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Abstract

The necessary and sufficient conditions for existence of a generalized representer theorem
are presented for learning Hilbert space - valued functions. Representer theorems involving
explicit basis functions and Reproducing Kernels are a common occurrence in various ma-
chine learning algorithms like generalized least squares, support vector machines, Gaussian
process regression, and kernel-based deep neural networks to name a few. Due to the more
general structure of the underlying variational problems, the theory is also relevant to other
application areas like optimal control, signal processing and decision making. The following
presents a generalized representer theorem using the theory of closed, densely defined linear
operators and subspace valued maps as a means to address variational optimization prob-
lems in learning and control. The implications of the theorem are presented with examples
of multi-input - multi-output problems from kernel-based deep neural networks, stochastic
regression and sparsity learning problems.
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1. Introduction

The development of kernel-based methods for regression and machine learning has a long
history with several algorithms basing themselves on the Reproducing Kernel Hilbert Space
(RKHS) theory. Some of the early works in the field include Aronszajn (1950); Tikhonov
(1963); Wahba (1990), which looked at problems of spline interpolation and smoothing
in the RKHS setting. Several practical learning algorithms like linear regression, support
vector machines, Bayesian regression were also developed in their kernel forms to allow
more complex nonlinear representations of data (see Bishop (2006) for some examples).
Kernel-based stochastic models are also popular in the form of Gaussian Process models
(see Rasmussen (2006)). RKHS based neural networks are investigated in Cho and Saul
(2009); Rebai et al. (2016); Damianou and Lawrence (2013).

Most such problems (see example 6) from learning and control in their general form can
be written as a variational optimization problem of the following form,

fopt = argminf∈H C(Lf) + Ω(f) (1)

where H and Z are some separable Hilbert spaces (possibly infinite dimensional, e.g. spaces
of square integrable functions), L : H → Z is a closed, densely defined linear operators, and
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C : Z → R ∪ {+∞} and Ω : H → R ∪ {+∞} are general nonlinear functionals encoding
the cost functions, regularizers and constraints in the problem. The functionals C and Ω
are written separately as different properties are assumed to hold for the two functionals
(see Section 3). We also hide the fact (in the notation of C : Z → R ∪ {+∞}) that the
functional can be dependent on additional inputs like the data set used for learning which
are fixed during the optimization and thus not explicitly shown in the notation.

Let V(H) denote the collection of all closed vector subspaces in H and S : H → V(H)
denote a map from a vector inH to a closed subspace ofH. Also let S have a subspace valued
extension S : V(H) → V(H) given by the union operation, i.e, for any A ∈ V(H), S(A) =
∪a∈AS(a), must belong to V(H). Let L∗ : Z → H, defined on a dense subset dom(L∗) ⊆ Z,
denote the adjoint operator to the closed, densely defined operator L : H → Z. Let
range(L∗) denote the range of the operator L∗ given by the set {L∗(z) : z ∈ dom(L∗)}.
The generalized representer theorem (Theorem 18) then states under certain assumptions
on C,Ω and S, that an optimal solution for (1) can be found in a subspace of H (often finite
dimensional) given by S(range(L?)), i.e.,

fopt ∈ S(range(L∗)) (2)

Representer theorems thus provide a means to reduce infinite dimensional optimization
problems for learning in the Hilbert space H to an equivalent and often tractable finite
dimensional optimization in Z of the form,

fopt = L∗zopt

zopt = argminf∈S(range(L∗)) C ◦ Lf + Ω(f)
(3)

If Z and S(range(L∗)) are finite dimensional then (3) is a finite dimensional optimization.
A key underlying tool in the use of RKHS methods is the Riesz Representer Theorem

(Conway, Theorem 3.3.1) and the existence and uniqueness of adjoint operators for bounded
linear operators given by (Conway, Theorem 5.4.2). The above two theorems combined with
restrictions on the forms of the objective and constraint functionals in learning problems
have led to several variants of representer theorems. Early variants of representer theorems
are presented in Wahba (1990) for variational problems in learning real valued functions with
least squares regularization. Representer theorems for kernel versions of different learning
algorithms like SVM, PCA, CCA, ICA can be found in Suykens et al. (2010). Works
like Micchelli and Pontil (2005); Minh and Sindhwani (2011); Minh et al. (2016) present
representer theorems for kernel based learning methods for vector valued functions in Hilbert
spaces. While these works cover a large set of learning algorithms, the representer theorem
needed to be proven individually for each problem. This has prompted investigation into
unifying representer theorems into a single generalized theorem and characterizing the class
of problems for which a representer theorem can be guaranteed to exist.

The first such results appear to have come from Schölkopf et al. (2001), where the
problem is addressed for learning real valued functions with functionals of the form (4).

fopt = argminf∈H C(f(x1), . . . , f(xm)) + Ω(||f ||H) (4)

whereH is a reproducing kernel Hilbert space of R-valued functions with kernelK, f(x1), . . . ,
f(xm) are function evaluations for f at given points x1, . . . , xm. The functional C is of the
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form, C : Rm → R ∪ {+∞}, and Ω : [0,∞) → R is a strictly monotonically increasing
function. The strictly increasing monotonic property of Ω was shown to be a sufficient
condition for the existence of a representer such that,

fopt ∈

{
m∑
i=1

ciK(·, xi) : ci ∈ R

}
(5)

The regularizers (written as a function of the norm of f) showed how kernel versions of
the least squares algorithms in linear regression, SVMs and others are covered by a single
generalized theorem.

Dinuzzo and Schölkopf (2012) relaxed the restriction on the regularizer further and pro-
vided necessary and sufficient conditions for the existence of representer theorems. Dinuzzo
and Schölkopf (2012) considers problems of the form

fopt = argminf∈H C(〈w1, f〉H, . . . , 〈wm, f〉H) + Ω(f) (6)

where H is a separable Hilbert space, w1, . . . , wm ∈ H are given vectors corresponding to
bounded functionals on H and functionals C : Rm → R ∪ {+∞} and Ω : H → R ∪ {+∞}
are lower semi-continuous functionals. If for all orthogonal vectors f, g ∈ H (〈f, g〉H = 0),
Ω(f + g) ≥ max{Ω(f),Ω(g)}, the functional Ω is called “orthomonotone”. It was also
shown that this orthomonotone property is necessary and sufficient for the existence of a
representer in the form,

fopt ∈

{
m∑
i=1

ciwi : ci ∈ R

}
(7)

Schölkopf et al. (2001); Dinuzzo and Schölkopf (2012) restricted the scope of their the-
orem to learning R-valued functions. The generalized theorem was extended to learning
multi-output functions in Argyriou and Dinuzzo (2014) with the help of subspace valued
maps S : H → V(H). Argyriou and Dinuzzo (2014) considers problems of the form,

fopt = argminf∈H C(〈w1, f〉H, . . . , 〈wm, f〉H) + Ω(f) (8)

where H, w1, . . . , wm, C : Rm → R ∪ {+∞} and Ω : H → R ∪ {+∞} are as before from
Dinuzzo and Schölkopf (2012). However, Ω satisfies the orthomonotone property with re-
spect to a subspace valued map S : H → V(H), defined as, for any f ∈ H and g ∈ S(f)⊥,
Ω(f + g) ≥ Ω(f). The representer theorem then provides that,

fopt ∈
m∑
i=1

S(wi) (9)

(the summation over sets S(wi) + S(wj) being considered as the pairwise addition a+ b of
all possible pairs (a, b) ∈ S(wi)× S(wj)).

The results from Schölkopf et al. (2001); Dinuzzo and Schölkopf (2012) can be viewed
under this framework as Ω being orthomonotone with respect to a trivial map SR(wi) =
{λwi : λ ∈ R}. The inclusion of orthomonotonicity with respect to non trivial subspace
valued maps allows the consideration of a larger class of regularizers for Ω including regu-
larizers like the `1-norm, Frobenius norm, trace norm and general spectral norms in matrix
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learning problems Argyriou et al. (2009). For learning a matrix f ∈ H = Rm×n, with Ω
being a monotonically increasing penalty on fT f , (Argyriou and Dinuzzo, 2014, Example
4.2) shows the representer is of the form

∑m
i=1 S(wi) with S(wi) = {wici : ci ∈ Rn×n} for

given wi ∈ H = Rm×n, thus showing the role of S in extending the result from Dinuzzo and
Schölkopf (2012) to a multi-output scenario.

Argyriou and Dinuzzo (2014) however makes an assumption of “r-regularity” (see ap-
pendix for definition) on the allowed subspace valued map S : H → V(H), which requires
for all w ∈ H, the dimension of S(w) ≤ r for some finite r ≤ m. We show in Section 4.3 that
for `1-regularization on function spaces the functional Ω is orthomonotone with respect to
a non r-regular subspace valued map S, i.e. no such finite r exists for all w ∈ H. Theorem
18 eliminates the r-regularity assumption and enables the generalized representer theorem
to be applied to such problems.

The prior counter parts of Theorem 18 Schölkopf et al. (2001); Argyriou et al. (2009);
Dinuzzo and Schölkopf (2012); Argyriou and Dinuzzo (2014) also consider functionals C :
Rm → R∪{+∞} defined on Rm instead of an arbitrary separable Hilbert space Z. In Section
4.2, we show with an example of stochastic process regression the utility of considering
loss functionals C : Z → R ∪ {∞} over an infinite dimensional Hilbert space Z. The
learning problems for stochastic processes require loss functionals to be defined over a
Hilbert space of measurable functions (not isomorphic to Rm) and were thus outside the
scope of previous generalized representer theorems from Schölkopf et al. (2001); Argyriou
et al. (2009); Dinuzzo and Schölkopf (2012); Argyriou and Dinuzzo (2014).

We thus present here an extension for the generalized representer theorem where the
functional C : Z → R ∪ {+∞} is a lower semi-continuous non-linear functional over an
arbitrary Hilbert space Z, in terms of non r-regular subspace valued maps and adjoints of
closed, densely defined linear operators.

The chapter is structured as follows. Section 2 presents some preliminary definitions
and results of existing notions required to establish the generalized representer theorem.
Section 2.1 presents some background material on linear operators and their adjoints. Sec-
tion 2.2 presents the notion of a subspace valued map and Section 2.3 presents the notion of
orthomonotone functionals with respect to a subspace valued map. The generalized repre-
senter theorem giving necessary and sufficient conditions for the existence of a representer is
then presented in Section 3. Section 4 presents examples of some simple learning problems
to highlight extensions made by the representer theorem. The appendix provides proofs for
some lemmas and discussion with regards to the subspace valued maps considered in the
chapter and their relation to properties of quasilinear, idempotent and r-regular subspace
valued maps used in previous works.

2. Preliminaries

The notions of adjoints and closed operators are known to be crucial in determining solutions
to linear inverse problem of the form Lx = y (find x given y) Kulkarni and Nair (2000). It
is thus natural for them to be important in the theory for a generalized representer theorem
(which cover problems of the form Lx = y as a special case). Section 2.1 presents some
preliminary, well known results that will be useful in proving the generalized representer
theorem.
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2.1 Closed linear operators and adjoint operators

Let H and Z be two arbitrary separable Hilbert spaces. Let 〈·, ·〉H, 〈·, ·〉Z be the inner
products defined on H and Z respectively. A closed linear operator from H to Z is defined
as follows.

Definition 1 (Closed linear operator)
Let H,Z be two separable Hilbert spaces. Let dom(L) ⊆ H be the domain for a linear
operator L : dom(L) → Z. L is called a closed operator if the graph of the operator,
graph(L) = {(x, Lx) : x ∈ dom(L)} is a closed subset of H×Z.

An operator L is called closable if there exists an extension to L that is closed.
A linear operator (not necessarily closed) is said to be densely defined on H if dom(L)

is a dense subset of H. Let L : dom(L) → Z be a linear operator, densely defined on H.
Then an adjoint operator can be defined as follows,

Definition 2 (Adjoint for densely defined operators)
Let dom(L) be a dense subset of H and L : dom(L)→ Z be a densely defined operator (also
denoted as L : H → Z). Let

dom(L∗) := {z ∈ Z : f(h) = 〈Lh, z〉Z is bounded linear functional on dom(L)}

. The adjoint L∗ : dom(L∗)→ H is defined as the operator mapping z ∈ dom(L∗) to a dual
in H such that,

∀f ∈ dom(L), z ∈ dom(L∗) 〈Lf, z〉Z = 〈f, L∗z〉H (10)

By (Conway, 1994, Chapter 10, Proposition 1.6), if the operator L : dom(L)→ Z is closable
and densely defined then the adjoint L∗ is a closed, densely defined operator, i.e., dom(L∗)
is a dense subset of Z. For a closed densely defined operator L : H → Z, L∗L : dom(L∗L) ⊆
H → H and LL∗ : dom(LL∗) ⊆ Z → Z are closed, densely defined, self-adjoint operators
Sandovici (2018). Also, for a closed and bounded operator L : dom(L) ⊆ H → Z the
domain is the entire space, i.e. dom(L) = H and the adjoint L∗ is also closed and bounded.

Further, by Banach’s closed range theorem (Yoshida, 2013, Chapter 7.5), the null space
of a densely defined, closed linear operator NL = {f ∈ dom(L) : Lf = 0} is a closed subset
in H and can be characterized in terms of the orthogonal complementary space N⊥L and
the adjoint operator L∗ : dom(L∗)→ H as follows,

Lemma 3 Let NL be the null space of a closed, densely defined operator L : dom(L)→ Z
and N⊥L be its orthogonal complementary space, then,

N⊥L = range(L∗) = {L∗z : z ∈ dom(L∗)}

The above lemma is a direct result of the closed range theorem and we refer the reader to
(Yoshida, 2013, Chapter 7.5) for the proof.

Corollary 4 For some finite m ∈ N, let {Li : dom(Li) → Zi : i = 1, . . . ,m} be a set of
closed, densely defined operators with Zi being separable Hilbert spaces and dom(Li) ⊆ H
for some separable Hilbert space H. Let ∩mi=1 dom(Li) be a dense subset of H. The joint
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null space is NL1,...,Lm = NL1 ∩ · · · ∩NLm and N⊥L1,...,Lm
= N⊥L1

+ · · ·+N⊥Lm = {
∑m

i=1 L
∗
i zi :

zi ∈ dom(L∗i )}.
Proof Consider the Hilbert space Z given as the direct sum of Zi, i = 1, . . . ,m, i.e.
Z = Z1 ⊕ · · · ⊕ Zm. The inner product on Z is given by 〈(z1, . . . , zm), (y1, . . . , ym)〉Z =∑m

i=1〈zi, yi〉Zi. Consider then the linear operator L : ∩mi=1 dom(Li) → Z given as Lf =
(L1f, . . . , Lmf). By assumption, ∩mi=1 dom(Li) is a dense subset of H and thus L is a
densely defined operator. Further graph(L) = {(x, Lx) : x ∈ dom(L)} is a closed subset
since for every converging sequence xn ∈ dom(L), Lxn = (L1xn, . . . , Lmxn) converges to a
point (L1x, . . . , Lmx) with (x, Lix) ∈ graph(Li) (since Li is a closed operator). Thus L is
a closed, densely defined operator with dom(L) = ∩mi=1 dom(Li).

Clearly NL = NL1,...,Lm = ∩mi=1NLi. The adjoint domain dom(L∗) = {(z1, . . . , zm) ∈
Z : f(h) =

∑m
i=1〈Lif, zi〉Zi is bounded} = dom(L∗1) × · · · × dom(L∗m). The adjoint L∗ :

dom(L∗) → H, is such that, for all f ∈ dom(L) and z = (z1, . . . , zm) ∈ dom(L∗),
〈L∗z, f〉H = 〈z, Lf〉Z =

∑m
i=1〈zi, Lif〉Zi = 〈

∑m
i=1 L

∗
i zi, f〉H. Thus L∗z =

∑m
i=1 L

∗
i zi. Then

by Lemma 3, N⊥L = range(L∗) = {
∑m

i=1 L
∗
i zi : zi ∈ dom(Li)}.

When rewriting functionals of the form C(L1f, . . . , Lmf) as C(Lf), Corollary 4 gives the
required characterization of the orthogonal null space. Thus the adjoint operator plays a key
role in characterizing the null space of an operator NL and its orthogonal complementary
space N⊥L .

Closed range characterization for bounded linear operators in terms of the operator
spectrum are given in (Kulkarni and Nair, 2000, Theorem 2.5) or equivalently by (Conway,
Lemma 5.6.13). Characterization of closed, densely defined operators is given by (Kulkarni
et al., 2008, Theorem 3.3).

By (Conway, Proposition 5.6.13), a bounded adjoint T ∗ : Z → H is a closed range if
and only if

inf{||L∗z||H : ||z||Z = 1} > 0 (11)

or equivalently

inf{〈z, LL∗z〉Z : ||z||Z = 1} > 0 (12)

By (Kulkarni et al., 2008, Theorem 3.3) a densely defined operator is closed if and only
if, there exists a γ > 0 such that the spectrum σ(L∗L) ⊆ {0} ∪ [γ,∞).

2.1.1 Adjoint for operators of common interest

Below we show a few examples of adjoint operator for densely defined, closed linear operators
commonly seen in learning and control algorithms.

Example 1 (Evaluation Operators)
Let Z be a separable Hilbert space and Cb(X ,Z) be the separable Banach space of Z-valued
continuous and bounded functions with a domain set X . Let H be a reproducing kernel
Hilbert space with kernel K : X × X → LZ,Z induced by a Gaussian measure on Cb(X ,Z).
A parametric linear evaluation operator Lx : H → Z, given by Lx(f) = f(x) for some fixed
parameter x ∈ X is then a bounded linear operator and H is a dense subset in Cb(X ,Z)
(Bogachev, 2015, Theorem 3.9.5). The operator commonly occurs in machine learning and
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data fitting problems where x is the training input data and f(x) gives a predicted value for
the output in Z. The adjoint L∗x : Z → H can be found as follows.

Note that by definition of Lx and its adjoint L∗x, ∀g ∈ H, z ∈ Z, 〈L∗xz, g〉H = 〈Lxg, z〉Z ,
i.e., 〈L∗xz, g〉H = 〈g(x), z〉Z . When H is a reproducing kernel Hilbert space with kernel K,
L∗x is well defined and coincides with the definition of the RKHS kernel (see (Micchelli and
Pontil, 2005, Definition 2.1)). Thus RKHS spaces provide a case where the adjoint operator
for evaluation operators is well defined and L∗x = K(·, x), i.e. we have dom(Lx) = H and
dom(L∗x) = Z.

The closed range property for L∗x thus corresponds to the closed range property of the
kernel. Using (12), this corresponds to checking inf{〈z,K(x, x)z〉Z : ||z||Z = 1} > 0. For a
positive definite kernel K, this is automatically satisfied and the adjoint is a closed range,
bounded linear operator.

Example 2 (Linear Transformations of an explicit basis φ)
Let H,Y,Z be arbitrary Hilbert spaces. Let LY,Z be the space of bounded, closed range
operators from Y to Z. Let φ : X → Y be some given Y-valued function and x ∈ X be an
evaluation point such that ||φ(x)||Y < ∞. Let ` : H → LY,Z be a bounded linear map from
H to LY,Z such that there exists a κ` ∈ [0,∞) satisfying, for all W ∈ H, ||`(W )||LY,Z ≤
κ`||W ||H. Then we can define a bounded, closed range linear operator Lx,φ : H → Z given
as Lx,φ(W ) := `(W )φ(x) for any W ∈ H. The boundedness for the operator follows from the
fact that ||Lx,φ(W )||Z = ||`(W )φ(x)||Z ≤ ||`(W )||LY,Z ||φ(x)||Y ≤ κ`||φ(x)||Y ||W ||H. The
adjoint operator satisfies 〈L∗x,φz,W 〉H = 〈`(W )φ(x), z〉Z and its form depends on further
specification of `.

The operator Lx,φ is closed range, if inf{〈Lx,φL∗x,φz, z〉Z : ||z||Z = 1} > 0, i.e.,

inf{〈`(L∗x,φz)φ(x), z〉Z : ||z||Z = 1} > 0

We look at two examples below giving ` explicitly and making the adjoint and closed range
characterization for the given cases.

Example 2(a) Finite dimensional Z example
Let Y = Rn, Z = Rk, H = Rn×k and φ : X → Y is a given basis function and x ∈ X
with ||φ(x)||Y < ∞. Let `(W ) := W T be the bounded operator from H to LY,Z . Then for
any W ∈ H, Lx,φ(W ) = W Tφ(x) and Lx,φ is a bounded operator. Such an operator is
common when W represent weights or coefficients to be learned and φ is a given vector of
basis functions.

Let the inner product on H be the Frobenius inner product of matrices, i.e, 〈w1, w2〉H =
trace(wT1 w2). Let inner product on Z be 〈z1, z2〉Z = zT1 z2. Then for the adjoint operator
〈L∗x,φz,W 〉H = 〈W Tφ(x), z〉Z , ∀z ∈ Z implying trace(W TL∗x,φz) = φ(x)TWz. Noting then

that φ(x)TWz = trace(φ(x)TWz) = trace(zTW Tφ(x)) = trace(W Tφ(x)zT ), we can define
L∗x,φz := φ(x)zT with dom(Lx,φ) = H and dom(L?x,φ) = Z.

The operator Lx,φ is closed range if inf{φ(x)Tφ(x)zT z : ||z||Z = 1} = φ(x)Tφ(x) > 0.

Example 2(b) Infinite dimensional Z example
Let X = Rn, U = Rm and H = Rm×N . Let {Yi : i = 1, . . . , N} be a collection of RKHS
spaces of functions f : X → U with kernels K1, . . . ,KN . Let Y = Y1 × · · · × YN and
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φ(x) =


K1(·, x)
K2(·, x)

...
KN (·, x)

 and let Z be some infinite dimensional Hilbert space of functions

g : X → U with inner product 〈g1, g2〉Z =
∫
X 〈g1(x), g2(x)〉Udx. Then we can define a con-

tinuous linear operator Lx,φ : H → Z for any W ∈ H as Lx,φ(W ) :=
∑N

i=1Ki(·, x)Wi, with
Wi denoting the ith column of W . Using the Frobenius inner product on H, 〈L∗x,φg,W 〉H =

〈Lx,φ(W ), g〉Z =
∑N

i=1

∫
X 〈Ki(y, x)Wi, g(y)〉Udy =

∑N
i=1

∫
X W

T
i Ki(x, y)g(y)dy. Also note

that 〈L∗x,φg,W 〉H = trace(W TL∗x,φg) =
∑N

i=1W
T
i [L∗x,φg]i. Thus [L∗x,φg]i =

∫
X Ki(x, y)g(y)dy

gives the adjoint.
The operator Lx,φ is closed range, if inf{〈L∗x,φ(Lx,φW ),W 〉H : ||W ||H = 1} = inf{〈L∗x,φW,L∗x,φW 〉Z :

||W ||H = 1} = inf{
∑N

i=1

∑N
j=1(

∫
X W

T
i Ki(x, y)TKj(x, y)Wjdy) : ||W ||H = 1} > 0.

Such an operator can be used to pose an optimization for learning with weighted kernels.

Example 3 (Derivative operator in Sobolov Hilbert spaces)
Let Ω ⊂ Rn be a open subset of Rn with a smooth boundary ∂Ω. Let α = (α1, . . . , αn) ∈ Nn be
a multi-index and ∂αf = ∂α1

x1 , . . . , ∂
αn
xn f . Let L2(Ω,R, µ) be the space of R-valued functions,

square integrable on Ω with respect to a non-negative measure µ and Hk(Ω,R, µ) be the
Sobolov Hilbert space such that ∂αf ∈ L2(Ω, µ) for all multi-index α ∈ Nn such that |α| ≤ k.
The inner product on Hk(Ω,R, µ) is given by 〈f, g〉Hk(µ) =

∑k
i=1

∑
α:|α|≤k〈∂αf, ∂αg〉L2(Ω,µ).

It is also known that Hk(Ω,R, µ) ⊂ L2(Ω,R, µ) is a dense subset of L2(Ω,R, µ) (Sudan et al.,
2012, Prop. 3.10). Thus any differential operator D : Hk(Ω,R, µ)→ L2(Ω,R, µ) defined on
Hk(Ω,R, µ) is densely defined on L2(Ω,R, µ) with dom(D) = Hk(Ω,R, µ). Consider then a
differential operator Df = φ(·)T∇f + ∆f for a given smooth function φ ∈ C∞(Rn,Rn), ∇
and ∆ are the gradient and Laplace operators respectively. Such an operator D is closable
(Yoshida, 2013, Page 78). Thus we have D as a closable, densely defined operator on
L2(Ω,R, µ), implying the adjoint D∗ is closed and densely defined on L2(Ω,R, µ). For any
g with differentiability upto order two and f ∈ dom(D) we have, using integration by parts,

〈Df, g〉L2(Ω,R,µ) =

∫
Ω

(φ(x)T∇f(x) + ∆f(x))g(x)dµ(x) (13)

=

∫
Ω
f(x)(−∇ · (gφ)(x) + ∆g(x))dµ(x) (14)

+

∫
∂Ω

(φfg + g∇f − f∇g) · dS (15)

Then for the boundary conditions g(x) = 0 and ∇g(x) = 0 for all x ∈ ∂Ω, and defining

D∗g = −∇ · (gφ)(x) + ∆g(x)

we have the integral terms over the boundary going to zero and,

〈Df, g〉L2(Ω,R,µ) = 〈f,D∗g〉L2(Ω,R,µ) (16)

for all f ∈ Hk(Ω,R, µ) and g ∈ dom(D∗) = {g ∈ H2(Rn,R, µ) : ∀x ∈ ∂Ω, g(x) =
0,∇g(x) = 0}.
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Example 3 shows an example of an unbounded operator where the domain dom(L∗) is
a strict subset of Z unlike in the case of bounded, closed operators in Examples 1 and
2. Derivative operators with boundary conditions are common in numerical methods for
control, signal processing and partial differential equation applications.

2.2 Subspace Valued Maps

The notion of subspace valued maps expands the class of regularizers that a generalized
representer theorem can explain and was introduced in Argyriou and Dinuzzo (2014). Let
H be a separable Hilbert space, 2H be the power set on H and V(H) be a set of all
closed vector subspaces of H. Also for any subsets A,B ⊆ H, let A + B denote the set
{a + b : a ∈ A, b ∈ B}. A map S : H → V(H) is then called a subspace valued map.
For evaluation on any set A ⊆ H, we denote S(A) to mean, S(A) = ∪x∈AS(x). The
union operation, thus, extends the map S : H → V(H), in general, to a set valued map
S : V(H)→ 2H (as the union of vector spaces is not necessarily a vector space). Below we
present a few definitions of terms we will use in the context of subspace valued maps and
show conditions under which the union leads to closed vector spaces.

Definition 5 (Subspace valued map)
Let H be a separable Hilbert space and V(H) be a set of all closed vector subspaces of H. A
map S : H → V(H) is called subspace valued.

Definition 6 (Union extension)
Let S : H → V(H) be a subspace valued map. Then the extension of S : V(H) → 2H given
by an union operation S(A) = ∪x∈AS(x) is called the union extension of S.

Definition 7 (Inclusive map)
A subspace valued map S : H → V(H) is called inclusive, if, for all x ∈ H, x ∈ S(x)

Definition 8 (Super additive map)
A map S : H → V(H) is called super additive if its union extension S : V(H) → 2H is
super-additive, i.e. for all vector subspaces A,B ∈ V(H),

S(A) + S(B) ⊆ S(A+B)

Note the the above name is a misnomer since we do not require S : H → V(H) to be
super-additive, but only its union extension to be super-additive. The misnomer is used for
the purposes of brevity.

Definition 9 (Closed map)
A map S : H → V(H) is called closed if its union extension S : V(H) → 2H maps closed
subspaces from V(H) to closed subsets in 2H.

Definition 10 (Orthogonal subspace)
For any A ⊆ H, we define S(A)⊥ := {b ∈ H : ∀a ∈ S(A), 〈a, b〉H = 0}

The following shows a few examples of inclusive and super-additive subspace valued maps
that are used for application examples in Section 4,
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Example 4 Subspace valued maps

1. SR(a) := {λa : λ ∈ R} is a closed, inclusive, super additive subspace valued map.
Inclusivity of SR is straightforward to see since a = 1 · a ∈ S(a) = {λ · a : λ ∈ R}.
Further for any A,B ∈ V(H), S(A)+S(B) = {λ1a+λ2b : λ1, λ2 ∈ R, a ∈ A, b ∈ B} =
{λa : λ ∈ R, a ∈ A + B} = S(A + B). Also for any closed subspace A ∈ V(H), the
union extension is such that SR(A) = ∪a∈ASR(a) = A and thus maps closed subspaces
to closed subspaces.

2. Let K = {Li : H → H : i = 1, . . . , n} be a finite set of linearly independent, closed
and bounded linear operators with the identity operator I ∈ span(K). Then SL(a) :=
{
∑n

i=1 λiLia : λi ∈ R} is a closed, inclusive and super additive subspace valued map.
The fact that SL is closed, can be seen by noting that for any closed subspace A,
we have SL(A) =

∑n
i=1 LiA. Since Li are closed linear operators, the sets LiA are

closed and the sum of finitely many closed sets remains closed. SL being inclusive
follows from the fact that the identity operator Ia = a belongs to span(K), and thus
a ∈ SL(a), implying SL is inclusive. Also for any closed vector subspaces A,B ∈ V(H),
S(A)+S(B) = {

∑∞
i=1 λiLia+λ′iLib : λi, λ

′
i ∈ R, a ∈ A, b ∈ B} = {

∑∞
i=1 Li(λia+λ′ib) :

λi, λ
′
i ∈ R, a ∈ A, b ∈ B} = {

∑∞
i=1 Lia : a ∈ A+B} = S(A+B).

3. A special case of the above example is the case when H = Rn and E = {e1, . . . , en}
is the standard orthonormal basis for Rn. Then Sproj(a) := {

∑n
i=1 λi〈a, ei〉Hei : ei ∈

E, λi ∈ R} is an inclusive, super additive subspace valued map. The Sproj corresponds
to SL from the previous example, with Li : H → H, being a set of projections onto the
orthonormal basis, given as Lia = 〈a, ei〉Hei

4. A countable counterpart of the example above can be presented for the space of square
summable sequences, H = `2(N,R), taking values in R and indexed by natural numbers
N. Let {δi ∈ `2(N,R) : i ∈ N} with δi(j) = 1 if i = j and 0 otherwise, be the
orthonormal basis for `2(N,R). Let f(i) denote the ith member of a sequence and

let 〈f, g〉H =
∑∞

i=1 f(i)g(i). Then Sproj(f) =
{∑∞

i=1 λ(i) 〈f,δi〉Hδi||f ||H : λ ∈ `2(N,R)
}

for

||f ||H 6= 0 and Sproj(f) = {0} if ||f ||H = 0, is an inclusive, closed and super additive
subspace valued map. The Sproj defined can be seen to be inclusive as for any f ∈
`2(N,R), there exists a representation for f in terms of the orthonormal basis f =∑∞

i=1 a(i)δi for some coefficients sequence a ∈ `2. Sproj(f) = {
∑∞

i=1 λ(i)δi : λ ∈
`2(N,R), λ(i) = 0 if a(i) = 0} and thus f =

∑n
i=1 a(i)δi belongs to Sproj(f). Similarly

for any f =
∑

i=1 a(i)δi and g =
∑

i=1 b(i)δi with a, b ∈ `2(N,R), we have Sproj(f) +
Sproj(g) = {

∑∞
i=1 λ(i)δi : λ ∈ `2(N,R), λ(i) = 0 if a(i) = 0} + {

∑∞
i=1 λ(i)δi : λ ∈

`2(N,R), λ(i) = 0 if b(i) = 0} = {
∑∞

i=1 λ(i)δi : λ ∈ `2(N,R), λ(i) = 0 if b(i) = a(i) =
0} = Sproj(f + g). Thus Sproj(A) +Sproj(B) = Sproj(A+B) for all A,B ∈ V(H) and
thus it is trivially super-additive. Also Sproj is closed as it maps any A ∈ V(H), to
Sproj(A) = {

∑∞
i=1 λ(i)δi : λ ∈ `2(N,R) and λ(i) = 0 if a(i) = 0 for all a ∈ A} which

is a closed vector subspace of `2(N,R)

Examples 4-3 and 4-4 are used to construct representers for regularizers given by `1 norm.
Noting that the union extension of a subspace valued map S : V(H) → 2H, in general,

is not subspace valued, the following Lemma shows that a subspace valued union extension
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S : V(H)→ V(H) to a subspace valued map S : H → V(H) exists, if and only if, the union
extension S : V(H)→ 2H is super-additive.

Lemma 11 (Extending S : H → V(H) to S : V(H)→ V(H))
Let S : H → V(H) be a subspace valued map and its union extension S : V(H) → 2H

be given by S(A) = ∪x∈AS(x). Then the extension maps into V(H), if and only if, S is
super-additive and closed.

Proof We first prove that if S is super-additive and closed then for any A ∈ V(H), S(A) ∈
V(H) and thus the extension S : V(H)→ 2H has range in V(H).

To show S(A) ∈ V(H), we need to show that for any a, b ∈ S(A), λa + µb ∈ S(A) for
all λ, µ ∈ R and that any converging sequence {an ∈ S(A)} converges within S(A).

First, we show that S(A) is a vector space if S is super-additive.

Since S(A) = ∪x∈AS(x), for any a ∈ S(A), there exists a xa ∈ A such that a ∈ S(xa).
Further, S : H → V(H) maps xa ∈ H to a closed vector space S(xa) ∈ V(H). Thus
a ∈ S(xa) implies λa ∈ S(xa) for all λ ∈ R, also implying λa ∈ S(A). By the same
arguments, for all µ ∈ R, b ∈ S(A), implies µb ∈ S(A). Thus the one dimensional closed
vector spaces Ka = {λa : λ ∈ R} and Kb = {µb : µ ∈ R} are subspaces in S(A) i.e.,
Ka ⊆ S(A) and Kb ⊆ S(A). Thus Ka + Kb ⊆ S(A) + S(A). By super-additive property
of S, S(A) + S(A) ⊆ S(A + A) = S(A) (because for vector space A, A + A = A). Also,
λa+ µb ∈ Ka +Kb ⊆ S(A), implying for all a, b ∈ S(A), λ, µ ∈ R, λa+ µb ∈ S(A).

S(A) is also closed, as S is taken to be a closed subspace valued map. Thus we have
shown that S being super-additive and closed implies for all A ∈ V(H), S(A) ∈ V(H). Thus
the union extension can be written as S : V(H)→ V(H).

Next we show the reverse statement that a union extension S : V(H)→ V(H) implies S
is super-additive and closed.

For all A,B ∈ V(H), we have A + B ∈ V(H), as the sum of two closed vector spaces
is a closed vector space. Also A ⊆ A + B and B ⊆ A + B. Thus S(A) = ∪x∈AS(x) ⊆
∪x∈A+BS(x) = S(A + B). Similarly, S(B) ⊆ S(A + B). Given S maps V(H) into V(H),
we have for A,B,A + B ∈ V(H), S(A), S(B), S(A + B) ∈ V(H). Since S(A) ⊆ S(A + B)
and S(B) ⊆ S(A + B), S(A) + S(B) ⊆ S(A + B) implying S is super-additive. S being
closed follows from the assumption that S(A) was in V(H) which is a space of closed vector
spaces.

The notions of quasilinear and idempotent maps from Argyriou and Dinuzzo (2014) are
related to the notion of super additivity by noting that for any quasilinear, idempotent
S, Ssup(A) :=

∑
w∈A S(w) can be defined as the corresponding super additive map. Also

the representers from Argyriou and Dinuzzo (2014) are of the form
∑m

i=1 S(wi) and thus
equivalently can be written as Ssup(span({w1, . . . , wm})). Thus considering a super-additive
subspace valued map does not lead to any loss of generality. Furthermore Argyriou and
Dinuzzo (2014) assumed the maps to be idempotent, i.e., S(S(x)) = S(x), which implicitly
assumes that S has a subspace valued union extension and thus all idempotent subspace
valued maps are implicitly required to be super-additive.

Another property that is of interest for us is the preservation of N⊥L = range(L∗) for
a given operator L : H → Z under a subspace valued map, i.e., we want range(L∗) ⊆
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S(range(L∗)). S being inclusive is a sufficient condition for such a range preserving property.
Formally we define this property as follows,

Definition 12 (Range preserving map)
Let L : H → Z be a closable, densely defined operator as considered in Section 2.1 and
let N⊥L = range (L∗) be the null space orthogonal of L. Then a subspace valued map S :
V(H)→ V(H) is called range preserving with respect to L if

N⊥L ⊆ S(N⊥L )

or equivalently, S(N⊥L )⊥ ⊆ NL.

Given that N⊥L and NL are closed, orthogonal complementary subspaces in H, the subspace
valued extension S : V(H)→ V(H) implies S(N⊥L ) and S(N⊥L )⊥ are also closed, orthogonal
complementary spaces in H.

The range preserving property S(N⊥L )⊥ ⊆ NL implies that any g ∈ S(N⊥L )⊥, g ∈ NL,
i.e., Lg = 0. This property will be useful later when proving the generalized theorem.

Lemma 13 (Inclusive implies range preserving)
If S : V(H) → V(H) is inclusive then it is range preserving with respect to any closable,
densely defined operator L : H → Z.
Proof If S is inclusive, then for all A ∈ V(H), A ⊆ S(A). For a closable, densely defined
operator, the orthogonal to the null space N⊥L = range (L∗) is a closed vector subspace in
V(H) and thus inclusivity implies N⊥L = range (L∗) ⊆ S(N⊥L ).

The range preserving property and orthogonal complementary nature of S(N⊥L ) and S(N⊥L )⊥

will be key in characterizing the conditions for the existence of a representer theorem.

2.3 Orthomonotone Functionals

Dinuzzo and Schölkopf (2012); Argyriou and Dinuzzo (2014) introduced orthomonotone
functionals as a way to expand the class of regularizers. The following reiterates the notions
introduced there in the context of subspace valued maps of the form S : V(Z)→ V(Z) and
separates out the notions of orthomonotonicity with respect to a single closed subspace
(which gives a sufficient condition for the existence of a representer) and orthomonotonicity
with respect to a subspace valued map, which gives as a necessary and sufficient condition
when considering existence of representers for a family of minimization problems.

Definition 14 (Orthomonotonicity with respect to a subspace)
Let Z be a Hilbert space and K ⊆ Z be a closed subspace of Z. Let K⊥ denote the orthogonal
complementary space to K. A functional Ω : Z → R ∪ {+∞} is called orthomonotone
with respect to the subspace K if

∀f ∈ K, g ∈ K⊥, Ω(f + g) ≥ Ω(f)

Definition 15 (Orthomonotonicity with respect to a subspace valued map)
Let Z be a Hilbert space. A functional Ω : Z → R ∪ {+∞} is called orthomonotone with
respect to a subspace valued map S : V(Z)→ V(Z) if

∀A ∈ V(Z), f ∈ S(A), g ∈ S(A)⊥, Ω(f + g) ≥ max{Ω(f),Ω(g)}

12
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Consider the subspace valued map SR from Example 4. (Dinuzzo and Schölkopf,
2012, Theorem 1) showed that a functional Ω is orthomonotone with respect to SR if
and only if there exists a monotonically increasing functional h : R → R ∪ {∞} such that
Ω(z) = h(||z||),∀z ∈ Z. Note that while the above characterization with a monotonically
increasing functional restricts its analysis to inner product induced norms, other kinds of
orthomonotone functionals can be constructed as well, and orthomonotonicity with respect
to a subspace valued map S : H → V(H) was introduced in Argyriou and Dinuzzo (2014) as
a means to expands the class of regularizers to non inner product terms. Example 5 belows
shows a few examples of orthomonotone regularizers.

Example 5 Orthomonotone functionals

1. Ω(z) = ||z||pZ , for any p > 0 is orthomonotone w.r.t. SR

2. Let Z = Rn and || · ||1 denote the `1 norm. Then, Ω(z) = ||z||1 is orthomonotone
w.r.t. Sproj (Sproj as defined in Example 4-3).

The proof for the first statement follows directly from (Dinuzzo and Schölkopf, 2012, Theo-
rem 1) since Ω(z) = ||z||pZ , for any p > 0 is a monotonically increasing function of the inner
product induced norm. The proof for the second statement follows from Theorem 16.

The second statement in the example above shows how sparse regularization problems
involving the `1 norm are also covered by the notion of orthomonotone functionals.

The orthomonotonicity of `1 regularizers is formalized with the following theorem,

Theorem 16 Orthomonotonicity of `1 regularizers
Let Z = Rn, Sproj be the subspace valued map defined in Example 4 and let h : [0,∞] →
R ∪ {+∞} be a monotonic increasing function. Then Ω(z) = h(||z||1) is orthomonotone
with respect to Sproj.

Proof We first show Ω(z) = ||z||1 is orthomonotone w.r.t. Sproj. The result for monotonic
increasing h follows from there.

Let E = {e1, . . . , en} be the standard basis for Rn. Note that for any z ∈ Rn, Sproj(z) =
{
∑n

i=1 λi〈z, ei〉Rnei : ei ∈ E, λi ∈ R} and (Sproj(z))
⊥ = {

∑
j λjej : 〈z, ej〉Rn = 0, ej ∈

E, λj ∈ R}. Similarly for a set A ⊂ Rn, Sproj(A) = {
∑n

i=1 λi〈z, ei〉Rnei : ei ∈ E, λi ∈
R, z ∈ A} and (Sproj(A))⊥ = {

∑
j λjej : ej ∈ E, λj ∈ R,∀z ∈ A, 〈z, ej〉Rn = 0}. Now for

any z ∈ Sproj(A) and c ∈ Sproj(A)⊥, ||z+ c||1 =
∑
{i:〈z,ei〉Rn 6=0} |zi|+

∑
{i:〈z,ei〉Rn=0} |ci| with

zi = 〈z, ei〉Rn and ci = 〈c, ei〉Rn. Also ||z||1 =
∑n

i=1 |zi| =
∑
{i:〈z,ei〉Rn 6=0} |zi| and ||c||1 =∑n

i=1 |ci| =
∑
{i:〈z,ei〉Rn=0} |ci|. Thus we see ||z + c||1 = ||z||1 + ||c||1 ≥ max{||z||1, ||c||1}

=⇒ Ω(z) = ||z||1 is orthomonotone with respect to Sproj.

For any monotonically increasing function h, for any a, b ∈ [0,∞), a > b implies h(a) >
h(b). Thus ||z + c||1 ≥ max{||z||1, ||c||1} implies h(||z + c||1) ≥ max{h(||z||1), h(||c||1)}.
And thus Ω(z) = h(||z||1) is orthomonotone with respect to Sproj for any monotonically
increasing function h.

The theorem can also be extended to a countable space of sequences as follows,
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Theorem 17 (Orthomonotonicity of `1 regularizers in countable spaces)
Let Z = `2(N) be the Hilbert space of R−valued square summable sequences on N. Let

||f ||1 =

{∑∞
i=1 |fi| if summation is bounded

+∞ otherwise
. Let Sproj be the subspace valued map con-

sidered in Example 4-4 and h : [0,∞]→ R∪{∞} be a monotonic increasing function. Then
Ω(f) = h(||f ||1) is orthomonotone with respect to Sproj.
Proof For any A ∈ V(Z), f ∈ Sproj(A), g ∈ Sproj(A)⊥, we have f =

∑
i∈KA λiδi and

g =
∑

j∈N\KA λjδj, for δi being the orthonormal basis of `2(N) considered in Example 4-4
and KA being some subset of indices in N for which A has a non-zero projection on δi,
written as KA = {i ∈ N : there exists some a ∈ A such that 〈a, δi〉`2 6= 0}. Thus we have
||f + g||1 = ||f ||1 + ||g||1 (including the case when any of them takes the value of ∞) as both
f and g have disjoint supports. Thus we have ||f+g||1 ≥ max{||f ||1, ||g||1} for all A ∈ V(Z)
and f ∈ Sproj(A), g ∈ Sproj(A)⊥. Then for any monotonically increasing function h, we
have h(||f + g||1) ≥ max{h(||f ||1), h(||g||1)} and thus Ω is orthomonotone with respect to
Sproj.

For more properties of orthomonotone functional regarding compositions and sums we refer
the reader to Argyriou and Dinuzzo (2014). With the notions of linear and adjoint operators
combined with subspace valued maps and orthomonotone functionals, we are now ready to
present the main result for the generalized representer theorem.

3. Generalized representer theorem

Let H and Z be separable Hilbert spaces. Let L : H → Z be closed, densely defined
operators on H. Let C : Z → R ∪ {+∞} and Ω : H → R ∪ {+∞} be some lower semi-
continuous functionals.

Functionals of the form C ′ : Z1× · · ·×Zm → R∪{∞} := C ′(L1f, . . . , Lmf) are written
without loss of generality in terms of a Hilbert space Z considered above, as follows. For any
m ∈ N and i ∈ {1, . . . ,m}, let Li : H → Zi be closed, densely defined linear operators from
H to separable Hilbert spaces Zi. Let Z = Z1×Z2× · · · ×Zm and let L : H → Z be given
by Lf = (L1f, . . . , Lmf), thus equivalently writing C ′ as a functional C : Z → R ∪ {+∞}.

Now, consider the optimization problem,

fopt = argmin
f∈H

C(Lf) + Ω(f) (17)

The inclusion of {+∞} in the range of lower semi-continuous C and Ω allows one to consider
constrained optimization problems. A few examples of learning problems written in this
form are shown below,

Example 6 (Learning and control problems)

1. Let H be an RKHS space of functions taking values in Zi = Rn. Consider the eval-
uation operator from Example 1 such that Lx : H → Zi is given by Lxf := f(x).
Let {(xi, yi) : i = 1, . . . ,m} be a training data set. Let L1, . . . , Lm be given by
Lx1 , . . . , Lxm and L′ : H → H be the identity operator. Let C(L1f, . . . , Lmf) :=
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∑m
i=1 ||yi−σ(Lxif)||2Z for some activation function σ : Rn → Rn. Let Ω(L′f) := ||f ||2H.

Then for J(f) =
∑m

i=1 ||yi−σ(Lxif)||2Zi+||f ||
2
H we get a regularized least squares prob-

lem in the RKHS space if σ is linear and an RKHS based neural network layer for
some nonlinear σ.

2. Let Ω(f) = ||f ||21 in the above example and we get a `1 regularized problem.

3. Let Zi = R, yi ∈ {+1,−1}, C(L1f, . . . , Lmf) :=

{
0 ∀i ∈ {1, . . . ,m}; yiLif > 0

+∞ otherwise

and Ω(f) = ||f ||2. Then J(f) = C(L1f, . . . , Lmf) + Ω(f) gives the hard margin
support vector machine objective for binary classification.

4. Let µ be a positive measure on the measurable space (R,B(R)). Let f, u be func-
tions in L2([0,∞), µ;Rn) and L2([0,∞), µ;Rm) respectively. Consider the regularizer

Ω(f, u) = ||f ||2L2+||u||2L2 and C(L(f, u)) =

{
0 if ∂tf(ti)−φ(f(ti),u(ti))=0 for all i=1,...,m

f(0)=x0,u(0)=u0

+∞ otherwise

for some known nonlinear function φ : Rn×Rm → Rn, finite set of points {ti ∈ [0,∞) :
i = 1, . . . ,m} and (x0, u0) ∈ Rn × Rm. Then J((f, u)) = C(L(f, u)) + Ω(f, u) gives
the objective function for solving a collocation based approximation to a continuous
time nonlinear optimal control problem, where φ is a known function for the dynamics
of the system, f denotes the continuous time trajectory and u denotes the continuous
time control signal. The measure µ is used as a weighting measure to determine the
growth rate of the functions considered in the hypothesis space for the solutions. Note
also that the derivative operator ∂t is only a closed, densely defined operator and not
a bounded one.

Given a learning problem in the form of (17), let Ω be orthomonotone with respect
to an inclusive, super-additive subspace valued map S : V(H) → V(H). The generalized
representer theorem states that a minimizer for (17) exists in the subspace given by S(N⊥L )
and the problem (17) is said to be linearly representable.

The notion of linear representability is significant as it often allows one to reformulate
infinite dimensional optimization problems in H into equivalent finite dimensional optimiza-
tion in Z given as

fopt = argminf∈S(range(L∗)) C(Lf) + Ω(f) (18)

(18) gives a finite dimensional optimization if Z is finite dimensional and S(range(L∗)) is a
finite dimensional subspace.

Below we state and prove, first the sufficient condition for linear representability of a
functional J(f) = C(Lf)+Ω(f) and then the complete statement of necessary and sufficient
condition for linear representability over a given family of functionals.

3.1 Sufficient conditions for linear representability

Theorem 18 Generalized Representer Theorem (Sufficient condition)
Let H and Z be separable Hilbert spaces and L : H → Z be a closed, densely defined
linear operator with the null space orthogonal N⊥L = range(L∗). Let S : V(H) → V(H) be
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a closed and super additive subspace valued map, range preserving with respect to L. Let
Ω : H → R∪ {+∞} and C : Z → R∪ {+∞} be a lower semicontinuous functionals, with Ω
orthomonotone with respect to the subspace S(N⊥L ). Then for the problem,

fopt = argmin
f∈H

C(Lf) + Ω(f) (19)

if the minimizers are attainable, atleast one minimizer is linearly representable with respect
to S, such that fopt ∈ S(N⊥L ).

Proof Since Ω is orthomonotone with respect to the closed subspace S(N⊥L ), ∀f ∈ S(N⊥L ), g ∈
S(N⊥L )⊥, Ω(f + g) ≥ Ω(f). Also by Definition 12, S is range preserving with respect to L,
implies S(N⊥L )⊥ ⊆ NL. Thus for all g ∈ S(N⊥L )⊥, Lg = 0.

For a closed, densely defined operator L, N⊥L = range(L∗) is a closed vector subspace and
thus by definition is mapped to a closed subspace S(N⊥L ) by the subspace valued map. Thus
S(N⊥L ) and S(N⊥L )⊥ form an orthogonal complementary pair for H and for any F ∈ H we
can find a decomposition F = f + g, with f ∈ S(N⊥L ), g ∈ S(N⊥L )⊥. Then

J(F ) = C(L(f + g)) + Ω(f + g) (20)

= C(Lf) + Ω(f + g) (21)

≥ C(Lf) + Ω(f) (22)

Thus ∀F ∈ H, ∃f ∈ S(N⊥L ) such that J(f) ≤ J(F ). Thus if J admits a minimizer in H, a
minimizer must exists in S(N⊥L ), implying J is linearly representable w.r.t. S.

3.2 Necessary and sufficient conditions for linear representability

The generalized representer theorem we present here differs from its previous counterpart
(Argyriou and Dinuzzo, 2014, Theorem 3.1) in three significant ways. Firstly, there is no
assumption for a finite dimensional r-regularity property on the subspace valued map and
secondly, the loss functional C can be defined on arbitrary infinite dimensional Hilbert
spaces Z. These two changes become significant since when dealing with stochastic re-
gression problems the output space Z is an infinite dimensional Hilbert space of random
variables (or measurable functions) and when dealing with `1 regularization problems in
function spaces, the corresponding subspace valued map Sproj is not r-regular for any finite
r. We will expand upon these differences in Section 4 with corresponding application ex-
amples. Lastly, we consider closed and densely defined operators in the loss function which
allows for unbounded, derivative like operators in learning and control problems.

Now note that problems of the form (17) are typically considered over families of linear
operators L : H → Z where L depends on training data for the learning problem and
scaled regularizers {γΩ : γ ∈ (0,∞)}, and if (17) is linearly representable for some choice
of L and γ, it is natural to expect the problem to be linearly representable for all possible
problems in this family. In fact if Ω is orthomonotone with respect to a closed, inclusive and
super-additive subspace valued map S, this follows from Theorem 18 for all closed, densely
defined linear operators (since an inclusive S is null space preserving for any operator L,
by Lemma 13). The necessary condition in the representer theorem considers the reverse
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proposition, that is, if (17) is linearly representable with respect to a closed, inclusive and
super-additive subspace valued map S for all closed, densely defined operators L and all
γ ∈ (0,∞), then under certain additional assumptions on C and Ω it can be concluded that
Ω must be orthomonotone with respect to S.

Thus, consider the family of functionals, given a closed, inclusive and super-additive
subspace valued map S,

JS = {C ◦ L+ γΩ | γ ∈ (0,∞), L : H → Z is closed, densely defined} (23)

and for fixed functionals C : Z → R ∪ {∞} and Ω : H → R ∪ {∞} such that C admits
a unique non-zero minimizer z? in Z\{0} with compact sub-level sets in its neighborhood
and Ω admits a minimizer at 0. Note that the assumption on Ω is not a new one. Any
Ω orthomonotone with respect to a subspace valued map must admit a minimizer at 0
and thus was not explicitly stated in Theorem 18. For the reverse proposition of the
representer theorem, however Ω is not assumed to be orthomonotone and thus for it to be
orthomonotone by the reverse proposition, a minimizer at 0 must be assumed (the minimizer
at 0 need not be a unique minimizer).

The necessary and sufficient conditions for the generalized representer theorem can then
be stated as follows,

Theorem 19 Generalized Representer Theorem (Necessary and Sufficient Conditions)
Let H and Z be separable Hilbert spaces. Let S : V(H) → V(H) be a closed, inclusive and
super additive subspace valued map. Let Ω : H → R ∪ {∞} and C : Z → R ∪ {+∞} be
lower semicontinuous functionals, such that Ω admits a minimizer at 0 and C admits a
unique minimizer z? in Z\{0} with sequentially compact sub-level sets around z?. Let JS =
{JL,γ = C ◦ L + γΩ | γ ∈ (0,∞), L : H → Z is a closed, densely defined linear operator}
be the family of functionals corresponding to all closed, densely defined linear operators
L : H → Z and constants γ ∈ (0,∞). For each functional in JL,γ ∈ JS consider the
problem,

fopt = argmin
f∈H

C(Lf) + Ω(f) (24)

Then, each problem in the family {minf∈H J(f) : J ∈ JS} is linearly representable with
respect to S if and only if, Ω is orthomonotone with respect to S

Proof The proof for sufficiency (i.e. orthomonotone Ω =⇒ existence of linear representer)
follows from Theorem 18 and Lemma 13.

To prove necessity of orthomonotone Ω, assume that all functionals JL,γ ∈ JS corre-
sponding to a linear operator L and constant γ are linear representable w.r.t. to S, i.e.,
for all functionals JL,γ = C ◦ L + γΩ ∈ JS a minimizer exists in S(N⊥L ). Note that a
minimizer JL,γ exists because both C and Ω admit minimizers in Z\{0} and H respectively
and range(L) is a closed subset in Z.

We first show that for all closed densely defined operators L : H → Z we must have
Ω(f+g) ≥ max{Ω(f),Ω(g)} for all f ∈ S(N⊥L ) and g ∈ S(N⊥L )⊥ for a family of functionals
{JL,γ ∈ JS : γ ∈ (0,∞)} to be linearly representable with respect to S. We show this in
two parts, first we show Ω(f + g) ≥ Ω(f) and then Ω(f + g) ≥ Ω(g) for f ∈ S(N⊥L ) and
g ∈ S(N⊥L )⊥.
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Finally we show that there exists a one to one correspondence between the space of
all closed vector subspaces A ∈ V(H) and a set of closed and bounded linear operators
(which is a subset of closed, densely defined linear operators) and thus for all A ∈ V(H),
we must have a closed, bounded operator L : H → Z such that A = N⊥L . Thus for all
A ∈ V(H), f ∈ S(A) and g ∈ S(A)⊥ we have Ω(f + g) ≥ max{Ω(f),Ω(g)}. Thus we
show that if the family of functionals JS = {JL,γ = C ◦ L + γΩ | γ ∈ (0,∞), L : H →
Z is a closed, densely defined linear operator} for a given tuple of functionals and subspace
valued map (C,Ω, S) are all linearly representable with respect to S then Ω must be or-
thomonotone with respect to S.

We start by proving the result that Ω(f + g) ≥ max{Ω(f),Ω(g)} for all f ∈ S(N⊥L ) and
g ∈ S(N⊥L )⊥.

(i) Consider first the corner case for f ∈ S(N⊥L ) such that f = 0, and g ∈ S(N⊥L )⊥.
Then, we have Ω(f + g) = Ω(g) ≥ Ω(g) (trivially true) and Ω(f + g) = Ω(g) ≥ Ω(0) = Ω(f)
(since Ω admits a minimizer at 0 and f = 0). Thus for the case of f ∈ S(N⊥L ), f = 0, we
have shown that Ω(f + g) ≥ max{Ω(f),Ω(g)} for all g ∈ S(N⊥L )⊥.

(ii) Next, consider the corner case, where the operator L : H → Z is such that S(N⊥L ) =
{0}, i.e. there exists no f 6= 0 in S(N⊥L ). If S(N⊥L ) = {0}, then result (i) implies that for
all f ∈ S(N⊥L ) and g ∈ S(N⊥L )⊥, Ω(f + g) ≥ max{Ω(f),Ω(g)}.

(iii) Now for the general case where S(N⊥L ) 6= {0}, there exist a f 6= 0 in S(N⊥L ). Let
z? 6= 0 ∈ Z denote the unique minimizer for functional C. From result (i) we already
have the result that for f = 0, Ω(f + g) ≥ max{Ω(f),Ω(g)} for all g ∈ S(N⊥L )⊥. Thus,
consider the case for f 6= 0. By Proposition 20 below, we have shown that for any closed,
densely defined operator L : H → Z for which S(N⊥L ) 6= {0}, given a f 6= 0 ∈ S(N⊥L ),
we have a closed and bounded linear operator L′f : H → Z, such that L′ff = z? and

for any g ∈ S(N⊥L )⊥, L′fg = 0. Since L′ is closed and bounded we have the functional

JL′f ,γ = C ◦ L′f + γΩ in JS. Let h?f,γ ∈ S(N⊥L ) be a minimizer for JL′f ,γ.

Next, note that since z? is a minimizer for C, we have C(z?) ≤ C(L′fh
?
f,γ) and thus

C(z?) + γΩ(h?f,γ) ≤ C(L′fh
?
f,γ) + γΩ(h?f,γ) = JL′f ,γ(h?f,γ) (25)

Also h?f,γ is the minimizer for JL′f ,γ and thus

JL′f ,γ(h?f,γ) = C(L′fh
?
f,γ) + γΩ(h?f,γ) ≤ C(L′f (f + g)) + γΩ(f + g)

for all g ∈ S(NL)⊥.
But from Proposition 20, we have L′f (g) = 0 and L′ff = z?, implying C(L′f (f + g)) =

C(z?), giving
C(L′fh

?
f,γ) + γΩ(h?f,γ) ≤ C(z?) + γΩ(f + g) (26)

Thus we have the inequality

C(z?) + γΩ(h?f,γ) ≤ JL′f ,γ(h?f,γ) ≤ C(z?) + γΩ(f + g) (27)

for all γ ∈ (0,∞) or equivalently,

Ω(h?f,γ) ≤ Ω(f + g) (28)
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for all γ ∈ (0,∞), g ∈ S(N⊥L )⊥ and all minimizers h?f,γ.
Also, from (25), we have the inequality C(L′fh

?
f,γ) − C(z?) ≥ 0 and from (26) we have

C(L′fh
?
f,γ)− C(z?) ≤ γ(Ω(f + g)− Ω(h?f,γ)). Thus we have an inequality

0 ≤ C(L′fh
?
f,γ)− C(z?) ≤ γ(Ω(f + g)− Ω(h?f,γ)) (29)

for all γ ∈ (0,∞), g ∈ S(N⊥L )⊥ and minimizers h?f,γ. For the case where Ω(f + g) = ∞,
Ω(f + g) ≥ max{Ω(f),Ω(g)} is trivially satisfied. When Ω(f + g) < ∞, so is Ω(h?f,γ) (by
(29)). Thus for the case of Ω(f + g) < ∞, we have Ω(f + g) − Ω(h?f,γ) < ∞ and thus by
(29),

γ → 0 =⇒ C(L′fh
?
f,γ)→ C(z?)

Since the sub-level sets around C(z?), Vε = {z ∈ Z : C(z) ≤ C(z?) + ε} are given to be
sequentially compact, and z? is the unique minimizer, this implies L′fh

?
f,γ → z? as γ → 0.

But f, h?f,γ ∈ S(N⊥L ) and thus by Proposition 20, we have strong convergence h?f,γ → f .

Thus from (28), under the limit γ → 0, we have Ω(f) ≤ Ω(f + g) for all g ∈ S(N⊥L )⊥.
Since the above argument holds for all f 6= 0, f ∈ S(N⊥L ) and we have the result from (i)
for f = 0, we have for all f ∈ S(N⊥L ) and all g ∈ S(N⊥L )⊥, the result that

Ω(f + g) ≥ Ω(f)

(iv) To show the remaining inequality Ω(f + g) ≥ Ω(g) for all f ∈ S(N⊥L ) and g ∈
S(N⊥L )⊥, similar arguments to result (i), (ii) and (iii) are required and are presented in the
following.

(iv-i) Firstly note that for g = 0, g ∈ S(N⊥L )⊥ and for any f ∈ S(N⊥L ), we have
Ω(f + g) = Ω(f) ≥ Ω(f) (trivially true) and Ω(f + g) ≥ Ω(0) = Ω(g) (because Ω admits a
minimizer at 0 and g = 0). Thus for g = 0, we have Ω(f + g) ≥ max{Ω(f),Ω(g)} for all
f ∈ S(N⊥L ).

(iv-ii) Now consider the corner case, where S(N⊥L )⊥ = {0}. In such a case, using result
(iv-i), we have for all f ∈ S(N⊥L ) and g ∈ S(N⊥L )⊥, Ω(f + g) ≥ Ω(g)

(iv-iii) For the general case when S(N⊥L )⊥ 6= {0}, there exists a g ∈ S(N⊥L )⊥ such that
g 6= 0. For g = 0, we already have the required inequality from (iv-i). Thus we consider the
case for g ∈ S(N⊥L )⊥ and g 6= 0. From Proposition 20, using the A = S(N⊥L )⊥, we have
a closed and bounded operator L′g : H → Z such that L′gg = z? and for all f ∈ S(N⊥L ),
L′gf = 0. Thus we have the functional JL′g ,γ = C ◦ L′g + γΩ in JS. Let h?g,γ be a minimizer
for JL′g ,γ. Then following the same arguments as before from (iii), we have the analogous
inequality

Ω(h?g,γ) ≤ Ω(f + g) (30)

for all f ∈ S(N⊥L ), γ ∈ (0,∞) and minimizers h?g,γ.
As γ → 0, we have as before, a sequence of minimizers h?g,γ → g and thus in the limit,

we have Ω(f + g) ≥ Ω(g) for all f ∈ S(N⊥L ) and g ∈ S(N⊥L )⊥, g 6= 0. Combining with the
result from (iv-i) for g = 0, we have for all f ∈ S(N⊥L ) and g ∈ S(N⊥L )⊥,

Ω(f + g) ≥ Ω(g)

(v) Thus from (iii) and (iv), we have shown that for all f ∈ S(N⊥L ) and g ∈ S(N⊥L )⊥,
we have,

Ω(f + g) ≥ max{Ω(f),Ω(g)}
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for all closed, densely defined operators L : H → Z.
(vi) Finally, we show that there is a one to one correspondence between the set of closed

vector spaces A ∈ V(H) and a set of closed, bounded linear operators L : H → Z, such that
for any A ∈ V(H) there exists a closed bounded operator L satisfying A = N⊥L . Using this
correspondence and the result from (v), we have the final result stating that for all closed
vector subspaces A ∈ V(H), and for all f ∈ S(A) and g ∈ S(A)⊥,

Ω(f + g) ≥ max{Ω(f),Ω(g)}

implying Ω is orthomonotone with respect to S.
To show the correspondence between A and L consider the following.
For any closed vector subspace A ∈ V(H), let PA : H → H denote the orthogonal

projection onto the closed vector subspace A. Since A is a closed vector subspace of H, A
and A⊥ form an orthogonal complementary pair of subspaces such that range(PA) = A and
null space of PA is A⊥, and thus by the closed graph theorem, it follows that PA is a closed
operator. Since for any F ∈ H, there exists an unique decomposition F = f + g such that
f ∈ A and g ∈ A⊥ and PAF = PA(f+g) = f , it also follows that ||PAF ||H = ||f ||H ≤ ||F ||H
and PA is thus a closed, bounded linear operator. It is also easy to see that 〈PAF1, F2〉H =
〈F1, PAF2〉H for all F1, F2 ∈ H and thus PA is a self-adjoint, closed, bounded operator.

Let L : H → Z be any closed, bounded linear operator with null space NL = {0}. Then
the composition L′A = L ◦ PA is also closed and bounded, and N⊥L′A = range((L′A)∗) =

range(PAL
∗) = A. Thus for every A ∈ V(H), we have a closed and bounded operator given

by L′A such that N⊥L′A = A. The result for orthomonotonicity of Ω then follows, as stated

above.

To prove the necessary part of Theorem 19, the following proposition is considered.

Proposition 20 Let H and Z be separable Hilbert spaces. Let there exist a minimizer
z? 6= 0 ∈ Z for the lower semicontinuous functional C : Z → R ∪ {∞}. Let A ∈ V(H) be
a closed vector subspace of H. Let there exist a f ∈ A such that f 6= 0. Let H be spanned
by a orthonormal basis {f/||f ||, φ1, φ2, . . . }, let NA be a subset of N such that A is spanned
by {f/||f ||} ∪ {φk : k ∈ NA} and A⊥ is spanned by {φ′k : k′ ∈ N\NA}. Then there exists a
closed and bounded linear operator L′f : H → Z given by

L′fh = z?

〈∑
k∈NA

φk
k2

+
f

||f ||2
, h

〉
H

such that

1. L′fg = 0 for all g ∈ A⊥

2. L′ff = z?

3. h ∈ S(A) and L′fh = z?, implies h = f
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Proof Firstly, note that the existence of a countable basis {f/||f ||, φ1, φ2, · · · } is guaranteed
by E. Schmidt’s orthogonalization (Yoshida, 2013, Chapter III-5) for a separable Hilbert
space. Since A and A⊥ are orthogonal complementary subspaces and f ∈ A, they split the
orthonormal basis into two disjoint countable subset as mentioned in the statement of the
proposition given by the index set NA.

To see that L′f is bounded, note that for any h ∈ H, ||L′fh||Z = ||z?||Z |〈
∑

k∈NA φk/k
2 +

f/||f ||2, h〉H|. Then note that |〈
∑

k∈NA φk/k
2 + f/||f ||2, h〉H| ≤

∑
k∈NA |〈φk/k

2, h〉H| +

|〈f/||f ||2, h〉H| ≤ (
∑

k∈NA 1/k2 + 1/||f ||)||h||H. Now since
∑

k∈NA 1/k2 ≤
∑

k∈N 1/k2 =

π2/6 < ∞ (since summation of a series 1/k2 over N is known to be bounded), 0 <
||f ||H < ∞ and ||z?||Z < ∞, we have ||L′fh||Z ≤ M ||h||H for some bounded constant

M = ||z?||(
∑

k∈NA 1/k2 + 1/||f ||) <∞.

Also since the null space of L′f denoted ker(L′f ) is A⊥, inf{||L′fh||Z : h ∈ ker(L′f )⊥, ||h||H =
1} > 0 and thus L′f is closed by (Conway, Proposition 6.5.5).

Then for any g ∈ S(A)⊥, we have L′fg = z?〈
∑

k∈NA φk/k
2f/||f ||2, g〉H = 0, showing the

first property stated for L′f .
The second statement L′ff = z?, follows by substituting f into the definition for L′ff .

Since {f/||f ||, φ1, φ2 . . . } are orthonormal basis, f is orthogonal to all φk and thus 〈φk, f〉H =
0, which leaves the term z?〈f/||f ||2, f〉H = z?.

The last statement can be seen from the fact that L′fh = z? implies L′fh = L′ff or

L′f (h − f) = 0, i.e., 〈
∑

k∈NA φk + f, f − h〉H = 0 implying f − h ∈ S(A)⊥ (since φk
and f span S(A)). But both f and h are given to be in S(A) and thus they must be in
S(A) ∩ S(A)⊥ = {0}. Thus h = f .

3.3 Related work

We presented here a generalized version of representer theorems for problems of the form

fopt = argminf∈H C(Lf) + Ω(f) (31)

for a loss function C : Z → R ∪ {+∞} on a separable Hilbert space Z and closed, densely
defined operator L : H → Z and Ω orthomonotone with respect to a subspace valued map
S. The assumption of “r-regularity” on subspace valued maps from previous counterparts
of the theorem was dropped to allow for more general regularization like the `1 norm on
function spaces, Z was considered as separable Hilbert spaces to allow for loss functional on
infinite dimensional Hilbert space, as occurring in examples from learning in Hilbert spaces
of stochastic processes and the linear operators were considered to be closed and densely
defined to allow for unbounded operators like the derivative operators that occur commonly
in optimal control problems.

Special cases of the theorem addressing learning with bounded functionals like the least
squares regularization for vector valued functions in Reproducing Kernel Hilbert Space
(RKHS) framework can be found in (Micchelli and Pontil, 2005, Theorems 3.1, 4.1). Spe-
cial cases of the theorem for `1 regularization can be found in Unser et al. (2016). A
generalized version of the representer theorems for general loss functions but still restricted
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to Hilbert spaces of real valued functions and bounded functionals can be found in Dinuzzo
and Schölkopf (2012); Schölkopf et al. (2001). The far more general framework of subspace
valued maps was introduced in (Argyriou and Dinuzzo, 2014, Theorem 3.1) and a variant of
the presented theorem with an assumption of r−regularity, for bounded linear functionals
and with the loss functional C on Z = Rm can be found there.

4. Application examples

4.1 Deep neural networks

Figure 1: Multi class classification with a 3 layer, squared exponential kernel based neural
network. Class probabilities shaded as red, blue, green values. Training data shown as

point clusters.

4.1.1 Motivation

Consider, first, a single layer perceptron with an activation function σ, with input x and
output y. Given m training samples {(xi, yi) : i ∈ Nm} consider the variational learning
problem

min
f∈H

m∑
i=1

||yi − σ(Lxif)||2Z + λ||f ||2H (32)

Let Z = Rn, H be an RKHS space with kernel K and Lxi : H → Z be a closed bounded
linear evaluation operator Lxif = f(xi) on the RKHS space. This minimization problem
fits exactly the form of (17) by taking C(Lx1f, . . . , Lxmf) =

∑m
i=1 ||yi − σ(Lxi(·))||2 and Ω

to be ||f ||2H. Since Ω is orthomonotone with respect to SR, we know a minimizer of the
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form
∑m

i=1 L
∗
xizi must exist. Substituting this form into the minimization above we can get

a finite dimensional minimization problem.

min
zj∈Z

m∑
i=1

||yi − σ(Lxi

m∑
j=1

L∗xjzj)||
2
Z + λ||

m∑
j=1

L∗xjzj ||
2
H (33)

On the RKHS H, the adjoint L∗x is known to be the kernel section K(·, x) (see Example
1) and LxiL

∗
xj = K(xi, xj). Thus we have a nonlinear program to solve for a kernel based

single layer perceptron with zi ∈ Z being the new decision variables. Note that the program
becomes nonlinear due to a nonlinear activation function σ and only thus differs from a
generalized least squares setting.

So far we see nothing new as the problem is simply a least squares like problems in
the RKHS space with finite dimensional outputs. Such problems can easily be covered by
representer theorems from Argyriou and Dinuzzo (2014).

Now consider a N-layer concatenation of such perceptrons. Let the inputs for the first

layer be denoted as y(0) = (y
(0)
1 , . . . , y

(0)
m ) ∈ Rn0×m taking values y

(0)
i = Xi from a training

data set D = {(Xi, Yi) ∈ Rn0 ×RnN : i = 1, . . . ,m}. Let the function f (1) for the first layer
be learned from an RKHS space H(1) of Rn1-valued functions and let the output for the

first layer be the unknown latent variables y(1) = (y
(1)
1 , . . . , y

(1)
m ) ∈ Rn1×m. Let Z(1) denote

the separable Hilbert space Rn1×m ×H(1) for notational convenience. The learning of the
function f (1) can thus be considered as the variational problem,

y
(1)
opt, f

(1)
opt = argmin(y(1),f (1))∈Z(1) C1(L(1)(y(1), f (1))) + Ω1((y(1), f (1))) (34)

with L(1)(y(1), f (1)) = (y
(1)
1 − L

y
(0)
1

f (1), . . . , y
(1)
m − Ly(0)m f (1)) being the bounded linear op-

erator L(1) : Z(1) → Rn1×m, C1 : Rn1×m → R ∪ {∞} being the loss functional such that

C1(L(1)(y(1), f (1))) =

{
0 , if y(1) = Ly(0)f

(1)

∞ , otherwise
and Ω1((y(1), f (1))) = ||(f (1))||2H(1) being

the regularizer. Again, nothing new so far, we have a Hilbert search space Z(1) and a finite
dimensional domain for the loss functional, Rn1×m. Also, note that this variational problem
is ill posed since only the input data is fixed and the output data is left free and thus the

minimizer for the above problem is at y
(1)
opt = 0 and f

(1)
opt = 0. We ignore the ill-posed nature

of the optimization for now, as additional concatenated layers connecting to the final output
data will force the minimizer to become non trivial.

Consider next the second layer for the network. Let y(2) ∈ Rn2×m be the latent variables,
H(2) be a an RKHS space of Rn2-valued functions and f (2) ∈ H(2) be the learned function
for this layer. Let Z(2) denote the Hilbert space Rn2×m ×H(2). The learning problem for
the second layer can then be posed as,

y
(1)
opt, y

(2)
opt, f

(2)
opt = argminy(1)∈Rn1×m,(y(2),f (2))∈Z(2) C2((y(1), y(2), f (2))) + Ω2((y(2), f (2))) (35)

with C2((y(1), y(2), f (2))) =

{
0 , if y(2) = Ly(1)f

(2)

∞ , otherwise
and Ω2((y(2), f (2))) = ||f (2)||2H(2) .

This is where we see a significant difference from the standard least squares like problem
for the first time. Here y(1) being an unknown latent variable, is considered as a decision
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variable for the problem and thus Ly(1) is not a linear operator on the search space Rn1×m×
Z(2). Thus unlike the first layer we cannot write the loss functional for the second layer as
C2(L(y(1), y(2), f (2))) for some linear operator L : Rn1×m × Z(2) → Rn2×m. The operator
Ly(1) makes the operator L(y(1), y(2), f (2)) = y(2) − Ly(1)f (2) a non-linear operator. Instead

we consider a non-linear loss functional C : Rn1×m ×Rn2×m ×H(2) → R ∪ {∞} as given in
(35).

The problem for learning the first and second layer together can then be written as

y
(1)
opt, f

(1)
opt , y

(2)
opt, f

(2)
opt = argmin(y(1),f (1))∈Z(1),(y(2),f (2))∈Z(2) C1(L(1)(y(1), f (1)))

+ C2(y(1), y(2), f (2)) + Ω1((y(1), f (1))) + Ω2((y(2), f (2)))
(36)

Also note that we did not use any activation functions σ in the construction above.
This was done to show clearly that the nonlinearity of the operation Ly(1)f

(2) present in C2

has nothing to do with the activation function. Even with a simple interpolation or least
squares like loss function we have to treat C2 as a nonlinear functional on the Hilbert space
Rn1×m×Z(2). Having shown that C2 is a nonlinear functional on Rn1×m×Z(2) in any case,
we can reintroduce the activation function and write C(2) : Rn1×m × Z(2) → R ∪ {∞} as
the functional

C2((y(1), y(2), f (2))) =

{
0 , if y(2) = σ(Ly(1)f

(2))

∞ , otherwise
(37)

For the functional C1, reintroducing σ makes the operator L(1) : Rn1×m × H(1) → Rn1×m

defined above, nonlinear. We can instead view the operator L(1) as the linear operator
L(1) : Rn1×m ×H(1) → Rn1×m × Rn1×m given as the mapping

L(1)(y(1), f (1)) = (y(1), Ly(0)f
(1))

and C1 as a corresponding nonlinear functional on Rn1×m × Rn1×m. Thus we can view C1

as the functional C1 : Rn1×m × Rn1×m → R ∪ {∞}, given as,

C1(L(1)(y(1), f (1))) =

{
0 , if y(1) = σ(Ly(0)f

(1))

∞ , otherwise
(38)

A similar construction can be done for each layer upto the (N − 1)th layer. Note also that,
while we introduced H(l) as a RKHS space and Ly(l−1) as the linear evaluation operator

evaluating functions at the point y(l−1), the same construction remains valid for any sepa-
rable Hilbert space H(l) and any closed, densely defined linear operator Ly(l−1) , where the

subscript y(l−1) denotes that the operators action depends on the output of the previous
layer. The following describes the construction of the full N -layer neural network.

4.1.2 Formal construction

Let y(l) ∈ Rnl×m be the latent output variable for each layer l = 1, . . . , N − 1. Let y(0) =
(X1, . . . , Xm) and y(N) = (Y1, . . . , Ym) be the known input and output data respectively,
used for training the network. Let f (l) denote the function learned for the lth layer from
a separable Hilbert space H(l) of Rnl−valued functions. Let OH(l),Rnl×m be a set of closed,
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densely defined operators from H(l) to Rnl×m. Let φl : Rnl−1×m → OH(l),Rnl×m be known

functions mapping the output, y(l−1), of the (l − 1)th layer to some closed, densely defined
operator, Ly(l−1) ∈ OH(l),Rnl×m , denoted as Ly(l−1) = φl(y

(l−1)). Let L∗
y(l−1) : Rnl×m → H(l)

denote the adjoint to Ly(l−1) and φ∗l denote the map φ∗l (y
(l−1)) = L∗

y(l−1) . An example for

OH(l),Rnl×m is the set of all evaluation operators on an RKHS space and the function φ maps

y(l−1) to the linear operator evaluating a function in the RKHS space at y(l−1). Another
example for OH(l),Rnl×m is the set of gradient operators ∇x computing the gradient of a

function in H(l) at a point x ∈ Rnl−1×m with φ(y(l−1)) = ∇y(l−1) .

For notational convenience, let z(l) = (y(l), f (l)) and Z(l) = Rnl×m ×H(l).
Let

Cl(y
(l−1), z(l)) =

{
0 y(l) = σl(φl(y

(l−1))f (l))

∞ otherwise
for l = 1, . . . , N − 1 (39)

be the lower semi-continuous functional Cl : Rnl×m×Z(l) → R∪{∞}, with σl : R→ R being
a lower semi-continuous function, interpreted as acting on each component for a matrix in
Rnl×m. Let,

Ωl(z
(l)) = ||f (l)||2H(l) for l = 1, . . . , N

be the regularizer Ωl : Z(l) → R ∪ {∞}.
For the final N th layer, let y(N) = (Y1, . . . , Ym) ∈ RnN×m be a known output vector.

Let the loss functional CN : RnN−1×m ×H(N) → R ∪ {∞} be given as

CN (y(N−1), f (N)) = ||y(N) − Ly(N−1)f (N)||2RnN×m

Given a training data set D = {(Xi, Yi) : i = 1, . . . ,m} of input-output pairs, we can write
the full N -layer neural network learning problem as

z
(1)
opt, . . . , z

(N−1)
opt , f

(N)
opt = argmin z(1),...,z(N−1),f (N)

∈ Z(1)×···×Z(N−1)×H(N)

CN (y(N−1), f (N)) +
N−1∑
l=1

Cl(y
(l−1), z(l))

+

N∑
l=1

Ωl(z
(l))

(40)

4.1.3 Applying the generalizer representer theorem to the neural network

(40) written in the standard form for the representer theorem,

Fopt = argminF∈H C(LF ) + Ω(F ) (41)

is a problem considered on the Hilbert space H = Z(1)×· · ·×Z(N−1)×H(N). Let F ∈ H, be
the concatenated vector F = (z(1), . . . , z(N−1), f (N)). The operator L : H → Rn1×m×Rn1×m

be a closed, densely defined operator, given by the oblique projection L(F ) = (y(1), Ly0f
(1)).

Given the adjoint operator L∗y0 : Rn1×m → H(1), we can write the adjoint L∗ : Rn1×m ×
Rn1×m → H as L∗(y, c) = ((y, L∗y0c), 0, 0, . . . , 0). Thus L is an operator L : H → (Rn1×m ×
H(1)) with the null space orthogonal

N⊥L = Rnl×m × range(L∗y0)× {0} × {0} · · · × {0} (42)
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with the {0} sets corresponding to Z(2)×Z(3)×. . .Z(N−1)×H(N). The functional C(LF ) =
C1(y(0), LF ) with C1 as defined by (39) and

Ω(F ) = Ω1(z(1)) +
N∑
l=2

(Cl(y
(l−1), z(l)) + Ωl(z

(l))) (43)

Let SR be the inclusive, closed, super-additive subspace valued map SR(a) = {λa : a ∈ R},
considered in Example 1.

Then, consider the subspace valued maps,

S1(z(1)) = SR(y(1))× SR(range(L∗
y(0)

)) (44)

For l = 1, . . . , N − 1, let Yl ⊆ Rnl×m be a Borel measurable subset of Rnl×m given by the
range of the function σl, i.e., Yl = {σl(y) : y ∈ Rnl×m} ⊆ Rn×m. Let B(Yl) be the Borel
σ−algebra on Yl (inherited from the Borel σ−algebra on Rnl×m).

For l = 1, . . . , N − 1, recall that Cl(z
(l)), forces y(l) = σ(Ly(l−1)f (l)) for a non-infinite

cost. Then, the range of values for y(l), Yl restricts the possible input values for φl+1 and
shrinks the solution space in which a minimizer may lie. For measurable, bounded variation
functions φ∗l , we can exploit this fact by considering the following subspace valued map over
the Z(l), for l = 2, . . . , N − 1,

Sl(z
(l)) = SR(y(l))× closure

({∫
Yl
φ∗l (y)dcl(y) : cl ∈Mσ(Yl−1,B(Yl−1);Rnl×m)

})
(45)

where Mσ(Yl−1,B(Yl−1);Rnl×m) is the Banach space of signed, Rnl×m−valued Borel mea-
sures with bounded total variation (see Zaanen (2012)) on the measurable space (Yl,B(Yl)).

Lemma 21 shows that Sl : Z(l) → V(Z(l)) defined in (45) under a certain regularity
assumptions for the map φl and φ∗l over the domain Yl−1, is a closed and super-additive
subspace valued map.

Lemma 21 (Sl is closed and super-additive)
Let Yl−1 be a Borel measurable subset of Rnl−1×m. Let ||T ||LRnl×m = inf{c ≥ 0 : ||Tv||Rnl×m ≤
c||v||Rnl×m for all v ∈ Rnl×m} be the standard operator norm for bounded operators mapping
Rnl×m into itself. Let φl, φ

∗
l be measurable functions such that, φ∗l is a function of bounded

variation and the self-adjoint operator given by φ(y)φ∗(y) = LyL
∗
y is a closed and bounded

linear operator, for all y ∈ Yl−1 and there exists a constant M < ∞ satisfying the bound
sup{||φl(y)φ∗l (y)||LRnl×m : y ∈ Yl−1} = M for all y ∈ Y. Let Mσ(Yl−1,B(Yl−1);Rnl×m) be

the Banach space of signed, Rnl×m−valued Borel measures with finite total variation. Then
Sl : Z(l) → V(Z(l)) as defined by (45) is a closed and super-additive subspace valued map.
Proof The map Sl is a product of SR with the set

K = closure

({∫
Yl
φ∗l (y)dcl(y) : cl ∈Mσ(Yl−1,B(Yl−1);Rnl×m)

})
SR is already known to be closed and super-additive (from Example 1). Thus it only remains
to be shown that the set K is closed, super-additive and actually subspace valued i.e. K ⊆
H(l) and K ∈ V(H(l)).
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If φ∗l is assumed to be integrable with respect to every cl ∈ Mσ(Yl−1,B(Yl−1);Rnl×m),
it is easy to see that K is a vector space since for any f1, f2 ∈ K, there exist c1

l , c
2
l ∈

Mσ(Yl−1,B(Yl−1);Rnl×m) such that fi =
∫
Yl φ

∗
l (y)dcil(y) for i = 1, 2. Thus by linearity for

the integral we have for any α, β ∈ R, αf1 + βf2 =
∫
Yl−1

φ∗l (y)d(αc1
l (y) + βc2

l (y)). Since

Mσ(Yl−1,B(Yl−1);Rnl×m) is a closed vector space (actually a Banach space), we have a
c′l = αc1

l + βc2
l ∈ Mσ(Yl−1,B(Yl−1);Rnl×m) and thus αf1 + βf2 belongs to K. Next we

show that under the conditions mentioned for φl, φ
∗
l , φ

∗
l is actually integrable with respect to

every cl ∈ Mσ(Yl−1,B(Yl−1);Rnl×m) and that K ⊆ H(l) is actually a closed subspace, i.e.
K ∈ V(H(l)).

By (Dobrakov, 1988, Definition 1), the measurable function φ∗l : Yl−1 → LRnl×m,H(l) is
integrable with respect to a Rnl×m−valued measure cl : B(Yl−1) → Rnl×m if there exists
a h ∈ H(l) such that for every ε > 0, and every countable partition {Ei} of Yl−1 with
maximum volume ε for any cell in the partition, and any selection of points yi ∈ Ei, we have
||h−

∑
Ei
φ∗l (yi)cl(Ei)||H(l) < ε. For this to be true we need that ||

∑
Ei
φ∗l (yi)cl(Ei)||H(l) <∞

for any partition {Ei} and selection yi ∈ Ei, and then convergence of
∑

Ei
φ∗l (yi)cl(Ei) to

a unique h ∈ H(l).

First we show that ||
∑

Ei
φ∗l (yi)cl(Ei)||H(l) < ∞. Note that ||

∑
Ei
φ∗l (yi)cl(Ei)||H(l) ≤∑

Ei
||φ∗l (yi)cl(Ei)||H(l) =

∑
Ei

(〈φ∗l (yi)cl(Ei), φ∗l (yi)cl(Ei)〉H(l))1/2 =
∑

Ei
(〈cl(Ei), φl(yi)φ∗l (yi)

cl(Ei)〉Rnl×m)1/2 ≤
∑

Ei
(||cl(Ei)||Rnl×m ||φl(yi)φ∗l (yi)cl(Ei)||Rnl×m)1/2 ≤

∑
Ei

(||cl(Ei)||2Rnl×m
||φl(yi)φ∗l (yi)||LRnl×m )1/2 =

∑
Ei
||cl(Ei)||Rnl×m ||φl(yi)φ∗l (yi)||

1/2
LRnl×m

. But note from the as-

sumptions on φl(y)φ∗l (y), that ||φl(yi)φl(yi)||LRnl×m < M . Thus ||
∑

Ei
φ∗l (yi)cl(Ei)||H(l) ≤

M
∑

Ei
||cl(Ei)||Rnl×m ≤M ||cl||Mσ(Yl−1,B(Yl−1),Rnl×m) (the inequality follows from the defini-

tion of the norm on the space of vector measures Schwarz (1967), ||cl||Mσ(Yl−1,B(Yl−1),Rnl×m) =
sup

∑
Ei
||cl(Ei)||Rnl×m, over all partitions {Ei} of Yl−1 ). Thus for any cl ∈Mσ(Yl−1,B(Yl−1),

Rnl×m) and any partition {Ei} of Yl−1, ||
∑

Ei
φ∗l (yi)cl(Ei)||H(l) <∞.

Now for the uniqueness in convergence, note that for any refinement {E′i} of a par-
tition {Ei} such that Ei = E′2i ∪ E′2i+1 for all i = 0, . . . ,∞, and selection of points
without loss of generality, as yi = y′2i, we have ||

∑
Ei
φ∗l (yi)cl(Ei) −

∑
E′i
φ∗l (y

′
i)cl(E

′
i)|| =

||
∑

E′2i
φ∗l (y

′
2i)cl(E

′
2i)+

∑
E′2i+1

φ∗l (y
′
2i)cl(E

′
2i+1)−

∑
E′2i

φ∗l (y
′
2i)cl(E

′
2i)−

∑
E′2i+1

φ∗l (y
′
2i+1)cl(E

′
2i+1)|| =

||
∑

E′2i+1
(φ∗l (y

′
2i)−φ∗l (y2i+1))cl(E

′
2i+1)|| ≤

∑
E′2i+1

||(φ∗l (y′2i)−φ∗l (y′2i+1))||||cl(E′2i+1)||. Since

φ∗l has bounded total variation for any partition E′i, we have
∑

E′2i+1
||(φ∗l (y′2i)−φ∗l (y′2i+1))|| ≤

sup
∑

E′i
||(φ∗l (y′i) − φ∗l (y′i+1))|| < ∞. Then as the partition refinements converge E′i → Ei,

cl(E
′
2i+1) tends to 0 and thus we have

∑
E′2i+1

||(φ∗l (y′2i)−φ∗l (y′2i+1))||||cl(E′2i+1)|| converging

to 0.

Thus we have shown that the conditions of φ∗l and φl(y)φ∗l (y) ensure that φ∗l is integrable
with respect to all cl and thus the integral h =

∫
Yl φ

∗
l (y)dcl(y) belongs to H(l) for all cl,

implying K is a vector subspace of H(l).

Finally taking the closure of K, makes the subspace a closed subspace of H(l) (since H(l)

is closed).

Now, since Sl(y
(l), f) = SR(y(l))×K for any f ∈ H(l) (K does not depend on f), we have

for any closed subspaces A,B ∈ V(Z(l)), we have Sl(A) = Ay ×K and Sl(B) = By ×K,
where Ay, By are the vector subspaces in V(Rnl−1×m×Rnl×m) corresponding to the additive
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subspace valued map SR. Thus we have Sl(A)+Sl(B) = Ay×K+By×K = (Ay+By)×K =
Sl(A+B) (since we have SR(Ay) = Ay, SR(Ay) = By and SR(Ay+By) = Ay+By), implying
Sl is closed and super-additive (trivially, since its additive).

For the last layer, consider,

SN (f (N)) = closure

({∫
Yl
φ∗l (y)dcl(y) : cl ∈Mσ(YN−1,B(YN−1);RnN×m)

})
(46)

which is again a closed, super-additive subspace valued map by the arguments in Lemma
21.

Now consider the subspace valued map S : H → V(H) for the complete network given
by

S(F ) = S1(z(1))× S2(z(2))× · · · × SN−1(z(N−1))× SN (f (N)) (47)

Theorems 22 below, shows that the functional Ω in (43) is orthomonotone with respect
to the subspace S(N⊥L ) for N⊥L as defined in (42).

Theorem 22 Let S : H → V(H) be the closed, super-additive subspace valued map defined
in (46). Let N⊥L be the closed subspace as defined in (42) and Ω : H → R ∪ {+∞} be the
functional from (43). Then Ω is orthomonotone with respect to the subspace S(N⊥L ), i.e.
for all f ∈ S(N⊥L ) and g ∈ S(N⊥L )⊥, Ω(f + g) ≥ Ω(f).
Proof For the vector subspace N⊥L = Rnl×m × range(L∗y0) × {0} × {0} · · · × {0} in V(H),

we have S(N⊥L ) = Rn1×m × range(L∗
y(0)

) × (ΠN−1
l=2 Rnl×m × Kl) × KN , for the subspace

Kl = closure
({∫

Yl φ
∗
l (y)dcl(y) : cl ∈Mσ(Yl−1,B(Yl−1);Rnl×m)

})
for each l = 2, . . . , N .

Also S(N⊥L )⊥ = {0} × range(L∗y0)⊥ × (ΠN−1
l=2 {0} × K⊥l ) × K⊥N . Also recall that Ω(F ) =

Ω1(z(1)) +
∑N

l=2(Cl(y
(l−1), z(l)) + Ωl(z

(l)))
Thus for F = (z(1), . . . , z(N−1), f (N)) ∈ S(N⊥L ), we have z(1) = (y(1), f (1)) ∈ Rn1×m ×

range(L∗y0), z(l) = (y(l), f (l)) ∈ Rnl×m ×Kl for l = 2, . . . , N − 1 and z(N) ∈ KN .

Similarly for G = (x(1), . . . , x(N−1), g(N)) ∈ S(N⊥L )⊥, we have x(l) = (y′(l), g(l)) for
y′(l) = 0 and g(l) ∈ K⊥l , for each l = 2, . . . , N − 1, g(N) ∈ K⊥N . And x(1) = (y′(1), g(1)) for
y′(1) = 0 and g(1) ∈ range(L∗y0)⊥.

Now for l = 1, note that the only term in Ω depending on z(1) and x(1) is Ω1 defined as
Ω(f) = ||f ||2H(1). The squared norm functional is orthomonotone for any pair of orthogonal

subspaces (from Example 5). Thus for any orthogonal z(1) and x(1) as defined above we
have Ω1(z(1) + x(1)) = ||z(1) + x(1)||2 = ||z(1)||2 + ||x(1)||2 ≥ ||z(1)||2 = Ω1(z(1)) (the equality
of square of sum, to sum of squares, follows from orthogonality of the two vectors).

Similarly for each l = 2, . . . , N − 1, for the orthogonal vectors z(l) and x(l), we have
Ωl(z

(l) + x(l)) ≥ Ωl(z
(l)) and for f (N), g(N), Ω(f (N) + g(N)) ≥ Ω(f (N)).

The terms remaining to be shown orthomonotone are the functional Cl. Note that for
all l = 2, . . . , N , we have y(l−1) ∈ Rnl−1×m, y(l) ∈ Rnl×m and f (l) ∈ Kl, and we have
y′(l−1) = 0, y′(l) = 0 and g(l) ∈ K⊥l .

Then, Cl(y
(l−1)+y′(l−1), y(l)+y′(l), f (l)+g(l)) = Cl(y

(l−1), y(l), f (l)+g(l)) (since y′(l−1) = 0
and y′(l−1) = 0).
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Now note that for any l = 1, . . . , N − 1, if y(l) /∈ Yl, then Cl(y
(l−1), y(l), f) =∞ for any

f ∈ H(l). Then we trivially have Ω(F +G) = Ω(F ) =∞ (thus satisfying the orthomonotone
inequality trivially).

For all y(l) ∈ Yl, for f (l) ∈ Kl, g
(l) ∈ K⊥l , we have Cl(y

(l−1), yl, f (l) + g(l)) = Cl(y
(l) −

σl(φl(y
(l−1))f (l) + φl(y

(l−1))g(l))) for some cl ∈Mσ(Yl−1).

Now since for all z ∈ Rnl×m, cl = zδy(l−1) (where δy(l−1) is the dirac measure centered on

y(l−1)) belongs to Mσ(Yl−1,B(Yl−1);Rnl×m), N⊥
φl(y(l−1))

= range(φ∗l (y
(l−1))) ⊆ Kl, implying

K⊥l ⊆ Nφl(y(l−1)) for all y(l−1) ∈ Yl−1. Thus for any g ∈ K⊥l , φl(y
(l−1))g = 0. Thus

Cl(y
(l−1), yl, f (l) + g(l)) = Cl(y

(l−1), yl, f (l)), for all y(l) ∈ Yl, y(l−1) ∈ Yl−1, f (l) ∈ Kl,
g(l) ∈ K⊥l .

Thus for all l = 2, . . . , N , we have shown Cl(y
(l−1) + y′(l−1), y(l) + y′(l), f (l) + g(l)) +

Ωl(y
(l) + y′(l), f (l) + g(l)) ≥ Cl(y(l−1), y(l), f (l)) + Ωl(y

(l), f (l)) and Ω1(z(l) + x(l)) ≥ Ω1(z(l)).

Thus Ω(F + G) ≥ Ω(F ) for all F ∈ S(N⊥L ), G ∈ S(N⊥L )⊥, i.e. Ω is orthomonotone
with respect to S(N⊥L ).

Corollary 23 (S is range preserving with respect to L)
For L : H → Rn1×m×Rn1×m defined as LF = (y(1), Ly0f

(1)) for F = (z(1), . . . , z(N−1), f (N)) ∈
H, S : H → V(H) as defined in (46) and N⊥L as defined in (42), we have N⊥L ⊆ S(N⊥L ).

Proof

N⊥L = Rnl×m × range(L∗y0)× {0} × {0} · · · × {0}

and

S(N⊥L ) = Rn1×m × range(L∗
y(0)

)× (ΠN−1
l=2 Rnl×m ×Kl)×KN

for the subspace Kl = closure
({∫

Yl φ
∗
l (y)dcl(y) : cl ∈Mσ(Yl−1,B(Yl−1);Rnl×m)

})
for each

l = 2, . . . , N . From the above expressions, it is visible that N⊥L ⊆ S(N⊥L )

N⊥L = Rnl×m × range(L∗y0)× {0} × {0} · · · × {0} in V(H), we have

Corollary 24 (Linear representer for the neural network exists in S(N⊥L ))

There exists an optimal set of representers c1,opt ∈ Rn1×m, y
(l)
opt ∈ Yl for l = 1, . . . , N − 1,

and cl,opt ∈ Mσ(Yl−1,B(Yl−1);Rnl×m) for l = 2, . . . , N such that a minimizer for (41) of
the form

Fopt =

(
y

(1)
opt, . . . , y

(N−1)
opt , L∗y0dc1,opt,

∫
Y1
φ∗2dc2,opt, . . . ,

∫
YN−1

φ∗NdcN,opt

)
(48)

exists.

Proof Theorem 22 showed that Ω is orthomonotone with respect to the subspace S(N⊥L )
and Corollary 23 showed that S is range preserving with respect to L. Thus by the suffi-
cient condition for existence of representers (Theorem 18) a linear representer exists in the
subspace S(N⊥L ), written as (48).
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Now since we know that, given the optimal solution y
(l)
opt, y

(l−1)
opt , for the (l − 1)th and

(l)th layer, we have,

f
(l)
opt = argminh(l)∈H(l) Cl(y

(l)
opt − σl(Ly(l−1)

opt
f (l))) + ||f (l)||2H(l) (49)

for all l = 2, . . . , N , we have f
(l)
opt = L∗

y
(l−1)
opt

pl,opt for some pl,opt ∈ Rnl×m.

This implies that an optimal solution of the form

Fopt =

(
y

(1)
opt, . . . , y

(N−1)
opt , L∗y0c1,opt,

∫
Y1
φ∗2p2,optdδy(1)opt

, . . . ,

∫
YN−1

φ∗NpN,optdδy(N−1)
opt

)
(50)

exists for some pl,opt ∈ Rnl×m, i.e. we know that there exist dirac measures δ
y
(l)
opt

correspond-

ing to the optimal measures cl,opt from (48). Such a representer in terms of diracs is not

directly useful, since the points at which the optimal diracs are centered y
(l)
opt are unknown

apriori. We can however use this knowledge to guide our search for measures converging
towards diracs.

We can thus design a scheme to iteratively optimize over the space of measures c(l) and
outputs y(l) such that the measures converge to dirac’s centered at the predicted output. In
particular if the maps φl and φ∗l are differentiable (in addition to the regularity conditions
of Theorem 21), we can design a scheme to optimize directly over the centers of dirac
measures. We show in the next subsection a numerical example for such a scheme for a
squared exponential kernel, satisfying the regularity and differentiability conditions.

4.1.4 Numerical example

Consider a N-layer network with each layer given by an RKHS space H(l) with a matrix
valued square exponential kernel,

Kl(x, y) =


e−a

(l)
11 ||x−y||2 . . . e

−a(l)1nl
||x−y||2

...
...

...

e
−a(l)nl1||x−y||

2

. . . e−a
(l)
nlnl
||x−y||2

 (51)

for some known constants a
(l)
11 , . . . , a

(l)
nlnl , mapping x, y ∈ Rnl to a matrix in Rnl×nl .

Given m training samples, we denote the output of a layer as y(l) = (y
(l)
1 , . . . , y

(l)
m ) ∈

Rnl×m. The kernel function is extended to inputs from Rnl×m by computing the matrix,

Kl(x, y) =

Kl(x1, y1) . . . Kl(x1, ym)
...

...
...

Kl(xm, y1) . . . Kl(xm, ym)

 (52)

where xi, yi denotes the ith column of x and y respectively.
Let Ey : H(l) → Rnl×m denote the evaluation operator such that Eyf = (f(y1), . . . , f(ym)).

The adjoint to the evaluation operator on the RKHS space is given by the kernel function
and thus we have the adjoint E∗y = Kl(·, y).
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Let Ol = {Ey : y ∈ Rnl×m} be the set of all the linear evaluation operators on H(l).
Similarly, let O∗l = {E∗y : y ∈ Rnl×m} denote the set of all adjoints to the linear evaluation

operators on H(l).
Thus we have the function φ∗ : Rnl×m → O∗l given by φ∗(y) = Kl(·, y) and a function

φ : Rnl×m → Ol given by φ(y) = Ey.
Let σl : R→ R be the hyperbolic tangent function σ(x) = tanh(x), extended to inputs

from Rnl×m, as

σ(X) =

 tanh(X11) · · · tanh(X1m)
...

...
...

tanh(Xm1) · · · tanh(Xmm)


where Xij denotes the (i, j)th component of the matrix X.
Thus the activation function restricts the output of the lth−layer to the set

Yl = {X ∈ Rnl×m : Xij ∈ (−1, 1) for all i, j}

for all l = 1, . . . , N
Since the function φ∗l : Yl−1 → O∗l , given by φ∗(y) = Kl(·, y) has a bounded domain Yl−1

and Kl(·, y) is a smooth bounded function in y, φ∗l is a function of bounded variation on Yl−1

and thus satisfies the regularity condition for Lemma 21. Similarly ||φl(y)φ∗l (y)||LRnl×m =

||Kl(y, y)||LRnl×m = ||Kl(0, 0)||LRnl×m <∞ for all y ∈ Yl−1, we have the regularity condition
for φlφ

∗
l satisfied as well.

Now since φ∗(y) is a smooth function in y and we know that a optimal solution to the

linear representer of the form (50) exists on the smooth manifold such that (y
(l−1)
opt , f

(l)
opt) ∈

{(y, φ∗l (y)pl) : y ∈ Yl−1, pl ∈ Rnl×m}, we can instead solve the smooth finite dimensional
optimization problem

p1,opt, . . . , pN,opt,
y1,opt, . . . , yN−1,opt

= argminpl∈Rnl×m,yl∈Yl⊆Rnl×m

N∑
l=1

Cl(y
(l)− σl(Ly(l−1)L∗y(l−1)pl)) + Ωl(f

(l))

(53)
Figure 1 shows the output of a three layer neural network trained in such a way for 3

way classification of a given set of points in R2. The output of the network is in R3, with
the training data given such that the ith component is set to 1 if a point is in the ith class
and the other components are set to 0. The trained network provides an output in R3 and
the output is passed through a soft-max function (to rescale values in each component to
[0,1]) and interpreted as class probability for points in R2 shaded with corresponding RGB
color values (a small problem in R2 is chosen to allow for easy visualization of the results).
Also note that the optimization scheme in (53) can only guarantee convergence to a local
minimizer, but this is most often the case in neural networks due to the non-convex nature
of the problem.

4.2 Multi-output stochastic regression with uncertain observations

Let Z = Cb(X ) be the Banach space of continuous and bounded Rn−valued functions on
some domain set X . Let B(Z) be the Borel σ-algebra on Z and µ : B(Z) → [0, 1] be a
Gaussian measure on Z. Let Zµ be the Banach space of all affine measurable functions

31



Diwale and Jones

X : Z → Z with B(Zµ) being the Borel σ-algebra on Zµ. Zµ defines a space of Gaussian
processes on the probability measure space (Z,B(Z), µ) (see Section ??). Let ν : B(Zµ)→
[0, 1] be a Gaussian measure on Zµ and let Hµ,ν be the RKHS space of Gaussian processes
induced by the measure ν on Zµ as defined in Section ??. Let Y = Rn and B(Y) be the
Borel σ-algebra on Rn. Let Lx : Z → Y be the closed, bounded linear evaluation operator
Lxf = f(x). The linear operator Lx induces induces a push forward Gaussian measure
µ ◦ L−1

x on (Y,B(Y)) (L−1
x denoting the preimage operation, not the linear inverse). Let

Yx,µ denote the Hilbert space of affine measurable functions y : Y → Y induced by the push
forward measure µ ◦L−1

x with the inner product 〈y1, y2〉Yx,µ =
∫
Y y1(ω)y2(ω)d(µ ◦L−1

x )(ω).
Yx,µ is thus denotes a Hilbert space of Rn−valued Gaussian random vectors. The extension
of Lx to Hµ,ν , for any affine function X : Z → Z in Zµ, is given as LxX(f) = X(Lxf) =
X(f(x)), and defines a linear operator Lx : Hµ,ν → Yx,µ, to space of Gaussian random
vectors in Yx,µ. The extension Lx : Hµ,ν → Yx,µ also preserves the closed and bounded
property of Lx : Z → Y (by Lemma ??).

Assuming that the Lx : Hµ,ν → Yx,µ induces equivalent Gaussian measures on Y for all
x ∈ X , we can write the map as Lx : Hµ,ν → Yc,µ, mapping into a common probability
measure space on Y. The adjoint L∗x can then be specified by a kernel function K : X×X →
L+
Yc,µ,Yc,µ for the RKHS space Hµ,ν such that for all y ∈ Yc,µ and f ∈ Hµ,ν , 〈L∗xy, f〉Hµ,ν =

〈K(·, x)y, f〉Hµ,ν = 〈y, Lxf〉Yc,µ . Note that L+
Yc,µ,Yc,µ denotes the space of closed, bounded

symmetric positive definite linear operators from Yc,µ into itself. Since Yc,µ is a Banach
space of Gaussian random vectors given by all affine transformations of Y, we must have
the kernel as a deterministic function taking values in L+

Y,Y (else the Gaussianity will be

lost), i.e., K(x1, x2)(ω) = K ′(x1, x2) for all ω ∈ Y and K ′ : X × X → Rn×n being a
deterministic kernel of the kind usually used in non stochastic variants of kernel regression
(see for example the squared exponential kernel used in Section 4.1). The form of the kernel
is determined by the choice of the Gaussian measure ν and vice versa (in general the kernel
function is chosen and the measure ν is as a result determined implicitly as there is a one
to one correspondence between Gaussian measures on separable Banach spaces and the
induced RKHS spaces).

Now with the spaces and adjoint defined we can consider a regression problem on the
RKHS space of Gaussian processes Hµ,ν . Let Hµ,ν be the RKHS space of Gaussian process
with a kernel K. Let D = {(xi, yi) ∈ X × Yc,µ : i = 1, . . . ,m} be a given training data set
with observations yi ∈ Yc,µ given as Rn−valued Gaussian random vectors. Then consider
the regression problem,

fopt = argmin
f∈Hµ,ν

m∑
i=1

||yi − Lxif ||2Yc,µ + λ||f ||2Hµ,ν (54)

Note that the observations yi ∈ Yµ,ν are now Rn−valued Gaussian random vectors and not
points in Rn, making the loss functional Ci : Yc,µ → R ∪ {∞}, given as ||yi − Lxif ||2Yc,µ ,
an example of a loss functional defined on a separable Hilbert space different from Rn.
Also note that even though the functional Ci(yi − Lxi(f)) can be written as in terms of
the mean and covariance of a Rn−valued Gaussian random vector, i.e. a functional of the
form C ′i : Rn × Rn×n → R ∪ {∞}, as we will see below, we cannot write this reformulated
objective as an equivalent functional C ′i ◦ L′xi : Hµ,ν → R ∪ {∞} for a linear operator
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L′xi : Hµ,ν → Rn × Rn×n, mapping the stochastic process f to its mean and covariance at
xi (since the mapping from f to its covariance will be a nonlinear operator). Thus (54)
presents an example of a regression problem where the functional Ci : Yc,µ → R∪{∞} must
be considered on the infinite dimensional Hilbert space of measurable affine maps given by
Yc,µ in order to establish a representer in terms of the adjoint L∗xi .

Since, Ω(f) = ||f ||2Hµ,ν is known to be orthomonotone with respect to the the subspace

valued map SR, we can write the representer for (54) as

SR

(
m∑
i=1

range(L∗xi)

)
=

{
m∑
i=1

K(·, xi)zi : zi ∈ Yc,µ

}
(55)

Substituting a representer into (54), we can write the equivalent optimization problem,

fopt =

m∑
i=1

K(·, xi)zopti

zopt1 , . . . , zoptm = argminzi∈Yc,µ

m∑
i=1

||yi −
m∑
j=1

K(xi, xj)zj ||2Yc,µ +
m∑
i=1

m∑
j=1

〈zi,K(xi, xj)zj〉Yc,µ

= argminzi∈Yc,µ

m∑
i=1

Eµ

||yi − m∑
j=1

K(xi, xj)zj ||2Rn +

m∑
j=1

zTi K(xi, xj)zj


(56)

where Eµ is the expectation with respect to the µ. We can expand the expectation from
(56) as

Eµ[||yi||2Rn ] + Eµ

|| m∑
j=1

K(xi, xj)zj ||2Rn


−2Eµ

yTi m∑
j=1

K(xi, xj)zj

+ Eµ

 m∑
j=1

zTi K(xi, xj)zj

 (57)

For the terms involving the decision variables zi ∈ Yc,µ, let Kxx ∈ Rnm×nm denote the
symmetric positive definite kernel matrix such that its block Kxx

i,j is the kernel evaluation
K(xi, xj) ∈ Rn×n and let Z and y be the concatenation of all zi and yi respectively in to
the vectors Z = (z1, . . . , zm) and y = (y1, . . . , ym), i.e., we write,

Kxx =

K(x1, x1) K(x1, x2) · · · K(x1, xm)
...

...
...

...
K(xm, x1) K(xm, x2) · · · K(xm, xm)

 , Z =


z1

z2
...
zm

 y =


y1

y2
...
ym

 (58)

(59)

And let the mean and covariance be denoted as

Eµ[Z] = µZ , Eµ[y] = µy (60)

Eµ[(y − µy)(y − µy)T ] = Σy Eµ[(Z − µZ)(Z − µZ)T ] = LLT (61)
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for some lower triangular matrix L ∈ Rnm×nm and the given covariance matrix Σy for the
observations. We can then, rewrite the terms involving the decision variables zi, as

−2µTyK
xxµZ + Eµ[(Z(Kxx)1/2)T (Kxx)1/2Z] + Eµ[(KxxZ)TKxxZ] (62)

−2Eµ[(Y − µy)TKxx(Z − µZ)] (63)

and using the properties of Gaussian random vectors under affine transformations, we have,

Eµ[(KxxZ)TKxxZ] = µTZK
xxKxxµZ + trace(KxxLLTKxx) (64)

Eµ[(Z(Kxx)1/2)T (Kxx)1/2Z] = µTZK
xxµZ + trace(KxxLLT ) (65)

Eµ[(Y − µy)TKxx(Z − µZ)] = trace(KxxL(Σ1/2
y )T ) (66)

(66) follows from the fact that y and Z are jointly Gaussian under a common measure
µ : B(Y)→ [0, 1] and are thus related to each other through the affine transformation(

y(ζ)
Z(ζ)

)
=

(
Σ

1/2
y ζ
Lζ

)
+

(
µy
µZ

)
(without loss of generality, taking µ to be the Gaussian measure for the standard normal
distribution N (0, I) on Rn)

Thus for the new decision variables µZ ∈ Rnm and L ∈ (Rnm×nm)lt (lower triangular
matrix denoted with subscript lt), we can write the equivalent finite dimensional problem
to (56) as,

µz
opt, Lopt = argminµz∈Rnm,L∈(Rnm×nm)lt

(µy −KxxµZ)T (µy −KxxµZ) + µTZ(KxxKxx)µZ

+ trace(LTKxxL+ (KxxL− (Σ1/2
y ))T (KxxL− (Σ1/2

y )))
(67)

From (67) it is easy to see the problem is an unconstrained, convex quadratic program in
µZ and L and thus has an unique minimizer.

The final function form of fopt from (56), is then given by the affine transformation of
the random vector Zopt having mean µoptZ and covariance Lopt(Lopt)T .

fopt(·) = K(·, X)Zopt (68)

where K(·, X) is the matrix
(
K(·, x1) K(·, x2) · · · K(·, xm)

)
.

Thus we have
Eµ[fopt(·)] = K(·, X)µoptZ

and covariance,
Covarµ[fopt(·)] = K(·, X)Lopt(Lopt)TK(·, X)T

Note that the mean coincides, as expected with the Bayesian posterior mean, however
the covariance is quite different. Instead of acquiring certainty at points of observations,
the regression model tries to fit the Gaussian process to the specified covariances of the
observations.

Figure 2 shows an example for such a regression with a squared exponential kernel
mapping with the output yi ∈ Z being a two dimensional Gaussian random vector and
xi ∈ R.
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Figure 2: Least squares regression in an RKHS of Gaussian processes

Note that while we restricted our Banach space Zµ in the beginning to a space of Gaus-
sian processes, there is no restriction from the point of view of the representer theorem,
requiring Gaussianity. The above process can in principle be repeated for any given Banach
space of stochastic processes (including non-Gaussian ones) and appropriate linear operator
(as the evaluation operator may not be linear for non Gaussian cases). We limit ourselves
to Gaussian processes in this case as it leads to simple analytically tractable computations.
Also while we restricted ourselves to a simple regression problem, note that by virtue of
the generalized representer theorem we can apply the above process to many other loss
functionals and regularizers to create stochastic variants of any kernel based learning algo-
rithms like the SVM, or the neural network example from Section 4.1, where the RKHS
space of Gaussian processes alongside a moment matching constraint between the layers
can be considered, to create a Gaussian process variant for the neural network example.

The example is left limited to this simple case, as it demonstrates the key issue being
considered, which is the utility of extending the loss functional to C : Z → R ∪ {∞} for
arbitrary separable Hilbert spaces Z, like the Hilbert space of measurable functions Yµ
considered above.

4.3 `1-Regularization

4.3.1 Motivating finite dimensional example

Consider first an example of the `1-regularization problem in a finite dimensional decision
space. Let X = Rl, Y = Rn×k, Z = Rk and H = Rn. Let φ : X → Y be a given collection of
features and let {e1, . . . , en} be the standard basis for Rn. Consider the continuous linear
operator Lx,φ : H → Z from Example 2(a), where Lx,φ(w) = φ(x)Tw. Then consider the
`1-regularization problem for feature selection given a set of observations D = {(xi, yi) :
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xi ∈ X , yi ∈ Z, i = 1, . . . ,m} given by,

min
w∈H

m∑
i=1

||yi − Lxi,φw||
2
Z + λ||w||21 (69)

where the ||w||1 = (
∑n

i=1 |wi|) is the standard `1-norm on Rn. Let wi denote the ith com-
ponent of a vector w ∈ Rn. From Theorem 17 we know that the `1 norm is orthomonotone
with respect to a subspace valued map Sproj : H → V(H), given by

Sproj(w) =

{
n∑
i=1

λi〈w, ei〉Hei : λi ∈ R

}
=

 ∑
{i:wT ei 6=0}

λiei : λi ∈ R

 (70)

Example 3 showed that Sproj is an inclusive, quasilinear subspace valued map with the union
extension Sproj : V(H)→ V(H). Then from the representer theorem (Theorem 18) we know
that a minimizer for (69) must exist in Sproj(

∑m
i=1 range(L∗xi,φ)) = Sproj({

∑m
i=1 L

∗
xi,φ

zi : zi ∈
Rk}).

From Example 2(a), we also know that L∗xi,φzi = φ(xi)zi. Thus we have

Sproj

(
m∑
i=1

range(L∗xi,φ)

)
=

m∑
i=1

Sproj(range(L∗xi,φ)) =

m∑
i=1

Sproj({φ(xi)zi : zi ∈ Rk})(71)

=

m∑
i=1

 ∑
{j:φ(xi)T ej 6=0}

λjej : λj ∈ R

 (72)

=

 ∑
{j: φ(xi)T ej 6=0 ∀i=1,...,m}

λjej : λj ∈ R

 (73)

Substituting this form of the minimizer into (69), we can then find the optimal λjs. The
above problem is often used as a means for sparse feature selection in learning problems.

The subspace valued map Sproj defined above is a n−regular subspace valued map as it
is quasilinear, idempotent, inclusive and Sproj(w) for any w ∈ H has dimension at most n.
However if we let n→∞, Sproj will lose the r−regularity property. This does not however
mean that the representer for the case of n→∞ will be infinite dimensional. In fact since
the dimension of

∑m
i=1 range(L∗xi,φ) is at most m, the dimension for the representer is at

most max{n,m}, even when Sproj is not r−regular for any finite r, i.e., for any n > m, the
representer dimension is limited to m.

We show below an example of `1 regularization in an infinite dimensional space (n =∞)
and show an example of applying the representer theorem to a problem with a non r−regular
subspace valued map.

4.3.2 A non r−regular example

To show an application of a non r−regular subspace valued map, consider an analogue of
the finite dimensional example presented above over an infinite dimensional Hilbert space.
For this purpose, let X = N be the set of natural numbers and Z = R. Let H = `2(N,R)
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be the space of square summable sequences taking values in R. For any sequence f ∈ H,
let f(i) denote the ith member of the sequence f and let ||f ||2 = (

∑
i∈N |f(i)|2)1/2 <∞ be

the `2 norm. Let 〈f, g〉H =
∑

i∈N f(i)g(i) be the inner product on H. Let 〈z1, z2〉Z = z1z2

be the scalar product on Z = R.
As an analogue to the orthonormal basis in Rn, consider a set of orthonormal basis for

H given by {δi ∈ H : i ∈ N} with δi defined as δi(j) =

{
1 if i = j

0 otherwise
. The above space

of `2 functions forms a separable Hilbert space as shown by (Rudin, 1964, Riesz-Fischer
Theorem).

For all f ∈ H, let ||f ||1 =
∑

i∈N |f(i)| denote the `1 norm for the sequence. If a sequence
f ∈ H is not absolutely summable, i.e.

∑
i∈N |f(i)| is not bounded, then we set ||f ||1 =∞.

Further note that the evaluation operator Lx : H → Z defined as Lxf = f(x) for any
x ∈ N is a bounded linear operator on `2(N,R) with the adjoint L∗x given by δx(·), since for
all z ∈ R, 〈z, Lxf〉Z = zf(x) = 〈zδx, f〉H = 〈L∗xz, f〉H.
Then for the problem,

min
f∈H

m∑
i=1

||yi − Lxif ||2Z + λ||f ||21 (74)

we have Ω : H → R∪ {∞} given by Ω(f) = ||f ||21. The functional Ω is orthomonotone with
respect to the subspace valued map

Sproj(f) =

{ ∞∑
i=1

λ(i)
〈f, δi〉Hδi
||f ||H

: λ ∈ `2(N,R)

}
Example 4 shows that Sproj : H → V(H) defined above is an inclusive, quasilinear and super-
additive subspace valued map with a union extension Sproj : V(H) → V(H). Theorem 17

shows that Ω(f) =

{
||f ||21

∑∞
i=1 |f(i)| <∞

+∞ otherwise
is orthomonotone with respect to the Sproj

defined above.
Note also that Sproj(f) in general can be infinite dimensional and thus is not r-regular

for any finite r. However by Theorem 19 we know the minimizer for (74) must be of the
form

Sproj

({
m∑
i=1

L∗xizi : zi ∈ R

})
= Sproj

({
m∑
i=1

δxi(·)zi : zi ∈ R

})
=

{
m∑
i=1

δxi(·)zi : zi ∈ R

}
The above representer can then be substituted for f in (74) and the optimization can be
posed as a finite dimension optimization over {z1, . . . , zm}. Thus (74) provides an example
of problems where a non r-regular subspace valued map is required and thus was not be
covered by previous counterparts of the generalized representer theorem. Also note that
the non r−regularity of Sproj does not lead to an infinite dimensional representer as the
dimension of the space is limited by the range of the adjoint.

5. Conclusion

We presented here an extension to existing work on generalized representer theorems by
extending the result to apply to learning arbitrary Hilbert space-valued function spaces
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with loss functionals composed with closed, densely defined operators on separable Hilbert
spaces. Subspace valued maps with a super additive property were introduced and the
property was shown to be necessary and sufficient for preserving a vector space structure
for the union extension of a subspace valued map. The assumption of “r-regularity” was
removed from the generalized theorem in order to allow more general subspace valued maps
and its implications were shown for the `1 regularization problem in function spaces. The
formalism of linear operators and adjoints was introduced into the generalized representer
theorem and infinite dimensional representer spaces were treated as part of the result. The
`1 norm was shown to be orthomonotone with respect to a projection based subspace valued
map that shows the sparsity inducing nature of the `1 norm regularizers. An example from
regression in a space of stochastic processes was shown to demonstrate the utility of the
theorem when dealing with loss functionals on infinite dimensional Hilbert spaces and linear
operators from one infinite dimensional Hilbert space to another. Finally, an example from
kernel based neural networks was presented to show an approximation scheme based on the
representer theorem to a kernel based neural network.

6. Appendix

6.1 Subspace Valued Maps

Definition 25 (Quasilinear map)
A subspace valued map S : H → V(H) is called quasilinear if

∀x, y ∈ H, λ1, λ2 ∈ R, S(λ1x+ λ2y) ⊆ S(x) + S(y)

For any A ∈ V(H), let S(A) = ∪x∈AS(x). Then idempotence can be defined as,

Definition 26 (Idempotent map)
A map S : H → V(H) is called idempotent if

∀x ∈ H, S(S(x)) = S(x)

Definition 27 (r−regular maps)
For some r ∈ N, we call a map S : H → V(H), r-regular if

1. it is quasilinear and idempotent

2. for all a ∈ U , dimension of S(a) is at most r

3. ∀x ∈ H, x ∈ S(x)

Lemma 28 (Summation of subspace valued maps are super-additive)
Let S : H → V(H) be a subspace valued map. Let Ssup(A) =

∑
x∈A S(x). Then for any

A,B ∈ V(H), we have Ssup(A) + Ssup(B) ⊆ Ssup(A+B).
Proof The proof follows directly from the definition of Ssup, Ssup(A)+Ssup(B) =

∑
x∈A S(x)+∑

y∈B S(y) =
∑

x∈A∪B S(x). For vector spaces A,B ∈ V(H), we must have A∪B ⊆ A+B.
Thus Ssup(A) + Ssup(B) =

∑
x∈A∪B S(x) ⊆

∑
x∈A+B S(x) = Ssup(A+B).
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The following example shows how addition of sets works in practice and shows a non
r−regular example of a super-additive subspace valued map.

Example 7 (Summation of subspace valued maps are super-additive)
Let H = `2(N) be the space of square summable sequences and let ||a||2` = (

∑∞
i=1 a

2
i )

1/2.
Consider the non r-regular subspace valued map Sproj : H → V(H) given by

Sproj(a) =

{
{
∑∞

i=1 λi
〈a,δi〉H
||a||`2

δi : {λi} ∈ `2(N)} , ||a||`2 6= 0,

{0} , otherwise

where δi(j) = 1 for j = i and 0 elsewhere. Let Sprojsup (A) =
∑

a∈A S
proj(a). Consider the

subspaces A = {
∑∞

i=1 λ2iδ2i : λi ∈ `2(N)} and B = {
∑∞

i=1 λ3iδ3i : λi ∈ `2(N)}. We have

Sprojsup (A) = {
∑∞

i=1 λ2iδ2i : λi ∈ `2(N)} = A and likewise Sprojsup (B) = B and Sprojsup (A+B) =

A + B. Sprojsup (A) + Sprojsup (B) = A + B = {
∑∞

i=1 λ2iδ2i + λ′3iδ3i : λi, λ
′
i ∈ `2(N)} = A + B =

Sprojsup (A+B) (equality trivially implies the inclusion required for super-additivity).

Note that the representers in Argyriou and Dinuzzo (2014) are given as
∑m

i=1 S(wi) for some
r-regular subspace valued map S : H → V(H). The consideration of super-additive subspace
valued maps does not lead to any loss of generality as we can consider the map Ssup(A) =∑

x∈A S(x) as given by the above lemma as our super-additive subspace valued map and
then the representer is equivalently written as Ssup(span{w1, . . . , wm}) =

∑m
i=1 S(wi). Note

also that the super-additivity of Ssup does not contradict the sub-additive property of S
required by quasi linearity, as we are considering Ssup as a new subspace valued map, entirely
different from S, thus while S may be sub-additive, its summation Ssup is super-additive
(in fact additive, in such a case, as shown below).

Lemma 29 (Summation of quasilinear maps is additive)
Let S : H → V(H) be a quasilinear subspace valued map. Let Ssup(A) =

∑
x∈A S(x) be the

corresponding summation map defined as Ssup : V(H)→ V(H). Then Ssup is additive, i.e.,
for any A,B ∈ V(H), S(A) + S(B) = S(A+B).
Proof Ssup(A)+Ssup(B) =

∑
x∈A S(x)+

∑
y∈B S(y) =

∑
x,y∈A∪B S(x)+S(y) ⊇

∑
x,y∈A∪B S(x+

y) = Ssup(A + B). Thus using a quasilinear S we get Ssup(A) + Ssup(B) ⊇ Ssup(A + B).
From Lemma 28, we already have Ssup(A) + Ssup(B) ⊆ Ssup(A + B). Thus combining the
two results, we have additivity, Ssup(A) + Ssup(B) = Ssup(A+B).

Example 8 (A non-idempotent, non-r-regular, subspace valued map)
Let Em = {e1, . . . , em} be the standard orthonormal basis for Rm and Emn = {e11, . . . , emn}
be the standard orthonormal basis for Rm×n. Let H be a Hilbert space of Rm-valued smooth,
square integrable polynomial functions supported on [−1, 1]n ⊆ Rn with the Legendre poly-
nomials, given as

{pijei ∈ H : pij(x) = cj∂
j
xi [(x

2
i − 1)j ], cj = (j + 0.5)

1
2 (2jj!)−1, j ∈ N, ei ∈ Em, xi = 〈x, ei〉Rn}

as the orthonormal basis for H, where pij is a polynomial of order j. Let Y be the space of
Rm×n-valued functions and ∇ : H → Y be the Jacobian operator, computing the Jacobian
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for a Rm-valued function. Let `2({1, . . . ,m} × N) be the space of dual indexed sequences
{λij : i ∈ {1, . . . ,m}, j ∈ N} that are square summable. Consider the subspace valued map
Sproj : H → V(H) given by,

Sproj(a) =

{{∑∞
j=0

∑m
i=1 λij

〈aei,pijei〉Hei
||a||H||pij ||H : λij ∈ `2({1, . . . ,m} × N)

}
, ||a||H 6= 0

{0} , otherwise

Let for a matrix valued function f ∈ Y, let fi denote the ith row of the matrix. Let
∇· be the divergence operator and ∇∗ : Y → H be the adjoint operator to ∇, given as
∇∗f = −(∇ · f1, . . . ,∇ · fm). A subspace valued map S′ : Y → V(Y) is then induced by the
jacobian operator ∇ given as,

S′(f) = ∇(Sproj(∇∗f))

Let fn ∈ Y denote a polynomial of maximum order n. Then note that S′(fn) contains
polynomials of order at most n− 2. Thus clearly fn /∈ S′(fn). Thus S′ is not inclusive.

Also S′(S′(fn)) contains polynomials of order at most n−4 and thus S′(S′(fn)) 6= S′(fn),
implying S′ is not idempotent. Also in general f ∈ Y can be an infinite order polynomial
and thus the dimension of S′(f) can be infinity.

Note that S′ : Y → V(Y) is however a quasilinear, super-additive subspace valued map
and can still be used to establish a representer theorem, provided it is range preserving with
respect to the L being used with the loss functional. An example of such an operator would
be the smooth kernel of an RKHS defined on H. Since range(L∗) then contains polynomials
of order upto infinity, N⊥L ⊆ S′(N⊥L ).
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