-handed double helix, which
consists of the two threaded polynucleotide chains (Watson and Crick, 1953). The
phosphate backbone is polar and is located in the exterior of the molecule, while, in
the interior we have the presence of the bases. The base pairs ensure that the two
chains of a DNA molecule are complementary, and this implies that the sequence of
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one determines the sequence of the other. The complementarity is of great
importance for the replication of DNA, a property that makes it the most suitable
molecule for the conservation and transfer of the genetic information. Each DNA
chain can serve as a matrix for the synthesis of a complementary chain so that two
double-stranded DNA molecules can be formed identical to the initial molecule.

Part of the DNA in the cell has coding properties, which provide instruction for
making proteins. In particular, coding DNA transcribes into RNA that translates into
protein. However, the majority of the DNA has non-coding features. Initially, non-
coding DNA thought it was without purpose. Nevertheless, it was observed that non-
coding DNA contains sequences that act as regulatory elements that determine the
genes that are turned on and off (transcriptional regulation). Other functions include
scaffold attachment regions, origins of DNA replication, centromeres and telomeres.
Still, the properties of the non-coding DNA are partially understood.

3|

Figure 1 - Complementary DNA chains. Guanine and Cytosine form three hydrogen
bonds. Adenine and Thymine form two hydrogen bonds.

There are various configurations of the DNA double strand due to its structural
flexibility (Figure 2). The most well-known structure is the B-DNA and it was
described above. Other structures that are less common are the A-DNA (Wahl and
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Sundaralingam 1997), which has a larger diameter than the B-DNA, and the Z-DNA
(Rothenburg et al., 2001), which is much smaller in diameter than the B-DNA and it is
left-handed.

Minor grrove

Major grrove
gy 12A

22A

B-DNA A-DNA

Figure 2 - DNA types. B-DNA is the most common DNA type. There are also other
types, like the A- and Z- DNA.

1.2. Protein-DNA interactions

Protein-DNA interactions play an important role in many biological processes
i.e., gene regulation, DNA repair, replication and packing. Therefore, amino acids that
interact with the DNA backbone are conserved, while amino acids that interact with
DNA bases have different levels of conservation (Luscombe and Thornton, 2002).
Moreover, mutations in DNA-binding proteins can lead to neurological disorders
(Camero et al., 2013), Axenfeld-Rieger syndrome (Saleem et al., 2001), tumors
(Ching Ang et al., 2006) and interference with immunoglobulin transactivation (Nixon
et al., 2004). Although it has been reported that DNA-binding proteins are encoded
by 2-3% of a prokaryotic genome and 6-7% of a eukaryotic genome (Luscombe et
al., 2000; Walter et al., 2009), only 3.3% of the proteins that are deposited in PDB
(April 2018) are in complex with the DNA. This makes imperative the need of
predicting the 3D atomistic structures of the protein-DNA complexes and the specific
interactions between their interfaces, and subsequently combine them with
experimental results through integrative modeling.
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The 3D structures of the DNA-binding proteins and the DNA play a crucial role
for their binding interface. Binding to the DNA is performed by DNA-binding domains
that contain specific structural motifs. These motifs usually include a "recognition o-
helix", like in the helix-turn-helix, helix-loop-helix, zinc finger, leucine zipper and other
DNA-binding domains. There are exceptions like the [-ribbon proteins that use (-
strands to contact the DNA (Stephen 1991; Phillips 1994). In general, DNA-binding
proteins in PDB, have been classified in eight different structural/functional groups
(Luscombe et al., 2000). The eight groups are: (i) helix-turn-helix (i.e. A repressor of
bacteriophage lambda), (ii) zinc-coordinating (i.e. C2H2 zinc finger proteins), (iii)
Zipper-type (i.e. leucine zipper family members and Basic-helix-loop-helix proteins),
(iv) other a helix (i.e. Cre protein), (vi) B sheet (i.e. TATA box-binding proteins), (vi) B
hairpin/ribbon (i.e. MetJ repressor), (vii) other, and (viii)) enzymes. In addition, DNA-
binding proteins, besides one or more DNA-binding domains, also consist of other
functional domains.

The interaction interface between a DNA-binding protein and the DNA shows a
high degree of complementarity in terms of shape and electrostatics (Hard et al.,
1996). This requires conformational changes in the protein and the DNA. The main
interactions of proteins and the DNA include H-bonds (which can induce specificity),
water mediated H-bonds and hydrophobic interactions. All these interactions
contribute to the stability of the protein-DNA complex.

1.3. Types of protein-DNA interactions

There are two main categories of protein-DNA interactions: those when a
protein recognizes specific DNA bases (base readout) and those when a protein
recognizes a sequence-independent DNA shape (shape readout) (Rohs et al., 2010),
but sometimes it can be a combination of both (i.e. the Escherichia coli Trp operator).
Usually the proteins that recognize specific DNA bases form H-bonds with the polar
parts of these bases (i.e. transcription factors), while the proteins that bind without
specificity to the DNA interact with the phosphate backbone (i.e. histones). Therefore,
the binding interface of these proteins usually consists of positive amino acids, like
Arg or Lys, which can form H-bonds with the negatively charged phosphate
backbone. Base readout DNA-binding proteins interact with the bases in both the
major and the minor DNA groove. More frequent are the interactions with the major
groove, due to the fact that there are present more hydrogen donors/acceptors than
in the minor groove (Harteis et al., 2014). Shape readout DNA-binding proteins
recognise changes on the DNA structure in global (i.e. narrow minor groove and DNA
kinks) or local shape (bending, A-DNA, Z-DNA) (Rohs et al., 2010).

An example of proteins that participate in non-specific interactions with the
DNA are the histones. Histones organize the DNA into a compact structure called
chromatin (Alberts, 2002). In particular, they form an octamer that consists of two
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types of histones H2A, H2B, H3 and H4. Moreover, histones have positively charged
amino acids that bind to the negatively charged DNA phosphate backbone. The DNA
(~150 bps) wraps around the histone octamer in a left-handed supecoil. This
conformation is called nucleosome and it is the basic unit of DNA packing (Reece
and Campbell, 2006). Another example is the Hop2-Mndl heterodimer, which
participates in meiotic DNA recombination (see Appendix). In particular it binds to
double-strand DNA and together with Dmc1, it promotes single-stand DNA (Kang et
al., 2015).

An example of proteins that participate in specific interactions with the DNA
are transcription factors (TFs). TFs are DNA-binding proteins that can bind to a
specific set of DNA sequences and activate or repress the transcription of a gene.
TFs contain one or more DNA-binding domains, but also protein-interacting
domain(s). In order to regulate transcription, a TF uses its protein-interacting
domain(s) to interact with other cofactor proteins or the RNA polymerase (Latchman,
1993). TFs, together with their co-regulators, form complex highly interconnected
gene regulatory networks. In humans, there are around 1600 TFs (Madan et al.,
2004). A class of TFs are the C2H2 zinc finger proteins (see Chapter 4), which are
involved in the regulation of many processes in the cell, such as tissue homeostasis
(Cassandri et al.,, 2017). Another TF is the CLOCK:BMAL1 heterotetramer, which
regulates the transcription of genes that are participating in the mammalian circadian
clock (see Appendix). In particular, it binds to two repeats of E-box sequences
(CACGTG), with a distance of 6 or 7 base pairs between them (Nakahata, et al.
2008; Sobel et al 2017).

1.4 Methods to detect Protein-DNA interactions

There are many experimental methods (in vivo and in vitro) that have been
developed to study protein-DNA interactions (Cai and Huang, 2012). In particular,
EMSA (Electrophoretic Mobility Shift Assay) is based on the principle that Protein-
DNA complexes migrate slower than the unbound linear DNA on a non-denaturing
gel and can provide absolute binding affinities (dissociation constants Kg) (Garner
and Revzin, 1981; Fried and Crothers, 1981). Another technique is the
Deoxyribonuclease (DNase) | footprint, which is used for locating the specific binding
sites of proteins on DNA (Galas and Schmitz, 1978). This technique is based on the
principle that a protein bound to a DNA fragment, will protect that fragment from
enzymatic cleavage, which in this case is the DNase. Next, ChlP-seq is an in vivo
technique for analyzing protein-DNA interactions and histone modifications.
Specifically, ChlP-seq combines chromatin immunoprecipitation with parallel DNA
sequencing to identify the binding sites of DNA-associated proteins and the
chromatin state (Gilmour and Lis, 1983). A modification of the ChlP-seq protocol is
the ChiIP-exo technique, which uses exonucleases to degrade the strands of the
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protein-bound DNA (Rhee and Pugh, 2011). In this case the resolution of the binding
sites is improved from hundreds of base pairs to almost one base pair. A relatively
new technique that can detect low affinity interactions between protein and the DNA
is the MITOMI (Mechanically Induced Trapping of Molecular Interactions), and it has
been used for measuring the binding energy landscapes of transcription factors
(Maerkl and Quake, 2007; Rockel et al., 2012). A similar technique is SMILE-seq
(Selective microfluidics-based ligand enrichment followed by sequencing), which was
developed for the identification of DNA binding specificities and affinities of
transcription factors (Isakova et al., 2017). Other techniques for determining the
DNA-binding specificities of proteins are the bacterial one-hybrid system (Bulyk,
2005), the yeast one-hybrid system, the SELEX (Systematic Evolution of Ligands by
Exponential enrichment) and the protein binding microarrays. Finally, x-ray
crystallography can be used to solve the structure of a protein-DNA complex and give
an atomistic view of its interactions.

Compared to wet lab experiments, in silico methods can be a fast and cheap
alternative in the characterization of protein-DNA interactions. These methods have
focused on predicting whether a protein can bind to the DNA and/or which are the
protein binding residues. The current approaches for these predictions are either
sequence-based or structure-based (Si et al., 2015). Sequence-based approaches
are using sequence similarity and other sequence features, such as residue type,
evolutionary conserved residues and global composition of amino acids. However,
they cannot achieve satisfactory predictions because the DNA-binding residues are
less conserved, and therefore, structural information is necessary. Structure-based
approaches are using the 3D structures of unbound proteins (apo form) and the
bound proteins in complex with the DNA (holo form). If no structures are available,
but there is a highly homologous complex or protein, then a 3D model can be built via
homology modeling. Through the 3D structure, one can have an insight into the
structural information of the binding sites. This structural information can be
translated into structural descriptors. These descriptors can be the electrostatic
potentials, hydrophobicity, accessible surface area, structural motifs etc.

For methods that predict protein-DNA interactions the “state of the art”
algorithms are based on machine learning approaches (Lu et al., 2013). Machine
learning is a field of computer science that proposes algorithms that can learn from
and make predictions on data. In particular, for the protein-DNA interaction
predictions ANN (Artificial Neural Networks), SVM (Support Vectors Machines),
decision trees/random forests and Bayesian networks have been used. In general,
these methods "learn" from a training set of data and attempt to predict the correct
output from an unknown test set.

An ANN is a learning process that is inspired by biological neural networks.
ANNs are used to model complex relationships and for patterns recognition. For
instance, DISPLAR (DNA-Interaction Site Prediction from a List of Adjacent
Residues) is a structure-based method that uses an ANN to predict the DNA-binding

15



sites on protein surfaces (Tjong and Zhou, 2007). In particular, this method takes into
account the conservation of the positive residues and the solvent accessibility of the
residues at the interface. DISPLAR's predictions on DNA-contacting residues have
an accuracy of 76%. Stawiski et al. proposed another method that uses ANN to
predict DNA-binding proteins, in 2003. This approach is structure-based and as
descriptors, it uses the positively charged electrostatic patches on protein surfaces.

A support vector machine (SVM) is a supervised machine-learning method
that is used for a classification of two classes. In the case of protein-DNA
interactions, SVMs are used to distinguish DNA-binding residues from non-DNA-
binding residues on a protein. For example, BindN+ is a sequence-based tool that
uses SVM classifiers to distinguish DNA-binding residues (Wang et al., 2010). The
descriptors that are used are PSSMs (Position-Specific Scoring Matrix) and
sequence-based evolutionary information, like hydrophobicity, side chain pK, value
and molecular mass. In this case, distinguishing DNA-binding residues from non-
DNA-binding residues has an accuracy of 79.0% (AUC 0.825). Another approach
with a SVM is ProteDNA, which is a sequence-based predictor of sequence-specific
DNA-binding residues in transcription factors (Chu et al., 2009).

A decision tree is a decision support tool that uses a tree-like graph of
decisions and their possible consequences. An extension of that is the random forest,
which is a learning method for classification that uses multiple decision trees. For
example, DBindR is a sequence-based program that predicts the DNA-binding
residues of a protein using a random forest model (Wu et al., 2009). The descriptors
that are used are the evolutionary information of the amino acid sequence,
secondary structure information and the characteristics the amino acids, in respect of
the dipoles and volumes of the side chains. DBindR predicts the DNA-binding
residues with accuracy of 91.41% (AUC 0.913).

A Bayesian network is a probabilistic graphical model that represents a set of
random variables and their conditional independencies via a directed acyclic graph
(DAG). A Naive Bayes classifier has been used from predicting DNA-binding sites of
proteins through a sequence-based approach, with 71% accuracy (Yan, 2006).
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1.5. Objectives of the thesis

In nature, many protein-DNA complexes participate in fundamental biological
processes. Currently, there are very few solved atomistic protein-DNA complexes and
many determinants of their interacting interface remains unknown. In this thesis, my
aim is to study the protein DNA-interactions and propose a recognition code between
ZFPs and the DNA. In particular, (i) | give an insight into the protein-DNA interface
predictions, next (ii) | investigate the specificity between ZFPs and the DNA (iii) and
finally provide an analysis on ChiP-exo binding motifs from poly-ZF proteins and
finally.

A machine learning approach to predict protein-DNA interactions

Since, a large amount of protein sequence data is available, it is useful to
develop computational tools that can analyse fast and accurately protein-DNA
interactions. In chapter 3, we followed a structure-based approach to predict the DNA
and protein binding sites. In particular, we used artificial neural networks to predict
among a variety of protein-DNA complexes, which will be the ones that interact. The
final goal is to predict the interacting residues in both the DNA and the protein.
Therefore, we used the bound and unbound states from a protein-DNA benchmark
and investigate their interactions with different number of potential complexes,
descriptors and matrices. Eventually, we manage to predict the specific protein-DNA
interactions with high accuracy.

A computational method to predict the DNA specificity of zinc finger proteins

In Chapter 4, my aims are to determine how the C2H2-ZF tandem recognizes
3-4 bps, define the general recognition binding rules between ZFPs and their DNA
targets and present a method to analyse and predict ZFP binding specificity. Here |
propose (i) a structure based method that can predict which ZF domains of a ZFP
can bind to a given DNA sequence and (ii) a recognition code that predicts the most
probable DNA target sequence for a ZFP. Our approach is based on the analysis of
the H-bond network of solved structures of protein-DNA complexes. We verified our
method and our recognition code with known solved ZFP-DNA complexes and
compared the results with the results of other recognition codes. For given ZF
tandem repeats, our method predicts accurately the ZF domains that bind to the
DNA. Our recognition code gives accurate results for most of the cases and
competes the current experimental recognition codes. In addition, we further
validated our method using ZFPs of the KRAB-ZFP family for which we performed
SMILE-seq experiments of wild type and mutated ZFPs. One additional benefit of our
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method is the possibility to eventually built 3D molecular models of these ZFP-DNA
complexes providing atomistic insight into the structural binding recognition between
ZFPs and DNA.

Analysis of the DNA-binding landscape of human KRAB-ZFPs

In Chapter 5, raw ChIP-exo data have been analysed to give an insight into
the ZFPs binding patterns. We determined the most probable binding motifs and we
focused on the poly-ZF proteins that have a potential non-canonical binding. Our
results show that it is possible to have multiple ZF domains bound serially on the
DNA, but sometimes the binding differs. For example, in the cases that a predicted
DNA motif is very long (>18 bps) the canonical binding is disturbed and few zinc
finger domains are leading the binding.
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Chapter 2 Methods

Protein-DNA interactions can be studied with experimental methods, but also
with computational approaches, or combination of both. For instance, in order to
discover the landscape of the DNA sequences that a protein binds, we use
experimental methods (i.e. ChIP exo) and a motif discovery algorithm. In particular,
motif discovery algorithms can describe the binding specificity of a protein through
position weight matrices. Moreover, we can use artificial neural networks (or other
machine learning approaches) to predict which proteins can bind to DNA or which
residues participate in the interaction interface. This approach works better when we
have a benchmark of solved protein-DNA complexes, and therefore it requires high
quality data from NMR or X-ray crystallography. However, in the case that there is no
solved structure, we can use biomolecular modeling techniques to build a complex.
For proteins, we can use as a template a homologous structure or predict a de novo
model. Similarly, for the DNA, previous knowledge of its geometry can be used to
build accurate 3D models. In addition, to study a molecular system, such as a
protein-DNA complex, principles of molecular mechanics can be used. Specifically,
we can use molecular dynamics simulations to explore the conformational space of
complexes and have a better insight into their binding interface and H-bond network.
Furthermore, pow®, which is an integrative modeling framework, can be used to
predict a set of protein-DNA orientations, based on structural information from an
initial complex. In this work, we used all the above computational methods to explore
protein-DNA interactions.

2.1. Motif discovery

Many experimental methods study protein-DNA interactions. Some of these
methods (i.e. ChlP-seq) provide us with a large set of DNA-target sequences that a
protein can bind to. Among all this information, it is challenging to extract the
accurate binding motif (consensus sequence or PWM (position weight matrix)) and
detect the "real" specificity of a DNA-binding protein. For this reason, motif discovery
algorithms have been developed. These algorithms are classified in three
approaches: (i) deterministic optimization, (ii) probabilistic optimization and (iii)
enumeration (D'haeseleer, 2006).

Enumerative algorithms cover the entire search space of all possible motifs,
for a specific motif model description. These algorithms don't have the risk of getting
stuck in a local minimum, but they may overlook some subtle patterns that are
present in binding sites. In the probabilistic optimization cases the input data for a
given problem is not known accurately, therefore the optimization is considered under
the assumption of probability distributions. In particular, the motif model is initialized

19



with a randomly selected set of sites, and every site in the target sequences is
scored against this initial motif model. At each iteration, the algorithm probabilistically
decides whether to add a new site and/or remove an old site from the motif model,
weighted by the binding probability for those sites. The resulting motif model is then
updated, and the binding probabilities recalculated. Given sufficient iterations, the
algorithm will efficiently sample the joint probability distribution of motif models and
sites assigned to a motif, focusing on the best fitting combinations. On the other
hand, in the deterministic optimization cases, the input data for a given problem is
known accurately. Specifically, EM (Expectation Maximization) algorithm is used to
simultaneously optimize a PWM of a motif and the binding probabilities for its
associated sites. EM is an iterative method to find maximum likelihood or maximum a
posteriori estimates of parameters in statistical models. The PWM for the motif is
initialized with a single n-mer subsequence, plus a small amount of background
nucleotide frequencies. Next, for each n-mer in the target sequences, the probability
that it was generated by the motif is calculated. Then, EM takes a weighted average
across these probabilities to generate a more refined motif model. The algorithm
iterates between calculating the probability of each site based on the current motif
model and calculating a new motif model based on the probabilities.

An example of motif discovery with a deterministic optimization approach is
the MEME algorithm (Multiple EM for Motif Elicitation) (Bailey and Elkan, 1994; Bailey
et al., 2009). The algorithm discovers multiple motifs of various lengths in a set of
DNA or protein sequences by using EM to fit a mixture model to the set of
sequences. MEME requires only a set of unaligned sequences. It returns a model of
each motif and a threshold. Both of them can be used to search for occurrences of
the motif in other databases. The algorithm can discover several motifs with differing
numbers of occurrences in a single dataset. MEME-ChIP is a variation of MEME,
which is used for motif discovery in large nucleotide datasets, such as those occurred
from ChiIP-seq data (Machanick and Bailey, 2011). Here, we used MEME-ChIP to
discover binding motifs of ZFPs from SMiLE-seq and ChIP exo data, in Chapters 4
and 5 respectively.

2.2. Biomolecular modeling techniques

In living organisms, there is a variety of biomolecules, like proteins and DNA,
which interact between them and with the environment, in order to perform important
biological tasks. Unfortunately, a fraction of protein structures and therefore functions
are known. For determining these unknown structures, besides wet lab techniques,
many computational techniques have been developed. In particular, molecular
modeling techniques are used to construct missing parts or a complete 3D structural
complex, while MD (Molecular Dynamics) simulations are used to study the different
configurations of a structure. However, the best approach to build an accurate
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biomolecular model is to combine structural information from different experimental
methods (X-ray crystallography, NMR and Cryo-EM) with computational methods. By
combining all these approaches through integrative modeling, representations of
macromolecular assemblies have been more accurate in the last years (Thalassinos
et al., 2013).

Homology modeling (or comparative modeling) is the procedure of building a
3D structure of a protein using as a template an experimentally solved structure of a
homologous protein. A widely used program for homology modeling of protein
structures is Modeller (Sali and Blundell, 1993; Eswar et al., 2006). This program
requires an alignment of a sequence that will be modeled, with the sequences of
known related structures. Modeller builds a model by satisfying spatial restraints that
contain all non-hydrogen atoms. It can also build missing loops in protein structures
and optimize various models of protein structures with respect to a flexibly defined
objective function. Here, we used Modeller in Chapter 4, in order to model unknown
ZFP structures. Specifically, we build the linkers between the ZF domains, ZF
domains with length different from 21 amino acids and non-canonical ZF domains.

Another approach in homology modeling of protein structures is Swiss-Model
(Biasini et al., 2014). Swiss-Model is an automated protein homology-modeling
server, which requires experimental protein structures (“templates™) to build models
for evolutionary related proteins ("targets"). The Swiss-Model pipeline consist of four
steps that are involved in building a homology model of a given protein sequence.
Initially, BLAST and HHblits are used to identify structural templates from PDB. After
that, the target sequence and the template structures are aligned. Next, models are
built based on a rigid fragment assembly approach, followed by energy minimization.
Finally, the quality of the models is assessed using a statistical potential of mean
force. We used Swiss-Model in order to build models for the domains of KAP1, which
had a homologous protein in PDB.

A structure prediction tool is the Rosetta software suite, which includes
algorithms for computational modeling and analysis of protein structures (Simons et
al., 1997). One of Rosetta's applications is the Loop Modeling, which uses fragments
from existing PDB structures in order to guide the building of missing loops (Leaver-
fay et al.,, 2011; Wang, Bradley, & Baker, 2007). In addition, a protein structure
prediction server, which uses the Rosetta software, is Robetta. In particular, Robetta
combines both ab initio and homology modeling to predict the 3D structure of protein
domains. Specifically, domains that have a PDB homolog are automatically modeled
based on that homolog as a template. These various homolog template PDBs are
detected and aligned. Next, the alignments are clustered and homologous models
are built based on the RosettaCM protocol. On the other hand, domains without PDB
homolog are modeled with the Rosetta de novo protocol (Simons et al., 1997). De
novo protein structure prediction refers to structure prediction without using
templates, but with knowing only the amino acid sequence and applying first-
principles (i.e. physics). Rosetta's protocol uses energy functions in conjunction with
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fragments from existing PDB structures, in order to guide the model building. Here,
we used both Rosetta and Robetta in order to build a model for the TSS domain of
KAP1 and construct the missing loops, respectively.

A software that is used to analyse, build and visualize 3D Nucleic Acid
structures, is the 3DNA (Lu and Olson, 2003). At its core, the software uses a simple
matrix-based scheme for calculating a complete set of rigid-body parameters that
characterize the spatial relationship of the base pairs in DNA and RNA structures. In
particular, 3DNA can be used for DNA modeling, given a nucleic acid sequence,
while the 3D structure can be also described geometrically with a set of rigid-body
parameters. We used 3DNA in Chapters 3 and 4, in order to build DNA models that
interact with DNA-binding proteins (i.e. ZFPs).

2.3. Molecular dynamics simulations

Molecular dynamics (MD) simulation is a technique for computing the transport
properties of a many-body system, in which the nuclear motion of the constituent
particles obeys the laws of classical mechanics (Frenkel and Smit, 2001). In
particular, simulations can provide the individual particle motions as a function of
time. For this reason, simulations are used as a tool for understanding the physical
basis of the structure and function of biomolecules.

A widely used parallel molecular dynamics software is NAMD (Nanoscale
Molecular Dynamics), which is designed for high-performance simulation of large
biomolecular systems (Phillips et al., 2005). The software is implemented in C++ and
based on Charm++ parallel objects, while is compatible with AMBER and CHARMM
force fields. In this work, we used NAMD to perform energy minimization on the ZFP-
DNA complexes in Chapter 4, in order to improve the H-bond network between the
ZFP and the DNA.

Molecular Mechanics

Molecular mechanics uses classical mechanics to model molecular systems.
In all-atom MD simulations, each atom is represented as one particle and the
electronic motion is ignored. In molecular mechanics, a force field is a set of
parameters and functions that are designed to describe the interactions between the
atoms in a molecular system. The energy of the system is the numerical solution of
the classical equations of motion, which are summed as the interactions between
bonded atoms (Figure 3) and non-bonded atoms. The bonded atoms are covalently
linked and the non-bonded atoms are the ones that are separated by three bonds at
least. The potential energy function is calculated as following:
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Utotal = { Ubond + Uangle + UpropTorsion + UimpropTorsion } + { UvdW + UCoqumb}

) 1
bonded non-bonded

Bonded interactions

For bond stretching the harmonic approximation is used to describe the
potential energy Unond between two covalently bonded atoms:

1
Upond = Z Ekb(r —r0)”

bond

Where K, is a harmonic force constant for a bond and it is an indicator of the stiffness
of the bond spring. The energy of a bond changes according to its length r. The
lowest energy of a bond is at a particular length ro (equilibrium bond length). If the
length is less than ro then the bond is compressed and the electron clouds of the two
atoms can overlap, which will lead to an increase of the energy. Respectively, if the
length is more than rothen the bond is stretched and the energy increases.

Angle bending includes the angles between each pair of covalent bonded
atoms, sharing a single atom at the vertex. For the angle energy, Uage @ harmonic
potential is also used:

1
Uangle = Z gka(e - 60)2

angle

Here, ka is the angle bending force constant (stiffness of the angle spring), 8 is the
bond angle and 6, is the equilibrium bond angle.

Next, torsional angle rotation include atom pairs separated by exactly three
covalent bonded atoms with the central bond subject to the torsion angle. Although
very important interactions, some early force fields omitted torsional angle
interactions. Proper torsion involves four consecutively bonded atoms. The proper
torsion energy Uproptorsion iS modeled by a simple periodic function:

Uprome-sion = Z kf[l + COS(TZ(/) - 5)]

torsion
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Analytically, the rotation dihedral angle is given by the ¢ parameter, the K;
parameter controls the amplitude of the curve, the n parameter controls its periodicity
and the d parameter shifts the entire curve along the rotation dihedral angle.

Improper torsion energy is calculated based on four atoms not successively
bonded. The small out-of-plane angle is governed by the so-called "improper"
dihedral angle. It is modeled by a harmonic potential:

Ui'mpropTorsion = Z kz((/5 - (/)0)2

improp

The parameter @ is the improper torsional angle, @o is the equilibrium angle and k;
represents the spring force constant.

OO

bond streching angle bending

e e g

torsional angle

improper torsional angle

Figure 3 - Bonded interactions. Bond stretching, angle bending, proper and improper
torsional angles.

Non-bonded interactions

Non-bonded interactions are occurring between two non-covalently bonded
atoms, in the same or different molecules. Van der Waals interactions are modeled
by the Lennard-Jones potential, which is a mathematical approximation of these
interactions between a pair of atoms:
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The depth of the potential is determined by the parameter €, where r; is the
distance between the two atoms and gj is the distance at which the van der Waals
energy is minimized. Sometimes in MD simulations, van der Waals interactions are
truncated at a cutoff distance.

The electrostatic interactions are described by Coulomb's law, which is
quantifying the amount of force with which stationary electrically charged particles
repel or attract each other:

qi4;
UCoulomb = Z —

dmegrs;
i g>i 0

Where r; is the distance between two atoms, g; and q; are the charges of the atoms
and g, is the dielectric constant. Usually, electrostatic interactions beyond a specified
distance are ignored or assumed zero. It depends if you use a cutoff scheme, in PME
they are not ignored, as they are long range and thus important at large distances

RMSD

After a simulation or an energy minimization, the structural similarity metric
that used to compare two molecules is the RMSD (Root-Mean-Square Deviation) of
the atomistic positions. In particular, it is the measure of the average distance
between the atoms of two superimposed molecules. The atoms that are usually used
for proteins are the Ca and for the DNA are the Pho. RMSD is calculated in A or nm
(1 nm =10 A) and its equation is the following:

Where N is the number of atoms and 9; is the distance between the atoms i of the
two superimposed structures.
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2.4 pow®": a parallel optimization workbench to enhance resolution in
biological systems

pow® (Parallel Optimization Workbench) is an open source optimization
framework designed for dynamic integrative modeling of biological systems,
proposed by Degiacomi and Dal Peraro in 2013. This method has been used to
predict protein assembly of symmetrical complexes, using experimental information
as restrains and the protein conformational space from molecular dynamics
sampling. Initially, predictions were performed using PSO (Particle Swarm
Optimization). PSO is a computational method for the optimization of continuous
nonlinear functions and it was initially used to simulate a simplified social model
(Kennedy and Eberhart, 1995; Shi and Eberhart, 1998). Specifically, this method
solves a problem by having a population of candidate solutions. These solutions are
moved around like particles in the search-space according to a mathematical
formula. Each particle's movement is affected by its current position, velocity, local
best-known position and the best-known positions by other particles. This is expected
to move the swarm of particles toward the best solutions. In particular, PSO optimizes
a problem by trying to improve a candidate solution with respect to a given measure
of quality. Lately, an assembly protocol based on mVIiE (memetic Viability Evolution)
(Maesani et al.,, 2016) was added in pow®, by Tamo et al. in 2017. mVIE is an
optimizer that maintains and recombines multiple sub-populations in order to
optimize the balance between local and global search. Here, we used pow® and
mVIE in order to optimize the localization of the DNA on a DNA-binding protein and
produce multiple poses. We applied this approach on various protein-DNA complexes
in Chapter 3.

pow® is implemented in Python, and MPI for Python is used for high-
performance computing. This software consists of six classes: Parser, Data, Space,
Fitness, Postprocess and Optimizer (Figure 4). The optimizer, which is a common
class for any optimization problem, can be either PSO or MVIE. The user, depending
on the optimization problem, can change the rest five classes. A file containing an
implementation for these five classes, aiming at solving a specific problem, is called
module. In order to use pow*, a user has to provide the module hame and an input
file with parameters.

Initially, the class Parser reads, verifies and translates the variables from the
input file, which contains specific keywords. Based on the parameters entered, the
class Data fetches and loads necessary information (i.e. 3D structure coordinates).
Next, the class Space defines the search space of the optimizer. Subsequently, the
information defined by the previous classes is transferred to the Fitness and
Optimizer classes. These classes are the core of the optimization process, and
provide a solution that minimizes the fitness function, once a termination criterion has
been reached (i.e. convergence). Finally, the Postprocess class sorts and clusters
these solutions, and the final solution or cluster of representative solutions is
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returned.

Input

l

Parser > Data

A
\ 4

Y

Space > Fitness

\ // |
Optimizer / Results /

Figure 4 - pow® workflow. Input is provided as a text file containing keywords with
associated values. The blue boxes represent the classes, which are specific for the
module designed to solve the optimization problem. The optimizer (PSO or MVIE) is
represented as a green box.

Postporocess

2.5. Artificial Neural Networks
Avrtificial neuron

The idea of the ANNs (Artificial Neural Networks) is based on the biological
neural networks. A typical biological neuron consists of the soma, which is its core,
the dendrites through which it receives signals from neighboring neurons and the
axon, which is the output of the neuron and its connection with the other neurons. In
each dendrite there is a synapse. Synapses through chemical processes accelerate
or decelerate the flow of the electrical charges to the neuron's soma. The learning
and memory capacity of the brain is due to the ability of the synapses to change their
conductivity. The electrical signals that enter the neuron's soma through the
dendrites, are combined and if the result exceeds a threshold value the signal is
propagated through the axon to other neurons.

Similarly, an artificial neuron is a computational model with components that
correspond to the ones of a biological neuron. In particular, an artificial neuron
receives some input signs Xi, Xo, ..., Xn» that are continuous variables, likewise the
electrical pulses of the brain (Figure 5). Also, every input sign changes according a
(positive or negative) weight w;, like in the synapses of the biological neuron
(Vlahavas et al., 2011). The soma of the artificial neuron consists of two parts: the
"summation function" that sums, the affected by the weights, inputs into an S value,
and the "activation function” which forms the final value of the output signal vy, in
correspondence to the S value and a threshold value. Sometimes, except the input
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signals and their weights, the artificial neuron has a weight 6 (or w,), which is called
bias. The only difference of the bias from the rest weights is that it affects constantly
an input value of xo = 1. The bias is an external input that is added along with the
other input signals/weights. It is used to determine the position of the activation
function on the x-y axis. For example, in step functions (see below) the threshold
value can be set to zero instead of some T value and this threshold is assigned to the
weight w, setting it to -T.

inputs weights
X

summation

Xz function
Xs _ output
S A
X4 ~ y
activation
function

Xn

Figure 5 - Components of the artificial neuron.

Common activation functions

The output y of the step function is 1 if the value S that is calculated by the
"summation function" is greater than a threshold T, otherwise the output is O:

0,S>T
f(S):{l,S<T

The output y of the sign function is negative (or positive) if the value S is smaller (or
larger) than a threshold value:

L,S>T
f(8)=505=T
~1,S<T

A sigmoid function has the characteristic "S" shaped graph and a parameter a to
control the transition rate from small to large output values. In particular, a is a
transition rate adjusting factor between the two asymptotic values (slope parameter):

1
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The importance of the sigmoid functions lies on the fact that they are
continuous, real valued, differentiable and they have a non-negative first derivative
which is "bell" shaped. This "bell" shaped derivative acts as a filter that suppress
large input values, while it can provide a satisfactory output for low input values.
Moreover, the output values are limited between 0 and 1 (or -1 and 1). In addition,
sigmoid functions are non-linear, which is a necessary property for modeling non-
linear phenomena. All these properties are very useful for artificial neural networks.

Avrtificial neural networks

ANN (Artificial Neural Networks) are data processing systems build up by a
number of artificial neurons that are organized into structures similar to those of the
human brain. Usually, artificial neurons are organized into a series of layers (Figure
9). The first of these layer is called input layer and it is used to input data. The
components of the input layer are not neurons because they do not perform any
calculations (no input weights or activation function). This layer is followed by one
layer (single-layer neural network) or more hidden layers (multi-layer neural network),
while at the end there is the output layer. In Chapter 3, we used ANNS to predict the
correct orientation of various DNA-binding proteins and the DNA, in order to interact.

Neurons in ANN may be fully or partially connected with each other. Fully
connected neurons, are those that are connected with every neuron of the next layer.
In any other case the neurons are patrtially connected. A feedforward neural network
is an ANN where there are no connections between neurons of a layer and the
neurons of the previous layer (neurons do not form a graph) (Figure 6). In the case
that there are connections between neurons of the same layer or with the previous
layer (neurons form a graph), the ANN is called recurrent neural network. In a
recurrent neural network, the calculation of the various values occurs in two recurring
steps. At the first step the values of the feedforward connections are calculated and
at the second step the values for the feedback connections are calculated. Although
in some cases recurrent neural networks are very useful, the majority of neural
network applications use feedforward networks. The way which a neural network is
structured (neuron number, neuron arrangement and neuron connectivity) is directly
related to the learning algorithm used to train it.
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hidden layer
input layer of neurons output layer

Figure 6 - Feedforward artificial neural network. Initial, neuron 1 receives three input
signals xi1, X, and xs, from the input layer. These signals are modified by the weights
w1, ws and we and are added by the "summation function" of neuron 1. Next, the sum
is processed by the activation function of neuron 1 and the result is sent to the output
layer. Likewise, the function of the rest neurons is similar. Therefore, the ANN
receives the signals xi, X, and Xz, as an input vector, and after internal processing
from its neurons, it produces the output vector: y: and y-..

Learning and recall

ANN perform two basic functions: learning and recall (Russell S.J. and Norvig
P., 2009). Learning is the process of modifying the weights of the network so that
given a specific input vector (training set) a specific output vector will be produced.
This process is also called training. Recall is the process of calculating an output
vector for a specific input vector (test set) and specific weight values.

There are three types of learning for an ANN, depending on the way that the
weights are modified through training: supervised learning (Russell S.J. and Norvig
P., 2009), graded learning and unsupervised learning (Jordan M.l. and Bishop C.M.,
2004). In supervised learning, pairs of input and desired output vectors are given to
the network. The network uses the initial weights and produces an output that differs
from the desired output. This difference is the error, and based on that and a training
algorithm the weights are adjusted accordingly. In graded learning, the output is
marked as "good" or "bad" based on a numerical scale, and weights are adjusted
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according that scale. In unsupervised learning, the network’s response depends on
its ability to self-organize based only on the input vectors, since there are no
corresponding output vectors. In practice, networks in this category are trying to
clusterize the input data. For most ANN supervised learning is used.

There are many algorithms developed for supervised learning. For example,
the Delta rule learning algorithm, in which the difference between the actual and the
desired output is minimized through a least squares procedure (Russell and Ingrid,
2012). Next, in the back propagation algorithm the weight adjustment is based on the
contribution of each weight to the total error (Goodfellow et al., 2016). Another
algorithm is the competitive learning algorithm, in which the artificial neurons
compete with each other, and only the one with the best response to a given input
adjusts its weights (Rumelhart et al., 1986).

In ANN, like in other non-linear prediction methods, underfitting or overfitting
may occur. An ANN that is not complex enough can fail to model successfully the
training data, leading to incomplete learning (underfitting). On the contrary, a very
complex ANN may model the training data and their potential noise too much, like
memorizing them. In this case, the network gives a good prediction for the training
data but produces completely wrong predictions for other input data (overfitting).
Overfitting may also occur in multi-layer ANNs, even if the training data does not
contain noise. The best way to limit the above is to use a sufficient number of training
data.

The most common way to use training data is in training cycles, which also are
called epochs. During each epoch, the network receives as input, one by one, all the
training vectors. Next, it sums the changes in the weight values that occurs from each
vector and adjusts the weights at the end of each epoch using the accumulated
variation. This method is also known as batch learning. Otherwise, weight adjustment
can be done after each one of the training vectors, and in this case, it is called
incremental learning. Batch learning gives faster results but has higher memory
requirements. There are also cases where a combination of the two above methods
is used. Independently from which method is used, training ends when the network
quality control criterion reaches a desired value. Usually, as a criterion is set the
average error or the variation in the mean error of the training set. In both cases, it
must be limited to a low value. If this is not possible, training may be terminated after
a preselected number of epochs.

Another important issue related to the ANN training is the normalization of the
input data, as well as the encoding of the input and output data. The normalization of
the input data is mainly related to how these will be treated by the learning algorithm.
The normalization can affect the speed and quality of the learning. The two most
common normalizations of the input data, is to generate data with mean value 0 and
standard deviation 1, or with range 2 and center value 0 (i.e., minimum -1 and
maximum 1). Normalization takes place not only in the training data, but also in the
test and validation data. However, the normalization parameters are strictly derived
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from the training data and then they are used to normalize the test and validation
data. Generally, normalization should be done with caution, as it may lead to loss of
information that may lead to poor learning.

Evaluation of ANNs

For the evaluation of a binary classification model, like an artificial neural
network with two outputs, there are various measures. These measures use
variables, such as the TP (true positive), which is an outcome where the model
correctly predicts the positive class (correctly classified as positive). Similarly, a TN
(true negative) is an outcome where the model correctly predicts the negative class
(correctly classified as negative). A FP (false positive) is an outcome where the model
incorrectly predicts the positive class (type | error, wrongly classified as positive).
Finally, a FN (false negative) is an outcome where the model incorrectly predicts the
negative class (type Il error, wrongly classified as negative).

Two common statistical measures of the performance of a classification
function are sensitivity and specificity. Sensitivity or TPR measures the proportion of
actual positives that are correctly identified as such, while specificity or TNR
measures the proportion of actual negatives that are correctly identified as such. TPR
and TNR are calculated as the percentage of the correct predictions:

TP TN

TPR= —— TNR= ———
TP+ FN TN+ FP

Other statistical measures are the precision and accuracy. Precision or PPV
(positive predictive value) measures the statistical variability (description of random
errors), while accuracy measures the statistical bias (systematic errors). In other
words, given a set of data points, the set can be said to be precise if the values are
close to each other, while the set can be said to be accurate if their average is close
to the true value of the quantity being measured. The two concepts are independent
of each other, so a particular set of data can be either accurate, or precise, or both,
or neither. Mathematically, this can be stated as:

TP
Pre— 1P Moo — TP +TN
TP+ FP TN+TN+FP+FN

Although accuracy takes into account all four parameters (TP, TN, FP and FN)
is not so useful when the two classes are of very different sizes. Classification
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approaches, like ANNs, assume that the output of the training set is evenly
distributed. When the training set for one class is much larger than the training set of
the other class problems can arise from what is called class imbalanced
classification. This has as a consequence the presence of high TP and very low TN
values, or the reverse. A solution to this problem is to use an alternative measure, the
Matthews Correlation Coefficient (MCC). The MCC is used in machine learning as a
measure of the quality of binary classifiers. It is considered as balanced measure,
since it takes into consideration TP, TN, FP and FN, and it can be used if the classes
are of very different size. In general, the MCC is a correlation coefficient between the
observed and predicted binary classifications. It returns a value between -1 and +1.
A coefficient of +1 is an indicator of a perfect prediction, 0 a random prediction and
-1 shows total disagreement between prediction and observation. The MCC can be
calculated from the following formula:

TP*TN —-FPxFN

MCC =
VTP +FP) (TP +FN)* (TN + FP)* (TN + FN)

Another measure of the performance of a binary classification model is the
Area Under a ROC Curve (AUC). In statistics, ROC curve is a graphical plot that
illustrates the diagnostic ability of a classification model (Fawcett, 2006). The ROC
curve is created by plotting the true positive rate (TPR - sensitivity) against the false
positive rate (FPR=FP/(FP+TN)) at various threshold settings (Figure 7). Lowering
the classification threshold classifies more items as positive, thus increasing both FP
and TP. AUC shows the probability that the model ranks a random positive example
higher than a random negative example. In particular, an area of 1 represents a
perfect test, while an area of 0.5 represents a bad test.
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10

0.8

0.6

0.4

True Positive Rate

0.2

— AUC = 0.91
it —_— AUC = 0.60
e — AUC = 0.79

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 7 - Roc curves: plots of TPR VS FPR show three different ROC curves. The
red curve with 0.91 AUC represents an excellent test, the purple curve with 0.79 AUC
represents a relatively good test, and the blue curve with 0.60 AUC represents a fair
test.
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Chapter 3 A machine learning approach to predict protein-DNA
interactions

3.1. Introduction

Macromolecular assemblies are important for the biological functions of cells.
However, because of their complexity, it is challenging to solve their structures by
only using experimental methods. Therefore, by combining experimental with in silico
methods, we can have a better insight into the structures and dynamics of
macromolecular assemblies.

In particular, to study protein-protein interactions, the best approach is to
combine algorithms with various experimental data to generate high-resolution
models of protein complexes (Rodrigues and Bonvin, 2014). A widely used approach
is the Integrative Modeling (IM). With IM we can predict the structure of a molecular
complex by using the individual structures of its participants. This approach
integrates experimental information with the conformational and interaction
landscape of all possible orientations that the monomers of a complex can adopt. It
also uses a scoring function to discriminate the highest affinity complexes from the
rest (Gromiha et al., 2016). In addition, in order to limit the search space, restraints
from experimental information can be used. Although IM has successfully predicted
several large molecular assemblies from their monomers (i.e. CAPRI competition
(Lensink and Wodak, 2013)), it is very difficult to predict the “near-native” model
assemblies.

Protein-DNA interactions are fundamental for all living organisms. In nature,
there are different structural motifs of proteins that can bind to the DNA. Some
proteins can recognise specific DNA base pairs and others can recognise specific
DNA shapes (see Chapter 1). Both, proteins and DNA change their conformation
when they interact, in order to form a complementary interface and therefore a more
stable complex. It is possible that predicting protein-DNA interactions is more difficult
than predicting protein-protein interactions, since we have very few solved structures.
However, the possible molecular assemblies and binding modes are more limited,
since the DNA's structure has less degrees of freedom than a protein.

To study the protein-DNA interfaces, there are many experimental and
computational techniques. Some experimental techniques include EMSA, which can
provide absolute binding affinities between a TF and its binding DNA (Garner and
Revzin, 1981; Fried and Crothers, 1981), and ChIP-seq, which can identify the
binding sites of DNA-binding proteins (Gilmour and Lis, 1983). Nevertheless, in silico
methods are an alternative to experimental techniques, in order to characterize
protein-DNA interactions. These methods are either sequence-based or structure-
based (Si et al., 2015), and some can predict whether a protein can bind to the DNA
and others which are the protein binding residues. Structure-based approaches
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appear to be more efficient than sequence-based approaches, since the sequence is
less conserved than the structure. In particular, these approaches use the 3D
structures of unbound proteins and the bound proteins in complex with the DNA, or
high-quality homologous models. The structural information of the binding sites is
converted to structural descriptors (i.e. electrostatic potentials, accessible surface
area, etc.). Such methods include ANN, SVM, decision trees/random forests and
Bayesian networks. These methods "learn" from a training set of the protein-DNA
interface descriptors and attempt to predict the correct protein-DNA interactions from
an unknown test set.

Here, in order to predict protein-DNA interfaces we used a structure-based
computational approach, based on ANNSs. In particular, to describe the protein-DNA
interface of a set of protein-DNA complexes we used the distances, the electrostatic
interactions energies and the van der Waals interactions energies between the
residues on the interface. We tested our method on different protein-DNA complexes
from a benchmark of bound and unbound proteins. Our goal is to predict the correct
orientations of the DNA on a protein, and therefore, predict the interacting residues in
both protein and the DNA.

3.2. Results
A protein-DNA benchmark

In our approach, we used artificial neural networks to predict which
protein/DNA residues participate in the interaction interface. Artificial neural networks
seem to give better predictions when the interface descriptors are based on a
benchmark of solved protein-DNA complexes (Si et al., 2015). Here, we will use a
protein-DNA benchmark with 47 bound-unbound proteins proposed by van Dijk and
Bovin in 2008. In this benchmark 13 complex are classified as easy cases, 22 as
intermediate cases and 12 as difficult (Figure 8). This classification was done by
calculating the iRMSD (RMSD at the protein-DNA interface). Specifically, residues
belonging to the interface are identified as those having atoms within 5 A
intermolecular distance from one another. All the classes of protein-DNA complexes,
except the zipper-type class, are included in this benchmark (Luscombe et al., 2000).
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1AZP 1ZME

Figure 8 - lllustration of test cases from the protein-DNA benchmark A. of “easy”
(IRMSD < 2.0 A), B. “intermediate” (2.0 A < iRMSD < 5.0 A) and C. “difficult” iIRMSD
> 5.0 A). The bound form of the complex is shown in gray, the unbound protein in
blue and the B-DNA model in yellow.

Initially, we processed and analysed the PDB files in van Dijk's benchmark. In
particular, we kept one occupancy for multiple amino acids. In addition, we removed
flanking N- or C- terminal parts that were present in the bound protein but where
missing from the unbound or the reverse. Next, in case of missing loops, we added
them with the Rosetta loop modeling application. For the DNA molecules, we
removed unpaired terminal nucleic acids and we built the unbound DNA with the
3DNA software. In general, we ensure that we have the same type and number of
residues (Ca and Pho) for the bound and unbound states, as well as the same
stoichiometry. Complexes that were classified as difficult cases and some others with
very high iIRMSD where excluded. Finally, we calculated through different
approaches the iIRMSD of the 33 remaining complexes. In the first approach, we
used the Biopython library (Bio.PDB module), in order to superimpose our molecules
and calculate the iRMSD. In the second approach, we used pow®, to optimize the
position of the unbound DNA on the unbound protein, using as a reference the bound
protein-DNA complex. The best position of the DNA on the protein is considered the
one that minimizes the iRMSD. In both cases, we identified as interface residues the
Ca and Pho that are within a distance of 8 A from each another. The calculated
iIRMSDs are presented in the following table (Table 1) and in Figure 9:

Complex iRMSD - van Dijk iRMSD - pow*" iRSMD - Biopython
and Bovin
1EA4 2.43 0.97 154
3CRO 1.58 1.08 1.35
1PT3 1.35 1.12 121
1RPE 1.87 1.19 151
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1R40 2.61 1.32 1.29
1HJC 1.80 1.37 2.17
1WOT 2.78 1.38 1.42
1IMNN 1.48 1.40 1.36
1DIz 1.82 1.47 4.04
3BAM 5.55 1.52 1.78
1BY4 1.77 1.59 1.56
1FOK 1.53 1.70 1.87
1K79 2.37 1.81 2.63
1CMA 2.81 2.06 2.10
1JJ4 2.83 2.19 2.30
1EMH 1.62 2.20 3.16
1KSY 1.58 2.46 2.43
1AZP 2.70 2.56 2.74
2IRF 3.35 2.44 2.42
1763 2.51 2.73 2.87
1VAS 3.04 2.75 4.23
1QRV 5.19 2.88 5.51
1JTO0 3.49 3.11 4.05
2FIO 4.41 3.54 7.12
1G9z 3.67 3.84 3.86
1A74 4.26 3.86 5.54
4KTQ 3.23 3.89 3.97
1RVA 5.68 3.99 4.06
1QNE 4.57 4.50 5.71
1ZS4 4.71 5.08 4.06
1ZME 5.76 5.31 5.27
1EYU 6.82 6.49 6.18
20AA 8.95 9.12 8.99

Table 1 - iRMSDs. The pdb ids of the protein-DNA complexes in the Benchmark and
their iRMSDs through different calculations. The gray ones where excluded from the
analysis, since their calculated iRMSDs are higher than 2.8 A. We assume that the
protein and the DNA don't interact if their iRMSD is higher than 3 A.
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Figure 9 - Histogram of the iIRMSDs for each complex, for each of the three
methods.

It seems that the three methods that calculate the iRMSD tend to agree, since
the average iRMSD is 3.34 A for van Dijk, 2.82 A for POW and 3.34 A for biopython.
However, the complexes of 3BAM and 2FIO appear to have differences in their
iIRMSD calculations. In particular, for 3BAM (restriction endonuclease BAMHI), van
Dijk’'s method calculate a higher iRMSD from the other two methods (~5.5 A vs. ~1.5
A). This could be due the fact that van Dijk's method takes into account all atoms,
while the other two methods consider only the backbone atoms (Ca and Pho). Since
restriction endonuclease BAMHI has many flexible loops, it has higher iRMSD when
all atoms are considered. Also, for 2FIO (phage PHI29 transcription regulator P4)
there is a heterogeneity between the iIRMSDs of the three methods. This could be
due the fact that phage PHI29 transcription regulator P4 interacts with a flexible and
very long DNA of 39 base pairs (the longest in this benchmark). For such a long DNA
it is difficult to superimpose a B-DNA model and this could have an effect on the
iIRMSD calculation.
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Making the ANN input matrices

The goal is to predict which orientations of the DNA on its binding protein are
closer to the native-like complex. For this reason, we used ANNSs that where trained
to distinguish between the protein-DNA complexes that interact (iRMSD < 3 A) and
those that do not (IRMSD > 3 A), for different data sets in our benchmark. The
benchmark includes two versions of DNA-binding proteins: bound and unbound
state, as well as the bound DNA. Initially, we used POW to place the unbound DNA
on different positions on the unbound protein, for all the complexes in the benchmark.
We used as a reference structure the protein-DNA complex and we calculated the
various iRMSDs. For iRMSDs that are less or equal to 3 A, we considered that the
protein and the DNA interact in the proper localization. For iRMSDs that are higher
than 3 A, we considered that the protein and the DNA don't interact. POW produced
multiple positions for every complex in the benchmark. Therefore, complexes for
which their calculated iRMSD was higher than 2.8 A were excluded from the data set
(11 complexes). For the remaining 17 complexes, the positions of the DNA on the
protein, that included clashes or knots, where removed with Chimera software. The
remaining complexes where parametrized with AMBER force field and minimized with
NAMD software for 2000 steps. The minimized pdb files and their force field
parameter files (prmtop files) where used to extract information and make the input
matrices for the ANN. In particular, from the parameter files we extracted the atom
charges and the Lennard Jones terms for all possible atom type interactions. From
the minimized pdb files, we calculated the distances between the atoms of the DNA
and the atoms of the protein. Based on the atom distances, we calculated the
distance between all the amino acid-nucleic acid pairs as the average distance
between their atoms. Due these distances, we defined the 15 nucleic acids and the
20 amino acids that consist the interacting interface, and therefore to be used to build
the neural network matrices. Also, based on the atom charges and the atom
distances, we calculated the energy of the electrostatic interactions. In addition,
based on the Lennard Jones terms for all possible atom type interactions and the
atom distances, we calculated the energy of the van der Waals interactions. Finally,
for 18 protein-DNA complexes, we made matrices of 15x20x3 elements, with 15
being the interface nucleic acids, 20 being the interface amino acids and 3 the
descriptors of the interactions: distances, electrostatic interactions energies and van
der Waals interactions energies.

Avrtificial neural network

The artificial neural network was implemented with Python's tensorflow. The
ANN has 900 (15x20x3) input neurons, one hidden layer of neurons and two output
neurons. Its architecture is feedforward and all neurons are fully connected. The
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activation function that is used is the sigmoid function, while the calculated loss is the
mean sigmoid cross entropy. In addition, the learning rate is 0.01, the batch size is
2048 and the number of epochs (training cycles) is 1500.

The matrices, that were described before, were used as inputs for the neural
network and the output was defined as '0' in the case that there is no interaction
(iIRMSD > 3 A) and as '1' in the case that the protein and the DNA interact (iRMSD <
3 A). In average, we have 12545 cases of '0' and 17548 cases of '1'. This type of
training is supervised, since we provide to the neural network the desired output in
order to adapt its weights accordingly. Because we have only 18 protein-DNA
complexes, we decided each time to train our neural network with 17 complexes and
keep 1 complex as a test set. We did that for all the 18 training-test sets and average
our results.

Training and testing the ANNs

Subsequently, we trained and tested our neural network for all our sets. Only
one set didn't manage to give an output (pdb 1EHM). From the 17 remaining sets, we
calculated various metrics to evaluate the performance of our predictions. In
particular, we calculated the sensitivity or TPR (true positive rate), the specificity or
TNR (true negative rate), the accuracy, precision, the MCC (Matthews correlation
coefficient, the AUC (the Area Under a ROC Curve) and the loss. Here, as TP cases
are considered the complexes that their DNA and their protein interact and that are
predicted correctly to interact (output '1). As TN cases are considered the
complexes that their DNA and their protein don't interact, and that are predicted
correctly to not interact (output '0"). As FP cases are considered the complexes that
their DNA and their protein don't interact, but are predicted incorrectly to interact. And
as FN cases are considered the complexes that their DNA and their protein interact,
but are predicted incorrectly to not interact. In the following figures, we plotted the
values of the various metrics for each of the 17 sets (Figure 10):
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Figure 10 - ANN results. Plots of TPR, TNR, accuracy, precision, MCC, AUC and
loss VS. epochs.

The above plots indicate that, for all sets, the learning processes finished at
the first epochs (less than 1000), before the neural networks start to over-fit from the
learning data sets. The AUC is high in most of the cases, shows that the predictions
are quite accurate. The TPR is also very high and it is usually slightly higher than the
TNR. This shows that in our data sets there are more positive than negative
examples. The precision is low, while the recall is high in almost all of the cases. This
could be an indication that the neural networks give many false positive predictions,
but still many true positives are recovered. Specificity and accuracy are average,
likely because there are many negative examples compared to positive examples in
the training set, and therefore TN dominate. More analytically, we present in the
following table the maximum AUC, the maximum MCC and the maximum accuracy
(Table 2 and Figure 11):

Max AUC Max MCC Max Accuracy

1EA4 0.91 0.61 0.82
3CRO 0.83 0.55 0.81
1PT3 0.83 0.27 0.66
1RPE 0.94 0.65 0.84
1R40 0.87 0.49 0.83
1HJC 0.91 0.44 0.75
1WOoT 0.90 0.56 0.82
1MNN 0.96 0.30 0.78
1DIZz 0.98 0.21 0.81
3BAM 0.81 0.46 0.76
1BY4 0.91 0.63 0.83
1FOK 0.96 0.25 0.77
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1K79 0.93 0.39 0.74
1CMA 0.96 0.41 0.84
1334 0.97 0.16 0.74
1KSY 0.74 0.33 0.59
1AZP 0.93 0.07 0.66
Average 0.90 0.40 0.77

Table 2 - Maximum AUC, MCC and accuracy.
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Figure 11 - Histogram of maximum AUC, MCC and accuracy

Since we had 18 complexes and each time we trained our neural network with
17 complexes and test it with the remaining complex, we averaged their results. For
one of our complex we didn't get results, therefore we averaged the results for the 17
remaining cases. The average maximum average AUC in very high 0.90, which
shows that the predictions are accurate and our ANNs can distinguish between the
protein-DNA complexes that interact and those that do not. Also, the maximum
average MCC is 0.4, which indicates a moderate positive correlation of the
predictions with the actual data. In addition, the maximum average accuracy is 0.77,
which is quite high. Moreover, there seems to be a negative correlation between the
iIRMSD calculated by POW and the maximum MCC and maximum accuracy (ccs are
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-0.62 and -0.57, respectively). This correlation is relatively strong and it shows that
for lower iRMSD we can have higher MCC and accuracy for our predictions. For
example, for the 1RPE complex that we have a low iRMSD of 1.19 A, the maximum
MCC and the maximum accuracy are 0.65 and 0.84, respectively. Both of them are
higher than the average calculations for all the complexes. On the contrary, for the
1AZP complex that we have a high iRMSD of 2.56 A, the maximum MCC and the
maximum accuracy are 0.07 and 0.66, respectively. Both of them are lower than the
average calculations for all the complexes. Finally, it seems that there is no linear
relationship between the IRMSD and the maximum AUC (cc is 0.02).

3.3. Conclusions and perspectives

Protein-DNA complexes are important for the biological functions of a cell, but
there are not many complexes solved experimentally. In addition, it is difficult to
predict computationally these complexes, since proteins and DNA change their
conformation when they form a complex. The best approach is to combine
computational and experimental approaches, through IM, in order to make atomistic
models of protein-DNA complexes.

Here, we used an IM approach to predict the structure of a set of protein-DNA
complex and their interacting interface. Specifically, we used experimentally solved
DNA-binding proteins (unbound state) and we built the 3D models of the
corresponding DNA binding sequences. Next, we produced all possible orientations
that these monomers can adopt. With the experimentally solved structures of these
protein-DNA complexes (bound state), we trained ANNS to distinguish the interacting
from the non-interacting orientations. In particular, we used these ANNSs to predict the
protein-DNA interfaces of different complexes, with high accuracy (0.77) and AUC
(0.9). These ANNSs, can be used as a scoring function to discriminate the “best”
complexes from the rest and therefore, given a DNA-binding protein and a DNA
model, they can predict a new protein-DNA complex and its interacting interface.

In our approach, there are some limitations, but also some improvements can
be made. In particular, although the DNA has limited degrees of freedom, it is not the
same for the DNA-binding domains of the proteins. Moreover, since we have many
different types of DNA-binding domains, it is difficult to predict how they will interact
with the DNA. Furthermore, some proteins can regognise their DNA target by its
shape and other bind to a specific set of DNA sequences. A solution to that would be
to divide proteins into groups with similar properties and train separately an ANN.
This is not doable for the moment, since we have a limited data set of protein-DNA
complexes. Further extension would be useful to include more interface descriptors,
such as the H-bonds between the binding protein and the DNA, and the solvent
accessibility surface area (SASA). H-bonds in the binding interface can be a useful
descriptor in the cases that the binding is specific. In addition, the SASA can be used
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to model the presence of water molecules and therefore the formation of water-
mediated H-bonds in the interface. These new descriptors could improve the
robustness and accuracy of the interface predictions.
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4. A computational method to predict the DNA specificity of zinc
finger proteins

(Kalantzi A.S., Isakova A., Deplancke B., and Dal Peraro M. A computational method
to predict the DNA specificity of zinc finger proteins — To be submitted)

4.1. Introduction

C2H2-ZF proteins

Gene expression is regulated by a large number of TFs, which contain at least
one DNA-binding domain, which can bind with high affinity to a specific set of DNA
sequences close to the genes that they regulate. A DNA-binding domain that is
mostly common in higher vertebrates is the classical C2H2-Zinc Finger domain: a
protein structural motif that consists of an a-helix and an antiparallel B-sheet, while
two Cys and two His coordinate a zinc ion. C2H2 Zinc Finger Proteins (ZFPs) have a
variety of functions such as binding RNA and mediating protein-protein interactions,
but more often they participate in transcription regulation via sequence-specific DNA-
binding.

The first C2H2-ZF domains were discovered in frog eggs, which contain the
transcription factor TFIIIA (Miller et al., 1985). A BBa fold, featuring two cysteine and
two histidine residues forming a Cys-X 2-5-Cys-X 12-15-His's-X 3-5-His maotif that
coordinates tetrahedrically a zinc metal ion (Figure 12), characterizes the canonical
C2H2-ZF domain. ZF domains connect to each other by a small linker, usually 7
amino acids in length from the last His of a ZF domain to the first Cys of the next ZF
domain. This tandem of repeats can have up to 40 ZF domains (Stubbs et al., 2011).
ZF domains tandem binds to the major groove of the DNA using the a-helix of each
domain. Each a-helix has a DNA-binding structural interface that can recognize a
target sequence of ~3-4 bps, with high affinity and specificity. The amino acids
occupying key positions -1, 2, 3 and 6 (Figure 12) (numbered with respect to the start
of the a-helix) form hydrogen bonds, water-mediated H-bonds and van der Waals
interactions with the nucleotides of the DNA target sequence. There is a variety of
ways in which a ZF domain can bind to its DNA sequence (Wolfe et al., 2000), but the
"canonically accepted" binding mode involves the amino acids in positions -1, 3 and
6, bound to a 3 bps nucleotide in the 3' to 5' strand direction. Sometimes amino acids
in position 2 interact with a nucleotide in the opposite strand (Figure 12). However,
this canonical mode of binding is not always respected. For example, ZFP568
deviates from the usual 3bps recognition by a ZF domain (Patel at al., 2018). In
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particular, it includes ZFs that contact 2, 3, or 4 bases and recognise nucleotides on
the opposite DNA strand. In general, in TFs characterized by long ZF tandem repeats
not all ZF domains participate in DNA binding. In most cases, although there are
many ZF domains in a tandem, a short DNA-target is recognized (Patel et al., 2016),
while in some other cases two different DNA-targets can be recognized by separate
zinc finger clusters (Han et al., 2016).

ZFi

Figure 12 - A. BBa C2H2 ZF domains bound to DNA. B. Amino acids in positions -1,
3 and 6 (see inset) can bind serially 3 bps in the 3'-to-5' direction. The amino acid in
position 2 can bind a nucleotide in the opposite strand. C. H-bonds between the
binding amino acids and the DNA target. Red: DNA, Green: ZN domain, Blue: Zinc
ion.

KRAB C2H2-ZF proteins

From the ~800 different C2H2-ZFPs present in the human genome one third
contains at least one KRAB (Krippel associated box) domain (Urrutia, 2003).
Bellefroid et al. first discovered KRAB-ZFPs in 1991 and they constitute the largest
family of transcriptional regulators encoded by higher vertebrates (tetrapods)
(Bellefroid et al., 1991). KRAB-ZFPs genes are one of the most recent and fastest
growing gene families in primates and this expansion is hypothesized to enable
primates to respond to newly emerged retrotransposons (Jacobs et al., 2014). KRAB-
ZFPs typically contain one or two KRAB domains, which can interact with their
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universal cofactor KAP1 (KRAB associated protein-1; also called TRIM28), and a
tandem repeat of C2H2 zinc fingers motifs that enable sequence-specific DNA-
binding. The functions of the currently known KRAB-ZFPs family members include
the regulation of crucial physiological and pathological processes as development,
differentiation, metabolism, apoptosis and cancer (Lupo et al., 2013). In addition, a
big majority of human KRAB-ZFPs regulate transposable elements (Imbeault et al.,
2017).

The KRAB domain is around 75 amino acids long and is found in the N-terminal
part of about one third of eukaryotic ZNF proteins. Two types of KRAB domains have
been observed: A and B, while other KRAB domain types might be found in the
future. There has not been any solution of a KRAB domain structure, but it has been
predicted to fold into two amphipathic a-helices (Bellefroid et al., 1991). The KRAB
domain functions as a transcriptional repressor by interacting with the KAP1 protein,
which acts as a scaffold for chromatin-modifying complexes. A sequence of 45 amino
acids in the KRAB A subdomain has been shown to be necessary and sufficient for
transcriptional repression. The B box does not repress by itself but does potentiate
the repression exerted by the KRAB A subdomain (Margolin et al., 1994; Witzgall et
al., 1994). In addition, some KRAB-ZFPs contain another conserved motif called
SCAN, with at least 87 amino acids in length. The SCAN domain is not associated
with transcriptional regulation but instead allows homo- and hetero-dimerization with
other SCAN- containing zinc-finger proteins (Collins & Sander, 2005). Depending on
the type of the KRAB domain and the presence or not of SCAN domain, the KRAB-
ZNF proteins have been divided into six subfamilies, the A + B, the A + b, the A only,
the A+ A+ B, the SCAN + A and the A+ B + SCAN + A (Looman et al., 2002).

There are 343 human KRAB-ZFP sequences in Uniprot, of which the 3/4 has a
linker of length of 4 to 12 amino acids between its ZN domains (a canonical linker is 7
amino acids long). In the rest 1/4 proteins, the linker's lengths can vary from 13 to
more than 90 amino acids. Also the number of ZF domains in each protein can vary
from 2 to 37, with 96% being canonical (C-X;.5-C-Xi2.15-H-X35-H), 2.9% being
degenerate (one or two Cys or His are replaced by other amino acids), 0.8% being
atypical (the spacing between Cys or His residues is slightly altered), and 0.2% being
half (truncated ZF).

Protein-DNA recognition codes

The recognition of specific DNA sequences by ZFPs plays a fundamental role in
gene regulation (Tan et al., 2003), determining which ZF domains can bind to the
DNA remains a challenge. Suzuki did a first description of the stereo-chemical rules
that apply to the protein-DNA recognition in 1994 (Suzuki et al., 1994). More recently,
in silico recognition codes between DNA and ZFPs had been proposed. Jiajian at al.
(Jiajian et al., 2008) presented a method that estimates the DNA binding specificities

50



of C2H2-ZFPs based on an artificial neural network, but this was limited by the lack
of sufficient training data. Similarly, Molparia et al. (Molparia et al., 2010) proposed an
artificial neural network approach to predict DNA-binding specificity of ZFPs. In this
approach, the binding sites of the classical C2H2 fingers were identified for a known
DNA sequence. In particular, this recognition code predicts the protein recognition
helices that bind to a known DNA sequence. Therefore, it does not give an overall
view of all the possible ZF/DNA combinations, since diverse sets of ZF can bind
common targets (Persikov et al., 2014).

More recently, three experimental-based recognition codes were proposed by
Gupta et al. (Gupta et al., 2014), Persikov et al (Persikov et al., 2014) and Najafabadi
et al (Najafabadi et al., 2015). In the first approach, Gupta et al. constructed a
random forest predictive code based on the DNA-binding specificities of natural and
artificial two-finger modules, using data from a bacterial one-hybrid analysis. Their
code is based on limited number of (678) ZF domains, leading to only partially correct
predictions. Persikov et al. proposed a recognition code that was based on large
synthetic protein libraries that were screened in order to select binding C2H2-ZF
domains for each possible 3 bps nucleotide target. This resulted to a selection of
unigue domain—DNA interactions that are used to predict the DNA-binding specificity
of other ZF domains. Finally, Najafabadi et al. presented a recognition code that was
derived by analyzing DNA-binding data for 8138 natural C2H2-ZF domains through
the combination of data from a modified bacterial one-hybrid system with protein-
binding micro-array and chromatin immunoprecipitation analysis. In all cases, their
results indicate that the majority of ZFPs show widespread binding to regulatory
regions by targeting a diverse range of genes and pathways. In addition, these data
illustrate the complex binding landscape of the ZF domains and provide insights into
their DNA-binding specificities. All these recognition codes tend to agree in the usual
amino acid/nucleotide pairing prediction, for example, that Arg residues bind to G, but
there is no absolute agreement in the non-canonical pairing. These inaccuracies
could be due to the fact that these methods do not consider the role of flanking ZF
domain for determining the DNA specificity, neither the role of long linkers between
ZF domains. A structural approach by Garton et al. (Garton et al.,, 2015), that
eventually is integrated in Najafabadi's recognition code, gave later insights into the
influence of neighboring ZF domains, but this is limited due the small number of ZFP-
DNA complexes that have solved structures. In a recent study (Barazandeh et al.,
2018), compared KRAB-ZFPs binding motifs from ChlP-seq (Schmitges et al. 2016)
and from ChiIP-exo (Imbeault et al., 2017). These motifs where enriched by motifs
that were predicted by Najafabadi's et al. recognition code (Najafabadi et al., 2015b).
In general, there is an agreement between these motifs, but there are still
discrepancies. Finally, the recognition codes take into account only amino acids that
interact with the DNA, while also non DNA-base contacting amino acids might play a
role in the binding mode (Najafabadi et al., 2017). As it seems from the most recent
literature (Imbeault et al., 2017; Patel et al., 2018) the binding landscape appears
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much more complicated than these codes can capture.

The binding recognition between ZFPs and DNA is still not fully decoded. Our
aims are to determine how the C2H2-ZF tandem recognizes 3-4 bps, define the
general recognition binding rules between ZFPs and their DNA targets and present a
method to analyse and predict ZFP binding specificity. To this goal, we propose a
structure-based method that can predict which ZF domains of a ZFP can bind to a
given DNA sequence, and a recognition code that predicts the most probable DNA
target sequence for a ZFP.

4.2. Results

Data sets

We used 3614 protein-DNA complexes (9014 protein chains) deposited in PDB
in September 2016. From these protein-DNA complexes, we extracted a non-
redundant set (homology <95%) using the CD-HIT server (Huang et al., 2010), in
order to remove duplicate chains and high homologous proteins. The final dataset
consists of 969 complexes (1124 unique protein chains, PDB ids are available in
Supplementary Material). For structures solved by NMR only the first model of the
ensemble was considered. The analysis of the interactions of the structures of this
dataset was used to develop a scoring method for ZFP-DNA specificity.

Within the protein-DNA complexes dataset there were C2H2-ZFPs structures.
From this dataset, 17 complexes are unique and their ZF domains interact with the
major groove of the DNA (Table 3). Of these 17 ZFPs there are 86 C2H2-ZF
domains, of which 76 are unique (Figure 13). The dataset of these 17 complexes was
used to analyze the binding properties of the ZF domains to DNA, and it was further
used as a benchmark dataset to validate our predictions of ZF binding specificity.

ZF protein Num |ZF domains Consensus DNA |DNA sequence
(pdb id) of ZF |that bind the sequence from pdb structure
domai |DNA target
ns
CTCEF (5t0u) 11 ZF3, ZF4, ZF5, |NCANNAGRNGCG |[CCAGCAGGGGGC
ZF6, ZF7 RSY GCT
Xenopus TFIIIA 9 ZF1, ZF2,ZF3 |GGANGGNNGN GGATGGGAGA
ZFP
(1tf6)
ZNF217 8 ZF6, ZF7 VTITCTGYW ATTCTGCA
(4isl)
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AART ZFP 6 ZF1, ZF2, ZF3, |ATGKAGRGAAAA |ATGTAGGGAAAAG
(2i13) ZF4, ZF5, ZF6 |GCCCNN CCCGG
GFI-1 ZFP 6 ZF3, ZF4, ZF5 |TAAAKCACNGCA |AAATCACTG
(2kmk)
GLI ZFP 5 ZF3, ZF4,ZF5 |GACCNCCCA GACCACCCA
(2gli)
PRDM ZFP 13 (+1 |ZF8, ZF9, ZF10, |CGTGGCTAGGGA |[NGNGGNNANGGN
(5€i9) degene|ZF11 GGC GGN

rate)
Human YY1 ZFP |4 ZF1, ZF2, ZF3, |AANATGGMG AAAATGGAG
(ubd) ZF4
Wilms tumor 4 ZF2, ZF3, ZF4 |GCGKGGGMG GCGGGGGCG
suppressor
ZFP (2jp9)
ZIF268 3 ZF1, ZF2,ZF3 |GCGKGGGCG GCGTGGGCG
(1zaa)
Designed ZFP 3 ZF1, ZF2,ZF3 |GRGKCRGAA GAGGCAGAA
(Imey)
TATA BOX-binding |3 ZF1, ZF2, ZF3 |- GCTATAAAA
designed ZFP
(1g2d)
KLF4 ZFP 3 ZF1, ZF2, ZF3 |RRGGYGY GAGGCGTGG
(2wbu)
Kaiso ZFP 3 ZF1, ZF2 CTGCNA CTGCCA
(21t7)
Drosophila TTKB |2 ZF1, ZF2 AGGRY AGGAT
(2drp)
Designed ZFP 2 ZF1, ZF2 GGGCN TGGGCG
dimer
(1f2i)
ZIF23-GCN4 2 ZF1, ZF2 - GCGTGG
(2llm)

Table 3 - ZFP-DNA complexes from PDB. The ZF domains that appear to bind DNA
are presented in the 3™ column. The DNA binding sequences are also presented in

last two columns.
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5'- CCA CGC -3

Figure 13 - Representations of the 17 unique ZFP-DNA complexes deposited in
PDB. In particular, for each ZFP the protein name, pdb id, the ZF domains with the
amino acids in the binding positions (-1, 2, 3 and 6), the linkers between the ZF
domains and the contacts between ZF domains and their DNA-target are reported.

Solid lines represent H-bonds (the donor-acceptor distance is less than 3.5 A).

Scoring methods for ZFP-DNA interactions

We developed a scoring scheme that is based on a structural analysis of a
dataset of 969 protein-DNA complexes. In this dataset, the H-bonds network between
nucleic acids and amino acids was defined using a distance cut-off of 3.5 A between

54



donor-acceptor heavy atoms and an angle range between 90 and 270 degrees
between donor-hydrogen-acceptor. Only the atoms of the nucleic acids that are
present in the major groove were taken into consideration. For each amino acid-
nucleic acid pair a binding score was assigned based on the relative occurrence in
the dataset. In particular, the binding specificity score of each amino acid was based
on a nucleic acid weighted sum of the occurring number of H-bonds. In the case
interactions are repulsive (i.e., Arg-C) the score is defined to be close to 0.

In order to investigate the possible preferences between non-polar amino acids
and nucleic acids we analyzed the existing, corresponding pairs in the dataset, as
defined by a cut-off of 3.5 A (Table S2). From the total amount of 238 encountered
hydrophobic pairs, 118 were with T, and in all of the 4 possible pairs for each amino
acid T was the highest preference. Since hydrophobic interactions (~0.7 kcal/mol)
that can be formed between proteins and DNA are ~6 times weaker than the
hydrogen bonds (~4.1 kcal/mol) (Southall et al., 2001), the score for the T-non-polar
amino acids pairs were set as the average occurrence of hydrophobic contacts for

each of the four nucleic acids. The scores for all the pairs are presented in Table 4:

Amino acid Adenine sc_ore Cytosine sc_ore Guanine sc_ore Thymine sc_ore
(num of pairs) | (hum of pairs) | (num of pairs) | (num of pairs)
A 0.0345 (6) 0.018 (4) 0.0335 (9) 0.084 (22)
C 0.0345 (2) 0.018 (2) 0.0335 (1) 0.084 (3)
D 0.17 (15) 0.83 (72) 0.01 (0) 0.01 (0)
E 0.13 (12) 0.87 (83) 0.01 (0) 0.01 (0)
F 0.0345 (7) 0.018 (3) 0.0335 (8) 0.084 (19)
G 0.0345 (4) 0.018 (4) 0.0335 (19) 0.084 (20)
H 0.23 (14) 0.02 (1) 0.57 (34) 0.18 (11)
I 0.0345 (13) 0.018 (3) 0.0335 (3) 0.084 (15)
K 0.08 (19) 0.01 (0) 0.80 (198) 0.12 (30)
L 0.0345 (8) 0.018 (3) 0.0335 (2) 0.084 (17)
M 0.0345 (4) 0.018 (6) 0.0335 (1) 0.084 (6)
N 0.51 (87) 0.13 (22) 0.19 (32) 0.18 (30)
P 0.0345 (3) 0.018 (0) 0.0335 (4) 0.084 (12)
Q 0.51 (75) 0.15 (22) 0.18 (26) 0.16 (23)
R 0.07 (43) 0.01 (0) 0.83 (494) 0.084 (59)
S 0.30 (33) 0.16 (17) 0.34 (37) 0.20 (22)
T 0.19 (13) 0.28 (19) 0.25 (17) 0.29 (20)
\Y, 0.0345 (1) 0.018 (0) 0.0335 (0) 0.084 (4)
w 0.20 (2) 0.01 (0) 0.30 (3) 0.50 (5)
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Y 0.53 (27) 0.20 (10) 0.16 (8) 0.12 (6)

Table 4 - Amino acid-nucleic acid binding specificity scores based on ZFP-DNA
complexes. Scores that occurred after the analysis of the amino acid-nucleic acid
pairs of the protein-DNA complexes that are deposit in PDB. As expected some
amino acids tend to have strong binding preferences for a specific nucleic acid, like
Arg and Lys to bind to G, and it is possible to have 2 hydrogen bonds contributing to
this binding. On the contrary some amino acid-nucleic acid pairs that have the same
charge tend to have a negative contribution to the binding and have a low binding
specificity score, like Asp and Glu with G and T. While other amino acids can bind all
four nucleic acids with no strong preference, like Ser and Thr. In addition, the binding
specificity scores of Tryptophan-nucleic acid pairs could be not representative since
there were only 7 pairs encountered.

As the previous score is based on all the available solved structures of protein-
DNA complexes in PDB, a ZFP-specific score was developed based on the dataset
containing 17 ZFP-DNA complexes. The available ZFP-DNA structures in the PDB
are very few, so their H-bond network could not be used to generate robust scores,
as was previously done for all the protein-DNA complexes. For this reason, we
extracted from the 17 ZFP-DNA complexes every possible combination of the amino
acids in the 3 critical binding positions, with their pairing nucleic acids. These amino
acid-nucleic acid pairs were used as a parameters (scores) in the following function:

1% #slidingWindows #nucAcids . 1

E ( ]__[ 3 edeid |\ —log(pairsAppearInComplex))
EnucAcids

compler=1 slidingWindow <nucAcid

(— log|potential Pairs AppearinComplex))

The weighed function accounts for all the possible complexes that can be
formed by placing a ZFP on its DNA target. We used a sliding window method (see
next section) to generate all the possible amino acid-nucleic acid combinations.
Every amino acid-nucleic acid pair that is created is a parameter in our function (i.e.
we have 73 pairs). In order to estimate the parameters, we used a Jackknife
resampling approach. In particular, we adapted the function to represent the pairing
parameters of 13 ZFP-DNA complexes and we kept as a test the artificial ZFP dimer,
the ZIF23-GCN4, ZIF268 and CTCF. Each time, the function was minimized by
optimizing its parameters that represent all the possible nucleic acids-amino acid
pairs for 13 ZFP-DNA complexes. We kept the parameters that predicted
successfully the binding of the 4 test complexes. After this procedure was followed
for all the 13 complexes, the average of the estimated parameters gave the final
bindings scores. Some pairs for Pro, Cys (Cys-A and Cys-T) and Gly (Gly-C) were
missing from the 17 ZFP-DNA complexes, and their score was arbitrarily set to 0.1
(future availability of structures including such pairs will be useful to improve the
parameters set). The minimization of the function was performed by the differential
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evolution function of scipy.optimization library (Storn et al., 1997), which is able to
search large spaces and therefore is more unlikely to get trapped into a local
minimum, compared to other methods.

Sliding window method to predict the ZF domains binding specificity

The designation of how a ZFP bind to its target DNA sequence is of high
complexity, due to the multiple determinants of the binding specificity between the
recognition amino acids and the DNA sequence. In order to find an accurate
prediction of the ZF specificity a protocol was developed that was tested on a set of
known structures. This is based on overlapping sliding windows of the DNA sequence
on the main binding positions of the ZF sequence (Figure 14). For each position of
the DNA sliding window on the binding positions of the ZF sequence a final score is
calculated. This final score is the sum of the logs of all the amino acid-nucleic acid
pair scores at that position. Due to the fact that a ZF domain can bind to the DNA in
different ways, we take into consideration the most common binding motifs: (i)
positions -1, 3, 6 bind 3 nucleotides, (ii) positions -1, 2, 3, 6 bind 3 or 4 nucleotides
(for the position 2 the nucleic acid of 3' or 4' position of the opposite strand is taken
into account, depended on which pair has the highest binding score, Figure 1). In
addition, position -2 is taken into consideration if it has an Arg residue, and therefore
a prediction for G is favored. If there are long linkers (> 15 aa) then the ZFP protein is
broken at the linkers into different parts. In particular, if there are N long linkers, then
the protein is broken in N+i parts, and each part is treated as a different ZFP and
tested for the DNA-target separately. As a result, a prediction for each part is
performed, and the prediction with the lowest score will be the one for the overall
ZFP. Finally, to have a better insight into the binding specificity we use as input not
only the most frequent DNA binding sequence, but also the reversed strand, as well
as the consensus (if there is one). The maximum final score, indicates the DNA
sliding window's position and reveals the nucleic acid-amino acid pairs. The nucleic
acid-amino acid pairs provide a prediction for the binding relationship between a ZFP
and its binding DNA sequence.
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Figure 14 - Sliding window for ZNF282 and its predicted DNA target sequence
(CCGGTGCGGQG)

To validate our method, we used 17 ZFP-DNA complexes that are deposited in

PDB. We used these complexes to assess the prediction of which ZF domains bind
to the DNA target sequence. For the predictions, the full sequences of the ZFPs and
the DNA core motifs were used and the results are presented briefly in Figure 15 and

analytically in Table 5:

ZFP DNA sequence |ZF domain Most frequent |Most frequent |Consensus Most frequent
(pdb id) from the pdb | (position) that |sequence, sequence, sequence, sequence,
structure the binding scores from scores from scores from optimized
starts prot/DNA prot/DNA prot/DNA scores from
complexes, complexes, complexes, jackknife,
positions -1,3, |positions - positions -1,3, |positions -1,3,
6 1,2,3,6 6 6
CTCF (5t0u CCAGCAGGG |ZF3(-1) ZF3(-1)+ (S=- |ZF3(-1)+ (S=- |ZF3(-1)+ (S=- |ZF3(-1)+ (S=-
) G GCGCT + 14.91) ZF5(-1)- |24.63) ZF5(3)- |17.02) ZF2(3)+ |1.94) ZF6(6)-
(S=-28.98) (S=-37.73) (S=-25.96) (S=-10.13)
Xenopus GGATGGGAG |ZF2(-1) ZF2(-1)+ (S=  |ZF7(3)-(S=- |ZF2(-1)+ (S= |ZF2(-1)+ (S=
TEIIA ZFP A + -4.18) 13.16) -4.63) -0.112)
(1tf6) ZF2(3)+ (S=- |ZF2(-1)+ (S= ZF5(-1)+ (S= ZF5(-1)+ (S=-
8.31) -14.28) - 8.68) 0.38)
ZNF217 ATTCTGC ZF6(-1) ZF6(-1)+ (S=  |ZF6(-1)-(S=- |ZF6(-1)- (S=- |ZF6(-1)+ (S=
(4is1) A + -10.4) 12.71) 10.26) -2.31)
ZF6(-1)- (S=- |ZF6(-1)+ (S= ZF6(-1)+ (S= ZF2(-1)+ (S=
10.83) - 13.40) -12.84) - 3.90)
AART ZFP ATGTAGGGA |ZFi(-1) ZF1(-1)+ (S= ZF1(-1)+ (S= ZF1(-1)+ (S= ZF1(-1)+ (S=
(2i13) A AAGCCCGG |+ -13.08) -18.81) - 15.15) - 0.50)
ZF1(3)+ (S=- |ZF1(3)+ (S=- |ZF1(3)+(S=- |ZF1(6)+ (S=-
30.65) 39.32) 27.31) 25.89)
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GFI-1 ZFP AAATCACT ZF3(-1) ZF3(-1)+ (S=  |ZF1(6)-(S=-  |ZF3(-1)+(S= |ZF3(-1)+ (S=

(2kmk) G + - 8.68) 15.70) -7.48) -0.18)
ZF1(6)- (S=- |ZF3(-1)+ (S= |ZF1(6)- (S=- |ZF1(-1)- (S=-
10.14) -16.28) 11.29) 0.55)

GLI ZFP GACCACCC  |ZF3(-1) ZF3(-1)+ (S= ZF1(3)- (S= ZF3(-1)+ (S= | ZF3(-1)+ (S=

(2gli) A + -16.00) 18.74 -15.60) -1.35)
ZF1(-1)- (S=-  |¥F2(3)- (S= ZF1(-1)- (S=- |ZF1(6)+ (S=-
16.58) 21.59 17.26) 5.82)

PRDM ZF GTGGCTAGG |ZF8(-1) ZF8(-1)+ (S= tF8(-1)+ (S= ZNF8(3)+ (S=- |ZF8(-1)+ (S=

Beio G AGGC + - 11.45) -17.05) 9.23) -0.55)

) ZF8(3)+ (S=- |ZF7(6)+ (S=- |ZNF8(-1)+ (S= |ZF3(6)+ (S=-
14.99) 20.90) -9.81) 2.34)

Human YY1 ZF | AAAATGGA ZF1(6) ZF1(6)+ (S=- ZF1(6)+ (S=- ZF1(6)+ (S=- ZF1(6)+ (S=-

P (1ubd) G + 8.83) 14.12) 10.05) 0.26)
ZF2(-1)+ (S=- |ZF2(-1)+ (S=- |ZF2(-1)- (S= ZF1(-1)+ (S=
16.64) 22.78) -12.22) -2.84)

Wilms tumor GCGGGGGC |ZF2(-1) ZF2(-1)+ (S=  |ZF2(-1)+(S=  |ZF2(-1)+ (S= |ZF2(-1)+ (S=

suppressor G + - 4.92) - 7.12) - 4.05) - 0.48)

ZFP (2jp9) ZF1(3)+ (S=- ZF1(3)+ (S=- ZF1(3)+ (S=- ZF1(3)+ (S=-
8.87) 10.33) 9.08) 7.22)

ZIF268 GCGTGGGC  |ZF1(-1) ZF1(-1)+ (S=  |ZFL(-1)+ (S=  |ZF1(-1)+(S= |ZF1(-1)+ (S=

(1zaa) G + -2.82) -3.38) -2.90) -0.10)
ZF1(-1)- (S=- |ZF1(-1)- (S=- |ZF1(-1)-(S=- |ZF1(-1)-(S=-
13.10) 10.08) 13.66) 10.06)

Designed ZFP | GAGGCAGA  |ZF1(-1) ZF1(-1)+ (S=  |ZF1(-1)+ (S=  |ZF1(-1)+ (S= |ZF1(-1)+ (S=

(1mey) A + -4.31) -7.71) -4.70) -0.12)

ZF1(3)+ (S=- |ZF1(3)+(S=- |ZF1(3)+(S=- |ZF1(3)+ (S=-
14.7) 17.39) 14.05) 8.41)

TATABOX- GCTATAAA ZF1(-1) ZF1(-1)+ (S= ZF1(-1)+ (S= ZF1(-1)+ (S=-

binding designe |A + -9.34) -13.29) 0.16)

d ZFP ZF1(-1)- (S=- |ZF1(-1)- (S=- ZNF1(-1)- (S=

(1g2d) 11.08) 15.07) -6.16)

KLF4 ZFP GAGGCGTG  |ZF1(6) ZF1(6)+ (S=- |ZFL(6)+ (S=- |ZF1(6)+ (S=- |ZF1(6)+ (S=-

(2wbu) G + 8.04) 9.43) 8.65) 0.30)
ZF1(-1)+ (S=- |ZF1(-1)+ (S=- |ZF1(-1)+(S=- |ZF1(-1)+ (S=
14.34) 15.91) 12.66) -3.98)

Kaiso ZFP CTGCC ZF1(-1) ZF1(6)- (S=- |ZF1(6)- (S=- |ZFL1(6)-(S=- |ZF1(-1)+(S=

(21t7) A + 7.05) 8.42) 6.76) -1.68)
ZF1(3)- (S=- |ZF1(3)-(S=- |ZF1(-1)+(S=- |ZF1(3)-(S=-
9.81) 11.05) 9.26) 3.52)

Drosophila TTK | AGGA ZF1(-1) ZF1(-1)+ (S=- |ZF1(-1)+ (S= ZF1(-1)+ (S= ZF1(-1)+ (S=-

B (2drp) T + 3.43) -4.82) - 4.40) 0.12)
ZF1(3)+ (S=- |ZF1(3)+(S=- |ZF1(3)+(S=- |ZNF1(3)+ (S=
9.59) 11.2) 7.88) -8.61)

Designed ZFP | TGGGC ZF1(-1) ZF1(-1)+ (S=- |ZF1(-1)+ (S= ZF1(-1)+ (S= ZF1(-1)+ (S=

dimer G + 1.26) -1.63) - 2.45) -0.06)
(1£2i) ZF1(3)- (S=- |ZF1(3)+ (S=- |ZF1(3)+ (S=- |ZF1(3)+ (S=-
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11.18) 11.53) 8.11) 11.08)
ZIF23-GCN4  |GCGTGG ZF1(-1)+ ZF1(-1)+ (S=- |ZF1(-1)+ (S=- |- ZF1(-1)+ (S=-
(1lim) 2.31) 2.68) 0.06)
ZF1(3)- (S=- |ZF1(3)+ (S=- ZNF1(3)- (S=-
9.24) 13.65) 8.73)

Table 5 - Benchmark results of the sliding window method on known ZFP-DNA
complexes. The DNA sequences in bold are the binding core motifs. The starting
binding ZF domains that are in bold show that the method's prediction was

successful.
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Figure 15 - Predictions of the ZF domains than bind on the DNA-target. For each
sliding window of the DNA on the ZF's binding amino-acid sequence there is a green
indicator of the score. The darker the green is the higher is the score of the sliding
window. The highest score shows a prediction of the localization of the protein on the
DNA. For each ZFP it is shown: its DNA-target, the amino acids in positions -1, 3 and
6, the maximum sliding window score and the start of the binding (i.e. For the PRDM
ZFP the maximum sliding window score indicates that the binding starts from the
position -1 of ZF8 and that ZF8-ZF11 bind on the DNA-target).
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According to the results reported in Table 5, the specificity scores from protein-
DNA complexes using binding positions -1, 3, 6 and the most frequent DNA
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sequence (derived from the pdb file; i.e. AGGAT for Drosophila TTKB) was
successfully predicted for 16 out of 17 ZFPs. When the amino acids for position 2
were introduced, 12 out of 17 proteins had their binding ZF domain successfully
predicted (Table S6). This could be the indication that the amino acids in the position
2 do not always interact with the DNA or that they provide more stability than
specificity for the complex. Moreover, usually in position 2 we have the presence of
Ser that can act as H-bond donor and acceptor and therefore can interact with all
four nucleotides. Next, by applying the specificity scores using binding positions -1, 3,
6 on the consensus DNA sequences (i.e. AGGRY for Drosophila TTKB), we
successfully predicted the binding ZF domains of 12 out of 15 proteins. This might be
due to the fact that the consensus sequences cannot describe in what frequency a
nucleotide is represented in the motif, on the contrary a PWM might have been more
precise. As it was expected, the optimized binding specificity scores from the
complexes successfully predicted the binding of 17 ZFPs. But these scores might be
over-fitted in the 17 complexes and the efficiency of this approach on other ZFP-DNA
complexes might not be robust.

In most of the cases, we failed to predict the binding ZF domains of ZNF217.
This might be because there are multiple ZF domains (8) that could bind to the small
DNA target sequence of 6 nucleotides. Since there is an increased number of
possible ZF-domains/DNA combinations, it makes the prediction more difficult. Also,
ZNF217 has 5 long linkers (more than 10 amino acids length) that can affect the
flanking of neighbouring ZF domains. In general, our predictions agree in the way of
binding for ZNF217, which might be an indication that ZFPs can have more than one
way to bind to their target sequence or that some might not have a strong specificity
for a DNA target. For Kaiso protein only the method with the optimized scores had a
successful prediction. The failing of the other method might be because of Kaiso's
Arg595 in the C-terminal tail that bind to a nucleotide base at the minor groove of the
DNA and leads to a non-canonical binding. Therefore, Kaiso's binding properties
could differ from the ZFP that don't use their C-terminal amino acids to bind
nucleotides.

A method to predict the ZF domains binding specificity

We derived a recognition code from the analysis of the binding properties of the
protein-DNA complexes and the 17 ZFP-DNA complexes in PDB. The recognition
code can provide a PWM and predict a set of DNA binding sequences on which a
ZFP specifically binds. There are strong preferences between Arg and G (score:
0.83), Lys and G (score: 0.8), His and G (score: 0.57), Asn and A (score: 0.51), GIn
and A (score: 0.51), Asp and C (score: 0.83), and Glu and C (score: 0.87), while
weaker binding has been observed for some amino acids, like Thr that binds mainly
to T but also to C, and Ser that binds mainly to G but also to A. For both Thr and Ser,
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that occur in position 6, their binding seems to be influenced by the amino acid in the
position 2 of the next ZF domain (if any). In general, the assignments for neighboring
ZF domains and the contribution of an Arg in position -2, are based on the existing
ZFP structures.

The nucleic acids preferences of non-polar amino acids are not easy to be
determined. Although, non-polar amino acids tend to contact mainly T, if they occur in
position 6 this tendency could be influenced but the amino acid in the position 2 of
the next ZF domain (if any). We assume that if in the position 2 of the previous ZF
domain is an Arg, Lys or His then they make contact with C, if there is an Asn or a
GIn, they make contact with T, if there is an Asp or Glu they make contact with G, and
if there is a non-polar amino acid they make contact with A. In addition to that, Gly
appears to be "replaced" by other amino acids. In particular, if a Gly is in position -1
or 3 it will be the amino acid in position -2 or 2, respectively, that will interact with a
nucleotide (like the Gly in the ZF2 position 3 of the TATA-binding ZFP, that the T in
position 2 "replaces" it, since it makes a hydrophobic contact with the T).

To validate our method, we compared it with the predicted sequences by
Persikov et al (Persikov et al., 2014) Najafabadi et al (Najafabadi et al., 2015a) and
Gupta et al. (Gupta et al., 2014), using the respective online prediction tools. We
made the alignments of the consensus DNA binding sequence of 17 known ZFP-
DNA complexes with the most frequent predicted DNA sequence of our prediction
and the three recognition codes and calculated how successful the prediction was by
counting the cases that the predicted nucleic acid in a specific position was included
in the corresponding position of the consensus sequence, divided by the overall
length of the sequence. Therefore, the prediction validating score is the sum of the
nucleic acids that are present in specific positions of the consensus sequences,
divided by the length of the consensus sequence. Likewise, we applied our method
on the "Gold Standard" motifs, that are described by Najafabadi et al (Najafabadi et
al., 2015a). We aligned the PWM of our prediction with the PWM of the experimental
motifs and we chose the best alignment in order to maximize the Pearson correlation.
Finally, our predictions where compared with the predictions of the other recognition
codes.

Our recognition code predicts a possible PWM for all the ZF domains of a ZFP.
It is based on the preferences of the binding amino acids, that were derived from a
structural analysis of protein-DNA complexes, and also on observations on how
neighbouring ZF domain can affect the binding of each other. We compared our
method's predictions with the predictions of Najafadi's (Najafabadi et al., 1015a),
Persikov's (Persikov et al., 2015) and Gupta's (Gupta et al., 2014) recognition codes
by aligning the predicted sequences. We also involved in the alignment the
experimentally defined consensus sequence for each ZFP. The alignment could also
be an indication of which ZF domains bind to DNA, by showing the ZF localization on
the predicted sequences. The accuracy of the predictions was assessed based on
the percentage of the nucleotides that were predicted successfully by included in the

62



consensus DNA maotif (Table 6 - Figure 16). ZIF23-GCN4 was excluded since there is
not known consensus sequence and from the TATA BOX-binding designed ZFP, only
the TATA core binding motif was used.

ZFP Alignments Method - | Najafabadi | Persikov - | Gupta -
(pdb id) success | —success | success success
percentage | percentage | percentage | percentage

Xenopus Consens. : GGANGGNNGN | 100% 100% 70% 100%
TFINIAZFP |Predict. : GGATGGGCGG
(1tf6) Najafab. :GGATGGTTGG

Persikov:NTACGGACAG

Gupta: GGATGGTCGG
CTCF NCANNAGRNGGCRSY 93.3% 86.7% 86.7% 86.7%
(5t0u) TCGCTAGGGGGCGCT

TCGATAGGGGGCGTT

CCGACAGAGGGCGCA

GCGCCAGGCGGCGTT
ZNF217 VTTCTGYW 16.7% 35.5% 35.5% -
(4isl) -AGATAG-

GATATTGG

NACCCTCA
AART ZFP |ATGKAGRGAAAAGCCCNN [94.4% 94.4% 78.8% 83.3%
(2i13) TTGGAGGGAAAAGCCCGG

ATGTAGAGAAAAGCCTGG

AAGCAGAGACAAGGCCGG

GTGTAGTGAAAAGCCTGG
GFI-1 ZFP  |AAAKCACNG 100% 100% 44.4% 100%
(2kmk) AAAGCACTG

AAATCACTG

CAANNNATG

AAATCACAG
GLI ZFP GACCNCCCA 44.4% 33.3% 55.6% 33.3%
(2gli) GGCGCACAG

TCCTCCAAG

NCCTACCCG

GTCTCTTAG
PRDM ZFP |NGNGGNNANGGNGGN 100% 100% 100% 100%
(5ei9) GGGGGACAGGGGGGA

GGAGGACACGGCGGA
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GGCGGCCACGGCGGC

GGTGGTGACGGCGGT
Human YY1 |AANATGGMG 100% 100% 77.8% 100%
ZFP AAAATGGCG
(1ubd) AAAATGGCG

AACAGGGCT

AAAATGGCG
Wilms tumor | GCGKGGGMG 100% 88.9% 77.8% 88.9%
suppressor |GCGGGGGAG
ZFP (2jp9) |GCGTGGGTG

GCGAGGGGG

GCGTGGGTG
ZIF268 GCGKGGGCG 100% 100% 88.9% 100%
(1zaa) GCGGGGGCG

GCGTGGGCG

GCGAGGGCG

GCGTGGGCG
Designed GRGKCRGAA 100% 88.9% 44.4% 88.9%
ZFP GGGGCAGAA
(Imey) GGGTCAAAA

GGGNNNTAC

GGGTCATAA
TATABOX- |TATA 100% 100% 75% 100%
binding TATA
designed TATA
ZFP AATA
(1g2d) TATA
KLF4 ZFP  |RRGGYGYNN 77.8% 88.9% 77.8% 88.9%
(2wbu) TGGGCGGGG

TGGGCGTGG

TGGGCGAGG

TGGGCGTGG
Kaiso ZFP  |CTGCNA 16.7% 16.7% 16.7% 16.7%
(21t7) GATGGT

TGCGTT

TGCGTT

TATGTT
Drosophila  |AGGRY 80% 100% 100% 100%
TTKB AGGAG
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(2drp) AGGAT
AGGAC
AGGAT
Designed NGGGCN 100% 100% 100% 100%
ZFP dimer |TGGGCG
(1f2i) TGGGCG
AGGGCG
TGGGCG

Table 6 - Scores of the alignments between the consensus sequence and the
predicted sequences. In the column of the alignments the first line is the consensus
binding DNA sequence, the second line is the sequence predicted by our recognition
code, the third line is the sequence predicted by Najafabadi's recognition code, the
fourth line is the sequence predicted by Persikov's recognition code and the fifth line
is the sequence predicted by Gupta's recognition code.
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A Alignments of the experimental and prerdicted consensus sequences

GFI-1 Experimental consensus cc: 0.81 G A
(2kmk) sequence p-val: 3.23e-9 T C
Predicted consensus GCGAAAGCACTGAGGAGT
sequence y¥ c-.—T ACAG
PROMO ZFP  cc: 0.82 GGéé éGGéGGé
(5ei9) p-val: 1.17e-12 CSNSEVVSVVSE
ASC0R00GAACEGCCASTTETTET CETCETTECTAT
SXYAYRATATYIIAYRATRE
Xenopus cc: 0.94 GGA@GGQ
TFIIIA ZFP p-val: 2.27e-13 T T
(1tf6) C GG TG GG
GRICARCACGTEGTEAGCAZGHG
AL AATELC AR KA AR IR ELY
GLI cc: 0.15 GACC CCCA
(2g11) p-val: 0.364
SC0CASAGCIToAS
G 115As
=Tcc
B Venn diagram of the ZFPs that their DNA
targets were predicted succesfully by the
Human YY1 cc: 0.62 A%AATGAéC 4 recognition codes:
s G
ZFP(lubd)  p-val: 5.06e-5 : =T ®re
géé ATGGCGTG @ Najafabadi's et al. RC
C Tox X XIS x @ Gupta's et al. RC
) Persikov et al. RC
ALl failed for:
ZNF217
Wilms tumor cc: 0.92 GCGGGGGéG se
suppressor  p-val: 2.73e-15
e (26 (OG0SHEAGESE
YYVYAYYTYYAY
G
ZIF268 cc: 0.94 T
(1zaa) p-val: 1.63-17 GCGGGGGCG
A=T LEAA
KLF4 cc: 0.57 GG G Caa
(2wbu) p-val: 0.00026 T GG
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Figure 16 - Comparison of the predictions of the four recognition codes. A. Alignment
of the PWM (position weight matrix) logos of the experimentally-derived consensus
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sequence and the consensus sequence predicted by our recognition code. B. Venn
diagram of the ZFPs that their DNA targets were successfully predicted by the
recognition codes. C. The correlation coefficients for each of the PWM alignments.

From the assessment of the four recognition codes based on the present
benchmark set we obtain that Najafabadi's, Gupta's and our methods have the same
robustness, while they outperform Persikov's recognition code (Figure 16A-B). In 9
and 8 out of 17 proteins the DNA binding sequence is predicted with 100% success
from our and Najafabadi's-Gupta's recognition codes respectively, while Persikov's
recognition codes predicts 3 out of 17 correctly. All recognition codes failed to predict
the DNA target sequence in the cases of Kaiso, GLI-1 and ZNF217. It seems like
these three ZFPs have their own unique way to bind to their DNA sequence that
cannot be modeled by any of the known recognition codes. In two cases (WTS ZFP
and designed ZFP) our recognition code gives better results than the other codes.

Finally, we used our recognition code to predict the DNA motifs of ZFPs as they
were defined by Najafabadi et al., 2016 (64 Gold-standard motifs). It appears that our
recognition code performs almost as robust as Najafabadi's recognition code (Figure
16C).

Validation of our methods with ZFPs of unknown structure

SMiLE-seq analysis was performed by our collaborators (i.e,. Dr. Alina Isakova
from the Deplancke’s lab at the EPFL), on two ZFPs: ZFP14 and ZNF415. In
particular, the full-length open reading frames (ORFs) of human ZFP14 and ZNF415
containing canonical C2H2-ZF domains and canonical linkers (Table 7) were
subcloned into pF3A-eGFP in vitro expression vector (Isakova et al.,, 2016) by
Gateway cloning. Next, the constructs were expressed in vitro and subjected to
SMILE-seq analysis as described in Isakova et al., 2017. Furthermore, the ZFPs
were truncated, by keeping those ZF domains that are predicted to bind to the DNA
target.

Ne===
T

’_‘AQAA -,g?i:g,-;f-?‘m

1 2 1 5 [ 9

[FRT]

T
N

1
CO

ZFP | Number | SMiLE-seq highest Logos Truncati
of ZF frequent DNA ons
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ZFP14 |13 ATGGAGGCACTGGA | # ZF1-ZF6
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ZNF415|11

ZF6-ZF9

Table 7 - ZFPs with their SMILE-seq predicted DNA sequences and selected
truncations.

To test further our method, we looked at two ZFP proteins, ZFP14 and ZNF415,
and their predicted DNA-target sequence as obtained from SMILE-seq (see Table 7).
For each ZFP a prediction of which and how its ZF domains bind to their DNA target
sequence was made (Table 8). In particular, we analysed the binding of the two ZFPs
with the binding specificity scoring sliding window method, taking into consideration
the amino acids in positions -1, 3, 6 and -1, 2, 3, 6 with the specificity scores that
occurred from the protein-DNA complexes analysis, and the positions -1, 3, 6 with the
optimized binding specificity jackknife scores from the 17 ZFP-DNA complexes. All
three scoring predictions came in agreement with each other on which ZF domains
bind for ZNF415, but not for ZFP14. ZFP14 has in fact a Cys residue in a critical
binding position and this might affect the prediction, since there is no estimated score
for the Cys-A and Cys-T pairs. For ZFP14 the binding is predicted to start from the
position -1 of ZF1, and the ZF domains from 1 to 6 are predicted to bind to the DNA.
For ZNF415 the binding is predicted to start from the position 6 of ZF5, and the ZF
domains from 6 to 10 are predicted to bind to the DNA.

ZFP SMILE-seq sequence Most frequent Most frequent Most frequent
(pdb id) sequence, scores |sequence, scores sequence,
from prot/DNA from prot/DNA optimized scores
complexes, complexes, from jackknife,
positions -1,3,6 positions -1,2,3,6 positions -1,3,6
ZFP14 ATGGAGGCACTGGAACG | ZF1(-1)+ (S=-19.02) | ZF1(-1)+ (S=-30.32) |ZF1(3)+ (S=-9.75)
ZNF415 |GATATTAATCGTGTAG ZF5(6)+ (S=-22.27) | ZF5(6)+ (S=-28.57) |ZF5(6)+ (S=-1.10)

Table 8 - Results of the sliding window method on 2 ZFPs and their SMILE-seq
predicted binding sequences. The scoring matrix of the optimized scores don't agree
with the predictions from the scoring matrix of the analysis of the protein-DNA
complexes.

We set out to further investigate whether the predicted zinc fingers of the
C2H2 ZFPs are indeed involved in DNA binding. This analysis suggested that six
fingers out of thirteen contribute to the ZFP14 binding specificity and indicated ZF1,
ZF2, ZF3, ZF4, ZF5 and ZF6 as potentially bound fingers. Similarly, five fingers out of
eleven of ZFP415 are predicted bind the DNA motif (ZF6 ZF7 ZF8 ZF9 and ZF10). To
validate our predictions, we truncated the ZF domains that have predicted to not bind
to their DNA target sequence for each of the ZFP. For ZPF14 we kept the domains
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ZF1 to ZF6 and for ZNF415 we kept the domains ZF6 to ZF9. Although ZF10 is
predicted to bind to the DNA, we decided to truncate it from ZNF415 because its 3bp-
binding target was not always appeared in the SMiLE-seq motif. Our collaborators
then generated synthetic constructs of ZFP14 and ZFP415 in which we only kept the
fingers that are predicted to bind and removed the remaining ones. SMiLE-seq
analysis on this synthetic construct yielded a motif that exactly matched the
previously identified motif for the full length ZFP14 (Table 8). Thus, we demonstrated
that the specificity of C2H2-ZFPs is achieved through DNA binding of specific zinc
fingers. In addition, for ZFP14 and ZNF415, we predicted a PWM that indicates
further potential DNA targets. It is also remarkable, that our recognition code comes
in agreement with the other recognition codes in the positions that the SMILE-seq
signal in higher (Figure 17). This could be an indication that for some positions/amino
acids there is higher specificity than others.

ZFP14

SMiLEseq ’T?éAfcffs*v,AA.f
Our pred AGAATGAAGAAGCAGGAGTAGTCTCCACAGACTGCAAT
Najafaba AGAAATATTATTATGGGTATTACCCCACATACTGCAAT
Persikov TGAANTAGTAGTCGTGATNNNNNNGCACATCCTCGAAT
Gupta AAAAATAATAATTATGATGATTCCCCAGATACTGEAAC

ZNF415

SMl LEseq AAI.::%;%AIEAI:.:ZAT

Our pred GATCATAGTCATCUA-GACGAATTCTGCTGGAA
Najafaba GATCATATTAATT TCTAATAACTGTGGTGGAA
Persikov GAT ATATCCATA-TCTAACAACGTTGTTGGAA
Gupta GATCATTTTTATTCTCTAATAACTGTGGTGGAA

Figure 17 - Alignments of the DNAs predicted by SMILE-seq, by our recognition
code, by Najafabadi's, Persikov's and Gupta's recognition codes. In the positions that
the SMILE-seq signal in higher, the predictions of the recognition codes agree.

3D Model building and molecular refinement

The structural models of ZFP14 and ZNF415 were based on a template of
multiple ZF domains of the ZF1 of ZIF268 (pdb id:1zaa) wrapped around a dsDNA.
The ZF1 domain of ZIF268 was superimposed multiple times around the DNA and
the amino acids were refined by UCSF Chimera visualization program (v1.10)
(Pettersen et al., 2004). The linkers between the domains were modeled with the
loopmodel application of Modeller program (v9.14) (Fiser et al., 2000). The DNA
binding sequence was extended from both edges by 6 nucleotide base pairs and the
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structural models were built with the 3DNA software (v2.0) (Lu & Olson, 2003). Each
of the 2 models was placed in an explicit solvent box with 0.15M NaCl concentration
under periodic boundary conditions. The complexes were parametrized using the
AMBER force field (ff99bsc0) and ZAFF force field (Peters et al., 2010) (for the zinc
ion and the 4 residues that coordinate it), and the TIP3P model was used for water
molecules (LeaP program of Amber tools V11 - Case et al.,, 2005). Geometry
optimization via energy minimization was performed using the NAMD program (v2.8)
(Phillips et al., 2005). Initially, an energy minimization was performed for 5000 steps
with constraints on the atoms of the side chains that are involved in the H-bonds
formation between the protein and the DNA (positions -1, 3 and 6), followed by an
energy minimization of 1000 steps with no constrains. In all phases a time step of 1
fs was used, the covalent bonds involving hydrogen atoms were constrained by the
RATTLE algorithm and the van der Waals interaction cut-off was set at 12 A.

Based on these results, we built the models for ZFP14 and ZNF415 based on
the first ZF domain of ZIF268. Next, we placed these protein models in the respective
DNA models that represent the SMiLE-seq predicted sequences. After geometry
optimization through energy optimization we obtained the final complexes (Figure
18):
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Figure 18 - Structural models of ZFP14 (A) and ZNF415 (B). The model of the
complex appears in the middle of the image, while at each side the ZF domains
appears. For each ZF domain it appears: SMILE-seq logo, binding positions, binding
amino acids, nucleic acids that participate in the binding and hydrogen bonds
between proteins and DNA.
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The modeled ZFs domains appear to form H-bonds with the DNA, with the
amino acids in the binding positions -1, 2, 3 and 6. When SMILE-seq experiments
predict G in the DNA consensus it appears that a His or an Arg are the interacting
residues. This confirms the prediction for both ZFPs, not only because His and Arg
have a high sliding window score in binding Gs, but can also form two hydrogen
bonds with a G and contribute to the stability of the complex.

3.3. Conclusions and perspectives

DNA recognition by ZFPs plays an important role in gene silencing. In the last
years, many recognition codes between ZF domains and the DNA, that follow
different approaches, have been proposed. However, these codes cannot capture the
complex DNA binding landscape. Therefore, determining of which ZF domains and
how do they bind on the DNA remains still a challenge.

Based on a structural analysis of protein-DNA and ZFP-DNA complexes
deposited in the PDB, we extracted some general recognition binding rules between
ZFPs and their DNA targets, encoded them in scoring functions used to predict (i)
which ZF domains of multi-domain ZFPs bind to a given DNA sequence and (ii) the
most probable DNA target sequence for a given ZFP.

Our approach showed that for a ZF domain that recognize 3-4 nucleotides in a
canonical mode, it is possible to predict its DNA binding specificity. For example, the
sliding window method detected which ZF domains bind to a given DNA target, when
the binding follows the canonical rules. Also, our recognition code, predicted correctly
the DNA target sequences of half of the tested solved ZFP-DNA complexes. In
addition, we further tested our recognition code with two ZFPs with unsolved
structures, and we managed to predict accurately their binding DNA targets, in
respect with the results from ChIP-exo experiments. But, it is important to further test
our recognition code with a much larger data set of unsolved complexes.

Our recognition code slightly outperformed the current approaches for solved
complexes: 9 out 17 DNA targets of canonical-binding ZFPs were predicted correctly,
in contrast to 8, 8 and 3 out of 17 DNA targets for the other three recognition codes.
In addition, besides Najafafadi's recognition code, our recognition code is one of the
few recognition codes that takes into consideration the neighboring ZF domains
effect on binding specificity. Also, our recognition code is the only one that takes into
considerations the Arg of the position -2 and its effect on the binding.

On the other hand, there are some limitations to our methods. For example,
since our method is based on the assumption that one ZF domain binds to three
nucleotides of the same strand, is limited to predict the canonical binding only.
However, the predictions of the binding specificity sliding window seems to be quite
robust for the canonical binding, but its efficiency depends also on the quality of the
ChiIP-seg/SMiLE-seq data. Furthermore, the scoring matrix, that is based on known
solved protein-DNA complexes, gives more importance to the H-bonds and possibly
underestimates the contribution of hydrophobic residues. In addition, Trp was
underrepresented in the H-bonds network. Those two reasons could sometimes lead
to slightly incorrect predictions. Also, the scoring matrix that is based on the
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optimization of the parameters doesn't include all the possible amino acid-nucleic
acid pairs and can lead to false predictions. Finally, part of the rules of our recognition
code is based on known solved ZFP-DNA complexes and thus might not be so
efficient when applied to unknown data. In the future, this limited statistics could
overcome with more solved ZFP/DNA complexes, that will give more insights into the
non-canonical binding.

From the dataset of the 17 ZFP-DNA complexes, ZNF217 and Kaiso are not
binding in a canonical way, and as a consequence every method and recognition
code failed to characterize their specificity. In particular, in the structure of Kaiso, a
tail of amino acids in the C-terminal binds to the minor groove of the DNA. This tail
might also occur in other ZFPs and could participate in the DNA-binding and affect
their specificity. Moreover, ZNF217 has multiple long linkers (over 10 aa) between its
ZF domains, a non-canonical DNA-binding and low specificity (Vandevenne et al.,
2013). It is possible that a long linker creates subtle displacements in the flanking ZF
domain. Hence, the binding specificity might be affected in ZFPs that contain long
linkers or a tail of polar amino acids in their C-terminal, or other non-canonical
arrangement that have not been observed yet in high-resolution ZFP structures.

Moreover, ZFPs can bind to a variety of DNA sequences with different degrees
of specificity. It is also possible that all the ZF domains that have polar amino acids in
their binding positions can bind to DNA, but it is not always visible with experiments.
As a consequence, this can have affected the DNA targets that have experimentally
defined for a given ZFP. Also, some ZFPs could use different ZF domains of their
extended arrays to bind to different DNA targets: for example, Zfp335 recognizes two
consensus motifs using separate ZF arrays (Han et al., 2016). In most of the results
produced by existing recognition codes, ZFPs with fewer ZF domains are the ones
for which is easier to predict their DNA target sequence. This could be due to the fact
that is easier to find their “ideal” DNA sequence in the genome than in the poly-ZF
proteins. For example, for a tandem of 3 ZF domains the potential DNA binding
sequence is 9 nucleotides length and therefore 4"9 possible combinations, while for
a tandem of 7 ZF domains the DNA binding sequence is 21 nucleotides length and
therefore 4721 possible combinations. Hence, it will be easier for the shorter tandem
to detect and bind on its set of DNA sequences.

Furthermore, some amino acids in the binding positions seem to generate
higher specificity for DNA targets than others. Specifically, Arg, Lys, His, Asp, Asn,
Glu and GIn have strong preferences in specific nucleotides, on the contrary Ser and
Thr appear to be more promiscuous. In addition, the binding position of an amino
acid could play a role to its specificity. In particular, based on our analysis, using the
amino acids in position 2 to predict which ZF domains bind on the DNA, didn't
improve our prediction, although they bind to the DNA. This could be an indication
that amino acids in position 2 provide more stability than specificity to the ZFP-DNA
complex. Moreover, position 2 is usually occupied by a Ser with no strong preference
to a specific nucleotide (can form H-bonds with all four nucleotides). Also sometimes,
the amino acid in position 2 binds to a nucleic pair, in collaboration with the amino
acid in position 6 of the previous ZF domain, and this could have an effect on the
binding recognition.

As it is, our recognition code and others fail to predict the DNA target of ZFP
that have shown to bind to a long DNA target. For example, in the case of ZNF648,
ZNF765, ZNF93 and ZNF649 that bind to primate-specific L1 sequences (length ~45
bps), recognition codes fail to predict these sequences (Imbeault et al., 2017) (data
not shown). Also, the recognition codes have inaccurate predictions (data not shown)
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in the case of ZFP568 that binds on a 24 bps sequence (Patel at al., 2018). The
crystal structure of the complex shed light on the binding of ZFP568 to its DNA target.
Only three ZF domains bind canonically to the DNA and can be accurately predicted
by the recognition codes. The remaining seven ZF domains bind non-specifically
(phosphate backbone or contacts with the opposite strand in a shape-readout
context) or they recognize 2 or 4 bps. The ZF domains of ZFP568 that follow the
canonical binding occur at the N- and C- terminal of the ZF tandem and contain Arg
that bind to guanine. This could be an indication that the binding starts from the ZF
domains that are at the edges of the tandem and contain amino acids that have high
affinity for a specific nucleic acid (like Arg have high specificity for Gs). This is an
evidence that besides the canonical binding, it is possible to have different binding
modes. But in order to investigate these alternative modes, more X-ray structures of
ZFP/DNA complexes are needed.

Most of the ZFPs in this analysis are KRAB-ZFPs, which indicates that they
contain at least one KRAB domain in the N-terminal. KRAB-ZFPs is one of the
largest families of transcription factors in higher vertebrates, and through the
interaction of KRAB domain with its universal cofactor KAP1, they regulate gene
repression. Here, what needs to be taken into consideration, is the role of the KRAB
domains. In this study they don't seem to affect the DNA specificity of the ZF
domains. On the other hand, it would be important to investigate how the various
KRAB domains interact (if they do so) with the DNA or other protein complexes (e.g.,
KAP1).

In conclusion, our computational structure-based approach gives results that
are very similar to the latest experimental-based recognition methods for ZFPs. It has
the advantage to consider neighboring ZF domains and their effect on DNA binding
specificity.
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Chapter 5 Analysis of the DNA binding landscape of human
KRAB-ZFPs

5.1. Introduction

KRAB-ZFPs belong to one of the largest families of transcription factors in
higher vertebrates (Bellefroid et al., 1991). They contain one or two KRAB domains in
the N-terminal segment and a tandem of C2H2 ZF domain repeats in the C-terminal
one. KRAB-ZFPs are one of the most recent and fastest growing gene families in
primates. This expansion possibly enables primates to repress newly emerged
transposable elements in embryonic stem cells (Jacobs et al., 2014). This was also
confirmed by a recent phylogenetic and genomic study on human KRAB-ZFPs
(Imbeault et al., 2017).

In the previous chapter, we proposed a recognition code between ZFPs and
DNA, based on the assumption that ZF domains bind canonically on the DNA (amino
acids in positions -1, 3 and 6 interact with 3 bps). Our recognition code is efficient in
predicting the DNA targets for canonical binding, but fails in cases where the binding
is more complicated. Likewise, it seems that the current recognition codes cannot
predict accurately the DNA targets for many ZFPs. For example, in the study of
Imbeault et al. the experimentally defined DNA binding motifs of ZNF248, ZNF649,
ZNF765 and ZNF93 (KRAB-ZFPs that bind on primate-specific L1 elements), don’t
match with the motifs that are predicted by the recognition codes. This is an
indication of non-canonical binding, but it needs confirmation by the solved structures
of these complexes. In addition, the binding motif of ZFP568 is different from the
predicted one (Patel et al., 2018). Nevertheless, in this case we have a crystal
structure that confirms the non-canonical binding (Figure 19). Specifically, three out
of nine binding domains bind canonically and their predicted DNA motifs match with
the experimental ones. For the remaining six ZF domains, the binding mode varies. It
seems that recognition codes cannot always predict the DNA targets of the ZFPs
since the binding modes are very complex and we still miss exhaustive structural
information. Here our aim is to recover some of this missing information about non-
canonical binding. In particular, we explored other possible ways that a ZFP can bind
on its DNA target, besides the canonical binding by the analyzing the DNA binding
motifs from Imbeault et al. study.
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Figure 19 - Crystal structure of the mouse ZFP568, ZF3-ZF11 (pdb ids: 5v3m and
5wjq). ZF3, ZF10 and ZF11 bind canonically to the DNA. The DNA is shown in gray,
the zinc ions in purple and the tandem of ZF domains in rainbow.

5.2. Results

In the study of Imbeault et al. in 2017, the DNA targets of 325 human KRAB-
ZFPs were determined by performing ChlP-exo (Chromatin Immunoprecipitation with
exonuclease digestion). ChlP-exo is a method to identify genomic location of DNA-
binding proteins at near single nucleotide accuracy (Figure 20). This method is a
high-throughput sequencing approach that generates large data sets. To analyze all
these data and predict DNA-binding sites, computational methods are used (peak
calling methods). In the study of Imbeault they used the MACS (Model-based
Analysis of ChlP-Seq) software, which gives robust and high resolution ChIP-Seq
peak predictions (Zhang et al., 2008). In order to identify sets of highly significant
peaks they used three different thresholds to filter out peaks: MAC scores 50, 80 and
100. Higher scores are associated with lower, more significant p-values and with
more reads in the peak. For example, MACS score 80 indicates that the p-values are
filtered to be less than 1x10%. For each of the three MACS score thresholds, we were
provided with the genomic coordinates of the peaks (bed files), from which we
extracted the sequence fragments.
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Figure 20 - ChlIP-exo reads of ZNF765. Binding regions have characteristic peak
shape. The more the forward and reverse strands overlap, the higher is the motif
enrichment.
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We analysed the ChIP-exo results of the 325 KRAB-ZFPs for the three MACS
scores. Initially, we used the MEME-ChIP server in order to discover the different
binding motifs and PWMs. Next, we compared these binding motifs, for each KRAB-
ZFP, with the three thresholds. We decided to continue our analysis with 102 KRAB-
ZFP that had the same predicted DNA binding motif, for the thresholds of 80 and 100
MACS score. We excluded the MACS score 50 since it had high number of false
positive predictions and we aimed in keeping the most significant and therefore high
quality predictions. These 102 KRAB-ZFP can be a representative set of KRAB-
ZFPs, since they contain 1216 ZF domains. These domains include 1157 canonical
zinc finger domains (C-Xz5-C-Xi12.15-H-X3.5-H motif), 12 atypical zinc finger domains
(the spacing between Cys or His residues is slightly altered), 46 degenerate zinc
finger domains (one or two Cys or His are replaced by other amino acids), and 1
truncated zinc finger domain (half ZF domain). While 80 ZFPs contain only canonical
linkers (linker length less than 15 amino acids) and 22 ZFPs contain at least one long
linker (Figure 21).
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Figure 21 - Statistics of the remaining 102 human KRAB-ZFPs. A. Number of ZF
domains in ZFPs. Most ZFPs contain 12-13 ZF domain. B. Number of linkers in
ZFPs. Most of the linkers between neighboring ZF domains are seven amino acids
longs. C. Types of ZF domains in ZFPs. 95% of the ZF domains are canonical.

For these 102 KRAB-ZFPs we predicted their DNA binding motif (PWM), using
our ZFP-DNA recognition code. Next, we compared the motifs predicted by MEME
with the motifs predicted by our recognition code. For the moment, we used only our
recognition code, but other recognition codes could be used for further validation.
However, for each KRAB-ZFP, we used multiple overlaps of the MEME PWM and our
recognition’s code PWM, in order to maximize their correlation coefficient and output
a matrix alignment (both strands and no gaps). 25 motifs have a high correlation of
over 0.5 (Figure 21), which is an indication that our recognition code can provide
DNA binding motifs with high accuracy (Figure 22). Another thing to be noted is that
shorter MEME motifs seem to correlate better with the predictions. This could be an
indication that if fewer ZF domains bind to DNA the more canonical is the binding,
and therefore easier to predict its binding mode.
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From the analysis above, it seems that for shorter ChlP-exo motifs we have
better predictions. In addition, 25 ZFPs could possibly bind canonically, but for the
remaining 77 the binding mode could be non-canonical. For example, mouse
ZFP568 with 11 ZF domains makes numerous non-canonical ZF-DNA interactions
(Patel et al.,, 2018). In particular, the third and the two last ZF domains bind
canonically to the DNA (1 ZF domain binds to 3 bps), while the 6 ZF domains that are
in the middle interact with 2, 3 or 4 bps per ZF domain, and few also interact with the
opposite strand (Figure 23). In the case of ZFP568, ZF domains near the ends of the
tandem, that contain Arg, follow the canonical binding. This could be an indication
that the binding starts from the ends of the tandem and ZFs that contain Arg bind with
high specificity to a G in the DNA. These ZF domains could lead the binding, while
the remaining ZF domains possibly follow by making non-canonical contacts.
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Figure 23 - ZFP568 consensus DNA-binding sequence. ZF3, ZF10 and ZF11 binding
canonically to the DNA. The predictions of two recognition codes agree with the
consensus at these positions.

Next, we decided to truncate the ZFPs and calculate the cc between our
prediction and the ChlP-exo predictions. In particular, we truncated the ZFPs in 2, 3
and 4 overlapping ZF domains and for each truncated ZFP we aligned with the
predicted PWM with the ChlP-exo predicted PWM. We calculated the cc for both
data sets (potential canonical and non-canonical binding) and as successful
alignment where consider the ones with cc over 0.75 (Table 9):

Potential canonical | Potential hon-canonical
binding ZFPs binding ZFPs

Number of ZFPs 25 77

2-ZF domains (Number of 9 (36%) 31 (40%)

ZFPs with cc > 0.75)

3-ZF domains (Number of 3 (12%) 11 (14%)

ZFPs with cc > 0.75)

4-ZF domains (Number of 1 (4%) 5 (6%)

ZFPs with cc > 0.75)

Table 9 - Alignments of truncated ZFPs.

It seems that for both data sets we have similar results and there is not
significant difference between the cc scores for the alignments between canonical
and non-canonical binding ZFPs. Moreover, the alignments are more successful with
shorter ZFPs, while when the ZFPs are long is difficult to have a proper alignment.

Analysis of the ZF domains

In the dataset of 77 ZFPs that potentially bind non-canonically to the DNA, we
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decided to check if there are ZF domains that could bind at the edges of the MEME
motif. As edges of the motif, we considered the first and last two-nucleotide triplets. In
particular, we aligned the PWM for each of the 907 ZF domains (a 3x4 matrix) with 4
different PWM (3x4 matrices of the first and last two nucleotide triplets). We
considered as a strong indication for binding only if the cc between the two aligned
matrices is over 0.9. In our case, we have 32 out of 77 ZFPs that have at least one
ZF domain that could bind at the edges of the motif (cc > 0.9). In addition, 15 out of
these 32 ZFPs have at least one Arg in the binding positions of their ZF domain that
is predicted to bind to the edges of the motif. This could be an indication that 40% of
non-canonical binding ZF domains potentially bind at the edges of the motif, but not
always Arg residues are involved in the binding.

Next, we checked if the residues in the 3 binding positions contain Arg
residues, and in general, if they tend to contain more polar than hydrophobic amino
acids. The results are presented in the next table (Table 9) and in Figure 24:

Potential canonical Potential non-canonical
binding ZFPs binding ZFPs
Number of ZFPs 25 77
Number of ZF domains | 308 907
Number of domains 4 (1%) 15 (2%)
containing only
hydrophobic aa
Number of domains 25 (8%) 104 (11%)
containing 1 polar aa
Number of domains 116 (38%) 342 (38%)
containing 2 polar aa
Number of domains 163 (53%) 446 (49%)
containing only polar aa
(3 polar aa)
Number of domains 117 (38%) 287 (32%)
containing one Arg at
least

Table 10 - Consistency of the 3 binding positions
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Figure 24 - Consistency of the 3 binding positions

From the analysis above, it seems that there are very few ZF domains that
contain only hydrophobic amino acids in their three DNA-binding positions. In
addition, there are few ZF domains that contain 1 polar and 2 hydrophobic amino
acids. This is compatible with the nature of ZF-DNA binding, since not only H-bonds
tend to be stronger than hydrophobic interactions, but they also induce specificity
between ZFPs and the DNA. In addition, the potential canonical binding ZFPs have
higher consistency of Arg residues and in general of polar amino acids, than the
potential non-canonical binding ZFPs. This could partially explain why the potential
canonical binding ZFPs tend to bind with a short tandem of ZF domains and each ZF
domain interacts with 3 bps. On the contrary, the potential non-canonical binding
ZFPs have less polar amino acids, therefore more disturbed binding, and possibly
lower specificity and affinity.

In order to further investigate the specific physicochemical properties of the
amino acids in each position, we used the PsychoProt server (Abriata et al., 2016).
PsychoProt detects, quantifies and maps on the sequence the biophysical and
biochemical traits that shape amino acid preferences throughout a protein. In
particular, it analyzes tolerance to substitutions at the positions of a given protein
sequence, searching for correlations with specific amino acid descriptors. We used
PsychoProt for analysing the ZF domains of 102 ZFPs, which are already separated
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in two data sets that represent ZF domains that potentially bind canonically and non-
canonically. For each of the two data sets, we aligned the 1138 ZF domains of 21
amino acids length that follow the CX,CX:.HXsH motif. The data set of the potential
canonical binding has 281 canonical ZF domains of 21 amino acids length, while the
data set of the potential hon-canonical binding has 857 canonical ZF domains of 21
amino acids length. Initially, for both data sets, we created the amino acid variability
matrix from the alignment of the 21 amino acid length ZF domains. The amino acid
variability matrix is the input file for PsychoProt and it consists of a number of rows
equals to the length of the protein sequence and 24 columns, which include residue
name, residue number. In addition, there are 20 columns with AAG values
(distribution of each amino acid compared to a reference sequence) and a column of
the k* value (effective number of amino acids that appear at each position). The AAG
is 0 for the reference sequence amino acid at a given position, negative for those
substitutions that appear at a higher frequency than the reference amino acid and
positive for those at lower frequency than the reference amino acid. The range for the
k* value is from 1 for a position fully restricted to one amino acid to 20 for a position
in which any amino acid is equally represented. Next, we provided these matrices
into PsychoProt's tool, to fit the amino acid variability with the physicochemical
descriptors. The threshold of the p-value for fit selection was set to 0.05, in order to
increase the fitness. The results are summed up in the following table and in Figure
25:

Position |Descriptor k* (potential |Descriptor k* (potential |Correlation
(potential canonical (potential non- | non-canonical | Coefficient
canonical binding) canonical binding)
binding) binding)

Cys - 1 - 1 1

-9 Hydrophobicity [8.49 Hydrophobicity |9.69 0.81
(-1) (-1)

-8 no fit 4.03 P (helix) 4.17 0.89

Cys - 1 - 1 1

-6 P (sheet) (-1) 1.69 Steric 1.86 0.81

hindrance (-1)

-5 Hydrophobicity |1.95 Isoelectric point |1.71 0.81
(-1) )

-4 Volume (-1) 5.24 Log (Decay 5.98 0.87

rate) (-1)
-3 no fit 1.27 no fit 1.33 0.9
-2 no fit 8.96 no fit 9.35 0.93
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-1 no fit 11.09 P(helix) (1) 11.8 0.93
1 no fit 9.01 Cost ATP units |9.47 0.9
(-1)
Log (solub) (1) |[2.44 no fit 4.3 0.51
Hydrophobicity |10.44 Hydrophobicit (12.14 0.86
(-1) y (-1)
no fit 1.65 no fit 1.89 0.9
5 P(helix) (1) 8.09 Cost ATP units |9.59 0.78
(-1)
6 Cost ATP units [9.95 no fit 11.96 0.64
(-1)
His - 1 - 1 1
8 no fit 5.24 P(helix) (1) 6.1 0.88
9 Isoelectric point |4.39 no fit 3.51 0.77
1)
10 no fit 3.75 no fit 5.17 0.78
His - 1 - 1 1

Table 11 - PsychoProt's descriptors and k* values. In the first column, we have the
sequence of a C2H2-ZF domain, with respect to the position numbering for each
amino acid. With bold we have highlighted the binding positions (-1, 3 and 6). With
gray we show the coordinating 2 Cys and 2 His. In the 2" and 4™ column we have
the descriptors that had the best fit for the specific position. In the 3" and 5™ columns
we show the k* values (the higher the k* value the higher the variability). In the 6™
column there is the correlation coefficient between the AAG values for the 20 amino
acid for the data sets of the canonical and non-canonical binding.
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Figure 25 - PsychoProt's descriptors. A. Logo of the 21 amino acid length zinc finger

motif and the corresponding positions. B. The physicochemical properties of the

amino acids mapped on the 3D ZF structure, for the potential canonical and non-
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canonical binding. C. k* values for the 21 positions. With purple there are the k*
values for the non-canonical binding data set and with green the k* values for the
canonical binding data set.

In the cases where the k* value is 1 is when we have the presence of only one
type of amino acid in that specific position, i.e. the coordinating Cys and His. On the
opposite, in the cases that we have a high k* value (~ >10) we have a variety of
different amino acids, like in the DNA-binding positions -1, 3 and 6. The amino acids
in these positions induce binding specificity, and therefore, they should have a
variability in order to bind to the different DNA motifs. Also, for both data sets, in the
position -9 we have a preference for polar amino acids. For the position -8 in the
potential non-canonical binding, we have a preference for amino acids that are
favored to be in an a-helical configuration, although there is a loop in the structure.
For the position -6 in the potential canonical binding we have a preference for amino
acids that are not favored to be in a -strand configuration, while in the potential non-
canonical binding we have a preference for amino acids with reduced steric
hindrance. Moreover, in position -6 there is mainly a Gly and therefore we have
reduced steric hindrance, since it's a small amino acid. In addition, Gly is favored for
loops, like the one here, and not for 3-strand configuration, since it creates kinks. For
the position -5 in the potential canonical binding we have a preference for amino
acids that are polar, while in the potential non-canonical binding we have a
preference for amino acids that could be involved in salt bridges and hydrogen bonds
on the polar surface. Specifically, we have mainly a Lys for this position. For the
position -4 in the potential canonical binding we have a preference for amino acids
that have small volume, while in the potential non-canonical binding we have a
preference for amino acids that have low decay rate. For the positions -3 and 4 the k*
values are close to 1 and we have the presence of Phe and Leu, respectively. In
particular, these two amino acids form a hydrophobic core and they help to stabilize
the C2H2 zf motif. For the binding position -1 in the potential hon-canonical binding
we have a preference for amino acids that are favored to be in an a-helical
configuration. In fact, this position is the beginning of the a -helix in the zf structure.
For the position 1 in the potential non-canonical binding, we prefer amino acids that
they have low cost in ATP units. For the position 2 in the potential canonical binding
we have a preference for amino acids that are soluble. The amino acids in this
position sometimes contribute to the DNA binding. Usually a Ser can form H-bonds
with the DNA. For both data sets, in the binding position 3 we have a preference for
polar amino acids, which induces DNA binding. For the position 5 in the potential
canonical binding we have a preference for amino acids that are favored to be in an
o-helical configuration (there is a-helix in the structure), while in the potential non-
canonical binding we have a preference for amino acids that have low cost in ATP
units. For the binding position 6 in the potential canonical binding, we have a
preference for amino acids that have low cost in ATP units. For the position 8 in the
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potential non-canonical binding, we have a preference for amino acids that are
favored to be in an a-helical configuration (there is a-helix in the structure). For the
position 9 in the potential canonical binding, we have a preference for amino acids
that could be involved in salt bridges and hydrogen bonds on the polar surface,
mainly Arg and Lys.

The k* values are in general a bit higher for the non-canonical (avg k* = 6.47)
than the canonical (avg k* = 5.75) binding data set. This could be due to the fact that
the data set of the potential canonical binding has much less canonical ZF domains
of 21 amino acids length (281) than the data set of the potential non-canonical
binding (857). The above could have an impact on the variability of amino acids on
the first set. Also, for the DNA-binding positions (-1, 3 and 6) where there is a
variation of amino acids, we have the highest k* values, while for the coordinating
amino acids (Cys and His) we have the lowest k* values (=1).

Moreover, we clustered the C2H2-ZF domains of the 102 ZFPs through a
phylogenetic tree. We aligned 1138 ZF domains of 21 amino acids length, which
follow the CX.CX1.HX3H motif. In particular, we made an alignment for the positions -
2 to 6 (8 amino acids length). To build the phylogenetic tree we used the PhyML V3.0
software, which is based on the maximume-likelihood principle (Guindon et al., 2010).
The results of this analysis did not show any evolutionary relationship between the
potential binding domains and the potential non-binding domains.

Analysis of the linkers between the ZF domains

From the data set with the 102 ZFPs, 7 out of 25 (28%) of the potential
canonical binding ZFPs have at least one long linker, while 14 out 77 (18%) the
potential non-canonical binding ZFPs have at least one long linker. This could be an
indication that since long linkers separate the ZF tandem in smaller groups of ZF
domains they make it easier for shorter tandems to find their DNA-target.

5.3. Conclusions and perspectives

We analysed the DNA target motifs of 102 human KRAB-ZFPs from ChlP-exo
experiments and we compared them the predicted DNA targets produced by our
recognition code. Moreover, other recognition codes (i.e. Najafabadi et al.) could be
used for further validation.

In general, for ZFPs with poly-ZF domains, the DNA-binding is not always
canonical. Here, we noticed that shorter ChiP-exo DNA maotifs correlate better with
our predicted DNA maotifs, and this could be an indication for canonical binding, since
canonical binding is easier to predict. In ZFPs that bind to the DNA, the consistency
of the amino acids in the DNA binding positions appears to be crucial. From our
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analysis, canonical binding requires more polar amino acids (i.e. Arg) to be present in
the binding positions. In addition, ZFPs that bind canonically tend to use fewer ZF
domains in a tandem and therefore, bind on shorter motifs. This could partially
explain the fact that there are more long linkers between ZF domains in ZFPs that
bind canonically, so that their ZF domains are separated in shorter tandems.
Therefore, the more ZF domains in a tandem, the more the binding is disturbed,
leading to a non-canonical binding. All the above, could be used to improve the
current recognition codes, in order to take into consideration non-canonical binding.

To investigate more other binding modes, more data from ChIP analysis and
solved structures would be useful. Consequently, in order to discover new binding
modes, we should prioritize the crystallization of ZFP complexes with poly-ZF
domains, no long linkers in between and low consistency of polar amino acids in the
binding positions. In addition, the improvement of motif discovery algorithms is
important, in order to get more significant and accurate predictions on the DNA
binding motifs.
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Chapter 6 Conclusions and perspectives

Protein-DNA interactions are involved in many biological functions; there are
proteins that recognize specific DNA bases (i.e. ZFPs) and proteins that recognize a
specific DNA shape (Rohs et al.,, 2010). Therefore, in order to understand these
functions, it is important to know the structures of the protein-DNA complexes that are
involved. Since there are not so many experimentally solved protein-DNA structures,
computational and experimental methods are combined through Integrative
Modeling, in order to build atomistic models of protein-DNA complexes and study
their interactions. To predict the binding residues on the protein-DNA interface
sequence-based or structure-based approaches are used (Si et al., 2015). Structure-
based methods make more accurate predictions than the sequence-based methods,
since structure is more conserved than the sequence. Many of these methods follow
machine learning approaches, but either they are limited to predict if a protein can
bind to the DNA, either they predict the protein binding interface with low accuracy.

In this work, | followed an Integrative Modeling approach to predict the
interface of various protein-DNA complexes (structure-based approach). In particular,
we used a machine learning approach (ANN) to predict the correct interface among
different orientations of a protein on the DNA, of known complexes. The predictions
of the binding-interfaces were of high accuracy. This method can be used to
discriminate the correct complexes from the rest, in an unknown set of complexes,
given a DNA-binding protein and a DNA model. Therefore, it can predict the
interacting interface of a DNA-binding protein, without knowing the structure of the
complex. Unfortunately, our method cannot distinguish between proteins that
recognize specific DNA bases and proteins that recognize a specific DNA shape. In
addition, more descriptors of the interface, derived from structural information, could
help to improve our predictions. Therefore, a combination of various descriptors and
the state-of-art machine learning methods, could improve the accuracy of our
predictions. Furthermore, not only the static properties of protein-DNA complexes
should be considered, but also the conformational changes that occur during the
formation of the complex.

An important family of DNA-binding proteins are the ZFPs that act as TFs and
participate in gene silencing. In the last years, various recognition codes between ZF
domains and the DNA have been proposed. Although there are different experimental
and computational approaches followed, these recognition codes cannot capture the
complexity of the DNA binding landscape.

Here, we defined a computational structure-based method, which gives results
that are very similar to the latest experimental-based recognition methods for ZFPs.
Our recognition code between ZFPs and the DNA is used to predict which ZF
domains of multi-domain ZFPs bind to their DNA target. This recognition code is also
used to predict the most probable DNA target sequence of any ZFP. Our method
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showed that for a ZF domain that recognize 3 nucleotides in a row (canonical
binding), the binding specificity can be predicted. It also includes the effect of the
neighboring ZF domains on binding specificity, which is not always taken into
consideration from other recognition codes. Moreover, our recognition code was
tested on a data set of 17 solved ZFP-DNA complexes and 2 ZFPs with unsolved
structures. It predicted successfully the DNA binding targets in both data sets (where
the binding is canonical). However, in the future we should test our recognition code
with more unsolved complexes. Other limitation is that our code can predict only the
canonical binding mode. Similarly, the other recognition codes model only the
canonical binding. Therefore, more solved ZFP-DNA complexes are needed, in order
to have more information about the other non-canonical binding modes. Since most
of the ZFPs in this study contain a KRAB domain, a further extension to these
recognition codes could be the investigation of the KRAB domain and its role on DNA
specificity.

In some ZFPs with poly-ZF domains, the DNA-binding seems to be disturbed
and follow non-canonical patterns. Here, we tried to investigate these other non-
canonical binding modes of ZFPs. For this reason, we analysed the DNA target
motifs of 102 human KRAB-ZFPs from ChlIP-exo experiments and compared them
with the predicted DNA target motifs produced by our recognition code.

In particular, we noticed that shorter ChiP-exo DNA motifs correlate better with
our predicted DNA motifs and this could be an indication for canonical binding, since
canonical binding is easier to predict. In addition, the type of the amino acids in the
DNA binding positions seems to affect the binding mode. For example, canonical
binding requires more polar amino acids for the binding positions. It appears that
ZFPs that bind canonically tend to use fewer ZF domains in a row tandem and bind
on shorter motifs. Also, the higher is the number of ZF domains in a poly-ZF ZFP,
most probable the binding will be non-canonical. These conclusions should be
validated by comparing the ChlP-exo predicted motifs with the predicted motifs from
other recognition codes. Thus, our analysis could be used to extend the current
recognition codes. To further investigate, it would be useful to have more ChIP data
results and solved ZFP-DNA complexes. Nevertheless, the determination of which
ZF domains and how do they bind to the DNA is a challenge.

To conclude, the prediction of the protein-DNA binding sites and of the DNA
target sequences is very important. In particular, by knowing more about protein-DNA
complexes, we can have an insight into transcription, chromosome packaging and
other functions that protein-DNA interactions are involved. The last years there have
been many approaches, for the various DNA-binding protein families, and specifically
for the KRAB-ZFP family. Nevertheless, the robustness of the predictions of these
approaches is average. One reason is that the DNA-binding domains of the proteins
have many degrees of freedom, in contrast to the DNA that has limited degrees of
freedom. To improve these predictions, both structure and sequence should be taken
into consideration. In addition, there are many different types of DNA-binding
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domains and it is challenging to predict how they will bind to the DNA. Therefore, it
would be better to develop prediction methods for different types of DNA-binding
proteins (i.e. recognition code between ZFPs and DNA). Also, more descriptors of the
interface should be included in these methods (i.e. H-bonds).

Although, studying protein-DNA interactions is challenging, in the next years
the increase of the computational power and the number of solved protein-DNA
complexes, will lead to better predictions on what concerns the field of the protein-
DNA interactions. This will give an insight into their structures and therefore it will
lead to better understanding of their functions.
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Chapter 7 Appendix - Related works addressing protein-DNA
systems

7.1. Molecular modeling of the KAP1 complex

(Fonti G., Marcaida M.J, Bryan L.C., Traeger S., Kalantzi A.S., Helleboid P.Y.J.L.,
Demurtas D., Tully M., Grudinin S., Trono D., Fierz B., Dal Peraro M. KAP1 is an
antiparallel dimer with a natively functional asymmetry — submitted, preprint available
on at bioRxiv 553511; doi: https://doi.org/10.1101/553511)

The KRAB-ZFP/KAP1 complex is an important regulator of the genome.
Unfortunately, the structures and functions of the proteins that participate in this
complex are partially unknown. Our goal was to provide biomolecular models of the
proteins that participate in the KRAB-ZFP/KAP1 complex in order to investigate its
functions. Here, we followed a computational approach and propose an atomistic
model for the KAP1 protein, in order to reveal its structure and its stoichiometry. The
aim of these in silico model is not only to have a better insight into the
KRAB-ZFP/KAP1 complex, but also to be integrated with experimental data.
Eventually, our model for KAP1 was integrated with Cryo-EM and SAXS experimental
data. | contributed to this project by making the initial model for KAP1 and
investigating its stoichiometry, through homology modeling.

The KRAB-ZFP/KAP1 complex

KAP1 (KRAB Assaociated Protein 1) or TRIM28 is a member of the TRIM family
(Tripartite motif) and regulates transcriptional repression. Its structure is modular: at
the N-terminal there are three zinc-finger domains (one RING (Really Interesting New
Gene) followed by two B-boxes), and a CC (Coiled Coils) region, constituting the so-
called RBCC domain (Figure 27). Experiments have revealed that the RBCC domain
binds as a trimer to a single KRAB domain (Peng et al., 2000). The central region of
KAP1 includes the TSS domain (TFF1 Signature Sequence) and the HP1-binding
domain (PXVXL motif), while the remaining central region has not a well-defined
structure. The C-terminal region contains a PHD domain (Plant Homeodomain) and a
bromodomain that interact with chromatin-remodeling proteins, i.e. the PHD domain
has E3 SUMO-protein ligase activity.
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Figure 27 - KAP1 domains. RBCC, TSS, HP1 and PHD-Bromodomain.

The KRAB-ZFP/KAP1 complex is a transcriptional network that participates in
the control of the homeostasis of hematopoietic stem cells in higher vertebrates. It
has been demonstrated that KRAB-ZFPs act as site-specific transcriptional
repressors, which together with KAP1 mediate the silencing of ERVs and of murine
leukemia virus in embryonic stem cells (Aktas et al., 2010; Wolf & Goff, 2007). As
well, the highly conserved KRAB-ZFP family member ZFP57 is responsible for the
maintenance of imprinting marks, including DNA methylation, during early
embryogenesis, through its binding to a methylated hexa-nucleotide found in all
murine and human imprinting control regions (ICR), where it and KAP1 recruit
SETDB1, Dnmtl, Dnmt3a, Dnmt3b and NP95 (Li et al., 2009; Mackay et al., 2008). In
addition, recently it has been shown that the KRAB/KAP1-mediated sequence-
specific recognition of thousands of genomic loci, including ERVs, in embryonic stem
cells leads to their DNA methylation, thus ensuring the genome-wide establishment
of site-specific epigenetic marks that are subsequently maintained during
development (Quenneville et al., 2013). Finally, KAP1 and/or specific KRAB-ZFPs
have indeed been demonstrated to play an important role in tumorigenesis, in the
control of behavioral stress and Parkinson disease, in the differentiation and
activation of both the humoral and cellular arms of the immune system, and in the
sex-specific metabolic control of hormones, drugs, and xenobiotics in the liver
(Cammas et al., 2000; Jakobsson et al.,, 2008; Sio et al., 2013). Despite this
emerging importance in biological processes and diseases, little is known about the
specific interactions of the various proteins complexes that participate in this system.

KRAB-Zinc Finger Proteins and KAP1 can mediate long-range transcriptional
repression through heterochromatin spreading (Groner et al., 2010). Literature
suggests that KAP1 performs diverse functions by forming a complex assembly with
chromatin-remodeling proteins (Mi2a, SETDB1, HP1 etc.), which allow it to regulate a
heterochromatic microenvironment (Sripathy et al., 2006) (Figure 28). KAP1
recruitment to the genome is made by its RBCC (N-terminal RING
finger/B-box/Coiled Coil) domain that can bind with the KRAB domain of KRAB-ZFPs,
which target KAP1 to specific DNA sequences through their DNA-binding zinc
fingers. Silencing by the KRAB-ZNF/KAP1l complex requires post-translational
modification of KAP1 by SUMO on specific lysines in the KAP1 bromodomain. The
adjacent PHD domain serves as an intramolecular E3 ligase for bromodomain
sumoylation. The histone deacetylase complex NuRD and the histone
methyltransferase SETDB1, leading to histone deacetylation, deposition of H3K9me3
and binding of HP1 recognize the attached SUMO moiety (Friedman et al., 1996).
These proteins place chromatin repressive marks on histones and help to establish
silenced state of KRAB-ZNF target genes. The SUMO modification of proteins in
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general is required for normal chromosome condensation and mitosis. Also, KAP1
mediates localized compaction of euchromatin to heterochromatin that is necessary
for suppression of specific gene transcription, and that is associated with chromatin
modifications (lyengar & Farnham, 2011).

Figure 28 - The KRAB-ZFP/KAP1 complex and its cofactors.

A molecular model for KAP1

KAP1 model is designed based on existing, homologous structures of RING, B-
box and potential coiled a-helical domains. The TSS and HP1-binding domains
occurred by the combination of predicted and real structures, while the PHD-
bromodomain is the only part that was previously solved. By combining different
modeling techniques, we have built a structural model for the KAP1 (Uniprot:
Q13263) (Figure 29). To construct the RBCC domain we used SWISS Model server
(Schwede et al., 2003) for homologous modeling. In particular, the RING domain was
based on the RING-RING dimer of Rad18 (pdb: 2Y43) (Huang et al., 2011), the B-
Box1 was based on the B-Box from MuRF1 (pdb: 3DDT) (Mrosek et al., 2008), and
the B-Box2 was based on the B-Box domain of Trim54 (pdb: 3Q1D). The CC domain
was based on the CC domain of the TRIM69 (pdb: 4NQJ) (Li et al., 2014). For the
central part of KAP1, Robetta server was used to model the TSS domain. While
Modeller v9.14 (Eswar et al., 2006) was used for the HP1-binding domain, using as a
multiple template the structure of the EMSY-HP1 complex (pdb: 2FMM_E) (Huang et
al., 2006) and the structure of the small subunit of the mammalian mitoribosome
(pdb: 5AJ3_a) (Greber et al.,, 2014). For the PHD finger-bromodomain there are
already NMR structures deposited in PDB (pdb: 2R0O1) (Zeng et al., 2008). All the
missing parts and loops were constructed by Rosetta's loop modeling application
v3.5 (Wang et al., 2007; Leaver-fay et al., 2011).
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HP1-Bind

Figure 29 — Initial molecular model for KAP1

The models of the RING domain and the second B-box domain of the RBCC
were built with high accuracy since there were solved structures with homology 30%
and 32%, respectively. The model of the first B-box domain was also based on a
homologous domain (25%), but since it's an atypical B-box domain | expect that the
accuracy can be lower possibly due to a partially incorrect sequence alignment. In
addition, the Ring and the two B-box domain models had some missing parts that
were reconstructed and this might have introduced inaccuracies. The CC domain
model was based on modeling from a a-helical domain of the same family, which
provide a quite accurate model. The TSS and HP1-Bind domains are not based on
homologous proteins; consequently, these are the domains that can suffer from
higher inaccuracies. In particular, TSS domain model was based on a structural
prediction, while HP1-Bind domain was built by combining a low homologous peptide
(21%) with the structure of another HP1-binding domain. The loops between the
domains are flexible, therefore this preliminary model does not allow at the moment
to have insights into the specific interactions of the various domains with the complex
itself and other cofactors. Functional and structural data that will be collected in the
future will aid to improve the model in this respect. The KAP1 model that was
developed here is a monomer and therefore it does not represent the overall image
of the active polymer that interacts with the KRAB domain, which was proposed in
the literature to act as a trimer (Peng et al., 2000). However, this preliminary model
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has so far been functional to aid the experiments in our lab, by providing structural
information about the boundaries of each domain.

Possible oligomerization states of the RBCC domain

In past experiments, it was shown that three RBCC domains can form a homo-
trimer and interact with one KRAB domain (Peng et al., 2000). Also, according to the
MultiCoil program (a program for predicting two- and three-stranded coiled coils in an
alignment) (Wolf et al, 1997), the probability in average of the CC domain to form a
trimer is two times higher than the probability to form a dimer. Another indication for a
trimer, according to the CCBuilder tool v1.0 (Wood et al., 2014), is that Rosetta's
energy score for the CC homo-trimer molecular model is negative indicating a stable
complex formation, while for the (parallel or anti-parallel) homo-dimer model is
positive. Nevertheless, experiments in our lab using an array of different techniques
clearly indicate that the RBCC domain forms a dimer (of molecular weight 92 KDa).
In particular, after cloning and purifying a construct of the RBCC domain, our lab
performed experiments for the biophysical characterization of the oligomerization
state of this construct in solution (using static light scattering and analytical
ultracentrifugation), and concluded that it forms a dimer (in solution). An additional
evidence that RBCC can have a dimer form in solution is brought by the crystal
structure of the B-Box-Coiled-coil region of Rhesus Trim5alpha which belongs to the
TRIM familly and forms itself an anti-parallel dimer (Goldstone et al., 2014). These
opposing indications lead us to develop a third hypothesis in which a dimer of the
RBCC domain forms eventually a trimer coiled coil complex with one of the helices of
the KRAB domain of a ZFP. To sort and evaluate these three cases we will build
using CCBuilder v1.0 all the three possible models of the CC domains. We have built
molecular models of the KAP1 complex for an anti-paraller dimer based on the
crystal structure of Rhesus Trim5alpha, and a paraller dimer and a trimer based on
software predictions and constructions (Figure 30).
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Figure 30 - Possible oligomerization states of the RBCC domain: A. Anti-parallel
dimer. B. Parallel dimer. C. Trimer

These models can give an insight into the potential structural complexes that
the RBCC domains, and in extent the KAP1 oligomers, could form between them.
Yet the fluctuations of the domains and the mechanics of the overall complexes due
the flexibility of the loops, are not observable. The trimer model comes in agreement
with literature's suggestion that three KAP1 proteins form a complex to interact with a
KRAB domain, but it needs more experimental data to be confirmed. The parallel
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dimer model also confirms the experiments in our lab, but the packing of the two CC
domains is not favorable, making this model unrealistic. The anti-parallel dimer
model could be a realistic representation of the KAP1 polymer, since it is based on a
crystal structure of a protein complex of the same family (TRIM family) and it
confirms the preliminary observations of the experiments from our lab. These facts
make the anti-parallel dimer model of KAP1, the most consistent model between the
three that are proposed here. Eventually, both CryoEM and SAXS results from lab
experiments confirm the anti-parallel dimer model as the most accurate model,
leading to further refinement and improvement (see submitted paper).

In this work, we showed that KAP1 is an elongated antiparallel dimer with a
native asymmetry at the C-terminus domain. This conformation supports our finding
that the RING domain influences KAP1 autoSUMOylation. This intrinsic asymmetry
has key functional implications for the KAP1l network of interactions, as the
heterochromatin protein 1 (HP1) occupies only one of the two putative HP1 binding
sites on the KAP1 dimer, resulting in an unexpected stoichiometry, even in the
context of chromatin fibers. Similarly, this functional asymmetry in recruiting partners
with controlled stoichiometry can be present for other KAP1 interacting partners,
such as the MAGE (melanoma antigen genes) protein of KRAB-ZFPs, that interact
with the CC domain (Moonsmann et al.,, 1996; Yang et al., 2007; Schultz et al.,
2002). For the latter in fact it has been recently shown that KAP1 FL binds only one
KRAB domain of the ZNF93 at around the CC domain (to be submitted).
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7.2. Molecular modeling of the CLOCK:BMAL1 complex bound to DNA

(Sobel J.A., Krier I., Andersin T., Raghav S., Canella D., Gilardi F., Kalantzi A.S., Rey
G., Weger B., Gachon F., Dal Peraro M., Hernandez N., Schibler U., Deplancke B.
and Naef F. Transcriptional regulatory logic of the diurnal cycle in the mouse liver.
PLoS Biol. 15:2001069, 2017)

The CLOCK:BMAL1 complex consists of two proteins arranged in a
heterodimeric transcriptional activator, a key component of the circadian clock in
mammals. It regulates gene expression by interacting with a palindromic promoter
element termed E-box (CACGTG), while it has been proposed that a repeat of two E-
box sequences with a distance of 6 or 7 base pairs between them is required
(Nakahata, et al. 2008). Also, BMAL1 footprint reveals temporally distinct protein-
DNA complexes, consistent with a hetero-tetramer DNA-binding model. Based on the
above, within the manuscript of Sobel et al. | proposed two models of the two
CLOCK:BMAL1 complexes binding on the two E-Boxes with a distance of few
nucleotides between them. In the first model the spacing between the two E-boxes is
6 base pairs (sp6) (Figure 31) and in the second model the spacing is 7 base pairs
(sp7) (not shown). For the model of the single CLOCK:BMAL1 complex we used the
crystal structure of the heterodimeric CLOCK:BMAL1 (pdb id: 4F3L) (Huang et al.,
2012), in which we build the missing parts of the flexible loops. In order to bind the
single CLOCK:BMAL1 model on the E-box we used the complex crystal structure of
the CLOCK:BMAL1 basic helix-loop-helix domains bonded on the E-box (CACGTG)
(pdb id:4H10) (Wang et al.,, 2013). Eventually, we superimpose the two single
CLOCK:BMAL1:E-box models, with the sp6 DNA and the sp7 DNA, forming the
respective symmetric dimer models.

The models give an insight into the molecular mechanisms of the circadian
clock, in respect with the literature and the footprint results. An analysis of the
interactions between the two CLOCK:BMAL1 complexes could indicate the amino
acids that maintain the stability of the overall complex, although experiments in vitro
will be still necessary to confirm it.
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Figure 31 - A model for the CLOCK:BMAL1 heterotetramer (with 6 bps spacing)

Eventually, the analysis of DNase | cuts at nucleotide resolution showed
dynamically changing footprints consistent with dynamic binding of CLOCK:BMAL1
complexes. Our structural model suggested that these footprints are driven by a
transient heterotetramer binding configuration at peak activity. Together, our
temporal DNase | mappings allowed us to decipher the global regulation of diurnal
transcription rhythms in the mouse liver.
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7.3. Molecular modeling and molecular dynamics simulations of the Hop2-
Mnd1-DNA complex

(Kang H.A., Shin H.C., Kalantzi A.S., Toseland C.P., Kim H.M., Gruber S., Peraro
M.D., Oh B.H. Crystal structure of Hop2-Mnd1 and mechanistic insights into its role in
meiotic recombination. Nucleic Acids Research. 43:3841-56, 2015)

In meiotic DNA recombination, the Hop2-Mndl complex promotes Dmcl-
mediated single-stranded DNA (ssDNA) invasion into homologous chromosomes to
form a synaptic complex by a yet-unclear mechanism. | used available structural
information to understand how the WHD pair of Hop2-Mnd1 might bind dsDNA. The
WHDs of both Hop2 and Mndl are structurally most similar to the WHD of
transcription regulator TtgV among the known structures of the WHDs in complex
with the DNA, according to the Dali server (Homl et al., 2010). Structural
superposition of the TtgV:dsDNA complex onto both WHDs of Hop2 and Mndl
indicated that binding of the juxtaposed WHDs to a continuous DNA is likely to
require severe distortion of the DNA. To investigate further, we modeled dsDNA
bound to the WHDs based on the TtgV:dsDNA structure (Figure 32), and after
geometry optimization, we could confirm indeed that dsDNA is highly perturbed in the
model. Based on this initial model, we performed MD simulations to further test the
stability of the complex and the structural changes produced upon dsDNA binding.
MD simulations revealed a distortion in the base pairing in between the WHDs.

Figure 32 - A model for dsDNA binding to the WHD pair of Hop2-Mnd1. The model
aims to explain how the Hop2-Mndl complex binds to dsDNA and distorts its
structure, promoting the Dmc1-mediated ssDNA strand invasion. This model can be
used to build a complex with the Dmcl filament and give an insight into the
mechanism of meiotic recombination.

It seems that the winged-helix domains are juxtaposed at fixed relative
orientation, and according to our molecular simulations, their binding to DNA is likely
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to perturb the base pairing. These findings allow us to propose a model explaining
how Hop2-Mndl juxtaposes Dmcl-bound ssDNA with distorted recipient double-
stranded DNA and thus facilitates strand invasion.
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