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Abstract 

Improving the energy sustainability of our cities involves the integration of multiple renewable 

energy technologies into existing energy infrastructure, stretching the capabilities of traditional 

energy systems to the limit. To consider the transition take place in distributed energy system 

sector, complex cyber physical interactions need to be adequately modelled, which is not possible 

with currently used white box models. Furthermore, the volatility of climate conditions and frequent 

extreme climate events due to climate change as well as climate phenomena at urban scale make it 

essential to improve the robustness and resilience of energy systems. Again, white box models do 

not allow sufficient flexibility in the modelling approach. To address these limitations, thesis seeks to 

optimize distributed energy system design with the help of grey- and black-box techniques. 

 A grey box model based on fuzzy logic is introduced to consider the dispatch strategy when 

designing electrical hubs. The grey box model shows better performance when optimizing electrical 

hubs. It has been shown that the method can achieve a renewable energy integration level of up to 

80%. However, the grey box model fails to handle complex energy flows within the energy system. 

Therefore, a black-box method based on reinforcement learning is introduced to consider complex 

energy systems catering multi-energy services. Reinforcement learning based on a fully connected 

neural network (FNN), outperforms the grey box model by improving the objective function values 

by 60%. A convolution neural network improves the objective function values further (by up to 20% 

compared to FNN). The results reveal that black box models are competent when conducting 

optimization for complex energy systems. Distributed optimization is introduced to move from a 

single energy system to an energy internet consisting of several interacting energy systems. The 

energy internet is optimized considering fully cooperative and non-cooperative scenarios. The 

optimization algorithm shows a good capability to reach the Epsilon-Nash equilibrium when 

conducting the optimization. Finally, supervised and transfer learning methods have been 

introduced when conducting energy system optimization at the regional and national scale, which 

reduced the computation time by 84%.       

Stochastic and robust programing methods are introduced to improve the climate flexibility of 

energy systems. A hybrid stochastic-robust optimization algorithm is developed by extending the 

novel approach to consider both climate uncertainty and extreme events. A regional climate model 

provides climate scenarios for the stochastic optimization. The results of the study show that 

renewable energy technologies such as solar PV and wind can be used to cater 50% of the annual 

energy demand while guaranteeing a robust operation of the energy system during extreme climate 

events. The model is then further extended by integrating computational models for urban energy 

simulation considering urban climate. Results of the analysis show that a performance gap of up to 

40 % can be observed when neglecting the influences of urban climate in the design of urban energy 

systems. In the final part of this thesis, a multi-criterion decision making technique is introduced into 

the energy system optimization model. This helps decision makers to weight a number of conflicting 

objectives and to consider impacts at the urban scale. 

Key words: Urban Energy Systems, Machine Learning, Distributed Optimization, Urban Physics, 

Climate Change, Multi-criterion Decision Making, Energy Sustainability    
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Résumé 
Pour rendre nos villes plus durables du point de vue énergétique, diverses énergies renouvelables 

sont intégrées à l’infrastructure existante, se heurtant aux limites de cette dernière avec des pertes 

d’énergie majeures à la clé. L’optimisation des systèmes énergétiques décentralisés demande la 

modélisation d’interactions matériels et informatiques complexes, impossible avec l’approche en 

boîte blanche utilisée communément. Par ailleurs, la volatilité des conditions climatiques et la haute 

probabilité d’événements climatiques plus fréquents et plus extrêmes tout comme des phénomènes 

climatiques urbains nécessitent une grande solidité et une résilience des systèmes énergétiques. La 

modélisation en boîte blanche ne permet pas une flexibilité suffisante là non plus. Cette thèse 

cherche par conséquent à optimiser la conception de systèmes énergétiques à l’aide d’une 

modélisation en boîte grise et en boîte noire. 

Un modèle informatique en boîte grise, fondé sur la logique floue est introduit afin de prendre en 

compte la stratégie d’acheminement lors de la conception d’une Pélectrique. Il a été démontré 

qu’ainsi jusqu’à 80% d’énergie renouvelable peuvent être intégrés. Or la modélisation en boîte grise 

n’est pas en mesure de traiter des flux d’énergie complexes à l’intérieur du système énergétique. 

Dès lors, une méthode de modélisation en boîte noire fondée sur l’apprentissage par renforcement 

est introduite afin de permettre la prise en compte de systèmes énergétiques complexes intégrant 

des services multi-énergétiques. L’apprentissage par renforcement fondé sur un réseau neuronal 

entièrement connecté surpasse le modèle à boîte grise, améliorant les valeurs de fonction objectif 

de 60%. Un réseau neuronal convolutif les améliore encore de 20 %. Ces résultats démontrent la 

compétence de modèles en boîte noire dans le cadre d’optimisation de systèmes énergétiques 

complexes.  

L’optimisation distribuée est introduite pour le passage d’un système unique à un internet 

énergétique consistant de plusieurs systèmes interconnectés. Ce dernier est optimisé pour des 

scénarios coopératifs et non coopératifs. L’algorithme d’optimisation démontre une excellente 

capacité d’atteindre l’équilibre Epsilon-Nash. Enfin, des méthodes d’apprentissage supervisé et de 

transfert sont introduits pour l’optimisation à l’échelle régionale ou nationale, diminuant le temps 

de calcul de 84%. 

Des méthodes de programmation stochastiques et robustes sont utilisées afin d’améliorer la 

flexibilité de systèmes énergétiques par rapport au climat. Un algorithme hybride d’optimisation est 

ajouté pour la prise en compte de l’incertitude climatique et d’événements climatiques extrêmes. 

Un modèle climatique régional fournit des scénarios pour l’optimisation stochastique. Les résultats 

montrent que les énergies renouvelables telles que le pv et l’énergie éolienne peuvent fournir 

jusqu’à 50% des besoins annuels grâce à cette approche, tout en garantissant une opération 

robuste. Le modèle est étendu encore par l’intégration de modèles informatiques d’énergie urbaine 

en tenant compte du climat urbain. Une analyse démontre un écart de performance de près de 40 % 

si l’impact du climat urbain est négligé dans la conception d’un système énergétique urbain. 

Finalement, une approche multi-critère de prise de décision est introduite dans le modèle, 

permettant aux décideurs de pondérer des objectifs contradictoires et de considérer leurs impacts à 

l’échelle urbaine. 

Mots clé: systèmes énergétiques urbains, apprentissage automatique, optimisation distribuée, 

physique urbaine, changement climatique, décisions multi-critères, durabilité énergétique  
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controller ( DW  ) 
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LimBD limit cost for battery discharge ($) 
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min

ICGP   Minimum power output of ICGs (kW) 

IG

tP  Units imported from the grid (kWh) 
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W

tP  Power generated from wind turbines (kW) 
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vCI Cut-in wind speed of the turbine (ms
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1  Introduction 

Readers are encouraged to read the following book chapter and journal paper for further 

information 

A. T. D. Perera, Silvia Coccolo, Pietro Florio, Vahid M. Nik, Dasaraden Mauree and Jean-Louis 

Scartezzini,  Linking Neighborhoods into Sustainable Energy Systems, Teodora-Emilia Motoasca 

(eds.), Avinash Kumar Agarwal (eds.), and Hilde Breesch (eds.), Energy Sustainability in Built and 

Urban Environments, Springer-Nature Publishers 

 

Dasaraden Mauree, Silvia Coccolo, A.T.D. Perera, Vahid M. Nik, Emanuele Naboni, Jean-Louis 

Scartezzini Addressing sustainability and resilience of urban areas to bridge the gap between the 

well-being of urban dwellers and  the urban energy system infrastructure (manuscript under review 

in  Renewable and Sustainable Energy Reviews) 
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1.1. Energy sustainability of ever expanding cities 

Energy sustainability of cities is a target that needs to be achieved by improving both demand side 

and generation. However, it is more complicated than simply improving the energy efficiency and 

sustainability of a single sector because there are complex interactions between different sectors. A 

wide community of researchers aims to make 100 % renewable energy systems a reality [1–5] in 

order to improve the sustainability of energy sector. Replacing dispatchable energy sources driven 

by fossil fuel by distributed solar PV (SPV), wind and biomass/bio energy sources is a major challenge 

in this context. Mismatch in time of peak demand and generation due to the stochastic nature of 

wind speed and solar radiation makes the renewable energy integration process difficult [6,7]. A 

number of recent studies have focused on this aspect by addressing technical issues [8–11]. Battery 

banks, H2/fuel-cells, etc. can be used to store electricity when renewable energy resources are 

ample and cater the electricity demand when renewable energy is scarce. Improving the 

architecture of energy systems by integrating energy storage and conversion technologies helps 

improving the contribution of renewable energy technologies [12]. Multiple energy sources, 

conversion methods and storage devices will however complicate the energy flow within the system, 

especially when catering the demand of multiple energy services.  

 

1.2. Ever increasing complexity of the energy system super-structure and the challenges in the 

design process  

Power generation by using fossil fuels based on the Rankine cycle, the Bryton Cycle or internal 

combustion generators are mature technologies. Concurrent generation of heat and electricity by 

using fossil fuel resources with a vapor power cycle and a gas power cycle have been amply 

discussed in the literature. However, this should not undermine recent efforts to develop 

thermodynamic cycles such as the Organic Rankine Cycle, the Kalina cycle, etc. which are live 

examples for improvements in energy conversion methods [13,14]. Classical decentralized power 

systems tend to follow a simple strategy when catering the varying demand (load factor of the 

device is adjusted to cater the changes in demand) [15]. This strategy can be extended in order to 

improve the efficiency when combining several dispatchable energy sources where an energy 

economic dispatch strategy can be used to derive the optimum operating point of each dispatchable 

energy source [16]. The dispatch of conventional power systems considering energy -economic and 

environmental aspects is a rich area of study. 

When considering renewable energy integration, a number of studies have focused on the use of 

geothermal, biomass and bioenergy to replace fossil fuel resources. However, a notable change in 
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energy system architecture cannot be observed in these instances although improvements in energy 

conversion technologies are reported (except for hybrid power cycles). Integrating solar energy into 

an energy system is more difficult when compared to biomass and geothermal from the 

optimization perspective due to its stochastic nature [17]. A number of studies have focused on solar 

thermal power generation assisting concentric solar collectors where classical power generation 

methods can be used [18]. At the same time, recent studies have focused on using solar thermal 

energy with energy storage [19]. Phase change materials have been suggested to store energy using 

latent heat [20]. In addition, use of solar thermal energy combined with biomass and geothermal 

energy has also been discussed [21]. Both the aforementioned methods can be used to harness solar 

energy with minimum impact on the grid. In general, these techniques can be categorized as use of 

non-dispatchable thermal energy source to generate electricity with the support of an energy 

storage and dispatchable energy source where improvement in system architecture is witnessed to 

integrate renewable energy.     

Similar to renewable based thermal energy, grid integrated Solar PV (SPV) systems and wind farms 

have been amply discussed. Hybrid energy systems combining SPV panels, wind turbines, energy 

storage/s and dispatchable energy sources are also getting popular [22]. These systems have been 

used for a number of applications considering both the grid-connected and the stand-alone mode of 

operation. A number of system configurations have been proposed when moving from electricity 

supply to providing multi energy services [12]. Depending upon the energy services provided by the 

system, multiple energy storages can be used (though not more than one energy storage per energy 

service), which will absorb the fluctuations of non-dispatchable energy sources. In addition, there 

are instances where cascade storages are used (more than one storage is used to store energy per 

one energy service). A few energy storage technologies, such as battery banks, H2 storage, 

compressed air, pump water storage, super capacitors can be used considering techno-economical 

aspects. Similarly, several PCMs have been used in cascade thermal storages. The superstructure of 

the energy systems can be further extended considering non dispatchable energy storage such as 

electric vehicle and buildings as thermal storage, which will make the superstructure more 

complicated [23,24]. In addition, elasticity of demand can be considered. Access to renewable 

energy technologies and the potential of these renewable energy technologies, seasonal variation of 

these energy sources as well as the capacity factor of the energy system can be used to simplify the 

superstructure, which will make the design and the real-time control of the system achievable. 

 

1.3. Practices in the present state of the art and its limitations 

Energy systems are getting more and more complicated as they are expected to cater multiple 
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energy services connected to multiple energy sources, conversion methods, storage devices and 

grids [25,26]. There exists more than one way to cater the demand in most of the instances; 

especially for instances where non-dispatchable energy sources are integrated (as explained before). 

Furthermore, future forecasts for renewable energy generation demand for multiple energy services 

and real time price of multi energy services in the grid need to be considered, which makes it 

difficult to determine the optimum control strategy for an energy system. Hence, it is important 

identify the best technique that can be adopted in this regard.  

 

The choice of a given energy management system for a particular time step will influence the 

performance of the system in the next few time steps.  For example, the decision to discharge a 

battery bank at time step t will result in a loss in renewable energy storage or a load mismatch in 

catering multi energy services in time step t+n. Hence, it is important to understand the influence of 

the dispatch strategy in system sizing. On the other hand, the dispatch strategy depends on the 

system configuration. These aspects are coupled.. A simplified dispatch strategy is therefore used in 

system configuration optimization, which will evaluate the critical aspects of energy management 

important for system sizing as shown in Fig. 1.1.  

 

Dispatch strategy
System configuration 

optimization

Dispatch strategy
System configuration 

optimization

Dispatch 

strategy

Decoupling the 
problem

 

Fig. 1. 1: Interrelationship of system configuration and dispatch strategy 

For the sake of simplicity, optimization methods used in the present state of the art can be classified 

into two categories. The first type is based on design optimization combining rule based dispatch 

strategies; the second method is based on design optimization with a selected day-hour dispatch 

strategy [27,28]. The former is used in design problems where energy flow within the system is 

simple. It is assumed that the system can operate in a finite number of states and the state 

transition is optimized considering the changes in input parameters considering it as a Markov 

Decision Process (MDP). This can be conducted as a single level or bi-level optimization problem 
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[27,28]. The main advantage of this method is simplicity. However, when multiple energy sources 

with multiple energy conversion techniques are considered to cater multiple energy services, 

operating states grow exponentially. This leads to instances where the operation strategy needs to 

be simplified extensively, thereby not replicating the real-time operation of the energy system in the 

operation. This specific weakness makes it difficult to use this method in urban energy system 

design. 

The second method is the selected day-hour approach. A bi-level optimization algorithm is used to 

design the energy system [29–31]. The primary algorithm focuses on optimizing the dispatch 

strategy and the secondary algorithm focuses on optimizing the system configuration. Initially, a few 

representative time slots will be selected and the performance of the system is optimized for the 

selected time slots instead of 8760 time steps. Both mono and multi objective optimization have 

been conducted considering aspects such as lifecycle cost, environmental impact etc. Ralph Evins 

[29] extended the bi-level optimization algorithm to consider 8760 time steps, not to be limited to a 

few selected days and hours. However, the computational time increases by up to three days when 

using this method. According to Murray et-al [32] and Paolo et-al [33], the computational time 

required for a bi-level optimization algorithm can be reduced by using a MILP for both system design 

and operation strategy while considering 8760 time steps, which allows considering seasonal 

storage. According to Murray et-al [32], future forecast for non-dispatchable renewable energy 

sources, grid conditions which can be used with model predictive control (MPC) scheme to assist the 

energy system optimization process. Paul et-al [34] incorporated MPC into the dispatch strategy in 

the energy system optimization process. However, they limited the scope to selected days and hours 

without considering 8760 time steps. Furthermore, uncertainty in renewable energy generation, 

demand and grid conditions are not considered in their work and the time horizon for the forecast is 

for short term storage. 

 

When considering the recent literature, we understand that the complexity of the models used to 

optimize energy systems has increased significantly in order to accommodate the growing 

complexity of energy systems. White box models have become competent in efficiently modeling 

energy conversion processes within energy systems. However, such a high level of proficiency has 

not been exhibited in two respects i.e. handling the uncertainty and data driven models. For 

example, there is no satisfying way to convert climate relevant uncertainty into energy system 

relevant information while accommodating it in the optimization process. As a result, the 

vulnerability of energy systems to extreme climate events becomes higher. On the other hand, 

electric vehicles, smart buildings and P2P trading demand the energy system to be sensitive to the 
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information flow requiring data driven approaches to be incorporated into the design process not to 

be limited to white box models [35]. Such a change in the urban energy system modeling approach is 

essential in the energy system design process in order to speed up the energy transition.  

 

When integrating non-dispatchable renewable energy technologies such as solar PV and wind in 

distributed energy systems, their energy interactions plays a vital role. The exchange of information 

among the distributed energy systems is essential for their smooth functioning. The concept of an 

energy internet has emerged in order to allow higher interactions among distributed energy systems 

through a multi-energy network [36,37]. However, the recent literature on energy system design 

uses a similar approach for single energy systems and multiple energy system scenarios (energy 

internet). Either each energy system is optimized separately or the entire energy internet is 

optimized in a single step as shown in Fig. 1.2. Although material, energy and cash flows among the 

energy systems can be accounted in this way, it is time consuming to accommodate information flow 

by using the white box methods as practiced at present. As a result, there is a research gap with 

regard to incorporating information flow among the energy hubs, which is essential for the 

operation of each energy hub while interacting with others. Consideration of information flow in the 

design phase allows energy internets to accommodate higher fractions of renewable energy 

technologies while maintaining their autonomy [35,38]. Hence, data driven approaches based on 

grey and black box methods should be looked on as possible alternatives to the currently used white 

box models. 

Chapter 2 of this thesis assesses the capability of grey box models when designing distributed energy 

systems. Following the introduction of the grey box model used to optimize energy hubs, a 

comprehensive assessment is conducted to evaluate the potential of incorporating non-dispatchable 

renewable energy technologies for a single energy hub when using grey box models. Chapter 3 

further extends the grey box model to a black box model where machine learning is introduced to 

design distributed energy systems. Reinforcement learning is introduced to consider complex 

operation of energy systems while incorporating the forecast for renewable energy potential, grid 

conditions and demand. Chapter 4 extends the scope further, moving from a single distributed 

energy system to an energy internet where several energy systems interact with each other in order 

to cater the energy demand of a wider area. Distributed computing is introduced in this study for the 

first time to design energy internets. A comprehensive assessment is conducted on the design of an 

energy internet considering three operating modes: 1) grid optimization followed by energy system 

optimization, 2) fully cooperative scenario and 3) non-cooperative scenario. Renewable energy 

integration, lifecycle cost, system configuration etc. of each energy system as well as the energy 



7 
 

internet are discussed in detail for three scenarios.  

Considering each energy system 
separately in the optimization 

Considering the entire energy internet 
in the optimization  

Fig. 1. 2: present approaches used to design energy internet. 

Energy system optimization conducted using white box models often requires starting from the 

initial conditions whenever there is a notable change in demand or renewable energy potential. 

Hence at the regional or national scale top down statistical models need to be used , although these 

do not have a higher accuracy when compared to the bottom up models. One of the main 

advantages of data driven models is their capability to quickly adapt to the changes in the external 

environment. Chapter 5 of this thesis presents the capability of using a transfer learning technique in 

order to adapt the computational models developed in Chapters 2 and 4, which enables design of 

distributed energy systems at regional and national scale. 

   

1.4. Uncertainties, vulnerability and resilience 

A number of different uncertainties need to be considered when designing distributed energy 

systems. According to George et-al, [39] the uncertainties in demand, renewable energy potential 

and market prices can have a notable impact on both design and operation of distributed energy 

systems. Assessing both the short-term and long-term impact of uncertainties becomes a broad area 

of study. Considering both scope and relevance to the urban context, this thesis limits its scope to an 

analysis of the impact of climate uncertainty on the design process of distributed energy systems. 

Towards this end, possible methods to incorporate the climate uncertainty and extreme climate 

events are discussed in Chapter 7 and 8. The computational models developed in Chapters 2 and 3 

are extended further to design climate resilient urban energy infrastructure. The deterministic 

model introduced in Chapters 2-5 is extended to a stochastic model in Chapter 6. 

According to Panteli & Mancerella [40], converting climate relevant data into energy system relevant 
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data requires a large pool of scenarios to be simulated. Several recent studies have focused on 

optimizing the design of distributed energy systems considering climate uncertainty. However, these 

studies either limit the impact assessment to selected time steps or significantly reduce the number 

of scenarios when conducting the optimization process. Furthermore, none of the recent studies 

have considered the impact of extreme climate conditions on the energy system. Towards 

addressing these limitations in the present state of art, Chapter 6 tries to develop a computational 

platform that combines an energy system optimization model with a regional climate model (Fig. 

1.3). Several climate scenarios are developed in order to represent both climate uncertainty and 

extreme events. Graphical Processor Unit (GPU) computing is introduced in order to consider a 

larger pool of scenarios (above 5000) through large scale parallelization. Finally, Chapter 6 

introduces a hybrid stochastic-robust optimization algorithm that can consider both climate 

uncertainty and extreme events. Promising pathways for climate adaptation in the energy sector are 

discussed especially from the distributed energy system perspective. 

Flexibility of the energy system is important for climate adaptation. Although this has been widely 

discussed from an operation perspective, it has not been discussed in detail from a design 

perspective, which is equally important. Therefore, Chapter 7 proposes to redefine the flexibility 

concept considering the design of the energy system. A novel method is proposed to compute the 

capability of energy systems to withstand performance degradation due to climate uncertainty. 

Subsequently, the flexibility level of several energy system designs is evaluated.    
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1.5. Extending the design process to the urban scale and the assessment of energy systems 

Regional climate models discussed in Section 1.4 can only present the climate effects at the meso-

scale. Such meso-scale models fail to present phenomena such as the urban heat islanding effect, 

the cooling pool effect etc., which play a major role in the energy system design process. Hence, 

bringing urban physics into the energy system design is important during the design process of urban 

energy systems. Chapter 8 extends the urban energy system design process to consider the urban 

climate. An urban climate model is coupled with an urban simulation model and an energy system 

optimization model (introduced in Chapters 2 and 3) in order to consider the influences of urban 

physics. Such a coupling notably extends the scope of the energy system model developed in 

Chapter 2, 3 and 5. The impacts of urban climate on the energy demand under different urban 

densities are investigated in Chapter 8 with the focus on understanding the influences of urban 

climate on the energy system. Subsequently, Chapter 9 analyzes the efficiency of different urban 

forms from the perspective of energy autonomy and the renewable energy integration level 

extending the model developed in Chapter 8. An energy system is optimized for different urban 

archetypes in order to perform this task. Subsequently, more efficient urban forms are derived 

considering the climate conditions of Dubai (United Arab Emirates) and Hemberg (Switzerland), 

which present contrasting climatic conditions. 

Urban energy planning is a broad subject. According to Manfren et-al [41] it consists of five major 

phases. This process starts from collecting basic data, preprocessing them, and finally designing the 

energy system. Once the energy system has been designed, it is important to go through the post 

processing phase evaluating aspects related to energy efficiency, economy and environmental 

impact. Finally, this should be followed by an impact assessment considering a life cycle assessment 

and local DG planning. Combining the design phase and the post processing phase is always 

challenging, especially when trying to come up with a final system design. Chapters 2 to 9 

demonstrate various efforts made in order to render the design process more efficient. Similarly, 

efforts were made to conduct post processing. Unfortunately, these cannot be all accommodated 

into the thesis. Chapter 10 presents a comprehensive method that connects energy system design 

with post processing (1.4).  Decision making and Pareto analysis play a vital role in the post 

processing path. Multiple criterions need to be considered simultaneously in the assessment 

process. Hence, multi-criterion decision making plays a major role in this regard and must be part of 

design optimization. Different methods based on Fuzzy TOPSIS, Analytical Hierarchical Process etc 

can be used. Chapter 10 presents a comprehensive way to combine Pareto analysis and multi-

criterion decision making to complete the post processing phase. 
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1.6 Addressing different climate conditions 

The climate condition of a city is having a notable impact on the energy system. It influences both 

renewable energy generation and demand profile. Hence, it is important to demonstrate the 

applicability of a computational model for different climate conditions. The computational model 

developed in this thesis is used to design energy systems considering contrasting climate conditions. 

For example, the case studies for Chapter 2 and Chapter 10 are conducted in Hambanthota, a 

coastal city in Sri Lanka with tropical climate conditions. The case study in chapters 3, 4, 6 and 7 are 

applied for Sweden considering Nordic climate conditions. The city of Nablus in Palestine is 

considered for Chapter 8. Nablus is located in the northern part of the West Bank and has 

Mediterranean climate conditions. Chapter 9 is based on two case studies conducted in Dubai, 

United Arab Emirates and Hemberg, Switzerland. These two cities present totally contrasting climate 

conditions. Dubai has a tropical desert climate while Hemberg has a moderate alpine climate 

conditions. Although not included as separate chapters, a number of case studies are conducted for 

Junction-Geneva, Cartigny-Geneva and Ecublens-Lausanne in Switzerland. These studies are 

published in conference and journal proceeding papers included in the beginning of Chapter 10. The 

computational model is now in the process of being tested for 16 European capitals considering 

different climate conditions. The cities considered in the thesis and the climate conditions are 

tabulated in Table 1.1.      

1.6. Conclusions  

This chapter presents the organization of the thesis. In brief, Chapters 2 to 4 introduce a novel 

computational model to design distributed energy systems and an energy internet. Chapter 5 

presents promising approaches to conduct an optimization of a large number of energy systems at 

regional or national scale with the support of supervised and transfer learning techniques. Chapters 

6 and 7 are devoted to considering uncertainties in the energy system optimization and promising 

ways to quantify the flexibility of energy systems to adapt to changes in the external environment. 

Chapters 8 and 9 are devoted to understanding the influence of urban physics on energy system 

design. The energy system design model developed in Chapters 2 to 3 is extended by coupling 

building simulation and an urban climate model to perform this task. Finally, Chapter 10 presents a 

promising way to assess urban energy systems by linking Pareto analysis with decision making.   
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2 Energy hub model and the 
assessment of renewable energy 
integration by using grey box models  
 

A paradigm change in energy system design tools, energy market, and energy policy is required to 

attain the target levels in renewable energy integration and in minimizing pollutant emissions in 

power generation. Integrating non-dispatchable renewable energy sources such as solar and wind 

energy is vital in this context. Distributed generation has been identified as a promising method to 

integrate Solar PV (SPV) and wind energy into grid in recent literature. A comprehensive 

mathematical model for a multi energy hub is presented in this chapter. Following that, a novel 

dispatch strategy is introduced (based on grey-box models) in this chapter to address the limitations 

in the existing methods in optimizing grid-integrated Energy hubs considering real time pricing of the 

electricity grid and curtailments in grid integration. Multi-objective optimization is conducted for the 

system design considering grid integration level and Levelized Energy Cost (LEC) as objective 

functions to evaluate the potential of Energy hubs to integrate SPV and wind energy.  

This chapter is based on (preprint version): 

A.T.D. Perera, V. M. Nik, D. Mauree, and J.-L. Scartezzini, “Electrical hubs: An effective way to 

integrate non-dispatchable renewable energy sources with minimum impact to the grid,” 2017 

(190), pp. 232–248, Applied Energy. 
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2.1. Introduction 

Integrating renewable energy technologies into the electricity grid is gradually getting popular due 

to rapid depletion of fossil fuel resources and global concerns on greenhouse gases emissions and 

nuclear energy. Several countries have their own goals with different time lines in this regard.  For 

example, Germany has a goal to cover 50% of the generation system using renewable energy by 

2030 [1], while in Finland it is 38% by 2020 [2]. Switzerland is expected to phase-out nuclear energy 

by 2035 by increasing the energy efficiency and the share of renewable energy sources. In Sri Lanka, 

it is expected to increase the share of non-conventional renewables, such as SPV and wind energy, 

up to 20% by the end of 2020. Recent studies highlight that distributed generation using solar PV 

(SPV) and wind energy is promising to foster the renewable energy penetration in the market  [3], 

[4].  

Energy systems fully driven using renewable energy sources is a dream that wider community of 

researchers try to make a reality [5]–[9]. Replacing dispatchable energy sources driven by fossil fuel 

through distributed SPV, wind and biomass/bio energy sources is the major challenge in this context. 

Mismatch in time of peak demand and generation due to stochastic nature of wind speed and solar 

radiation as well as of electricity demand makes the renewable energy integration process difficult 

[10], [11]. Integration of dispatchable energy sources, energy storage and converting into hybrid 

renewable energy systems is a cost effective approach in increasing the reliability during the 

renewable energy integration process. Further, this helps to amalgamate energy sources with higher 

seasonal variation in energy potential [12], [13] with less impact to the grid. More importantly, this is 

the starting point of minimizing the contribution of dispatchable energy sources based on fossil 

fuels, which makes existing energy systems more eco-friendly and sustainable [10], [14]. However, 

optimum design of such energy systems is a challenging task. 

Several research groups have focused on optimizing grid-integrated hybrid energy systems which 

Fathima and Palanisamy [15] provide a review of the major recent works. Two different approaches 

can be used in this context to optimize the system design and dispatch simultaneous: 

Energy system is expected to operate in finite set of states (finite state machines) in which 

operating conditions for the dispatchable energy sources and storage is defined. Subsequently, 

state transfer function is optimized along with the energy system (sizing problem) based on the 

objective functions considered [16]–[19]. 

Optimum operating conditions for dispatchable energy sources and storage is obtained for each 

time step considering these as decision space variables [20]–[24]. This can be further classified into 
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two groups, depending whether dispatching is optimized as time depended small scale problems 

or globally as a unique large size problem as explained in Ref. [25].  

Both these methods are coming with their strengths and weaknesses. The first method can consider 

non-linear models (considering valve point effect, etc.) easily for energy conversion processes 

without simplification and present performance of the system (for 8760 time steps) with less 

computational time. However, the number of possible states that the system could operate 

increases exponentially with the complexity of the energy flow within the system (especially for 

poly-generation with multiple dispatchable energy sources and storages). Second method is more 

suitable when considering complex energy systems with multiple dispatchable sources and storage. 

However, the computational time and resources required become extremely high when using this 

method. According to Evins [22] optimization time can reach up to seven days when considering 

second method while Pruitt et al [24] report that there are limitations in handling a time horizon due 

to the increase of decision space variables. Further, simple linearization of objective functions can 

influence the results of the optimization problem significantly [26]. Hence, designing energy systems 

with simple energy flow such as hybrid energy systems and grid tied hybrid energy systems tends to 

use the first method while the second method is used for poly-generation [20]–[24]. The first part of 

the chapter introduces the computational model used in this thesis to formulate objective functions 

for the energy system optimization. Subsequently, a novel optimization algorithm to design grid 

integrated energy hubs [22], [27], [28] is introduced by extending the first method based on finite 

states.  

The second part of the chapter presents a detailed assessment on the potential of energy hubs to 

integrate SPV and wind energy with a minimum impact to the grid. Integrating higher fractions of 

non-dispatchable renewable energy technologies while operating at higher autonomy levels 

(minimum grid interactions) is a difficult task [44], [45].  According to Ueckerd et-al [46] direct 

integration of higher fractions of non-dispatchable renewable energy sources above 30% is beyond 

the reach due to the limitations in the grid. A quantitative and qualitative analysis about the 

potential of integrated energy systems (such as energy hubs) to extend the SPV and wind energy 

integration (with minimum impact to the grid) is missing in literature besides its timely importance. 

This moves beyond design optimization where detailed assessment of the energy hub is required. To 

achieve this objective, Pareto optimization is conducted in this study considering Levelized Energy 

Cost (LEC) and Grid Interaction (GI) level (extending the definitions in Ref. [44], [45] ) as objective 

functions. System configuration and variables of the dispatch strategy are considered as decision 

space variables to be optimized. Sensitivity of the mode of grid interactions (importing and exporting 
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electricity from the grid), the price of electricity and the curtailments in the grid and role of ICG and 

energy storage on SPV and wind energy integration are taken as the aspects to be assessed.  

The chapter is arranged in the following manner: the computational model used to formulate energy 

system optimization is introduced in the first part (followed by a novel optimization algorithm based 

on fuzzy logic) ; the second part is devoted to evaluate the potential of energy hubs to increase the 

SPV and wind energy contribution with a minimum impact to the electricity distribution grid 

considering the recent and future changes in the grid. Section 2.2 presents the designing process of 

energy hubs, system configuration of the energy hub and the overview of the computational model. 

Section 2.3 presents the computational model used to assess energy as well as cash flow and the 

formation of objective functions considered for the optimization. Section 2.4 illustrates the 

simulation process with a detailed description of the dispatch strategy. Section 2.5 illustrates the 

optimization algorithm used, decision space variables and the combination of objective functions 

used for Pareto optimization. Finally, the role of energy hubs in integrating SPV and wind energy is 

discussed in Section 2.6. 

2.2. Overview of the problem  

This section provides an overview about the concept of energy hub within the framework of 

distributed generation under Section 2.2.1 and system configuration considered for the energy hub 

in Section 2.2.2. A detailed overview about the novel computational model developed to design 

energy hubs is also discussed in this section (2.2.3) mapping it into different parts of the chapter. The 

approach introduced in Chapter 2 is further extended in Chapter 3 concerning the operation 

strategy. Main parts of the computational model and interconnection among components is 

illustrated in Section 2.2.3.        

2.2.1. Distributed generation to energy hubs 

It is a challenging task to use distributed renewable energy sources in order to deliver the distributed 

demand. This needs to be achieved through several steps as demonstrated in Fig. 2.1. Distributed 

demand should be identified: building performance simulation tools, such as EnergyPlus [47] or 

CitySim [48], can be used to calculate the distributed demand. Clustering the demand helps to locate 

“demand centers” where the distributed energy systems will be located [49]. Simultaneously, it is 

important to assess the potential of renewable energy sources qualitatively to identify the promising 

renewable energy technologies. Afterwards, basic data for the selected energy technologies need to 

be collected.  
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Designing distributed energy systems consists of two processes i.e., designing the energy systems 

and designing the grid. This study only focuses on the energy system, therefore operation and 

maintenance of the utility grid is not considered. The method which is introduced in this study can 

be used to assess the potential of renewable energy integration in virtual power plants, smart micro-

grids, grid-tied hybrid energy systems with minor modifications in boundary conditions, and the 

computational model [50]–[52] which are similar in operation.   

2.2.2. System configuration of an energy hub  

The energy hub, considered in this thesis consists of non-dispatchable energy sources: solar PV 

panels, solar thermal panels and wind turbines, as well as dispatchable energy sources; internal 

combustion generator (ICG) (Fig. 2.2 (a)), combined heat and generator (CHP). Moreover, a battery 

bank and a thermal storage are used as the energy storage. The energy hub interacts with the main 

utility grid (which is called as the grid hereafter) whenever it is required to cater the demand. Grid 

curtailments are considered for both import and export electricity to and from the energy hub and 

real time price is considered from the Energy Service Provider when interacting with the grid both 

electrical and thermal grid. For the sake of clarity, the chapter 2 limits its scope to the electrical part 

(Fig. 2.2 (b)) of the multi energy hub introduced on Fig. 2.2 (a). Chapter 3 extends its scope from an 

electrical hub to a multi energy hub. 

2.2.3. Overview of the developed design tool  

Design optimization of energy hubs consists of several interconnected steps as shown in Fig. 2.3. 

Energy System design process starts with collecting basic techno-economic data, renewable energy 

potentials, demand profile and information related to the grid. Main objective of the computational 

model is to optimize the design and control strategy based on the objective functions considered. 

Variables related to the system and dispatch strategy  are considered in the optimization algorithm. 

The first part of the computational model is used to calculate the energy flow and cash flow of the 

system (Fig. 2.3). A computational model is developed to present the energy conversion process and 

cash flow in each system component towards achieving this objective (Section 2.3.4). A generalized 

model is presented in this Chapter covering both heat and electricity parts. However, electricity part 

is only considered in the dispatch strategy of Chapter 2 (multi-energy dispatch is discussed in 

Chapter 3). Sizing and selection of the system components affect the energy flow considerably and 

need to be considered in modelling; this makes the optimization block to be sandwiched between 

two blocks (i.e. Collecting Data and Mathematical Model). Mathematical model will present the 

energy conversion process of each system device. Computational model for wind turbines and SPV 
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panels will produce a time series of hourly power generated using the computational model which is 

transferred to the Simulation block as shown in Fig. 2.3. Similarly, mathematical models for energy 

storage and ICG are used in evaluating the energy flow being coupled with the dispatch strategy.  

 

Solar Energy

Wind Energy

Hydro Power

Biomass/bio-energy

Geothermal

Clustering the 
demand

Qualitative mapping 
of renewable energy

Quantitative mapping 
of renewable energy

Determining 
distributed demand    

Collecting basic data

Designing electrical hub

Boundary of the electrical hub 
considered

Distributed demand

Energy System

Main Utility Grid Overview of the electrical 
hub  

Fig. 2. 1 : Overview of the design problem  

The task of the simulation block is to compute performance indicators that are used to formulate 

objective functions considering life cycle operation of the system. Energy flow of the system is 

evaluated considering the hourly time series of the renewable power generation, demand and 

electricity price in the grid. A bi-level dispatch strategy is used to determine the energy interactions 

with storage, ICG and grid, depending upon the renewable energy generation, demand and the 

electricity price in the grid (elaborated in Sections 2.4.1 and 2.4.2)in Chapter 2.  A set of dispatch 

rules, obtained from the optimization algorithm, are used to optimize the power flow within the 

energy hub. Use of energy storage in a particular time step is linked with its operation in the 

previous time steps; this makes a coupling between the mathematical model and the simulation 

blocks. In addition, time series grid interactions (as discussed in Section 2.3.2), hourly fuel 

consumption, loss of load probability etc. are obtained based on the life cycle simulation which is 

used in mapping decision space variables into the optimization block. An extended explanation 

about each block is provided in sections 2.3, 2.4 and 2.5. 
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(b) 

Fig. 2.2: Overview of the energy hub (a) outline of the multi-energy hub considered in the thesis and (b) the outline of 

the energy hub considered in Chapter 2 (present chapter) concerning the electricity part.  
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Fig. 2.3: Outlook of the computational tool 

2.3. Mathematical model for the energy hub 

The mathematical model developed in this study consists of several parts devoted to analyze the 

energy and cash flow of the system, grid interactions and power supply reliability. This is used to 

formulate LEC and Grid Integration (GI) level which are considered as objective functions (FϵƑ: set of 

objective functions) to be optimized. Power supply reliability is considered as a constraint as defined 

in Section 2.3.3. Decision space represents variables of the system design and operation (dispatch 

strategy); the system design variables consist of the type (technology) of SPV panels, wind turbines 

and the capacities of SPV panels, wind turbines, ICG and battery bank in the optimum system design 

(NϵƝ: set of decision space variables related to system design). This section formulates the time 

series of renewable power generation using SPV and wind based on the corresponding values of the 

decision space variables. Moreover, the computational model is illustrated which is used to 

determine State of Charge (SOC) and lifetime of the battery bank (Section 2.3.12), fuel consumption 

of the ICG (Section 2.3.12) and the grid interaction levels depending upon the operating conditions 

determined by the dispatch strategy (discussed in Section 2.4.1). Section 2.3.2 presents the model 

used to evaluate the autonomy level of the system considering grid integration. Finally, Section 2.3.4 

determines the LEC considering all the cash flows related to system design and system operation.  
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2.3.1. Energy flow model 

The main objective of the energy flow model is to evaluate the power generation and energy 

conversion processes within the system as discussed in Section 2.2.3. A comprehensive description 

of the computational model which is used to determine the electricity generation through the 

dispatchable/non-dispatchable sources and the other energy conversion processes is presented in 

this section. 

2.3.3.1. Modeling non-dispatchable energy technologies 

The heat and power generation from solar Thermal and PV panels depend on the solar irradiation on 

the panels. Hourly global irradiation data on a horizontal plane (Gt) was collected in order to 

compute diffuse fraction (f) according to Eq. 2.1. Following that, the diffuse solar irradiation (Gt
d) on 

horizontal plane is calculated according to Eq 2.2.   

𝑓𝑓 =  �
(0.995 − 0.081 𝑀𝑀𝑀𝑀 ,𝑀𝑀𝑀𝑀 ≤  0.21)

(0.724 +  2.738 𝑀𝑀𝑀𝑀 −  8.32 𝑀𝑀𝑀𝑀2  +  4.967 𝑀𝑀𝑀𝑀3 , 0.21 ≤ 𝑀𝑀𝑀𝑀 ≤  0.76)
(0.18 , 0.76 ≤ 𝑀𝑀𝑀𝑀 )

               (2.1) 

𝐺𝐺𝑡𝑡𝑑𝑑 =  f.𝐺𝐺𝑡𝑡                 

(2.2)     

In Eq. 2.1, MT denotes clearness index. Eq. 2.3 is used to compute the clearness index. 

𝑀𝑀𝑀𝑀 =  𝐺𝐺𝑡𝑡 𝐻𝐻0�                                                                                                                                                        (2.3) 

where H0 denotes extraterrestrial solar radiation. 

Klucher model [24] is used to compute the diffuse solar irradiation on tilted surface (Gdβ
t) (Eq 2.4 and 

2.5)  

F =  1 − (𝐺𝐺𝑡𝑡𝑑𝑑/𝐺𝐺𝑡𝑡)2                               (2.4) 

𝐺𝐺𝑡𝑡
𝑑𝑑,β =  𝐺𝐺𝑡𝑡𝑑𝑑�0.5�1 + cos(β/2)��. [1 + Fsin3(β/2)]. [1 + Fcos2(θ)sin3(θz)]         

(2.5) 

The beam radiation (𝐺𝐺𝑡𝑡
𝑏𝑏,β)  and reflected solar radiation (𝐺𝐺𝑡𝑡

𝑟𝑟,β) are computed by using Eq. 2.6 and 2.7. 

𝐺𝐺𝑡𝑡
𝑏𝑏,β =  �𝐺𝐺𝑡𝑡 − 𝐺𝐺𝑡𝑡𝑑𝑑�. cos(θ)/cos(θZ)                    (2.6) 

𝐺𝐺𝑡𝑡
𝑟𝑟,β = ρ. G. �1 − cos(β)�/2                   (2.7) 
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Finally, total solar irradiation on tilted surface Gβ  using Eq 2.8.  

 𝐺𝐺𝑡𝑡
β = 𝐺𝐺𝑡𝑡

𝑑𝑑,β + 𝐺𝐺𝑡𝑡
𝑏𝑏,β + 𝐺𝐺𝑡𝑡

𝑟𝑟,β                    (2.8) 

In these equations θ, θz and β denote angle of incidence for an arbitrarily inclined surface oriented 

toward the equator, zenith angle and tilt angle of SPV panel. Further, ρ is the albedo coefficient.  

Thereafter, a semi empirical formula proposed by Durisch et al. [26] is used to determine the energy 

efficiency of the SPV panels SPV
tη  for time step ):( yeartheinhoursallofsetTtt ∈  according to Eq 2.9.  
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In Eq. 2.9, AM is the air mass value [27] and SPV
tq  is the solar cell temperature. Standard values for 

β
0G , SPV

0q , AM0 are taken respectively as β
0G = 1000 Wm-2, SPV

0q = 25oC and  AM0 = 1.5.  Parameter 

values of  SPVp , SPVq , SPVr , SPVs , SPVm , SPVu  for different SPV technologies, such as mono-crystalline, 

polycrystalline and amorphous silicon cells, are taken from Ref. [54] (Appendix A1-1). Θt
SPV was 

computed using Eq. 2.10. 

θ𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 = θa + h 𝐺𝐺𝑡𝑡
β                                                                                                                                (2.10) 

where h denotes the Ross coefficient (Appendix A1-1) and 𝜃𝜃𝑎𝑎  is the ambient temperature of the 

location. 

The hourly power supply from the SPV panels SPV
tP  is calculated according to Eq. 2.11. 

TtNAGP SPVSPVSPV
tt

SPV
t ∈∀= , ηβ                     (2.11) 

SPVA  and )( Ν∈SPVSPV NN  represent the area of a single SPV panel as well as the number of SPV 

panels. 

Similar to the energy conversion model of the SPV panels, the energy flow model for wind turbines 

consist of two main components: i) a model to evaluate the wind speed at the hub level of the wind 

turbine and ii) a model to evaluate the electrical power generation from wind turbines. Hourly wind 

speed at 10 m anemometer height is used to calculate wind speed at hub level (vt) of the wind 

turbine using a power law approximation. The “power curve” of the wind turbine, provided by the 

manufacturer, is used and modeled by applying ns number of cubic spline 

interpolation functions [55], [56], taking (ns+1) points from the power curve of the wind turbine 

according to Eq. 2.12 
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In Eq. 2.12, w
ia , w

ib , 
w
ic , and w

id  are coefficients of the polynomial function which vary depending on 

the “power curve”. vR, vCI, vCO and PR denote rated wind speed, cut-in wind speed, cut-off wind speed 

and rated power of the wind turbine. Finally, net power generation ( W
tP ) is calculated using Eq. 2.13.  

TtPP W
t

W
t ∈∀= , N  )(v 

losses-Ww
t

~

η                            (2.13) 

In Eq. 2.13, )( Ν∈WW NN  denotes the number of wind turbines which is optimized using the 

optimization algorithm, 
~
W
tp denotes power generated by one wind turbine calculated using the 

power curve and losses-Wη  accounts for other losses that take place in the energy conversion. 

2.3.3.2. Modeling dispatchable energy technologies 

Three dispatchable energy technologies are considered for the energy system in this thesis; i.e. 

Internal Combustion Generator (ICG), Combined Heat and Power generator (CHP) and a boiler. ICG 

possess the capability to cater the electricity demand, CHP caters both electricity and heat demand 

and boiler can be used to cater the heat demand. Chapter 2 considers the ICG in the energy hub 

model and the other components are considered in the Energy Hub model of Chapter 3. Energy flow 

model for the dispatchable sources are devoted towards computing the fuel consumption of each 

source based on the part load operating conditions. Eq. 2.14 is used to compute the fuel 

consumption of the ICG.   

2

0 1 2 3 4 min min maxsin( ( )) , ,ICGICG ICG ICG ICG ICG ICG ICG ICG ICG ICG ICG ICG
t t t t tFC a a P a P a a P P t T P P P= + + + − ∀ ∈ < <

          (2.14)      

A model with two degrees of freedom is used (operating load factor and heat to power ratio) to 

model the operating cost of CHP (Eq. 2.14). In this equation, max
ICGP and min

ICGP  denotes maximum and 

minimum power output of ICGs. 0
ICGa to 3

ICGa are constant which varies depending upon the type of 
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ICG. The importance of this equation is its capability to represent the valve point effect which is 

usually not presented in simple polynomial equations.  

A model with two degrees of freedom is used (operating load factor and heat to power ratio) to 

model the fuel consumption of CHP according to the Eq. 2.15 

 2 2
0 1 2 3 4 5 ,CHP CHP CHP CHP CHP CHP CHP CHP CHP CHP CHP CHP CHP

t t t t t t tFC a a P a P a H a H a H P t T= + + + + + ∀ ∈        (2.15) 

In Eq. 2.15, CHP
tP and CHP

tH denote the power (electricity) and heat output from CHP. 0
CHPa - 5

CHPa  

depends on the type of co-generation plant and taken from the manufacturers.  

 A battery bank and a thermal storage based on Phase Change Material (PCM) are considered in this 

study as the energy storage model. Thermal storage is having complex characteristics when it comes 

to both charging and discharging cycles although it has higher second law efficiency. Multi-phase 

heat transfer and change of conduction to convection dominant behavior during the discharge 

process and charging process makes it difficult to model it. However, these complex heat transfer 

phenomena’s are not considered in this study. The energy flow model for the battery bank is 

simplified in a similar manner. State of Charge (SOC) model is used to compute the charge levels of 

both battery bank and thermal storage. SOC of the battery is calculated according to Eq. 2.16 

SOCt+1 = SOCt(t). �1 − σbatt� + IbattΔt. ηcht/Cbat                      (2.16) 

In Eq. 2.16,  σbat denotes self-discharge coefficient, which was taken as 0.02%, ηchg and Cbat denotes 

the round cycle efficiency of the battery bank and its capacity. A similar approach is used for the 

thermal storage. Similar to the dispatchable energy source, battery bank is considered in the energy 

hub model of Chapter 2 and both battery bank and thermal storage are considered in Chapter 3. 

State of Charge (SOC) of the battery bank is determined using finite state machines as describes in 

Section 2.4.2. Capacity of the battery bank NBat (NBatϵƝ) is optimized using the optimization 

algorithm. The Rain-Flow Algorithm [59] is used to determine the life time of the battery bank 

depending on the number of charge/discharge cycles. Based on that number of replacement for the 

battery bank, life cycle cash flow for the energy storage is calculated.  

 

2.3.2. Grid interaction level 

The electricity grid is a critical infrastructure which is vulnerable to cascade failures [60]. Strong 

interactions via both importing and exporting electricity are discouraged from a perspective of grid 
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stability. Stability of the grid is considered in two different steps in the design process of the grid 

integrated energy system [43]. Firstly, curtailments for grid interactions are introduced. Due to 

hourly, daily and seasonal changes in both electricity demand and renewable energy supply, it is 

difficult to determine these parameters which should ideally be dynamic. Hence, grid curtailments 

are introduced as an upper bound for the energy interactions with the grid in this work. Secondly, a 

method is used to minimize the net interactions considering either importing or exporting energy 

from the grid or both. The two methods can be used as a performance indicator to evaluate the 

autonomy level of the system. It is important to note that these methods cannot replace the 

technical procedures used to access and monitor the stability and performance of the grid, which 

need to be carried out after the optimization of the system design.   

The maximal limit for grid interaction (both to and from) is given by EGLim (i.e., the maximal power 

units that can be sold to the grid within a time step) and IGLim (e.g., the maximal power units that can 

be purchased from grid within a time step) belonging to the first category. Curtailments are 

introduced for thermal interactions in a similar way in Chapter 3. Three different performance 

indicators are used in Chapter 2 to measure the interaction with the grid which are developed based 

on [45], [61]. These indicators are entirely based on grid interactions with the electricity grid. The 

first indicator, GIIG is based on the total electricity amount purchased from the grid (Eq. 2.17), this 

indicator depicts the support of the grid to maintain the reliability level of the energy hub. The 

second indicator, GIEG is the total energy amount that is sold or exported to the grid (Eq. 2.18). Due 

to the integration of renewables, selling electricity to the grid becomes essential in order to 

minimize the operating cost of the system; though, excess transfer of electricity can reduce the 

stability of the grid. Finally, energy flows in both directions are considered as the third indicator 

(GIIEG) as shown in Eq. 2.19.  

∑∑
∈∀∈∀

=
Tt

ELD
t

Tt

IG
t PPGI /IG                           (2.17) 
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∈∀∈∀
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t PPGI /EG                           (2.18) 
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                                 (2.19) 

In these equations, ELD
tP  denotes electricity demand of the electrical and IG

tP  and EG
tP denotes the 

power imported and exported to and from the grid; the formulation for both these parameters 

depends on operating state. For an example, EG
tP  can be defined according to Eq. 2.20 for a one 
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simple operating state in an energy hub only considers the electricity flow i.e. State 3 (described in 

Section 2.4.2) which is different in other operating states.  

,EG RE ICG ELD
t t t tP P P P t T= + − ∀ ∈                    (2.20) 

In this equation, tELD  and RE
tP   denote electricity load demand of the application and renewable 

power generation ( W
tP + SPV

tP ).   

It is important to consider the interactions with the grid besides being limited to interactions 

maintained with the electricity grid. Interactions with the thermal grid are not considered in most of 

the instances when it comes to the concept of energy autonomy. Therefore, the formulation 

presented in Eq.2.17-19 is extended to consider grid integration level for multi energy hubs 

according to Eq. 2.21.  
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                         (2.21) 

In this equation,  ,IG H
tP , HLD

tP and γ denote electricity, heat imported from the grid, electricity and 

heat load of the energy hub and the weighting factor for heat to power conversion taken as the 

reciprocal of coefficient of performance of a heat pump (based on the second law of 

thermodynamics).        

2.3.3. Power supply reliability 

Loss of power supply (LPS) is considered to be occurring whenever power generation within the 

system is less than the demand (according to Eq. 2.22) and the mismatch cannot be supplied by both 

battery bank (due to the limitations in energy storage) and grid (due to the grid curtailments).   

TtIGPPPELDLPS Lim
MaxBat

t
ICG

t
RE

ttt ∈∀−−−−= − ,                                         (2.22) 

MaxBat
tP −  denotes maximum power flow from the battery depending upon the state of charge. 

Finally, loss of load probability (LOLP) is calculated using LPS according to Eq. 2.23, which is used as 

the performance indicator to evaluate the power supply reliability. 
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LOLP                     (2.23) 
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A similar approach is used to consider both heat and electricity when computing the loss of load 

probability in Eq. 2.24.  
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=
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                  (2.24) 

In this equation, E
tLPS and H

tLPS denote loss of electricity and heat (during break down) take 

place in the operation of the energy system. 

2.3.4 Utilization of renewable energy 

Various reasons such as stochastic nature of the demand and renewable energy potential, grid 

curtailments, limitations in energy storage makes it challenging to utilize renewable energy. This 

leads to a number of problems including poor energy efficiency, dependence on grid or dispatchable 

energy source which results in either poor autonomy or higher GHG emissions due to the 

combustion of fossil fuels. In order to rectify this issue utilization of renewable energy is considered 

as a major criterion to be optimized in energy system design. This study uses Waste of Renewable 

Energy (WRE) as the performance indicator which should be minimized in the design process. WRE 

represents the energy losses that take place in system due to seasonal changes in demand, 

renewable energy potential, and limitations in the energy storage and grid curtailments that has 

been amply used in resent literature [20], [39], [44]. WRE is formulated as Eq. 2.25 considering only 

the electrical part of the energy system.   
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In this equation, PSB-Max denotes maximum energy that can be stored in time step t, depending upon 

the state of charge and PTG-Max denotes maximum units (kWhs) that can be sold to the grid 

depending upon the grid curtailments. Utilization of renewable energy technologies in multi-energy 

hubs is not taken into discussion in this thesis. Hence, the definition of WRE is only limited to the 

electrical part of the energy system.    

2.3.5 CO2 Emissions 

Minimizing CO2 emissions in different phases of the project is considered as one of the objectives of 

the energy system designers. Levelized CO2 (LCO2) is taken as the performance indicator to evaluate 
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this aspect in the thesis in Chapter 10 (only considering the electrical part of the energy hub). CO2 

generation due to energy system components and their replacement is considered first. Afterwards 

CO2 generated due to grid interactions (when purchasing electricity) and power generation in ICG is 

considered secondly. Finally, total CO2 emission (TCO2) of the system is calculated combining both 

these aspects which is subsequently used to calculate the LCO2 according to Eq. 2.26.   

8760
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2 ( ( ) )
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=

∀ ∈ =

= + +∑ ∑                  (2.26) 

In this equation, ICO2s denote the lifecycle CO2 emission of system components including 

replacement for ICG and battery bank. CFG denotes the CO2 intensity for electricity unit taken from 

the grid and CICG denotes the CO2 intensity of each unit generated by ICG depending upon the load 

factor of the ICG.  

2.3.6 Life Cycle Cost Model  

The developed Life Cycle Cost (LCC) model evaluates the cash flows taking place during different 

time periods of the project. The cost model consists of three components: i) an Initial Capital Cost 

(ICC), ii) a fixed annual cash-flow and a iii) variable annual cash-flow. Accordingly, investment should 

be made at the beginning as well as annually. The ICC of system components comprises the purchase 

and installation costs for the systems components. The ICC of the whole system is determined 

considering the initial financial investment for the wind turbines, SPV panels, battery bank, power 

electronic devices (such as DC/AC converters and inverters) etc.  

Life Cycle Cost (LCC) of the system consists of two components i.e. ICC and Operation and 

Maintenance cost (OM). ICC of system components comprise Acquisition Cost (AC) and installation 

cost. Installation cost of system components are taken as a fraction of AC (α) (Table A1-2 in the 

appendix) according to Eq. 2.27.  

ICCs = (1+α) AC  Ss ∈∀                     (2.27) 

ICC of the complete system (ICC0) is calculated considering initial expenditure on system 

components (ICCs) ( Ss ∈∀ : set of system components) such as ICG (ICCGen), wind turbines (ICCW), SPV 

panels (ICCSPV), battery bank (ICCB) and inverters (ICCInv) etc. according to Eq. 2.28.  

0 s
s S

ICC ICC
∀ ∈

= ∑                      (2.28) 
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Regular maintenance costs for wind turbines, SPV panels, fuel cost for ICG are considered under 

fixed annual cash flow (OMF). Replacement costs for ICG, Battery bank (calculated based on the 

number of replacements) and power electronic devices are considered as variable annual cash flow 

(OMV). Finally, present value of the operation and maintenance cash flows (for system components (

Ss ∈∀ : set of system components) such as SPV panels, wind turbines, ICG etc.) is calculated 

according to Eq. 2.29.   
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+=                   (2.29) 

In this equation, CRFs denotes Capital Recovery Factor for sth component for operation and 

maintenance. The real interest rate denoted by p is calculated using both interest rates for 

investment and local market annual inflation ratio. H denotes the set of all years. 

In Eq. 2.29 CRF denotes the Capital Recovery Factor, which is computed using Eq. 2.30. In Eq. 2.30, 

pCRF denotes the annual real interest rate, and h denotes the lifetime of the project in years. Annual 

real interest rate pCRF is finally calculated using Eq. 2.31 where fCRF and gCRF denote return on 

investment and local market annual inflation rate (Table A1-2: in Appendix). 

CRF𝑆𝑆 =  p (1−𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶
h

)
1−p𝐶𝐶𝐶𝐶𝐶𝐶

                             (2.30) 

p𝐶𝐶𝐶𝐶𝐶𝐶 = 1+f𝐶𝐶𝐶𝐶𝐶𝐶

1+g𝐶𝐶𝐶𝐶𝐶𝐶
                       (2.31) 

The Fixed Annual Cash-flow (FAC) consists of two items: FACGI which is the cash flow for grid 

integration (GI) and the fixed operation and maintenance cost.  FACGI depends on the energy 

interaction with the grid. There is a cash inflow when selling electricity to the grid and a cash outflow 

when purchasing electricity from the grid. The cash flow depends on the Real Time Pricing of a unit 

kWh in the grid. FACGI is calculated based on hourly simulations over the year using Eq. 2.32. 
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In this equation, IG
tP  and EG

tP  denote energy (kWh) imported from the grid and exported to the grid 

respectively. IG
tGC and EG

tGC  denote the cost of energy in the grid for purchasing and selling. 

Subsequently, Total Grid Integration cost TGI is calculated considering present value of all the cash 

flows of FACGI. 
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Variable annual cash-flow includes the replacement cost of the battery bank, ICG and power 

electronic devices, which depends on operating conditions, operating hours and life expectancy. The 

present values of all the variable annual cash-flows are subsequently calculated. The Net Present 

Value of the system comprises all the cash flows mentioned above. Finally, net present value is used 

to calculate Levelized Energy Cost (LEC) considering the demand of the energy hub throughout the 

lifetime of the project according to Eq. 2.33. 
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2.4. Dispatch strategy and simulation 

Choice of the energy management system, for a particular time step will influence the performance 

of the system in next dew time steps to come. Hence, it is important to understand the influence of 

dispatch strategy in system sizing. On the other hand dispatch strategy depends on the system 

configuration. Therefore, both these aspects are coupled together. Hence, it is important to de-

couple these two. Simplified dispatch strategy is used in this context in system configuration 

optimization which will evaluate the critical aspects of energy management important for system 

sizing. More comprehensive dispatch strategies will be used for real time operation after designing 

the system.   

Dispatch strategy
System configuration 

optimization

Dispatch strategy
System configuration 

optimization
Dispatch 

strategy

Decoupling the 
problem

Design optimization
Real time dispatch 

optimization  

Fig. 2.4 Interrelationship of system configuration and dispatch strategy 

Optimization method used to optimize these systems can be classified into two categories based on 

the method used to optimize dispatch strategy. For the cases where state of the system is optimized 

for each time step a bi-level optimization algorithm is used. In this case, system configuration and 

operation strategy are optimized in two different levels. In this process, primary algorithm is used to 

optimize the system configuration and secondary algorithm is used to optimize the operation (Fig. 
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2.5). The optimum operation strategy is derived for each time step for each configuration selected in 

the primary algorithm where 8760 time step needs to be optimized considering one year. This 

becomes an exhaustive task where objective function for dispatch strategy needs to be simplified 

and selective time steps need to be used instead of considering 8670 time steps. As per highlighted 

before, this dilutes basics physics of the problem first by linearizing the objective functions and 

secondly selecting representative time steps.  

Second method relates with the control strategy based on finite state machines. In this method, 

transition function is optimized instead of energy flow in each time step (Fig. 2.5). This method is 

amply used in designing standalone hybrid energy systems and grid connected energy systems. 

Optimizing transition function instead of state of the system for each time step simplifies the 

optimization problem. System configuration and operation strategy can be optimized at the same 

level using this method. Hence, this method minimizes the deficiencies pertaining to the bi-level 

optimization algorithm and encouraged authors to use the second method.  

Select System Configuration

Optimize dispatch strategy 
for each time step

Evaluate objective functions 
and optimize system 

configuration

Select System Configuration
and operation

Evaluate objective functions and 
optimize system configuration 

and state transfer function

Optimizing time step Optimizing state 
transfer function  

Fig.2.5  Comparison of two optimization approaches  

A bi-level dispatch strategy is introduced in this section which is used in order to achieve this task 

along with the decision space variables used to optimize dispatch strategy (dϵƊ: set of decision 

space variables for system control ). Section 2.4.1.1, introduces the primary algorithm based on fuzzy 

logic and Section 2.4.1.2 introduces the secondary algorithm based on finite state machines. Hourly 

simulation of the system based on the dispatch strategy generates the time series of hourly fuel 

consumption and State of Charge (SOC) which are used to calculate the costs related to ICG and the 

life time of battery bank, system reliability and the grid integration levels. Finally, Section 2.4.2 
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provides a brief overview about the meteorological and demand data used in the specific 

application. 

 

2.4.1. Novel dispatch strategy for the energy hubs  

Choice of the energy management system for a particular time step, will influence the performance 

of the system during next time steps. Hence, it is important to understand the influence of the 

dispatch strategy in system sizing. On the other hand, dispatch strategy depends on the system 

configuration. Therefore, both system design and dispatch strategy are coupled together. Hence it is 

important to de-couple these two in order to optimize the energy system. Simplified dispatch 

strategy is used in system configuration optimization since it is difficult to use the methods used to 

optimize the dispatch strategy alone. Simplified dispatch strategy will evaluate the critical aspects of 

energy management important for system sizing. Different methods have been suggested to achieve 

this task in the recent literature is reported in Ref. [63].  

With the grid integration, the electrical power flow becomes more complex compared to typical 

hybrid energy systems, used for standalone applications. Conditions of the grid need to be 

considered when determining the system operating states in addition to the renewable energy 

generation and demand. Several recent studies were focused on this aspect: Augustin and Lopez [64] 

used evolutionary algorithm to maximize profits for grid connected wind farms with H2 storage via 

optimal operations of the system considering the real time price. In their study, the optimum real 

time price for the grid to store wind energy, feeding to the grid and convert H2 into electricity is 

determined along with other system design parameters. However, they did not consider catering a 

particular demand.  Lopez [65], Lopez and Augustin [66] studied the impact of battery bank with real 

time price of grid when delivering an electricity demand to an industrial application. An enumerative 

method is used to optimize the rules of the dispatch strategy in this regard without considering 

power supply. There are a number of recent publications focused on optimal control of grid 

integrated renewable energy systems as reviewed in Ref. [67]. However, for the best of author’s 

knowledge none of these research studies combine the energy management with optimal system 

design considering real time pricing of grid and grid curtailments for designing grid integrated hybrid 

energy systems. More importantly, most of the studies are entirely based on white box models. This 

thesis introduces both grey and black box models to optimize distributed energy systems. Chapter 2 

(this chapter) introduces grey box model based on fuzzy logic which is extended in Chapter 3 to 

consider black box model when representing dispatch strategy. 



36 
 

Schematic overview of the energy management system is presented in Fig. 2.6 and 2.7. Four 

parameters are considered when determining the state of the system. These are state of the charge 

(SOC) of the battery bank, power generation in SPV panels and wind turbines, cost of electricity in 

grid and demand.  Depending on these parameters, charging or discharging conditions of the battery 

bank, operating load factor of the ICG and grid interaction levels are determined. This is performed 

in two stages where first stage is used to determine the operating condition of the ICG using a fuzzy 

rule based controller. Second stage is used to manage the battery bank and grid interactions. 

Although schematic representation of the energy management system looks simple it is more 

complicated. 
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Fig.2.6 overview of the energy management system 

 

2.4.1.1. Primary level dispatch strategy 

As mentioned before, the operating state (load factor) of the ICG (yt) is determined in the first step, 

based on two input variables xt
1 and xt

2 representing normalized depth of Discharge (DoD) of the 

battery bank and the normalized load mismatch between demand and the renewable energy 

generation (Eq. 2.34).  
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                  (2.34) 

The depth of discharge of the battery bank is calculated in a similar way using the SOC battery bank. 

Normalized values of DOD are designated by xt
2 similar to Eq. 2.34. 
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Takagi-Sugino method [68]–[70] is used in this study to load factor of the ICG. Fuzzy implication Rl for 

lth fuzzy subspace is defined according to Eq. 2.35 

Rl: If gl(x1
t, is A1

 ….. xk
t is Ak) then yt = h(x1

t, x2
t,… xk

t, )                 (2.35) 

In this equation, x1
t - xk

t (xϵχ: set of all input variables of the fuzzy controller) denotes premise input 

variables for the fuzzy controller for the time interval t ( Tt ∈∀ ),yt denotes output variable of the 

fuzzy logic controller whose value is inferred. Al denotes the fuzzy sets having a linear membership 

function representing a fuzzy subspace where rule Rl can be applied. yt
l   is calculated for implication 

rule Rl using Eq. 2.36 using the function hl in the consequence. 

 yt
l = w0

l + w1
l x1

t + w2
l x2

t….. + wk
l xk

t                       (2.36) 

where w0
l, w1

l ((w ϵW: set of decision space variable related to fuzzy controller ( DW ⊂ )) denotes 

coefficient determined by the system designer. yt
l is further simplified considering the two inputs 

according to Eq. 2.37  

yt
l = (w1

l x1
t + w2

l x2
t)/ (w1

l+ w2
l)                    (2.37) 
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Fig. 2. 7: Flow chart of the Dispatch Strategy considering the operation of internal combustion generator, battery bank 

and grid interactions 

Finally, yt is calculated using center of gravity method according to Eq. 2.38 where μl denotes the 

membership function value for the corresponding rule Rl. 
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An extended description of this method can be found in Ref. [71]–[74] . The weight coefficients 

corresponding to all the nine subspaces (wϵW) are optimized using the optimization algorithm 

considering these as decision space variables. After determining the ICG operating state, the net 

power generated in the energy hub is determined by combining both the non-dispatchable and 

dispatchable energy sources. The mismatch between demand and power generated is calculated 

afterwards. Load factor of the ICG is adjusted whenever the excess power generation is larger than 

the available storage capacity of the battery bank and EGLim. In the case of demand being larger than 

the generated power, Load Mismatch (LM) is calculated which is the difference between demand 

and power generated. The load mismatch is used to determine the operating state of secondary 

level dispatch strategy.  

2.4.1.2. Secondary level dispatch strategy  

Eight main operating system states are identified for the second stage of the dispatch strategy based 

on the conditions of the input variables for the rule based controller as well as curtailments for grid 

interactions (Fig. 2.8). A short description about the critical parameters (l ϵ L:(L⊂D): set of all 

decision space variables related to secondary level controller) used to optimize the state transfer is 

presented in Table 2.1 followed by a graphical presentation in figure Fig. 2.9. 

The first four operating states corresponds to instances where generation (combining wind, SPV and 

ICG) is less than the demand of the energy hub. In State 1, corresponds to the instances where price 

of electricity in grid is higher ( IG
tGI  ) > LimBD and EG

tGI < LimBTG) and it is economical to take the 

mismatch from battery bank. Discharging the battery bank minimizes its life time, especially when 

reaching lower SOC levels.  In order to overcome this problem, a minimal SOC level, which can be 

reached during the discharging process (SOCmin), is determined using the optimization algorithm (Fig. 

2.9).  
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Fig. 2.8: Operating states of the system 

 When the cost of electricity in the grid increases further, it is economical to discharge the battery 

bank ( IG
tGI > LimBD and EG

tGI  > LimBTG) and sell electricity to the grid while supplying the mismatch 

between demand and generation. System moves to State 2 in such instances.  However, discharging 

battery bank may lead to instances where energy hub needs to purchase electricity at a larger price 

from the grid at a later stage. In addition, depth of discharge of the battery bank needs to be 

considered since it reduces the lifetime of the battery bank. Hence, minimal SOC for the battery 

discharging process (SOCMin,G) needs to be determined through the optimization algorithm. 

The system operates at State 3, when the price of grid electricity is cheaper ( IG
tGI  < LimBD and LimGTB 

< IG
tGI  ). Load mismatch between demand and generation is taken from the grid in State 3. When 

the price of grid electricity goes down further ( IG
tGI  < LimBD and LimGTB > IG

tGI  ), it is economical to 

charge the battery bank using the grid electricity. However, as the charging of the battery bank from 

the grid reduces their storage capacity for renewable energy, a set point (SOCSet) is introduced as the 

maximum limit for charging (instead of a full charging the battery bank), similar to the set point in 

the combined dispatch strategy for hybrid energy systems. SOCSet is optimized taking upper bound as 

the maximum state of charge and lower bound as the SOCMin,G using the optimization algorithm. 
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Table 2. 1: Brief description about the variables in the dispatch strategy (l ϵ L (L ⊂D)) 

  

State 5-8 correspond to instances where generation is in excess compared to the demand. System 

moves into State 5 when price of grid electricity is low ( EG
tGI  < LimBC and LimGTB < IG

tGI  ) where 

excess generation is directed to battery bank. When the price of grid electricity is quite low it is 

economical to charge the batteries from the grid after charging the battery bank from excess power 

generated ( EG
tGI  < LimBC and LimGTB > IG

tGI  ). State 7 corresponds to instances where cost in the grid 

is competitive compared to charging batteries.  In such instances, excess generated will be directed 

to the grid. When the price of electricity in the grid increases further, it is economical to discharge 

the battery bank in addition to directing excess electricity generated ( EG
tGI  > LimBC and EG

tGI  > 

LimBTG). However, all these energy interactions need to take place considering the storage limitations 

of battery bank, EGLim and IGLim which makes the energy interactions more complicated. The logic 

flow diagram used in the secondary level dispatch strategy consists of 18 states which are based on 

the main eight states described.  A more comprehensive description about these states is presented 

in Appendix 2. 

Acronym 
used 

Description 

LimBC Critical cost for  GCEG(t) above which selling the excess power generated to the grid 
is economical compared to battery charging 

LimBD Critical cost for  IG
tGI below which purchasing power from grid 

is economical compared to battery discharging 

LimGTB Critical cost for IG
tGI  below which purchasing power from grid to charge battery 

bank is economical 
LimBTG Critical cost for  GCEG(t) above which selling stored energy to grid is 

economical 

SOCmin Critical SOC of the battery bank below which discharging is not economical to 
cater the load mismatch 

SOCMin,G  Critical SOC of the battery bank below which it is not economical to 
discharge and/or to sell the stored energy to grid 

SOCSet Maximum state of charged to be reached when charging the battery bank 
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Fig. 2.9: Selection of the decision space variables for the battery bank  

2.4.2. Time Series meteorological and demand data for simulation 

The chapter 2 limits its scope to the electrical part of the energy hub in the assessment. The hourly 

average values of wind speed, global horizontal solar irradiation and ambient temperature data are 

required for the simulation. The site of Hambantota, a south coastal city of Sri Lanka, was considered 

for this study due to its strong wind and solar energy potential. All the aforementioned 

meteorological data are issued from the corresponding local meteorological station. The demand of 

a particular application is highly specific to the latter. In this study, demand is considered to vary 

according to the load variation suggested by the IEEE system reliability committee [75]. Load profiles 

are generated following a summer-weekly demand since seasonal demand variations are trivial in Sri 

Lanka being located near to the equator.  

The cost of electricity is a function of time in a smart grid, depending from several factors. A 

hypothetical cost function is considered for the hourly electricity prices based on the demand in the 

region. Hourly electricity price is assumed to be proportional to the electricity consumption in the 

region, a maximal cost of electricity being reached at the peak hours of the demand. The price for 

selling electricity to the grid is considered to be proportional to the purchasing price of electricity 

from the grid. A sensitivity analysis of the impact of the cost of electricity function on the optimal 

solution was subsequently carried out. The effect of demand curve and the profile of grid cost on 

optimum system design are to be presented in future publications.   

2.5. Optimization of the system design and dispatch strategy 

Designing energy hubs integrated to the grid is challenging due to a number of reasons as discussed 

before. A heuristic algorithm has been amply used in the literature [19], [29]–[31], [36], [67], [76], 

3.0, =LMinSOC

5.0, =UMinSOC

MinSOC

SOC

MinLGMin SOCSOC =,,

GMinSOC ,

SOC

GMinLSet SOCSOC ,, =

SetSOC

1=MaxSOC

SOC

0=SOC

7.0,, =MGMinSOC

MinSOC GMinSOC , SetSOC



43 
 

[77] and shown to be much efficient when optimizing these systems when compared to enumerative 

methods [78]which are used in existing software such as Homer [79]. A heuristic algorithm to 

optimize the system design and dispatch strategy which can handle non-linear objective functions 

efficiently in this Chapter considering the electrical part of the energy hub. This section illustrates 

optimization algorithm used in this study along with the decision space variables considered for the 

optimization which are introduced in Section 2.2.3 and 2.2.4, objective functions considered for the 

optimization defined in Section 2.2.3 and the constraints.  

2.5.1. Decision space variables  

Determining the optimal capacities of the system components as well as the type of components is 

the main objectives of the optimization algorithm. Basic system components are selected according 

to Table 2.2: their corresponding type and capacity are also determined using the same optimization 

algorithm. Six decision space variables are used to represent the whole system configurations. 

Optimizing the dispatch strategy is another part of the optimization algorithm. The operation of the 

ICG and the battery bank need to be optimized together with the grid interaction. Both load 

mismatch and battery bank SOC are used to determine the state of operation of the ICG. The weight 

coefficients defined in Section 2.4.2 are optimized using the same algorithm. Three parameters are 

used to manage the energy flow to the battery bank according to its State of Charge (SOC) as 

illustrated in Fig. 2.9. SOCMin is optimized considering a SOC range of [0.3, 0.5]. Critical parameters 

for battery charging and discharging are optimized considering upper and lower bounds as shown in 

Fig. 2.9. Similarly four variables are used to control the grid interaction as explained in Section 2.3.3. 

A. total number of 19 decision space variables are selected to represent the state transfer function, 

with their span is defined according to Table A1-3 in Appendix.  

 
 

2.5.2. Objective functions and constraints considered  

The goal of this study is to maximize the autonomy of the system in renewable energy integration 

process while minimizing its cost. It is a multi-objective optimization task where two objective 

functions need to be minimized simultaneously. All three indicators introduced in Section 2.3.2 are 

used as the objective functions along with LEC introduced in Section 2.3.4. LOLP is considered as a 

constraint (defined in Section 2.3.3) in the optimization algorithm. List of objective functions 

considering different scenarios are presented in Table 2.2.  
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Table 2.2: List of Objective functions considered 

 

 

2.5.3. Optimization algorithm 

As discussed in Section 2.2.3, the optimization algorithm is closely connected with the mathematical 

model and simulation of the system. The computational model and lifecycle simulation which map 

decision space variables into the objective space are described in detail in Sections 2.2, 2.3 and 2.4. 

Fig. 2.10 presents the simplified flow diagram of the optimization algorithm used in this study. The 

optimization algorithm starts with the random creation of decision vectors including variables 

related to system design and operation strategy which will create the initial population. 

Subsequently, set of vectors selected as the initial population is mapped to the objective space 

through the computational model and the life cycle simulation presented in Section 2.3 and Section 

2.4 which will provide the values for the objective functions (FϵƑ) and constraints. Initial archive is 

created from the non-dominant set of solutions in the population according to the criterion defined 

by Deb et-at [80].  A Steady ε-State Evolutionary Algorithm [81] is used in this study for updating of 

archive and reproduction of the population which is proven as a method to maintain the diversity 

while reaching the final set of Pareto solutions within short period of time. Polynomial mutation 

operator [82] and simulated binary crossover operator [83] are used along with differential 

evolutionary operators [77]–[79] in the reproduction of the population. Constraints for the 

optimization algorithm are handled at two different levels: constraint tournament method [82] is 

Scenario* Objective Function 1-  

Objective Function 2  

(F1-F2) 

Sensitivity Constraints 

A LEC-Grid Interactions 

considering imports (GIIG) 
Not considered 

Loss of load 

probability  

(LOLP)  

 

 

 

 

A LEC-Grid Interactions 

considering Exports (GIEG) 
Not considered  

A LEC-Grid Interactions 

considering imports (GIIEG) 
Not considered  

B LEC-Grid Interactions 

considering imports (GIIG) 

Grid curtailments considering 30%, 60% and 90% 

of the peak demand 

B LEC-Grid Interactions 

considering imports (GIIG) 

Market price of SPV panels and wind turbines 

considering 10%, 20% and 30% reduction 

B LEC-Grid Interactions 

   

Market price of grid electricity considering 10%, 

     

 
*Pareto fronts in Scenario A corresponds to Section 2.6.1 and Section B corresponds to Section 2.6.2 
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used to handle the constraints in the optimization algorithm and loss of load probability is 

considered as a constraint while states of the control system were defined to handle the constraints 

due to grid curtailments. A computer program is written in C++ using Visual studio plat form. 

Computational time for the Pareto front depends on the objective functions selected and the 

number of generations considered; on average computational time was two hours for both Scenario 

A and B in this study.  

Reproduction of Population 
(Crossover and Mutation)

System Simulation

Evaluate
1) Objective Functions

• LEC
• Grid Interactions

2) Constraints Violation 
• Unmet load fraction 

Update Population

Update Archive

Generation of initial 
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Stop
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Generations 
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Real time price in 
grid

Start

 
Fig. 2. 10: Optimization algorithm for energy Hubs 
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2.6. Results and discussion 

Selecting optimal combination of energy technologies, storage becomes vital in integrating SPV and 

wind energy into energy hubs. Autonomy of the system needs to be maximized in integrating 

renewable energy technologies while minimizing the lifecycle cost of the system. Pareto fronts 

obtained in Section 2.5 considering LEC and grid integration level is useful in this regard. These 

Pareto fronts are used in this section to analyze 

• Sensitivity of imports, exports and both to lifecycle cost, energy mix and renewable energy 

utilization of the system 

• Sensitivity of grid curtailments and market conditions on renewable energy integration    

Accordingly, this section is divided into two parts. The impact of grid interactions on energy hub and 

energy flow is discussed in Section 2.6.1. Section 2.6.2 is devoted to a sensitivity analysis of other 

techno-economical parameters impacting the results.  

2.6. Sensitivity of grid interactions and energy mix  

The support of the grid is essential to maintain the power supply reliability of the energy hub with 

the integration of renewable energy sources, while minimizing the lifecycle costs. Maximizing the 

autonomy of the energy hub is important when considering the grid. Therefore, the lifecycle cost 

and the autonomy of energy hub may become conflicting, meaning that it can be difficult to 

optimize both of them simultaneously. A Pareto front presents all the possible combination of 

solutions, which are optimal and non-dominant between each other. It helps the system designers 

to better understand the characteristics of the system accounting for the changes at the grid 

integration level.  

Three different performance indicators were considered in this study to assess the grid integration 

level, as defined in Section 2.3.3.  Three Pareto fronts are computed taking levelized energy cost 

(LEC) and grid integration (LEC-GI) as objective functions, considering the import and export limits 

for the grid interactions as 50% of the peak demand of the hub. The Pareto fronts which are 

calculated and plotted in Fig. 2.11 correspond to the three different methods for grid interactions 

with LEC. LEC-GIIG  denotes Pareto front obtained considering LEC and electricity imports from grid 

corresponding to Eq. 2.17 and LEC-GIIG denotes Pareto front obtained considering LEC and electricity 

exports (Eq. 2.18). Finally, LEC-GIIEG Pareto front considers interactions in both modes along with LEC 

as objective functions. 
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A significant reduction in the (LEC) is observed when moving from one Pareto front to the other. The 

LEC is rather low throughout LEC-GIEG (exporting) Pareto front compared to the other two. LEC 

notably increases in LEC-GIIEG Pareto front when grid interactions are less than 5% which is the same 

for LEC-GIEG. Set of solutions in LEC-GIIEG Pareto front follows the trend of LEC-GIIG when grid 

interactions are greater than 5%. These variations are mainly due to the differences of power 

generation mix and modes of grid interactions which are taken into discussion in next two 

paragraphs.  

 

Fig. 2. 11: Pareto fronts obtained for three different performance indicators of the grid interaction with  Levelized Energy 

Costs  

In order to analyze the import, export and both interactions with the grid simultaneously, GIIG, GIEG 

and GIIEG are plotted for three Pareto fronts considering all the modes of interactions with grid as a 

percentage of annual demand (Fig. 2.12). Among the three Pareto fronts, percentage exports to the 

grid (GIEG) remains almost constant in LEC-GIIG Pareto front. Meanwhile, GIIG gradually reduces in 

with the increase of grid interactions in LEC-GIEG Pareto front. However, GIIEG is notably high (above 

45%) in LEC-GIEG Pareto front when compared to LEC-GIIG Pareto front. This result in higher LEC in 

LEC-GIIG Pareto front compared to LEC-GIEG which is observed in Fig. 2.11. Energy flows of the LEC-

GIIEG Pareto front reveals that the total interactions with the grid (GIIEG) are notably lower for the 

LEC-GIIEG Pareto front compared to the two others Pareto fronts. A lower GIIEG value indicates less 

energy interactions with the grid. This implies that the energy hub tends accordingly to operate as a 

standalone system in this case where variations of the renewable energy supply and the demand are 

absorbed by the system itself resulting higher LEC due to the less interactions with the energy 

market through the grid.  
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Fig. 2.12 : Comparison of the energy interactions with the grid (import, export and both) for three 
Pareto fronts (LEC-GIIG, LEC-GIEG, LEC-GIIEG from left to right) obtained considering LEC and grid 
interactions 

Analyzing the power generation within the energy hub from SPV panels and the wind turbines is one 

of the main goals of the study. Design solutions from LEC-GIIG (System A) and LEC-GIIEG (System B) 

Pareto fronts are selected in order to achieve this objective. The power generation from the non-

dispatchable energy sources (SPV panels and wind turbines), the dispatchable energy source (ICG) as 

well as the total electrical power generated are plotted for both systems in Fig. 2.13 as a fraction of 

total annual demand of the energy hub. From the two Pareto fronts, it can be argued that the grid 

integration of wind and solar energy technologies through the energy hubs is achieved in a 

satisfactory way being more than 60% of the annual demand of the hub. System B shows annual 

wind and solar energy contributions larger than 100% (as a percentage of total annual demand). 

Minimal contributions from SPV and wind turbines reach 80% for System A in the corresponding 

Pareto front. More importantly, there are instances in which SPV and wind contributions are larger 

than the annual electricity demand, the energy hub operating as an “Energy plus” (generating more 

than the annual demand) system in both cases. However, it is important to analyze the Wasted 

Renewable Energy (WRE) due to limitations in energy storage and grid curtailments along with the 

generation to get a proper overview of the system.  
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Fig. 2.13 : Power generation using ICG, SPV panels and wind turbines for optimal systems in the LEC-GIIG and LEC-GIIEG 
Pareto fronts (left System A and right System B) 

When considering the WRE of System A, it is clear that around 30- 40% renewable energy generated 

will be lost due to limitations in storage and grid interactions which reach up to 20% in System B. In 

addition, around 15% of the generation within the system is exported in System A. Considering the 

generation, WRE and fraction exported to the grid; around 60-85% of the demand of the energy hub 

is catered using non-dispatchable energy sources. Considering the economic scenario (lowest LEC) it 

reaches around 60%. This is a major achievement when compared to the level of non-dispatchable 

renewable energy contribution in present cases which will be around 20-30% [46] in direct 

integration to grid. This clearly demonstrates the potential of energy hub to integrate non-

dispatchable renewable energy sources. Nonetheless, it is important to highlight that utilizing 

renewable energy is a major challenge in energy Hubs although higher integration levels can be 

achieved.  

Both plots show that the ICG plays a major role whenever grid interaction is weak. For System B, a 

dispatchable energy source is essential in order to minimize the grid interactions further and to 

operate in an autonomous way. An energy hub based only on non-dispatchable energy sources and 

energy storage is not economically sound when a perfect autonomy is targeted. Contributions from 

the ICG are gradually mitigated with the increase of grid interaction, reaching a condition where it is 

economically justified to operate the system without it.  
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2.7. Conclusions 

This focuses on evaluating the potential of energy hubs in integrating non-dispatchable renewable 

energy technologies such as SPV panels and wind turbines with minimum impact to grid. A novel 

optimization algorithm in introduced with the support of a bi-level dispatch strategy to optimize 

energy hubs considering both real time price and curtailments for import and export in the grid. A 

gray model based on fuzzy logic is introduced to control the operation of ICG in the primary 

algorithm while finite automata theory is used to in the secondary algorithm to control the energy 

interactions with grid and battery bank. Finally, multi objective optimization is conducted 

considering LEC and grid integration level.    

The results obtained from the Pareto analysis shows that energy hub can help to increase the share 

of wind and SPV generation beyond 60% of the annual demand of the energy hub. From an 

economic perspective, the assessment of the energy system shows that limitations for purchasing 

electricity from the grid are more critical than selling: this is promising when one considers the 

present grid architecture. Furthermore, larger grid interaction curtailments increase the LEC of the 

system and hinder the integration of renewable energy sources to the grid. The LEC-GIIG Pareto front 

indicates that energy hubs can actively participate to the energy market by generating quantities of 

electricity far larger than the demand of the energy hub. However, an autonomous operation of 

energy hubs is not encouraged, as it notably increases the electrical power generation by the ICG 

minimizing the SPV and wind integration. In conclusion, it can be stated that energy hub is effective 

in increasing the non-dispatchable renewable energy share with minimum impact to the grid when 

considering present Sri Lankan context. Nonetheless, limitations in the initial capital investment 

need also to be addressed in this prospect, especially for developing countries like Sri Lanka, which is 

a real challenge for solar and wind energy. 
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3 Energy System Optimization Using 
Reinforcement Learning 
 

This chapter extends the modeling framework introduced in Chapter 2. A black box model 

introduced to conduct energy system optimization replacing the grey box model introduced in 

Chapter 2. Reinforcement learning (machine learning technique) is used as the black box model. 

Both fully connected neural network and a convolution neural network are considered for the 

model. Subsequently, the results obtained from the novel approach are compared with the model 

introduced in Section 2.    

This chapter is based on manuscript under preparation: 

A.T.D. Perera, PU Wickramasinghe, V. M. Nik, and J.-L. Scartezzini, “Energy system optimization using 

reinforcement learning,” to be finalized in future 
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3.1. Introduction 

Distributed energy systems such as energy hubs play a vital role in integration of non-dispatchable 

renewable energy technologies such as Solar PV (SPV) and wind energy into the energy 

infrastructure while mitigating the adverse impacts due to fossil fuel based power generation. In 

addition, energy hubs have shown the potential to cater the demand of multi-energy services such 

as electricity, heating and cooling [1,2]. Furthermore, energy nexus of transportation, water 

distribution etc. is also discussed widely in recent literature. As a result, energy hubs have become 

an attractive energy solution for improving the sustainability of cities [3]. 

Distributed energy systems such as energy hubs brought significant changes into energy 

infrastructure. Simple dispatchable energy sources are replaced by an energy system which consists 

of non-dispatchable energy technologies, energy storages with different characteristics and energy 

conversion devices such as heat pump and vapor compression cycles. The energy flow within the 

distributed energy system becomes more complicated compared to a system with simple 

dispatchable energy source. According to Perera et-al [4] and Piacentino[5] et-al there are two 

different approaches to design such distributed energy systems. The first one is a policy based 

approach which defines a specific strategy for the energy system to operate. Markov Decision 

Process (MDP) is used to evaluate the performance of the system on long run. However, complex 

architecture of energy systems made this approach to become challenging to use. Energy systems 

having complex architectures results in complex energy flows within the energy systems. As a result, 

the number of possible states that the system can operate notably increases which makes it difficult 

to arrive at an optimum policy [6,7]. The second approach is a valued based method where bi-level 

optimization algorithm is used [8]. The value of operation for a particular time step is minimized by 

the dispatch strategy at the primary level which is used to optimize the configuration of the energy 

system at the secondary level which include the size and choice of energy system components [9]. 

The main advantage of the former method is that it can be used to design complex energy systems 

due to its capability to consider complex energy flows at the primary level at the dispatch 

optimization although it might need longer computational time, up to several days for certain 

instances [4,10].  

Due to the capability exhibited by the bi-level optimization algorithm it has been widely used to 

design distributed energy hubs having complex architectures [11]. Weber et-al [9] used bi-level 

optimization algorithm for dispatchable sources with fuel cells. A set of selected days and hours of 

the year are considered in this study for the dispatch strategy instead of considering the entire year. 

Jayasekara et-al [12] designed combined cooling, heating and power (CCHP) system using the bi-
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level optimization algorithm where entire year is considered in the primary level dispatch 

optimization. Evins [10] considered energy system optimization along with the building design which 

demonstrated the flexibility of the approach although it took three days to arrive at the optimum. 

Both Murrey et-al [13] and Paolo et-al [14] used the bi-level optimization algorithm to design energy 

systems with long term energy storage. According to Murrey et-al [13], future forecast for non-

dispatchable renewable energy sources, grid conditions play an important role in the energy system 

optimization. These aspects can be included into the optimization process by introducing model 

predictive control (MPC) into the energy system optimization process. Paul et-al incorporated MPC 

into the dispatch strategy in the optimization process of the energy system. However, they limited 

the scope to the selected days and hours and did not consider 8760 time steps. Furthermore, 

uncertainty in renewable energy generation, demand and grid conditions were not considered in 

their work and the time horizon for the forecast was matching for short term storage.      

Energy transition is demanding for energy sector by moving from centralized to decentralized 

systems and even to the energy internet [15,16] in order to facilitate large scale integration of 

renewable energy technologies. Energy internet can be simply understood as a multiplex network 

that links a set of distributed energy systems. However, the main difference between the typical 

distributed energy systems and an energy internet is related interactions maintained in cyberspace. 

The energy internet converts the physical energy network into a cyber physical network [17]. This 

allows computing and communication cores to be embedded into the energy infrastructure which 

enables monitoring, coordinating and controlling at a significantly higher level [18,19]. The strong 

inter-links between the energy systems help to cater the imbalances due to the fluctuations in 

renewable energy generation and demand, allowing larger scales of the renewable energy 

integration. However, we need to understand that the stronger connectivity among energy systems 

does not undermine the importance of autonomy maintained by each energy system. Both 

aforementioned approaches used to design distributed energy systems have been extended to 

arrive at the optimum design for energy internets. Two different methods have been used to design 

(Fig. 3.1)energy internets i.e.; 1) each energy hub is optimized separately and subsequently 

designing the network, 2) considering the entire energy internet as a single component and 

optimizing it. Unfortunately, both these techniques consider two extreme ends and do not align with 

the objectives of the energy internet. Considering each energy system separately and optimizing the 

design ends up with the designs that are less prepared for energy interactions. On the other hand, 

considering the entire energy internet as a single structure neglects the autonomy of each energy 

hub. Hence, it is important to come to an in-between solution where certain amount of information 

is shared between the energy hubs. However, most of the information that is shared among the 
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energy systems might be difficult to formulate as a part of the objective functions through a white 

box model due to its complexity. At the same time, electric vehicles and smart devices will operate 

based on price signals in near future where reasonable ‘learning’ might require understanding the 

demand responses. Same applies to the peer-to-peer trading within micro-grids. All the 

aforementioned changes take place in the energy sector cannot be solely white box methods. Data 

driven approaches based on black box methods might be immensely helpful in such contexts   

In order to address the limitations in the present state of art in energy system optimization, this 

study introduces a black box approach to reinforcement learning, replacing the white and grey box 

models used so far to present the operation of the energy system during the design process. 

Reinforcement learning is a data driven approach that can be easily used to learn from the 

environment. Reinforcement learning has been recently used for the dispatch optimization although 

not used to design distributed energy systems. Notable changes are introduced into the optimization 

process of the energy system towards incorporating the reinforcement learning into the design 

optimization process. Subsequently, the performance of the novel method is evaluated in 

comparison with a grey box model.    

A multi energy hub consisting of wind turbines, Solar PV (SPV panels), Solar Thermal (ST Panels)  

combined heating and Internal Combustion generator (ICG), heat pump, battery bank, thermal 

storage assisted by Phase Change Material (PCM) is considered in this study. It is assumed that the 

multi-energy hub is operating connected to both electrical and thermal network. A novel 

optimization algorithm is introduced to design distributed energy systems that use reinforcement 

learning to present the dispatch strategy. Fully connected neural network is used initially for the 

dispatch optimization. The performance of the novel optimization algorithm is compared with grey-

box model developed using fuzzy logic. In order to consider the hourly forecast of wind speed, solar 

irradiation, electricity demand, heat demand, price of electricity and heat in grid convolution neural 

networks (CNN) are introduced. Subsequently a comprehensive assessment is conducted 

considering the influences of dispatch model on the energy system taking grey box model, fully 

connected neural network and the CNN.         
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Fig. 3.1: Two boxes on top present the approaches used in the present state of art when designing distributed energy 

systems. The top-left box considers each energy system separately and optimize them. Subsequently, the network is 

optimized taking the individually optimized energy systems. The top-right box considers the entire energy internet as a 

single system and optimize the super structure in one single step. The one in the bottom is what we expect from the 

energy systems in future. It learns by interacting with the neighboring energy systems and adapt to the local conditions 

in both design and generation. Information flow among the energy systems facilitate this process. 

3.2. Outline of the building simulation model 

The energy demand was simulated for a conceptual urban area with 40 buildings in Lund, located in 

the southern Sweden. The buildings are selected from a set of statistically representative buildings 

for the city, which were investigated by the Swedish National Board of Housing, Building and 

Planning (Boverket) [20]. The model for simulating the energy performance of the buildings is made 

as a linear explicit discrete time-variant system based on the lumped system analysis approach in 

Simulink/Matlab [21]. Each building is represented as one zone where the law of conservation of 
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energy is governed at each time step (hour), considering the heat losses due to transmission and 

ventilation and the heat gains from the solar radiation and the internal gains from tenants and 

appliances. Modelling buildings as a lumped system enables running faster simulations with less 

required details on buildings. The energy demand of buildings is calculated while the cooling strategy 

is hybrid cooling (natural and mechanical), however the cooling demand (considering the latent 

cooling load) is very small in Sweden, compared to heating demand [21][22][23]. The model has 

been used to simulate the energy performance of the Swedish building stock considering past and 

future climate both for current [21][22] and retrofitted conditions [23][24][25].  

The energy demand of the considered buildings was simulated for the typical weather conditions of 

Lund during 1976-2005 according to the RCA3-ERA40 climate scenario. RCA3 is the third generation 

the Rossby Centre – the climate modelling unit of the Swedish Meteorological and Hydrological 

Institute (SMHI) – regional atmospheric model [26]. ERA40 is a reanalysis-driven simulation of 

climatic conditions that constitutes a realistic description of the state of the atmosphere and 

represents the real conditions with a high accuracy (for more details check [22][27][28]). Typical 

weather conditions were synthesized by distinguishing the representative years based on the 

distribution of the outdoor temperature and creating the typical downscaled year (TDY) [29]. The 

synthesis and application of TDY in energy and hygrothermal simulations are discussed in earlier 

works [29] [30,31]. 

3.3. Overview of the energy system and the computational model 

Multi-energy hub catering the thermal and electricity demand of a neighborhood is considered in 

this study. Multi-energy hub is connected to the local electricity and thermal grid (Fig. 3.2). The 

energy system consists of both dispatchable and non-dispatchable energy technologies that 

generate electricity and heating. Solar PV panels (SPV) and wind turbines are used as non-

dispatchable renewable energy technologies that generate the electricity while solar thermal panels 

(ST) are used as the non-dispatchable thermal energy source. A fossil fuel based boiler and an 

internal combustion generator with the capability for generating heat and electricity (co-generation) 

are considered as dispatchable sources. A battery bank and a thermal storage using PCM are 

considered as energy storage medium. Heat pump is introduced as a link between thermal and 

electrical layers of the energy system which generates heat using electricity. The energy hub is 

connected to the thermal and electricity grid respectively which acts as a spinning reserve when 

there is a mismatch between demand and generation. A detailed description about the energy 

system model used in this chapter is presented in Chapter 2.     
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Fig. 3. 2: Outline of the multi energy hub  

3.4. Dispatch strategy  

Integrated energy systems consisting of renewable energy technologies, energy storage, energy 

conversion devices such as heat pumps which are operating in a grid integrated mode can have a 

complex energy flow within the system.  Energy flow within the system needs to be optimized in 

order to guarantee the proper utilization of different components used. This formulates a dispatch 

optimization problem within the energy system optimization problem. The design of the energy 

system is strongly coupled with the dispatch optimization while the dispatch strategy is strongly 

influenced by the energy system design. Combining these two aspects together are important. This 

section presents the applicability of black box models to consider dispatch strategy in the energy 

system optimization process.       

3.4.1. From white box models to black box models 

Dispatch strategy optimization during the energy system design process formulates a sequential 

decision problem. The operation of the energy system needs to be optimized at each time step for 

the entire time series considered for the design problem. A series of decisions need to be taken one 
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after the other in such instances where a specific decision at a time step can reasonably influence 

the decision at another time step which is known as the Markov property. Markov property states 

that the decision made at state st is solely based on st-1 without considering the influence of {s0, s1, s2, 

s3…. st-2}. Two main approaches can be found in addressing such problems i.e. MPC and 

reinforcement learning [37,38]. According to Gorges [38], the main advantage of MPC is that it 

guarantees the stability as well as robustness. In contrast to MPC, reinforcement learning has a 

number of advantages since it 1) is a model free method, 2) does not require convexity guarantee 

and 3) has a higher adaptability. The stability is not considered at the hourly scale simulation of the 

energy system. Usually transient analysis is conducted for the optimized design following the energy 

system optimization in order to guarantee stability in the operation. In addition, ongoing increase of 

complexity of the energy system makes it difficult to guarantee convexity. Furthermore, the 

interactions between energy systems are expected to be maintained with other auxiliary services 

such as transportation, water services etc., which makes the learning process to be an important 

element where reinforcement learning is very good at. All the aforementioned reasons encourage 

the present study to move into black box method such as reinforcement learning to assist energy 

system optimization.  

3.4.2. Grey box approach 

Black box models are entirely based on the learning process instead of depending much on models 

that are based on basic problem physics. Grey box models lies in between white box and black box 

models and can be used as a really good benchmark to evaluate the performance of the black box 

models. Towards this direction, the grey box model developed by Perera et-al [4] is extended to 

evaluate the performance of black box models (as explained in Chapter 2). Readers are encouraged 

to go through the original paper which provides a comprehensive overview of the model. A direct 

extension to the previous model is performed by considering the electricity and flow and heat flow 

separately due to the limitations of grey box models to handle higher dimension action spaces. This 

simplification enables considering both heat and electricity flows although energy conversion 

pathways between electricity to heat notably simplified in the control strategy due to the reduction 

in the action space.   

3.4.3. Reinforcement learning with neural networks 

Reinforcement learning has been gradually getting popular during last two decades. It has been 

applied in a number of fields where state and action spaces are high dimensional. It has attracted 

the attention of the scientific community due to the human level (and sometime above) control 

capabilities it has demonstrated [39]. Reinforcement learning facilitates the system to learn by 
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understanding the consequences of different actions made by the system when interacting with the 

surroundings. Assume that there exists an agent who controls the actions of a system at different 

states. The intention of the agent is to maximize the reward at the end of the sequential decision 

making process. Depending the actions made by the agent at different states, the reward it obtains 

at the end of the sequential decision making process is going to be changed. This trial and error 

approach is the fundamental concept behind the reinforcement learning with certain inherent 

characteristics:  

1. Optimum strategy that the agent should be taken needs to be understood solely through 

trial and error. 

2. The actions made by the agent at a time step may subject to strong temporal correlation. 

3. Agents may go through a long series of actions before they realize the impact of one specific 

action on the reward. 

Two main approaches are used by the reinforcement community to address sequential decision 

problems. These methods are known as value function method and policy function method. In 

addition to both these main streams, there are techniques such as actor-critic method which are a 

combination of both these approaches. The value function method tries to improve the value of the 

reward at each time step. By improving the value of the reward at each step it tries to improve the 

reward of the entire sequential decision problem. In contrast, the policy function tries to come up 

with a policy for the state transition which maximizes the reward by conditions of the surroundings 

and the action space. High dimensional state and action space that have to be considered in complex 

real world problems make it challenging to come up with both policy and value function. Deep 

neural networks have been used as a technique to approximate these functions effectively. Hence, 

these two approaches are known to be value function approximation and policy function 

approximation. Both policy as well as value function methods have its own pros and cons. When 

considering applications such as energy system optimization where a long sequential decision 

problem is involved, policy function can perform better than value function method.      

3.4.4. Significance of neuro-evolution based enforcement learning 

Policy function approximation method can be further classified into two main sub groups, i.e. policy 

gradient method and policy search method (which is also known as direct reinforcement). The main 

difference between these two methods is that the policy gradient usually depends on gradient based 

technique while the policy search depends on black box techniques for the optimization. The policy 

search is gradually getting popular due to its capability for notable reduction in computation time 

and the capability to handle complex control problems [40]. A neural network is trained in this 
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context using an evolutionary algorithm which is also known as neuro-evolution. Although neuro-

evolution has been popular few years ago, deep-learning based on convex methods outperformed 

neuro-evolution in reinforcement. However, this was proven to be wrong by Salimans et-al [41] in 

Open AI in 2017. They proved that policy search performs better than policy gradient method for 

MuJoCo humanoid task. Furthermore, they showed that policy search produces more robust results 

when compared to policy gradient. This created a new interest among the reinforcement learning 

community to use policy search again. Recently, Zhang et-al [42] showed that a notable reduction in 

computational time can be achieved by using policy learning. Furthermore, they showed that 

evolutionary algorithm can be used to optimize policy learning problems up to three million 

variables. Such a large number of variables have not been optimized using heuristic algorithms 

before. Recently, Ha and Schmidhuber showed that deep recurrent neural networks also can be 

effectively used along with policy evolution[43]. Therefore, this study uses policy search method 

based on neuro-evolution to assist energy system optimization 

3.4.5. Architecture of the neural network considered in this study 

Two neural network architectures are used in this study. These are fully connected neural network 

and convolution neural network. The feature space considered for the fully connected neural 

network is different from the one used for the Convolution neural network. Fully connected neural 

network considered a 1-D input vector of the present conditions in demand, renewable energy 

potential and grid prices for heat and electricity. The input features are further improved when 

moving to convolution neural network which considers a 2D input vector (Fig. 3.3). A comprehensive 

overview about the use of fully connected neural networks on the dispatch strategy is presented in 

Ref. [44]. This section presents an extended explanation about the use of convolution neural 

networks.   

Traditionally Convolutional Neural Networks (CNNs) are used to process images. The architecture 

enables efficient processing of image data. The images being processed are viewed as 2D matrices 

where the two dimensions of an image correspond to its height and width. The advantage of CNNs in 

this setting is the possibility of reformulating energy data as 2D matrices and using already well-

established CNN machinery to process the data. This is done by taking features as one dimension 

and the time as the other dimension (Fig. 3.3).  
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Fig. 3. 3: Reformulating energy data as a 2D matrix 

Once the input is given to a CNN it processes the data according to the defined architecture (Figure 

3). The architecture consists of multiple layers similar to a Fully-Connected Network (FCN). But, 

instead of performing matrix multiplication at each layer, CNNs perform convolutions. Similar to 

each layer having multiple neurons in FCNs, a CNN has multiple kernels for each layer. Unlike each 

neuron outputting a scalar in a FCN, a kernel at a given layer outputs a 2D feature map (𝐹𝑠
𝑡+1 in Fig. 

3.4). Since there are several kernels at a given layer, we get multiple 2D feature maps at each layer. 

These multiple layers are concatenated into a single 3D matrix (the new dimension corresponding to 

feature maps from each kernel in the layer, 𝐷𝑡  in Figure 4) and it is passed onto the next layer. 

Convolution operation for location (𝑥, 𝑦) in feature map 𝐹𝑠
𝑡+1 is defined as Eq. 3.1: 

𝐹𝑗
𝑖+1(𝑥, 𝑦) =  ∑ ∑ 𝐹𝑖 (𝑥 − 𝑗 +  𝒲𝑡

2⁄ , 𝑦 − 𝑖 +  ℋ𝑡

2⁄  , 𝑘) × 𝐾𝑗
𝑖 (𝑖 +  ℋ𝑡

2⁄ , 𝑗 +  𝒲𝑡

2⁄ , 𝑘)−ℋ𝑡
2⁄ ≤𝑖≤ℋ𝑡

2⁄

−𝒲𝑡
2⁄ ≤𝑗≤𝒲𝑡

2⁄

0≤𝑘<𝐷𝑡                   (3.1) 

Here 0 ≤ 𝑥 < 𝑊 − 𝒲𝑡  and 0 ≤ 𝑦 < 𝐻 −  ℋ𝑡 (matrix indexing starts from 0). The convolution 

defined by using this range for 𝑥, 𝑦 is called ‘valid’ convolutions since the convolution is not 

evaluated at the boundary. 

 

Fig. 3. 4: Convolution operation 

Using these convolution layers, the final architecture is defined as in Fig. 3.5. It consists of three 

convolutional layers. One of the basic assumptions in using CNNs is the feature invariance across 
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dimensions. In this scenario the assumption is only valid across time dimension and not along the 

feature dimension. Therefore, in the very first convolution layer, the kernel is defined such that its 

height equals number of features. This ensures the assumption is not violated since the kernel does 

not move in this direction when computing the feature map in the first layer. After the convolution 

layers, the output vectors are vectorized, which is simply reshaping the multi-dimensional vector 

into a 1D vector. Afterwards, fully connected layers compute the final output. The final output is 

used to determine the operating load factor of the ICG, state of charge of the battery bank and 

thermal storage. Depending upon energy flow through these parameters, interactions between the 

thermal and electric grid are computed. 

 

Fig. 3. 5: Network architecture: Kernel dimensions (dim) uses the notation 𝑫𝒕 × 𝓗𝒕 × 𝓦𝒕.  

3.5. Design optimization of the system 

A number of different methods have been proposed to optimize distributed energy systems 

including mixed integer linear programing, mixed integer non-linear programming, heuristic 

algorithms, enumerative methods etc. Heuristic methods have been amply used considering the 

system sizing problem (even in bi-level optimization algorithms secondary algorithm that relates to 

system sizing are often based on heuristic methods) due to two reasons. These are prices related to 

the system component are nonlinear and heuristic methods can be easily used to conduct Pareto 

optimization effectively. Furthermore, heuristic methods become the only available method when 

combining energy system designing and using dispatch strategies based on Markov-Decision 

Processes. Therefore, heuristic algorithms have been amply used for design optimization of 

distributed energy systems. However, the main disadvantage when using heuristic methods is the 

high computational time compared to other methods. Furthermore, heuristic methods do not 

guarantee the optimum, therefore they should be carefully selected.  



64 
 

3.5.1. Moving into heuristic methods 

Optimization of both energy system configuration and dispatch strategy are taken into consideration 

in this study. Architecture of the neural network should be optimized along with system 

configuration which is a challenging task due to the extension of decision space. Convex optimization 

methods such as gradient decent, stochastic gradient decent etc. have been commonly used to 

optimize the architecture of neural networks. However, heuristic methods such as evolutionary 

algorithms and particle swarm have been amply used to optimize the architecture of neural 

networks especially considering evolving neural networks. Neuro-evolution has been successfully 

used in reinforcement learning as described in Section 4.4. Hence, heuristic methods can be 

effectively used to optimize both the architecture of the neural network and the state transition 

points for the dispatch strategy. However, this extends the decision space for the optimization 

problem which might result in reaching towards sub-optimal especially when using a heuristic 

method. 

A co-operative co-evolutionary algorithm (COCE) is used in this study to assist the optimization 

process. COCE is an extension to the co-evolution algorithms. Co-evolutionary algorithms have 

become an effective method when handling larger decision spaces compared to simple evolutionary 

algorithms. Recently, it is getting popular for multi objective optimization problems. However, the 

main limitation of co-evolutionary algorithms is the difficulty of handling optimization problems 

which are not variable separable. COCE becomes effective in such instances [45].    

3.5.2. Overview of the COCE  

Implementation of COCE brings an extension to the co-evolutionary algorithms used for 

optimization. Decision space is partitioned into several parts which are presented by several sub-

populations instead of using a single population that represent the whole decision space (Fig. 3.6). 

Each sub-population considers a subset of the decision space variables as the decision space for the 

optimization. The entire set of sub population covers the entire decision space. Each sub population 

is initialized randomly as the first step. In step 2, basic reproduction operators such as mutation and 

cross-over operators are acting on each sub-population simultaneously. Archives of the Pareto front 

obtained for each sub-population (known as sub archive) in Step 2 are fed into Step 3. After reaching 

the number of the generations defined by the user, archived Pareto solutions form each sub-

population is taken and fed into Step 3. In Step 3, Pareto solutions are given the opportunity to 

compete with each other based on constraint tournament method in order to obtain the global 

archive. Global archive is fed in to step 2 again. A sub-population is recreated for the next generation 
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taking members from global archive and the final population of the previous step randomly. This 

routine is conducted for number of generations.  

Sub-population 2

Sub-population nSub-population 1

Global population

Regeneration for 
sub-population 1 

Regeneration for 
sub-population 2 

Regeneration for 
sub-population n 

Regeneration for 
global 

population 

Sub 
Archive 1

Sub 
Archive 2

Sub 
Archive n

Sub 
Archive 

Glo

Archive 
of Sub 1

Archive 
of Sub 2

Archive 
of Sub n

Sub 
Archive 

Glo

Competition among sub 
Archives

Global Archive with non dominant 
set of solutions

STEP 1

STEP 2

STEP 3


Decision space not considered by 

the sub population

Decision space 
considered

 

Fig. 3. 6: Outline of the optimization algorithm 

 

3.6. Results of the case study 

Introducing the changes into the optimization process of energy systems can have an influence on 

both design and operation of the energy system. Hence, it is interesting to analyze both these 

aspects separately. Pareto optimization is conducted in this study considering Net Present Value 

(NPV) and total grid integration level (GI) as objective functions to support the analysis. The 

comparison of the objective function values obtained using grey-box method and black box method 

is presented in Section 6.1. Subsequently, the design of the energy system is considered. Section 6.2 

is devoted to analyze the influence of the optimization strategy of the system design. Few design 

solutions from each Pareto front are taken and subsequently analyzed based on several 

performance indicators. Finally, Section 6.3 is devoted to generalize the observation obtained in 

Section 6.2 and understand the specific aspects that control strategy is having more influence.   
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Fig. 3. 7: Pareto fronts obtained for 5 different methods considering NPV and Grid interactions as the objective functions 

3.6.1. Inter-comparison of the Pareto fronts  

Five different Pareto fronts are taken, considering five different models used to represent the 

dispatch strategy during the energy system optimization. Fuzzy logic is used for the grey box model. 

Three different fully connected neural network architectures are considered which are having 

different number of hidden layers. Pareto fronts named as 2 FC, 3 FC and 4 FC are respectively 

having two, three and four hidden layers.  In addition to the grey box model and the fully connected 

neural networks, CNN is considered which is having the architecture described in Section 5.5. All 

these Pareto fronts can be classified into three classes i.e. grey box models, fully connected neural 

networks (FNN) and CNN. There is a significant change in the objective function values when moving 

from one to another for the Pareto fronts of the three different classes. 

Previous studies on electrical hubs by Perera et-al [33] showed that grey models are an efficient 

method to reach the optimum design configuration for simple energy hubs which only considers the 

electrical aspect. However, Fig. 3.7 shows that increasing the complexity of energy system cannot be 

accommodated by grey models. Even simple neural network with two hidden layers can outperform 

the grey model based on fuzzy logic. Except for the grid interaction levels between 17 to 23 %, 2 FC 

outperform the grey model with a notable margin. In certain instances, 2 FC can reduce the NPV of 

the energy hub by 60% when compared to the grey model. For example, when comparing A-A and B-

B solutions (Fig. 3.7) from the two Pareto fronts which are having similar grid interactions, the NPV 

reduce respectively by 33 and 57 %. Furthermore, it is observed that higher autonomy levels (grid 
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interactions below 14%) cannot be achieved when using the grey models. Further reduction in NPV 

can be observed when moving from 2 FC to 3 FC and to 4 FC. These results clearly demonstrate that 

black box methods can easily outperform grey box models with the increase of complexity in the 

energy system.      

When comparing the black box methods, a significant reduction in NPV can be observed within FNN 

models.  For example, the NPV reduces from 3.86 to 2.06 x105 when moving from 2 FC to 3 FC 

Pareto fronts along C-C reducing it by 47 %. However, such a significant reduction in NPV is not 

observed when moving from 3 FC to 4 FC. The maximum difference in NPV between 3 FC and 4 FC is 

observed within D-D which is around 12%. Further increase in hidden layers beyond four (4 FC) did 

not improve the NPV. Hence, it is prudent that four hidden layers are sufficient to handle the 

complexity of the energy hub considered in this work. However, FNN is used only to consider the 

present demand, renewable energy generation and grid conditions. Notable changes are introduced 

into both operation and neural network structure when moving from 4 FC to CNN. Future forecast of 

renewable energy potential, demand, grid prices are considered for the CNN scenario which are not 

considered for the FNN scenarios. Considering future forecast renewable energy technologies, 

demand and grid costs notably increase the input features considered by the neural network. Such a 

large pool of input variables is difficult to be handled by using a fully connected neural network. This 

made it to use CNN instead of using a fully connected neural network.   

A noticeable reduction in NPV can be observed when moving from 4 FC to CNN compared to the 

difference observed in-between 4 FC and 3 FC. The NPV reduced by 18% when moving from 4 FC to 

CNN along E-E (the maximum difference reach 20%). Hence, it is clear that considering both future 

forecast and introducing changes to the architecture of the neural network are beneficial. However, 

it is observed that most of the black box models merge with each other in regions F and G. 

Furthermore, a significant increase in NPV is observed when moving from region G to F, irrespective 

of the method used to represent the dispatch strategy. This clearly demonstrates that the energy 

system superstructure that is used at present is difficult to be operated in the fully autonomous 

mode. Further integration of long term energy storage, energy nexus such as vehicle to grid, 

renewables to chemicals etc. would be interesting to analyze from the perspective of making the 

energy hub fully autonomous. Such extensions to the energy hub will make the architecture of the 

neural network to become more complex where significant changes in NPV would be possible.           

3.6.2. Comparison of the system configuration 

Section 6.1 shows that the methodology used to present the dispatch strategy is having a notable 

impact on the objective function values. However, it is interesting to analyze whether the model 
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used to present the dispatch strategy only influence the operation of the energy system or it has an 

impact beyond the operation towards the design of energy system. To achieve this task, three 

Pareto solutions are taken from each Pareto front having similar grid integration level as tabulated in 

Table 3.1. For example, CNN-B, 4FC-B, 3FC-B, 2FC-B and FZZ-B present Pareto solutions from 

different Pareto fronts having similar grid integration levels. Similarly, scenarios A and B present 

Pareto solutions having similar grid integration levels. However, a Pareto solution for FZZ-A is not 

tabulated since fuzzy model does not have Pareto solutions with grid integration level below 13%.          

When analyzing the design solutions, one prominent observation is the higher generation of the 

dispatchable source. The power generation from the ICG reaches above total annual demand for all 

the models except CNN. This is due to the fact that it is economical to operate the ICG at higher load 

factors and inject the excess to the grid than simply following the demand. Furthermore, it is 

observed that the renewable energy that is not utilized (WRE) goes above 20% for many scenarios. 

This is not considered as a good practice when designing grid integrated distributed energy systems 

[33]. However, it can be justified when considering the lower grid interactions maintained with the 

multi energy grid. When moving from the performance indicators to the system configuration, no 

direct relationship is observed that justifies the difference in NPV when analyzing the system design. 

However, certain common characteristics can be observed within the Pareto solution of one specific 

model. For example, the size of the thermal storage is small for Fuzzy and 3FC models. Moreover, 

3FC-A and B are having 11 storage units in the bank while FZZ-B and C are having 34 and 49 

respectively. The size of thermal storage for these four designs is significantly small when compared 

to this size for 2FC and CNN. Furthermore, lower ICG capacities are observed for 2FC and 3FC 

systems. For example, 2FC-C is having an ICG with a capacity of 115 kW which is the smallest among 

the design solutions in Table 3.1. However, the most important observation is that the design 

solutions of 2FC and 3FC are having higher percentage of power generation using the ICG, compared 

to CNN, although the capacities are small. After considering all the aforementioned factors and the 

design solutions in Table 3.1 it can be concluded that:  

 an increase in renewable energy capacity is observed when moving from 2FC to 3FC 

(while the size of storage drops) though the ICG capacity stays more or less the same 

 an increase in ICG capacity and thermal storage is observed when moving from 3FC to 4 

FC with a slight drop in the renewable energy capacity 

 an increase in the size of battery bank is observed when moving from 4FC to CNN   
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Table 3. 1 Selected design solutions from the five Pareto fronts having similar grid interactions  

 

Although the observed variations in the system design are not straight forward when moving from 

one model to another, it is clear that the model used to present the dispatch strategy is having a 

significant impact on the energy system design. However, understanding the influence of dispatch 

model is important which makes it possible to improve the super structure of the energy system as 

well as the method used to present dispatch strategy in the energy system optimization. This 

requires an overall qualitative assessment of the Pareto solutions besides being limited to few 

selected design solutions from each Pareto front.  

3.6.3. A comparison of the performance indicators 

In order to understand the impacts of the model used to represent the dispatch strategy in a 

broader scale, three performance indicators (power generation of ICG, grid injection) are taken and 

plotted against the grid integration level (Fig. 3.8 and 3.9). By analyzing the ICG generation plot a 

clear relationship between the operation of ICG and NPV can be observed. Power generation using 

the ICG is the lowest in CNN which is followed by 4FC, 3FC and 2FC being analogous to the NPV. A 

similar observation can be made when analyzing the grid injection levels of the Pareto solutions 

obtained using different models. 2FC and fuzzy models are having the highest grid injection while 

CNN is having the lowest. The most interesting fact is that 2FC and 3 FC systems tend to have a 

higher power generation using the ICG as well as injection while having a lower ICG capacity. This 

specific observation reveals an interesting overview about the model the dispatch strategy.  

Model Name 
NPV (x105 

Euro) 
GI (%) 

ICG1 

generation 

WRE2 

(%) 

SPV 

capacity 

(kWE) 

Wind 

capacity 

(kWE) 

# battery 

banks 

ICG 

capacity 

ST 

capacity 

(kWT) 

# 

thermal 

storage 

banks 

 CNN-A 4.64 12.85 94.3 29.48 68 990 10 205 9 82 

CNN CNN-B 3.75 14.87 69.4 23.92 68 990 9 205 9 82 

 CNN-C 3.13 16.92 52.0 16.86 68 990 9 190 9 76 

 4FC-A 5.63 12.55 125.8 21.71 68 850 1 210 10 99 

4FC 4FC-B 4.55 14.65 94.7 42.19 25 890 12 190 8 71 

 4FC-C 3.64 17.07 70.5 30.46 65 850 1 225 7 100 

 3FC-A 5.63 12.56 120.2 26.34 68 1000 1 175 6 11 

3FC 3FC-B 5.12 14.46 106.2 19.89 65 1000 1 155 6 11 

 3FC-C 4.19 16.68 73.2 35.20 68 965 9 200 12 57 

 2FC-A 6.27 12.57 124.2 15.72 66 785 2 170 6 100 

2FC 2FC-B 5.62 14.55 116.2 10.70 62 690 2 150 6 99 

 2FC-C 5.00 16.76 103.9 26.22 66 995 7 115 6 100 

Fuzzy 
FZZ-B 7.15 14.84 113.7 19.20 67 990 1 205 30 34 

FZZ-C 6.09 16.91 95.1 14.59 67 990 1 220 13 49 

1)
 Power generation using ICG as a percentage of the annual demand 

2)
 Renewable energy not utilized as a percentage of the annual demand   
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Fig. 3. 8: Generation using ICG as a percentage of the annual energy demand for the Pareto solutions 

The systems with lower ICG capacity contribute by generating more power using the ICG. At the 

same time, these systems having smaller ICG capacity injects more power to the grid. These 

observations indicate that the ICG of these systems operate more frequently when compared 4FC 

and CNN systems. Hence, we can imagine that the ICG of 2FC and 3FC systems to follow the 

operation as shown in Fig. 3.10 (a). It operates as a base load more frequently while the mismatch is 

taken from the grid. Since the mismatch between demand and renewable generation (using wind 

and solar) fluctuates significantly, the lead factor may change notably when trying to follow the 

mismatch (load following strategy). Operating at lower load factors may results in a significant 

increase in the operation cost. Hence, these generators operate at a higher load factor and inject the 

excess to the grid. However, having a very large ICG capacity is not favorable when adapting such a 

strategy due to the grid curtailments for injection. This leads the 2FC and 3FC systems to have lower 

ICG capacities. In contrast, 4FC and CNN use ICG for the peak shaving. As explained in Section 6.2, 

the size of thermal storage increases when moving from 3FC to 4FC and the battery bank get further 

enlarged when moving from 4FC to the CNN. Larger energy storage allows the system to withstand 

the fluctuations in the demand without much support from the ICG. ICG is only used for the 

instances where mismatch is quite significant which cannot be withstand by energy storage and the 
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grid (due to grid curtailments). This requires careful energy management in between grid, energy 

storage and the ICG since a careful shift over from storage, to grid and to ICG is more challenging 

than simply taking the base load from the ICG. This makes it important to have more knowledge 

transfer such as future prediction of renewable energy, demand and prices in the grid. At the same 

time, it demands for more advanced approximation techniques. 
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Fig. 3. 9: Grid injection as a percentage of the annual energy demand for the Pareto solutions 
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Fig. 3. 10: Possible operation of ICG for (a) shallow and (b) deep neural networks  

3.7. Conclusions 

Distributed energy systems are getting more and more popular due to the large scale deployment of 

renewable energy technologies such as solar PV and wind. However, it is a challenging task to design 

such distributed energy systems due to the intermittence nature of the renewable energy potential 

and fluctuations in the demand. Complex super structures having different energy conversion as well 

as storage technologies have been introduced in order to accommodate the fluctuations in energy 

demand and generation. Furthermore, energy systems are gradually becoming cyber physical 

systems with strong interactions that need to be maintained with the energy internet. Such progress 

of energy systems demands for a notable change in the present techniques used to design 

distributed energy systems. 

Black box methods are an interesting alternative to be considered in such a context. This study 

proposes reinforcement learning to consider the dispatch strategy in the energy system optimization 

process. Policy search method is used to represent the dispatch strategy initially using fully 

connected neural networks. Subsequently, convolution neural networks are introduced to derive the 

dispatch strategy considering future forecast of renewable energy potential, energy demand for 
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electricity, heating and the grid process for electricity and heating. Finally, a grey model based on 

fuzzy logic is used to bench mark the novel method based on black box models. 

Results of the study reveal that fully connected neural network outperform the grey box models 

with a notable improvement in the objective function values. The NPV, can be reduced up to 60% by 

simply using a feed forward neural network with two hidden layers. It clearly indicates that black box 

methods are more suitable when considering energy systems with enlarged state space. Increasing 

the number of hidden layers results in an increase in the performances up to four hidden layers. The 

increase in hidden layers does not improve the performance of the energy system further. 

Introduction of future forecast into the dispatch strategy by using CNN had a notable impact on the 

objective function values. NPV was improved by 20% when compared to fully connect neural 

network with four hidden layers. Finally, the results of the study reveal that the method used to 

represent dispatch strategy is having a notable impact on the design of the energy system. Advanced 

approximation methods with deep neural networks facilitated by information such as future 

predictions helps the system to shift over from one alternative to another with a minimum impact 

on the grid. Furthermore, it helps to have higher storage and dispatchable energy source capacities 

with minimum power generation from the dispatchable source.       
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4 Towards Realization of Energy 
Internet: Designing Distributed Energy 
Systems Using Game-Theoretic 
Approach 
This computational model developed in Chapter 2 and 3 can be used to design a single energy 

system.  This chapter extends the model introduced in Chapter 2 and 3 to consider an energy 

internet, consisting of multiple energy systems that interact with each other. A game-theoretic 

approach is introduced considering fully co-operative and non-cooperative scenarios. A distributed 

optimization algorithm is introduced to conduct the optimization. Finally, the novel approach is 

compared with the present practices.  

This is chapter is based on: 

A.T.D. Perera, V. M. Nik, Zhengchao Wang and J.-L. Scartezzini, “Towards realization of energy 

internet: designing distributed energy systems using game-theoretic approach,” to be finalized in 

future 
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4.1. Introduction 

Integration of renewable energy technologies into the energy infrastructure has been extensively 

discussed in recent past due to rapid depletion of fossil fuel resources and environmental concerns 

[1,2]. Large scale integration of non-dispatchable renewable energy technologies often used to be 

followed up by reinforcement of the grid which imposes economic constraints. Furthermore, 

maintaining reliability and robust operation becomes challenging following large scale integration of 

non-dispatchable energy technologies. Distributed energy systems such as micro-grids, energy hubs 

etc. have become attractive solution in this context which has shown the potential to integrate 

higher fractions of non-dispatchable energy technologies [3,4]. Both dispatchable energy 

technologies and energy storage devices help to withstand the fluctuations in demand and 

generation with a minimum impact on the grid [5]. However, designing distributed energy systems 

consist of different energy technologies is a difficult task. 

Design optimization of energy system is a rich area of study [6,7]. A number of different approaches 

used to design distributed energy systems for both stand-alone and grid integrated applications 

including multi-vector energy systems. Energy systems with complex super structures have been 

optimized using different techniques. Deterministic, robust and stochastic optimization methods 

have been adapted in order to consider the uncertainty in the optimization process [8]. Energy nexus 

of auxiliary services connected to energy systems such as vehicle to grid, water management, waste 

management etc. have been discussed besides being limited to the boundary of the energy system 

[9]. In addition, energy system design has been optimized along with other infrastructure planning. 

For example, Evins [10] optimized the energy system design along with building design, while Wu et-

al [11] did that along with building renovation. Increasing the design space extends the boundaries 

of the energy system, enabling to make more decisions at a more holistic manner. However, such 

holistic optimization can increase the calculation time for optimization problems; for example up to 

three days along with parallel compotation [10].  All in all, the energy system designing process has 

evolved significantly which facilitates to accommodate different aspects closely relevant to the 

energy system into the design process. 

Towards the energy transition, it is important to improve the dissemination of distributed energy 

systems catering the local energy demand while harnessing the renewable energy potential. This 

makes it important to design energy systems considering the interactions among them (through 

multi-energy grids). Designing such energy infrastructure becomes very challenging due to two main 

reasons:  

1. Expansion of the decision space that needs to be explored 
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2. Difficulties in considering the interactions among energy systems  

Moving from a single distributed energy system to a set of energy systems interacting with each 

other extends the decision space. It is required to optimize both connectivity and strength of the 

network in this context besides being limited to the energy system which will further expand the 

decision space. Such expansion of the decision space makes the optimization process to be more 

challenging. Maroufmashat et-al [12] conducted optimization of the energy systems together with 

the energy network connection for a case study that consists of three distributed energy systems 

connected to each other. Secondly, energy markets are gradually translating into a more open 

environment where distributed energy systems behave as agents with much higher autonomy. A 

fully cooperative scenario considers that all the decisions related to the entire energy infrastructure 

are made by one entity. As a consequence, the fully cooperative scenario will misrepresent the 

transition that takes place in energy infrastructure where agents with higher autonomy are expected 

to be taking part [13,14]. Towards this end, Jing et-al [15] conducted energy system optimization 

considering the cooperative scenario and represented distributed energy systems using multiple 

agents during the decision making process. Bargaining process of different agents are considered 

during the decision making process through an agent based model. Moving ahead from the 

cooperative scenario to non-cooperative scenario by considering the optimization problem as a non-

cooperative problem will help to study the liberalized energy markets. Furthermore, it will allow 

accommodating more sustainable energy technologies depending upon the preference of the agents 

(representing each distributed energy system) while guaranteeing reliable and robust operation of 

the energy system. Therefore, such representation is essential for the realization of the broader 

concept of energy internet where different stake holders related to energy services meet each other 

in a common energy market.        

Considering the importance of non-cooperative agents towards realization of energy internet, this 

study focus on optimizing energy infrastructure with multiple non-cooperative agents and compare 

the solutions with cooperative scenario and other practices used in the present state of the art. The 

cooperative method formulates a single objective function considering all the aspects of energy 

infrastructure. This includes the energy grids, distributed energy systems and other auxiliary 

components related to the energy systems. The non-cooperative approach considers each agent 

(such as a distributed energy system) as a unit that tries to maximize its own profit while interacting 

with an open energy market having several such agents that do not cooperate with each other. 

Designing energy systems for a non-cooperative energy market is a challenging task since it converts 

the optimization problem into a set of distributed optimization problems (where each agent 
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represents a distributed energy system). In order to guarantee the equilibrium in the market, the 

optimization process should be conducted for several rounds until the Nash-equilibrium is 

guaranteed. This will extend the computational time making the optimization process further 

challenging. Towards addressing these challenges a novel computational algorithm is introduced in 

this study. Subsequently, the results obtained from the novel optimization algorithm is compared at 

two different levels. First, the results are compared with distributed energy systems optimized 

considering grid curtailments where boundary of the optimization problem is simply considered as 

the distributed energy system (individual system scale). Secondly, the results are compared with a 

cooperative scenario where boundary is extended to several energy systems. Promising paths for 

the energy transition are taken into discussion based on the comparison of non-cooperative scenario 

with both individual system scenario and cooperative scenario.   

4.2. Coordinated design and operation of energy systems for energy internet  

The concept of energy internet is developed with the intention of allowing stronger interactions 

among multi-energy systems connected by multi-energy networks. Energy internet allows higher 

integration level of renewable energy technologies while enabling self-healing and plug and play 

devices. Design and operation of energy infrastructure play an important role in this process towards 

the realization of energy internet where cyber-physical interactions to be considered. Multi energy 

network support the physical interactions while information exchange among the distributed energy 

systems enables cyber interactions with the support of communication technology. This requires 

making energy systems to be more intelligent. In addition, interactions among distributed energy 

systems are essential to provide the flexibility to integrate renewable energy technologies and cater 

the requirement of prosumers. 

4.2.1. Different practices for controlling multi agent micro-grids 

Coordination among distributed energy systems can be achieved through different architectures 

[16]. Different control strategies such as centralized, decentralized, distributed and hierarchical have 

been proposed to achieve the coordination. Among these techniques, distributed control strategies 

have received much attention due to its capability to include plug and play devices and  improve 

robustness, scalability and efficiency according to Hu et al. [17]. Two major approaches have been 

adapted when using distributed control strategies i.e. cooperative and non-cooperative distributed 

control strategies. In the cooperative scenario, distributed energy systems cooperate with each 

other and agree together in order to improve the performance of all the energy systems together. In 

contrast, the non-cooperative scenario assumes that distributed energy systems make decisions 

independently. Nash and Stackelberg equilibria are commonly used solutions concepts for non-
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cooperative scenarios. Non-cooperative scenario is gradually getting popular due to its capability to 

provide higher autonomy at the level of distributed energy system. However, the coordinated 

operation of the energy system solely depends on the design and the connectivity. In this study, 

both coordinated and non-coordinated approaches are practiced with the design approach practiced 

in present in order to understand more promising ways for the realization of energy internet.  

4.2.2. Three different design and operation scenarios        

An energy internet consists of several energy systems connected through a network. The design 

process of the energy internet can be conducted in different ways considering the interactions 

among the energy hubs within the energy internet.      

Energy system optimization considering pre-defined grid curtailments (ESPG) 

Design of energy internets is a challenging task which required simultaneous optimization of the 

energy systems and grid. Optimization needs to be performed at three levels in order to achieve this 

i.e. 1) operation of the energy systems, 2) system configurations of the energy systems, and 3) 

connectivity and strength of network [18]. The design process of energy internet is initiated as a 

process with two steps by Fazlollahi et-al [18]  where energy system is optimized initially where the 

design optimization of the energy system is conducted using a bi-level optimization algorithm. The 

operation strategy of the energy system is optimized along with the system design using the bi-level 

optimization algorithm. Subsequently, the energy network (electricity or heat) is optimized as the 

second step. However, the influences of grid curtailments are not considered in detail at the first 

level where energy system is optimized using the bi-level optimization algorithm. Perera et-al [19–

21] extended this approach by considering predetermined grid curtailments. ESPG presents this 

approach where energy system is optimized initially considering a set of predetermined grid 

curtailments and subsequently the energy network is optimized as shown in Fig 4.1.    
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Fully cooperative scenario (FCS) 

The main limitation with the ESPG scenario is that it optimizes energy hubs without any knowledge 

about the neighboring energy hubs. This may lead to a significant congestion in the grid which leads 

to a sub-optimal system design. Fully cooperative scenario (FCS) facilitates the sharing of 

information among the agents, making the energy systems to be aware of the adjacent energy 

systems. Usage of multi energy grid, which presents the allowance for purchasing and injection, is 

shared among all the energy hubs. Subsequently, each energy hub is optimized considering its grid 

interactions and NPV as the objective functions based on the information shared among the energy 

hubs about the limitations for grid interactions. The energy internet is optimized at the secondary 

level where the energy hub design and grid connectivity are considered as decision space variables. 

Pareto solutions obtained for each energy hub at the primary level are considered as the decision 

space variables at the secondary scale. Following the optimization of the energy internet (secondary 

scale), the limitations for the grid interactions are determined. These limitations are again used to 

optimize the energy hubs individually using the primary algorithm. This process is iteratively 

conducted until it converges.  

Non-cooperative scenario 

Non-cooperative scenario presents the situation where interactions between the energy systems fall 

in between FCS and ESPG. All the energy systems are optimized separately and subsequently the grid 

is optimized in ESPG scenario. An iterative process is introduced in FCS scenario where grid and 

energy hub are optimized one after the other. Non-cooperative scenario follows a similar iterative 

approach to the FCS. However, the objective function and the decision space are limited to the grid 

connectivity and its cost without considering the energy system in both objective and decision 

spaces. Such a consideration leads to a situation where grid acts as a separate agent (similar to an 

energy system) which tries to maximize its profits.    

4.3. Modeling approach 

The energy infrastructure is expected to be consisting of several energy hubs connected through an 

electricity network. However, each energy hub has a distribution grid, as marked in Box 1 in Fig. 4.2, 

which is not considered in order to simplify the study. This converts the design problem as shown in 

Box 2, where each energy hub and its connectivity need to be optimized. However, the design 

optimization of the energy systems and grid, while allowing higher independency to the energy 

systems, is not a process that can be achieved in a single step considering a non-cooperative 

scenario. Hence, an iterative approach should be adopted while optimizing the energy systems 

design and the connectivity in two different stages; one after the other till the Nash equilibrium is 



83 
 

reached. A techno-economic model is developed in order to optimize the energy hub. Another 

techno-economic model is also developed to optimize the network. This section presents a brief 

overview about the techno-economic models for optimizing the energy system and network 

separately.  

4.3.1. Outline of the case study 

Three cities of Landskrona, Lund and Malmö in the southern Sweden are considered in this study to 

calculate the energy demand and renewable generation profiles. These cities have the oceanic 

climate with relatively mild winters compared to other locations at similar latitudes, because of their 

proximity to the sea affected by Gulf Stream.  

The type of weather data can affect the energy calculations considerably [22]. For the purpose of 

this work, typical hourly weather data sets were synthesized considering six future climate scenarios 

for the 30-year span of 2070-2099 [23] [24]. Future weather data sets were simulated by RCA4 

regional climate model with the spatial resolution of 12.5km, downscaling four global climate 

models (GCMs) – namely, CNRM-CERFACS-CNRM-CM5, ICHEC-EC-EARTH, IPSL-IPSL-CM5A-MR and 

MPI-M-MPI-ESM-LR – forced by two representative concentration pathways (RCPs) [25]; the first 

two are forced by RCP4.5 and RCP8.5 and the last two by RCP8.5. In total, six future climate 

scenarios have been used to create one typical downscaled year (TDY) for each city during 2070-

2099 (for more details, the reader is referred to [23] [26]).   

The energy demand of the residential buildings in a typical neighborhood in the cities was simulated 

by considering certain number of residential buildings in each city. The size of each neighborhood 

was set in a way to do not exceed the peak energy demand of 420 kW. Accordingly, the 

neighborhoods in Landskrona, Lund and Malmö respectively contain 39, 46 and 59 buildings that 

statistically represent the majority of residential buildings in each city. The models for building 

energy simulations were developed in Simulink toolbox of Matlab according to the BETSI 

investigation by the Swedish National Board of Housing, Building and Planning (Boverket, 2009) [27]. 

Simulations were done on the hourly time scale, calculating the total energy demand profiles, 

including the demand for heating, cooling, hot water, fans and considering if heat recovery is used in 

the building or not. The building simulations have been verified and used in some previous works 

(e.g. [28] [29] [30] [31]).  

4.3.2. The design problem of Distributed Energy Hub 

Energy hub consisting of wind turbines, PV panels, battery bank and an internal Combustion 

Generator (ICG) is considered in this study (Fig. 4.2). The energy hub caters the heating and 
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electricity demand of the considered neighborhoods in this study. It is assumed that heat pumps are 

used in all the buildings which convert the thermal demand into electricity demand. The energy hub 

interacts with the grid by selling and purchasing energy depending upon the fluctuations in the 

energy demand and renewable potential. However, the limitations for the grid interactions are 

imposed depending on the strength of connectivity, demand and generation of the other energy 

hubs. Net Present Value (NPV) and grid integration levels are considered as the objective functions 

when optimizing the energy hub while power supply reliability is considered as a constraint. 

Optimization process for all the three scenarios remains the same except for one specific factor 

which is grid curtailments. Grid curtailments for both injecting and purchasing electricity to the 

distribution network are considered as a constraint for the entire time period in ESPG scenario. 

However, these curtailments are updated during the iterative process for both NS and FCS.   

 

Distributed Demand

Energy Hub

Distribution Grid

Transmission Network

Energy Hub 3

 

Fig. 4. 2: Configuration of a single energy hub which is connected to the energy internet. The mode of connections 

depends on whether the scenario is ESPG, FCS or NC. 

4.3.3. Distributed network planning problem 

Design of the network is conducted at the secondary level. A Pareto optimization is conducted 

considering two objective functions at the secondary level. However, formulation of the objective 

function is different from one to another when moving from one scenario to another. 
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Both ESPG and FC scenarios consider the entire energy internet is considered in the optimization 

process and the grid interactions maintained with the transmission line and the total cost for the 

entire energy internet is considered in this scenario. The NPVIE is computed considering the net 

present value of all the energy hubs and the operation and maintenance cost for the distributed 

network (Eq. 4.1).  

/

,

lmxIE h

ESPG FCS

h H l m H

NPV NPV NPV
   

                      (4.1) 

In, Eq. 4.1, lmx denotes the installation, operation and maintenance cost for the line connecting 

energy hub l and m. 
hNPV denote the net present value of a single energy hub computed according 

to Chapter 2. The decision space for both ESPG and FC scenario consists of energy hub design eh (

,hp P h H   ) for each energy hub and connectivity strength for lmx ( x X ).  The 

formulation changes when moving from ESPG to NS scenario. As explained in 2.2, it only considers 

the cost for the connectivity according to Eq.4.2. 
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                      (4.2) 

Grid interactions maintained with the transmission network (IT) is computed in a similar manner for 

the three scenarios. Both selling and purchasing are minimized when reaching lower IT levels. Eq. 4.3 

is used to compute the IT. 
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                      (4.3) 

In this equation, ,IE EG

tP , ,IE IG

tP  and 
,

ELD

t hP  respectively denote energy exported and imported from 

the transmission network and the energy demand for each energy hub respectively. 

 

4.4. Optimization frame work   

Optimizing both hub and the network is a challenging task. The complexity becomes more when 

considering different operation scenarios as discussed in Section 2.2. A brief overview about the 

optimization frame work is presented in this part without going deep into the mathematical 

formulation. When considering the ESPG scenario, method proposed by Samira et-al [18] and Perera 

et-al [19,20] are used directly (described in Chapter 2). Energy system is optimized considering two 

objective functions formulated in Eq. 4.3 and 4.4. A Pareto optimization results in a set of solutions 



86 
 

for each energy system as shown in Box A in Fig. 4.3. Subsequently, the network is optimized along 

with the energy system in the second step as shown in Box B. The optimization process terminates 

after finishing the optimization of the network for ESPG scenario. However, the optimization process 

it further extended in FCS and NC scenarios. Both these scenarios go through an iterative process as 

shown in Fig. 4.4. Similar to ESPG scenario, Energy system and grid are optimized at two different 

stages (Box A and B). Subsequently, grid curtailments are redefined in Box C based on the results of 

the Box B. Afterwards, the energy hub is optimized again in Box A for the new grid curtailments. The 

iterative process take place until the equilibrium is reached. The main difference between FCS and 

NC is related with the formulation of objective functions formulated in Section 3.3.   
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Fig. 4. 3: Graphical Presentation of the optimization algorithm for ESPG scenario 

4.5. Results and discussion 

Optimizing the design of a group of energy systems is a difficult task especially when considering the 

interactions within the group. The energy systems demand for higher autonomy while expecting 

support from the grid whenever there is a shortage or excess in generation. Maintaining the 

optimum balance between these two ends is difficult. It is interesting to analyze how these different 

scenarios introduced in this study helps to balance the autonomy and while guaranteeing better 

connectivity to assist energy systems to with stand the fluctuations in demand and generation.   
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4.5.1. Analysis of ESPG 

ESPG presents the design for the set of energy systems and the grid considering minimum prior 

knowledge between each other. As a result, the energy system is designed solely considering the 

upper and lower limits which are imposed artificially to design each energy system while the grid is 

subsequently designed based on the requirements of the energy system. As a result, the energy 

system is unaware of the demand and generation of its neighbors and fails to adapt its generation 

mix to maximize its profit while optimizing the interactions with the neighbors through the grid. In 

order to analyze these aspects further, Pareto fronts obtained for the four energy hubs are 

presented in Fig. 4.5. 
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Fig. 4. 4: Formulation of the optimization problem for FCS and NC  
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Fig. 4. 5: Pareto fronts obtained considering LEC and Grid Integration levels as the objective functions for the four 

different energy hubs. Each Pareto front is obtained by conducting the optimization separately considering set of upper 

bounds for grid interactions based on ESPG. 

When analyzing the Pareto fronts, it is prudent that a gradual reduction in the LEC is observed for 

the Pareto solutions while increasing the grid interactions. Furthermore, a slight shift in NPV is 

observed when moving from the Pareto fronts obtained for different hubs which can be justified due 

to the changes observed in energy demand and renewable energy potentials. Towards analyzing the 

changes observed in NPV for different hubs, two Pareto solutions with similar grid integration levels 

from different hubs are taken and tabulated in Table 4.1. The two scenarios are taken considering 

Pareto solutions having grid interaction levels close to 5% and 10% respectively. When analyzing the 

Pareto solutions it is prudent that the LEC, within a scenario does not show a significant fluctuation 

as observed in Fig. 4.5. In addition, the number of wind turbines reaches the upper limit set of the 

optimization for many design solutions except with S1H3 and S1H1. The main deviation is observed 

when analyzing the SPV capacity. A notable drop in SPV capacity is observed in S1H1 and S2H3 when 

compared to the other Pareto solutions, having 31 and 42 SPV panels respectively. As a result, the 

grid injection notably reduces. Hence, it is clear that significant changes in both design and operation 

can be observed when moving from one energy hub to the other. The most important fact is that 

these optimum solutions have been obtained solely considering the energy demand and generation 

of the specific hub without considering the demand and the generation of the others which can lead 

to many deficiencies during the operation.   
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Table 4. 1: Pareto solutions having similar grid interactions for the four hubs.  

 

4.5.2. Analyzing the fully cooperative scenario 

The fully cooperative scenario (FCS) presents the entire opposite of ESPG. FCS considers the 

generation and demand of the other energy systems as well as the grid congestion during the 

optimization process of the specific energy hub. As a result, it provides the opportunity to minimize 

the design and operation of the specific energy system as well as the entire system consisting of 

several energy hubs along with the grid. The distributed optimization algorithm introduced in 

Section 4 is used to arrive at the Pareto solutions considering the FCS scenario. The LEC-GI Pareto 

front obtained following the Epsilon-Nash equilibrium is presented in Fig. 4.6.  
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Fig. 4. 6: LEC-GI Pareto fronts obtained for the four hubs after Epsilon-Nash equilibrium condition. The LEC-GI Pareto 

front extends significantly when compared to ESPG introducing Design solutions having higher grid integration levels 

and lower LEC. Pareto solutions towards the left side of W-W line are the ones introduced in FCS which will result in a 

reduction around0.05 Euros in LEC. 

Scenario Hub 
Pareto 

Solution 
GI (%) LEC(Euro) 

Grid 
Injection (%) 

Grid 
Purchase 

(%) 

SPV 
panels 

wind 
turbines 

ICG Capacity 
(kWh) 

1 

1 S1H1 5.10 0.18 3.6 1.5 50 28 100 

2 S1H2 5.83 0.19 0.5 5.3 31 30 100 

3 S1H3 5.86 0.19 4.5 1.4 47 10 100 

4 S1H4 5.76 0.18 3.4 2.3 51 30 100 

2 

1 S2H1 10.00 0.17 8.8 1.2 99 30 100 

2 S2H2 10.90 0.16 6.3 4.6 74 30 100 

3 S2H3 9.31 0.17 3.3 6.0 42 30 80 

4 S2H4 10.96 0.16 8.7 2.3 106 30 100 
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Pareto front obtained shows a steep reduction in LEC with the increase of grid interactions for 

design solutions which are having grid interaction levels less than 10%. The reduction in LEC is 

notably high for these design solutions when compared to ESPG. For example, the LEC reduces from 

0.2042 to 0.1455 Euros when increasing the grid integration level from 2 to 15.6% by reducing the 

LEC by 28% for Hub 1. In addition, the Pareto front obtained for FCS is having design solution with 

higher grid integration levels when compared ESPG. The Pareto solutions towards the right hand 

side of W-W line are the newly added designs when moving from ESPG to FCS. For example, the grid 

integration level has increased from 16.9 to 46 % with an increase almost three times when moving 

from the design solution having highest grid interactions in Hub 1 under ESPG scenario to the same 

design solution in FCS. The higher grid interactions results in a significant drop in LEC. For example, 

the LEC reduces from 0.148 to 0.1161 Euros reducing it by when moving from the design solution 

having highest grid interactions in Hub 1 under ESPG scenario to the same design solution in FCS 

31%. Further, reduction in LEC can be observed when comparing Hub 4. These results clearly show 

that it is possible to reduce the lifecycle cost notably by improving the interactions with the 

neighboring energy hubs. The energy network plays a vital role in this context which will enable 

higher interactions among different energy hubs. 

 The Pareto fronts obtained for the energy system presents the alternative design solutions from the 

energy system perspective. However, the main advantage of FCS is that these solutions obtained for 

each energy hub can be used to optimize the entire energy superstructure consisting of both the 

energy hubs and grid. The Epsilon-Nash equilibrium for the fully cooperative scenario presents 

Pareto solutions for each hub as well as the energy superstructure including all the energy hubs and 

grid. Hence, it’s interesting to move from the Pareto solutions obtained for each energy hub to the 

optimum solutions obtained for the energy superstructure which will provide a more holistic view. 

Towards this end, the two Pareto solutions having lowest LEC and grid interactions respectively for 

the entire energy superstructure are taken and both grid and energy system configuration of these 

solutions are tabulated in Table 4.2.       
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Table 4. 2: Pareto solutions having lowest NPV from ESPG and FCS 

 

When comparing the design solutions obtained for the fully ESPG and FCS, a notable drop in LEC can 

be observed for each hub as a result of the significant improvement in the grid interactions. For 

example, the total grid interactions increase from 5.1 to 29.95% when moving from ESH1 to FLCH1 

while reducing the LEC from 0.18 to 0.14 with a percentage reduction in 24%. Similarly, the LEC 

reduce by 40% when moving from ESH4 to FLCH4. This clearly shows that the interaction among the 

energy systems can lead to a significant drop in the lifecycle cost. When analyzing the grid 

interactions carefully, it is observed that both grid injection and purchasing have improved in FLC 

scenario except for FLCH3. As the result of the improvements in grid interactions, the requirements 

of the dispatchable energy sources get reduce. This can be observed when comparing the ICG 

capacities of FLCH4 and FLCH1 (40 and 60 kWh respectively) which are significantly low when 

compared to the ICG capacities obtained for ESPG scenario. Similarly the number of SPV panels has 

increased in all the design solutions for the FSC scenario except FLCH3. Therefore, it is clear that the 

interactions among the energy systems can lead to notable changes in the energy system design 

which result in a significant drop of the lifecycle cost.    

4.5.3. Analyzing the non-cooperative scenario (NS) 

The design solutions obtained for non-cooperative scenario falls in between the ESPG and FCS. There 

are interactions among the energy systems and the grid although not strong as the FCS. The changes 

introduced to the optimization process when moving from FCS to NCS influence the design of each 

energy hub and the entire superstructure. Hence, it is important to analyze the changes in both 

energy hubs as well as the superstructure. 

In order to analyze the design solutions of the energy hubs, Pareto solutions for Hub 1 are plotted 

for both FCS and NS (Fig. 4.7). When analyzing the Pareto solutions it is clear that the LEC obtained 

for NS are slightly higher than the solutions obtained for FCS in many instances (marked in Region L). 

Scenario Hub 
Pareto 

Solution 
GI (%) LEC(Euro) 

Grid 
Injection (%) 

Grid 
Purchase 

(%) 

SPV 
panels 

wind 
turbines 

ICG Capacity 
(kWh) 

Lowest 
cost-FCS 

1 FLCH1 29.95 0.14 13.4 16.6 84 4 60 

2 FLCH2 18.54 0.14 7.1 11.4 119 30 80 

3 FLCH3 3.95 0.19 2.4 1.6 37 0 100 

4 FLCH4 41.74 0.11 17.1 24.7 120 29 40 

Optimum 
ESPG 

1 ESH1 5.10 0.18 3.6 1.5 50 28 100 

2 ESH2 5.83 0.19 0.5 5.3 31 30 100 

3 ESH3 5.86 0.19 4.5 1.4 47 10 100 

4 ESH4 5.76 0.18 3.4 2.3 51 30 100 
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Furthermore, there are few design solutions where FCS shows slightly higher LEC as marked in 

Region M. Finally, both Pareto fronts overlap each other when the grid interactions are very low and 

very high. In order to understand the possible causes for the deviation, three Pareto solutions having 

similar LEC are taken from each Pareto front (FCS and NS which belong to Region L) and tabulated in 

Table 4.3. When analyzing the design solutions, a significant increase in grid interactions can be 

observed when moving from FCS to NS for the same LEC. For example, GI increase from 5.2 to 9.31 

when moving from F1 to N1, increasing the total grid interactions by 80%. However, when 

comparing the grid purchasing levels, Pareto solutions which belong to the same case (having similar 

LEC from the two different Pareto fronts) are having similar grid purchasing levels. Therefore, the 

deviation is entirely due to the grid injection. This can be understood when comparing the grid 

injection levels of the Pareto solutions. When analyzing the scenarios further it was found that the 

increase in grid injection is due to the changes in the energy system design. The design solutions 

obtained for NS are having larger number of wind turbines when compared to the FCS. For example 

FC3 is having 7 wind turbines while N3 is having 28. The number of wind turbines has increase by 

four times while increasing the grid injection notably. However, LEC and the grid purchase remain 

almost the same when moving from NS3 to FC3. It shows that more energy sources need to be 

added to the energy system when considering NS due to the mutual understanding between 

different energy hubs. As a result both grid integration level and LEC increase when moving from FCS 

to NS. 

It is interesting to analyze the influences of cooperative and non-cooperative scenarios on the other 

energy hubs (presented in Fig 4.8(a), (b) and (c)). Hence, the Pareto solutions obtained for each 

energy hub at the epsilon-Nash equilibrium are plotted in a similar manner. When analyzing Hub 2 

(Fig. 4.8 (a)), the Pareto fronts obtained considering FCS and NS deviate from each other following a 

similar pattern to the Hub 1. However, the difference between the two Pareto fronts has reduced in 

Hub 2. When moving from Hub 2 to 3, the differences between the Pareto fronts reduce further (Fig. 

4.8(a) and (b)). Finally, the two Pareto fronts overlap with each other in Hub 4. The connectivity of 

different hubs explains the gap between the Pareto fronts obtained using FCS and NS. Hub 1 is 

connected towards both Hub 4 and 2 and the transmission network. Hub 2 is connected to both Hub 

1 and 3. FCS can take the benefit of higher connectivity of energy hub and lead to a notable 

reduction in LEC when compared to the NS. Both Hub 3 and 4 are less connected when compared to 

the other two. Especially, Hub 4 is far away from Hub 1 which results in significant investment on the 

grid. Therefore, these two hubs get less opportunity to interact when compared to the others. As a 

result, a significant deviation cannot be observed when moving from FCS to NS. 
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Fig. 4. 7: A comparison of Pareto solutions for Hub 1 for FCS and NS scenarios  

Table 4. 3: Three Pareto solutions having similar LEC are taken from each Pareto front (FCS and NS which belong to 

Region L) 

 

Scenario Case 
Pareto 

Solution 
GI (%) LEC(Euro) 

Grid 
Injection (%) 

Grid 
Purchase 

(%) 

SPV 
panels 

wind 
turbines 

ICG Capacity 
(kWh) 

FCS 1 F1 5.20 0.180 3.628 1.571 54 13 100 

NS 1 N1 9.31 0.180 8.069 1.246 57 29 100 

FCS 2 F2 8.71 0.162 7.223 1.492 110 6 100 

NS 2 N2 13.68 0.162 12.100 1.583 120 30 100 

FCS 3 F3 16.81 0.144 7.340 9.473 120 7 80 

NS 3 N3 20.91 0.146 11.863 9.048 120 28 80 
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Fig. 4. 8: Presents the comparison of FCS and NS using Pareto fronts obtained for (a) Hub 2, (b)Hub 3 and (c) Hub 4 

 

4.5.4. Analyzing the Energy Internet for NS and FCS 

Pareto analysis of each hub presents the overview from a specific energy system perspective. 

However, it is important to consider the entire energy internet in order to get a more holistic 

understanding about the influences of cooperative and non-cooperative scenarios. Such a holistic 

assessment provides the opportunity to understand the impact of energy interactions among 

different energy hubs on the performance of the energy internet. Towards this end NPV and 

interactions with the transmission network are plotted for the Pareto solutions of the energy 

internet at the epsilon-Nash equilibrium (Fig. 4.9) which is followed by a detailed analysis taking 

several design solutions from the Pareto front.  

The Pareto front of NPV-IT presents the design solutions obtained considering Net Present Value of 

the energy internet (including the lifecycle cost of all different energy hubs and the grid) and the 

interactions energy internet maintains with the transmission line for the FCS. When moving into the 

NS, Pareto optimization is conducted considering the NPV of the grid and the interactions energy 

internet maintains with the transmission line for the FCS. Hence, for NS, Fig. 4.9 presents the NPV of 

the energy internet for the Pareto solutions obtained considering NPV of the grid and IT at the 
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epsilon Nash equilibrium. However, when analyzing the Fig. 4.9, it is clear that the design solutions 

obtained for NS are non-dominant and presents a Pareto front in the objective space of NPV-energy 

internet and IT. Therefore, both are referred as Pareto fronts hereafter. Both Pareto fronts overlap 

each other at the beginning where grid interactions are at minimum. Subsequently, they divert from 

each other with the increase of grid interactions resulting a significant difference in NPV up to 13%. 

A notable reduction in NPV is observed for FCS with the increase in IT in Region P. However, the 

difference between NPVs gradually get reduces when reaching the end of Pareto front where grid 

interactions are at the maximum. 
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Fig. 4. 9: A comparison of the two Pareto fronts obtained for the energy internet considering FCS and NS scenarios  

In order to analyze the Pareto fronts quantitatively, three Pareto solutions are taken from each 

Pareto front. Subsequently, the strength of the grid connectivity of each Pareto solution and energy 

hub design are tabulated in Table 4.4, 4.5, and 4.6. When analyzing the Pareto solutions it is clear 

that Hub 1 is having higher grid interactions for both FCS and NS which is maintained above 240 kW 

for all the design solutions tabulated in Table 4.5. Hub 1 is connected to the transmission line and 

having very short connection distance which justify the strong connectivity irrespective of the 

scenario. The connection distance between Hub 2 and 3 is trivial when compared to the distance 

between Hub 2-1 and Hub 4-3. This justifies the strong connection for Hub 3. The main difference 

between the two scenarios lies with connectivity strength of Hub 2. FCS scenario is having a higher 

connectivity for Hub 2 which notably reduces when moving into Hub 4. As shown in Table 4.4.6, Hub 

2, 3 and 4 are having low grid interaction level for NS scenario (except for NIT 3 where Hub 2 is 
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having a higher GI level). Hence, by connecting each other, these three can form an island without 

depending much upon transmission network. Such island operation will minimize the cost of grid 

although it will significantly increase the overall cost of the energy internet. As a result, a significant 

improvement in grid connectivity is observed when moving into FCS scenario which results in 

notable change in the energy system design. However, Hub 4 is at the end of the network, being 

only connected to Hub 3. Hence, it is important to have a higher grid interaction with Hub 3 which 

makes it to have a stronger grid connection than Hub 2 for the NS scenario except for NIT3.    

Table 4. 4: Connectivity strength of each energy hub for the selected designs, NPV and grid interactions maintained with 

the transmission line for the energy internet 

 

It is interesting to further assess the impacts of the two different operation scenarios on the design 

of two energy hubs. A notable difference in grid interactions, cost and system configurations can be 

observed for the energy hubs when comparing NS and FCS scenarios. When comparing the two 

scenarios, it is observed four hubs will have unique system design under FCS while Hub 3 and 4 will 

have the same design for NIT 1, 2 and 3 design solutions. The design solutions obtained for Hub 3 

and 4 (NIT 1-3-3 and NIT 1-3-4) are the Pareto solutions having the lowest grid integration level with 

the highest LEC. Moving from NS to FCS, Pareto solutions obtained for the energy hubs are neither 

the cheapest nor the most autonomous. A significant change in LEC is observed when moving from 

one solution to the other within the energy hub including energy hubs 3 and 4. For example, LEC 

reduce from 0.185 to 0.113 Euros when moving from FIT 1-4 to FIT 3-4. More importantly, the 

cheapest LEC is observed for Hub 2 (Solution FIT1-2 for Grid Scenario FIT 1) and Hub 4 (Solution FIT2-

4 and FIT3-4   for Grid Scenario FIT 2 and 3) in FCS. Hence, it’s clear that it utilizing the local 

renewable energy potential  reduce the LEC being the opposite of NS scenario. Furthermore, the grid 

interactions of Hub 2, 3 and 4 improve significantly compared to NS scenario. GI reaches 41.74 (FIT 

3-4) and 12.93 % (FIT 2-3) respectively for Hub 3 and 4 for FCS, which was below 3% for NIT1-3-3 and 

NIT1-3-4. As a result, significant improvement in renewable energy capacity can be observed for Hub 

3 and 4. The design solutions obtained for FCS complement each other in order to operate the 

energy internet as a single energy hub. This can be observed when the three Pareto solutions for 

Scenario Name NPV (x10
6
) 

IT (MWh 
/year) Hub 1 (kW) Hub 2 (kW) Hub 3 (kW) Hub 4 (kW) 

FCS 

FIT 1 17.35 249 290 100 270 60 

FIT 2 15.74 589 290 190 280 90 

FIT 3 15.26 966 290 160 280 190 

NS 

NIT1 18.58 257 280 20 210 60 

NIT2 17.73 582 280 20 210 60 

NIT3 16.16 968 240 80 280 60 
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Hub 3 and 4. FIT 1-3 and FIT 3-3 do not have any wind turbines while FIT 1-4 and FIT 3-4 are having 

29 wind turbines each. In contrast, FIT 2-3 has 30 wind turbines while FIT 2-4 does not have any. This 

clearly presents that proper organization between the energy hubs can be seen for FCS from the 

system design perspective which enables them to coordinate properly as an energy internet.       

Table 4. 5: Design of four energy hubs for the selected three design solutions of FCS 

 

Table 4. 6: Design of four energy hubs for the selected three design solutions of NS 

 

4.6. Conclusions and future perspectives 

Energy internet is an emerging area of research which allows large scale penetration of non-

dispatchable renewable energy technologies such as wind and SPV. Although several studies have 

focused on operation of such energy internets consisting of several distributed energy systems, a 

comprehensive study has not been conducted on promising techniques that can be used to design 

such energy internets. Towards addressing this research gap, this study introduces a distributed 

 
Grid 

Scenario 
Name LEC(Euro) GI (%) 

Grid 
Injection 

(%) 

Grid 
Purchase 

(%) 
SPV panels 

wind 
turbines 

ICG 
Capacity 

(kWh) 

Hub 1 

FIT 1 FIT 1-1 0.181 4.90 3.37 1.53 52 13 100 

FIT 2 FIT 2-1 0.162 8.71 7.22 1.49 110 6 100 

FIT 3 FIT 3-1 0.137 29.95 13.39 16.56 84 4 60 

Hub 2 

FIT 1 FIT 1-2 0.153 10.91 6.51 4.40 120 30 100 

FIT 2 FIT 2-2 0.151 12.52 7.31 5.21 120 30 100 

FIT 3 FIT 3-2 0.138 18.54 7.13 11.41 119 30 80 

Hub 3 

FIT 1 FIT 1-3 0.190 4.61 3.12 1.49 41 0 100 

FIT 2 FIT 2-3 0.159 12.93 7.59 5.34 86 30 80 

FIT 3 FIT 3-3 0.194 3.95 2.36 1.60 37 0 100 

Hub 4 

FIT 1 FIT 1-4 0.185 4.39 1.46 2.93 38 29 100 

FIT 2 FIT 2-4 0.142 23.80 16.42 7.38 111 0 100 

FIT 3 FIT 3-4 0.113 41.74 17.05 24.69 120 29 40 

 

 
Grid 

Scenario 
Name LEC(Euro) GI (%) 

Grid 
Injection 

(%) 

Grid 
Purchase 

(%) 
SPV panels 

wind 
turbines 

ICG 
Capacity 

(kWh) 

Hub 1 

NIT 1 NIT 1-1 0.147 20.51 11.93 8.58 120 26 80 

NIT 2 NIT 2-1 0.119 40.73 17.84 22.89 118 29 40 

NIT 3 NIT 3-1 0.105 53.35 20.75 32.60 120 30 20 

Hub 2 
NIT 1-2 NIT 1-2-2 0.211 2.93 0.29 2.64 28 30 120 

NIT 3 NIT 3-2-2 0.113 50.56 17.04 33.52 114 30 40 

Hub 3 NIT 1-3 NIT 1-3-3 0.217 1.56 0.07 1.49 22 23 100 

Hub4 NIT 1-3 NIT 1-3-4 0.206 2.82 0.01 2.81 24 30 100 
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optimization algorithm that can be used to optimize energy internet. Following that, three design 

strategies to design energy internet are considered assuming different behaviors for the distributed 

energy systems (agents) namely 1) energy system design with predefined grid curtailments (ESPG) 

scenario, 2) fully cooperative scenario (FCS) and 3) non-cooperative scenario (NS). The results 

obtained from this study reveals that energy internets design by using ESPG tends to have higher LEC 

up to 30% when compared to FCS as a consequence of the lack of proper coordination between the 

grid and distributed energy hubs. Hence, it is essential to move towards more promising ways that 

can reduce the cost by improving the interaction among the energy hubs. FCS presents the complete 

opposite of the ESPG, where energy hubs interact with the grid and neighboring energy hubs 

efficiently.  

Distributed optimization is introduced in this study to conduct optimization considering FCS. As a 

result, it is possible to extend energy system optimization considering larger number of energy hubs 

while considering non-linear objective functions. The study reveals that FCS scenario notably 

increases the grid interactions. Improving the interactions results in a reduction internal combustion 

generator usage and an improvement in installed PV capacity. This justifies the reduction in LEC 

when for FCS compared to ESPG scenario. The NS lays in-between FCS and ESPG enabling the energy 

hubs to maintain reasonable energy interactions with the grid and neighboring energy hubs. From 

the analysis, it was revealed that the Pareto fronts NS, located far from the transmission network, 

show similar behaviors as FCS. However, in terms of higher renewable energy integration and lower 

cost of the energy system the final design of the energy internet favors the energy hubs that are 

closely located to the transmission network. As a result, the energy internet loses the opportunity to 

harness the renewable energy potential from the energy hubs far away from the transmission line. 

This leads to a gap in LEC up to 15% when compared to FCS while creating a significant inequity 

within the energy internet in terms of grid integration, renewable energy installation and lifecycle 

cost. 

The assessment conducted in the study reveals that the concept of energy internet enables the co-

existence of distributed energy systems while integrating higher renewable energy integrations 

levels. A significant improvement in renewable energy integration and a reduction in LEC can be 

achieved through NS and FCS where distributed optimization algorithms help to reach the optimum 

designs. FCS provides better opportunity for all the energy hubs irrespective of how far they are 

located from the transmission line. Furthermore, FCS enables stronger interactions in-between 

energy hubs. However, we need to understand that stronger interactions may often lead to stronger 

dependencies. As a result, there is a tendency for cascade failures whenever one or few energy hubs 
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fail to operate according to the expectations of the energy internet. Hence, promising methods to 

improve the resilience while maintaining the interactions should looked upon. Hierarchical operation 

of distributed energy systems along with leader follower strategy might be promising in this context.             
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5 Energy System Optimization Using 
Supervised and Transfer Learning 
Techniques 

 

Optimization of distributed energy systems may take extensive computational time in certain 

instances. The optimization process should start from the beginning when the input parameters such 

as demand, renewable energy potential etc. are varying.  This makes it challenging to compute the 

potential for renewable energy technologies at regional and national scale where a large number of 

distributed energy systems need to be optimized along with grid. This chapter evaluates the 

potential of supervised and transfer learning techniques to address the limitations in the present 

state of the art. A surrogate model is developed with the assistance of a supervised learning 

technique in order to by-pass computationally intensive Actual Engineering Model (AEM) used to 

map the decision space variables into the objective space. Eight different neural network 

architectures are considered in the process of developing the surrogate model. Transfer learning is 

used to adapt the surrogate model (trained using supervised learning technique) for different 

scenarios where solar energy potential, wind speed and energy demands are notably different from 

the scenario the surrogate model is initially trained on. Subsequently, a hybrid optimization 

algorithm (HOA) is developed combining Surrogate and AEM in order to speed up the optimization 

process while maintaining the same accuracy.  

     

This chapter is based on (preprint version): 

A.T.D. Perera, P.U Wickramasinghe, Vahid Nik, Jean-Louis Scartezzini, “Supervised and transfer 

learning methods to assist energy system optimization” (Accepted) 
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5.1. Introduction 

Distributed energy systems can play a vital role when integrating SPV and wind energy technologies. 

A number of different concepts such as virtual plants, smart micro grids, energy hubs, integrated 

energy systems etc. are emerging within the umbrella of distributed energy systems due to its 

capabilities to integrate non-dispatchable energy technologies with a minimum impact to the grid 

[1,2]. Distributed energy systems integrate system component which possess different 

characteristics, enabling to cater the demand reliably during the periods with lower wind and solar 

energy potential. Devices with different characteristics may result in a complex energy flow within 

the energy system [3]. As a result, dispatch optimization needs to be considered during the design 

optimization of the energy system. Considering both system design and operation strategy during 

the optimization process makes energy system optimization a challenging task [4]. Uncertainties in 

energy demand, renewable energy potential, market prices of the system components etc. further 

add to the difficulty [5]. 

A number of recent studies have focused on optimum design of distributed energy systems for 

multiple energy services considering both grid connected and standalone operation using bi-level 

optimization algorithms [4,6,7]. In these algorithms, the operation strategy (dispatch) is optimized at 

the secondary level, which is used to compute the operation cost of the system considering hourly 

changes in demand and renewable energy potential and grid conditions [8–10]. Primary level 

computation is used to optimize the selection of energy system components based on the dispatch 

strategy optimized at the primary level. Bi-level optimization algorithms require higher 

computational time especially in the context of considering non-dispatchable renewable energy 

technologies. For example, the bi-level optimization algorithm developed by Evins [10] took 

approximately three days to optimize to design distributed multi-energy hubs using parallel 

computation (operation of the energy system is optimized considering 8760 time steps using Mixed 

Integer Linear Programing (MILP) and system design using heuristic algorithms). Higher 

computational time required to formulate objective functions by using Actual Engineering Models 

(AEM) is considered as one major limitation. To evaluate the impact of uncertainties during the 

energy system optimization process it is therefore important to look into promising methods to 

reduce the computation time in the energy system design process [11]. 

Recently, surrogate models or meta-models have been used in a number of different fields to reduce 

the computational time of optimization problems. A surrogate model is used to by-pass the AEM, 

which takes more computational time when mapping decision space variables into objective space. 

Black-box methods such as neural networks, support vector machines (SVM), random forests etc. 
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have been used to develop surrogate models. According to recent literature, surrogate models have 

shown the potential to speed up computation more than 100 times while maintaining an up to 90% 

higher accuracy [12]. This has made surrogate models popular in a wide area of engineering fields 

such as civil, automobile, aerospace and manufacturing engineering. Surrogate models have been 

used frequently for building simulation in order to reduce the simulation time in building energy 

optimization problems [13,14]. Furthermore, components of energy systems have been optimized 

using surrogate models. For example, Miao et-al [15] and Cheng et-al [16] designed the PEM fuel cell 

using a surrogate model while Thomsen et-al [17] and Halder et-al [18,19] used surrogate models to 

optimize the design of wave energy converters. Kadhim and Rona [20,21] optimized the design of an 

axial turbine used in liquefied natural gas plants. Most of these studies used surrogate models to 

replace time consuming computational fluid dynamic (CFD) models. However, moving from a single 

component to an energy system entails a number of complexities.     

Surrogate models have been seldom used to support energy system optimization. Bornatico et-al 

[22] use surrogate model to optimize collector area and storage size of a solar thermal energy 

system. Simply two variables related to the design are considered in this chapter while surrogate 

model is directly coupled with the heuristic optimization algorithm to obtain Pareto fronts 

considering multiple objectives. Sanchez and Martin used a surrogate models to presents the 

complex formulation of chemical plant operation when optimizing the design of an Ammonia 

production using renewable energy technologies [23]. Similarly to Bornatico et-al [22], the operation 

strategy of the energy system is not considered when developing the surrogate model. When 

moving into distributed energy systems variables related to the dispatch strategy also need to be 

considered. This will extend the number of decision variables significantly and make the surrogate 

model to be complicated. Furthermore, using surrogate model alone may lead to sub-optimal design 

solutions due to the limitations in approximating. Hence, it is important to look into promising 

methods that can be used to combine surrogate models with AEMs during the optimization process 

which has not been considered in the present state of art from the energy system design 

perspective. In addition to these limitations, bi-level often requires to restart from the beginning 

whenever there is a reasonable change in the renewable energy potential, demand and techno-

economic data increasing the computational time notably. This limits the applicability of such 

optimization models in regional and national scale where large number of distributed energy 

systems need to be optimized.  None of these limitations have been addressed in present state of 

the art. 

Towards addressing the limitations the design process of an electrical hub operating in connection to 

the grid is considered in this chapter. Electrical hub consists of wind turbines SPV panels, wind 
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turbines, battery bank and an internal combustion generator (ICG). A computation platform is 

developed by combining a surrogate model with an optimization algorithm to assist energy system 

optimization. To overcome the above stated limitations this following objectives are expected to be 

met in this study: 

 Both system design and dispatch strategy are considered (besides being limited to system 

design only) in the surrogate-model and the optimization process. A comprehensive study is 

conducted to obtain the best fitting surrogate model after considering eight configurations. 

 A novel computational algorithm is developed to assist the optimization process which 

combines both surrogate and actual engineering model. 

 Since the supervised learning model cannot be used directly when moving into other cases 

(where renewable energy potential, energy demand, techno-economic data might be 

different from the specific case the supervised learning model is trained for) a transfer 

learning technique is proposed to adapt the surrogate model. Such methods can significantly 

reduce the computational time when analyzing energy systems at regional or national scale 

significantly reducing the computational time.   

The research paper is arranged as follow. Section 5.2 of this article presents an outline of the 

computational model proposed in this Chapter. Section 5.3 presents the actual engineering model 

(AEM) used to develop the surrogate model as well as to optimize the energy system. Section 5.4 

describes the supervised and transfer learning techniques used when developing the surrogate 

model. Section 5.5, presents the novel optimization algorithm developed. Applicability of the model 

considering different cases and future applications of the model are taken into discussion in Section 

5.6.  

 

5. 2. Overview of the computational model 

Energy system designing processes are often conducted as a simulation based optimization problem. 

The response of the energy system to the varying renewable energy potential, demand and grid 

conditions should be assessed when mapping decision space variables into the objective space. 

Usually, a time series simulation of 8760 time steps (24x360) or a set of representative time steps 

are considered during the simulation which can be considered as a Markov Decision Process (MDP). 

The objective function values depend on both system configuration and operation strategy. Hence, 

optimizing both system configuration and dispatch strategy while going through the time series 

simulation usually takes more computational time (in certain instances up to several days). This 

section presents an outline of the computational algorithms used and the proposed novel frame 

work based on supervised and transfer learning methods. Section 5.2.1 explains the present 
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approaches while Sections 5.2.2 and 5.2.3 present newly introduced computational models that can 

be used to reduce computational time when designing distributed energy systems. Section 5.2.4 

presents an approach that can be used to generalize the computational model for other locations 

with the support of a transfer learning technique.   

5.2.1. Actual engineering model (AEMs) 

Energy system operation (selection of dispatchable source, storage and grid) has a direct influence 

on optimum system sizing. Therefore, operation of the energy system should be considered on an 

hourly basis to take into account the changes in renewable energy potential, demand and grid 

conditions. According to [24,25], two approaches are used in this context, aligned with dynamic 

programing [24,25]. The first method is closely related to the value function method where 

operation strategy of the energy system is optimized on an hourly basis. This is usually practiced 

when designing a complex poly-generation system, which will result in extensive computational 

time. The second method is based on a policy function method where it is assumed that there is an 

optimum policy that governs the operating state of the energy system, which has to be optimized 

along with the system configuration. The operation of the energy system needs to be considered on 

an hourly scale throughout the years in both the scenarios, which will result in higher computational 

time (Fig. 5.1). Hence, irrespective of the method used, the energy system optimization process 

takes a more computational time. This study uses the second approach for AEM. AEM is used to 

obtain a training data set to train the surrogate model. Furthermore, it is used to map decision space 

variables to the objective space in the proposed novel computational algorithm with the support of 

the developed surrogate model.  

 

Decision Space
 Decision variables for system 

design
 Decision variables for 

dispatch strategy

Hourly wind speed, solar 
irradiation, demand, price of 

electricity in the grid

Hourly simulation considering 
8760 time steps

Energy system 
model

Dispatch Strategy

Initial capital cost

Objective space
 Grid interactions
 System reliability
 Net Present Value

AEM

 

Fig. 5. 1: Flow chart for the Actual Engineering Model (AEM). Decision space variables are mapped into the objective 

space through the AEM. 
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5.2.2. Supervised learning to develop surrogate model 

Surrogate models are black box models such as neural network, Support Vector Machines (SVM) etc. 

They simply present the relationship between input and output bypassing a computationally 

extensive model, which takes longer computational time (Fig. 5.2). Although surrogate models are 

fast in computation, black box models cannot completely replace actual engineering models (AEM), 

which are computationally extensive. Such data driven approaches can be used to minimize the 

extensive computational processes and detailed information related to both analytical and 

numerical models. Specific to the energy system optimization process, surrogate models are used to 

reduce the computational time required for time series simulation when mapping decision space 

variables to the objective space. Three steps are required when using the surrogate models to design 

energy systems: 

1) Create a data set for training and validating the surrogate model 

2) Use a supervised learning method to develop the surrogate model 

3) Optimize the energy system using the surrogate model    

The AEM described in Section 5.2.1 is used to create the data set that is used to create the surrogate 

model. Subsequently, several supervised learning techniques have been used to train the surrogate 

model and evaluate its performance. A comprehensive overview of these techniques can be found in 

Section 5.4. The surrogate model only maps the decision space variables into the objective space. In 

order to optimize the design, an optimization algorithm needs to be used to obtain optimum design 

by using the surrogate model. 

5.2.3. Hybrid Optimization Algorithm combining surrogate and AEM models 

AEMs are more accurate in comparison to surrogate models when computing the objective function 

values. However, it takes much longer to compute the objective function values using AEM. 

Furthermore, developing a surrogate model with a very high level of accuracy will demand extensive 

training of the surrogate model and this in turn will demand a larger set of training data resulting in 

more computational time. An optimum combination of a surrogate model and an AEM will help to 

sort out this issue while significantly minimizing the computational time required for the energy 

system design process. The Hybrid Optimization Algorithm (HOA) combines both AEM and surrogate 

models in order to speed up the computation (Fig. 5.3). A surrogate model is initially used with the 

optimization algorithm to generate the initial Pareto front. Thereafter, the initial Pareto front is used 

as the starting point for the secondary stage optimization which is using AEM. The higher 

computational speed of the surrogate model helps the optimization algorithm to reach the Pareto 

front faster. However, AEM is used in the second stage which maps decision space variables into the 
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objective space with a better accuracy. In HOA, the surrogate model helps reach the actual Pareto 

front within a short period of time, which is later refined using the AEM.    

    

Decision Space
 Decision variables for system 

design
 Decision variables for dispatch 

strategy

Surrogate model based on ANN
Objective space

 Grid interactions
 System reliability
 Net Present Value

Surrogate model

Training the surrogate model 
using AEM

 

Fig. 5. 2: Flow chart for the surrogate model. Decision space variables are mapped into the objective space through the 

surrogate model. AEM is used to generate a data set in order to train the surrogate model.  

 

Fig. 5. 3: Flow chart for HOA combining the surrogate model and AEM. The surrogate model helps to come up with a 

better starting point to the AEM, thus speeding up the computation process.  

5.2.4. Transfer supervised learning algorithm 

The development presented in Sections 5.2.2 and 5.2.3 are focused on optimizing distributed energy 

systems for a specific location. Often, it is required to start the optimization process from the 

beginning when moving to another location. This is one major limitation which hinders the use of 

AEM at national or regional scale planning where a large number of distributed energy systems need 
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to be optimized considering their interactions. One major advantage of a data driven approach is 

that the model obtained using supervised learning can be adapted to other locations with certain 

changes. The adapting process is not as intensive as the initial training process (Fig. 5.4). As a result, 

the computational time required to develop the surrogate model is significantly reduced. The 

process used to adapt the surrogate model is known as transfer learning. The main advantage of 

transfer learning is that it minimizes the amount of labeled data required for the training process 

while minimizing the time required to generate the labeled data and the training process. Fig. 5.4 

presents the approach used in the present study for the model adaptation. The surrogate model 

initially developed for a specific location is adapted for another location using transfer learning. A set 

of labeled data is generated for the new location using the AEM for the transfer learning process. 

Accelerated GPU (Graphics Processing Unit) computing is used to speed up the process of generating 

data. By using the labelled data generated for the new location, the surrogate model is transfer 

learned. Finally, the Surrogate Model trained using Transfer Learning (SMTL) replaces the surrogate 

model trained using supervised learning in the HOE as shown in Fig. 5.4.     

5.3. Mapping of decision space variables to the objective space using AEM 

An energy hub consisting of renewable energy sources, energy storage and ICG operating connected 

to the grid is considered in this chapter when developing the AEM. Techno-economic aspects related 

to the energy system are considered in the computational model using lifecycle simulation. The 

computational model evaluates the lifecycle cost, system autonomy, reliability, utilization of 

renewable energy, etc. through a life cycle simulation. The AEM presents the simulation based 

computational model used to map decision space variables representing both system design and 

operation strategy into the objective space. Grid integration level and NPV are considered as the 

objective functions. The formulation of objective functions is explained in Chapter 2 in detail. 
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Fig. 5. 4: Outline of the architecture used to develop SMTL and combine the SMTL with the HOA.   

 

5.4. Hybrid surrogate model to present energy system  

There are number of different methods such as Support vector Machines (SVM), Artificial Neural 

Networks (ANN), Linear Regression (LR) etc. can be used to develop surrogate models. In recent 

past, ANN has shown to be promising in number of areas with the arrival of deep learning. 

Therefore, ANN are selected to be used for the surrogate model in this study. In simple, ANN consist 

of set of neurons where each neuron facilitates a non-linear mapping between input and output. 

However, arriving at the optimum architecture for the neural network is a difficult task due to the 

larger number of combinations that are possible to consider. Hence, a pool of combinations are 

considered for the architecture which consist of neural networks having different number of layers 

and neurons per each layer as shown in Table 5.1. The architectures considered in this study consist 

of neural networks consisting of two layers up to thirteen while increasing the complexity of the 

architecture.   
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Optimization is done using Levenberg-Marquardt backpropagation (Damped least square) method. 

Mean Square Error (MSE) is used as the loss function and no regularization term is used. Training, 

validating and testing datasets used in the training of initial model consist of 448000, 192000 and 

640000 respectively. Afterwards, transfer learning is used to adapt the initial neural network to 

other scenarios. Transfer learning is a strategy in machine learning used to adopt a model trained on 

one dataset to another which is not exactly same, but is related. In this case, it is done by continuing 

the training of the initial model on a dataset corresponding to the scenario that needs to be 

adopted. This dataset is smaller in-size compared to the dataset used in the initial training. It consists 

of 7000 samples for training, 3000 samples for model validation and 10000 for testing.  During the 

transfer learning stage, same parameters are used as in the initial training stage apart from the 

difference in dataset. 

 

The performances of these neural networks are evaluated based on Mean Absolute Error 

(MAE).Based on this metric, it is observed that increasing number of layers as well as increasing the 

number of neurons per layer decrease the MAE. However, for the architectures that are tested, best 

performance is obtained with a shallow network with 2 layers and each of them consisting of 50 

neurons. Results for y1 (output Variable 1 (O1)) one is summarized in Table 5.1. When analyzing the 

results it is prudent that accuracy of the prediction accuracy increases when increases while 

increasing the number of layers. This can be observed when moving from AR1 to AR6 where the 

mean AEP reduces from 4.35 to 2.85. However, extending the ANN by adding layers will demand for 

higher computational time for training while demanding more computational time during the 

prediction. Hence, the possibility to improve the prediction error by widening the neural network is 

subsequently considered. AR7, 8 and 9 are introduced by widening the neural network. When 

moving from AR6 to AR7 a significant drop in the Mean AEP is observed. However, an improvement 

in Mean AEP is observed when moving from AR6 to AR8 with the significant widening of the neural 

network architecture even with two hidden layers. To analyze the influence of both widening and 

deepening, two more hidden layers are added to AR8 and created AR 9. A significant improvement 

in Mean AEP is observed as a result of the modification. However, the modification introduced in 

AR9 increase the number of parameters as well as the prediction time notably. As a result, AR9 

cannot be used besides its higher accuracy. AR8 is used in this study as the architecture for the 

surrogate model.   
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Table 5. 1: Architecture of the neural networks considered in this study  

 

5.5. Optimization algorithm 

Optimization algorithms have been used in two different parts of this study. An optimization 

algorithm is used initially to train the surrogate model. Afterwards, it is used to optimize the energy 

system. A concise overview of the stochastic gradient decent (SGD) algorithm used to train the 

surrogate model is presented in Section 5.4. This section is focused on the second application where 

optimization of the energy system is considered. 

Both AEM and the surrogate model map decision space variables into the objective space. AEM uses 

a time series simulation where both system configuration and policy function related to the dispatch 

strategy are considered as the decision space variables (Table 5.2). The surrogate model uses a fully 

connected feed forward neural network to map the decision space variables into the objective 

space. An optimization algorithm is required to arrive at the optimum solution irrespective of the 

method used to map the decision space variables. When it comes to energy system optimization, 

there are a number of instances where the objective functions have been formulated considering 

the restrictions in optimization algorithm. As a result linear programing and mixed integer linear 

programing have been amply used when designing distributed energy systems. At the same time, a 

number of recent studies have used heuristic methods to design distributed energy systems. 

However, the objective functions obtained using surrogate models based on neural networks are 

neither linear nor convex. The optimization algorithm introduced in this study should possess the 

Neural Network 
Number of 

hidden layers 
Number of neurons in each layer Mean AEP 

AR1 2 16,8 4.35 

AR2 3 18,14,8 3.39 

AR3 5 18,18,14,10,6 2.79 

AR4 5 20,18,18,16,16 2.80 

AR5 9 20,18,18,18,18,16,16,16,16 2.93 

AR6 13 20,18,18,18,18,18,18,16,16,16,16,16,16 2.85 

AR7 2 25,25 3.09 

AR8 2 50,50 2.33 

AR9 4 50,50,50,50 1.48 
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capability to interact with both AEM and the surrogate model. Hence, it is inevitable to consider an 

optimization technique other than a heuristic method.     

5.5.1. Implementation of the optimization algorithm along with AEM and surrogate model 

The optimization algorithm is connected with the surrogate model and AEM according to Fig 5. 5. 

Two orange blocks represent the elements of the optimization algorithm. The light blue and green 

blocks represent the elements of the surrogate model and AEM respectively. The steady ε-State 

Evolutionary Algorithm [34] is used for the optimization algorithm which is proven as a method to 

maintain the diversity while reaching the final set of Pareto solutions. The polynomial mutation 

operator [35] and simulated binary crossover operator [36] are used along with differential 

evolutionary operators [77]–[79] in the reproduction of the population. The Constraint Tournament 

Method [35] is used to consider the constraints that are not handled at the level of dispatch 

strategy.  Computational time for the Pareto front depends on the objective functions selected and 

the number of generations considered. 

 

The optimization algorithm follows Path 1(orange block-blue block and orange block) when 

optimizing the energy system using the surrogate model. The decision vector required to evaluate is 

transferred to the blue box. The surrogate model directly maps the decision vector to the objective 

space which helps to obtain the objective function values and constraint violation. These values are 

transferred to the orange-block, which evaluates the objective function values and subsequently 

updates the population and archive. Similar to the surrogate model, Path 2 is followed when using 

the AEM (orange block-green block and orange block). The decision vector required to evaluate is 

transferred to the green block. As opposed to Path 1, a detailed time-series simulation is conducted 

to map the decision vector into objective space. Hourly wind speed, solar irradiation and energy 

demand data are used for the time series simulation as explained in Chapter 2. Subsequently, 

objective function values and constraint violation are transferred to the orange-block to update the 

population and achieve.          

 

5.5.2. Hybrid optimization algorithm (HOA) combining AEM and surrogate model 

Section 5.5.1 describes the outline of the optimization algorithm when using either the surrogate 

model or AEM. However, the same structure cannot be adapted when combining these two 

algorithms. The surrogate model is faster when computing the objective function values. However, 

the accuracy of objective functions and constraints might not be very high in certain instances. In 

contrast, AEM takes longer for the computation but shows higher accuracy when computing the 

objective functions and constraints. Hence, the surrogate model is used to arrive at a better starting 
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point to the optimization algorithm based on AEM. As shown in Fig 5.6, an optimization algorithm 

based on the surrogate model is used as the first step. Subsequently, the population and archive 

(Pareto solutions) are moved to the next step. However, it is important to check the values for 

objective functions and constraints before direct use in the AEM (since there are certain limitations 

in the surrogate model when computing both objective functions and constraints). Therefore, in 

Step 2, AEM is used to simulate both archive and population (obtained using the optimization 

algorithm based on the surrogate model). Afterwards, dominance of the Pareto solutions is 

rechecked and, population and archive (set of Pareto solutions) are updated. The updated archive 

and population are transferred to Step 3. Updated archive and population obtained from the 

surrogate model are an efficient starting point for the optimization algorithm. Thereafter, the 

optimization algorithm will use the AEM in order to further improve the Pareto solutions using AEM.  

 

Table 5.2: Decision space variables considered for the optimization problem including both system configuration and 

operation strategy        

 

 

 

 

Variable Lower bound Upper bound Interval Description 

SPV Type (NTY-SPV) 0 3 1 

Mono-crystaline, 

Polycrystaline and 

Amorphous1 

# SPV Panels NSPV 0 120 1  

Type of Turbines (NTY-W) 0 2 1 1, 5 kW 

# Wind Turbines  0 30 1  

# Battery banks 0 20 1 0-2403 kWh 

ICG Capacity (kVA) 0 15 0.5  

Wi,j  (weight matrix) 0% 100% Continuous  

Seven rules ( ( )r r  )corresponding to the finite states Continuous  

1 0.5 kW maximum capacity 

3Each battery bank having 12 kWh capacity 
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Fig. 5. 5: Presents the implementation of the optimization for the surrogate model and AEM. The two orange boxes 

represent the elements of the optimization algorithm common for both the surrogate model and AEM. Path 1 is taken 

when using the surrogate model (blue box) while Path 2 is taken when using the AEM (green box).   
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Fig. 5. 6: Presents the implementation of the Hybrid Optimization Algorithm (HOA), which consists of three steps. A 

surrogate model is used initially to reach a better starting point with regard to the AEM in a short period of time (Step 

1). In Step 2, Pareto solutions obtained using the surrogate model are simulated again using the AEM and the Pareto 

solutions are updated based on the objective function and constraint values obtained using the AEM. Subsequently, 

these Pareto solutions are transferred into the optimization algorithm which uses AEM in Step 3 in order to obtain the 

final Pareto solutions. 

5.6. Results and discussion 

The results and discussion section is mainly divided into two main parts. The first part demonstrates 

the development of supervised and transfer learning models used for the replication of the AEM. 

The second part is devoted to analyzing the performance of different techniques that are used to 

combine AEM with surrogate models that are developed using supervised and transfer learning 

techniques.   

 

5.6.1. Comparison of the Pareto fronts obtained using AEM and surrogate models 

Pareto fronts obtained considering both AEM and surrogate models are presented in Fig 5. 7. The 

Pareto fronts overlap when the grid integration levels are higher (Region Q in Fig 5. 7). However, 
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they start to divert from each other when grid integration levels are below 10% (Region P Fig 5. 7). 

NPV begins to increase at a much higher rate for the Pareto front obtained using the surrogate 

model when grid integration levels are below 10%. As a result, a significant difference in NPV can be 

seen when the grid integration levels are within the range of 1-5%. The difference in NPV between 

AEM and the surrogate model slightly decreases when reaching the fully autonomous state (due to 

the sudden increase in NPV observed in AEM Pareto front when reaching the fully autonomous 

state). The Pareto front only indicates the reflection of the decision space variables on the objective 

space. The most important factor to be analyzed is the similarity between the decision space 

variables corresponding to Pareto solutions which are obtained using two models that are close to 

each other. 
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Fig. 5. 7:: Presents the two Pareto fronts obtained using Surrogate and AEM. Region Q represents the region where both 

Pareto fronts overlap with each other. Region P represents the sector which a significant deviation among the two 

Pareto fronts can be observed. Semi supervised techniques such as Active learning can be used to further improve the 

accuracy of the surrogate model by taking samples from Region P and further training the AEM.    

In order to understand the applicability of the surrogate model, Pareto solutions with similar grid 

integration values are taken from both Pareto fronts and tabulated in Tables 5.3 and 5.4. Table 5.3 

contains the design solutions which maintain grid interaction levels above 10% while Table 5. 3 

presents the design solutions with grid interaction levels less than 10%. Comparing the design 

solutions is challenging due to the higher dimensionality of the decision space. Besides taking all the 
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decision space variables, system configuration variables are tabulated in both Table 5. 3 and 4. The 

ratio between solar PV to wind turbine installed capacity and dispatchable to non-dispatchable 

installed capacity is taken to support the analysis. Designs A, B, C and D respectively present design 

solutions with similar grid interaction levels. Respectively, A-AEM and A-S are obtained using actual 

engineering and surrogate models. 

Table 5. 3: Comparison of Pareto solutions of the AEM and surrogate model obtained for grid interactions higher than 

10% 

 

Table 5. 3 presents the Pareto solutions from the section where both AEM and surrogate models 

overlap   (with grid integration equal or above 10%). When comparing the Pareto solutions, it is clear 

that the design solutions look close to each other when comparing the wind turbine, solar PV, 

battery bank and ICG capacities. When comparing the two sets, it can be seen that the solar PV 

capacity is slightly higher in the Pareto solutions obtained using AEM. For example, installed solar PV 

capacity decreases by respectively 7.8, 3.9 and 6.5 kVA when moving from AEM to surrogate models 

(respectively in A, B, C), resulting in a change of 11.5, 5.7 and 10.4 % respectively. In contrast, wind 

turbine capacities are higher in Pareto solutions obtained using the surrogate model. For example, 

wind turbine capacity increase by 10, 20 and 15 kVA when moving from AEM to surrogate models 

(respectively in A, B, C), resulting in a change of 13, 29 and 15 % respectively. When compared to 

solar PV capacity, wind turbine capacity shows a significant deviation. As a result, the ration of wind 

turbine capacities to solar PV capacities increases when moving from the AEM to the surrogate 

model. Similarly, a deviation in ICG and battery bank capacities can be observed. Finally, it can be 

concluded that the system configuration shows notable deviations although the objective function 

values looks quite closer each other when the grid integration level is above 10%.  

 

 

 

 

  

NPV 
(x106USD) 

GI 
(%) 

SPV 
capacity 

Wind 
capacity 

wind : 
SPV  

Battery 
banks 

ICG 
capacity 

ICG :non-
dispatchable  

A 
A-AEM 0.6461 13.10 67.6 75 1.11 9 10 7.01 

A-S 0.6261 13.43 59.8 85 1.42 11 10 6.91 

B 
B-AEM 0.6132 17.44 67.6 70 1.04 8 10 7.27 

B-S 0.5966 17.73 63.7 90 1.41 10 7.5 4.88 

C 
C-AEM 0.5935 20.32 62.4 75 1.20 8 10 7.28 

C-S 0.5798 20.29 55.9 90 1.61 9 7.5 5.14 

D 
D-AEM 0.5605 25.89 58.5 65 1.11 8 10 8.10 

D-S 0.5582 24.64 58.5 85 1.45 10 10 6.97 
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Table 5. 4: Comparison of Pareto solutions of the AEM and surrogate model obtained for grid interactions less than 10% 

 

When moving from Table 5. 3 to Table 5. 4, a clear deviation in objective function values can be 

noticed. A significant increase in NPV is observed when moving design solutions obtained using AEM 

to the surrogate model (as observed in Fig 5. 7). This makes it interesting to analyze the design 

solutions further in order to reason out the deviations observed. When comparing the design 

solutions of the two sets, a slight deviation in solar PV panel capacity is observed. Major deviations 

can be observed in the two sets when considering wind turbine, ICG and battery bank capacities. 

Wind turbine capacity drops when reducing the grid interaction levels for the Pareto solutions of the 

surrogate model. For example, wind turbine capacity drops from 65 kVA to zero when moving from 

E-S to I-S. As a consequence of the reduction in wind turbine capacity the ratio of wind turbine to 

solar PV capacity gradually drops in Pareto solutions obtained using the Surrogate model when 

reducing the grid interactions. In contrast, the capacities of both battery bank and ICG increase with 

the reduction in grid interactions. For example, the ICG capacity increases from 10 to 25 kVA. As a 

consequence of the reduction in wind turbine capacity and increase in the ICG capacity, the ration 

between dispatchable to non-dispatchable capacities increases significantly when minimizing grid 

interaction levels for the Pareto solutions obtained using the surrogate model. Such clear patterns in 

system configuration are not visible for the Pareto front solutions obtained using the AEM although 

complex patterns can be observed for the decision space variables corresponding to the dispatch 

strategy.  

The patterns observed in the Pareto solutions obtained using the surrogate model such as increase 

in energy storage, dispatchable energy source and reduction in non-dispatchable energy capacity 

(wind turbines since seasonal fluctuations in wind speed are significant compared to solar energy 

potential) are typical conditions expected in standalone operation [26,40]. However, introducing grid 

  

NPV 
(x106USD) 

GI 
(%) 

SPV 
capacity 

Wind 
capacity 

wind : 
SPV  

Battery 
banks 

ICG 
capacity 

ICG :non-
dispatchable  

E 
E-AEM 0.6680 10.81 67.6 80 1.18 9 10 6.78 

E-S 0.7000 10.09 70.2 65 0.93 14 10 7.40 

F 
F-AEM 0.7204 5.77 68.9 85 1.23 10 10 6.50 

F-S 0.8167 5.95 71.5 45 0.63 20 10 8.58 

G 
G-AEM 0.7420 3.35 75.4 80 1.06 11 10 6.44 

G-S 0.9772 3.32 58.5 40 0.68 20 12.5 12.69 

H 
H-AEM 0.7573 2.60 75.4 85 1.13 11 10 6.23 

H-S 1.1578 1.93 55.9 25 0.45 20 15 18.54 

I 
I-AEM 0.7623 1.42 68.9 85 1.23 10 10 6.50 

I-S 1.1986 1.49 81.9 0 0.00 20 25 30.53 
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integration and advanced energy management enables the system to maintain a higher autonomy 

without a significant change in the energy system for the specific example. As a result, a noticeable 

pattern in system configuration is not observed for the Pareto solutions obtained using the AEM. 

When comparing the design space variables, it is evident that the complexity introduced by the 

decision space variables corresponding to the dispatch strategy has not been properly learnt by the 

surrogate model using the supervised learning method when grid integration levels are low. As a 

consequence, the Pareto front obtained using the surrogate model diverts from the one obtained 

using AEM following the general trend. However, the surrogate model presents better results when 

it comes to higher grid integration scenarios. This makes it important to further train the surrogate 

model considering scenarios where grid integration levels are low. Active learning techniques can be 

used in this context that can help to improve the accuracy of the surrogate model (Fig 5. 7). 

 

5.6.2. Assessment of computational time for AEM, surrogate and hybrid models              

The analysis conducted in Section 5. 6.2 demonstrates that the surrogate model can approximate 

the objective function values close to the Pareto solutions obtained using AEM in certain parts of the 

Pareto front. Furthermore, the surrogate model can provide a reasonable approximation for the 

decision space variables for a certain part of the Pareto front. However, it is clear that the surrogate 

model cannot be used alone to derive the Pareto solutions although it is efficient when computing 

the objective functions. The HOA introduced in this study becomes attractive in this context since it 

combines both surrogate and AEM. However, it is important to evaluate the boundary conditions 

valid for approximating the Pareto solutions using the surrogate model followed by AEM. When 

analyzing these Pareto fronts, the ratio of generation (REG) between AEM and surrogate model plays 

a vital role (Fig 5. 8). A higher REG (greater than 1) implies that the optimization algorithm uses the 

AEM for a larger number of generations than the surrogate model. Increasing the REG will extend 

the computational time since AEM takes longer for the computation. In contrast, AEM provides an 

accurate mapping of the decision space variables into the objective space. Hence, determining the 

optimum REG is important considering both convergence and computation time. Towards achieving 

this goal, a multi objective optimization is conducted considering different REG values. Among these 

scenarios, HOA 1 presents the case where the surrogate model is used for a larger number of 

generations when compared to HOA 2 and 3. Similarly, HOA 3 presents the case where AEM is used 

for a larger number of generations when compared to HOA 2 and 1. When comparing the HOA, no 

significant difference can be seen when moving from one to another (Fig 5. 8). More importantly, 

the objective function values of HOA 1 (which uses the surrogate model for a larger number of 

generations compared to HOA2 and 3) tend to follow the Pareto front obtained using AEM even 
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when the grid integration levels are below 10%. Hence, it can be stated that the surrogate model can 

be effectively merged with AEM using the HOA. Furthermore, the computational time decreases by 

83% for the optimization process when using HOA 1, which is a significant achievement. However, it 

is interesting to assess the adaptability of the model for other cases where renewable energy 

potential and demand are different. 
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Fig. 5. 8: Presents Pareto fronts obtained using different ratios of surrogate model to AEM. The three optimization 

algorithms with different combination ratios can reach the Pareto solutions in a fraction of the time taken by the AEM       

5.6.3. Comparison of the Pareto fronts for transfer-supervised learning   

Sections 5.6.2 and 5.6.3 show the potential surrogate model to approximate the mapping of decision 

space variables into the objective space which can be used to minimize the computational time 

required for the energy system optimization. The main advantage of developing a surrogate model is 

its diverse applicability through modal adaptation. As discussed before, transfer learning facilitates 

adapting the surrogate model developed using supervised learning. In order to assess the model 

adaptation capability, six different scenarios are taken where the renewable energy potential for 

solar PV (SPV 1 and SPV 2), wind (Wind 1 and Wind 2) and demand (Demand 1 and Demand 2) 

profiles are different from one another. AEM is used to generate the Pareto solutions for different 

scenarios as the first step of the analysis (Fig 5. 9).       

The changes observed in the Pareto fronts in Fig 5. 9 are consequences of the changes introduced in 

demand, solar and wind energy potential. It is interesting to assess the capability of transfer learning 
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to adapt the surrogate model trained for the initial conditions. When comparing the Pareto fronts 

obtained using AEM, it is prudent that SPV 1 and 2 closely follow the Initial Scenario. However, 

notable changes in the Pareto fronts are observed for Scenarios Demand 1, 2 and Wind 1, 2. For 

example the shape of the Pareto front notably changes when moving from initial scenario to Wind 2 

as a consequence of the changes introduced in the scenario. It is interesting to evaluate the 

adaptability of the surrogate model through transfer learning (SMTL). Towards this end, Pareto 

fronts obtained entirely using SMTL are compared with AEM for different scenarios (Fig 5. 10). When 

comparing the Pareto fronts obtained using AEM and SMTL, it is clear that SMTL provides a good 

approximation when considering the objective function values for all scenarios. For example, Pareto 

fronts obtained using SMTL and AEM for Scenarios SPV 1 and 2 closely follow each other when 

minimizing the grid interactions until a grid interaction level of 10% is reached (similar to the Pareto 

front obtained using AEM and  the surrogate model for Initial Scenario ) (Fig 5. 10). Demand 1 

Scenario introduces a significant change to the Pareto front obtained using AEM (Fig 5. 9). 

Nonetheless, SMTL provide a better approximation to the AEM for the scenario Demand 1. When 

considering the scenario Wind 2, Pareto front solutions obtained using AEM show a complex 

variation in the objective space when compared to the Initial Scenario. However, it is observed that 

the SMTL has the potential to closely follow the AEM when decreasing grid interactions to 6%. In 

conclusion, it can be stated that the objective function values obtained using STML alone provide a 

better approximation, similar to the surrogate model trained using supervised learning. Hence, STML 

becomes a better substitute for the surrogate model and can be effectively used whenever 

boundary conditions are changed.   
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Fig. 5. 9: From top to bottom presents the Pareto fronts obtained using the AEM for six different scenarios.   

 

Similar to the surrogate model, SMTL is combined with AEM by using HOA (SMTL replaces the 

surrogate model) and found that REG of 1:8 is sufficient for the Pareto front to be similar to the 
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initial scenario where the surrogate model is trained using supervised learning. This makes it 

interesting to analyze the entire computational time required to train the computational model and 

conduct the optimization. The computational time includes the time required to generate the data 

set for transfer learning, computational time for transfer learning and optimization (Fig 5. 11). When 

compared with the optimization algorithm based on AEM, a significant drop in computational time 

can be observed when using SMTL along with the HOA (REG of 1:8). The computational time 

required all together for generating the data points using the AEM for transfer learning, transfer 

learning for the model and subsequently optimizing the energy system takes 15.3 % of the 

computational time required for the AEM. Such a significant drop in the computational time 

required for energy system optimization will enable optimizing energy systems at regional and 

national scale consisting of a large number of distributed energy systems.       

5.7. Conclusions 

Distributed energy systems play a vital role in the renewable energy integration process. Optimum 

design of distributed energy systems is a computationally intensive process which may take several 

days in certain instances. Furthermore, the optimization process is not flexible enough to adapt to 

changes in renewable energy potential, demand and other input data. As a result, an optimization 

algorithm needs to be implemented from the beginning, when there are changes in the 

aforementioned factors. Therefore, it is challenging to evaluate the potential for distributed energy 

systems in regional and national scale using bottom up models. 

Supervised and transfer learning techniques have been used in this study to improve the 

computational speed and model adaptation. The surrogate model developed shows the potential to 

approximate the objective function values of the Pareto solutions with a higher efficiency. However, 

there is a significant deviation in system design for the Pareto solutions obtained using the surrogate 

model. When analyzing the Pareto solutions further, it is revealed that the surrogate model 

possesses the potential to predict the general trend of renewable energy components, battery bank 

and ICG. However, it fails to predict the changes in system operation variables. This specific 

weakness can be improved using active learning which will be an extension to the present study. The 

surrogate model can be effectively combined with the AEM using the novel optimization algorithm 

introduced in this study (HOA). The novel computational algorithm can reduce the computational 

time of the optimization process significantly (by up to 94 %).   
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The surrogate model initially trained for one specific scenario is later adapted using transfer learning 

for six different scenarios where solar, wind and demand profiles are notably different. A data set 

(10000 data points) is generated using the AEM to train the surrogate model. SMTL is developed 

with the assistance of the initial surrogate model through transfer learning. SMTL has the potential 

to approximate the Pareto solutions with the support of an optimization algorithm with a similar 

accuracy achieved by the surrogate model trained using supervised learning. HOA that combines the 

surrogate model and STML can reach the Pareto solutions within a fraction of time taken by the AEM 

reducing the computational time by 84%. Such a significant reduction in computational time 

facilitates use of the proposed method for evaluating the potential of a large number of distributed 

energy systems at regional and national scale.     

SMTL

AEM

0 20 40 60 80 100

Time taken as a percentage of AEM model

 Optimization

 Training neural network

 Generating the datapoints  

 

Fig. 5. 11: Presents a comparison of the computational time required for the classical approach based on AEM and the 

novel approach based on SMTL 
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6 Designing Climate Resilient 
Distributed Energy Systems 
 

Climate change and extreme climatic events influence both energy demand and power generation. 

The challenge is therefore to design climate resilient energy systems that withstand extreme climate 

and respond appropriately to uncertainties of the climate. Improving the climate resilience of the 

energy systems involves i) converting climate relevant data into energy system relevant data and ii) 

designing energy systems that withstand extreme climate events and cope with climate 

uncertainties. Both these aspects are closely interrelated and have not been discussed in the 

literature despite their timely importance. To achieve this objective, a regional climate model (RCM) 

is used to generate hourly weather data for six future climate scenarios. Weather data sets are 

generated considering a 30-year time span and used in energy demand and power generation (solar 

and wind) calculations, for 180 single years (30x6). The 180 single-year time series climate data set is 

subsequently used to develop three representative years (two extremes and typical) and five 

expected scenarios (developed as pseudo-sequential time series) for energy system optimization. A 

novel computational algorithm based on the hybrid stochastic-robust optimization (SRO) method is 

used to consider climate uncertainty and extreme climate conditions. GPU-computing is used to 

accelerate the computation in the optimization process. Subsequently, Pareto optimization is 

conducted considering Net Present Value (NPV) and Grid Integration (GI) level as objective functions. 

Finally, the novel computational algorithm is benchmarked against three algorithms based on 

deterministic and stochastic models. 

This chapter is based on (preprint version): 

ATD Perera, Vahid M. Nik, Jean-Louis Scartezzini, Tianzhen Hong, “Designing distributed energy 

systems resilient to climate uncertainty and extreme climate events” (Manuscript under review) 
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1. A.T.D. Perera, Vahid Nik and Jean-Louis Scartezzini, Impacts of extreme climate conditions 

due to climate change on the energy system design and operation, Applied Energy 

Conference  2018, Rhodes-Greece. 
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6.1. Introduction 

As the 5th assessment report of the state of the global climate describes, climate change will 

accelerate, causing increasingly frequent and stronger extreme climate events, which makes human, 

built and natural systems more vulnerable. Failure in climate change mitigation and adaptation can 

lead to disaster and serious short- and long-term issues [1]. Energy supply may be disrupted by 

disaster events resulting in partial or total blackouts [2]. The consequences can be very costly in 

cities and urban areas that accommodate large populations. According to the United Nations, 3.5 

billion people live in urban areas around the world and by 2050 more than half of the World 

population will live in cities [3]. Around two-thirds of global primary energy consumption are 

attributed to urban areas, leading to 71% of the directly energy-related global greenhouse-gas (GHG) 

emissions. The urban sector hence plays an important role in both climate change adaptation and 

mitigation [4,5]. The conjunction of projected population and economic growth with climate change 

will place greater stress on energy resources, systems and infrastructures [6]. Conserving energy and 

using alternative renewable forms of energy and generation will improve disaster management and 

resilience against extreme climate events. 

Buildings are the most important users of urban energy systems. Studying the impacts of climate 

change on the energy performance of the residential building stock in major cities of Sweden 

showed that the 20-year average heating demand might decrease by around 30% in the years 2081-

2100 compared to 1991-2010 [7]. Considering the hourly profiles of heating and cooling demand, 

deviations can reach values above 50% and 400% for the 20-year average values, respectively. This 

illustrates the critical conditions for energy systems covering hourly peak demands in the future. The 

existence of large uncertainties in estimating future climatic conditions makes the assessment more 

difficult; for the case of Sweden, uncertainties can induce differences of around 30% in the 20-year 

average values of heating demand, while for cooling demand they can amount to more than 500% 

[7,8]. Naturally, these differences will increase when narrowed down to the hourly time scale, 

making the design and adaptation of energy systems more difficult. Auffhammer et-al. [9] show that 

the impact of climate change on the peak demands becomes even more critical due to its influence 

on power generation. All in all, due to extreme weather conditions, impacts of climate change on the 

peak demand are well beyond the net annual change in energy demand and it is important to 

consider the impact of the change in demand on the power generation. 

Effects of climate change are not limited to the demand side but rather extendable to energy 

systems and infrastructures, which has been investigated for some cases in the USA [10], Greece 

[11], Norway [12] and Australia [13]. Energy conversion efficiencies of thermal power generation 
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plants can be affected by climate change [14]. Similarly, a notable change in renewable energy 

potential can be observed due to climate change(and its uncertainties), which can affect renewable 

energy generation (and its estimation), especially wind [15,16], hydropower [17] and solar energy 

[18], however the size of the impact depends on the renewable source and geographical location. 

For example, according to Seljom et al. [12], effects of climate change on the wind power potential 

are very limited. A comprehensive assessment of the impact of climate change on solar and wind 

energy potential is reported in Ref. [19,20]. Fluctuations in the performance indicators of energy 

systems (obtained using a deterministic model) due to climate and price uncertainty are presented 

by Mavromatidis et-al. [21]. Dowling [22] assessed the impact of climate change on the energy 

system at regional scale considering the whole Europe based on several scenarios (design 

optimization is not considered in this work). However, none of the recent studies have focused on 

developing climate resilient energy systems. 

Integration of non-dispatchable renewable energy technologies, such as solar PV and wind energy, 

into urban energy infrastructure plays a vital role in the process of climate change mitigation and 

adaptation. Distributed energy systems, such as energy hubs, have become an attractive option that 

supports the energy transition in an urban context [23,24].  However, large scale integration of non-

dispatchable renewable energy technologies can lead to increasing vulnerability of the grid, which in 

turn may lead to cascade failures, especially during extreme climate events. Hence, it is essential to 

guarantee the resilience of renewable based energy systems. 

The resilience of energy systems has mostly been a matter of discussion with regard to energy 

economy and security, usually adopting a global or holistic view [9]. Studying and assessing the 

resilience of urban energy infrastructures is a new topic, for which few studies exist (e.g. [24–29]). 

The coverage is even smaller when it comes to considerations related to the uncertainties of climate 

change and integration of renewables. Sharifi and Yamagata [25] have divided the probable threats 

and challenges associated with the functionality of urban energy systems into two groups of climate 

and non-climate induced. Some of the climate induced problems are due to having more frequent 

and stronger extreme events (e.g. temporal events [31] and heat-induced sagging, hurricanes [32]) 

and long term effects of climate change (e.g. drought and water shortage [33]).  

6.1.1. Objectives of the study 

According to Panteli and Mancarella [34], quantifying the risks introduced by weather poses a 

challenge due to its high stochasticity and multi-dimensional impact. In this context the challenge is 

to guarantee the resilience of energy infrastructure. According to the International Energy Agency 

(IEA) report on climate resilience of energy systems, resilience of the energy infrastructure is defined 
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as the “capacity of the energy system or its components to cope with a hazardous event or trend, 

responding in ways that maintain their essential function, identity and structure” [35,36]. Energy 

systems are expected to be robust, resourceful and recoverable under extreme climate events. 

Within this context two major research gaps exists in the current state of the art: 

I. Translating climate data into energy system relevant data [22], such as developing weather 

and demand profiles (to be used in energy system sizing process) considering both climate 

uncertainty and extreme climate. 

II. Methods to optimize the energy systems considering both climate uncertainty and extreme 

climate. 

To address these research gaps, this chapter aims to develop climate scenarios that represent both 

climate uncertainty and extreme climate using a regional climate model in combination with a novel 

computational model to design climate resilient distributed energy systems (Fig. 6. 1). Within this 

context the current study attempts to reach the following objectives: 

I. Integrate climate scenarios based on a regional climate model to support energy system 

optimization. 

II. Introduce a novel optimization algorithm to consider climate uncertainty, extreme 

conditions and resilience.    

III. Speed up the computation using graphical processor unit (GPU) programing  

IV. Benchmark the performance of the novel computational algorithm to design climate 

resilient energy systems.  
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Fig. 6. 1: Addressing the research gaps in the present state of the art 
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6.1.2. Structure of the chapter 

This chapter is organized as follows: Section 6. 2 presents the state of the art of energy system 

optimization considering uncertainty and promising directions to incorporate climate resilience into 

the energy system optimization. In Section 6. 3, we present the use of regional climate models to 

develop typical and extreme climate scenarios considering monthly and hourly distributions of 

weather data sets. A novel computational algorithm hybridizing the stochastic and robust 

approaches is introduced in Section 6. 4 to design climate resilient energy systems. A detailed 

description of the mathematical model and implementation using accelerated GPU computing is 

presented in Section 6. 4. Finally, in Section 6. 5, the performance of the novel computational 

algorithm is compared with three simpler computational algorithms. Promising pathways to 

integrate renewable energy technologies while guaranteeing climate resilience are discussed in 

Section 6. 5. Furthermore, the capability of climate resilient energy systems to handle normal 

operating conditions is also taken into discussion in Section 6. 5. Finally, summary and future 

research directions are presented in the Conclusion section.     

6.2. Promising directions to extend existing computational methods  

Robustness, resourcefulness and recoverability are the three main pillars that guarantee the 

resilience of urban energy systems [5]. Robustness is defined as seamless operation of the energy 

system and its capability to withstand extreme weather as well as gradual changes. Capability to 

manage operations effectively during an extreme weather event is known as resourcefulness. 

Finally, the ability to restore the operations following an extreme event is known as recoverability 

[35,36]. Under the broad definition of resilience, an energy system is expected to be robust during 

extreme climate conditions while accommodating climate variations and uncertainties without a 

significant drop in efficiency. Handling uncertainties in the energy system optimization process is 

vital to guarantee the robust operation and resourcefulness of the energy system facing climate 

change and extreme conditions.   

A number of studies have focused on design optimization of energy systems under uncertainty. 

Soroudi and Amraee [37] reviewed different methods that can be used to represent uncertainty in 

the energy system design process. They highlighted the importance of hybrid models to present the 

uncertainty in a more accurate manner and the benefits of heuristic methods to soften the 

computation procedure. Mavromatidis et-al. [38] characterize the uncertainties that need to be 

considered when designing distributed energy systems; they highlight the importance of improving 

the reliability of data. Zheng et-al [39] reviewed algorithms for optimizing the operation of energy 

systems considering uncertainty; they highlighted the importance of improving computational 
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methods to incorporate a larger number of scenarios. Sharifi and Yamagata [25] critically discussed 

the importance of considering climate resilience during the energy system design process, explaining 

the need for extending the available approaches to take into account uncertainties.  

6.2.1. Existing methods to consider uncertainty in energy system design optimization 

Recent literature on energy system optimization that considers the uncertainty of demand, 

renewable energy generation, grid condition, etc. can be classified into two main groups based on 

the number of days considered for time series simulation. Certain research groups conducted entire 

annual time series simulations (ETS) considering 8760 time steps for each scenario, when conducting 

stochastic optimization (e.g. [40–44]). Other groups limited the simulation to a set of selected days 

and hours (SSD) (e.g. [21,45–48] ). In the latter case (SSD), limiting the number of time steps makes it 

feasible to increase the number of scenarios considered for stochastic optimization. Both stochastic 

and robust optimization methods have been implemented using this technique. A bi-level stochastic 

programming approach based on mixed integer linear programing (MILP) (at both levels) is adapted 

in most of the instances in these studies [21,45–48]. A bi-level optimization approach facilitates 

considering the unit commitment problem in detail, which makes it feasible to design complex 

energy systems. In contrast, reducing the length of the time series can notably influence the final 

design obtained, especially when considering non-dispatchable energy technologies; for example, 

Ref. [46,47] if you use three to five days to represent 365 days this may end up in a notable deviation 

from the actual condition. More importantly, such an approach cannot be used directly to represent 

extreme climate events that may take place for periods longer than one week. Such extreme events 

can occur in different seasons and the probability will be higher for future climatic conditions. 

Several research studies have considered the ETS (8760 time steps) in stochastic optimization [40–

44]. Such a detailed representation enables the model more accurate and closer to reality, especially 

in the context of representing energy systems with a larger capacity of non-dispatchable energy 

technologies. However, a relatively simple dispatch strategy needs to be used in the design 

optimization process (one of the main limitations using this method) when incorporating ETS. In 

addition, non-linear optimization methods should be accommodated, which will significantly 

increase the computation time. As a result, the number of scenarios considered in the stochastic 

optimization process is notably reduced. For example, Narayan and Ponnambalam [40] limited the 

scenarios in stochastic optimization down to 200. Limiting the number of scenarios considered for 

stochastic optimization (especially when using scenario reduction methods following Monte Carlo 

simulation) often eliminates extreme climate conditions. Therefore, a notable improvement is 
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essential when extending the ETS based on the entire time series simulation to accommodate both 

climate uncertainty and extreme climate events.  

6.2.2. A promising way to consider climate resilience 

A novel computational algorithm is developed in this chapter to accommodate climate resilience 

into the energy system design process by extending the ETS approach. Robust programing is used to 

compute the performance related to the reliability of the system (through introducing constraints to 

guarantee a minimum performance level) while stochastic programing is used to evaluate objective 

function values considering the climate uncertainty.  

Simulation-based optimization may take much longer to evaluate objective functions [40]. Hence, 

incorporating a large number of scenarios becomes time consuming [40,41]; as a result, scenarios 

with very low expected values have to be omitted in the stochastic optimization process. Extreme 

climate occurs during shorter time spans (days to weeks) in comparison to the time span of the time 

series simulation (one year). Furthermore, extreme climates have a relatively low frequency of 

occurrence. Scenarios corresponding to extreme climatic conditions will therefore have a lower 

expected value (which cannot be considered in the stochastic optimization process due to the 

computational limitations). In contrast, robust optimization considers healthy operation of the 

system under extreme conditions [49–51] and constitutes therefore an appropriate way to consider 

the resilience of a system under extreme conditions. However, it does not evaluate the performance 

of a system in non-extreme scenarios.  

Besides inducing more frequent and stronger extreme conditions, climate change leads to 

computational challenges due to uncertainties in estimating climatic conditions (see Section 6. 3 for 

more details about climate uncertainties as well as [7,8]). Energy systems should possess the 

potential to manage climate uncertainty without a significant drop in performance. Stochastic 

programing is a better way to consider the uncertainty when formulating the objective functions 

compared to robust programing [52]. With their unique pros and cons, hence it is important to use 

both robust and stochastic programing, which will guarantee resilient operation of the energy 

system in climate extremes.  

The novel algorithm introduced here integrates the stochastic and robust programing in a hybrid 

way to handle both climate uncertainty and extreme climate. The stochastic optimization approach 

will address the uncertainties in energy demand and the renewable energy potential due to climate 

change. Furthermore, uncertainties due to the grid conditions are accommodated through stochastic 

optimization.  Smooth operation of the system under extreme conditions (due to extreme climate 
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events) is guaranteed through robust optimization. Hybridizing the two approaches has been 

practiced for unit commitment problems related to power systems [53–58] although yet to be 

applied for energy system design. The dispatch strategy proposed by Perera et-al [57] is used to 

consider complex interactions for the unit commitment problem, addressing the limitations of 

recent literature with ETS. GPU computing is used to increase the number of scenarios through large 

scale parallelization while reducing the computational time. A comprehensive overview of 

synthesizing scenarios for stochastic-robust optimization is presented in Section 6. 3 while a detailed 

overview of the computational model is presented in Section 6. 4.  

6.3. Synthesizing representative weather data sets from regional climate models 

Developing climate scenarios as input for stochastic and robust programing plays a vital role in the 

energy system optimization process. In this chapter, six future climate scenarios are taken into 

account through synthesizing of outputs of a regional climate model (RCM) and creating two groups 

of typical and extreme weather data sets (based on hourly and monthly distributions); in addition 

five expected scenarios (all concepts are described in detail hereafter) are developed. RCMs are 

climate models to downscale global climate models (GCMs) dynamically to regional scale. GCMs, 

forced by representative concentration pathways (RCPs), are used to simulate future climate 

conditions on a global scale and develop future climate scenarios. Since the spatial and temporal 

resolution of GCMs’ outputs are coarse, they need to be downscaled to finer resolutions by means of 

statistical or dynamical downscaling technique. Although the common practice for technical 

applications is statistical downscaling, it has the disadvantage of only considering the long-term 

trends of climate change and neglecting extreme weather conditions (there is another downscaling 

technique, namely stochastic downscaling, with the similar disadvantage). The weather data used in 

this work has been downscaled using RCA4 [59]; the 4th generation of the Rossby Centre RCM. 

Compared to the statistical downscaling, RCMs have a better representation of topography and 

mesoscale processes with the advantage of generating physically consistent data sets across 

different variables with fine spatial and temporal resolutions [60–62]. 

6.3.1. Major challenges in dealing with future climate 

Two major challenges in the impact assessment of climate change are climate uncertainties and 

large data sets. There exist several models and scenarios for simulating future climate conditions 

while no single simulation can be considered as the most probable [63,64]. Meanwhile it is 

recommended to perform the impact assessment for periods of 20 to 30 years and avoid short time 

spans [65]. Therefore, a valid impact assessment should consider several long-term future climate 

scenarios. This increases the size of data sets (e.g. six 100-year scenarios with the hourly time 
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resolution), the number of simulations (e.g. simulating the building stock of a city for each climate 

scenario) and the complexity of further analyses (e.g. designing and optimizing urban energy 

systems). Designing resilient energy systems for future conditions requires to deal with these 

challenges since it is critical to consider extreme conditions (on an hourly basis) and climate 

uncertainties. To do so, some previously developed methods are applied in this chapter and 

developed further for the purpose of energy system optimization. 

6.3.2. Deriving climate scenarios for stochastic and robust optimization 

In this work, the hourly weather data were synthesized [65] considering six future climate scenarios 

for the 30-year span of 2070-2099. Future weather data sets are the outputs of RCA4 regional 

climate model with the spatial resolution of 12.5km, downscaling these driving models: CNRM-

CERFACS-CNRM-CM5, ICHEC-EC-EARTH, IPSL-IPSL-CM5A-MR and MPI-M-MPI-ESM-LR (which are 

called CNRM, ICHEC, IPSL and MPI hereafter, respectively). These driving models are forced by two 

RCPs [66]; the first two are forced by RCP4.5 and RCP8.5 and the other two by RCP8.5, resulting in 

six future climate scenarios in total (these weather data sets are called ‘RCM data’ in this work). This 

requires creating three different sets of climate data i.e. extreme weather data for robust 

programing, climate scenarios for stochastic optimization and typical weather data for reference 

algorithms (in order to compare the performance of the novel algorithm). 

6.3.2.1. Extreme weather data for robust programing 

RCM data were used to synthesize two groups of representative weather data sets for a 30-year 

period, each group including three one-year weather data sets: one typical downscaled year (TDY), 

one extreme cold year (ECY) and one extreme warm year (EWY) [67]. The difference between the 

two groups is in the time scale for picking the representative data, which varies between picking the 

representative month and the representative hour. The method for generating TDY, ECY and EWY on 

the monthly basis is explained in detail in [67]. In short, the method is based on Finkelstein–Schafer 

(FS) statistics [68]: picking the months with a cumulative distribution temperature that is most 

similar to that of the whole data sets (6×30=180 years in this case) as the typical months and 

constructing TDY based on them. For ECY and EWY, the months with the largest differences are 

picked as the extremes of cold and warm. The method and its usefulness have been verified in 

different applications [60,67]. The method was developed further so as to track all possible extremes 

at each time step for any climate variable (outdoor air temperature in this work). To do so, the 

typical and extreme values of a climate variable were picked according to the hourly distribution at 

each time step (hour) considering all the years and climate scenarios (6×30=180 data points at each 

time step). This results in three time series (with the length of 8760 hours), each containing the most 
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typical, the lowest and the highest values at each time step. It is important to remember that these 

data sets (arranged based on hourly distributions) are generated only for calculation purposes and 

they cannot be considered as weather data since they do not reflect the natural variations of the 

climate system (unlike TDY, ECY and EWY which are arranged based on monthly distributions and 

reflect natural variations). This is visible in Fig. 6.2 and Fig. 6.3, showing the hourly profiles of the 

outdoor air temperature and wind speed at the wind turbine level, respectively. The figures on the 

left compare the typical and extreme data sets with all the 180 probable future conditions (light grey 

lines) while the three representative data sets were synthesized based on the monthly distributions. 

The figures on the right do a similar comparison when the representatives are arranged based on the 

hourly distributions. Naturally, the ones on the right include the extremes at each hour, although 

their annual profile does represent natural variations of climate. However, it is important to 

remember that each hourly value is a possible future condition (according to climate models) that 

can challenge the energy and urban infrastructures in future.  

  

Fig. 6. 2: Hourly distribution of the outdoor temperature for six climate scenarios during 2070-2099 (180 profiles –light 

grey lines) and the typical and extreme conditions when they are picked based on the (left side) monthly distributions 

according to [67] and (right side) the hourly distributions of temperature.  
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Fig. 6. 3: Hourly distribution of the wind speed at the wind turbine level (60 m) for six climate scenarios during 2070-

2099 (180 profiles – light grey lines) and the typical and extreme conditions when they are picked based on the (left 

side) monthly distributions and (right side) hourly distribution of wind speed. 

6.3.2.2. Expected scenarios for stochastic optimization 

Another approach, developed for the purpose of this work, is synthesizing sets of scenarios for the 

future weather conditions, arranged on the basis of the expected values of the desired climate 

variables. To do so, all the 180 years of weather data (6 scenarios, each for a 30-year period) are 

accommodated in one year, meaning that at each time step (hour) of a year, there are 180 possible 

values. Considering the cumulative distribution of the values at each hour and calculating their 

percentiles, the values (e.g. wind speed) for different probabilities can be calculated. For example, 

looking at the wind speed, which varies between 0 to 20 m/s during one year in Error! Reference 

source not found. 6.4, and by dividing the range of values into 9 sequences as in the figure legend, 

the first 5% (‘5% - lower’ in Fig. 6.4) represent the lowest wind speed values during the whole year, 

while the last 5% (‘5% - higher 2’ in Fig. 6.4) represent the highest wind speed. In other words, the 

first one is a pseudo-sequential time series with one value at each time step that represents the 

percentiles between 0 and 5, while the last one is for the percentiles between 95 to 100. Four 

scenarios have been generated in this work by synthesizing pseudo-sequential time series for three 

(20-60-20 %), five (10-20-40-20-10 %), seven (10-15-15-20-15-15-10 %) and nine (5-5-15-15-20-15-

15-5-5 %) sequences (the probability of the scenario is given within the brackets). These scenarios 

are called ‘expected scenarios’ in this work. It is noteworthy to remember that the time series of the 

expected scenarios do not represent the natural variations of the climate system. 

It is possible to adapt the method to any variable with many possible values at each time step, as 

was adopted in this work for creating the expected scenarios for renewable generation potentials 

and energy demand, which is discussed in the result section.  Such detailed information is not 
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available for grid curtailments and grid prices, therefore only three sequences (20-60-20 %) were 

considered, based on Ref. [57] and Ref. [69] respectively.  

 
Fig. 6. 4: Hourly distribution of the (left) outdoor air temperature, (middle) wind speed, and (right) global radiation for 

six climate scenarios during 2070-2099 (180 profiles – light grey lines) and the hourly time series of expected values 

considering nine probability values. 

6.4. Computational model for energy system optimization 

The energy system design process combines three steps, i.e. i) deriving a meteorological data set 

using a regional climate model, ii) building simulation to consider different scenarios for energy 

demand, and iii) energy system optimization.  The first two have already been discussed in Section 6. 

3. Building simulations were performed for the building stock in Lund in Sweden, using a verified 

model, which is thoroughly discussed in some previous works (e.g. [9]). The energy demand of a 

combination of 40 buildings, representing a typical urban area in Lund, was used for the purpose of 

this work. This section describes the energy system optimization process. A brief overview of the 

energy system is presented in Section 6. 4.1. Decision space variables considered for the 

optimization are presented in Section 6. 4.2. The formulation for the energy flow within the energy 

hub, objective functions and constraints considered when optimizing the energy hub are presented 

in Section 6. 4.3. An outline of the optimization algorithm is presented in Section 6. 4.4. A brief 

overview of the reference algorithms developed to compare the performances of the novel 

computational algorithm is presented in Section 6. 4.5    

6.4.1. Outline of the energy system 

The energy hub concept was introduced by Geidl et-al. [70,71] to incorporate energy technologies 

with different characteristics in order to cater the demand for multi-energy services (Fig. 6. 5). This 

concept has already received the attention of a wider group of researchers working on distributed 

generation. Furthermore, it has shown  potential to incorporate more renewable energy 

technologies [23,72–74]. The energy hub considered in this chapter is operated in connection with 

the local electricity grid. It injects electricity to the grid when there is excess generation (and also 

when the cost of selling is competitive) and purchases electricity from the grid to cater the mismatch 

between demand and generation. Grid curtailments have been introduced both for selling and 
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purchasing electricity to and from the grid to guarantee the stability of the grid. The energy hub 

considered in this chapter consists of wind turbines and Solar PV (SPV) panels which are non-

dispatchable energy technologies. An Internal Combustion Generator (ICG) is used as the 

dispatchable source. A battery bank is used as the energy storage assisting ICG and grid to absorb 

fluctuations in both demand and generation. It is assumed that the heating demand is catered using 

heat pumps.  

6.4.2. Decision space variables 

Variables related to both system design (ϵN) and operation strategy (ϵL) are considered as the 

decision space variables. Time series simulation is used to map decision space variables into the 

objective space as explained in Section 6. 4.3. The decision space includes (ϵX (NUL)) both discrete 

and continuous variables. Variables related to system design are represented using discrete variables 

while continuous variables are used to present the dispatch strategy. Number of wind turbines, SPV 

panels and battery bank as well as size of internal combustion generator are considered as decision 

space variables. The technology used for SPV panels and the performance curve of wind turbines 

notably influence the power generation and cost. Hence, the type of wind turbine and SPV panel are 

also considered as decision space variables along with their capacity. 

 

Fig. 6. 5: Outline of the energy system 

6.4.3. Formulation of objective functions and constraints 

The computational model which formulates the objective functions and constraints maps decision 

space variables into the objective space. Energy system optimization is performed using a 

simulation-based optimization algorithm. As shown in Fig. 6.6, the decision space variables are 

mapped into the objective space through a life cycle simulation which computes the objective 

function values and constraint violation (in case there is constraint violation). Collecting techno-
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economic data helps to formulate the model used for the simulation. RCM and building simulation 

helps to develop the scenarios that need to be considered for stochastic and robust conditions as 

described in Section 6. 3. Scenarios related to stochastic and robust programing use a similar 

computational model for time series simulation. Hence, the computational model corresponding to 

this part is common for both, which is introduced as the Simulation block in Fig. 6. 6. Objective 

function values are computed using the Stochastic block, which corresponds to stochastic 

programing. Constraint violation is evaluated using the Robust block.      

6.4.3.1. Simulation block 

The Simulation block the computational model which is common to both robust and stochastic 

programing.. Evaluation of the energy flow based on hourly simulation is the part common to both 

sections. Hourly wind speed, solar irradiation, energy demand etc. are taken as the input to the 

Simulation block which determines the renewable power generation within the system. Based on 

the power generation, interactions with the grid, energy storage and the internal combustion 

generator are determined using the dispatch strategy.         

Simulation 
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for energy system simulation
· Wind turbine model, SPV model, ICG 

model, etc.
2) Dispatch strategy
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· Grid Integration level
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Fig. 6. 6: Mapping decision space variables into the objective space 

Energy flow model 

Energy flow through system components such as solar PV (SPV) panels, wind turbines etc. is 

considered under the energy flow model. Based on the hourly solar irradiation, solar power 

generation (
,

SPV

t sP ) is computed using Eq. 6.1 

, , , , ,SPV SPV SPV SPV SPV

t s t s t s SysP G A N t T s                              (6.1) 
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In this equation, t denotes the time step ( t T  ) and s denotes the scenario that belongs to the set 

of Ω, which presents all the scenarios (union of Ψ and π sets of scenarios representing stochastic and 

robust scenarios respectively). In Eq. 6.1, 
,t sG , SPVA , ( )SPV SPVN N  denote the global solar irradiation 

on a tilted SPV panel, surface area of the SPV panel and number of SPV panels in the system 

respectively. SPV

Sys takes into account the minor losses in the SPV system due to dust accumulation 

and the power losses in the inverters. 
,

SPV

t s denotes the efficiency of the SPV panel which is computed 

using Eq. 6.2. 

, , ,SPV

,

0 0 0 0 0

 q 1 , ,

SPV SPVm uSPV

t s t s t sSPV SPV SPV SPV

t s SPV

G G AM AM
p r s t T s

G G AM AM

 

 






            
                                      

              (6.2) 

In Eq. 6.2, Standard values for 
0G , SPV

0 , AM0 are taken respectively as = 1000 Wm-2, = 25oC 

and  AM0 = 1.5.  Parameter values of  SPVp , SPVq , SPVr , SPVs , SPVm , SPVu  for different SPV technologies, 

such as mono-crystalline, polycrystalline and amorphous silicon cells, are taken from Ref. [75]. AM 

denotes the air mass value and 
,

SPV

t s  is the cell temperature. Similarly, power generation from the 

wind turbines is computed using Eq. 6.3. 

W-losses
~

w

, , t, (v )  N  , ,W W Hub

t s t s sP P t T s                               (6.3) 

In Eq. 6.3, 
~

,

W

t sp  denotes the power generated by a single wind turbine. According to Thapar et-al [76], 

wind turbine models using presumed shapes (based actual shape of the performance curve of the 

wind turbines) are more accurate. Hence, the cubic-spline interpolation method is used in this 

chapter to present the power curve of wind turbine (based on actual wind turbine found in market).  

In Eq. 6.3, )( WW NN , 
t ,vHub

s
denote the number of wind turbines and wind speed at the wind turbine 

hub height. Similar to Eq. 6.1, losses-W  presents the minor losses that take place in the energy 

conversion. Power generation in the internal combustion generator and the energy flow through the 

battery bank are computed in a similar manner. Detailed energy flow models used for the simulation 

can be found in Ref. [77–80] (in deterministic format).  

 

Dispatch strategy 

The dispatch strategy helps to accommodate the fluctuations in demand and generation while 

determining the interactions with the grid, energy storage and internal combustion generator. A bi-

level dispatch strategy introduced in Ref. [57] is used in this chapter. The primary level of the 


0G SPV
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dispatch strategy determines the operating load factor of the internal combustion generator based 

on renewable energy potential, energy demand, cost of energy in the grid and state of charge level 

of the battery bank. The fuzzy-automata theory is used at the primary level. The secondary level 

determines the interactions with the storage and the grid. The finite automata theory is used to 

assist the secondary level of the dispatch strategy. Both fuzzy rules and state transfer points of the 

dispatch strategy are considered as decision space variables. Based on the energy flow simulation, 

interactions with the grid, fuel consumption and wearing of internal combustion generator, 

charge/discharge cycles of the battery bank etc. are computed. These are used in both robust and 

stochastic blocks to formulate objective function values and constraints. A detailed description of 

the dispatch strategy is presented in Ref. [57]. 

6.4.3.2. Robust block formulating constraints  

Performance indicators that guarantee robust operation under extreme scenarios are computed 

through the Robust block. Reliability of the system is assumed as the main priority. Maintaining 

reliability is expected to maintain a reliable power supply during extreme climate events. Hence, loss 

of load probability (LOLP) is considered as a constraint in the optimization problem. LOLP has been 

amply used in literature as a measure to evaluate the reliability of power systems [81–84]. Energy 

systems are simulated considering the extreme scenarios and energy flow is computed using the 

Simulation block in order to compute LOLP. Loss of power supply (LPS) will occur whenever there 

exists a mismatch between renewable power generation and demand that cannot be catered using 

the battery bank, internal combustion generator and grid. LPS is computed using Eq. 6.4.  

, , , , , ,RE ICG Bat Max

t s t s t s Max t s LimLPS ELD P P P IG t T s                                  (6.4) 

In Eq. 6.4,
,

Bat Max

t sP  , LimIG , ICG

MaxP , 
,t sELD  denote maximum possible power flow from the battery 

bank (depends on the state of charge), maximum power purchased from the grid, nominal power of 

the internal combustion generator and electricity load demand. ,

RE

t sP  denotes renewable energy 

generation using both SPV panels and wind turbines. LOLP is computed using Eq. 6.5  

,

,

( ,0)
t s

t T
s

t s

t T

LPS

LOLP Max
ELD


 



 





                      (6.5) 

The main weakness of Eq. 6.5 is that it considers the entire time series (period on one year) when 

computing the loss of load probability. This might lead to erroneous results (since it averages the 

condition over one year) when considering extreme events which prevail for a shorter period, 
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leading to higher loss of load probability during extreme climate events. To avoid this issue LOLP-Ex 

is introduced as an improved replacement according to Eq. 6.6.      
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In Eq. 6.6, ‘d’ denotes the time period that the extreme climate condition is expected to prevail.   

6.4.3.3. Stochastic block formulating objective functions  

Stochastic-robust optimization has recently become popular for dispatch optimization problems 

[53–58]. Different methods have been used in these studies to consider both stochastic and robust 

aspects of energy system operation. In most of the instances, stochastic and robust parts of the 

objective function are combined by weighting the impact of each other [53,58]. In certain instances, 

penalty cost is introduced through robust programing [54], which is quite similar to introducing it as 

a constraint. When moving from dispatch optimization to energy system design, the context of the 

problem changes notably. Due to shorter time spans (mainly) during extreme climate conditions and 

the relatively low frequency of occurrence, the weight that should be assigned for the robust part in 

the objective function will be quite low. Hence, it is only considered as a constraint in the 

formulation of the optimization problem. Net present value (NPV) of the system and grid integration 

level are considered as the objective functions. The computational model introduced in the common 

block is used to simulate energy flow within the system. Based on the energy flow, the cash flow of 

the system is computed for different scenarios within the stochastic block. Similarly, the autonomy 

level of the system is computed based on the hourly simulation.  

Net Present Value (NPV) 

Expected net present value ( ( )NPV ) is computed considering all the cash flows that have taken 

place within the lifetime of the system. The NPV includes two main parts i.e. initial capital cost (ICC) 

and operation and maintenance cost (OM). The price uncertainty related to the ICC, which includes 

the acquisition and installation costs, is not considered in this chapter. Hence, ICC is computed only 

considering the deterministic part. ICC is considered at the beginning of the project. Scenarios 

introduced considering climate and grid uncertainty will result in a notable change in the OM. 

Expected value of the OM is included ( ( )OM ) along with the deterministic value of ICC which 

formulates the ( )NPV  according to Eq. 6.7.     

( ) ( )NPV OM ICC                        (6.7) 
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OM consists of two main components fixed (OMFixed) and variable costs (OMVariable). Eq. 6.7 can be 

extended considering these two components separately according to Eq. 6.8. OMFixed considers 

recurrent annual cash flows (such as maintenance cost of wind turbines, SPV panels, fuel and 

operation cost for ICG). OMVariable considers the replacement cost for ICG and battery bank. 

Replacement time for the ICG is determined considering the operating hours and Rain-flow 

algorithm using the common block. Both fixed and variable operation and maintenance costs are 

evaluated on annual basis when computing the expected NPV.   

var

, , ,( ) ( ( ) ) , , , ,Fixed l iable

s c s c c h s

s c C h H c C

NPV ICC OM CRF PRI OM t T s c C h H
       

             
              (6.8) 

In Eq. 6.8, CRFc denotes the Capital Recovery Factor for the cth component. PRI denotes the real 

interest rate calculated using both interest rates for investment and the local market annual inflation 

ratio. ‘δ’ and h denote the expected value of the scenario and the year considered. 

Grid integration (GI) level 

The autonomy level of a distributed energy system depends on the level of the interactions it 

maintains with the grid. Maintaining minimum grid interactions is always recommended from the 

perspective of grid stability. Therefore, grid curtailments are considered for both selling and 

purchasing electricity to and from the grid. According to Perera et-al [57], the autonomy level of a 

distributed energy system can be measured in different ways. In this chapter, GI is evaluated based 

on  the units purchased form the grid (Eq. 6.9) in order to maintain a stable operation of the 

distributed energy system.  
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                   (6.9) 

In Eq.6.9, ,

FG

t sP  denotes the energy purchased from the grid. 

6.4.4. Optimization algorithm 

Different methods based on convex optimization, non-convex optimization, linear programing, 

mixed integer linear programing and heuristic methods have been used to design distributed energy 

systems [85,86]. Heuristic methods have been shown to be an effective way to design distributed 

energy systems in recent years [87]. Soroudi and Amraee [37] highlight the importance of 

developing methods based on heuristic methods in order to design energy systems under 

uncertainty. Heuristic algorithms have been amply used for both stochastic [88] and robust [89] 

optimization problems. This chapter uses the steady state ɛ-dominance method to conduct Pareto 
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optimization. The constraint tournament method [90] is used to handle the constraints in the 

optimization process. A polynomial mutation operator [90] and a simulated binary crossover 

operator [91] are used along with differential evolutionary operators in the reproduction of the 

population. Net Present value (NPV) (Eq. 6.8) (F1ϵƑ) and Grid integration level (GI) F2(F2ϵƑ) (Eq. 6.9) 

introduced in Section 6. 4.3.3 are used as the objective functions.   

6.4.5. Implementation of the computational algorithm 

Simulation based optimization is a time consuming activity, which becomes more challenging when 

accommodating large number of scenarios that consider lengthy simulations. Hence, efficient 

implementation of the computational program plays a vital role. In order to accomplish this 

objective, Graphical Processor Unit (GPU) computing is introduced in this study to conduct time 

series simulation. GPU computing facilitates large scale parallelization of computational program. As 

a result, GPU computing has already been used in different fields such as image processing, machine 

learning, bio-informatics etc. However, GPU computing is not well known among the energy system 

design community despite its potential to speed up computational processes. When considering 

stochastic optimization, GPU computing makes it feasible to handle a large number of scenarios 

within a reasonable computational time. For example the number of scenarios considered in this 

work (5835 scenarios) is way higher than the number of scenarios considered by Narayan and 

Ponnambalam (200 scenarios) [40]. 

The formulation of the objective functions is described using three blocks in Section 6. 4.3 for the 

ease of understanding. The computational algorithm begins in a similar manner following the 

mathematical model as shown in Fig. 6. 7. The techno-economic and weather data are collected and 

provided to the computational algorithm. The Simulation block (considered as one part), which 

includes the set of computational models, is divided into a stochastic and a robust part and 

implemented in both CPU and GPU. Scenarios related to the stochastic programing part are 

implemented in the GPU, which supports large scale parallelization. Scenarios related to the robust 

part and deterministic part are implemented in Central Processing Unit (CPU). Subsequently, the 

objective function values and constraints are computed in the CPU aggregating the computation 

performed in both CPU and GPU. Based on the objective function values, the population and archive 

are updated following the dominance check using the CPU.                
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Fig. 6. 7: Implementation of the computational algorithm  

6.4.6. Reference algorithm 

Several reference algorithms are used to compare the performance of the novel algorithm 

introduced in this chapter (Fig.6.8).  

· Deterministic model with typical weather data (DT) 

The deterministic model is generally used to design distributed energy systems based on typical 

weather data as is the case in this work. Several typical weather data sets are available, of which 

TMY is one of the well-known formats, widely used for energy simulations. In this work, instead of 

using TMY or similar available data sets, typical weather data have been synthesized using outputs of 

the RCA4 regional climate model, which is called Typical Downscaled Year (TDY). TDY is used to 

simulate the energy demand of the buildings and the energy system (check Section 6. 3 for more 

details). Both objective functions and constraints are derived based on the deterministic model. 
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Fig. 6. 8: Comparison of different algorithms used as reference algorithms to compare the performance of the proposed 

SRO. Respectively from top to bottom, outline of DT, DE, SO and SRO are presented. Climate scenarios obtained from 

regional climate model are introduced DE onwards (when moving from top to bottom). Deterministic formulation is 

replaced entirely by using the stochastic models in SO. The robust programing method is used in SRO to evaluate the 

constraints.    



149 
 

· Deterministic model with extreme weather data (DE) 

The main weakness in the deterministic model is not considering the extreme climate conditions. 

Therefore, it is difficult to guarantee the robustness of the energy system under extreme events. The 

DE algorithm is used to design the energy system replacing the typical weather data by extreme 

climate conditions (extreme high and low – check Section 6. 3).  

· Stochastic optimization (SO) 

As discussed before, stochastic programing is a more realistic way to represent uncertainties, 

especially when compared to deterministic models. Stochastic programing is used to compute both 

objective functions and constraints for the optimization algorithm in this algorithm (Fig. 6. 8).   

· Hybrid stochastic-robust optimization (SRO) 

SRO is the novel method introduced in this study and detailed in Section 6.4.1-3.3. Compared to SO, 

robust programing is used in SRO to consider the extreme events. 

6.5. Results and Discussion         

Climate uncertainty and extreme climate events can have an adverse impact on both energy 

demand and generation. Hence, it is important to quantify the impact of such events accurately 

using probable scenarios. The first part of the results and discussion section of this paper is devoted 

to understanding the influence of different methods used to synthesize the climate data on the 

representation of extreme climate events and climate uncertainty. Furthermore, the computational 

challenges that need to be faced when representing climate uncertainty and extreme climate events 

are discussed. The second part of the section is devoted to understanding the impact of extreme 

climate on energy system performance and renewable energy integration. Finally, the novel 

algorithm introduced in this chapter is benchmarked using the reference algorithm.       

6.5.1. Energy demand and weather data 

Estimating peak demand and preparing for extreme climatic conditions is vital for the design of 

resilient energy systems. Results in this section illustrate the role of weather data and the 

importance of the selected approach in estimating peak demand and extreme conditions.  

6.5.1.1. Effects of time scale in synthesizing typical and extreme weather conditions 

The monthly average of cooling, heating and total energy demand are plotted in Fig. 6.9 for two 

types of typical weather data, synthesized on the basis of the monthly and hourly distribution of 

outdoor air temperature. Calculated values are very similar for both typical conditions; the only 

considerable difference is that the typical conditions based on the hourly distribution underestimate 

the average need for cooling during summer. In Fig. 6.10, differences of the extreme cold (ECY) and 
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warm (EWY) years from typical year (TDY) in calculating the total energy demand of buildings are 

plotted for the monthly and hourly based representative weather data sets (TDY, ECY and EWY 

based on the monthly and hourly distribution of air temperature). According to the graphs, the 

larger peak demands during cold and warm seasons belong to ECY and EWY synthesized on the basis 

of the hourly distribution. This is clearly visible in Error! Reference source not found.. 6.11, which 

compares the differences from typical conditions in heating demand for ECY and in cooling demand 

for EWY. Boxplots of the differences during cold (Jan-Feb & Oct-Dec) and warm (May-Sep) seasons 

are illustrated in Fig. 6.12, confirming the fact that not considering extreme climatic conditions will 

result in underestimating peak demand. Moreover, by performing calculations only for monthly-

representative extreme conditions, the scale of peak demand at the hourly basis is diminished, 

which may cause failure in supplying the required energy during extreme climatic conditions. This is 

obvious for the case of cooling demand during warm seasons in Fig. 6.11. 

 

Fig. 6. 9: Monthly average of cooling, heating and total energy demand for buildings in Lund during 2070-2099 for two 

sets of typical (TDY) weather conditions, synthesized based on the monthly (m) and hourly (h) distribution of outdoor air 

temperature.           
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Fig. 6. 10: Hourly differences in the total energy demand when the representative weather data sets are synthesized 

based on the monthly or hourly distribution of the outdoor air temperature (DemandExtreme-DemandTypical): (left) 

difference between typical and extreme cold conditions; (right) difference between typical and extreme warm 

condition. 

 

Fig. 6. 11: Hourly differences in (left) heating demand and (right) cooling demand. Comparing differences when the 

representative weather data sets are synthesized based on the monthly or hourly distribution of the outdoor air 

temperature (DemandExtreme-DemandTypical). 

Based on the abovementioned outcomes, more than the long-term outputs of RCMs, the 

representative weather data sets synthesized based on the hourly distribution of the outdoor air 

temperature have been used for all the calculations hereinafter.  

6.5.1.2. Presenting climate uncertainty and extreme climate 

Hourly profiles of the total energy demand for typical and extreme weather data sets (based on the 

hourly distribution of air temperature) are compared with all the 180 profiles (calculated using the 

RCM weather data) in Fig. 6.13. Energy demand for extreme climate conditions is derived using ECY 

and EWY, which is subsequently used for the robust optimization. Similarly, 180 generated energy 

demand scenarios using the RCM weather data are used to present climate uncertainty during the 
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stochastic optimization. A group which consists of sets of scenarios that present climate uncertainty 

is created in order to evaluate the influence of the number of scenarios on the accuracy of climate 

uncertainty representation. The group consists of four sets of scenarios each having respectively 

three, five, seven and nine scenarios used to represent climate uncertainty. The demand profiles for 

each set of scenarios are plotted in Fig. 6.14 (considering three, five, seven and nine probability 

values). The expected value of each scenario is also included in the plot. 

 

Fig. 6. 12: Distribution of the hourly differences in heating, cooling and total energy demand (DemandExtreme -

DemandTypical) when the representative weather files are synthesized based on the monthly (m) or hourly (h) 

distributions of the air temperature. “Cold” and “Warm” refer to the cold and warm seasons. The average values of the 

differences are 35.8, 66.7, 34.7, 106.4, 11.8, 21.9, 4.8 and 21.9 kWh (respectively, from left to right in the figure) while 

the average demand for typical cases is 238.4, 237.3, 11.6, 0, 98.8, 98.4, 75.7 and 72.2 kWh. 

The seasonal variations are visible in profiles based on ECY and EWY in Fig. 6.13; energy demand 

increases due to extreme heating demand during cold seasons (ECY – check the high values of the 

blue line in Fig. 6.13 during cold season) and due to extreme cooling demand during warm seasons 

(EWY – check the high values of the red line in Fig. 6.13 during warm season). These seasonal 

changes are not distinguishable for the lower expected values of the expected scenarios in Fig. 6.14 , 

however the higher values can represent the extreme values during both warm and cold seasons (for 

example check the black solid lines in Fig. 6.14 which reflect the changes in energy profile due to 

seasonal changes while this is not the case for the cyan line). By increasing the number of sequences 

of expected values in the expected scenarios (and naturally narrowing down to smaller 

probabilities), the chances for covering the extreme values with lower probabilities increase. For 

example, by comparing the expected scenarios with three and nine sequences in Error! Reference 

source not found.. 6.14, it is obvious that ‘5% - higher 2’ for nine sequences covers larger extremes 

with lower probability compared to ‘20% - higher’. This is elaborated further in Fig. 6.15, which 

presents the boxplots of the differences in the energy demand for extreme conditions from the 

typical conditions during the warm and cold seasons on the hourly time scale. The energy demand 

for typical conditions is calculated using TDY and for extremes using ECY, EWY. P9, P7, P5 and P3 in 
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Error! Reference source not found.. 6.15 reflect the differences between the last expected values 

(the highest values in each expected scenario or black solid lines in Fig. 6.14) and typical conditions. 

According to Fig. 6.15, using ECY and EWY results in considering a larger span of extreme conditions, 

however the expected values are also useful in estimating the span of extreme conditions, especially 

when they are divided into larger number of sequences (for example, compare the boxplot of P9 in 

the cold and warm season respectively with the ECY and EWY boxplots in Fig. 6.15).  

 

Fig. 6. 13: Hourly distribution of the total energy demand for six climate scenarios during 2070-2099 (180 profiles – light 

grey lines) and the typical and extreme scenarios based on the hourly distribution of outdoor air temperature.  

6.5.2. Impacts of extreme weather conditions on the performance of energy systems 

Energy systems are optimized considering GI and NPV as objective functions. Pareto fronts obtained 

using different methods: DT, DE, SO and SRO are presented in Fig. 6. 16. In addition, Pareto fronts 

are obtained considering Ext-LOLP as a constraint (SRO-Ex) optimization to assess the impact of 

refining the loss of load probability (LOLP) indicator to match with extreme climate events further. 

The five Pareto fronts can be grouped into two groups; 

· Group 1: set of Pareto fronts obtained using stochastic programing (SRO, SO, SRO-Ex)  

· Group 2: set of Pareto fronts that are based on deterministic models (DT and DE) 

To analyze the Pareto fronts further, four different sets are created taking one Pareto solution from 

each Pareto front that have a similar grid integration level. Performance indicators of these Pareto 

solutions and the system configuration details are tabulated in Table 6. 1. 
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Fig. 6. 14: Hourly distribution of the total energy demand for six climate scenarios during 2070-2099 (180 profiles – light 

grey lines) and the hourly time series of expected values considering (top-left) three, (top-right) five, (bottom-left) seven 

and (bottom-right) nine probability values. 

 

Fig. 6. 15: Distribution of the hourly differences in total energy demand (DemandX -DemandTypical) during cold and warm 

seasons considering extremely cold (ECY) and warm (EWY) years - based on hourly distribution – and extremely high 

expected values (black solid lines in Error! Reference source not found.) for nine (P9), seven (P7), five (P5) and three (P3) 

probability values.  
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6.5.2.1. Pareto fronts considering NPV and GI 

When analyzing the Pareto fronts that belong to Group 1, a noticeable increase in the objective 

function values is observed when moving from DT to DE. As shown in Table 6. 1, NPV increases by 

61.1% (when moving from DT to DE) in Set A and by 71.2 % in Set D. Furthermore, a totally 

contrasting picture is seen when comparing the installed renewable energy capacity of DT and DE. 

For example, the renewable energy capacity drops from 735 kVA to 25 kVA when moving from DT to 

DE in Set A. A similar behavior is observed when comparing the installed renewable energy capacity 

of DE with the Pareto fronts belong Group 2. In addition, it is observed that DT is having the highest 

ICG capacity. Hence, it can be concluded that considering the extreme climate conditions through 

deterministic models results in poor renewable energy capacity. In addition, considering extreme 

conditions through deterministic models portray a negative picture about distributed energy 

systems from the economic perspective. It can be concluded that it is not a good practice to use 

deterministic approaches to consider extreme climate events when designing distributed energy 

systems.  
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Fig. 6. 16: Pareto fronts obtained considering NPV GI. Four colored circles  represent four sets of Pareto solutions 

created selecting one Pareto solution from each Pareto front having grid interaction levels close to each other. E-E and F-

F respectively show the difference in NPV for SRO-SRO-Ex and SRO-SO Pareto fronts. 

When moving from Group 1 to Group 2 (methods based on stochastic programing), the three Pareto 

fronts move very closely to each other until these reach the Pareto solutions that belong to Set B. 

Thereafter, SRO-EX Pareto front deviates from the other two Pareto fronts (belongs to Group 2). 

Similarly, SRO and SO deviate from each other after reaching the Pareto solutions marked as Set C. 
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Hence, system designs of the Pareto fronts which belong to Group 2 are quite close to each other 

when the grid integration level is low. Renewable energy capacity, wind turbine capacity as a 

percentage of total renewable energy capacity, ICG capacity and energy storage size of Set A 

(Tabulated in Table 6. 1) (for SO, SRO, SRO-EX) demonstrate this specific point. Following the 

deviation in Pareto fronts, a significant difference in ICG capacity can be observed in Set B where the 

deviation in NPV is at the highest. The ICG capacity increases from 40 kVA to 60 kVA and finally to 80 

kVA when moving from SO to SRO and SRO-EX. Such a variation clearly shows that the ICG plays a 

major role in distributed energy systems when guaranteeing the robust operation under extreme 

conditions. Furthermore, renewable energy capacity is maintained above 400 kVA for all the Pareto 

solutions of Group 2 (except for Pareto solution SRO in Set D) having a minimum renewable energy 

contribution of 49%. Reaching such a high level of renewable energy generation is a significant 

achievement (especially for the case of SRO and SRO-EX which impose stringent restrictions to 

guarantee the robust operation of the system under extreme conditions).  

Table 6. 1: Performance and system configuration of the Pareto solutions from different Sets  

 

6.5.2.2. Performance gap due to neglecting the climate uncertainty  

The Pareto fronts that belong to Group 2 follow each other closely up to a point (when increasing 

the grid integration level) and subsequently deviate, resulting in a notable difference in NPV (as 

Set 
Pareto 
front 

NPV (x105 
Euro) 

GI(%) 
RE capacity 
(kVA) 

Wind 
energy (%) 

Number of 
battery 
banks 

ICG capacity 
(kVA) 

NPV 
Increase1 
(%) 

A 

DT 2.23 3.15 735 12.2 20 60  

SO 2.40 3.58 495 92.9 13 80 7.43 

SRO 2.43 3.29 490 89.8 14 80 8.70 

SRO-EX 2.40 3.58 495 92.9 13 80 7.43 

DE 3.60 3.27 25 80.0 16 120 61.16 

B 

DT 2.11 6.52 555 7.2 20 60  

SO 2.32 6.54 985 60.9 17 60 9.58 

SRO 2.35 6.43 980 59.2 17 60 10.94 

SRO-EX 2.32 6.47 425 98.8 7 80 9.81 

DE 3.51 7.13 25 80.0 3 120 66.11 

C 

DT 1.87 16.44 360 1.4 6 60  

SO 1.94 16.18 405 93.8 11 60 3.57 

SRO 1.97 16.66 440 90.9 18 60 5.29 

DE 2.99 16.52 25 80.0 3 100 59.67 

D 

DT 1.72 25.11 285 1.8 1 60  

SO 1.63 24.45 535 48.6 10 40 -4.84 

SRO 1.94 23.05 375 96.0 17 60 13.29 

SRO-EX 2.28 24.94 430 93.0 1 80 32.96 

DE 2.94 24.14 25 80.0 2 100 71.15 
1
Compared to DT Pareto front 
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marked by E-E and FF). It is important to investigate the causes that create such a significant 

difference in NPV. Furthermore, it is important to figure out its relationship with climate uncertainty 

and extreme climate. To achieve this objective, Pareto solutions obtained using both deterministic 

and stochastic methods are further assessed using the four sets created earlier (Set A-D). Pareto 

solutions obtained using a deterministic model are simulated again considering both stochastic and 

extreme scenarios to assess the influence of climate uncertainty and extreme climate conditions 

(Table 6. 2 presents the results obtained for solutions in Set B, C and D in Table 6. 1). In addition, the 

influence of extreme climate on the Pareto solutions obtained using stochastic programing (Group 2) 

is also assessed further  (see Table 6. 3).    

A significant performance drop can be observed when simulating the Pareto solutions of Group 1 

considering stochastic scenarios (shown in Table 6. 2 and Fig 6.17). For example, the NPV increases 

by 44% in DT-Sim-D while GI increases by 43% in DT-Sim-B when considering the climate uncertainty. 

When moving into NPV, it increases by 92% in DE-Sim-B. Therefore, it is clear that climate 

uncertainty has a significant influence on the performance of the energy system. Performance 

degradation due to climate variation is evident throughout the Pareto front, which is shown by the 

grey line connecting B-DT-Sim and D-DT-SIM. As a result of the performance degradation, the design 

solutions for DT show inferior performance (higher NPV and grid integration level) when compared 

to all the other Pareto fronts obtained using stochastic methods (Group 2). This means that 

neglecting climate uncertainty will induce energy system design that is not flexible enough in facing 

the external environment and its variations. Hence, the design solutions obtained using the 

deterministic model will end up with a notable performance gap due to the climate uncertainty 

being dominated by the design solutions obtained using stochastic methods (Fig. 6. 17).  
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Fig. 6. 17: Performance gap due to the climate uncertainty. The gray line connecting B-DT-Sim, C-DT-Sim and D-DT-Sim 

shows the expected values of the objective functions after considering the uncertainty. The gray line is dominated by 

SO, SRO and SRO-EX Pareto fronts.   

6.5.2.3. Impact of extreme climate conditions 

Extreme climate conditions notably influence the reliability of energy systems. Both LOLP-SRO and 

LOLP-EXT present a better overview of the reliability of the system when moving from climate 

uncertainty to extreme climate events. LOLP-SRO averages the loss of load considering a horizon of 

one year (when evaluating the influence of extreme events) while LOLP-EXT averages the loss of load 

considering a time interval of two weeks, which moves through the entire year when computing 

LOLP and guarantees that maximum LOLP within the two-week time window is less than the 

constraint set. As a result, LOLP-EXT guarantees the smooth operation of the system in extreme 

conditions in a better way than LOLP-SRO. Furthermore, LOLP-EXT is more relevant in the context of 

extreme climate events since such events prevail for shorter periods of time. Both LOLP-SRO and 

LOLP-EXT are computed for Group 1 (Table 6. 2) and 2 (Table 6. 3). When analyzing Group 1, it is 

clear that a significant increase in LOLP can be observed. However, LOLP-Ext is kept below 1% when 

considering DT-Sim B to D. However, LOLP-EXT reaches 12% for SO-D, which is well below the 

expectations concerning power supply reliability. This clearly demonstrates that considering climate 

uncertainty using stochastic programing is not sufficient enough. In addition, it justifies the gap in 

NPV E-E in Fig. 6. 16.  LOLP-EXT values for Pareto solutions obtained using SRO (SRO-B-D) are below 

1% (although this violates the constraint set for LOLP as 0.1%). The results clearly show the 
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importance of combining robust and stochastic optimization methods in order to guarantee the 

robust operation under extreme climate conditions. Hence, neglecting extreme climate events will 

result in a major drop in power supply reliability. To maintain robust operation under extreme 

climate events, the proposed computational algorithm is therefore clearly significant. Finally, it can 

be stated that both, extreme climate events and the method used to assess the impact of extreme 

climate events (on the reliability), influence the objective function values and subsequently energy 

system design. 

Table 6. 2: Performance of the Pareto solutions obtained using deterministic models under climate uncertainty and 

extreme climate events   

 

Table 6. 3: Reliability and grid integration level of Set B-D (Group 2) at extreme climate events 

 

Extreme climate notably influences the design and operation of energy systems, which can clearly be 

observed when comparing the grid interaction levels during extreme (Table 6. 2 and 3) and normal 

climatic conditions (Table 6. 1). When considering Group 1 (deterministic models), a notable 

increase in GI is observed in DT since DE considers the extreme conditions as the usual operation 

conditions. Similar to DT, a notable increase is observed in Group 2 (stochastic models) when moving 

from the expected value of grid integration level to the grid integration levels during extreme 

climate events. The grid integration level increases (when catering extreme climate conditions) when 

moving from SRO-EX to SRO and subsequently into SO. For example, GI-EXT increases from 41% to 

 
Sim2-NPV Sim-GI 

Increase in 
NPV (%) 

Increase 
in GI (%) 

LOLP3-SRO 
(%) 

LOLP-EXT 
(%) GI4-Ext (%) 

DT-Sim-B 2.63 10.00 24.65 53.42 0.033 0.58 39.25 

DT-Sim-C 2.54 18.73 36.08 13.93 0.033 0.59 41.07 

DT-Sim-D 2.48 28.33 44.38 12.81 0.034 0.59 45.31 

DE-Sim-B 4.00 13.66 13.99 91.60 0 0.00 7.13 

DE-Sim-C 3.46 18.82 15.84 13.90 0 0.00 16.52 

DE-Sim-D 3.48 13.18 18.40 -45.40 0 0.00 24.14 
2Expected value considering the scenarios used for stochastic optimization 3LOLP considering extreme events, 4GI considering the conditions of extreme scenarios will prevail entire year 

 
 

 

 

LOLP3-SRO 
(%) 

LOLP-EXT 
(%) 

GI4-Ext 
(%) 

SO-B 0.03 0.58 39.48 

SO-C 0.07 0.63 47.08 

SO-D 2.75 11.91 57.28 

SRO-B 0.03 0.58 39.17 

SRO-C 0.05 0.59 46.78 

SRO-D 0.07 0.79 47.27 

SRO-EX-B 0.00 0.00 30.23 

SRO-EX-D 0.00 0.00 41.13 
3LOLP considering extreme events, 4GI considering the conditions of extreme scenarios will prevail entire year 
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47% and subsequently to 57% when moving from SO to SRO and subsequently SRO-EX when 

considering Set D. This is due to the fact that SO does not consider extreme events during the 

optimization process. Hence, the design solutions rely on the grid when catering the demand during 

extreme climate events since the ICG capacity is small. However, reliance on the grid gradually 

decreases when moving from SO to SRO and subsequently into SRO-EX. For example, the capacity of 

ICG increases respectively from 40 kVA to 60 kVA and subsequently to 80 kVA when moving from SO 

to SRO and finally to SRO-EX in Set D (Table 6. 1). A larger ICG capacity facilitates withstanding the 

fluctuations in demand and generation during extreme conditions. However, maintaining such 

flexibility adds an additional margin to the NPV when considering higher grid integration levels. 

Finally, it can be stated that both design and operation of the energy system play a vital role towards 

making energy systems robust in extreme climate conditions. A hybrid approach combining 

stochastic and robust programing methods (as proposed in this study) can facilitate the design of 

optimum energy systems considering both climate uncertainty and extreme climate events.     

6.6. Conclusions and future perspectives 

Climate change and the risk of more frequent and stronger extreme climate events demands for 

climate change adaptation and improving the climate resilience of energy infrastructure, which 

consists of two main steps:  

I. Quantifying the impacts of climate change, extreme conditions and uncertainties on energy 

demand and renewable energy generation.  

II. Designing the energy system considering changes in demand and renewable energy 

generation due to climate change. 

This chapter tries to combine both these aspects in an effective manner in order to support the 

energy system design process. A novel hybrid stochastic robust optimization algorithm is proposed 

in this chapter to consider both climate uncertainty and extreme climate conditions. Climate 

uncertainty is considered through the stochastic programing while extreme climate conditions are 

considered through robust analysis. Accordingly, scenarios are created to represent climate 

uncertainty and extreme climate conditions in energy system optimization using climate data from a 

regional climate model. 

From the comprehensive analysis on the demand profiles, it is found that synthesizing typical and 

extreme weather data sets based on the hourly distribution of the climate variables can better 

present the extreme climate conditions for the purpose of optimizing energy systems. Having larger 
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number of scenarios makes it possible to reflect extreme climate events through the scenarios used 

for stochastic optimization. However, the number of scenarios considered for stochastic 

optimization has to be limited considering the computational time. Hence, it becomes appropriate to 

consider climate uncertainty and extreme climate events in two different steps. Accordingly, the 

stochastic part of the optimization algorithm represents the climate uncertainty and the robust part 

represents the extreme climate events. 

 The energy system analysis reveals that climate uncertainty can cause a significant performance gap 

when using deterministic models to optimize energy systems. This will lead to a number of problems 

for the energy infrastructure that has already been developed using deterministic models. Hence, it 

is important to improve the climate resilience of existing energy infrastructure to withstand the 

climate uncertainties where the proposed novel computational algorithm can be used. Stochastic 

programing presents climate uncertainty in a much better way when compared to deterministic 

methods. However, stochastic programing alone cannot guarantee the robust operation of the 

energy system under extreme climate conditions. Hence, it is essential to come up with a hybrid 

approach combining stochastic and robust programing methods as proposed in this study. 

The results of the study reveal that a higher renewable energy fraction (above 40% of the annual 

demand) can be maintained while keeping stringent conditions for power supply reliability. Hence, 

making energy systems resilient to extreme climate events adds an additional margin to the NPV but 

it does not undermine the opportunities to integrate renewable energy technologies into distributed 

energy systems. This chapter does not consider the influence of urban climate when deriving the 

energy demand. It would be interesting to extend the computational platform introduced in this 

chapter to consider urban climate in the future since it can intensify the influence of extreme climate 

conditions. 
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7 From Stochastic Optimization to 
Flexibility of Energy Systems 
 

The flexibility of energy system has been widely taken into discussion recently focusing on the 

operation of the energy system. However, in order to improve the performance of energy systems 

under the uncertainties of renewable energy potential, demand and grid conditions it is important to 

consider their flexibility already at the early design stage. This requires an extension to the present 

methodologies used to evaluate energy system flexibility (often focused on operation of the energy 

system) and optimization methods used (often based on deterministic methods). A novel method is 

introduced in this chapter to evaluate flexibility which considers multiple criteria under different 

operating scenarios using fuzzy logic. GPU (Graphics Processing Unit)-accelerated computing is 

introduced to speed up the computation process when computing the expected values of the 

objective functions considering a pool up to 5832 scenarios. Subsequently, a Pareto optimization is 

conducted considering Net Present Value (NPV), Grid Integration (GI) level and system flexibility. 

This chapter is based on (preprint version): 

A.T.D. Perera, Vahid Nik, P.U. Wickramasinghe, Jean-Louis Scartezzini, “Redefining energy system 

flexibility for designing distributed energy system” (Manuscript under review in Applied Energy) 
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7.1. Introduction 

Integrating non-dispatchable energy technologies such as wind and solar PV (SPV) energy is essential 

to decarbonize the grid;  these technologies are variable due to the fluctuating nature of the energy 

potential. Hence, it is difficult to improve the contribution of solar and wind energy beyond a certain 

limit while maintaining power quality and reliability of the grid. According to Sansavini et al. [1], 

direct replacement of dispatchable energy sources by Variable Renewable Energy (VRE) may lead to 

cascade failures in the grid, resulting in blackouts. Detail assessment of power grids conducted  by 

Ueckerdt et al. [2] suggests that it is challenging to cover more than 30-35% of the annual demand 

using VRE without a notable improvement in the present status of the grid. Recently, the National 

Renewable Energy Laboratory (NREL) - USA showed that VRE can be increased by up to 30% in the 

Eastern Grid of United States — one of the largest power systems in the world — through 

improvement of the grid flexibility [3]. Although integrating renewable energy into the existing 

energy infrastructure is vital, direct integration of VRE technologies will lead to several problems. 

Hence, the flexibility of existing energy infrastructures should be improved in order to facilitate the 

large scale integration of renewable energy while keeping existing energy infrastructures reliable.   

The flexibility of engineering systems has been discussed for more than three decades, in a wide 

spectrum of areas such as manufacturing [4]–[6], transportation [7]–[9], energy, etc. Flexibility is 

defined as the adaptability of a system to a range of possible environments that it may encounter [5]; 

this includes both internal and external factors [10]. When moving into energy infrastructure, 

flexibility has been defined in different ways, focusing on different aspects. The definition of system 

flexibility has been very specific in certain instances, focused on certain aspects [11]. Furthermore, it 

has been defined considering different temporal resolutions starting from the level of micro seconds 

to months [12]. Referring to the recent literature, e.g. Alizadeh et al. [13], it can be concluded that 

flexibility does not have a general definition: the definition highly depends on the characteristics of 

the systems. In general, the recent literature on energy system flexibility can be classified into three 

groups: flexibility of i) generation, ii) distribution and iii) demand [14,15]. Lund et al. [16] highlight 

that generation flexibility from the perspective of energy systems, such as smart grids [17,18], micro-

grids and energy hubs [19,20], plays a vital role when improving the contribution of distributed 

renewable energy technologies.  

Flexibility of energy systems has been discussed in several recent studies focusing on renewable 

energy integration. Sensitivity of thermal storage [17]–[20] , vehicle to grid (V2G) [25–27], 

dispatchable sources [12,28] and demand flexibility [29–31] with regard to renewable energy 

integration are some of the considered areas. A number of different methods have been introduced 

in these studies to quantify the flexibility and to assess the energy system in order to evaluate the 
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potential of integrating renewable energy sources [32]. For example, Ulbig and Anderson [33] 

considered power provision capacity, power ramp-rate capacity, energy provision capacity and ramp 

duration as performance indicators in flexibility evaluations. By contrast, Nuytten et-al [22] defines 

flexibility as the capability of the installation to change the use of energy demand over time. Most of 

these definitions are based on very specific technical indicators; however, there are a few definitions 

focusing on a broader set of performance indicators, to present energy flexibility combined with 

multi-criterion decision making [13]. Among them, Oree and Hassen [34] use a multi-criterion 

decision-making method to quantify flexibility. Hence, it is clear that flexibility of the energy system 

has been defined in different ways to cater the requirements of given applications.  

7.1.1. Research gaps in the present state of art 

When moving into energy hubs, virtual power plants and smart micro grids, the uncertainty of a 

number of different aspects, such as renewable energy potential, demand and grid condition (price, 

curtailments for selling and purchasing etc.) needs to be considered. A complex optimization 

problem [12] is formulated when trying to optimize the design of the energy system [35] considering 

these uncertainties. As a result, substantial computational resources are required to achieve this 

task. Keeping aside the stochastic components, design optimization of the energy hub for a 

deterministic problem formulation may even take several days [36]. Hence, the majority of recent 

publications on energy system flexibility focus on their operation without addressing design aspects 

[13,32]. According to Kondziella and Bruckner [32], considering both system design and operation is 

vital when evaluating flexibility. Hence, computational algorithms that can optimize an energy 

system considering its flexibility within a reasonable computational time, while accommodating a 

number of different scenarios to represent the uncertainties in demand, generation and grid would 

clearly show promising directions to integrate more VRE sources while guaranteeing robust 

operation although not considered so far in present state of art.  

Uncertainties in the external environment may lead to performance degradation in energy systems. 

Higher flexibility implies that the system can withstand changes in external environment with a 

minimum degradation on its performance indicators in long term. However, the terms ‘performance’ 

and ‘degradation’ are quite open ended and might extensively depend on the application, which 

makes it is difficult to quantify the impact of performance change. Furthermore, multiple 

performance indicators should be considered in this context. These aspects have not been 

considered in the literature with respect to energy system design [16].  Hence, the flexibility concept 

needs to be re-introduced to match with the requirements of the energy system designing problem. 

This will enable us to design energy systems which are resilient to external changes, especially during 

the renewable energy integration process. 
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7.1.2. Objectives of the chapter 

The following three objectives have been defined in order to address the research gaps in preset 

state of art (see Section 7. 1.1.): 

• Combine the energy system flexibility concept with scenarios considered for stochastic 

optimization;  

• Redefine energy system flexibility to accommodate multiple criteria and preferences of the 

energy system designer.  

• Improve computational algorithms to support energy system design considering 

uncertainties due to several external factors. 

These three objectives are closely connected to each other. In addition, the chapter focuses on 

deriving optimum ways to integrate renewable energy technologies while maintaining the flexibility 

of the system Fuzzy logic is used to quantify the impact of performance degradation due to the 

uncertainties in the external environment (renewable energy potential, demand and grid conditions). 

Introducing fuzzy logic helps to understand the subjective inputs of the stake holders when quantify 

flexibility considering multiple criterions. Based on that, the flexibility of an energy system is defined 

considering multiple attributes as described in detail in Section 7.3. A novel accelerated computing 

algorithm based on a Graphics Processing Unit (GPU) is introduced for the first time in energy related 

design optimization. GPU computing allows large scale parallelization enabling it to compute the 

objective function values for a pool of scenarios considered in the stochastic optimization. As a 

result, computation time of the objective function evaluation reduces significantly while making it 

possible to evaluate a large pool of scenarios and used along with heuristic algorithms. A detailed 

description of the novel computational algorithm is presented in Section 7. 4. Subsequently, the 

flexibility of distributed energy systems at different grid integration levels is assessed in Section 7. 5, 

using a Pareto set obtained considering Net Present Value (NPV) and grid integration level (GI) as 

objective functions. Finally, promising directions for the integration of renewable energy 

technologies while maintaining system flexibility are discussed under Conclusions and future 

perspectives.  

7.2. Overview of the energy hub and the scenarios for energy system simulation 

A brief overview of the energy system and the scenarios considered for the stochastic optimization is 

presented in this section.  

7.2.1. Outline of the energy hub 

This chapter investigates design options for a multi energy hub [37,38] that caters the heating and 

electricity demand of residential urban areas in Lund, Sweden, simulated by modelling a certain 
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number of statistically representative buildings. The multi-energy hub consists of wind turbines, SPV 

panels, a battery bank and an Internal Combustion Generator (ICG); it is operating in grid connected 

mode. We assume that the heating demand of the neighborhood is catered using heat pumps; 

therefore, heating demand is converted to electricity and considered as part of the total electricity 

demand as presented in Fig. 7.1. Grid curtailments are introduced when selling and purchasing 

electricity from the grid. A time-of-use (TOU) pricing scheme is introduced when pricing electricity. 

Hourly time series of wind speed, solar irradiation and energy demand are used considering several 

scenarios as described under Section 7. 3. Similarly, scenarios are considered for grid curtailments for 

both purchasing and selling electricity to and from the grid.  

 

Fig. 7. 1: Overview of the grid integrated energy hub 

7.2.2. Scenarios for energy demand and generation for stochastic optimization 

Several probabilistic scenarios representing the conditions in the grid (price of electricity and grid 

curtailments), energy demand and renewable energy generation are created in this work, 

considering a typical urban area in Lund (a major city in southern Sweden with oceanic climate). The 

energy demand of 40 statistically representative residential buildings was simulated in the Simulink 

toolbox of Matlab [39] [40] for the 30-year time span of 1976-2005 and the RCA3-ERA40 climate 

scenario. ERA40 is a reanalysis-driven simulation of climatic conditions, constituting a realistic 

description of the state of the atmosphere and representing the real conditions with a high accuracy 

(for more details on the considered energy and climate models, the reader is referred to [39] [40]). 

The 30-year energy demand and renewable generation potentials were mapped as one-year 

probability distributions. Based on these probability distributions, scenarios for wind energy and 
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solar energy potential are taken for stochastic optimization and subsequently to evaluate flexibility 

(Fig. 2).  

Forty (40) buildings were selected out of 52 buildings which represent the residential building stock 

in Lund, according to the BETSI investigation by the Swedish National Board of Housing, Building and 

Planning (Boverket) in year 2009 [41], which is the major source of information for the energy 

performance of residential buildings in Sweden. The Simulink model is used for simulating the energy 

performance of buildings separately, on an hourly time scale. The model takes into account the 

energy needed for heating, cooling, hot water, and fans and considers if the building has a heat 

recovery system. The model and its results have been verified and used in previous works of the 

authors (e.g. [39] [40]). Such detailed information is not available for grid curtailments and grid 

prices, therefore three different scenarios were considered, each based on [19] and [42] respectively. 

Since retrofitting buildings affects their energy performance, a retrofitting approach including four 

retrofitting measures was applied to the considered buildings to investigate how the changes on the 

demand-side effects, and hopefully helps the performance of the urban energy system. The applied 

retrofitting measures include increasing the insulation of cellar/basement, facades and attics/roofs 

and replacing windows with more thermally efficient windows. According to a previous study, 

applying these four retrofitting measures together and considering the hourly energy demand of 

buildings. Considering the fact that Lund is a heating dominated city, heating demand will decrease 

on average while cooling demand will increase during warm summer days due higher insulation. The 

retrofitting strategies and their performance for current and future climate have been thoroughly 

investigated in the previous works of the authors [43] [44]. 

   

Fig. 7. 2: Moving average of the hourly time series of expected values for wind speed, global radiation and energy 

demand, considering five probability values.  

7.3. Overview of the computational model   

The computational model used to present the energy flow of the energy system and dispatch 

strategy is briefly presented in Sections 7.3.1 and 7.3.2. The energy flow model evaluates the power 
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generation within the system components and the interactions with the grid. This includes the power 

generation using renewable energy technologies, ICG and energy interactions that are taking place 

with grid and energy storage when catering the energy demand. The formulation of objective 

functions and constraints for the Pareto optimization are presented in Section 7. 3.3.  

7.3.1. Outline of the dispatch strategy  

The dispatch strategy used in this study consists of two levels as shown in Fig. 7. 3. The first level 

consists of a fuzzy logic based controller which determines the operating load factor of the ICG. Fuzzy 

logic has been amply used in dispatch optimization of hybrid energy systems [49–52] being one of 

the most promising methods for implementing energy management strategies in hybrid energy 

systems [53].  The operating load factor of the ICG is determined based on the State of Charge (SOC) 

of the battery bank, the difference in Electric Load Demand (ELD) (following the conversion of 

thermal demand into electricity) and power generation using renewable energy sources. After 

computing the power generation using the ICG, the net power generation within the system is 

computed. This is inserted in the second stage of the dispatch strategy which evaluates the 

interactions with the battery bank and grid. The finite automata theory is used in the second stage of 

the dispatch strategy. The nomenclature used for the dispatch strategy is presented in Table 7.1. The 

reduced state space for the second stage of the dispatch strategy is presented in Table 7.2. Fuzzy 

rules for the fuzzy controller (wij) and state transition points for the secondary level controller are 

optimized using the optimization algorithm. An extended explanation of the dispatch strategy can be 

found in Ref. [19]. 

Energy 
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SPV and wind power generation

COE in MTG

ELD

Charging/discharging battery 
bank

Operating load factor of ICG
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Fig. 7. 3: Outline of the dispatch strategy  

 

 



171 
 

Table 7. 1: Decision space variables used for formulating the state transfer function   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Description 

D
ec

is
io

n 
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va
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bl
e 

LimBC Critical cost for  GCTt,s above which selling the excess power generated to the grid 
is economical compared to battery charging 

LimBD Critical cost for  GCFt,s below which purchasing power from grid 
is economical compared to battery discharging 

LimGTB Critical cost for GCFt,s below which purchasing power from grid to charge battery 
bank is economical 

LimBTG Critical cost for  GCTt,s above which selling stored energy to grid is economical 

SOCmin Critical SOC of the battery bank below which discharging is not economical to 

cater the load mismatch 

SOCMin,G  Critical SOC of the battery bank below which it is not economical to discharge 

and/or to sell the stored energy to grid 

SOCSet Maximum state of charged to be reached when charging the battery bank using the 

grid  

O
th

er
 

pa
ra

m
et

er
s 

GCT Price of electricity when selling to grid 

GCF Price of electricity when purchasing from grid 

COE Cost of Energy 

MTG Main distribution grid 
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Table 7. 2: Operating states for the secondary level of the dispatch strategy 

 

7.3.2 Flexibility 

There are a number of instances where the system flexibility is defined in different ways within the 

same field [5,10,61]. For instance, according to Cheng et-al [62], manufacturing flexibility is defined 

in different ways, such as  the ability to respond effectively to changing circumstances, the capacity 

for taking new action to meet new circumstances, the capacity to continue functioning effectively 

despite changes in the environment etc. Similarly, a number of definitions can be found for system 

flexibility in the energy sector [13]. System flexibility has often been discussed related to renewable 

energy integration from the perspective of power system operation [16]. However, most of the 

studies focus on resilience of the system rather than flexibility (since flexibility is defined as the 

capability of the system to meet the changes during the operation with a minimum impact on its 

performance indicators in the broad sense).  

State Description of the state Condition of the battery bank Grid interaction COE in Grid 

State 1 Excess power is generated and COE in MTG is 

higher enough to sell excess power generated 

instead of battery charging 

Self-discharge Excess power generated is 

transferred to grid 

GCTt,s > LimBC 

and 

GCTt,s < LimBTG 

State 2 Excess power generated is directed to the grid 

and battery bank discharge 

Battery bank can be discharge up 

to SOCMin,G 

Power can be directed to 

the grid up to PTG-Lim 

depending on excess 

generation 

GCTt,s > LimBC and 

GCTt,s > LimBTG 

State 3 Excess power generated is directed to the 

battery bank 

Battery bank can be charged up to 

maximum SOC 

No interactions  GCTt,s < LimBC 

and 

GCFt,s >LimGTB 

State 4 Excess power generated is directed to the 

battery bank and further charged using  

Battery bank is charged using 

excess renewable energy and grid  

Power from grid to charge 

battery bank 

GCTt,s < LimBC and 

GCFt,s < LimGTB 

State 5 Excess power generated is larger than the 

maximal transferable, it needs to be dumped, 

which will produce waste of renewable energy 

(WRE). 

Battery bank reaches maximum 

state of charge  

Power is directed to the 

grid up to PTG-Lim 

At any condition 

State 6 Mismatch in demand and generation taken from 

the grid 

Self-discharge Mismatch is catered GCFt,s < LimBD and 

GCFt,s > LimGTB 

State 7 Mismatch is taken from the grid while charging 

the battery bank 

Battery bank is charged up to 

SOCSet using the grid 

Power taken from the grid 

to charge the battery bank  

GCFt,s < LimBD and 

GCFt,s < LimGTB 

State 8 Mismatch is taken from the battery bank Battery bank can be discharged up 

to SOCmin 

No interactions GCFt,s >LimBD and 

GCTt,s < LimBTG 

State 9 Mismatch is taken from the battery bank and 

excess in the battery bank is injected to the grid  

Battery bank can be discharged up 

to SOCMin,G 

Power to the grid from 

battery bank 

GCFt,s >LimBD and 

GCTt,s > LimBTG 

State 10 Mismatch is greater than the maximum that can 

be taken combining battery bank and grid. Loss 

of power supply will take place in this case 

Battery bank reaches the 

minimum state of charge  

Maximum limit that can 

be taken from the grid 

At any condition 
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Aligned with the general definition used for flexibility, this chapter introduces flexibility of the 

energy system as the capacity of the system to resist performance degradation due to changes in 

the external environment. However, the terms ‘performance’ and ‘degradation’ are quite open 

ended and might extensively depend on the application. In general, multiple criteria are used to 

evaluate the performance of energy systems (although rarely considered under the aspect of 

flexibility). In this chapter, six performance indicators are considered when evaluating flexibility. 

These are  

• NPV 

• Waste of Renewable Energy (WRE) 

• loss of load probability GI 

• NI 

• fuel consumption of the generator 

 According to Perera et-al [54], these performance indicators provide a better overview of the 

performance of the energy system. The process of computing the system flexibility consists of six 

steps as presented in Fig. 7. 4: 

Step 1: The process begins with defining the scenarios for the stochastic optimization. These 

scenarios will represent the uncertainties. The scenarios considered for stochastic optimization are 

considered to evaluate the flexibility. A detailed description of the formulation of the scenarios is 

presented in Section 7. 2.2. 

Step 2: The values for the performance indicators such as NPV, GI etc are computed for each scenario 

based on the time series simulation. 
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Step 3: The next challenge is to evaluate the performance change for each indicator. Degradation 

should be measured with respect to a reference value. When using stochastic programming, the 

expected value of the performance indicator can be used as the reference value (RP). Performance 

change (PC) for a specific indicator for a given scenario (PCP,S) can be calculated according to Eq. 7. 1, 

where CI is the value of the pth criterion for scenario s:  

, ,( ) / ,p s p p s pPC R CI R p Pand P n s and m= − ∀ ∈ = ∀ ∈Ω Ω =                          (7.1) 

For minimization objectives (a specific criterion that the system designer tries to minimize, such as 

cost, loss of load probability etc.), Performance Degradation (PD) is greater than zero whenever PC is 

less than zero, and vice versa for maximization objectives. 

For example, performance change for NPV is computed for scenario‘s’ ( s∀ ∈Ω ) according to Eq. 7. 2. 

( ) ( ), ( ) /NPV s SPC NPV NPV NPV s= − ∀ ∈Ω/� /�                     (7.2) 

Step 4: Performance changes are unavoidable due to the changes in the external environment. The 

main difficulty in this process is to evaluate the Impact of Performance Degradation (IPD) from the 

perspective of the stakeholder. IPD is highly dependent on the specific performance indicator and 

the application. For instance, a 15% reduction with respect to the reference value might be 

acceptable for renewable energy utilization but not for the system reliability or NPV. Furthermore, it 

is difficult to directly quantify the IPD depending on the performance change due to ambiguity. This 

is related to the fact that in most of the instances stakeholders use subjective measures such as 

acceptable, marginally acceptable, inadequate and poor instead of precisely quantified values. For 

example, a stakeholder might say that performance degradation is acceptable for the NPV if it is 

within 5%. But the quantitative IPD value for a performance change of 4% (for the same performance 

indicator) cannot be obtained using such a qualitative description. Fuzzy-logic can be used in such 

instances to quantify the IPD combining subjective inputs from system designers and the quantitative 

(objective) changes obtained for different scenarios [63].  

Four classes are defined (i.e. acceptable, marginally acceptable, poor, not acceptable) for each 

performance indicator, based on the PD value (Table 7.3). Subsequently, triangular fuzzy numbers 

are used to represent each class. Based on that, the IPD is calculated for each criterion using a scale 

of 0 to 2. However, it is important to map the impact of performance degradation of different criteria 

into a single performance indicator. The procedure followed in Fuzzy TOPSIS to form a single 

performance indicator based on several criteria with fuzzy values is used in this chapter. 

Classification of four classes and the weights for different performance indicators are obtained based 

on Ref. [54]. 



176 
 

The fuzzy performance degradation matrix (XPD) is developed considering all the criteria under each 

scenario as the next step (using a linguistic rating for the other criteria similar to NPV as presented in 

Table 7.3) according to Eq. 7. 3. 

11 1

1

,
n

PD

m mn m n

x x
CriteriaX p Pand P n s and m

Scenario
x x

×

 
→ = ∀ ∈ = ∀ ∈Ω Ω =  ↓ 

 



  



   (7.3) 

Step 5: A weighted performance degradation matrix XWPD is computed according to Eq. 7.4 in order 

to map all the different ideas into a single indicator. A weighting matrix (Wp = (w1, w2…wn)) is used to 

define the relative importance of each criterion.  
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   (7.4) 

In this equation,  ij j ijx w x= × . 

Expected value of IPD ( ( )IPD/ ) is computed using Eq. 7. 5. 

( ) s s p
s p P

IPD xψ∀ ∈Ω
∀ ∈Ω ∀ ∈

= ∑ ∑/          (7.5) 

The sensitivity of the weight matrix is discussed in detail under Section 7. 5.3. Finally, flexibility of the 

system is defined using EIPD according to Eq. 7.6, extending the concept used in Fuzzy TOPSIS to 

arrive at the coefficient of closure. 

)(1
1
IPD

yFlexibilit
/+

=          (7.6) 

Table 7. 3: Performance degradation, linguistic rating and triangular fuzzy numbers to present IPD considering for NPV 

[54,64] 

 

 

Performance degradation Linguistic rating Triangular fuzzy number to 
present IPD 

(0, 0, 5%) Acceptable (0,0,0.5) 

(5%, 10%, 15%) Marginally acceptable (0.5,1,1.2) 

(10%, 15%, 20%) Poor (1,1.2,1.5) 

(15%, 20%,[max]) Not acceptable (1.2,1.5,2) 
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7.4. Computational algorithm for optimization and performance analysis 

Design optimization of distributed energy systems has been amply discussed in recent literature and 

reviewed in Ref. [65,66]. Heuristic algorithms such as particle swarm, simulated annealing and 

evolutionary algorithms are used to optimize distributed energy hubs due to the complexity of the 

objective functions [67]. The computational time to reach an optimum solution is however quite high 

when using heuristic algorithms since they require repetitive evaluation of the objective function(s). 

This is one major drawback in the use of heuristic methods for simulation-based optimization 

problems. Stochastic optimization can prolong the optimization process even further since several 

simulations are required to present different scenarios when computing the expected values of the 

objective functions. For this reason heuristic methods have become less popular for stochastic 

optimization problems. In order to address the problem, Graphical Processing Unit (GPU) accelerated 

computing is used in this chapter.  

Given a sequence of data to process, The Central Processing Unit (CPU) will take one item from the 

sequence, process it and move to the next item in the list to process.  For example, consider the 

execution of a ‘for loop’. The CPU processes the data corresponding to the iteration index at each 

iteration. In certain instances, the data items in a sequence that is being processed are independent 

from each other. This means processing the ith item in a sequence does not require waiting for inputs 

from the data at the (i-1)th position in the sequence. However, given the sequential nature of the CPU 

processing, the ith item has to wait till (i-1) finishes processing. A GPU (Graphical Processing Unit) 

becomes useful in such instances. GPU is a collection of hundreds (or sometimes thousands) of CPUs. 

As a result, when there is a sequence of data, the steps are independent from each other, and the 

GPU can execute the processes in parallel, which significantly reduces the computational time. In 

GPU programming, each GPU is used along with a Central Processing Unit (CPU), which enables large 

scale parallelization of the computational program [68]. Therefore, a number of different threads can 

be run simultaneously. This method is amply used in such diverse applications as image recognition, 

computer gaming, molecular dynamics etc. [68]. It is introduced as a promising method to increase 

the computational speed of evolutionary algorithms in the literature [69,70].    

7.4.1. Outline of the computational algorithm 

The computational algorithm consists of two main parts: the first part evaluates the objective 

function values and the second part derives the Pareto front based on the objective function values. 

Both parts are computed using CPU (as shown in Fig. 7. 5) in the case of deterministic optimization 

problems (which is discussed in detail in Section 7. 4.2). Large-scale parallelization of the computer 

algorithm is feasible when using the GPU. Hence, it can be productively used to evaluate the 

performance indicators for different scenarios. The scenarios are subsequently used to compute the 



178 
 

expected values of the objective functions when conducting stochastic optimization. After computing 

the objective function values, CPU can be used to complete the steps in the optimization algorithm 

as shown in Fig. 7. 5.  

Decision space variables are those corresponding to the energy system design and dispatch strategy:  

• Type and capacity of the wind turbines and SPV panels, which represent renewable energy 

components.  

• ICG and battery bank capacities, which represent dispatchable source and energy storage.  

• Weight matrix, which represents fuzzy logic rules. 

• State transition points as presented in Table 7.2.  

Net present value of the system, grid integration level and system flexibility are considered as 

objective functions (as explained in Section 7. 3.3). Loss of load probability is considered as a 

constraint and maintained below 2%. A Steady ε-State Evolutionary Algorithm [71], based on the ε-

dominance technique, was accordingly used in this study to conduct the optimization process. A 

detailed description of the decision space variables and operators used for optimization can be found 

in Ref.  [19,72]. 



17
9 

 

Re
pr

od
uc

tio
n 

of
 P

op
ul

at
io

n 
(C

ro
ss

ov
er

 a
nd

 M
ut

at
io

n )

Sy
st

em
 S

im
ul

at
io

n

Ev
al

ua
te

1)
 O

bj
ec

tiv
e 

Fu
nc

tio
ns

• 
LE

C
•  

G
rid

 In
te

ra
ct

io
ns

2 )
 C

on
st

ra
in

ts
 V

io
la

tio
n 

•  
U

nm
et

 lo
ad

 fr
ac

tio
n 

U
pd

at
e 

Po
pu

la
tio

n

U
pd

at
e 

Ar
ch

iv
e

G
en

er
at

io
n 

of
 in

iti
al

 
po

pu
la

tio
n

St
op

Ch
ec

k 
no

 o
f 

G
en

er
at

io
ns

 
Ac

hi
ev

ed
?

Ho
ur

ly
 R

en
ew

ab
le

 
En

er
gy

 P
ot

en
tia

l

Ho
ur

ly
 E

le
ct

ric
ity

 
Lo

ad
 D

em
an

d

In
iti

al
iz

e 
th

e 
A r

ch
iv

e

Se
le

ct
in

g 
M

em
be

rs
 fr

om
 

Ar
ch

av
e 

an
d 

Po
pu

la
tio

n

Re
al

 ti
m

e 
pr

ic
e 

in
 

gr
id

St
ar

t

Re
pr

od
uc

tio
n 

of
 P

op
ul

at
io

n 
(C

ro
ss

ov
er

 a
nd

 M
ut

at
io

n)

U
pd

at
e 

Po
pu

la
tio

n

U
pd

at
e 

Ar
ch

iv
e

G
en

er
at

io
n 

of
 in

iti
al

 
po

pu
la

tio
n

St
op

Ch
ec

k 
no

 o
f 

G
en

er
at

io
ns

 
Ac

hi
ev

ed
?

In
iti

al
iz

e 
th

e 
Ar

ch
iv

e

Se
le

ct
in

g 
M

em
be

rs
 fr

om
 

Ar
ch

av
e 

an
d 

Po
pu

la
tio

n

St
ar

t

Sy
st

em
 S

im
ul

at
io

n

Ev
al

ua
te

1 )
 O

bj
ec

tiv
e 

Fu
nc

tio
ns

•  
LE

C
• 

G
rid

 In
te

ra
ct

io
ns

2)
 C

on
st

ra
in

ts
 V

io
la

tio
n 

•  
U

nm
et

 lo
ad

 fr
ac

tio
n 

Ho
ur

ly
 R

en
ew

ab
le

 
En

er
gy

 P
ot

en
tia

l

Re
al

 ti
m

e 
pr

ic
e 

in
 

gr
id

Re
al

 ti
m

e 
pr

ic
e 

in
 

gr
id

Di
ff

er
en

t s
ce

na
rio

s c
or

re
sp

on
di

ng
 to

 
re

ne
w

ab
le

 e
ne

rg
y 

po
te

nt
ia

l

Di
ff

er
en

t 
sc

en
ar

io
s 

co
rr

es
po

nd
in

g 
to

 d
em

an
d

Co
m

pu
ta

tio
n 

do
ne

 in
 C

PU
Co

m
pu

ta
tio

n 
do

ne
 in

 C
PU

Co
m

pu
ta

tio
n 

do
ne

 in
 G

PU

O
bj

ec
tiv

e 
fu

nc
tio

n 
ev

al
ua

tio
n

O
pt

im
iz

at
io

n 
al

go
rit

hm

De
te

rm
in

is
tic

 m
od

el
 o

pt
im

iz
ed

 u
si

ng
 C

PU
St

oc
ha

st
ic

 m
od

el
 o

pt
im

iz
ed

 u
si

ng
 b

ot
h 

CP
U

 a
nd

 G
PU

 

Fi
g.

 7
. 5

: C
om

pa
ris

on
 o

f t
he

 tw
o 

al
go

rit
hm

s u
se

d 
to

 o
pt

im
iz

e 
di

st
rib

ut
ed

 e
ne

rg
y 

sy
st

em
s c

on
si

de
rin

g 
a 

de
te

rm
in

is
tic

 m
od

el
 (p

re
se

nt
 p

ra
ct

ic
e)

 a
nd

 a
 st

oc
ha

st
ic

 m
od

el
 (i

nt
ro

du
ce

d 
in

 th
is

 

ch
ap

te
r)

. T
he

 fl
ow

ch
ar

t o
n 

th
e 

le
ft

 p
re

se
nt

s t
he

 c
om

m
on

ly
 u

se
d 

ap
pr

oa
ch

 (o
nl

y)
 u

si
ng

 th
e 

CP
U

 w
hi

le
 th

e 
on

e 
on

 th
e 

rig
ht

 p
re

se
nt

s t
he

 p
ro

po
se

d 
no

ve
l a

pp
ro

ac
h.

  



180 
 

7.4.2. Performance assessment and sensitivity to the number of scenarios  

A brief overview of the sensitivity of the number of considered scenarios to computational time and 

accuracy is discussed using a NPV-GI Pareto front in this section (since it is used to evaluate the 

flexibility of energy systems in Section 7. 5). Increasing the number of scenarios used for the 

stochastic optimization will improve the accuracy while increasing the computational time [73]. At 

the same time, the number of objective functions and their nature (whether it formulate course 

objective space with many local optima’s) will influence the number of generations required to 

converge towards the true Pareto front [74].  

Pareto optimization is conducted considering NPV and GI as objective functions taking 729, 1728, 

3375 and 5835 scenarios named as L, M, N and O respectively. The stochastic nature of wind speed, 

solar irradiation, energy demand, price of grid electricity and grid curtailments is considered when 

developing the scenarios. However, the number of scenarios used to present price of grid electricity 

and grid curtailments was kept constant when moving from L to O (only the number of scenarios for 

solar irradiation, wind speed and energy demand was increased). Pareto fronts obtained for the four 

cases are presented in Fig. 7. 6. 
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Fig. 7. 6: NPV-GI Pareto front obtained considering 729, 1728, 3375 and 5835 scenarios 

It is a known fact that a higher number of scenarios results in better accuracy. In this specific case, a 

lower NPV is observed when increasing the number of scenarios (this specific aspect is discussed in 

Section 7. 5.1). When moving from Case L to M (729 to 1728 scenarios), a significant difference in 
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Pareto solutions can be observed. The difference between the Pareto fronts gradually decreases 

when moving from Case M to N and subsequently to Case O. The results of the Pareto optimization 

tend to converge when increasing the number of scenarios, which is trivial in stochastic optimization 

problems.  Although increasing the number of scenarios will help to come up with a more accurate 

Pareto front, it results in increasing computational time (as shown in Fig. 7. 7). It is interesting to 

assess the improvement in computational time due to the introduction of GPU compared to using 

the CPU. Such a comparison is challenging since the stochastic optimization algorithm introduced in 

this study is using both CPU and GPU while the deterministic model is using only the CPU.  

Total computational time (TTot) is the sum of the time taken for simulation (TSim) and optimization 

(TOpt) as indicated in Eq. 7. 7 (all in seconds):  

SimOptTot TTT +=                         (7.7) 

TOpt is quite low when compared to TSim, considering the stochastic model used in the GPU 

computation. For the same reason, computational time increases linearly with the number of 

scenarios (Fig. 7. 7). This makes it possible to approximate TTot as TSim. Based on this assumption, 

increasing the number of scenarios in CPU will result in a linear increase in computational time 

assuming sequential processing. Therefore, the ratio of CPU time to GPU time (RCPU/GPU) can be 

approximated according to Eq. 7.8 

GPUCPU
Tot

Scenarios
CPU

Tot
GPUCPU T

NTR +=/                        (7.8) 
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Fig. 7. 7: Impact of increasing the number of scenarios on computational time (obtain NPV-GI Pareto after 20000 

generations) and performance improvement when using the GPU. The algorithm is implemented using Visual C++ (Visual 
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Studio 2015) and CUDA 7.5. The computational time is for a system with GeForce GTX 960 graphics card and an Intel(R) 

Core(TM) i7-6700-3.40GHz CPU.    

The RCPU/GPU values for different numbers of scenarios, as presented in Fig. 7. 7, vary within the range 

of 30 to 40. This indicates that a 30 to 40-fold increase in processing speed can be obtained when 

introducing GPU. However, we need to understand that RCPU/GPU values present the maximum 

improvement that we can achieve. In practical problems this can be lower due to a higher ratio 

between TOpt and TSim when using the CPU compared to the GPU. 

7.5. Results and discussion 

The challenge addressed in this study is to assess distributed energy systems considering techno-

economic and environmental aspects. In the first part of this section, we use autonomy level and 

lifecycle costs of the system as the two main indicators for the assessment. Pareto optimization is 

conducted initially considering NPV and GI level to evaluate the system. However, it is more 

appropriate to conduct the assessment considering system flexibility under external uncertainties, 

such as changes in renewable energy potential, demand, grid condition etc. Therefore, the 

performance of the obtained Pareto design solutions is assessed under the uncertainty of demand, 

renewable energy potential and grid conditions to quantify the flexibility of the system. Promising 

paths to improve energy system flexibility are evaluated in the second part of this section. Pareto 

optimization is conducted considering NPV, GI and flexibility as objective functions and the obtained 

solutions are assessed using techno-economic factors to get a broad overview of the system 

flexibility.  

 7.5.1. 2D Pareto front considering NPV-GI 

Improving the autonomy level of distributed energy systems and minimizing the lifecycle cost are 

two conflicting objectives, which are difficult to optimize simultaneously. The autonomy level of the 

system is directly related with the onsite generation. There are many instances where power 

generation using non-dispatchable energy sources (such as solar PV and wind) becomes economically 

viable compared to power generation using dispatchable source and grids at the scale of energy 

hubs. However, combining energy storage and dispatchable sources with non-dispatchable 

renewable energy technologies in order to maintain higher autonomy levels adds additional cost to 

the system. On the other hand, allowing more interactions with the grid while using it as a virtual 

storage is an economical option from the energy hub perspective. However, this is not beneficial 

when considering grid stability. These conflicting observations make the design process of energy 

hubs difficult, especially considering the possible changes that could occur in renewable energy 

potential, demand, grid price etc., which cannot be comprehensively evaluated based on a 

deterministic model. 



183 
 

Pareto solutions of LEC and GI present all the non-dominant solutions when considering the two 

objectives. Pareto front results obtained considering these objective functions are presented in Fig. 

7. 8 along with the flexibility. When analyzing the Pareto front, it is prudent that NPV increases when 

the autonomy level of the system is improved. The increase of NPV is significant when attaining grid 

interaction levels below 10% since the system is approaching the condition of a stand-alone energy 

system where all the fluctuations in demand and generation will be handled by the energy system. 

Fig. 7. 8 (a) presents the expected values of the objective functions. However, the objective function 

values can notably change in different scenarios due to the uncertainties discussed before.  

It is interesting to assess the impact of building retrofitting where demand profile shifted providing a 

higher flexibility from the demand side.  Towards achieving this objective, Pareto optimization is 

conducted considering the same objectives Fig. 7. 8 (b) presents the comparison of Pareto fronts 

obtained considering present building stock and the retrofitting scenario. However, conducting such 

a comparison is challenging due to the changes in demand profile and flexibility introduced as a 

consequence of building renovation. Hence, flexibility of the energy system is considered as a 

constraint when conducting the optimization of the energy system. Furthermore, both objective 

functions are normalized according to [75], in order to support further comparison (8 (b). When 

comparing the two Pareto fronts obtained for present and retrofitting scenarios, a clear shift in 

normalized NPV is observed. Furthermore, Pareto front obtained for retrofitting conditions extends 

for higher grid integration levels while minimizing the NPV. These points clearly indicate that 

flexibility in the demand side notably helps to minimize the design and operation cost of the energy 

system when considering the same flexibility level of the energy system. On the other hand, it 

reflects the wide applicability of the flexibility model introduced in this study being sensitive to the 

flexibility of the demand side during the energy system optimization process.  

It is interesting to analyze the objective function values of the Pareto solutions for different 

scenarios. Seven Pareto solutions from different parts of the Pareto front are selected and the 

objective function values for the corresponding system designs under different scenarios are plotted 

in Fig. 7. 9. Each color represents a different Pareto solution while each circle represents a scenario. 

The radius of each point is proportional to the probability of the scenario. The expected value of each 

solution is presented by a square. 729 different scenarios are considered in the stochastic 

optimization. Out of the seven Pareto solutions selected, two Pareto solutions are analyzed further, 

as presented in Fig. 7. 10. When analyzing Fig. 7. 10, it is prudent to look at a number of scenarios 

that have objective function values close to each other. In this way, several clusters of objective 

function values can be observed such as the one in Region W. Although there are 729 different 

scenarios, there are only 30 different clusters that have a significant difference in objective function 
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values. This reveals that the system can withstand the changes introduced in certain scenarios 

without any significant change to the NPV and GI, which results in a notable reduction of scenarios 

that show a distinguishable change in the objective function values. It suggests the capability of using 

a scenario reduction method [73] in the stochastic optimization process for energy system sizing 

problems without a significant drop in the accuracy. However, the factors that do not have a 

significant impact on the grid integration level or NPV might have an influence on other performance 

criteria such as renewable energy utilization, fuel consumption etc., which are considered when 

assessing the flexibility.   
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Fig. 7. 8: (a) presents design solutions of the Pareto front considering NPV and grid integration level and corresponding 

flexibility values of the design solutions and (b) presents the same Pareto front obtained considering present and 

refurbished building stocks. The flexibility is considered as a constraint in the Pareto optimization in addition to the 

power supply reliability. Normalized objective functions (normalization performed according to [75] ) for the two 

scenarios are presented in Fig. 7. 8 (b)  
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Fig. 7. 9: Objective function values for different scenarios for the seven selected Pareto solutions taken from the NPV-GI 

Pareto front. Each color represents a different Pareto solution while each circle represents a scenario. The radius of each 

point is proportional to the probability of the scenario. The expected value of each solution is presented by a square. 

When assessing the objective function values for different scenarios, it is clear that the objective 

function values are distributed within a larger range. For example, in the Pareto solution with the 

lowest expected GI in Fig. 7. 9 and 10 (plotted in orange, the grid interaction level varies between 

25% and 67%. Similarly, a significant difference in NPV is observed: between 2.94 and 3.78 x 106 €. 

More importantly, the expected values of the Pareto solutions show lower GI and NPV values (better 

performances) compared to the scenarios with the highest probability of occurrence (which might be 

equal to the objective function value if we use a deterministic model based on TDY or TMY) in most 

of the instances. For example, if we consider the vertex V-X in Fig. 7. 10, point V presents the 

objective function value for the scenarios with highest probability of occurrence (which might be the 

objective function value if a deterministic model is used to optimize instead of stochastic 

optimization). Point x represents the expected value after considering all scenarios. This difference 

(the difference between the objective function values for the cluster of scenarios having highest 

probability of occurrence and the expected value) is quite significant in certain Pareto solutions in 

Fig. 7. 9 (purple and dark green). This is due to the fact that the system tends to perform way better 

in certain scenarios when compared to the scenario with the higher probability of occurrence. As a 

result, a notable reduction in expected values is observed when compared to the scenario that has 
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the highest probability of occurrence. Having a better expected value for the objective function than 

the cluster of scenarios with the highest probability of occurrence is a positive sign, which will 

encourage further investments. This clearly suggests the advantage of stochastic methods in 

comparison to deterministic models when designing distributed energy systems.   

When considering the Pareto optimal solutions, the number of scenarios where the system performs 

better than expected is lower than the number of scenarios where the system performs poorly. 

However, most of the scenarios where the system performs better than expected are extreme cases 

with very high improvement in objective functions and very low probability of occurrence. These 

extreme scenarios notably increase when the number of scenarios grows. This is the reason why 

objective function values improve when the number of scenarios is higher (Fig. 7. 6). There is always 

a high risk directly incorporated is extreme scenarios in real world operation due to low probability of 

occurrence and very high improvement in system performance. Improving the flexibility of the 

system can prevent the occurrence of such significant changes in system operation, which will 

minimize risks related to the uncertainty of the external environment.  

A higher flexibility level guarantees that the performance indicators considered for flexibility do not 

change significantly with the changes in the external environment. For example, considering the two 

Pareto optimum design solutions presented in Fig. 7. 10, the flexibility of the system increases from 

0.78 to 0.87 when moving from the solution with scenarios marked in green to that with scenarios 

marked in orange. Subsequently the impact is noticeable; objective function values for different 

scenarios are scattered all over the objective space (Fig. 7. 10) for the design solution with lower 

flexibility. This clearly shows that the objective function values change notably between different 

scenarios of the same Pareto solution when the flexibility of the system decreases.   
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Fig. 7. 10: Further analysis of the objective function values for different scenarios of two Pareto solutions. Design 

solutions marked in green and orange have a flexibility level of 0.78 and 0.87 respectively. Region W presents clusters 

that have objective function values close to each other. Vertex V-X shows the reduction in objective function values 

when moving from scenarios that have the highest probability of occurrence (which might be the objective function 

values in case of deterministic optimization) to the expected values of the objective functions.  

Naturally, lower flexibility levels are expected when reaching lower grid integration levels. However, 

flexibility of the system does not follow such a trend according to Fig. 7. 8 because of the 

intervention of the ICG (further discussed in Section 7. 5.2). In certain parts of the Pareto front, 

gradual improvement in system flexibility can be observed locally with the increase of grid 

interactions. Nonetheless, the pattern suddenly diminishes, reducing the flexibility significantly. Such 

behavior emphasizes the importance of looking into promising methods to improve the flexibility of 

the system, especially considering renewable energy integration processes. This requires an 

extension to the Pareto optimization where flexibility should be considered as a separate objective 

function.  

7.5.2. 3D optimization considering LEC-GI and flexibility 

In order to assess ways to improve system flexibility, Pareto optimization is conducted considering 

NPV, GI and flexibility. GI and NPV are considered as objective functions to be minimized and 
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flexibility to be maximized. The Pareto front obtained considering these three objectives is presented 

in Fig. 7. 11. The well distributed Pareto solutions clearly show that these three objectives are 

conflicting and cannot be optimized simultaneously. More importantly, energy system flexibility can 

be maintained at a high level irrespective of the grid integration level. However, the main question 

that arises in this context is: how far can renewable energy integration be achieved while maintaining 

the flexibility?   

 

Fig. 7. 11: 3D Pareto front considering NPV, grid Integration Level and Flexibility as objective functions 

It is important to identify the promising pathways to integrate non-dispatchable renewable energy 

technologies while maintaining system flexibility. In this context, constraints in grid integration level 

and lifecycle cost should be carefully considered. For this purpose, two plots that present the system 

flexibility along with the renewable energy fraction are plotted considering grid integration level (Fig. 

7. 12) and NPV (Fig. 7. 13). The first few design solutions with the lowest NPV in Fig. 7. 12 have very 

low renewable energy penetration levels. However, a significant increase in renewable energy 

generation is observed with the increase of NPV. This can induce a notable increase in the renewable 

energy fraction, which reaches above 45% of the total annual demand of the energy hub. However, 

the flexibility of the system decreases significantly for most of the designs when the renewable 

energy fraction reaches values beyond 30%. This means that the performance of the system can 

notably change when operating under real world conditions due to the changes in external 

environment as discussed in Section 7. 5.1.  

System flexibility tends to improve with improved grid connectivity (Fig. 7. 13). The electricity grid 

operates as a buffer which absorbs the fluctuations. Hence, the system possesses higher flexibilities 
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except for the scenarios with a renewable penetration level above 30%, which results in lower 

flexibility at certain instances. When considering lower grid integration levels, the flexibility is varying 

significantly. This is due to the fact that the system approaches a level of stand-alone where the 

fluctuations in demand and generation should be absorbed by the system. However, design solutions 

that depend on dispatchable sources and storage show higher flexibility even at lower grid 

integration levels, which is discussed later in this section.   
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Fig. 7. 12: Flexibility, renewable energy level and NPV for the Pareto solutions of NPV-GI and flexibility Pareto front. 
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Fig. 7. 13: Flexibility, renewable energy level and GI for the Pareto solutions of NPV-GI and flexibility Pareto front. 

In order to further assess the renewable energy integration process, Pareto solutions are plotted in 

Fig. 7. 14 considering renewable energy fraction and flexibility. It is interesting to assess the design 
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solutions that have the potential of generating a similar percentage of renewable energy with 

different flexibility levels. To do so, design solutions from four regions of the flexibility-renewable 

energy fraction plot, named as A, B, C and D, are selected. Region A includes design solutions that 

have the highest renewable energy penetration levels. However, the flexibility of the system is trivial 

when compared to all the other regions. When moving from Region A to B, renewable energy 

penetration slightly drops. However, a significant improvement in system flexibility is observed. It is 

interesting to find the driving force that improves the system flexibility. When moving from Region B 

to C both the system flexibility and renewable energy penetration level decrease. Similarly, both the 

renewable energy fraction and flexibility further decrease when moving from Region C to D. Three to 

four design solutions were taken from each region and tabulated in Table 7.4 in order to continue the 

discussion further. 

Region A includes design solutions with the highest renewable energy penetration levels. The SPV 

capacity of the system is notably high in these systems when compared to the others with a higher 

ratio of SPV panel capacity to wind turbine capacity (See A1 to A3). Higher renewable energy 

penetration levels have been maintained while minimizing the grid interaction levels (A1 and A2) or 

contributions from ICG (A3). As a result, the flexibility of the system has notably dropped below 0.78 

in all these design solutions. At the same time, the wasted renewable energy fraction exceeds 5%. 

Therefore, it is clear that although higher penetration levels of renewable energy are observed, these 

design solutions have major drawbacks.  
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Fig. 7. 14: Renewable energy penetration level and system flexibility for the Pareto solutions of NPV-GI and flexibility 

Pareto front.  
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When moving from the design solutions in Region A to Region B, a notable improvement in system 

flexibility is observed. However, the renewable energy integration level drops by 5 to 10 % (except 

B4) while increasing the grid integration level to beyond 20%. The grid injection level is notably high 

in B4 (the only design solution reaching a renewable energy integration level of above 40%) when 

compared to all the other design solutions. Hence, a significant fraction of the renewable energy 

generation is injected to the grid instead of being used within the system. In general, grid 

interactions maintained by the design solutions in Region B are notably high when compared to the 

other regions. Furthermore, a notable drop in SPV capacity and simultaneous increase in wind 

turbine capacity is observed when moving from design solutions of Region A to those of Region B. As 

a result of higher grid integration level, design solutions in Region B are more flexible than in Region 

A. Furthermore, a good balance between wind and solar PV technologies is maintained in Region B, 

which results in a notable reduction of wasted renewable energy.  

Renewable energy fraction, grid interactions, grid injection and waste of renewable energy notably 

decrease in Region C in comparison to Region B. Size of the battery bank, SPV panels and wind 

turbines decrease notably when moving into design solutions of Region C. However, the ratio 

between installed wind turbine and SPV panel capacity remains the same as in Region B. When 

moving from Region C to Region D, the renewable energy integration level further decreases. 

Furthermore, the system flexibility level decreases compared to the design solutions in Regions B and 

C. In general, the highest lifecycle cost and lowest grid interaction levels are observed in Region D. 

Higher ICG capacity depicts that the system tends to depend more on the dispatchable source for 

catering the demand while maintaining less interactions with the grid. Due to the dependence on the 

ICG, design solutions in Region D tend to be more flexible for the changes in external environment. 

This can justify a higher flexibility even at lower grid interaction level which was observed previously 

when analyzing the NPV-GI Pareto front in Section 7. 5.1 
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Table 7. 4: Performance comparison of few selected cases from Fig. 7. 14 

 

7.5.3. Sensitivity of the weight matrix   

The flexibility level of the system is an integrated measure of several performance indicators. 

Depending upon the relative importance given to each performance indicator, values obtained for 

flexibility might change. The relative importance of each criterion is brought together using the 

weight matrix. The weight matrix and triangular fuzzy numbers can be obtained in different ways. In 

this study, we follow experts’ opinion to obtain both. This is followed up by a method proposed by 

the authors in Ref. [54] which provides a detailed overview.  

Two additional scenarios with different weight matrices are considered in order to evaluate the 

sensitivity of the considered weight matrix (see Fig. 7. 15 and Table 7.5). Scenario P presents the 

weight matrix used so far for the assessment. Scenario Q, considers a situation where NPV is given 

more priority compared to Scenario P. Furthermore, grid interactions are considered at two different 

levels, i.e. electricity purchased from the grid and net interactions. When moving from Scenario Q to 

Scenario R, the priority level of the NPV is further increased. In addition, total net interaction with 

the grid is considered instead of considering the energy purchased from the grid. 

 

 

 

 

 
NPV  

(x106 €) Flexibility 
Grid 

Integration 
(%) 

Grid 
injection 

(%) 

Renewable 
fraction (%) 

Wasted 
renewable 

(%) 

SPV 
Capacity 

(kW) 

Wind 
capacity 

(kW) 

Battery 
banks 

ICG 
capacity 

(kW) 
A1 5.862 0.7710 6.99 10.12 41.95 5.521 342 40 19 80 

A2 5.913 0.7743 6.86 10.79 44.57 6.604 364.5 40 19 80 

A3 4.302 0.7667 27.50 8.14 47.58 6.072 355.5 120 15 40 

B1 3.974 0.9625 33.03 1.48 25.41 0.073 139.5 180 19 40 

B2 4.928 0.9611 20.43 3.55 31.07 0.362 162 240 20 60 

B3 5.936 0.9801 23.78 6.97 33.44 0.371 121.5 380 19 80 

B4 4.120 0.9717 36.14 18.85 41.69 2.412 279 180 18 40 

C1 7.416 0.9885 3.59 0.43 15.57 0.001 90 100 9 120 

C2 5.539 0.9391 9.69 0.48 15.61 0.003 99 80 12 80 

C3 4.752 0.9653 24.84 0.16 15.99 0.003 67.5 160 20 60 

C4 5.545 0.9246 9.58 0.69 16.66 0.002 108 80 12 80 

D1 6.192 0.8177 2.84 9.33 5.14 0.183 18 60 19 100 

D2 7.095 0.8225 0.43 12.46 5.14 0.903 18 60 20 120 

D3 6.284 0.8599 3.39 7.04 5.67 0.001 22.5 60 19 100 

D4 7.171 0.8526 0.52 14.33 6.23 0.001 36 40 18 120 
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Table 7. 5: Weight matrix for three cases 

     

A distinguishable difference in flexibility values can be observed for the three different weight 

matrices. This clearly indicates that the preference of the system designer can have a distinguishable 

influence on the flexibility values, which can result in changes of up to a maximum of 10%. However, 

it is difficult to observe a common trend for the three weight matrices except for the design solutions 

in Region F where the flexibility value of weight matrix P is in-between the two other matrices. 

Pareto solutions between Region F and line E-E show flexibility values very close to each other. 

Fluctuations in flexibility are quite significant for all three scenarios when moving into the design 

solutions on the left side of line E-E. At certain instances, flexibility values obtained for the three 

scenarios are close to each other. A distinguishable difference can be observed when moving from P 

to Q and R. However, the Pareto solutions do not show a significant difference in flexibility above 

10% when moving from one scenario to the other. In other words, the flexibility represents the 

vulnerability of the system performance due to the changes in external environment, which does not 

change significantly for the three weight matrices considered.  

Case NPV WRE 
Loss of load 

probability 

Load from 

grid 

Net grid 

interactions 

Generator 

Fuel 

consumption 

P 0.3 0.15 0.2 0.25 0 0.1 

Q 0.4 0.1 0.2 0.1 0.1 0.1 

R 0.6 0.05 0.1 0 0.2 0.05 
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Fig. 7. 15: Comparison of three weight matrices 

7.6. Conclusions and future perspectives 

Changes in the external environment can strongly influence the performance of the energy system, 

which is usually not considered in the design process of energy systems. Energy systems should be 

designed to resist the performance degradation due to changes in the external environment caused 

by the stochastic nature of renewable energy potential, demand and grid conditions. This study 

shows that extending the flexibility concept to the energy system design process while combining it 

with stochastic optimization can be helpful to address the aforementioned problems.  

The flexibility concept is redefined in this study in order to address three main limitations in the 

existing pool of knowledge: 

I. how to aggregate stochastic optimization and the flexibility concept 

II. how to evaluate the flexibility of an energy system considering different performance indicators with 

different priority levels in the energy system design process 

III. how to integrate subjective input from the system designers/investors with regard to the impact of 

performance degradation with the flexibility concept. 

In order to address these research problems, a pool of scenarios is developed using pseudo–

sequential time series of demand, renewable energy potential, and grid conditions, extending the 
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deterministic model used to optimize the energy system. Changes in performance indicators under 

different scenarios are used to compute the flexibility level. Six different criteria are considered (with 

different priority levels) when defining energy system flexibility. Fuzzy logic is used to integrate the 

subjective input from the system designers/investors in the process of quantifying the impact of 

performance degradation. Subsequently, the sensitivity of the weight matrix used to prioritize 

different performance indicators is evaluated. 

Stochastic Pareto optimization is conducted considering NPV, GI and system flexibility as the 

objective functions. Both CPU and GPU are used for the computational algorithm and the scenarios 

are simulated simultaneously using the GPU. A significant improvement in computational time is 

observed when using the GPU compared to CPU with sequential processing. A noticeable reduction 

in objective function values is observed when using a stochastic method compared to a deterministic 

model. Extreme scenarios with a lower probability of occurrence improve the objective function 

values notably, which results in an improvement of the expected value of the objective function. 

However, such scenarios - with a notable improvement in objective function values - will impose a 

risk on energy system investment unless flexibility of the energy system is guaranteed.  

Significant changes in performance indicators can be observed due to the changes in external 

environment, which can account for variations of up to 40% of the expected value of NPV and of 

more than 100% for GI. This clearly indicates the vulnerability of the system under the uncertainty of 

external factors which needs to be minimized. Pareto optimization considering flexibility as an 

objective function is used to assess this aspect. Results of the 3D Pareto front reveal that changes in 

external environment can have a significant impact on the performance indicators for design 

solutions with a renewable energy contribution beyond 30% due to lower flexibility. Even with higher 

grid integration levels, it is challenging to integrate renewable energy technologies to cater more 

than 30% of the annual demand. When minimizing the grid interactions by up to 10%, renewable 

energy generation within the system level will decrease by up to 15% of the annual demand. 

The assessment of the energy system considering system flexibility highlights that reaching higher 

renewable energy penetration levels is still a challenge although this is not recognizable when using a 

deterministic model. For this reason we find a number of recent publications showing penetration 

levels of non-dispatchable energy sources of beyond 80% of annual demand. The interesting 

question that lies ahead is: how far can we get assistance from future improvements in energy 

storage (within the system) and grid (outside) to integrate non dispatchable renewable energy 

technologies while maintaining the flexibility of the energy system? Furthermore, we should carefully 

consider whether the speed of technological improvements within these two sectors is sufficient to 
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cater the speed of renewable energy integration. The additional cost required for future scenarios 

when improving energy system flexibility will help to address these problems. This requires an 

extension to the flexibility concept introduced in this study beyond the boundaries of the energy 

system while taking into account grid stability, which will help system designers to come up with an 

optimum balance between energy system improvements and grid improvements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



199 
 

8 The Impact of Urban Climate on 
Energy Systems  

 

Rapid growth of cities, concerns on global warming and depletion of fossil fuel resources call for 

sustainable energy solutions for cities. Distributed energy systems such as energy hubs offer 

promising solutions in this context. Evaluating the energy demand at urban scale is vital to support 

the design of energy hubs. However, most of the recent studies are based on bottom-up models and 

do not consider the energy demand in detail. More specifically, the influence of the urban climate on 

urban energy demand has not been considered so far in the energy system design process. In order 

to address this research gap, a novel computational platform is developed in the first part of this 

chapter, combining an urban climate model with a building simulation tool and an energy system 

optimization model. The second part of the Chapter is devoted to quantifying the impact of urban 

climate on energy system design and assessing the consequences of neglecting this specific aspect 

on energy system performance. Three case studies are conducted considering three building 

densities for the city of Nablus (building density at the periphery, center and future center of the 

city) in Palestine. Three scenarios representing 1) standalone buildings (present practice) 2) 

shadowing and longwave reflection (radiation heat transfer from the walls and the roofs of the 

buildings to the urban climate and to the sky) of neighboring buildings and 3) urban climate are 

considered for each case study when computing the energy demand. Subsequently, the energy 

system is optimized considering Net Present Value (NPV) and system autonomy level as the 

objective functions (Pareto optimization). 
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8.1. Introduction 

Energy requirements in urban areas are rising at a rapid rate with the increase in urban population 

[1], [2]. In the context of actions against climate change, rapid depletion of fossil fuel resources and 

health concerns due to the emission of noxious gasses, a shift toward sustainable energy solutions in 

cities is therefore essential. The transition from fossil fuel based urban energy systems to 100% 

renewable energy systems [3], [4] is expected to be achieved within a few decades. To reach this 

goal, it is important to upscale planning from net-zero buildings to energy sustainable 

neighborhoods, districts and cities, since energy optimization of a district or a community is more 

cost effective than optimizing each building separately [5]. The objective is to lead urban planners to 

consider energy efficiency of the urban form and renewable energy integration simultaneously 

during the planning process [6]. Developing a holistic computational platform that bridges urban 

climate, building simulation and energy systems will be immensely helpful in this context.        

Renewable energy integration and energy system design at urban and neighborhood scale have 

been widely discussed in recent studies at individual building, community, district and urban scale 

[7]–[11]. A comprehensive review on this is presented by Kastead et-al [12]. Perera et-al [13] have 

shown that integrated energy systems such as energy hubs can be used to integrate non-

dispatchable renewable energy technologies beyond 60% of the annual demand. Morgan et-al [14] 

showed that more than 80% of the demand of a community can be supplied using onsite renewable 

energy technologies. Movraj et-al [15] have evaluated the influence of grid constraints when 

integrating renewable technologies into energy hubs. All these studies portray an optimistic picture 

of renewable energy integration at urban and neighborhood scale. However, simple integration of 

renewable energy technologies at any scale (building, community, urban or even direct grid 

integration) will result in poor utilization of the generated renewable energy [16]. Therefore, 

optimization tools are needed to reach the optimum energy mix.  

Recently, a number of groups have developed optimization algorithms to implement efficient energy 

systems at urban and community scale while minimizing lifecycle cost, environmental impact, grid 

dependency etc. Samira et-al [8], [17], [18] introduced a bi-level optimization algorithm to design 

distributed energy systems considering the dispatch strategy, which was later extended to include 

thermal networks. Optimum design of distributed energy hubs and the electrical and thermal 

distribution networks is addressed by Moraj et-al [19]. Simultaneous optimization of multiple energy 

hubs considering the interactions and the energy network is performed by Maroufmashat et-al [20]. 

A detailed cross comparison of different optimization algorithms used to design distributed energy 

systems can be found in Ref. [21]–[23]. These studies are solely focused on the generation and 
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distribution aspects of the energy infrastructure where demand is considered as direct input to the 

optimization model. Therefore, the sensitivity of factors such as urban climate, building density and 

urban form on the demand is not properly considered.  

Improving energy efficiency and sustainability in the urban context depends on four leverages, i.e. 

urban morphology, building form and technology, occupant behavior and energy system [24]. The 

contribution of all these leverages is subject to the urban climate. On the other hand, the building 

stock itself has a notable impact on the urban micro climate. Quantifying the influence of urban 

climate on the building energy demand considering all the aforementioned factors is a challenging 

task. However, it is essential since the thermal behavior of the collective building stock is different 

from that of a stand-alone building; especially in an urban context [25]. According to Moonen et-al 

[26],  a building in an urban area (compared to a stand-alone building) will more likely experience 1) 

higher air temperature due to urban heat islanding (UHI) effect, 2) lower wind speeds due to the 

wind shelter effect 3) reduced energy losses during the night due to the low sky view factor 4) 

changes in solar heat gain due to shadowing 5) changes in radiation balance due to the interactions 

in neighboring buildings. Neglecting the aforementioned factors may lead to significant 

miscalculation of the demand, beyond 30% according to Bozonnet et-al [27], which will have a 

notable impact on energy system design. However, capturing the influence of solar radiation, long 

wave radiation and urban climate is a challenging task for hourly building simulation  to be used for 

energy system sizing [25]. 

A number of groups have investigated effective methods to combine building simulation and energy 

system optimization. Evins [28] optimized the system configuration and building design by coupling 

energy system optimization with building simulation. A bi-level optimization algorithm is used in this 

context to optimize the energy system along with the building envelope, which takes considerably 

higher computational time (nine days without parallel processing). However, a standalone building is 

considered in this context without considering thermal interactions caused by the surrounding 

buildings. Wu et-al [29] optimized the building renovation level and energy system design 

simultaneously in order to identify the optimum energy system design and the buildings requiring 

renovation in the Swiss village Zernez. A representative set of buildings in which the energy 

interactions among the buildings are not considered, was selected in this study to represent the 

whole village.  

Fonseca et-al [30] introduced a city energy analysis tool to optimize urban energy systems using a bi-

level optimization algorithm. A detailed hybrid model combining a physical model with a set of 

statistically representative archetypes is used in this study to obtain the energy demand in the 
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context of energy system sizing [31]. The hybrid mode used in this work provides a better 

representation of the energy demand in an urban context. However, the energy interactions among 

the buildings are not considered in this study. Morgan et-al [14] developed a computational platform 

combining building simulation and an energy system optimization tool. The platform has the 

capability to assess the impact of shadowing and the long wave radiation at urban scale. However, 

the impact of the micro-climate is not considered in this work. A Swiss village with low building 

density is considered in this study; the sensitivity to shading and long wave radiation is therefore 

trivial. Furthermore, the impact of the building stock on energy system sizing is not considered. In 

conclusion, it can be stated that none of these studies comprehensively assess the impact of 

adjacent buildings on the thermal and electricity demand (due to lighting) in energy system sizing. 

Effects of shadowing and boundary layer are not considered in most of the instances. An adequate 

representation of buildings and their effects such as drag force, generation of turbulence etc. is 

crucial in the evaluation of local meteorological variables[32], [33] and therefore in the calculation of 

the building energy demand [34], [35] as it can impact the convective heat transfer coefficient [36]. 

Hence, it is important, with a view of energy system sizing, to represent the micro-climate accurately 

in the building simulation process. 

Following these considerations, the present study focuses on extending the computational platform 

used to design urban energy systems by introducing an urban meteorological model. The 

computational platform consists of a building simulation model and an energy system sizing tool 

with an urban meteorological model as shown in Fig. 8. 1. The introduction of the urban 

meteorological model facilitates presenting the influence of urban climate on building simulation 

and subsequently on the energy system design process. The influence of the urban climate on the 

energy demand is quantified considering different urban densities to introduce the present and 

future scenarios of Nablus, a city in Palestine. The demand profile notably influences the energy 

system design. Misrepresentation of the urban micro climate can lead to a performance gap in the 

energy system. This performance gap can be avoided through adequate representation (by using the 

computational platform introduced in this study) of the urban micro climate as shown in the final 

part of the Chapter 8. A concise overview of the computational platform combining different models 

is presented in Section 8. 2. An extended explanation of the building simulation model and the urban 

climate model is presented in Section 8. 3 followed by a description about the energy system 

optimization tool in Section 8. 4. The influence of long wave radiation, urban climate and occupancy 

at urban context on the energy system sizing problem is taken into discussion in Section 8. 5.  
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Fig. 8. 1: Schematic overview of the computational platform. 

8.2. Overview of the computational platform and the case studies 

This section presents an overview of the computational platform developed in this study and the 

case study used to apply the novel computational platform. The platform combines urban 

microclimatic conditions, urban design, energy demand of building and optimization of energy 

system modelling. It is an attempt in the direction of creating a comprehensive design tool that 

offers a compromise between energy planning needs and the complexity of the urban metabolism. 

The platform is used to assess a real case study in order to quantify the influence of urban climate on 

the energy system. A brief over-view of the city considered for the case study and the methodology 

used to develop building archetypes that represent the compactness of the city at different levels is 

presented in Section 8. 2.2.  

 8.2.1. The computational platform  

Urban energy planning is a lengthy process that involves a considerable number of steps [37]. Energy 

system optimization plays an important role in this context as does evaluating the energy demand of 

the building stock. The coupling of buildings and urban climate is the main challenge to be faced 

when determining the energy demand of buildings using a bottom-up method. Taking into account 

the influence of urban climate on buildings and vice-versa may result in a significant change in the 

projected heating and cooling demand of the building stock and may lead to notable changes in 

energy system design. Hence, it is important to consider the impact of urban climate at the early 

design stage of the energy system. The main objective of the proposed computational platform is to 

combine an urban climate model with a building simulation model and an energy system 

optimization model in order to design urban energy systems. 
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8.2.1.1. Challenges in modeling the urban climate and promising paths 

The interaction between building stock and urban climate should be carefully decoupled when 

combining the urban climate model with building simulation. Developing an urban climate model 

alone is a challenging task due to the geometric complexity and the wide range of spatial and 

temporal scales required to characterize atmospheric phenomena [25]. A computational fluid 

dynamic (CFD) model is usually required to achieve a very high level of accuracy. A CFD model 

requires excessive computational resources and time when computing a time series data for wind 

distribution and temperature in an urban canyon layer. Therefore, simpler models which reduce the 

computational time and intensity are necessary. According to [25], urban canopy models can be 

effectively used to address the challenge with an acceptable level of accuracy. The multi-layer 

Canopy Interface Model (CIM) [32], [38] is hence used in order to provide the microclimate data for 

building simulation. 

8.2.1.2. Work-flow of the computational platform 

The urban energy planning process begins with the acquisition of required spatial and temporal data 

as inputs to the computational model. GIS based tools (e.g. QGIS) are used to collect the building 

information for the simulation. The 3D geometries of the buildings in the urban area are modelled 

using Rhinoceros, based on the information from QGIS. This is done to prepare the DXF data files as 

input for CitySim Pro[39] and CIM.  

CitySim is an extension to SUNTool [40], which can consider the shading effect of adjacent buildings 

and longwave radiation due to the interaction among buildings. CitySimPro [39], [41] a software 

developed at the EPFL Solar Energy and Building Physics Laboratory (LESO-PB) is used in this study to 

simulate the building stock. CitySimPro uses a bottom-up approach when evaluating the hourly 

energy demand taking into account the fine details of the building stock. The radiation model inside 

CitySim, the Simplified Radiosity Algorithm (SRA) [42] can consider the shading effect of adjacent 

buildings and longwave radiation due to the interaction of buildings. Building simulation generally 

considers properties of the thermal shell, visible surface properties, occupancy profile, openings of 

the building through doors and windows etc. However, it is time consuming to collect all details 

precisely for each building forsimulations at building scale. Therefore, basic envelope details are 

obtained considering the construction year of the building. In addition, each building is represented 

by a single zone instead of multiple zones when evaluating the energy flow. Citysim computes the 

surface temperature of each building, which is subsequently imported to CIM. Based on the resulting 

wind speed, the air temperature is recalculated and fed back to Citysim to re-calculate the energy 

demand.  
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Fig. 8. 2: Work flow of the computational platform 

The hourly energy demand obtained from CitySim is subsequently used to optimize the energy 

system. A multi energy hub consisting of non-dispatchable renewable energy sources, storage and 

dispatchable energy sources is considered in this study. The energy hub optimization model 

presented in Ref. [13], [43] is used to optimize the system design of the energy system. An hourly 

time series of renewable energy potential and prices of system components are taken as the input to 

the computational model. A detailed description of the computational model used to design the 

energy system is presented in Section 8. 4.    

8.2.2. Outline of the Case Studies   

The computational platform developed in this study is used to quantify the influence of urban 

climate on energy system design. A detailed description of the selected case study and the 

considered building stock is presented in this section.   

8.2.2.1. City of Nablus 

The city of Nablus (32°13’ N, 35°16’ E), located in the northern part of the West Bank, is considered 

for the case study. The city presents a Csa climate (C: temperate; s: dry summer; a: hot summer), 

characterized by warm temperatures, low precipitations and high temperatures during the summer 

time. Nablus is located at 550 m above sea level and presents a particular topography, as it is 

positioned in a narrow valley, between Mount Ebal (940 meters) in the North, and Mount Gerizim 

(870 meters) in the South. In order to perform this study, the Al-Habaleh district (circa 130 buildings) 

is analyzed, within the old city; the district is characterized by dense constructions and narrow 

streets. The average annual temperature corresponds to 17.9°C, with maximum temperatures 

during the summer time equaling to 36.8°C, and the lowest temperature (during the month of 
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December) equaling 1°C (extracted from Meteonorm database [44]). The total annual precipitation 

corresponds to 315 mm, and precipitation is completely absent during the summer season (from 

June to September). The wind blows mostly during the summer time, with an average speed of 3.5 

m s-1 during the month of July. 

8.2.2.2. Use of archetypes 

Urban morphology is usually complex. Furthermore, buildings within a city are distributed with 

different densities and usually have diverse thermal characteristics. This makes it difficult to quantify 

the influence of urban climate on energy system design. In order to simplify, we worked with 

archetypes representing the urban fabric. Urban archetypes are amply used to simplify the 

complexity of the urban morphology in an effective way [24], [45]. The urban archetype influences 

the thermal performance, solar access and the ventilation as shown by Sanaieian et-al [46].  In this 

chapter, we limit the scope to a single urban archetype focusing more on the urban density. The 

height and the distance between buildings in urban archetypes present an average value of the 

building stock considered. By analyzing the old city center of the city of Nablus as well as the 

peripheral areas, the density of the two city areas was defined. The city center has a volume to site 

area ratio equal to 2.6. The periphery has a volume to site area ratio equal to 1.5. In order to 

represent these two configurations, we used archetype modelling, using both density characteristics, 

as presented in Figure 3.  

 

Fig. 8. 3: Archetype modelling as a function of the density of the site 

8.3. Computational model for urban micro climate and building simulation  

The coupling of a building simulation model (such as CitySim) with meteorological models is essential 

to represent the impact of buildings on climatic variables and to provide enhanced building energy 

simulation. Phenomena such as the Urban Heat Island [47] are not represented in TMY or a 
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Meteonorm dataset, since they are usually collected outside of the city. This data then needs to be 

transformed to take into account the particularities of the urban climate and to provide useful data 

to building energy models. This is why it is proposed here to use the CIM-CitySim coupled model and 

to extend it further. 

CIM is a 1D meteorological model [48] that can work offline as a stand-alone module while using as 

input data a climatic dataset (such as Meteonorm [44]). Alternatively, it can be coupled with a 3D 

meteorological model (such as WRF [49]). For the purpose of this study, since we are addressing the 

issue of energy systems, a typical meteorological year supplied by Meteonorm is used as boundary 

condition for CIM. The values are averaged over a period of 20 years for the irradiation and over 10 

years for the wind speed and air temperature. CIM computes high resolution vertical profiles of the 

variables (such as the wind speed, direction and air temperature) considering the urban 

environment (for example considering the presence of buildings and their density). CIM resolves a 

diffusion equation derived from the Navier-Stokes equations but reduced to one direction only.  

The differential equations for the momentum and the potential temperature can be written as Eq. 8. 

1 and 8. 1’ 
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=

𝝏
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𝝏𝒖
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𝒔                         (8.1) 
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𝝏𝒛
(𝜿𝒕

𝝏𝜽

𝝏𝒛
) + 𝒇𝜽

𝒔 ,                    (8.1’) 

where 𝑢 is the mean horizontal wind component in the x- or y-direction, 𝑓𝑚
𝑠  and 𝑓𝜃

𝑠 are the terms 

representing the momentum and heat fluxes exchanged between the flow and “solid” surfaces 

(ground or buildings here). The diffusion coefficients are computed according to a 1.5-order 

turbulent closure (Eq. 8. 7 and  8.8) as proposed by Monin and Yaglom [50] according to Eq. 8. 2:  

𝜇𝑡 = 𝐶𝑒√𝑒𝑙   and    𝜅𝑡 = Pr 𝜇𝑡,                    (8.2) 

where 𝐶𝑒  is a constant, 𝑒 is the turbulent kinetic energy (TKE), Pr is the Prandtl number that 

represents the ratio between the momentum and heat diffusion coefficients, and hence depends on 

the stability of the atmosphere [51]. Subsequently, differential equations for momentum, potential 

temperature and TKE are solved using the finite volume method. Equations are taken from [48] take 

into account the obstacles density and height in the canopy. 
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Fig. 8. 4: CIM-CitySim flowchart adapted from Ref.  [34] 

The model has been coupled with the CitySim building simulation software (see Fig. 8. 4) in order to 

determine the energy demand of a district [34]. The CIM-CitySim coupling has been tested in 

multiple cities [35], [52]–[54] and the method presented in this chapter could thus also be applied to 

other regions. Furthermore, the use of such a methodology has also been previously used to 

evaluate the building energy consumption at the city scale [55], [56]. Although the building 

geometries are simplified in CIM, the simulation of the wind speed is coherent with past findings 

[32], [57], [58]. The coupling of CitySim and CIM provides enhanced boundary conditions for both 

models. As described in Fig. 8. 4 the simulation takes place in three steps. First a simulation with 

CitySim is performed with the Meteonorm data to obtain the surface temperatures. Secondly, CIM is 

forced with the surface temperature from CitySim to simulate the flow in the column module and to 

recalculate a high resolution vertical profile of meteorological variables, such as the air temperature 

and the wind speed. Finally, CitySim is provided with localized meteorological data to simulate the 

energy demand. The modification of the variables influences two main processes that are computed 

by CitySim. 
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First, the convective heat transfer coefficient for each surface i at time step t (
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th
,
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given by Eq. 8. 3: 
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 where is

t

, is the surface temperature in K and air

t is the air temperature in K. The longwave heat 

transfer is calculated as a function of the difference between the environmental temperature ( air

t ) 

and the surface temperature. Secondly, the longwave flux 
ilw

tQ
,

 is computed in a similar manner 

considering the radiation heat transfer. The entire coupling process between CIM and CitySim is 

presented in Fig. 8. 4. A full description of the CIM model as well as the equations used to take into 

account the obstacles density and height in the canopy can be found in Mauree et al. [32]. 

8.4. Energy System design tool  

The main objective of the energy hub model is to optimize the energy system design. A multi energy 

hub (MEH) catering the energy demand for cooling, heating and power (CCHP) is considered in this 

chapter. The energy hub model introduced by Geidl et-al [59], which has been amply used to design 

and assess poly-generation systems [60], is used.. This model integrates energy technologies with 

different characteristics. Solar PV panels (SPV) and wind turbines are used as the non-dispatchable 

energy technologies in the energy hub (Fig. 8. 5). An internal combustion generator or a gas turbine 

is used as the dispatchable source. A battery bank is used as the energy storage device. A ground 

source heat pump and a vapor compression air conditioner are used to cater the heating and cooling 

demands respectively. The MEH is expected to operate in connection to the Medium Voltage Grid 

(MVG). A time series of grid electricity prices is considered to represent the real time price in the 

MVG. Grid curtailments are introduced when selling and purchasing electricity to and from the MVG. 

Both system design and the operation strategy of the energy hub are optimized using the 

optimization algorithm. A concise description of the energy flow and cash flow models is presented 

in this section along with the formulation of objective functions. A bi-level dispatch strategy used for 

the energy flow management and the optimization algorithm used for the Pareto optimization are 

presented in the last part of this section.  
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8.4.1. Energy and cash flow model  

The inputs to the computational model that computes the power generation using SPV panels and 

wind turbines are the hourly global solar irradiation on the tilted solar PV panel surface and wind 

speed at the wind turbine hub level. It is challenging to consider the impact of the urban context 

when sizing the energy systems. This requires prior selection of appropriate roofs and facades to 

install SPV panels, which constitutes another optimization problem within the energy system 

optimization problem already addressed. In order to simplify the procedure, a shading factor is 

introduced in this work. Wind turbines are expected to be installed in close proximity to the city in 

which the wind speed is adjusted to match the urban context according to Ref. [61]. An extended 

explanation about the computational model is presented in Chapter 2. The objective functions 

considered for the Pareto optimization are presented in Table 8.1.   

2D/3D overview of 
the building stock

Archetypes

Dense building stock

Less dense building stock

Energy Hub
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Wind Turbines

Internal combustion 
Engine 

Electricity demand of 
the appliances

City center

Periphery
Heating and cooling demand

 

Fig. 8. 5: Overview of the energy system 
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Table 8. 1: Objective functions and the constraints considered for Pareto optimization. 

   

8.5. Results and discussion  

The influence of the urban climate is an important factor to be considered when designing urban 

energy systems. However, the impact of urban climate on the energy system is not direct. It 

expresses itself in the heating and cooling demand of the building stock, which makes it more 

complex. A comprehensive assessment of the impact of urban climate on the energy demand and its 

importance on the energy system design is discussed in this section. 

8.5.1. Influence of urban climate on the energy demand  

The heating and cooling demand, as quantified by means of archetype modelling, presents an 

interesting information on the influence of urban climate on the energy demand. In order to reach a 

better understanding of the impact of meteorological data and urban compactness, a 

comprehensive assessment is performed for the archetype building stock in the city of Nablus, 

focusing on the variation of the heating and cooling demand. In order to support the analysis, three 

scenarios are considered i.e. standalone, Meteonorm and CIM. The standalone scenario neglects the 

thermal interactions with the neighboring buildings when computing the energy demand for the 

archetype. This is the method often practiced when computing energy demand for a stock of 

buildings. Meteonorm considers the shading effect and long wave radiation due to the adjacent 

buildings. Finally, CIM considers the microclimate in addition to the Meteonorm model. The 

influence of building density on energy demand in different urban densities is subsequently analyzed 

for each scenario. This is then used to understand the changes required in energy system design in 

Section 8. 5.3.      

8.5.1.1. Influence of the urban density on energy demand 

Urban compactness notably influences building energy demand, which needs to be taken into 

account in energy system sizing. Three cases (represented by three different archetypes of building 

stock) are considered in this work in order to assess its impact. Case 1 corresponds to the building 

Location Objective Function 1-  

Objective Function 2  

(F1-F2) formulated in Chapter 2 

Scenario Constraints 

Nablus city 

center 
NPV-Grid Interactions  Standalone, Meteonorm, CIM  

Power supply 

reliability 
Nablus Periphery NPV -Grid Interactions  Standalone, Meteonorm, CIM 

Nablus future 

city center 
NPV -Grid Interactions  Standalone, Meteonorm, CIM 
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density it the center of the city of Nablus. Case 2 considers the building density at the periphery, 

which is less compact compared to the center. Case 3 considers a future expansion scenario for Case 

1, in which the building density of Case 1 is expected to grow further. Case 3 has the highest building 

density, followed by Cases 1 and 2. The peak and annual demand for each case are presented in 

Table 8.2. Furthermore, the percentage increase in annual demand and peak demand is presented in 

Table 8.2.  

Peak and annual demand for the standalone scenario of Cases 1 and 3 are the same; they are 

different from Case 2. The height of the building archetypes is considered to be same even after 

expansion, which makes the set of buildings look the same in the standalone scenario. The heights of 

the buildings are reduced when moving into the periphery, which results in a reduction of the energy 

demand (when considering the standalone scenario for Case 2). The percentage increase in annual 

and peak demand is trivial for Cases 1 and 2 when moving from the standalone to the Meteonorm 

scenario. This shows that the influence of shadowing and longwave radiation is negligible when 

considering Cases 1 and 2. However, a noticeable increase in both peak and annual demand is 

observed when moving from the standalone scenario to the Meteonorm scenario in Case 3. This 

reveals that the influence of shadowing and longwave radiation is observed at very high urban 

densities. A noticeable increase in annual and peak demand is observed when moving from the 

standalone to the CIM scenario. This suggests that the wind speed and air temperature at the urban 

canyon layer have a noticeable impact. When moving to Case 3, this increases the annual and peak 

demand by 13% and 10% respectively. These results make it interesting to further analyze the 

influence of the wind speed and ambient temperature on energy demand. To achieve this, wind 

speed and ambient temperature values at higher temporal resolution are taken. 
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Table 8. 2: Influence of the urban compactness on the energy demand   

     

8.5.1.2. Influence of wind speed and ambient temperature 

In order to assess the influence of the urban climate, the heating and cooling demand of buildings in 

the city center are taken into consideration. For these buildings, the annual heating demand 

obtained from Meteonorm is close to the value obtained from CIM, although the cooling demand 

shows a significant difference. The average cooling demand in the city center increases from 9.68 to 

17.83 kWhm-2 when changing the climatic data from Meteonorm to CIM. In order to assess this 

further, hourly demand profiles for three summer days (21st-23rd June) obtained using both CIM and 

Meteonorm are plotted in Fig. 8. 6. The two demand profiles reveal that the increase in the demand 

for CIM is not uniform throughout the time line. Hence, moving from one to another creates a shift 

in the entire demand profile. A notable increase in the cooling demand is observed towards the 

peak, while it gradually decreases when moving away from the peak. For example, the peak demand 

is approximately doubled with the CIM meteorological data during a sunny day (average octas 

equals to 0), passing from 43 GWh to 20 GWh at 13:00 hours. A detailed explanation of this 

observation is presented in Section 8. 5.2. Such extreme increases in hourly demand profile can have 

a notable impact on the energy system which is not reflected in the annual average demand 

discussed in detail in Section 8. 5.2.   

Case  

 

Standalone Meteonorm CIM 

3 

Annual Demand (GWh/year) 1.16 1.21 1.41 

Peak heating/cooling demand (kWh) 536.6 557.1 619.3 
Increase in annual demand compared to 
Standalone (%)  4.13 17.73 
Increase in Peak Demand compared to 
Standalone    (%) 3.69 13.36 

2 

Annual Demand (GWh/year) 0.73 0.73 0.82 

Peak heating/cooling demand (kWh) 334.4 334.8 363.8 
Increase in annual demand compared to 
Standalone (%)                                0.27 10.95 
Increase in Peak Demand compared to 
Standalone (%)                               0.11 8.07 

1 

Annual Demand (GWh/year) 1.16 1.15 1.33 

Peak heating/cooling demand (kWh) 536.6 537.5 582.3 
Increase in annual demand compared to 
Standalone (%)                              -0.26 13.22 
Increase in Peak Demand compared to 
Standalone (%)                               0.17 7.85 
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Fig. 8. 6: Hourly demand for heating demand for Nablus center from 21st- 23rd June.  

8.5.2. Role of CIM in presenting higher resolution meteorological variables 

The main objective of coupling a building simulation tool with an urban climate model is to capture 

the influence of the presence of buildings in the urban context. In this context, CIM is used to 

calculate the high resolution vertical profiles of meteorological variables. These variables are then 

used as boundary conditions for CitySim, the building simulation tool. Hence, a detailed comparison 

of the temperature and wind profiles obtained from CIM with Meteonorm (simple meteorological 

data which do not consider the presence of buildings) can provide a better justification of the 

changes observed in heating and cooling demands in Section 8. 5.1. 
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When analyzing the annual average wind speed and temperature, a difference in 1.5 ms-1 and 0.5°𝐶 

is observed between CIM and Meteonorm respectively. However, this difference is trivial when 

compared to the changes observed for the building energy demand of the building stock at the 

center of Nablus (which can no longer explain the changes in energy demand). Hence, it is important 

to move into a higher temporal resolution. When moving into a monthly resolution, a difference of 

up to 1.5°C in temperature and of 2.2 ms-1 in wind speed is observed. However, when moving 

further up to an hourly scale, the temperature difference can reach up to 14°C as observed in Fig. 8. 

7. By contrast, the wind speed difference is quite constant throughout the year (at the hourly 

temporal scale when compared to temperature) as shown in Fig. 8. 8. The reason for this is that the 

drag force calculation does not change throughout the year since the density of obstacles remains 

the same and the reduction in the wind speed will consequently be more or less the same as well. 

CIM is using 1-D Navier-Stokes equations in this process, which can be improved by increasing the 

dimensions considered. This will result in introducing more fluctuations into the wind speed. 

However, it is noteworthy that there is a significant increase in the temperature during the summer 

time as opposed to the winter time for the Nablus case. In general, it can be concluded that CIM 

provides a better representation of the urban climate, which will help to get a better understanding 

of the meteorological variables. More importantly, the impact of urban climate is not linear, which 

will induce a direct shift in the energy demand.  

It is interesting to assess the direct influence of urban microclimate on the cooling and heating 

demand at an hourly time resolution. To achieve this objective, air temperature values obtained 

from both CIM and Meteonorm are plotted along with the energy demand for a single day (in Fig. 8. 

9) in February. The peak demand is higher with the CIM weather profile during the daytime, and 

lower during the nighttime. This behavior is directly related to the air temperature, which is lower 

during the night time (by 2°C) and higher during the daytime (by 5°C). The temperatures of the 

surfaces within the urban environment are heated by the sunlight during the daytime, consequently 

increasing the temperature. Naturally, this behavior is evident during sunny days and limited for 

cloudy days. Additionally, the studied day is characterized by a moderate breeze during the daytime, 

according to the Meteonorm climatic data (5.5 ms-1 ), which is reduced to a gentle breeze according 

to the CIM meteorological data (3.7 ms-1 ). This can be explained using the concepts of urban heat 

islanding and cold air pools, which are however not the main focus of this chapter (interested 

readers are referred to Ref. [34] for a detailed description). As a result, the demand profile obtained 

using CIM has a peak demand higher than the one obtained using Meteonorm. At the same time, 

the lowest demand is also obtained for CIM, which will result in a higher fluctuation in the demand 

profile. Higher peak demand will result in requiring a larger system capacity while higher fluctuation 
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in the demand profile will make the design and operation of the energy system more challenging. 

Hence, taking into account the urban climate will introduce more fluctuations and higher peak 

demands on a seasonal basis which will influence the energy system design. These issues are 

discussed in detail in the following section. 
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Fig. 8. 7: Wind speed (𝒎𝒔𝟏) obtained from Meteonorm (grey) and computed with CIM (black) for the dense scenario 

in Nablus 
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Fig. 8. 8: Air temperature (°𝑪) obtained from Meteonorm (grey) and computed with CIM (black) for the dense 

scenario in Nablus  

 

Fig. 8. 9: Air temperature and energy demand for the city of Nablus on 2
nd

 of February. 

8.5.3. Influence of the urban climate on the energy system 

The notable influence of the urban climate on building energy demand is clearly reflected in Section 

8. 5.2 especially considering the dense areas. The effect of urban climate on the energy demand can 
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have a notable impact on the performance of the energy system. Hence, it is interesting to conduct a 

comprehensive analysis on the impact of the microclimate on the energy system based on a set of 

performance indicators commonly used to assess the energy system. This is conducted in two steps 

in line with Section 8. 5.1; the impact of shadowing and long-wave radiation at the building scale will 

be evaluated initially, followed by an assessment of the impact of the micro-climate. Building 

archetypes are used in this context to provide a normalized overview.  

Energy systems are optimized considering NPV and GI as the objective functions taking the urban 

archetype of the center of Nablus. A detailed analysis of the impact of system autonomy on lifecycle 

cost and system configuration is given in Ref. [13].  Pareto fronts are obtained considering three 

scenarios i.e. neglecting the shadowing effect (both shadowing and long wave radiation) and 

adjusted wind speed (both wind speed and surface temperature) (Scenario “stand-alone”), 

considering the shadowing effect but neglecting the adjusted wind speed (Scenario Meteonorm) and 

considering both shadowing and adjusted wind speed (Scenario CIM) (Fig. 8. 10). A clear Pareto front 

is observed for all three scenarios, which suggests that the NPV and GI level are conflicting 

objectives, for which it is difficult to reach to a single optimum solution considering both objectives. 

Pareto fronts obtained for Standalone and Meteonorm scenarios have objective function values 

quite close to each other except in a part of Region B (Fig. 8. 10), where, Meteonorm presents 

marginally higher NPV compared to the Standalone scenario. However, a significant increase in 

objective function values is observed when moving to Scenario CIM which is due to the increase in 

energy demand as discussed in Section 5.2.  The NPV increases by 20% in Region B, which decreases 

by 7-10 % when moving into Region C while increasing the grid interactions. When moving into 

autonomous operation of the system, the Pareto fronts appear to be close to each other since the 

magnitude of the gradient is higher in this region. A closer look at the Pareto fronts shows that the 

difference in objective function values observed in Region B is maintained in Region A (in certain 

instances the difference increases as well). In conclusion, it can be stated that the increase in 

demand observed in building simulation is reflected and often magnified in the energy system 

design.  

It is interesting to assess the impact of urban density on energy system design. To achieve this 

objective, energy system optimization is performed for the urban archetype representing the 

building density of the periphery of Nablus as the second case study. A third case study is introduced 

considering the future expansion of the city, in which the building density is expected to increase 

further. Both these case studies align with the case studies introduced in Section 8. 5.1 (to quantify 

the effect of urban climate on the energy demand). A Pareto optimization is conducted considering 
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NPV and GI and the objective functions for three scenarios illustrated before (i.e. Standalone, 

Meteonorm and CIM). Subsequently, the objective function values for each case study are 

normalized considering the three Pareto fronts obtained for each case study in order to make it easy 

for the readers to understand the deviation due to the building density (Fig. 8. 11).  
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Fig. 8. 10: Pareto front obtained considering NPV and GI as the objective functions. Values of the objective functions 

are normalized considering minimum and maximum objective function values obtained for the three Pareto fronts in 

order to simplify the analysis. 
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Fig. 8. 11: Top to bottom plots in the left side of the figure presents the three Pareto fronts obtained for each case 

study i.e. Periphery of Nablus (PN), Center of Nablus (CN) and Future Center of Nablus. The three Pareto fronts 

obtained for Future Center of Nablus (FCN) are enlarged on the right hand side image in order to elaborate the 

regions introduced in the figure 

Pareto fronts obtained for the three case studies (Fig 11.) are used to get a qualitative understanding 

of the influence of urban climate in the context of energy system sizing (which is assessed 

quantitatively in Section 8. 5.4). When comparing the three case studies, it is observed that the 

Pareto fronts for Meteonorm and Standalone follow close to each other for both the periphery and 

the center of Nablus (discussed previously in this section). However, a clear separation of these two 

Pareto fronts is observed when moving into the future center of Nablus, which takes into account an 

increase in the objective function values of up to 10% (future center of Nablus-CIM). These results 

show that neglecting the influence of shadowing and long wave radiation may lead to a deviation in 

NPV of up to 10%. The deviation observed can be further increased in cities that have skyscrapers 

and much higher building densities. The influence of building density on energy system sizing can be 



222 
 

clearly understood when comparing standalone and CIM scenarios for future center of Nablus. The 

differences in the objective function values (stand alone and CIM) increase by up to 40% when 

considering the future center of Nablus which is on average a 20% increase when compared to 

buildings in the periphery of Nablus. These results show that the urban climate can have a notable 

influence on the energy system design process, especially in highly dense cities.      

8.5.4. Consequences of neglecting urban climate in energy system sizing 

A quantitative analysis is conducted in this section to understand the influence of urban climate 

(extending the qualitative analysis conducted in Section 8. 5.3) and the consequences of neglecting it 

during the energy system design process. Pareto solutions are taken for further assessment from the 

three Pareto fronts of the future center of Nablus which presented the highest deviation in objective 

function values. 

Four sets of design solutions (with similar grid purchase values) are taken from the three Pareto 

fronts and tabulated in Table 8.3. When considering each set, it is clear that the NPV has increased 

by 3-6% when moving from the Standalone to the Meteonorm scenario while it increases by more 

than 20% when moving from the standalone scenario to CIM. For example, NPV has increased by 

4.8% when moving from 1-SA to 1-MET while it has increased by 20.3% when moving from 1-SA to 1-

CIM. These quantitative values align with the qualitative explanation provided in Section 8. 5.3. The 

increase in NPV is well beyond the increase in the demand. It can be concluded that increase in 

demand as well as the fluctuations introduced to the demand profile due to the urban climate result 

in a notable increase in NPV. 

When analyzing Table 8.3 further, it is clear that both the ICG contribution and capacity follows the 

pattern of NPV when moving from the standalone to the CIM scenario. The percentage contribution 

of the ICG increases by 3-10% when moving from the standalone to the CIM scenario. For example, 

ICG generation increases by 3.2% when moving from 4-CIM to 4-SA while it increases by 10% when 

moving from 1-SA to 1-CIM. A clear pattern is not observed for system configuration except for the 

ICG capacity when moving from the standalone to the CIM scenario. As discussed in Section 8. 5.1, 

the increase in demand is not uniform throughout the year when moving from the standalone to the 

CIM scenario. As a result, a uniform increase in renewable energy components, energy storage and 

dispatchable source is not observed. A notable increase in daily peaks is observed in the demand 

curve which results in introducing more fluctuations into the demand profile calling for support from 

the dispatchable source whenever the grid is not catering the mismatch. This results in higher ICG 

capacity and contribution when moving from the standalone scenario to CIM. In general, the 
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changes brought to the demand pattern due to the urban climate result in changes in the energy 

system configuration. 

The effect of urban climate is considered in CIM and neglected in the standalone scenario. Where 

urban climate is not considered, the system will be designed based on the demand profile obtained 

for the standalone scenario. The system designed for the standalone scenario will have to cater the 

demand profile of CIM due to the effect of urban climate which is not considered at the design 

point. This will result in a performance gap. The performance gap clearly presents the consequences 

of not considering the urban climate at an early point of energy system design. To assess the impact 

further, performances of the four energy systems obtained for the standalone scenario (already 

presented in Table 8.3) are evaluated considering the demand profile of the CIM scenario (for the 

future center of Nablus). When analyzing the results, a notable performance gap can be observed 

for all the performance indicators (Table 8.4). NPV increase by 5-8% while grid dependency increases 

by up to 57%. More importantly, all the design solutions violate the constraint on power supply 

reliability set at the formulation of the optimization problem. A significant increase in ICG 

contribution is observed due to the increase in the peak demand as discussed before. In general, it 

can be concluded that neglecting the urban climate may lead to a notable performance gap. More 

importantly, energy systems fail to maintain the reliability of the power supply which is considered 

as an important constraint in design optimization.      

8.5.5. Overall computational time required  

Computational time required for the overall process and the additional computational burden due to 

the consideration of urban climate is an important aspect which needs to be evaluated. Simulations 

are run on a single processor (1.2GHz) for each scenario and for each city for one full year (8760 time 

step) for both CIM and CitySim. The energy hub model is implemented in Intel(R) Core(TM) i7-6700-

3.40 GHz CPU. CIM simulations are more computationally extensive compared to the CitySim ones 

(Table 8.5). Since CIM is dependent on the number of vertical levels, it takes significantly more time 

to run for a domain with higher buildings. Higher buildings imply that there are additional cells so 

that a surface layer can be developed above the displacement height. It is clear that CIM adds an 

additional computational load to energy system sizing, extending the computational time by 

approximately four times. However, the extension of the computational time can be easily justified 

when considering the improvements obtained in the energy system design. 
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Table 8. 3: Computational time in seconds for each simulation for CIM, CitySim and energy hub model 

 

8.6. Conclusions and future perspectives   

Providing sustainable energy solutions to rapidly growing cities is a challenging task. Urban energy 

systems play a major role in this context. Computational platforms combining different fields of 

expertise will help the energy engineers to face this challenge. This chapter highlights the 

importance of filling the research gap by combining energy system optimization with building 

simulation and urban climate modeling. The complexity of modeling the urban climate and 

subsequent coupling with a bottom up building simulation tool and an energy system designing tool 

make it difficult to develop a computational platform that can bridge all these elements. This 

chapter presents an effective way to address the problem by combining CIM, CitySim and an energy 

hub model as a computational platform to address the aforementioned research gap. 

Results of the chapter reveal that the response of a cluster of buildings is different from that of a 

single building. Therefore, it is difficult to make predictions based on the performance of a single 

standalone building due to the interaction among the buildings and the micro-climate. The study 

shows that more fluctuations in demand profile (heating and cooling) are observed when moving 

from standalone buildings to dense urban areas. This makes it more challenging to design urban 

energy systems. Furthermore, both peak and annual energy demand can increase respectively by 

13% to 18% when considering urban climate. All these results emphasize that the urban climate 

plays a major role in energy demand. Therefore, it is important to look at the energy efficiency of an 

entire building stock at neighborhood or urban scale considering the interactions among buildings 

and the micro-climate and not to limit the efforts to energy efficiency at building scale. 

The influence of urban climate on energy demand has a significant impact on the energy system. The 

increase observed in peak and annual demand results in an increase in NPV of the energy system. 

NPV of the energy system increases up to 40% when considering the effect of urban climate in highly 

dense urban scenarios. Therefore, neglecting the influence of urban climate can result in a 

significant performance gap for all the performance indicators of the energy system, which can 

reach up to 50% in certain scenarios. This highlights the importance of developing a computational 

platform combining urban climate, building simulation and energy system optimization. 

Furthermore, both active and passive strategies should be introduced to minimize the adverse 

 CIM (s) CitySim(s) Energy hub model (s) 

Center of city 39752 252 7160 

Periphery of city 39759 237 7320 
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impacts due to urban climate. Introducing green areas and water bodies into the cities, building 

renovation and green roofs and facades would be promising remedies [67]. The computational 

platform introduced in this chapter should be extended further to accommodate the influence of the 

aforementioned factors. In addition, it is important to evaluate the effectiveness of different urban 

configurations in order to minimize the adverse impact of increasing urban densities. In conclusion, 

the impact of the urban morphology on the energy systems should be carefully considered during 

the urban planning process. A computational platform introduced in this chapter can be immensely 

helpful in this context. However, it is important to extend the boundaries of the computational 

platform to consider other aspects such as transportation, outdoor comfort etc. which will help the 

urban planners to produce better designs.  
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9 Towards Energy System Friendly 
Urban Form 
 

 

Standard and newly designed archetypes are used in this chapter to quantify the influence of urban 

morphology on energy demand, renewable energy integration and the energy system design process. 

An energy hub is designed for a set of archetypes selected to quantify the impact of urban 

morphology on energy system requirements. 

This chapter is based on (preprint version): 

A.T.D. Perera, Silvia Coccolo, Jean-Louis Scartezzini, “Impact of urban form on energy efficiency and 

renewable energy integration” (Manuscript in review, Scientific Reports) 

Author contribution for the journal paper:  

ATD, SC, JLS designed the research. SC conducted the building and urban energy simulation. SC and 

ATDP analysed the energy demand. ATDP conducted the energy system analysis. ATDP, SC and JLS 

wrote the manuscript 
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9.1. Introduction 

The energy sustainability of cities has been widely discussed in recent years and even included into 

the United Nations Sustainable Goals [1]. However, no satisfactory method to quantify the impact of 

the complex chain of effects and reactions that impact urban energy infrastructure has been 

presented to date.  

The interactions among buildings in the urban environment play a vital role when considering the 

energy demand in cities. According to Baker and Steemer [2], five factors leverage building energy 

performance in the urban context, i.e. urban climate, urban morphology, building physics, HVAC 

systems and occupant behavior. Energy efficiency and the sustainability of cities have been 

addressed from different perspectives [3] within this context by Baker and Steemer [2]. Among these, 

two approaches complementary to each other can be clearly observed when referring to recent 

literature. These are to improve the energy efficiency of cities by:  

i) increasing the efficiency of building stock and introducing sustainable energy technologies into the 

urban energy infrastructure;  

ii)  enhancing the urban form and morphology through efficient urban planning. 

The first of these approaches relates with mapping the potential of renewable energy technologies at 

the urban scale, optimal integration of renewable energy technologies, optimal operation of urban 

energy systems, improving energy efficiency building stock through methods, such as building 

renovation, etc. Arranging urban configuration by introducing different zones depending upon 

function, locating green areas, etc. in order to change the urban climate are considered under the 

second. Both play a vital role in improving the energy efficiency and sustainability as demonstrated in 

detail in recent literature [4,5]. When it comes to the first approach, Perera et-al. [6] have shown the 

potential of distributed energy systems such as energy hubs to integrate renewable energy 

technologies into urban energy infrastructure. Fazlollahi et-al [7,8] introduced a novel method to 

optimize urban energy systems combining several distributed energy systems with the energy 

network. Having a better understanding of the energy demand is essential when designing 

distributed energy systems. Fonseca et-al [9,10] introduced City Energy Analysis to design urban 

energy systems carefully considering the energy demand at building scale using statistically 

representative building archetypes. Le Guen et-al [11] developed a computational platform that 

considers the energy demand in detail including interactions among buildings when designing 

distributed energy systems. This platform is used to obtain the best levels for building renovation and 

energy system improvements. Perera et-al assessed the impact of urban climate on energy system 

design [13]. All these studies are focused on improvements considering both buildings and energy 
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systems. However, none of these studies considered the influence of urban morphology; Hence, it is 

difficult to directly extend such methods to urban planning. In addition, the interactions among 

buildings have not been considered in most studies, although these significantly influence energy 

efficiency and renewable energy integration. Hence, it is important to move beyond building level to 

consider urban form, which can notably reduce the energy consumption and support renewable 

energy integration according to Salat [14].     

From the perspective of urban form and morphology, several studies have been conducted 

investigating the “best” urban form in terms of sustainability of the urban environment. The 

discussion on the “compact city” versus the “dispersed city” [15,16] can be brought as one example. 

Urban planning plays a leading role in urban energy consumption. Ratti et-al [18] present the 

relationship between energy consumption in cities and urban texture and relate the influence of 

urban texture on energy efficiency. Different attempts have been made to quantify the influence of 

urban form on the energy demand. Liu et-al. [19] evaluate the impact of urban density on heat 

transfer of building stocks simply considering the distances between buildings. However, such a 

method cannot be extended to complex urban morphologies. Ratti et-al. [18] introduce the concept 

of urban archetypes in order to handle the complexity in urban morphology. Okeil [20] evaluates the 

effectiveness of harnessing solar energy in different urban forms introduced by Ratti et al. [18]. 

Sanaieian et al [21]  evaluate the impact of urban form on thermal performance, solar access and 

ventilation using archetypes while Taleghani et-al [22] evaluate the impact of urban archetypes on 

outdoor thermal comfort. These studies clearly reflect that the urban form has a notable impact on 

the energy demand and that urban archetypes can be used to get a better understanding of the 

impact of urban morphology. However, none of these studies focuses on the impact of building 

archetypes on renewable energy integration and energy system configuration. 

The two approaches mentioned above (improving the energy efficiency of urban form and improving 

the energy efficiency at the building scale and integrating renewable energy technologies) are 

adopted in this study to improve the energy efficiency and sustainability at the urban scale. Merging 

the two can speed up the energy transition in the urban sector. Towards this end, the study focuses 

on quantifying the impact of urban morphology on energy demand and its consequences for energy 

system design, which can lead to improved energy sustainability in future cities through optimum 

urban planning.  

The impact of the urban form on the peak and annual energy demand and building integrated solar 

PV generation 
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 is evaluated in a first step using modular urban archetypes defined by Ratti et-al [18] at different 

scales (Fig 9. 1). The urban morphology can be very complex in certain instances and might be 

difficult to represent using simple archetypes. To handle this issue, integrated urban archetypes are 

introduced by extending the modular urban archetype defined by Ratti et-al [18]. Towards addressing 

the main research problem, the design of distributed energy systems is optimized considering the 

energy demand of a selected set of urban archetypes. Pareto optimization considering cost and 

system autonomy is conducted to optimally design the energy system. Subsequently, the impact of 

urban form on cost, autonomy and renewable energy integration level are evaluated for both simple 

and integrated urban archetypes to understand the influence of urban form on the energy 

infrastructure.  

9.2. Urban Archetypes 

An urban archetype (Fig 9. 1) can be defined as a set of several environmental and architectural 

parameters commonly used to describe the urban environment. Urban archetypes can be used to 

represent a typical neighborhood in terms of geometric and volumetric properties when working at 

the urban scale [23]. Several studies used urban archetypes to investigate the relationship between 

the urban form and environmental variables such as shadow density and daylight distribution 

[18,23,24]. Five modular urban configurations adapted from [26] are selected in this study (Table 9. 

1). These five modular archetypes can be considered as the building blocks for complex urban 

morphologies that can be observed in a city. The characteristics of the urban archetypes are i) ground 

floor area (m2), ii) number of floors (-), iii) treated floor area (m2), iv) Floor Area Ratio (FAR), v) Site 

Coverage (%) and vi) Form Factor (FF) (-). Sky View Factor (0-1) defined as the ratio between the 

radiation received by a planar surface and the one from the entire hemispheric radiating 

environment. Floor Area Ratio (-), corresponds to the ratio of the gross floor area to the site area. 

Site Coverage (%), defined as the ratio of buildings footprint to the site area. Form Factor (-), defined 

as the ratio between the ratio between the external envelope and the gross area of the building. 

9.3. Modular archetypes to complex urban forms 

Modular archetypes represent buildings in a simple neighborhood. It is important to get an 

understanding of the impact of the scaling-up process when moving from a simple neighborhood to 

urban scale. Both horizontal and vertical growth need to be considered in this context. Vertical 

growth corresponds to adding more floors to an existing modular archetype, which will increase the 

floor area while maintaining the same ground floor area and site coverage. In contrast, horizontal 

expansion extends ground floor area while maintaining the number of floors. The dimensions of the 

plan view of the modular archetype remains the same in the vertical expansion. Similarly, horizontal 

expansion can be achieved while proportionately increasing the dimensions of the modular 
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archetype by a constant factor. However, it is difficult to observe such a proportionate expansion of 

modular archetypes when considering horizontal growth. Often, it can be observed that different 

modular archetypes are mixed to form complex urban forms when considering horizontal growth.  

 

 

Fig. 9. 1: Conceptual design of the urban archetypes. 

Table 9. 1: Urban characteristic of the modular archetypes. 

Case studies 
Ground floor area 

(m2) 

Site Coverage  

(%) 

Urban configurations, plan and 3D view.  

Adapted from [26] 

 

A 900 0.009 

 

B 3,000 0.03 
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C 1,500 0.015 

 

D 4,050 0.04 

 

E 3,000 0.03 

 

F 5,100 0.05 

 

This chapter considers the evolution of modular archetypes from simple neighborhoods to complex 

urban forms through both vertical and horizontal expansion. Ten different cases were considered for 

each modular archetype as a function of the number of floors in order to assess the impact of vertical 

growth. In order to consider the impact of horizontal growth, this chapter considers a grid that 

formulates integrated urban archetypes based on modular archetypes. The grid consists of nine cells. 

The central grid cell consists of the modular archetype. In order to create a new district starting from 

the composition of the archetypes, we decided to aggregate the archetypes upon a 9-cell grid (Table 

9.2), where the central one corresponds to the highest case study (with 10 floors), and the cells 

around are defined by selecting the other case studies, with the objective of reaching a total area of 

145,000 m-2, with a maximum tolerance of 5,000 m-2 and a relative difference lower than 5%. The 

total area is defined as the average area of all case studies, multiplied by the 9-cell grid. 

Following a deep analysis of the results, three configurations were selected; their geometrical 

characteristics are summarized in Table 9. 2. Their total area corresponds to 147,000 (m2). 
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Table 9. 2: Aggregation typologies. 

Aggregati

on Case 

Study 

Central 

Cell 

 Border 

cells and 

Area (m2) 

Total Area 

District 

(m2) 

Images 

Ag1 F10 

 

B4/ 

12,000 
147,000 

 

Ag2 F10 

 

C8/ 

12,000 
147,000 

 

Ag3 F10 

 

E4/ 

12,000 
147,000 

 

 

9.4. Computational platform and case study 

A computational platform developed to design urban energy systems, which consists of several 

computational tools. A comprehensive overview of the computational platform is presented in Ref. 

[11,13]. The computational platform includes a GIS database (QGIS) of building location, building 

height, year of construction etc., a parametric modelling tool (Rhinoceros 5), an urban simulation 

model (CitySim) and an energy simulation model. CitySim is amply used in literature [11,27,28], and 

well validated with on-site monitoring and procedure tests [29–31]. Hourly electricity, heating and 

cooling demands, as well as SPV generation using rooftop PV are computed using CitySim. The 

building envelope presents an averaged glazing ration of 20%, without differentiation of facade 

orientation. The glazing U-value corresponds to 1.2 W·m-2K-1 and the g-value to 0.5. The U-value of 

the envelope is defined according to the CitySim and Lesosai database [32]. All buildings are 

equipped with heating and cooling systems, which start to work if the indoor air temperature is lower 

than 20°C or higher than 26°C. The buildings are considered to have a residential function; 

consequently the occupancy, lighting and appliance profiles are applied according to national and 

international normative [33] [34]. The electricity required for lighting and appliances is defined hourly 
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according to the profile we defined, adapted from [33] [34]. The lighting power density corresponds 

to 5 W·m-2  [34], and the power density of appliances to 2 W·m-2  [33].  

9.4.1. Case study 

The energy and electrical models are applied to two climatic conditions: the warm climate of Dubai 

(United Arab Emirates) and the temperate climate of Hemberg (Switzerland). The weather data used 

for the analyses were created with the software Meteonorm [35], for a Typical Meteorological Year 

(TMY), based on the average irradiance data of the period 1991-2010 and the average temperature 

of the period 2000-2009. The village of Hemberg (47°18′N, 9°10′ E, 935m asl, annual solar irradiance: 

1,165 kWh·m-2, Heating Degree Days: 4,044) presents a Cfb climate (C: warm temperate; f: fully 

humid; b: warm summer). During the winter time, the lowest temperature recorded during the 

month of January corresponds to -12.1°C. The summer is quite warm, with a maximum temperature 

of 29.1°C during the month of July, and an average temperature of 16.3°C. The wind speed is 

constant throughout the year, with an average wind speed of 3 m·s-1. The precipitations are quite 

high, with a total of 1,018 mm per year.  

The city of Dubai (25°16’N, 55°20’E, 0 m asl, Cumulative Solar Irradiance: 1,997 kWh·m-2, Cooling 

Degree Days: 6,196) is characterized by a BWh climate (B: arid; W:desert; h:hot) corresponding to a 

hot desert climate [36]. The maximum air temperature reaches 45°C during the month of July, while 

the average temperature during the summer time corresponds to 35°C, and during the winter time to 

20°C. Precipitations are mostly absent during the year, and just a few events are registered during 

the winter time, with less than 40 mm of rain per year. The relative humidity is high, and the wind 

speed is limited to circa 3.7 m·s-1.  

9.4.2. Energy system design tool 

A multi energy hub that caters the heating, cooling and electricity demand of the location is 

considered in this chapter. The energy hub is operated in a grid connected mode both selling and 

purchasing electricity to and from the grid while accommodating fluctuations in demand and 

generation. Grid curtailments are introduced when interacting with the grid for purchasing and 

selling electricity to stabilize the grid. The energy hub consists of renewable energy technologies, a 

dispatchable energy source and energy storage. Solar PV and wind turbines are considered as 

renewable energy technologies, which are non-dispatchable. An Internal Combustion Generator (ICG) 

is used as the dispatchable energy source, which helps to absorb the fluctuations in demand along 

with the battery bank. Heating and cooling demands are catered using heat pump and air-

conditioners respectively.    
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9.5.  Results  

The annual energy demand for cooling and heating per unit area, respectively assessed for Dubai and 

Hemberg, is presented in Fig 9. 2(a) and (b). Both Q-Q and S-S lines in the figures show that there is a 

significant drop in the energy demand when increasing the number of floors. For example, the annual 

cooling demand decreases from 240 to 99 kWh/m2 when moving from A1 to A6 in the Dubai case 

study. A similar decrease in energy demand can be observed for Hemberg. However, there is a 

significant variation in the cooling demand between modular archetypes with the same number of 

floors as shown in circle P in Fig 9. 2 (a). Cooling demand decreases from 104.35 to 67.58 kWh/m2 by 

35% when moving from A5 to D5, which have the same number of floors as highlighted in circle P. 

This clearly highlights the impact of the modular archetype on the energy demand. However, the 

impact of the modular archetype on the energy demand is lower in the case of Hemberg (which can 

be understood by comparing P and R circles). This makes it interesting to use indexes such as FF and 

FAR in order to generalize the observations.    
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Fig. 9. 2: Annual cooling and heating demand respectively for Dubai and Hemberg. Lines Q-Q and S-S show that annual 

energy demand for cooling and heating generally decreases with an increase in the number of floors. Circle P shows that 

there is a significant difference in energy demand per unit area (even for the same number of floors) for the case of 

Dubai, which is lower in Hemberg as shown in circle R.  
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The variation of FAR and FF with energy demand is similar in the Dubai and Hemberg case studies 

(Fig. 9.3 (a-d)). The energy demand decreases in a polynomial manner with increasing FAR while the 

energy demand linearly increases with the FF for both locations. For example, by increasing the Form 

Factor from 0.55 (Case Study F10) to 1.18 (Case Study A4), the heating demand increases by 100%, 

from 44.6 to 98.3 kWh·m-2 for the case of Hemberg. Consequently, the lower the FF, the lower is the 

heating demand. In general, the building has a low internal volume compared to a high external 

envelope, increasing the thermal losses, which results in a higher energy demand. This specific aspect 

is reflected in both FF and FAR. However, when analyzing Fig 9. 3 (b) it can be noticed that the urban 

archetypes with a similar heating demand (around 205 kWh·m-2) can have a different FF, passing 

from 1.9 (case study E1) to 3.1 (case study B1). This reflects that both FF and FAR only provide a 

general trend. Hence, it is important to analyze the influence of demand profile in an hourly 

resolution to get a broader idea of the influence of urban morphology on the energy system with 

regard to the design process. This is done in the next section. 

9.5.1. Influence on the hourly energy demand  

The next task is to consider the entire set of modular archetypes used so far to analyze the demand 

profile on an hourly scale (Fig 9. 4). For this purpose, five archetypes are selected (A10, B3, C6, D2 

and E3) from the entire set of 60 archetypes, representing different modular types with different 

numbers of floors. However, the selected archetypes have a total floor area close to 9,000 m2, which 

makes it reasonable to compare the energy system in order to highlight the impact of morphology.  

Hourly cooling and heating profiles for Dubai and Hemberg are presented in Fig 9. 4 (a) and (b). The 

demand profiles for both locations present complex variations on the hourly scale, which complicates 

performance analysis. Hence, the hourly cooling demand profile for Dubai is taken and divided into 

three sections marked by colored rectangles in Fig 9. 4(c). The rectangles colored in blue and marked 

as S provide a similar variation in demand, which is different from the purple rectangle marked as U. 

Subsequently, two frames are taken and enlarged, each presenting a time span of 48 hours. Frame 1 

presents a typical distribution of the cooling demand during summer while Frame 2 presents the 

demand profile during autumn and spring.          
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Fig. 9. 4: Hourly variation of cooling (a) and heating demand (b) respectively for Dubai and Hemberg case studies. (c): A 

detailed analysis of the hourly cooling demand profile of Dubai. Rectangles U and S present the demand during summer 

and autumn and spring respectively. Frames 1 and 2 are used to further analyze the demand profile.  

 

Following the changes observed in annual energy demand (as shown in Fig 9. 2), it is expected that 

the hourly demand profile will shift following the annual demand. Such a clear shift in the demand 

profile can be observed when analyzing Frame 2 in Fig 9. 4(c). A clear separation of the demand 

profiles can be observed in this context with relatively less fluctuations in the demand profile. 
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However, when moving from Frame 2 to Frame 1, a few significant changes can be observed. First, it 

is no longer possible to differentiate the demand profiles in Frame 1 when compared to Frame 2. In 

certain instances, a significant difference in cooling demand can be observed when considering C6 

and the rest (as marked by Circle V in Frame 2) while they are very close to each other in other 

instances (as marked by circle T in Frame 2). When considering Frames 1 and 2, it can be concluded 

that the difference in the energy demand is quite negligible in valleys as marked in circle T when 

compared to the energy demand during the peak period as shown in Frame 1. As a result, energy 

systems designed for archetypes such as D2 need to operate at very low part-loads when compared 

to the energy systems installed in C6, which can have a significant impact on their design, especially 

when considering life cycle cost, environmental impact and autonomy level. The impact of the 

archetype on the energy system is discussed in next section.     

 

9.5.2. Impact of the modular archetype on the energy system 

The stochastic nature of renewable energy potential and demand makes the renewable energy 

integration process more challenging, especially when designing distributed energy systems while 

maintaining system autonomy. Therefore, maintaining energy autonomy at building and 

neighborhood scale is considered as a main priority when integrating renewable energy technologies. 

A Pareto front considering Net Present Value (NPV) and Grid Integration (GI) level, which presents all 

the non-dominant solutions considering these two objectives, is helpful to understand the marginal 

cost of improving the system autonomy. Therefore, a Pareto front considering NPV and GI is used to 

obtain the design of the energy system, which is subsequently assessed considering NPV, system 

autonomy, renewable energy integration level and energy efficiency.     

The Pareto fronts obtained considering NPV and autonomy level for the selected urban archetypes 

and the meteorological conditions of Hemberg are presented in Fig 9. 5(a). When analyzing the 

Pareto fronts, it is prudent to increase NPV when minimizing the grid integration level (for system 

autonomy improvement). The Pareto fronts of B3 and E3 evolve quite close to each other. Beside 

these two Pareto fronts a clear shift in Pareto fronts can be observed when moving from one urban 

form to another. For example, the Pareto solutions have an NPV below 2x106 CHF for urban form C6 

but above 3x106 CHF for urban form D2 when reaching the stand-alone condition, which represents a 

significant increase in cost. More importantly, the shape of the Pareto fronts shows a significant 

difference when moving from one urban form to another. A sudden drop in NPV is observed when 

increasing the GI levels for the standalone condition (fully autonomous) for both A10 and D2. A 

gradual drop in NPV is observed for other urban forms. The Pareto fronts reveal that urban form has 

a notable impact on the energy system design and grid integration process.  
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Besides performing a qualitative analysis, it is important to quantify the influence of the urban form 

from a cost and system autonomy perspective. When looking at C6 and A10 Pareto fronts, it is 

prudent that both reach the same NPV level when increasing the grid interactions. However, there is 

a significant difference in the grid interaction levels that `have the same NPV. C6 maintains a grid 

integration level of 14% at a cost of 1.1 x106 whereas A10 presents an integration level of 29% for the 

same cost level. This clearly demonstrates that a higher autonomy level can be maintained for a 

much reduced price when selecting an appropriate urban configuration. Furthermore, a grid 

integration level of 10% can be reached for 1.2 x106 CHF when using C6 whereas the cost increases to 

2.6 x106 CHF using D2, which is a significant increase in the NPV. In brief, urban form has a price from 

an energy system perspective. 

It is interesting to assess the impact of climate on the energy efficiency of the urban form. When 

moving from Hemberg to Dubai, the Pareto fronts follow the same pattern when arranged in the 

order of increasing cost (Fig 9. 5(b)). However, the shape of the Pareto fronts looks more 

homogenous for Dubai. A sudden drop in NPV is observed when increasing the grid integration level 

from stand-alone, followed by a gradual reduction in NPV when further increasing the grid 

integration level. However, a significant increase in NPV is observed when moving from C6 to A10, 

which is not observed for Hemberg. Furthermore, a clear separation of two Pareto fronts is observed 

for B3 and E3 when considering Dubai due to a distinguishable difference in cooling demand. In 

general, noticeable changes are observed in the Pareto fronts when moving from Hemberg to Dubai, 

although the order of increasing NPV remains the same. It can be stated that the influences of urban 

climate on the energy consumption of buildings depend on the urban form, which may lead to a 

notable change in the energy demand pattern when moving from one location to another. This 

results in notable changes for the energy system under different autonomy levels.  
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Fig. 9. 5: Pareto fronts for five urban forms considering NPV and Grid Integration level for the climate of (a) Hemberg  and 

(b) Dubai (R). 

 

9.5.2.1. Impact of the energy demand on energy system design and operation 

Urban form can influence both peak demand and demand pattern, which may lead to a notable 

change in annual energy demand and varying demands on the energy system as well as a notable 

change in the NPV for the same autonomy level. It is important to assess whether increases in peak 

demand or annual demand influence the cost of an energy system in a similar manner. To this effect, 

four Pareto solutions are taken each for urban forms that have similar grid interaction levels. The 

NPV of these Pareto solutions are taken as a ratio of the NPV of C6 (N/NC6) (urban form with the 

lowest peak and annual demand). Similarly, the ratios of the peak demand of the urban form to the 

peak demand of C6 (P/PC6) and the annual energy demand (A/AC6) are computed (as shown in Fig 9. 

6). The ratios of N/NC6 to P/PC6 and N/NC6 to A/AC6 are computed in order to compare the impact on 

the energy system due to the changes in peak and annual demand (as a result of a change in the 

urban form).  

Fig 9. 6(a) and (b) show that both N/NC6: A/AC6 and N/NC6: P/PC6 ratios have values greater than one 

except for one grid integration scenario of A10 and E3. This indicates that the cost of the system 

increases at a larger ratio beyond the increase in peak demand and annual demand when moving 

from C6 to other scenarios. More importantly, both ratios (i.e. N/NC6:A/AC6 and N/NC6:P/PC6 ) reach 

1.8 for D2 in Scenario 3, which indicates that there is a significant increase in cost well beyond the 

increase in annual or peak demand. This clearly highlights the importance of evaluating the sensitivity 

of energy systems to urban form. When analyzing the demand profile of A10, B3, E3 D2 and C6, D2 

presents the highest peak demand. Nonetheless, the demand requirements when there is no cooling 
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or heating (which corresponds to the minimum demand) remain the same for all scenarios (since the 

demand for appliances is taken to be similar). Hence, demand fluctuation in D2 is significant 

compared to the other scenarios, which results in a cost increase that are linear neither with the 

peak demand nor with the annual demand. The same argument can be advanced to reason out the 

fluctuations in other three urban forms. Hence, it is clear that the influence on of urban form cannot 

be simply inferred using building or urban simulation which makes it essential to integrate energy 

system designing into urban planning process. 
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Fig. 9. 6: Variation of (a) N/NC6:A/AC6 and (b) N/NC6:P/PC6 for different scenarios of grid integration 

 

9.5.3. Renewable energy integration at building and system level 

Roofs receive more solar irradiation than facades and are therefore often preferred for BIPV for 

financial reasons. Nonetheless, integration of PV panels into facades is rapidly getting popular due to 

the price reduction PV panels. Therefore, solar irradiation on both facades and roofs is considered in 

this study. The annual solar energy received per unit floor area is plotted for 60 different forms for 

Dubai and Hemberg in Fig 9. 7. As you may observe, the peak energy received reaches 23.6 and 35.9 

respectively in the C1 configuration for Hemberg and Dubai. For the E10 configuration, the minimum 

solar energy received reaches 0.23 and 0.32 kWh. The roof area remains the same while the number 

of floors increases. This simply explains the reason for the decrease of solar energy received per unit 

area with the increase of floors for the same urban form. However, the most important fact is the 

sensitivity to urban form of received solar energy. Significant changes can be observed when moving 

from one urban form to another. For example, the difference is of an order of magnitude when 

moving from C to E. It can be concluded that the urban form has a notable impact on solar energy 

technology efficiency at building level.     
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Fig. 9. 7: Renewable energy integration into Archetypes. Annual solar irradiation per unit floor area for different urban 

forms for (a) Dubai and (b) Hemberg. (c) Fluctuations in the renewable energy fraction (left) and Waste of Renewable 

Energy (WRE) for the Pareto solutions considering NPV and grid Integration level as objective functions (right) for Dubai 

case. 
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Besides performing a qualitative assessment of the potential for building integrated renewable 

energy technologies, it is important to evaluate the provisions for renewable energy integration at 

the system level. Characteristics of the demand profile are of notable influence in this context and 

these depend on the urban form as discussed previously. When analyzing the renewable energy 

percentage of A10, B3 and E3, we can see that the renewable energy contribution decreases up to a 

certain point as the grid integration level increases and then suddenly jumps up again (Fig 9. 7(c)). 

Afterwards it starts to decrease again, but apparently without a common pattern except for B3 and 

E3. A gradual decrease in renewable energy generation is observed when considering Pareto 

solutions of urban form C, which is totally different from the other three. In general, the fluctuation 

of renewable energy contribution with respect to grid integration level is significantly influenced by 

the urban form. When considering the renewable energy penetration level for the four urban forms 

considered, an optimistic picture can be observed. Renewable energy generation passes beyond the 

demand in certain instances (A10), in which the excess is sold to the grid. The renewable energy 

generation reaches around 50-60% of the annual demand when reaching the minimum NPV for 

Forms A10, B3 and C6. It oscillates between 70% and 80% in urban form C, which corresponds to a 

20% increase in renewable energy penetration level when compared to the others. In general, 

irrespective of urban form, energy hubs can incorporate non-dispatchable renewable technologies 

for more than 50% of the annual energy demand. 

The renewable power generated within the system cannot be utilized completely in certain instances 

due to grid curtailments and storage limitations. Therefore, it is important to assess the utilization of 

renewable energy as well as the generation. The part of renewable energy which cannot be used 

(waste of renewable energy or WRE) within the system is presented in Fig 9. 7 (c) for the Pareto 

solutions of the urban forms of A10, B3 and C6. In general, maintaining WRE below 10% is known to 

be a good practice when designing grid integrated energy systems. When analyzing the WRE for the 

three urban forms, it is clear that a significant amount of the renewable energy generated within the 

system has to be dumped due to grid curtailments and storage limitations. WRE reaches 50% for 

certain design solutions of A10 and B3, which is considered well above the usual practice for grid 

integrated energy systems. In contrast, WRE is kept below 10% in C6. However, WRE falls below 10% 

when increasing the grid integration level to above 40% for all the design solutions of all three urban 

forms. It can be concluded that urban form has a notable impact on renewable energy utilization 

especially for instances when the grid integration level is low. Hence, effective renewable energy 

generation can significantly influenced by urban form.    
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9.5.4. From the modular archetypes to cities 

Three Pareto fronts are created for the three aggregated urban forms as presented in Fig 9. 8. Pareto 

fronts of the aggregated urban forms show a significant drop in NPV when comparing D2 and E3. This 

is due to the fact that the basic urban forms were more densified when generating the aggregated 

urban forms, which reduced the demand per unit area. The most important fact is that a significant 

change in NPV is not observed when moving from one integrated archetype to the other. The three 

Pareto fronts for the integrated archetypes are sandwiched in between C6 and A10. This depicts the 

fact that when moving into aggregated urban forms combining different simple urban forms, the 

aggregated urban forms tend to behave uniquely being different from the parent urban forms. More 

importantly, no significant difference in the energy system is observed between the aggregated 

urban forms. However, this specific aspect needs to be studied further, deriving more integrated 

urban forms using the basic urban forms used in this study and subsequently applying them in real 

world situations. 

9.6. Conclusions and perspectives           

The results of the chapter reveal that the urban form has a notable impact on the energy demand. 

The annual demand can increase by 35% due to the urban form (for Hemberg) when considering the 

six urban forms considered in this chapter. These values are strongly influenced by the climatic 

conditions. Although performance indicators such as form factor and floor area ratio can be used to 

get an overview about the influence of urban form on the energy demand these do not provide detail 

information. Analyzing the energy demand of the archetypes at hourly resolution helps to get an 

overview about the influence of urban form on the demand profile which can be split into two. A 

direct shift (clear separation) in demand profile can be seen among the archetypes for a period of 

time in the year, while for the rest, these moves very close to each other. As a consequence, a 

significant fluctuation in demand profile can be seen for some archetypes notably influencing the 

energy system design. As a result, the autonomy level of the system can be improved by 10-15 % by 

selecting a more efficient urban form and more importantly, the cost of the energy system can be 

reduced by 30-50% by appropriate urban planning. 
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Fig. 9. 8: Comparison of the Pareto fronts obtained for integrated urban archetypes.  

 

The influence of urban form is further assessed focusing on the renewable energy integration 

perspective. As a consequence of the change in demand profile due to urban form, waste of 

renewable energy levels notably changes. Except one (C6), all the archetypes have higher WRE when 

reaching fully autonomous operation which increase up to 50% of the annual demand in certain 

instances. The chapter also shows that urban form can have an impact on building integrated 

renewable energy technologies such as BIPV. Optimum selection of the urban form can maximize the 

onsite renewable energy generation significantly. In general, urban form has a significant impact on 

the renewable energy integration. When comparing the two cities it is observed that a notable 

change in the NPV is observed when moving from Dubai to Hemberg (when comparing) from the 

perspective of objective function values of the Pareto fronts. Nonetheless, the impact of urban 

configuration on the energy system is visible irrespective of the location.  Archetype C6 performed 

well for both the locations when compared to the other archetypes which resulted in a significant 

improvement in the NPV values. 

Extrapolating the conditions of simple urban forms to complex urban forms that can be observed in 

actual cities will not produce accurate results. However, aggregated urban forms developed on the 

basis of simple urban forms can provide an indication regarding the behavior of complex urban 

forms. An aggregated urban form shows a behavior that is different from the parent forms that are 

used to develop them. More importantly, no significant difference is observed when moving from 
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one to another considering demand, renewable energy integration and energy system. This indicates 

that the influence of the urban form is trivial whenever we introduce a neighborhood into a highly 

dense large city, in which the complexity of the urban form is not altered by the introduction. 

However, the configuration of a neighborhood should be carefully considered when introducing a 

stock of buildings at the periphery of the city or in suburbs, in which the configuration of the 

buildings can notably influence the energy performance of the neighborhood. More importantly, the 

study reveals that the impact of urban form on the energy system (in terms of cost) is well beyond 

the impact on annual energy demand or peak demand. Therefore, it is difficult to deduct the 

influence of urban morphology simply by using building or urban energy simulation. The urban form 

influences the energy system with regard to cost, system autonomy and renewable energy 

integration. This makes it essential to optimize the configuration of the neighborhood along with the 

energy system and to combine urban planning and energy system optimization in order develop 

energy efficient future cities.  
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10  Integrated Assessment and 
Decision Making in the Energy System 
Designing Process 
 

An integrated approach is presented in this chapter to design electrical hubs combining 

optimization, multi-criterion assessment and decision making. Levelized Energy Cost (LEC), Initial 

Capital Cost (ICC), Grid Integration Level (GI), Levelized CO2 emission (LCO2), utilization of renewable 

energy, flexibility of the system, loss of load probability (LOLP) are considered as criteria used to 

assess the design. The novel approach consists of several steps. Pareto analysis is conducted initially 

using 2D Pareto fronts to reduce the dimensions of the optimization problem. Subsequently, Pareto 

multi objective optimization is conducted considering LEC, GI and ICC which were identified as the 

best set of objective functions to represent the design requirements. Next, fuzzy TOPSIS and level 

diagrams are used for multi-criterion decision making (MCDM) considering the set of criteria and the 

boundary matrix that represents the design requirements of the application.  

 

This chapter is based on (preprint version): 

A.T.D. Perera, V.M. Nik, D. Mauree, and J.-L. Scartezzini, “An integrated approach to design site 

specific distributed electrical hubs combining optimization, multi-criterion assessment and decision 

making”, Energy 2017 (134), PP. 103-120 
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10.1. Introduction 

Integrating renewable energy technologies is important to make energy systems sustainable and 

face the challenges due to escalating prices of fossil fuel resources, GHG emissions and security 

problems due to nuclear energy. Wind and solar energy are becoming more promising choices in this 

regard. However, stochastic nature of these energy sources limits the direct integration of these 

energy technologies up to 40% of the demand in order to maintain the stability of grid [1], [2]. Smart 

micro grids [3]–[5], virtual power plants [6]–[8], grid integrated  and stand-alone hybrid energy 

systems [9]–[11] are getting popular on this regard as methods to integrate higher fractions of Solar 

PV (SPV) and wind energy. These systems consist of dispatchable energy sources and storage which 

can absorb the fluctuations of SPV and wind energy while maintaining the reliability of the power 

supply. However, a number of aspects (technical, environmental, economical, social) need to be 

considered in the designing process especially considering site specific requirements [12].  

Optimum design and operation of distributed energy system is a challenging task with higher 

penetration levels of non-dispatchable renewable energy technologies such as SPV and wind. A 

number of studies have focused on addressing this research problem for both grid integrated and 

stand-alone operating modes [13]. At the same time, different approaches have been used to 

optimize these systems depending upon the system configuration as reviewed in Ref. [9], [14]–[16]. 

Multiple conflicting objectives are considered in the optimization process considering a number of 

diversified factors such as cost, environmental impact [17]–[19], utilization of renewable energy 

[20], system reliability [10], [21], [21], [22], social impact [23], exergy efficiency [24]etc., depending 

upon the requirements of the design. A detailed list of different objective functions considered in 

multi objective optimization of energy systems is presented by Tan et-al [25]. According to Fadaee 

and Radzi [12], research studies on multi objective optimization energy systems should be more 

focused on catering site specific requirements. This makes it essential to consider a number of sites 

and design specific requirements which are beyond objective functions used for multi-objective 

optimization. In addition, this makes it essential to select proper objective functions for Pareto 

optimization out of the set of criterions used to assess the project.  In addition it is important to 

continue energy system design beyond multi-objective optimization as suggested by Bhattacharyya 

[26] where multi criterion assessment and decision making needs to be combined with the designing 

process.  

Multi criterion assessment and decision making plays a major role when designing energy systems 

where a set of criterions need to be considered when arriving at the final. A number of different 

techniques have been used in this context which are reviewed in detailed in Ref. [27], [28]. Multi-
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criterion decision making has been amply used in various applications related to locating energy 

systems [29]–[31], performance evaluation of energy systems [32]–[34], configuration selection etc 

[35]–[38]. However, most of these applications are different from energy system designing. When it 

comes to energy system designing, non-dominant set of solutions used for multi criterion decision 

making needs to be obtained using Pareto optimization which is a lengthy process compared to most 

of the previous examples. Sayyaadi et-al [24], Perera et-al [39] and Mazza et-al [40] have used multi 

criterion decision making following multi objective optimization to design a poly-generation system, 

stand-alone hybrid energy system and a distribution network. Objective functions used for Pareto 

optimization are used directly used as the criterions for multi-criterion decision making process in 

these studies. Hence, this approach cannot be used whenever set of criterions used to assess the 

energy system increases notably; especially for practical applications of distributed energy systems 

where much diversified criterions are expected to be evaluated. In such instances, it is important to 

have an integrated approach consisting of several steps in order to identifying criterions that need to 

be considered for the assessment, select most the appropriate criterions as objective functions for 

Pareto optimization and support multi-criterion decision making considering all the criterions used 

to assess the system.       

This chapter presents an integrated approach that can be used to design grid integrated electrical 

bubs (simplified version of a multi energy hub only considering the electrical parts) consisting of SPV 

panels, wind turbines, battery bank and an Internal Combustion Generator (ICG). Eight criterions are 

considered to assess a grid integrated electrical hub. A novel integrated approach consisting of 

several steps is introduced to design the electrical hub depending upon the importance of each 

criterion. A Pareto analysis is conducted with different combinations of objective functions to reduce 

the dimensions of the optimization problem and select the most suitable objective functions. 

Decision making process is extended beyond the Pareto optimization (values of the objective 

function) considering all the aspects of the design using a boundary matrix to present the boundaries 

of the customer expectation. Section 10.2 provides a brief overview about the system considered in 

this chapter. Section 10.3 provides a detail description about the criterions used to assess the system 

and optimize. Section 10. 4 presents a concise description about the dispatch strategy. Section 10. 5 

optimization algorithm and different combinations of objective functions considered. A detailed 

description about the novel integrated approach is presented in Section 10. 6. Finally, application of 

the novel method is taken into discussion in section 10. 6.  
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10.2. Computational model for the electrical hub and assessment criterions 

A computational model is developed in this chapter to formulate criterions that are used to assess 

the electrical hub. Some of these criterions are directly used as objective functions in the 

optimization process and some other are considered in the decision making process. This section 

presents a brief overview about the energy system and the dispatch strategy adapted in brief.  

10.2.1. Overview of the Electrical Hub  

An Electrical Hub operating as a distributed energy system connected to the grid is considered in this 

chapter (Fig. 10.1). The Electrical Hub discussed in this paper is related to a rural electrification 

project for a small model village (peak demand of 29 kWh) in Hambanthota district. Hambantota is 

situated in the southern coastal belt in Sri Lanka which is having significant solar and wind energy 

potential according to the surveys carried out in Sri Lanka. Hence, an energy system configuration 

consisting of SPV panels, wind turbines, ICG and a battery bank is considered for the Electrical Hub. 

A   steady state hourly simulation is used to assess the energy flow in the system. Hourly wind speed 

and global horizontal solar irradiation are taken from meteorological databases. An isotropic model 

is used calculate the tilted solar irradiation on the SPV panel. Finally, power output from the solar 

panels is calculated using Durisch model [41]. The main advantage of this model is its capability to 

consider cell temperature, air mass, tilted solar irradiation when evaluating the efficiency of Solar PV 

panels which provides a better accuracy in modeling SPV panels [42]. Similarly, the power low 

approximation is used to convert the wind speed from anemometer to hub level height. Cubic Spline 

interpolation technique [43] is used to represent the power curve provided by the manufacturer of 

the wind turbines. Finally, renewable power generated (PRE) using SPV panels and wind turbines are 

computed on hourly basis. A detailed description about the model used to compute the energy flow 

through the renewable energy components can be found in Ref. [11]. 
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Fig. 10. 1: Overview of the electrical Hub 

10.3. The assessment criterions and their formulation 

Eight criterions are used to assess the energy system. These criterions are covering wider spectrum 

interests by users of the energy system including economic, environmental, energy efficiency and 

reliability. A concise description about the each criterion is presented in this section. 

10.3.1. Power supply reliability 

Power supply reliability becomes a vital factor to be considered in the designing process. Stochastic 

nature of the renewable energy potential, maintenance downtime of system devices and limitations 

in grid interactions and energy storage can result in breakdown in the power supply. Loss of power 

supply (LPS) due to downtime of system devices is not considered in this study. Loss of load 

probability (LOLP) as defined in Chapter 2 in used to measure the power supply reliability. 

10.3.2. Grid integration Level 

Autonomy of the system plays a major role in the renewable energy integration process. Strong 

interactions with grid will make the grid to be vulnerable to cascade failures. Hence, autonomy of 

the system is considered as a vital factor to be evaluated in renewable energy integration process 

especially in distributed generation. Instead of taking system autonomy (i.e. determines the 

percentage of demand generated within the system), grid integration level which is the 

complimentary to system autonomy is considered in this work. This will convert the maximization 

problem into a minimization problem that will make the decision making problem trouble free. The 

definition of GI level introduced in Chapter 2 is used in this part.  
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10.3.3. Utilization of renewable energy 

Various reasons such as stochastic nature of the demand and renewable energy potential, grid 

curtailments, limitations in energy storage makes it challenging to utilize renewable energy. This 

leads to a number of problems including poor energy efficiency, dependence on grid or dispatchable 

energy source which results in either poor autonomy or higher GHG emissions due to the 

combustion of fossil fuels. In order to rectify this issue utilization of renewable energy is considered 

as a major criterion to be optimized in energy system design. This study uses Waste of Renewable 

Energy (WRE) as the performance indicator which should be minimized in the design process. WRE 

represents the energy losses that take place in system due to seasonal changes in demand, 

renewable energy potential, and limitations in the energy storage and grid curtailments that has 

been amply used in resent literature [20], [39], [44]. The formulation for WRE introduced in Chapter 

2 is used in this chapter. 

10.3.4. Fuel Consumption of ICG 

Dispatchable energy sources play a major role when integrating renewable energy technologies into 

integrated energy systems. However, reliance upon dispatchable energy sources based on fossil fuel 

resources makes the system to be vulnerable to dynamic pricing due to higher depletion of fossil fuel 

resources. In addition, Fuel transportation becomes challenging for places away from cities and 

frequent use of ICG will lead to frequent maintenance. Minimizing fuel consumption will lead to 

minimize all the aforementioned limitations and make the system to become more sustainable. Fuel 

consumption of the ICG (FC) is calculated considering the operating load factor (LF) as presented in 

Chapter 2. 

10.3.5. Initial Capital investment  

Two economical parameters are considered in this assessment: initial investment required and 

Levelized Energy Cost (LEC) considering lifecycle cash flow of the system. Initial Capital Cost (ICC) 

required consist of acquisition cost (IAC), installation cost of the components (wind turbines, SPV 

panels, battery bank, ICG, power electronic devices etc) and other services charges that required to 

be paid to Energy Service Provider (IESP)  to operate as grid integrated energy system. IAC comprise of 

cash flows related to purchasing of system components considering present Sri Lankan market. Cash 

flows related to land clearance and installation costs are considered under IIns. Investment for the 

land is not considered in this work. Finally, ICC is calculated as explained in Chapter 2. 

 10.3.6. Levelized Energy Cost 

Levelized Energy Cost (LEC) is calculated considering the total cash flows of the system. LEC mainly 

consist of three components i.e. ICC and operation and maintenance cost (OM), and cash flow due 
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to grid interactions. OM consists of two main components, these are fixed (OMFixed) and variable 

OMVariable costs. OMFixed considered recurrent annual cash flows for maintenance of wind turbines, 

SPV panels, fuel and operation cost for ICG etc. OMVariable considers the replacement cost for ICG and 

battery bank. Replacement time for the ICG is determined considering the operating hours and Rain-

flow algorithm is used to determine the replacement time for the battery bank. Net cash flow due to 

GIs (GICF) is computed considering cash inflow due to selling excess generated and buying the 

mismatch based on the real time price of the grid. Finally, NPV of all the three main cash flows are 

combined and Net Present Value (NPV) of the project is calculated.  A detailed description about the 

methodology used to compute NPV is presented in Chapter 2. 

10.3.7. Levelized CO2 Emissions 

Minimizing CO2 emissions in different phases of the project is considered as one of the objectives of 

the energy system designers. Levelized CO2 (LCO2) is taken as the performance indicator to evaluate 

this aspect in this work. CO2 generation due to energy system components and their replacement is 

considered first. Afterwards CO2 generated due to grid interactions (when purchasing electricity) 

and power generation in ICG is considered secondly. Finally, total CO2 emission (TCO2) of the system 

is calculated a in Chapter 2. 

10.3.8. Flexibility of the system 

Flexibility of the system is defined as the ability of the system to adjust for the changes that take 

place in internal or external environment changes. Flexibility will make the system impervious to 

changes in the inputs and the outputs which are essential when it comes to distributed generation. 

Hourly time series for renewable energy potentials, demand, price of grid electricity etc., are 

considered as inputs to the computational model that are stochastic in nature. Hence it is important 

to consider the flexibility of the system to get adapted to the changes of these factors. In addition to 

these factors, flexibility of the system needs to be measured considering volatility of market prices in 

fuel, electricity, and energy storage needs to be considered in economic terms. All the 

aforementioned factors can be considered as the external factors which system needs to flexible. In 

addition, internal factors due to malfunctioning or maintenance of system components such as wind 

turbines, SPV Panels, ICG etc., need to be considered within the broad scope of flexibility. However, 

most of the recent studies in energy systems design did not consider all these aspects 

simultaneously due to the complexity and most of the studies limit their scope to power supply 

reliability. This chapter also limits the scope to internal factors considering the changes in renewable 

energy potential, demand and grid curtailments. A detailed description about the methodology used 

to compute flexibility is presented in Chapter 7. 
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.  

10.4. Dispatch Strategy of the E-hub 

A bi-level dispatch strategy combining fuzzy and finite state automata theory is used in this chapter 

to determine the operating load factor of the ICGs and, energy interactions with battery bank and 

grid. Finite state automata have been amply used in representing dispatch strategy when designing 

hybrid energy systems [48], [49]. Fuzzy rules are defined considering the state of charge level of the 

battery bank and the difference in Electric Load Demand (ELD) and generation. The fuzzy rules are 

optimized using the algorithm presented in Section 10.6. Interactions with the grid and energy 

storage are determined in the secondary level after determining the net power generation of the 

system, mismatch between demand and generation, real time electricity price in grid and state of 

charge of the battery bank. State transfer function is derived considering seven decision variables 

(Table 10.1) which are optimized using the optimization algorithm. Subsequently, the ten possible 

states that the system operates considering the SOC of battery bank, renewable energy generation, 

COE in grid, upper bounds to purchase (PFG-Max (t)) or sell electricity to grid (PTG-Max (t)) (grid 

curtailments) is presented in Table 10. 2. 

Table 10. 1: Decision space variables used for formulating the state transfer function   

 

10.5. Design optimization of the system  

Optimum design and control of integrated energy systems combining renewable energy 

technologies for both stand-alone and grid integrated applications is a rich area of study. A number 

of publications have presented different techniques for optimization including heuristic, direct 

search, numerical methods where different objective functions are considered [12], [16], [50]. The 

Decision 

space variable 

Description 

LimBC Critical cost for  GCT(t) above which selling the excess power generated to the grid 

is economical compared to battery charging 

LimBD Critical cost for  GCF(t) below which purchasing power from grid 

is economical compared to battery discharging 

LimGTB Critical cost for GCF(t) below which purchasing power from grid to charge battery 

bank is economical 

LimBTG Critical cost for  GCT(t) above which selling stored energy to grid is economical 

SOCmin Critical SOC of the battery bank below which discharging is not economical to cater 

the load mismatch 

SOCMin,G  Critical SOC of the battery bank below which it is not economical to discharge and/or 

to sell the stored energy to grid 

SOCSet Maximum state of charged to be reached when charging the battery bank using the 

grid  
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response of the energy system to the changes in demand, renewable energy potential etc. needs to 

be considered where hourly simulation is required. Simulation of the system considering time series 

of demand, renewable energy potential and grid conditions result in objective functions neither 

linear nor analytical. Simultaneous optimization of design and control strategy makes mapping of 

decision space variable into objective space complicated. Lopez et-al [51] has shown that 

evolutionary algorithms are efficient in optimizing such integrated energy systems for stand-alone 

applications. Different architectures of algorithms have been adapted to optimize integrated energy 

systems which have shown to be promising for both grid connected and stand-alone operation [12], 

[16], [50].  

 

Table 10. 2: Operating states of the system secondary level dispatch strategy 

 

State Description of the state Condition of the battery bank Grid interaction COE in Grid 

State 1 Excess power is generated and COE in MTG is 

higher enough to sell excess power generated 

instead of battery charging 

Self-discharge Excess power generated is 

transferred to grid 

GCT(t) > LimBC 

and 

GCT(t) < imBTG 

State 2 Excess power generated is directed to the grid 

and battery bank discharge 

Battery bank can be discharge up 

to SOCMin,G 

Power can directed to the 

grid up to TGLim depending 

on excess generation 

GCT(t) > LimBC and 

GCT(t) > LimBTG 

State 3 Excess power generated is directed to the 

battery bank 

Battery bank can be charged up to 

maximum SOC 

No interactions  GCT(t) < LimBC 

and 

GCF(t) >LimGTB 

State 4 Excess power generated is directed to the 

battery bank and further charged using  

Battery bank is charged using 

excess renewable energy and grid  

Power from grid to charge 

battery bank 

GCT(t) < LimBC and 

GCF(t) < LimGTB 

State 5 Excess power generated is larger than the 

maximal transferable, it needs to be dumped 

which will produce waste of renewable energy 

(WRE). 

Battery bank reaches maximum 

state of charge  

Power is directed to the 

grid up to TGLim 

At any condition 

State 6 Mismatch in demand and generation taken 

from the grid 

Self-discharge Mismatch is catered GCF(t) < LimBD and 

GCF(t) > LimGTB 

State 7 Mismatch is taken from the grid while charging 

the battery bank 

Battery bank is charged up to 

SOCSet using the grid 

Power taken from the grid 

to charge the battery 

bank  

GCF(t) < LimBD and 

GCF(t) < LimGTB 

State 8 Mismatch is taken from the battery bank Battery bank can be discharge up 

to SOCmin 

No interactions GCF(t) >LimBD and 

GCT(t) < LimBTG 

State 9 Mismatch is taken from the battery bank and 

excess in the battery bank is injected to the grid  

Battery bank can be discharge up 

to SOCMin,G 

Power to the grid from 

battery bank 

GCF(t) >LimBD and 

GCT(t) > LimBTG 

State 10 Mismatch is greater than the maximum that can 

be taken combining battery bank and grid. Loss 

of power supply will take place in this case 

Battery bank reaches the 

minimum state of charge  

Maximum limit that can 

be taken from the grid 

At any condition 
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Evolutionary Algorithm based on Ɛ-dominance technique is used in this study for multi-objective 

optimization. This method is a proven technique to maintain diversity of the Pareto front while 

reaching the best set of solutions.  Optimization algorithm is combined with the computational 

model that formulates the objective functions. Hence, a simulation based optimization of the system 

is performed. Several combinations of the objective functions are considered as shown in Table 10. 3 

based on the formulations described in Section 10. 3. Power supply reliability is considered as the 

constraint in all the optimizations.         

Table 10. 3: Different combinations of objective functions considered for optimization and decision space variables    

 

10.6. Frame work for the multi criterion assessment and decision making 

Optimum design and operation of Electrical Hubs is a multi-step process which consists of several 

phases as shown in Fig. 10.2. Multi-criterion assessment starts with understanding the main 

requirements that need to be met in the energy system designing project. This will help understand 

and define criterions that need to be considered in the optimization, assessment and multi criterion 

decision making. As the second step, classifying these performance indicators based on the relative 

importance to the specific project is performed. In this study, performance indicators are classified 

into three groups i.e. Preference Indicators (PI), Basic Indicators (BI) and Critical Indicators (CI) 

depending upon its importance and relevance to the application. Power supply reliability and LEC 

are taken as the most influential factors to the design which cannot be waived to increase the 

performance of other indicators. Power supply reliability is considered as a constraint in the 

optimization process which is not considered further in the decision making process. LEC is carefully 

considered along with all the other criterions in the decision making process to make sure that 

expectation of the system design is met. 

Scenario1 
Objective functions 

considered 
Constraint function Decision space variables 

A 

 

Case 1: LEC-ICC 

Case 2: LEC-LCO2 

Case 3: LEC-GI 

Case 4: LEC-WRE 
Loss of Load 

probability 

 Number and type of SPV panels 

 Number and type of wind turbines 

 Size of Battery bank 

 Size of ICG 

 Variables for finite state machines 

 Variables of fuzzy controller 
B  LEC-GI-ICC 

(1)
Scenario A relates to Cases for Pareto analysis and B relates for multi-criterion decision making 
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diagrams
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Environmental 
impact

Energy security
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Life cycle 
simulation
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matrix for Fuzzy 

TOPSIS
Dimension 
reduction

Pareto optimized 
following dimension 

reduction

Final Energy 
System 
Design

Understanding the design requirements Energy system designing tool box

Pareto Analysis

Classification of 
design criterions 

Multi-criterion Decision Making

 

Fig. 10. 2: Different parts of the decision making Process 

BIs are selected from the pool of criterions considering the site specific information and the 

requirement of the applications. These criterions are having a less priority lower compared to CIs. In 

this work, ICC, LCO2, WRE, GI and system flexibility level are considered as BIs. These are considered 

as objective functions in the Pareto optimization and subsequently in the Pareto analysis (except 

system flexibility which is computed following the Pareto optimization considering the performance 

of the Pareto solutions). Finally, PIs are considered as other criterions need to be considered in the 

design. After the classification of criterions, these criterions need to be mathematically modeled 

which can subsequently be used for optimization. This is usually performed by an energy system 

designing tool box as explained in Section 10. 3, 10.4 and 10.5.    

A number of techno-economical criterions can be suggested to consider in Pareto optimization. 

However, extending the dimensions of the objective space makes the optimization process more 

difficult. Extending the dimensions will increase the set of Pareto solutions. Each and every solution 

in the Pareto front presents a unique system design, operation strategy or both. Hence, increasing 
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the set of non-dominant solutions will make the ranking process more challenging. Hence, a 2D 

Pareto analysis is used to identify the performance indicators which can be promoted as objective 

functions to determine final set of solutions while reducing the dimensions of the optimization 

problem.  

Selecting final system design by using the Pareto front obtained will limit the opportunity to fully 

consider the design requirements and the influence of the other criterions which are not considered 

for the Pareto optimization. Hence, decision making needs to be performed moving beyond the 

graphical analysis of the Pareto front obtained using CI and few selected BI where multi-criterion 

decision making technique is required. This will help to consider the pool of criterions including CI, BI 

and PIs with its relative importance. However, it is important to define the boundary matrix which 

gives the maximum value (for a minimization problem) that you can reach considering a specific 

criterion based on the design requirements. This is obtained considering the design requirements of 

the energy system, boundary values obtained in the 2D Pareto analysis and the boundary values of 

the 3D Pareto front.  Finally, Fuzzy TOPSIS method is used with the support of Level diagrams for the 

multi criterion decision making process. Fuzzy TOPSIS have been amply used as a multi-criterion 

decision making technique for energy related applications and combining with multi objective 

optimization.   

The fuzzy TOPSIS method consists of several steps: 

Step 1: Performance criterions for all the design solutions are normalized using Eq. 10.1. 

nn

nnm

nm
cc

cc
CN

min,max,

min,,

,



               

(10.1) 

In this equation,𝐶𝑚,𝑛, denotes normalized value for mth criterion value for nth Pareto solution. 

𝐶𝑚,𝑛, 𝐶𝑚𝑎𝑥,𝑛, and 𝐶𝑚𝑖𝑛,𝑛 denotes respectively the value for mth criterion value for nth Pareto 

solution, maximum and minimum values obtained by the Pareto solutions for the same criterion. 

Step 2: A positive ideal solution (I+) and a negative ideal solution (I-) is introduced which represents 

two ideal solutions considering best and worst performance for all the criterions. 

Step 3:  Weight matrix is developed which as a 1 x p matrix which present the relative weight for 

each criterion (for p criterions). 
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Step 4: Arrive at Ideal Positive Solution (I+) and Ideal Negative solution (I-) taking the best and worst 

criterion value under each criterion.  Design solutions are expected to be close to the positive ideal 

solution and far from the negative ideal solution. 

Step 5: Positive distance matrix (d+) is computed taking Euclidian distance between I+ and CNm,n for 

each Pareto solution as shown in Eq. 10.2. 




 
n

i

miiim CNIwd
1

2

, )(           

(10.2) 

Similarly, negative distance matrix is calculated.  

Step 6: Coefficient of closure (CC) is defined as a minimization objective (most preferred solution is 

having the minimum value) which is calculated according to Eq. 10.3. 
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10.7. Results and discussion 

The path that needs to follow to arrive at the final system design is quite lengthy. This chapter 

elaborates the final part of the design process which combines multi-objective optimization with 

multi-criterion decision making. As the first step, the role of each performance indicator in the 

assessment process is investigated considering the local conditions and specific design requirements. 

As discussed previously, energy system optimization process has turned from classical cost 

optimization to Pareto optimization where set of non-dominant solutions can be obtained 

considering conflicting objectives. The main advantage in this process is the system designer is 

having the choice to select the best solution considering the limitations of each criterion and its 

relative importance. This is an extensive task starting from selecting the best criterions to consider in 

the optimization process and subsequently the decision making process. This section elaborates how 

to address these issues using the novel method introduced in this paper through a case study. First 

part of this section is devoted on how to filter the best suited criterions for Pareto optimization. 

Second part of this section is dedicated to the selection of the design based on Pareto front obtained 

considering the objective functions identified in the first part.   
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10.7.1. Analyzing 2D Pareto fronts 

Main challenge in the design process is to select most relevant criterions to assess the system 

design. This becomes more difficult when selecting several criterions for Pareto optimization from 

the pool of criterions selected to assess the system. In order to identify the criterions to be used in 

the optimization, 2D Pareto front is created considering the main objective as one objective function 

and the others respectively as the first step. In this work, LEC is considered as the main objective 

function and, LEC-CO2 emission, LEC-ICC, LEC-GI and LEC-WRE are taken for the design. Cross 

comparison of the values for objective functions are carried out to understand the limitations in 

improving each objective.  

In order to analyze the Pareto fronts further, design solutions of four Pareto fronts are plotted for 

similar objectives in Fig. 10.3. When analyzing the objective space, it is clear that design solutions of 

LEC-ICC Pareto front presents a non-dominant set of solutions since LEC and ICC are considered as 

the objectives. In addition, a notable increase in ICC is observed when moving from Pareto solutions 

of LEC-ICC Pareto front to LEC-WRE, LEC-GI and LEC-LCO2 accordingly. More importantly, design 

solutions of the four Pareto fronts can be clustered into two main clusters i.e. Cluster A and Cluster B 

as shown in Fig. 10.3. When considering the design solutions of two Pareto fronts in Cluster B, both 

are quite close to each other. Although it is not as close as Cluster B, design solutions of two Pareto 

fronts in Cluster A are quite close. Therefore LEC-ICC Pareto can be used to represent LEC-WRE 

Pareto front when considering LEC-ICC objective space.      

In a similar manner, design solutions of the Pareto fronts are plotted in LEC-LCO2 objective space 

(Fig. 10.4). Similar to the previous case, LEC-LCO2 Pareto front presents the non-dominant frontier. 

When considering LEC-LCO2 and LEC-GI Pareto fronts both are located close to each other as these 

were clustered in Fig. 10.3. If we consider the scatter plot of design solutions of Pareto front 

considering all the five objectives; LEC-ICC and LEC-LCO2 Pareto fronts can be considered as the 

boundaries when considering its projections in LEC-LCO2 objective space.  
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Fig. 10. 3: Variation of ICC with LEC for four Pareto solutions 

Let us consider the possibility of replacing LCO2 by GI in the Pareto optimization process which will 

reduce the dimensions of the optimization problem. In this case, design solutions clustered in Cluster 

C will be lost which will result in loosing (dropping out) Pareto solutions marked in Region B. In 

addition, Pareto solutions marked in Region A will be lost. When considering most of the 

applications, the possibility that final design solution reaching Region B is quite less due to the higher 

LEC which is at least more than 50% larger when compared to the minimum. Comparing the region 

covered by LEC-ICC and LEC-GI Pareto fronts (area enclosed by light green and blue scatterplots, and 

light blue dash line) Region A is negligible. Hence, it can be concluded that GI level is a good indicator 

in representing LCO2 based on the projection in LEC-LCO2 objective space which will minimize the 

dimensions in the optimization process.           
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Fig. 10. 4: Variation of LCO2 with LEC for four Pareto solutions 

Scatter plots of four Pareto fronts are presented in LEC-GI objective space to analyze the system 

further (Fig. 10.4).  The two main clusters observed since the beginning can be seen even in this 

case. LEC-WRE and LEC-ICC Pareto fronts meet each other; although the latter extends further. LEC-

GI Pareto front presents set of solutions which are dominant as expected. LEC-GI and LEC-LCO2 are 

closely located to each other. However, when compared to Fig. 10.3 the difference in the solutions 

of two Pareto fronts are not uniform (Region C) in this case. In certain instances, it extends up to a 

10% difference in grid integration level. Therefore, representing GI using LCO2 will lead to take away 

some important design solutions which are interesting to be considered in the multi criterion 

decision making process.     

Utilization of renewable energy is considered as the fourth criterion to conduct Pareto optimization 

with LEC.     The Pareto front obtained and the objective function values for the design solutions of 

the other Pareto fronts are plotted in Fig. 10.6. Clear separation of the LEC-CO2 and LEC-GI Pareto 

fronts are observed in this plot although LEC-WRE and LEC-ICC can be clustered together.  When 

considering the renewable energy utilization of the design solutions of LEC-GI Pareto solutions, WRE 

is less than 15 % and majority of the solutions are clustered within 10% up to 15%. In contrast, 

majority of the design solutions are having WRE more than 20% when it comes to LEC-LCO2 Pareto 

front which is not preferred in usual system designing. Hence, LEC-GI can be considered as realistic 

upper bound.        
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Fig. 10. 5:Variation of GI with LEC for four Pareto solutions 

After conducting the graphical analysis it is prudent to say that the four objectives considered to 

optimize the system design along with LEC can be classified into two groups in which one objective 

function can present the group. This will reduce the five dimensional optimization problem 

(including LEC) into a three dimensional optimization problem along with LEC. Further, this will 

improve both accuracy and efficiency while reaching the optimum set of results and scarifying few 

design alternatives. When considering the first group (Cluster A in Fig 3) ICC can be considered as 

better alternative than WRE. ICC provides a better upper bound when considering LCO2 and GI along 

with an extended boundary considering LEC. Furthermore, LEC-ICC Pareto front overlaps with LEC-

WRE Pareto front except for a small part in LEC and WRE objective space.  Hence, it can be 

concluded that ICC is a better performance indicator to present both ICC and WRE. Similarly, GI can 

be used to represent the other group. Finally, LEC, GI and ICC gives a better representation of the 

five objective functions discussed while reducing the complexity of the optimization process.  
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Fig. 10. 6: Variation of WRE with LEC for four Pareto solutions 

10.7.2. 3D Pareto front considering LEC-ICC-GI 

The 2D Pareto analysis helped to reduce the number of dimensions in the optimization problem. 

However, the four 2D Pareto fronts obtained in previous section only provided the boundaries of the 

objective space in which final design solution is located. In order to obtain non-dominant set of 

solutions, multi-objective optimization is carried out considering the objective functions identified in 

Section 10.7.1.  

The Pareto front obtained from the optimization considering LEC, ICC and GI are presented in Fig. 

10.7. Scatter plot clearly demonstrate that there exists a well distributed Pareto surface. Contour 

plot generated is using the scatter plot in order to help the system designer to visualize the 

distribution of Pareto solutions. Scatter plot and the contour diagram clearly delineates that the 

three objectives considered for the optimization are conflicting to each other in which it is difficult to 

optimize these three objectives simultaneously. It is simple to select one Pareto solution using both 

scatter and contour plot. Nonetheless, decision making is not straight forward since it is required to 

consider other factors such as LCO2, flexibility of the system, WRE etc., in the decision making 

process. 
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Scatter plot Contour plot
 

Fig. 10. 7: Scatter and contour plot of the Pareto front considering LEC, grid integration level and Initial Capital cost. 

10.7.3. Multi Criterion Decision Making (MCDM) Process 

In this work, seven criterions are used to assess the performance of the system .Whenever, the 

number of criterions used to assess the system increase beyond three, direct graphical 

representation methods cannot be used to assess the solution space. Hence coming up with the final 

system design is not straight forward. Multi criterion decision making process helps the designer to 

arrive at the final design solution considering conflicting criterions as discussed in Section 10.5. The 

main challenge in using the multi-criterion decision making technique is deriving the weight matrix 

for Fuzzy TOPSIS considering relative importance of each criterion. This section presents path 

followed in order to achieve the final design solution.  

MCDM process is sensitive to the specific application of the energy system.  Prioritizing the criterions 

and identifying the expectations for the design plays a major role in this context. Identifying the 

upper bounds (since the design problem is formulated as a minimization problem) for the design 

requirements play a major role in this context. Whenever one or several criterions are improved 

performance of some other criterions will degrade. Hence, close comparison of each criterion is 

important in the multi-criterion decision making process. Normalized criterion values will be useful 

in such an ambiance to identify the upper limits for design requirements and the required changes. 

Finally, multi criterion decision making needs to be carried out considering the importance of each 

criterion specifically to the application being within the boundary matrix. 
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The application of the suggested method is tried on the case of electrification a small, model rural 

village in Hambanthota, a district in southern coastal belt of Sri Lanka. Reliability of the system is 

considered vital which made it to be considered as a constraint in the optimization which does not 

considered to be compromised for an improvement in other criterion. The village is already 

connected to the grid which requires having a competitive electricity price after designing the new 

system (compared to the grid) which is considered as a special design requirement. Initial capital 

investment is also a main constraint to be considered since it is challenging to go for bank loans for 

community based energy systems which is considered as a design priority. Flexibility of the system 

had to be considered seriously since coastal weather changes rapidly which results in notable 

changes in wind and SPV energy potentials. In addition, minimizing grid integration level is 

considered as a main objective which is expected to achieve through the design. Finally the 

acceptance matrix which presents the boundary for each criterion where the customer is ready to 

accept the design is created which is presented in Table 10. 4.  

10.7.3.1. Analyzing the Level Diagrams 

MCDM process starts after understanding the boundary for the final design with an initial guess for 

the weight matrix. Results obtained for each weight matrix is evaluated while improving the weight 

matrix in order to cater the objectives. Level diagrams are used in this context to identify the 

possible directions that can be taken in improving the weight matrix. An intermediate (Case A) and 

the final weight matrix arrived (Case B) in the decision making process are presented in Table 10. 5. 

Best six design solutions corresponding both Case A and Case B are presented in Table 10. 6 and 

10.7.  2D and set of 3D contour plots obtained for both Case A and B are presented in Fig. 10.8, 10.9 

(a) and (b) 

Table 10. 4: Boundary matrix for the criterions based on the requirements of the customer. Green denotes acceptance 

and red denotes rejection for different regions of normalized value for criterions. Green color denotes acceptable and 

red denotes not acceptable 
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Table 10. 5: Weight matrix considered for Case A and Case B 

 

Analyzing the 2D scatter plot is considered first step in the decision making process which provides a 

better representation of all the criterions simultaneously as in Fig. 10.8. In addition, 2D scatter plots 

supports the decision makers at the early stage of decision making process to bring all the global 

optimums close to the boundary matrix (or into the boundary matrix). When considering the two 

scatter plots in Fig. 10.8 it is prudent that surface of the scatter plots for Case A is rough except ICC. 

As a consequence, global maximum moves significantly (interchange with local maximum) with a 

marginal change in weight matrix. This makes it difficult to analyze the possibility to improve the 

specific criterions. When moving to Case B in the same diagram (left to right) much smoother 

surface is observed for most of the criterion except flexibility. This makes it easy to analyze the 

systems further.  However, 2D scatter plots can be used only at the beginning where major changes 

in weight matrix is performed in order to bring the criterions considered closed to the boundary 

matrix. Sensitivity of changing the weight for one criterion over the other cannot be evaluated 

directly using 2D contour plots which make it difficult to use as a method to fine tune the weight 

matrix.  This can be visualized further using 3D contour plots considering two criterions along with 

CC.   

Case LEC LCO2 FC GI WRE ICC Flex. 

A 0.255 0.136 0.043 0.128 0.064 0.187 0.187 

B 0.245 0.131 0.041 0.163 0.061 0.180 0.180 

 



271 
 

0.0 0.2 0.4 0.6 0.8 1.0

0.52

0.65

0.78

0.52

0.65

0.78

0.52

0.65

0.78

0.52

0.65

0.78

0.52

0.65

0.78

0.52

0.65

0.78

0.0 0.2 0.4 0.6 0.8 1.0

0.52

0.65

0.78

 

C
C

-L
E

C

Normalized Criterion

 

C
C

-C
O

2

 

C
C

-F
C

 

C
C

-G
I

 

C
C

-W
R

E

 

C
C

-I
C

C
 

 

C
C

-F
X

0.0 0.2 0.4 0.6 0.8 1.0

0.52

0.65

0.78

0.52

0.65

0.78

0.52

0.65

0.78

0.52

0.65

0.78

0.52

0.65

0.78

0.52

0.65

0.78

0.0 0.2 0.4 0.6 0.8 1.0

0.52

0.65

0.78

 

C
C

-L
E

C

Normalized Criterion

 

C
C

-C
O

2

 

C
C

-F
C

 

C
C

-G
I

 

C
C

-W
R

E

 

C
C

-I
C

C

 

 

C
C

-F
X

Case A Case B
 

Fig. 10. 8: 2D scatter plots for Case A and Case B 

3D contour plots are helpful in understanding the impact of changing the weight of one criterion 

over the others. Contour plots are presented in Fig. 10.9 (a) and (b) considering different criterions 

used for MCDM. When analyzing the contour plots for two cases, several local optimums are 

observed in Case A (plots in left hand for both Fig. 10.9 (a) and (b)). However, when moving to Case 

B one global optimum is observed in most of the instances except in normalized flexibility and LEC 

which shows complicated variation with several local maximums. This agrees with the previous 

observation in 2D scatter plot. In order to analyze the 3D contour plots further, two contour plots 

from Fig. 10.9 (a) (NLEC-GI and NLEC-Fx) are taken for Case A and illustrated in detailed in Fig. 10.10. 
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(a) 
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(b) 

Fig. 10. 9 (a): A comparison of 3D contour plots considering CC with different criterions (b): A comparison of 3D 

contour plots considering CC with different criterions for Case A and B 
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When analyzing the NFG-NICC contour plot for Case A in Fig. 10.10, best ranked solutions (red 

colored region) are distributed in P and Q regions. The distribution of these two regions forms a 

frontier with a negative gradient. This demonstrates that these objectives are conflicting to each 

other and a significant reduction in N-FG can be obtained with a marginal increase in N-ICC. A similar 

pattern is observed when analyzing NFX and NLEC Pareto front (Fig. 10.10 (right hand)). Best ranked 

solutions are distributed in region R and S. These two objectives also produce a Pareto front in which 

it is difficult to improve both simultaneously. However, this indirectly implies both GI and flexibility 

improves with a marginal scarify in LEC in which improvements in GI is more significant compared to 

flexibility as observed in P and Q regions in left plot in Fig. 10.10 and R and S regions in right plot 

(numerical values are later presented in Table 10. 6 and 10.7). In a similar manner, it can be shown 

that a significant improvement in GI with a marginal scarify of ICC when analyzing the NGI-NICC 

contour plot for Case A in Fig. 10.9 (a). Therefore, it is clear that a notable improvement in GI can be 

achieved while scarifying the criterion values for ICC and LEC.      

The analysis can be extended further to evaluate the possibility of improving the other criterions and 

the consequences of improving them. In order to analyze the consequences of improving LCO2, 

NLEC-NLCO2 plot for Case A (Fig 10.9 (b): first left one from the top) is taken.  The set of high ranked 

solutions is distributed within (marked in red) linearly with a positive gradient. This reveals that LEC 

and LCO2 are parallel objectives in which one will increase with the increase of the other. When 

analyzing the contour plots for Case A, it is observed that GI can be improved which will convert 

existing distributed maximas into a global maximum (or merge both together) resulting an increase 

in LEC as shown in regions P and Q in Fig. 10.10. However, a major improvement in flexibility will 

interchange global maximum and local maximum which will increase the LEC beyond the 

expectations (from R to S) since this will increase N-LEC beyond 0.25 which is the boundary. 

Improvement in flexibility and grid integration levels is required to meet the expectations of the 

customer according to the boundary matrix. When analyzing the contour plot it is clear that 

increasing the weight of grid integration and marginally increasing the weight of the system 

flexibility will drive towards the expectations. The observations of the contour plot analysis is used 

to improve the weight matrix and finally arrived to at weight matrix for Case B which is given in 

Table 10. 5. 

Contour plots obtained after revising the weight matrix are plotted in the same diagram (Fig. 10.9 (a) 

and (b)) in order to make the comparison simple. When analyzing the contour plots for Case B it is 

prudent that most of the contour plots are quite smooth with one global maximum for most of the 

instances. This makes the analysis and decision making easier. Local minimums located at different 
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locations of the contour map makes it challenging to analyze the consequence changing the weight 

of one criterion in which decision makes should go back and forth again and again from one plot to 

another as discussed before in order to find the promising directions to change the weight matrix. 

Contour plot for Case B clearly shows that all the criterions are within the boundary and a notable 

improvement in criterions is not possible. 

 

Fig. 10. 10: Possible changes in contour plot with the changes in weight matrix. Global maximum move from P to Q in 

NGI-NLEC plot while global maximum might move R to S in NFX-NLEC plot 

10.7.3.2. Analyzing the best candidates for each weight matrix 

2D and 3D Level diagrams help the decision makers to reach towards the best fitting weight matrix. 

However, final system design should be arrived after closely examining the best ranked design 

solutions. On the other hand, analyzing the best set of solutions obtained after revising the weigh 

matrix, helps the decision maker to get a quantitative understand about the promising changes that 

should be made in weight matrix especially for very small changes in the weight matrix. Hence, 

analyzing the contour plots and best set of solutions are complimentary tasks which help the system 

designer to come up with final system design.  

Assessing the best ranked solutions, started with selecting the best six design solutions for Case A 

(are tabulated in Table 10. 6). When analyzing the design solutions, it is prudent that most of the 

design solutions perform well when considering several criterions. A1 adheres to most of the design 

criterions except with GI. A1 maintains a normalized grid integration level of 0.57 which is greater 

than the accepted limit of 0.4 which is the same for A2 and A5. These two design solutions are 
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having normalized grid integration level of 0.64 and 0.62 respectively which is higher than 0.4. A4 

and A6 design solutions performs close to each other for most of the criterions being within the 

boundary matrix including grid integration level. However, A6 is marginally outside the boundary 

matrix when considering the expectations of the design. Therefore, A4 becomes the only design 

solution within the design requirements.  

Contour plots provide the possible directions to improve the weigh matrix further. After several 

iterations we arrived at the weight matrix for Case B which is Table 10. 5 to see the possibility of 

improving the design further. A significant change in the weight matrix is not performed when 

moving to Case B. Hence, four design solutions that appeared in the best six alternatives are 

appearing in Table 10. 7 (B1, B3, B4 and B5). B6 does not fulfill the design requirements since LEC is 

beyond the critical LEC defined in the boundary matrix. Both B1 and B2 both meet the design 

requirements. B2 outperform B1 when it comes to grid interactions and B1 outperforms B2 when it 

comes to LEC, LCO2, fuel consumption and waste of renewable energy. System configuration will 

change when considering the capacities of SPV panels and wind turbines. When moving from B2 to 

B1. The final decision solution arrived is highly subjective to the decision maker whether the 

designer appreciates the notable improvement in grid integration level in B2 or the overall 

improvement B1.  In this case B1 is considered as the system design solution.  

10.7.3.3. Sensitivity of different criterions 

Multiple-criterions need to be considered in the designing process of energy systems. However, all 

of them cannot be considered in the Pareto optimization. Most of the instances, decision making is 

performed based on the criterions considered for Pareto optimization. This will omit several 

important criterions from the decision making process. It Important to assess the consequences of 

limiting the decision making process into few criterions that are considered in the Pareto 

optimization process. In order to achieve this, four cases are considered (i.e., Case C, D, E and F) 

removing one or two criterions from the weight matrix from the decision making process. The ratio 

among the weights for the other criterions was the other criterions as in for Case B in the weight 

matrix. Case C does not consider System flexibility, Case D does not consider grid integration level, 

Case E does not consider LCO2 and fuel consumption and finally Case F does not consider initial 

capital cost. Weight matrix for each case is tabulated in Table 10. 8. The best design solution 

obtained under each weight matrix is presented in Table 10. 9.         

When analyzing the design solutions for Cases C, D, E and, F it is clear that removing a criterion from 

the weight matrix will results in a notable increase of the performance indicator (considering a 

minimization problem) of the specific criterion removed from the weight matrix. For example, for 
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cases C and D, which respectively remove flexibility and grid integration level from the weigh matrix, 

the N-Flex increases from 0.499 to 0.678 for and N-GI level increases from 0.373 to 0.887 for Case D. 

Same can be observed in Case F. This will result poor performance under these criterions which are 

outside the decision matrix in this case which will not be preferred by the end users. However, due 

to the weaknesses (over simplification of the design space) in the existing methods used for multi-

criterion decision making system designers will end-up in such designs.   

The sensitivity of each criterion considered for the multi-criterion decision making is different 

depending upon the weight matrix, the considered criterion, its relationship with the other criterions 

and the boundary matrix. For example, when considering Case E, increase in N-LCO2 after taking 

away from the weight matrix is insignificant when compared to Case C, D and F. This can be justified 

by assessing the level diagrams, LCO2 and LEC are parallel objectives (as discussed in 6.3.1) within 

the close proximity of the weight matrix selected (as shown in Fig. 10.9.(a) NLEC-NLCO2 diagram). 

Hence, both these objectives can be simultaneously minimized within the proximity of the weight 

matrix selected with strong coupling. Higher, weight matrix on both LCO2 and LEC results in lower 

emissions as well as LEC. Removing LCO2 from weight matrix does not influence due to the weight 

imposed by LEC though a notable reduction in LEC is observed due to the removing of weight in 

LCO2. This coupling makes it difficult to fine tune the weight matrix where Contour Level diagrams 

are extremely useful to find the proper directions to improve the weight matrix. However, the 

coupling between LEC-LCO2 is limited to a one part of the decision space as observed when 

analyzing Fig. 10.3, 10.4 and 10.5. Hence, a notable change in LCO2 can be observed for a different 

setting of the weigh matrix. 
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Table 10. 9: Weight matrix for Case B, C, D, E and F 

 

10.8. Conclusions 

A comprehensive frame work to design distributed electrical hubs consists of wind turbines, SPV 

panels, battery bank and an ICG operating connected to the grid is taken into discussion in this 

chapter. Selecting the objective functions for Pareto optimizing and subsequently multi-criterion 

decision making, considering set of criterions in order to meet the design requirements is focused in 

the chapter. Seven criterions are defined covering wider spectrum of interests including cost, 

environmental impact, energy efficiency etc in the designing process.  A novel method is introduced 

to evaluate the flexibility of the energy system based on several criterions. A bi-level multi criterion 

decision making process is introduced to reach to the final design solution. 2D Pareto optimization is 

used to select the best representative objective functions to consider in Pareto optimization. 

Subsequently, LEC, grid integration level and initial capital cost found out to be the best 

representative objective functions reducing the dimension of the problem up to a 3D optimization 

problem without losing large number of possible solutions. Pareto front obtained considering three 

objective functions are ranked using seven criterions. Fuzzy TOPSIS is used to rank the non-dominant 

solutions using 2D and 3D level diagrams. The results obtained from the Pareto analysis emphasize 

the weakness in present practice limiting decision making process to the objective functions 

considered for the Pareto optimization. This will lead to poor performances in other criterions not 

considered in the decision making which can be addressed by the novel method introduced in this 

chapter through appropriate selection of objective functions and extending the criterions considered 

in the decision making process.  

Following the sensitivity of weight matrix it is prudent that considering all the criterions related to 

the design is important during the decision making process. However, considering all these criterions 

both at the multi objective optimization and multi criterion decision making level is a challenging 

task. This chapter is using direct method to achieve this task analyzing each Pareto front and contour 

plots with in a region selected. However, this work can be further extended using dimension 

reduction techniques such as Principle Component Analysis (PCA). More research work needs to be 

Case LEC LCO2 FC GI WRE ICC Flex. 

B 0.245 0.131 0.041 0.163 0.061 0.180 0.180 

C 0.299 0.159 0.050 0.199 0.075 0.219 0 

D 0.293 0.156 0.049 0 0.073 0.215 0.215 

E 0.296 0 0 0.197 0.074 0.217 0.217 

F 0.299 0.159 0.050 0.199 0.075 0 0.219 
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focused in this context where proper mechanisms need to be developed combining these methods 

with multi-objective optimization and multi-criterion decision making.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



281 
 

11 Conclusions and Future 
Perspectives 

 

The thesis presents a novel approach towards energy system optimization, which addresses several 

research gaps in the present state of the art. A conclusion section is included in each chapter, 

summarizing the contribution while highlighting the limitations of the methodology developed. This 

chapter looks at the highlights of the thesis at a more holistic level, considering the interrelationship 

between the chapters. It consists of two parts. Section 11.1 presents the major contributions of this 

thesis while Section 11.2 highlights the limitations and future prospects.  

11.1. Major contributions to the present state of the art 

Rapid depletion of fossil fuel resources and climate change demand a major transition in the energy 

sector. Distributed energy systems play a vital role in this transition by integrating non-dispatchable 

renewable energy technologies such as solar PV and wind. Chapters 2 and 3 present a novel way to 

model and optimize distributed urban energy systems. Chapter 2 introduces a grey box model based 

on fuzzy logic to be used in energy system design while Chapter 3 introduces black box models. 

Introducing grey box models is a major achievement since it demonstrated that an alternative path 

can be taken when designing distributed energy systems. Grey box models perform well for 

electrical energy hubs and show the potential to reach penetration levels of about 80% for 

renewable energy technologies with grid assistance. However, it was found that grey box models 

cannot be used to consider energy systems that have complex energy interactions. Black box 

methods based on reinforcement learning are introduced in order to handle the complexity of 

energy systems, outperforming grey box models. Reinforcement learning with the support of 

convolution neural networks performed well when designing energy systems considering the 

forecast of demand, renewable energy potential and grid conditions in the dispatch strategy. 

Reinforcement learning tends to be the only alternative that can consider the complex cyber 
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physical interactions that energy systems are expected to maintain with urban systems during the 

energy system optimization.  

Chapter 4 of the thesis introduces a distributed optimization technique to design energy internets, a 

fleet of energy systems connected with each other through a multi energy network. The introduced 

distributed optimization algorithm can be used to design energy systems that are operating in fully 

co-operative and non-co-operative scenarios. The main advantage of using a distributed 

optimization algorithm for the co-operative scenario is that it can limit the information that needs to 

be shared among the agents. This helps to improve privacy. The novel optimization algorithm shows 

a good capability to reach the Epsilon-Nash equilibrium. Although the present study limits its scope 

to cooperative and non-cooperative scenarios, the developed computational model can be easily 

extended to consider the leader-follower games leading to a Stackelberg equilibrium, which can be 

used to design energy internets with hierarchies.  

Top down approaches based on statistical models or shallow learning techniques are often used for 

energy planning at regional and national scale. As a result, there is a risk that the decisions made at 

regional and national scale are erroneous.  Bottom up models - widely used for energy system 

optimization - are limited to localized applications. For more accurate planning, they need to be 

extended to regional and national scale. One of the main advantages of the grey and black box 

models introduced in Chapters 2 and 3 is their higher adaptation capacity. Chapter 5 of the thesis 

shows that transfer learning can be effectively used to adapt the developed black box models so that 

energy system optimization at different locations can be performed faster reducing the 

computational demand by 5/6. Such a reduction in computational time allows energy systems 

optimization to be conducted at regional and national scale and hence to improve  decision making. 

Climate uncertainty and extreme climate events due to climate change have a severe impact on 

energy systems. However, the impact of climate change is expected to be even higher in  the future 

as the concentration of CO2 in the atmosphere increases. Improving the resilience of urban energy 

systems is important in order to face these challenges, especially in the energy sector. However, 

converting climate relevant data into energy system relevant data is a difficult task, especially 

considering the dynamics of regional climate. One of the main contributions of this study is to 

introduce a novel method to present uncertainty in demand and generation due to climate change 

by using a pool of scenarios derived from a regional climate model. The approach has been extended 

to consider extreme climate events as well. To be able to consider a large pool of scenarios of over 

5000 the novel approach introduced in Chapters 2 and 3 has been extended further to conduct 

stochastic-robust optimization to design energy systems. Graphical Processor Unit (GPU) computing 
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is introduced in the energy system optimization process for assistance. One of the major findings of 

this study is that thus optimized energy systems can maintain renewable energy integration levels 

above 50% while guaranteeing robust operation during extreme events. This allows making progress 

in the energy transition while being resilient to climate change. 

Facing the challenges brought by climate change is more challenging in highly dense cities due to 

phenomena such as the urban heat island (UHI) effect. UHI intensifies adverse impacts due to 

climate change. Energy infrastructure plays a vital role in facing UHI effects in highly dense cities 

with high rise buildings. The energy demand for cooling is strongly influenced in such instances. 

Therefore, considering the influence of urban climate is essential during the urban energy system 

design process. This requires a further extension of the urban energy system model used in the 

present. One achievement of this thesis is the extension proposed to the urban energy system 

model to consider the impact of urban climate on the energy system. Towards achieving this 

objective, the canopy interface model (CIM) is coupled with an urban simulation model and an 

energy system optimization model, and a computational platform is developed.  

It was revealed that the urban climate can have a notable impact on the performance of the energy 

system due to the fluctuations of the demand caused by the UHI and cooling pool effect. This can 

lead to a performance gap of up to 40% in indicators such as cost and grid integration level. 

Furthermore, failing to consider the adverse impacts of urban climate will lead to poor power supply 

reliability, especially during extreme climate events. The model developed in Chapter 8 is extended 

further in Chapter 9 to understand efficient urban forms that can minimize the adverse effects due 

to urban climate. 

It is important to bring the energy system design process closer to a wider community of stake 

holders. High end modeling, simulation and optimization techniques introduced in Chapters 2 - 9 are 

supporting the progress of the present state of art from the technical perspective. However, it is 

difficult to communicate this message to a wider community of stake holders. Hence, it is important 

to translate the message into a simpler one. Combining energy system optimization with decision 

making techniques provides more opportunity to the stake holders to be implicated in the design 

process. This enables considering multiple criterions that are sensitive to a wider community during 

the design process. However, considering such a wider pool of criterions makes the optimization 

process complicated. To address this difficulty, the performance indicators must be prioritized based 

on the input of the stake holders. Chapter 10 presents a novel method that can be used for such 

objective space reduction. Besides prioritizing objective functions, Chapter 10 introduces a 

promising method to consider a wider pool of criterions in the decision making process through 
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multi-criterion decision making. Fuzzy logic is used to consider ambiguity in the decision making 

process related to inputs from a wide community of people with different backgrounds. This enables 

the urban energy system model introduced in Chapters 2 and 3 to easily integrate with business 

models. Furthermore, introducing a decision making technique in the energy system optimization 

process makes the model easier to use by energy planners and the wider community of stake 

holders in urban energy systems.               

A novel approach to design urban energy systems is introduced in this study. Grey and black box 

models are introduced to conduct the energy system design process. Subsequently, the model is 

extended into number of directions. It has been shown that the proposed approach enables 

designing energy internets consisting of multiple energy systems interacting with each other and can 

be effectively used with transfer learning to design energy systems at regional and national scale due 

to its adaptability. Furthermore, stochastic and robust programing techniques can be easily 

connected with the presented approach, which enables considering climate uncertainty and extreme 

climate events. It has also been shown that the complexity of urban climate can be considered in the 

energy system design process through the novel approach presented. All these advances achieved 

through the novel approach introduced in this study demonstrate its flexibility. However, it is 

important to validate the applicability of the model in different climatic conditions.  

The different extensions introduced to the model are validated at different geographical locations, 

which clearly demonstrate the wider applicability of the model. The case studies for Chapter 2 and 

Chapter 10 are conducted in Hambanthota, a coastal city in Sri Lanka with tropical climate 

conditions. Methods presented in chapters 3, 4, 6 and 7 are applied for Sweden considering Nordic 

climate conditions. Ten cities from different climate zones in Sweden are considered in Chapter 6. 

The city of Nablus in Palestine is considered for Chapter 8. Nablus is located in the northern part of 

the West Bank and has Mediterranean climate conditions. Chapter 9 is based on two case studies 

conducted in Dubai, United Arab Emirates and Hemberg, Switzerland. These two cities present 

totally contrasting climate conditions. Dubai has a tropical desert climate while Hemberg has a 

moderate climate strongly influenced by the Alps. Although not included as separate chapters, a 

number of case studies are conducted for Junction-Geneva, Cartigny-Geneva and Ecublens-Lausanne 

in Switzerland. These studies are published in conference and journal proceeding papers included in 

the beginning of Chapter 10. The computational model is now in the process of being tested for 16 

European capitals considering different climate conditions. All these case studies conducted at 

different geographic locations demonstrate the wider applicability of the developed approach. 
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11.2. Limitations of the methodology developed and improvements 

According to George Box, the famous British statistician, ‘all the models are wrong but some are 

useful’. The approach presented in this this study has a number of limitations. One main limitation is 

the time resolution. Steady state hourly simulation is conducted, which is the usual practice for 

energy system optimization problems. However, the one-hour time resolution is too big when 

considering the stability of the grid. Similarly, a one-hour time resolution is too bulky to consider the 

changes in urban boundary layers which may lead to a number of limitations in computing the 

energy demand. Hence, from a control perspective, the design solutions obtained through a typical 

energy system optimization method may be subject to issues in real time operation,; it is therefore 

important to evaluate the stability of the design solutions in a much finer time resolution.    

Another major limitation of the study is the simple representation of power flow. In Chapter 4, 

power flow computation is conducted simply using DC approximations. Furthermore, it is assumed 

that the network is designed in a radial manner in order to avoid an optimum power flow problem 

(OPF). Although such an assumption is reasonable if the aim is to simplify the problem and make it 

solvable, the n-1 reliability cannot be guaranteed. Hence, the connectivity matrix obtained for the 

energy internet in Chapter 4 should be further optimized to guarantee n-1 reliability (this extension 

is currently under implementation). However, it is inevitable to use DC approximation in this context 

to make the problem into a mixed integer linear program, which weakens the physics of the problem 

to a certain level. Therefore, it is important to look into better methods to represent the power flow 

in a more accurate manner when designing distributed energy systems.  

Linking building stock with urban energy infrastructure is considered in detail in this study. However, 

buildings themselves are only a part of urban energy systems. There are numerous other energy 

flows that need to be considered, such as transportation, water distribution, waste management 

etc. Nexus, maintained by energy systems with these sectors, plays a vital role in the process of 

improving the urban sustainability. Furthermore, it provides more diversity to energy systems 

configuration. For example, biomass and biogas generation from waste management can be a part 

of the energy system. In general, the diversity of energy system components considered could have 

been improved by considering seasonal storage such as pumped hydro, compressed air, H2/fuel cell 

etc. Such extensions to the energy system model are expected to be added in the future. 

Energy demands required for this study are entirely taken from computational models developed for 

building/urban simulation. The demand profile has a significant impact on energy system sizing. It 

would be interesting to compare the results with actual monitored demand data since many 

simplifications are performed when conducting building and urban simulations. For example, 
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CitySim, the model used for building/urban simulation, uses a single zone model for the energy 

simulation in order to simplify the complexity of a building stock. However, such a simplification may 

lead to changes in the simulated demand. Since such assumptions are difficult to avoid, it is 

important to quantify their influences on energy system design. The same limitation applies to 

occupation profiles. Urban architypes are used in Chapter 8 to simplify the complex urban form 

when computing the energy demands. Moving from building scale to urban scale brings a number of 

challenges into the simulation process. Although addressing these limitations is not the major focus 

of this study it is important to understand the impacts of these limitations on energy system design.      

Urban micro climate plays a vital role when designing energy systems as it influences both energy 

demand and generation. An urban canopy model is used in this study to consider the impacts of 

urban climate on energy systems. The urban canopy model used in this study uses the 1-D Navier-

stroke model. This limits the representation of urban complexity up to a certain limit. Combining the 

Computational Fluid Dynamics (CFD) model with an energy system optimization and a building 

simulation model can be an attractive solution that can help to overcome this limitation. Moving 

from the urban canopy model to CFD will increase the complexity of the Navier-Stroke equation 

from 1D to 3D. However, CFD models demand much higher computational time. This specific aspect 

is currently under investigation in our research group. Furthermore, it would be interesting to 

combine the climate scenarios introduced in Chapter 6 with the urban climate model. This could 

lead to the design of climate resilient urban energy infrastructures.  

Uncertainty can be presented in many ways. Often multiple methods are used to quantify the impact 

of uncertainties. This study limits its scope to a set of factors in the process of evaluating 

uncertainty. The set of factors considered can be further extended based on different applications. 

Furthermore, stochastic, robust and stochastic-robust optimization methods are used to consider 

the uncertainties in the optimization process. Possibility based approaches to quantify uncertainty 

are not considered in this study. Methods such as fuzzy logic might be helpful in this context since 

they can be effectively used to consider uncertainty without a significant increase in the pool of 

scenarios. Hence, possibilistic based approaches would be an interesting area for further 

consideration that can address the limitations of dimensionality.   

The evolution of an energy system over its life span is not considered in this study. The evolution of 

renewable energy price, market price for fuel etc. plays a major role. Methods such as stochastic 

dynamic programing can be used in order to consider the evolution of energy systems over the time 

horizon. Such an extension will be helpful to understand the energy transition pathways. A case 

study is conducted to identify promising energy transition pathways for a village in Switzerland 
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(Hemberg) as a part of this thesis. However, the scenarios considered for the transition pathways are 

artificially synthesized besides using dynamic programing. Hence, the transition pathways might be 

sub-optimal and highly vulnerable to uncertainties in energy market. This leads to a major limitation 

of the present study. The analysis used in the thesis attempts to provide a single energy solution 

instead of a transition pathway. Presenting an energy transition pathway instead of a design solution 

might be a better approach to attract more investments instead of presenting high-end, expensive 

final solutions. 

Introducing distributed optimization into the energy system optimization process is another 

achievement of the present study. It enables considering fully cooperative, non-cooperative and 

leader follower scenarios when designing energy systems. However, it is important to conduct this 

process at the scale of urban systems where the energy system becomes an agent. However, 

determining the criterions for the equilibrium will be challenging in such a context. Furthermore, it 

will require a co-simulation platform that can combine different systems that have responses with 

different time resolutions. Furthermore, it will require arbitration methods beyond the Nash or 

Stackelberg equilibrium when the agents have multiple interests. The computational models 

introduced in Chapters 3 and 4 can be directly extended to solve such multi-agent reinforcement 

learning problems. Artificial intelligence could be used to understand the adaptation of energy 

infrastructure at urban scale, which would be an interesting extension to the thesis. 

Integrating decision making into optimization is an important step that brings the design tool closer 

to the users. Chapter 10 presents a promising method to facilitate such an integration. However, 

there are certain limitations in the proposed method. First, the uncertainties of the performance 

indicators used for the multi-criterion decision making are not considered in the decision making 

process. Considering the uncertainties of performance indicators is usually considered as an 

important part in the decision making process. Hence, the model should be extended to consider 

this specific aspect. In addition, it is important to combine business models with the decision making 

process. Such an extension allows to move beyond energy systems and consider other auxiliary 

services. Transportation, agriculture chemical production etc. can also be linked with the energy 

system design process and can be included into the business model. Finally, a multi criterion decision 

making technique is discussed just for a single system. It would be an interesting task to conduct the 

design process of a multi energy internet considering different bargaining powers and different 

priorities of agents by combining the work of Chapters 4 and 10. 

Usually, a set of performance indicators are used to guide the design process of the energy systems. 

Energy system designers try to maximize/minimize performance indicators such as cost, reliability, 
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efficiency etc. to improve the performance of the energy system. However, an important aspect is 

overseen in this process: the co-existence of energy systems with the other parts of complex urban 

systems. Most of the performance indicators that are used to optimize the design of an energy 

system do not guarantee optimum functioning as a part of a complex urban system. Hence, having 

higher performances at the design stage of the energy system will not guarantee smooth and 

efficient functioning as a part of a complex urban system.  This is where the concept of co-existence 

and niche diversity from the ecology and evolution theory comes in. Present engineering approaches 

tend to optimize a selected set of performance indicators of the energy system treating it as a niche, 

neglecting co-existence of the energy system as a part of the complex urban system in the 

optimization process. As a consequence, the energy system may fail to operate efficiently as a part 

of the complex urban system. Hence, improving co-existence and niche are important where niche 

separation plays a vital role. The main contribution of this thesis is that it opens up a promising new 

pathway to address this important issue.  
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Appendix 1 

Table A1-1: Parameters for the SPV efficiency model for different solar panel types. Extracted 

from Ref. [1]   

 
 

[1] Durisch W, Bitnar B, Mayor J-C, Kiess H, Lam K, Close J. Efficiency model for photovoltaic 

modules and demonstration of its application to energy yield estimation. Sol Energy Mater Sol Cells 

2007;91:79–84. doi:10.1016/j.solmat.2006.05.011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 p q r s m u h 

Monocrystalline 23.62 -0.2983 -0.09307 -0.9795 0.1912 0.9865 0.028 

Polycrystalline 15.39 -0.1770 -0.09736 -0.8998 0.0794 0.9324 0.026 

Multi Junction 36.02 -0.7576 -0.02863 -1.1432 0.6601 1.0322 0.022 
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Table A1-2:  Acquisition cost of components used for Chapter 2, 5 and 10. This table presents the cost 

components for both simplified and detailed multi energy hub model. The cost values for different components 

are collected considering local context for Switzerland (Regression technique presented in Fig. A1-1is used to 

come up with the cost values.), Sri Lanka, and Sweden. Eurostat [2] is used to convert the cost data for other 

European cities (considered in Euros) corresponding to other chapters. Here its presented in USD for the sake of 

uniformity. 

  

 

 

Component Description Cost($) 

Wind Turbine (12 m)   

(20 year life time) 5kW 6000 

 10 kW 9000 

Solar Panels 
(variation plotted below (Fig. A1-

1)) 
 

(20 year life time) Mono-Crystalline (1.22 m2) 800 

 Poly-Crystalline (0.79  m2) 945 

 Amorphous(1.28  m2) 900 

ICG 
0.5kVA – 7.5 kVA (single phase) 

(20000 working hours) 
335.5 - 2195 

 Hourly O&M 0.16 

Cost of fuel (Diesel 1 liter) 0.8 

Battery 12V, 250Ah 380 

Inverter 
Single phase up to 50kW (four 

years lifetime ) 
400-700 

Heat pump (ASHP) 
300 kW (Max.) A linear variation 

is assumed 
7.95 

Cogeneration 
300 kW (Max.) A linear variation 

is assumed 
115/kW 

Solar thermal 

(variation plotted below) 

Capture area(CA) 50 m2 for water 

heating 

4777.4x (CA)0.421 
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(a) 

 

(b) 

Fig. A1-1 Fluctuation is (a) solar PV and (b)solar thermal prices with the installed capacity  

 

 

 

Table A1-2: Basic parameters of cost model used for Chapter 2, 5 and 10. Eurostat [2] is used to convert the cost 

data for other European cities corresponding to other chapters. 
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Table A1- 3: Specific ranges of the decision space variables  

 

  

Parameter Fraction (%) 

SPV Panel & Wind Turbines  

Installation cost as a fraction of acquisition cost 20 

Annual O&M  as a fraction of acquisition cost 2 

ICG  Installation cost as a fraction of acquisition cost 5 

Local market annual inflation rate 2 

Return on Investment 8 

 

Variable Lower bound Upper bound Interval Description 

SPV Type (NTY-SPV) 0 3 1 

Mono-crystaline, 

Polycrystaline and 

Amorphous1 

# SPV Panels NSPV 0 120 1 0-301 kW  

Type of Turbines (NTY-W) 0 2 1 1, 5 kW 

# Wind Turbines  0 15 1 1-752 kW 

# Battery banks 0 20 1 0-2403 kWh 

ICG Capacity (kVA) 0 15 0.5 0-7.5 kVA 

Wi,j  (weight matrix) 0% 100% Continuous  

SOCMin 30% 50% Continuous  

SOCMin,G SOCMin 70% Continuous  

SOCset SOCMin,G 100% Continuous  

LimBC 0% 100% Continuous  

LimGTB 0% LimBC Continuous  

LimBD 0% 100% Continuous  

LimBTG LimBD 100% Continuous  

1 0.5 kW maximum capacity 

2Maximum capacity considering component selected with maximum capacity 
3Each battery bank having 12 kWh capacity 
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Appendix 2 

Operation of the energy hub for the grey box model 

Table A2- 1: Brief description about the variables in the dispatch strategy (l ϵ L (L ⊂D)) 

  

Interactions with grid and battery bank (Please refer to the Nomenclature of Chapter 2 for 

acronyms) 

Mode of energy interaction with grid and battery bank need to be determined after calculating the 

difference between net power generation of the system and the Electricity Load Demand (ELD).A 

number of factors such as power generation within the energy hub, demand of the energy hub and 

COE of the Main Transmission Grid (MTG) need to be considered when determining the operating 

state of the battery bank and level of grid interaction. Ten operating states (main) that system can 

operate are identified in this study based on aforementioned factors. A detailed description about 

each state is presented in this section.  

State 1: (Power generation is greater than demand, excess directed to MTG) 

The dispatch strategy considers GCTG(t) and GCTG(t) of the MTG, maximum limit that can be sell 

(TGlim(t)) and purchased (FGlim(t))  from MTG  and the SOC of the battery bank when determining the 

energy flow. State 1 refers to an instance where excess power is generated and COE in MTG is higher 

enough to sell excess power generated when compared to battery charging. Optimum GCTG(t)  

(critical point) profitable for selling (LimBat,C) is computed using the optimization algorithm. System 

Acronym 

used 

Description 

LimBC Critical cost for  GCEG(t) above which selling the excess power generated to the grid 
is economical compared to battery charging 

LimBD Critical cost for  IG

tGI below which purchasing power from grid 

is economical compared to battery discharging 
LimGTB Critical cost for IG

tGI  below which purchasing power from grid to charge battery 

bank is economical 
LimBTG Critical cost for  GCEG(t) above which selling stored energy to grid is economical 

SOCmin Critical SOC of the battery bank below which discharging is not economical to cater 
the load mismatch 

SOCMin,G  Critical SOC of the battery bank below which it is not economical to discharge and/or 
to sell the stored energy to grid 

SOCSet Maximum state of charged to be reached when charging the battery bank using the 
grid  
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shifts into to State 1, when GCTG(t) is less than LimBat,C and greater than LimBat,TG.  The excess 

renewable energy generated should be less than TGlim(t) for this case.   

State 2: (Excess generated directed to MTG and discharging battery bank to supply MTG) 

With the increase of GCTG(t), there is a critical limit above which it is economical to discharge battery 

bank and sell electricity to MTG. However, this might lead to instances where energy hub needs to 

purchase electricity at a higher price from MTG at a later stage. In addition, depth of discharge of the 

battery bank needs to be considered which reduce the lifetime of the battery bank. Hence, both 

optimum COE in the MTG for battery discharge (LimBTG) and minimum SOC for the battery 

discharging process (SOCMin,G) need to be determined. System shifts into State 2, whenever GCTG(t) 

higher than LimBTG, SOC of battery bank is higher than SOCMin,G..  

State 3:  (Excess generated directed to battery bank) 

When GCTG(t) is less than LimBat,C, it is economical to direct excess power generated to battery bank. 

Battery charging from MTG (LimGTB) is not considered in this state. System shift to State 3 when 

GCTG(t) is within LimBat,C and LimGTB. However, when SOC of the battery bank is at its maximum level 

system shift back to State 1 where excess energy will be directed to grid. 

State 4: (Excess power generated directed to battery bank and purchasing electricity from MTG) 

It is economical to purchasing electricity from grid is economical when the GCFG(t)  is low and charge 

the battery bank. However, charging batteries from the MTG minimize the storage capacity for 

renewable energy. Therefore, optimum GCTG(t) (LimGTB) needs to be determined which it is 

economical to charge batteries from grid whenever COE goes below this value. However, it is 

important to understand that charging batteries from the grid minimize the storage capacity for 

renewable energy. Hence, maximum set point of charge SOCSet,G can be set for charging process.  

State 5: (Excess generated above storage limits or transfer limits) 

Whenever excess energy generated is greater than the maximum that can be transferred, the excess 

need will be directed to the other option. For example, if excess energy produced by renewable 

energy sources is higher than TGlim(t) (for State 1) the rest is directed to battery bank. In concise, 

system moves into State 5 whenever energy interactions in State 1 and State 4 is hindered due to 

limitations in energy transfer. Whenever, the excess renewable energy generation is higher than 

sum of both limits it needs to be dumped.  

State 6: (Mismatch between demand and generation taken from MTD) 
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Whenever power generation is not sufficient to supply the demand, mismatch can be taken either 

from the battery bank, MTG or both. Similar to the State 1, five parameters are used when 

determining the state of the system. Whenever, GCFG(t) is less it is economical to purchase electricity 

from MTG instead of using the battery bank. The optimum cost LimBat,D, is obtained using the 

optimization algorithm. Battery charging via MTG is not considered in this state (Discussed in detail 

in State 7).  System shifts into to State 6 when GCFG(t) is within LimBat,D and greater than LimGTB.  

Electricity units purchased from MTG should be less than FGlim(t). 

State 7: (Mismatch between demand and generation taken from MTD and battery bank is charged 

by MTG) 

There are instances where GCFG(t) is very low  in which it is economical to charge batteries using 

MTG after delivering the mismatch. Limits related to charge batteries will remain as illustrated in 

State 4.  

State 8: (Mismatch between demand and generation taken from battery bank) 

When GCFG(t) is higher than LimBat,D, it is economical to use battery bank to provide the mismatch. 

Discharging the battery bank minimize the life time of battery bank. Especially, when reaching lower 

SOC levels.  In order to overcome this problem, minimum SOC level that can be reached in 

discharging process (SOCmin) is optimized using the optimization algorithm. When cost of Grid 

electricity is higher than LimBat,D and battery storage capacity is sufficient to provide the mismatch 

system switch into State 8.  

State 9: (Mismatch is taken from battery bank and battery bank is discharged to sell electricity to 

MTG) 

There are instances where GCTG(t) is notably high. It is economical to discharge battery bank and sell 

electricity to MTG mean in such instances while providing the mismatch. The critical GCTG(t) price for 

State 9 is same as State 2 (LimBTG). System shifts to State 9, whenever GCTG(t) higher than LimBTG, SOC 

of battery bank is higher than SOCMin,G. and having excess energy storage after providing the 

mismatch between demand and power generation.. 

State 10: (Mismatch between demand and generation taken from battery bank and battery bank 

is discharged to by MTG) 

Whenever, the mismatch between demand and generation is large enough neither MTG nor battery 

bank alone cannot be used (State 6-9) to provide the mismatch system shifts into State 10. Both 

MTG and battery bank is used to provide the mismatch in this case. However, there are instances in 
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which combination of battery bank and MTG cannot provide the mismatch. Loss in power supply will 

take place in such instances. Loss of load probability is calculated based on this which is taken as a 

constraint in the optimization algorithm. 
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