Manifold Learning and Optimal Control
for Obstacle Avoidance in Autonomous Driving*

Sanket Diwale'?, Tong Duy Son?, Colin Jones'*

April 29, 2019

Abstract

A novel manifold learning approach is presented to incorporate computationally efficient obstacle
avoidance constraints in optimal control algorithms. The method presented provides a significant com-
putational benefit by reducing the number of constraints required to avoid N obstacles from linear
complexity O(N) in traditional obstacle avoidance methods to a constant complexity O(1). The appli-
cation to autonomous driving problems is demonstrated by incorporation of the manifold constraints
into optimal trajectory planning and tracking model predictive control algorithms in the presence of
static and dynamic obstacles.

1 Introduction

Autonomous driving is an important application domain where obstacle avoidance is required in combina-
tion with optimal path planning and control. A wide range of methods including dynamic programming,
numerical optimal control, MPC and randomized methods like RRT and A* have been used for motion
planning and control of autonomous vehicles in presence of obstacles (e.g. [1-4]).

The approaches to obstacle avoidance can be broadly separated into two classes based on the obsta-
cle/environment representation used. We will call these: (i) an obstacle centric approach and (ii) an
environment centric approach. In an obstacle centric approach each obstacle in the environment is repre-
sented using a geometric description of its shape and constraints are imposed to ensure that the vehicle
geometry does not collide with any obstacle geometry. In the environment centric approach a geometric
description is directly extracted for a feasible region of movement from sensor data without reference to
individual obstacle shapes. Constraints are then imposed such that the vehicle geometry remains inside the
feasible region to avoid any collisions.

Examples of the obstacle centric approach can be found in works like [1-3,5-14] while the environment
centric approach can be found in [4,15-19].

Polyhedral obstacle and vehicle geometries are used by [1,5-7] with hyperplane separation constraints
to impose obstacle avoidance in a nonlinear model predictive control (NMPC) scheme. [2] uses circular
obstacles with dynamic programming while [3] uses an RRT* algorithm with polyhedral obstacles. [12,13]
define a potential field for spherical obstacles while [10,11, 14] use a mixed integer approach for spatially
varying constraints for polyhedral obstacles.

The obstacle centric approach imposes an O(N) complexity in the number of constraints if N obsta-
cles are present. In particular for algorithms planning over a horizon length H, O(NH) constraints are
needed. This dependence on N creates a problem for real time applications where N can be large and more
importantly, can change dynamically, requiring an online update of the optimal control problem structure.

The environment centric approach seeks to circumvent this dependence on N by constructing directly
a representation for the feasible region from sensor data. [15,16] use a Support Vector Machine to learn
a non-convex environment representation and perform RRT within the learned region. [4] uses a circular

**This work has been conducted within the ENABLE-S3 project that has received funding from the ECSEL Joint Under-
taking under grant agreement No 692455. This joint undertaking receives support from the European Union’s HORIZON 2020
research and innovation program and Austria, Denmark, Germany, Finland, Czech Republic, Italy, Spain, Portugal, Poland,
Ireland, Belgium, France, Netherlands, United Kingdom, Slovakia, Norway.

1 Automatic Control Laboratory, EPFL, Switzerland

2 Siemens Industry Software NV (SISW), Interleuvenlaan 68, 3001 Leuven, Belgium

region around the vehicle and LIDAR measurements to partition the circle into sectors not containing any
obstacles. A multiphase NMPC scheme is then used to plan trajectories within this circle. [17-19] use a
deep neural network to learn a mapping from features observed in video data of the road to the steering
action applied. The features typically correspond to boundaries or markers for the feasible region (e.g. [20]).
The approach however does not combine with optimal planning or control and may not always guarantee
obstacle avoidance depending on the quality of training and network architecture used.

We present here a manifold learning algorithm to learn feasible environment representations, for an
environment centric approach of obstacle avoidance in optimal control methods. The number of constraints
introduced is independent of the number of obstacles (O(1) complexity or O(H) for horizon H), while
introducing constraints of comparable computational complexity to the linear hyperplane constraints.

The chapter is structured as follows: Section 2 presents the manifold learning algorithm and its use for
obstacle avoidance in a general optimal control method. Section 3 discusses an optimal trajectory planning
and path following NMPC scheme for a car parking scenario incorporating the manifold constraints to
avoid static and dynamic obstacles in a complex environment. Numerical studies are presented in Section
4. Section 5 concludes the paper with a few remarks on the method presented and future directions.

Notation

Throughout this chapter, let H be a Hilbert space of 2m-periodic functions mapping [0,27) to R?, with
orthonormal basis from a subset of Ugen,e,ef(1,0),(0,1)} ({€i coskt} U {e;sinkt}). Let ¢ : R* — [0,2m),
defined as

o([z,y]) := arctan2(y, x)

give the angular coordinate of a point in R2. The angular coordinate for the point (0,0) is taken to be 0,
i.e. ¢([0,0]) =0. Let || - ||3, ()% and || - ||g2, {-)r> be the standard 2-norm and inner product on H and R?
respectively. Let x be the cross product in R2.

2 Manifold learning

We present here our main result for manifold learning, as a means for an environment centric approach to
obstacle avoidance in optimal control.

Definition 1. (Star-shaped Manifold)

Let ¢ be any point in R?. Let f € H be a 27 periodic function. Let f, € H be defined as f.(t) =
(rcos(t), rsin(t)) for some fized r > 0 and M. := {F(t) :== (f(t) + f-(t) +¢) : t €]0,2m)} be a closed curve
of points in R2. Then, for all t € [0,2m) if ¢(F(t) —c) =t then we say M, is a star shaped S isomorphic
manifold centered at c.

Note that this definition for star shaped manifold is non-standard and refers to the idea that the interior
of such a closed curve will be a star shaped set. For a star shaped manifold M, let the interior be defined
as int(M,) := {p € R? : ¥m € [0,1], mp + (1 — m)e ¢ M.}, i.e. the set of points p in R? such that a
straight line connecting p to ¢ has no intersection with the closed curve of the manifold M..

Note that not all f € H will represent a star shaped manifold and that the shape of the curve changes
as we change the function f. Define

Lif == F(t) = f(t) + fr(t) + ¢ (1)
as the affine operator from H — R? for each fixed ¢. Similarly define
Tof = 0uf(t) + 0ufr (1) (2)
and
Nif = (_01 é) T.f (3)

giving a tangent and normal respectively to the manifold at ¢.

v

Figure 1: A star shaped manifold M, centered at ¢ € R2. The manifold is parameterized by t € [0, 27) and
satisfies the constraint t = ¢(F(t) — ¢) for all ¢ € [0, 27).

2.1 Learning the manifold

Given a point cloud P of data in R?, Theorem 1 below describes the means to learning a star shaped
manifold M, such that all obstacle points lie outside the area enclosed by M., i.e. int(M.) NP = (.

Theorem 1. Let P := {p; : i = 1,...,M,p; € R} be a point cloud of data coordinates and for any
c € R?2\P be some point not included in P. Then a minimizer to the variational problem

fopr = axgmin] | f][3 @
feH
st.Vie{l,...,M}, t; = p(p; — ¢)
(Lt;f —¢) X Ny, fr =0 (4a)
(pi — Lt, f, Nt fr)r2 > 0 (4b)

defines a star shaped S* isomorphic manifold centered at c € R2,
Me = {Fopi(t) := fopi(t) + fr(t) +c: t € [0,2m)}
with int(M.) NP = 0.
The proof for the theorem relies on the following two lemmas.

Lemma 1. Let H, :={f € H:Vt €[0,2n),p(Lf —c) =t} be the subset of curves in H that lead to a star
shaped manifold. Define .

mp = argmingeg, |1 — fllx
as the projection of f to H.. Then

(i) Hs is a closed convex set in H and

(1) Vf € H\Ho, |Imellae < ISl

Proof. Firslty, note that any f € H. must be of the form f(t) = a(t)(cos(t),sin(t)), for some 2m-periodic
function a : [0,27) — [0,00) in L?([0,27)). f(t) must take this form, because the angle ¢(L; f —c) = t is given
for any f € H.. Also the function a(-) must be in L?([0,27)) to ensure that || f||3 = [|a(-)(cos(-),sin(:))||3 <
00. Thus for all f1, fa € H., there exist functions a; : [0,27) — [0,00) and az : [0,27) — [0, 00) such that
f1(t) = a1 (t)(cost,sin(t)) and fa(t) = az(t)(cost,sin(t)).

Then for all a, 8 € [0,00), af1 + Bf2 = (a1(t) + az(t))(cos(t),sin(t)) € H.. As a result for any a € [0, 1],
B=(1-a)and f1, fa € H., we have af; + (1 — a)fz2 € H., implying H, is a convex set.

Further for any converging sequence f,, € H., we have a corresponding converging sequence a, €
L2([0,2m)). Since L%([0,27)) is a closed Hilbert space (by the Riesz-Fischer theorem), a,, must converge to
a point a € L?([0,27)) and thus f,, converges to a f in H,, implying H. is closed.

Thus we have shown the first statement (H, is a closed convex set).

Then by the Hilbert Projection Theorem [21, Theorem 1.2], 7y € H,. and (f — 7y) € H{. Thus

Il + 11f = mell3 = 1£15, = (D). O

Lemma 2. Let f € H be any feasible solution to (4). Then 7y = argming y |[f — f|| is also feasible for
(4)-

Proof. Let T = {t:t = ¢(p; — ¢),p; € P} be all the ¢;s at which constraints in (4) are imposed. Note that
normal to the circle f, at any ¢t € [0,27), is given by N;f, = (rcost,rsint). Also, as argued in Lemma 1,
75 € H,. must be of the form 7/ (t) = a(t)(cos(t),sin(t)) for some 2m-periodic function a : [0, 27) — [0, c0)
in L2([0,27)). Thus 7y trivially satisfies (4a) for all ¢; € T. Also since both f(t;) and 7 (t;) satisfy (4a),
both are in the span of Ny, f.. We can then claim f(¢;) = m¢(¢;) for all ¢; € T as follows.

Suppose f(t;) # ms(t;) for some t; € T, then there must exist a g # 0 in H, and a g € H; such that
f=ms+g+gt. Alsosince for all t; € T, f(t;),m¢(t;),g(t;) are all co-linear (satisfying (4a)), g*(t;) =0
for all ¢; € 7. Then 7y = argming_,, If = flla = argmin s ,, l|7f+g+ gt — flln = m¢ + g. But this
implies g = 0 and hence a contradicts the assumption f(¢;) # m¢(t;) for some ¢; € 7. Thus for all t; € T,
we must have f(t;) = m¢(t;) and thus Ly, 7y = Ly, f and 7y satisfies (4b) as well. O

The proof for Theorem 1 then follows,

Proof. [Theorem 1] Note that by Lemma 2 for any feasible solution f € H\H., there exists the projection
7 € H, as a feasible star shaped solution. Further by Lemma 1, ||7¢||% < || f||%. Thus the minimum norm
solution M. must be star shaped. To show int(M.) NP =), note that (4a) enforces Ly, fopt — ¢ to be in
the span of the outward pointing normal Ny, f,., while (4b) enforces that the vector pointing from Ly, fop: to
p; is also outward pointing. This ensures that Ly, fop: lies inside the line segment joining ¢ and p; and since
M, is star shaped, int(M,.) NP = . Finally, note that for all ¢ € R?\P there exists an open neighborhood
of ¢, call it int (M feqs), such that int (Meqs) NP = 0 (by virtue of Hausdorff separability of R?). Thus for
all ¢ ¢ P, there exists a feasible solution to (4). O

Note that the minimization problem in (4) can be an infinite dimensional one and that the proofs
did not rely on any particular definition for the inner product (thus the theorems hold for any inner
product definition on H). The infinite dimensional problem is reduced to a finite dimensional one by
limiting H to a space generated by finitely many sin and cosine basis. Then f € H takes the form
ft) = ZkK:O ap coskt + by sinkt with a finite K and ax,br € R? become the decision variables for (4).
Another approach to reducing (4) to a finite dimensional problem while not reducing H to a finite basis is
to use a reproducing kernel hilbert space H with a periodic kernel. We avoid this approach in the present
work as it would incur a O(M) complexity (M being the size of the point cloud) in evaluating L, f,p: (instead
of O(K), K being the size of the basis) making obstacle checking more expensive in Theorem 2.

2.2 Using the manifold for planning and control

Theorem 2. Let M, be the optimal manifold given by Theorem 1 with a center ¢ € R%. Then a point
p € R? is contained in its interior, int(M.), if and only if (5) is satisfied, i.e.,

p € int(M.) <= (p — Ly fopts Nofr)rz <0 for v=¢(p—c) (5)

Theorem 2 provides a simple inequality check for any point being contained in a star shaped manifold.
Thus for any point p € R? in order to check for containment in int(M.) a single inequality suffices. To
include such a constraint for obstacle avoidance in an optimal control problem simply include (5) for each
p that needs to be checked. Thus for a horizon H optimal control algorithm where the state for each of
the H steps is enforced to be feasible the number of constraints included are of the order O(H). Section 3
describes this process in more detail.

40 40

301 30

20 20

. 10 - — 10
A

= S 04

—10 1 —10 A

—20 1 J —20 1

—30 1 —30 A

20 RS 20 0 20
Z [m] Z [m]

Z> [m]
L)

Figure 2: Learned Manifolds and Normal Fields. (Green point - center of manifold, red points - point cloud
visible from manifold center, blue points - points invisible/out of sensor range from center, black - surface
of the manifold, arrows - outward pointing normals on the manifold surface)

3 Optimal control and manifold constraints

Three different optimal planning and control algorithms are presented below that are used to accomplish
different tasks for an autonomous car parking scenario, using the manifold constraints from Theorem 2.
Section 3.1 describes a corridor planning algorithm over a graph of manifolds using a dynamic programming
approach. The corridor plan is then used in Section 3.2 to solve a N-phase free end time, numerical optimal
control problem for planning a trajectory for the vehicle to move within the free space described by the
corridor, while accounting for the vehicle dynamics. The planned trajectory is used as a reference path and
a path-following model predictive controller is described in Section 3.3 to account for dynamic obstacles
and real-time control requirements.

3.1 Corridor planning

Given a set of point cloud information pertaining to locations of obstacles in an environment, a single star
shaped manifold may not be enough to adequately represent the entire free space configuration in which
the vehicle can move. Figure 3 shows an example of such an environment (with the point cloud shown in
blue). A collection of manifolds (shown in faded black) are then learned with different centers in order to
cover the entire free space of interest for the vehicle movement. The collection of manifolds is constructed
to ensure that no manifold has a disjoint interior from the rest of the collection and as such there is a path
connecting any two manifolds in the collection going through manifolds within the collection.

A undirected graph G of manifolds is then given by such a collection with each nodes in the graph
representing a manifold from the collection and an edge between two nodes indicating that the interiors of
the manifolds has non-empty intersection. The complete point cloud of static obstacle points from which
the manifolds are learned is denoted as Ogqtic- Figure 3 shows an example of such an Qg4 and G. A unit
weight is assigned to each edge for simplicity (although other weighting schemes are also possible). Further
all manifolds are learned with Theorem 1 so that (Upqeg int(M)) N Ostatic = 0.

Then, given a desired starting and end point, Psier: and penq respectively, for the vehicle in R?, we
can find the shortest sequence of manifolds in G connecting pgsiqrt t0 Peng using a dynamic programming

70

60 -

50 4

40 -

30+

Z> [m]

20 1

10

7 [m]

Figure 3: Corridor Planning over Manifolds. The shortest sequence of manifolds Rs., colored in magenta,
cyan, red and green from start to goal. Unused manifolds from G are in faded black. The car to be controlled
is plotted in red and the desired target state is shown with a dashed black profile.

algorithm. The process for constructing the shortest sequence is a standard dynamic programming algorithm
is as shown in Algorithm 1. The containment check for any point p in a manifold in Algorithm 1 can be
done using Theorem 2.

A path connect subset C C R? such that C N Ogatic (i.6. not containing any static obstacle points) is
called a corridor in the context of autonomous driving. Such a corridor is given by M., UM, U---UM,,,
because each manifold satisfies M, N Ostqric = B, by virtue of Theorem 1.

Algorithm 1 thus provides a fast corridor planning algorithm to find the shortest sequence of manifolds,
Rgeg = { Moy, ..., M., }, that must be traversed to reach the end position. A multiphase optimal trajectory
to traverse Iiscq is then constructed in section 3.2, taking the vehicle dynamics into account.

3.2 Optimal trajectory planning

Let Rseq = {M¢,,..., M.y} be the sequence of manifolds given by Algorithm 1 for start and end points,
Pstart and peng respectively. Also let the center of M., be the point ¢; € R? for all i = 1,..., N.

Consider for simplicity, a slip free Dubin’s car model (6) to describe the non-holonomic vehicle dynamics,
with the state ¢ = (21, 22,%,v) comprising of (21, z2) giving a coordinate position for the vehicle in R?, 1)
giving a yaw orientation and v giving the car’s forward speed. The controls used are a steering input § and
acceleration a. ks, kqce are known constants corresponding to the steering and acceleration input gains.

Gg= (vcosgb,vsin%/%~v-6,kacc-a)T (6)

Assume, now, that the initial state of the vehicle dynamics is given as ¢gsqr¢, Such that the correspond-
ing position of the vehicle in R? is psere and the desired end state genq for the vehicle is such that the
corresponding position is pend, as were used to plan the corridor sequence Req.

The algorithm presented next is agnostic of the exact form and details of the dynamic model used and
we will simply denote the state of the vehicle dynamics by ¢, the inputs to the vehicle as u and the dynamics
to be given by an ordinary differential equation,

q=Q(q,u) (7)

Algorithm 1 Dynamic programming over a graph for corridor planning

Input: graph of manifolds: G, start point: pstart, end point: pepq
Algorithm:
First setup the costs for traversing the graph from any point to penq as follows:

(i) Let all manifolds in G be assigned an infinite cost.

(ii) Find all manifolds in G containing penq, call the set of such manifolds Ay and set their cost to 0.
Set the iteration counter [= 0.

(iii) Let, the set of immediate neighbors to .4; with cost equal to co be called A;41. If A; is an empty
set, then terminate. Else, set the cost of all manifolds in A; = [+ 1. Set the iteration counter [to
[+1

(iv) Repeat (iii) till termination. (Note that the steps terminate since we have finitely many nodes in G)

Next find a shortest sequence of manifolds going from pstrt tO Pend

(i) Find all nodes in G containing the point pstqrt, call the set By. Set M., as the manifold in By with
the lowest assigned cost. Set the iteration counter to [= 1.

(i) Find an immediate neighbor of M., with minimum cost and set M., , to that neighbor. If the cost
of M,,, is 0, terminate. Else, set the iteration counter / to [+ 1.
(iii) Repeat (ii) till termination.
Assuming the iteration terminates of the N** step, we have the sequence of manifolds {M.,,..., M.y}
giving the minimum cost for traversing the graph from pgiart t0 Pend

Output: {M.,,..., M.}

70

60 |

50 -

40 1

30 ~

Z> [m]

20 -

10

_10 T T T T T T T
-20 -10 0 10 20 30 40 50 60

A1 [I'ﬂ]

Figure 4: Optimal Trajectory Planning over Manifolds. The shortest time trajectory avoiding the corridor
plan manifold constraints and adhering to the state dynamics and state-input constraints. The evolution
of the car position and orientation is plotted in green over the period of the optimal trajectory.

Then, a N-phase optimal trajectory satisfying the non-holonomic vehicle dynamics and obstacle avoid-
ance constraints can be generated as follows.

Let M., to M., denote the N manifolds in Rseq. Let ¢(t) € R™, u(t) € R™ be the state and input at
time ¢ for the vehicle and ¢(t) = Q(q(t),u(t)) be the vehicle dynamics. gstqrt is given as the initial state of
the vehicle at time ¢ = 0 and ge,q is the desired end state.

Let p;(t) = Q;(q(t)), = 1,...,k for some finite k denote a collection points on the vehicle geometry
for which to enforce obstacle avoidance, given by selection functions €2; : R™ — R? (see Definition 2 for an
example of Q;). Also for purposes of brevity we will denote the fact that

pi(t) = Q;(q(t)) € int(M), Vj=1,...,k <= q(t) € int(M)
by the abuse of notation ¢(¢) € int(M).

By construction, Rseq is such that gsiere € int(M,) and genq € int (M.,). Let the state and input be
bounded in box constraints Xpeq, Upor respectively. Let t; € [0,00) be a free end time for the trajectory and
let t% € [0, 00) be the time for first exit from int(M.,) for i € {1,..., N —1}. For notational convenience, let

9 =0 and tﬁcv =ty. A general N-phase optimal control problem is described in Algorithm 2 below, variants

of which lead to the optimal trajectory generation and MPC path following algorithms to be presented
later.

Algorithm 2 N-phase Optimal Control
Input: initial state: ¢o, goal state: ¢y, manifolds: {M,,,..., M.} and smooth, strongly convex cost
functionals: £: R™ x R™ — [0,00), G : R™ — [0, 00)

OCP: qopt; Uopt, t}opt7 . 7t5£v0pt =

tf N
argmin G(q(ty)) + / £(q(s),u(s))ds + Z(t})2 (8a)
d(-)eL?([0,00);R™) 0 i=1
a(-)€L?([0,00);R™)

ty,...,t5 €[0,00)

st Vse(ty L thlie{l,... N} je{l,... k} (8b
4(0) = qo, 4(ts) = ay, tf =0

G(3) € Xoor,0(s) € Upom, th — 51 >0
q(s) = Q(4(s), au(s)) (8¢
Hi(s) = Q;(q(s)) € int (M.,) (

. 1 N
Output: ¢op, uOPt’tfopt’ Sty opt

(8) describes a general free-end time N—phase optimal control problem where the variable ti} represents
the end time for phase 7, i = 1,..., N. In each phase of the problem one manifold constraint is active, i.e.
M., is active for phase i.

(8¢) enforces the initial and terminal boundary conditions for the vehicle state and sets the initial t(} =0
for notational convenience of (8d). (8d) enforces the input and state constraints to be satisfied and states
that the switching times should be ordered such that the time at which the manifold is switched from M.,
to M,,,, (given by t’ %) is greater than the switching time /=1 when the constraint for M., was first made
active. (8e) enforces that the solution qopt, Uopt Satisfy the differential equation for the dynamlcs considered.
(8f) enforces that for all times s € (t} t}] the selected points on the vehicle geometry are in the interior
of the active manifold M., thus avoiding all obstacles. (8f) is equivalent to the inequality constraint given
by (5).

The optimal reference trajectory gr.y and control uyey from ggeart t0 gend, given Rgeq can then be found
using Algorithm 3. Note that we are subscripting the optimal solutions as ¢r.¢ and u,.s as these solutions
will be used as reference trajectories for a path following model predictive controller in Section 3.3.

Algorithm 3 Optimal Trajectory Generation

Input: o = gstarts 4f = Gend, manifolds: Rgeq, £(4(s),a(s)) = v||a(s)||? for some v > 0 and G(G(ts)) =0
Solve: OCP (8) and get qopt, Uopt and t}opt, i=1,...,N

Output: t;ef = t}vopt, Qref [O,t;ef] — R"™ = gop

Theorem 3. Let Rseq, Xpow and Upoy be such that the optimization (8) is feasible in Algorithm 3. Then
the optimal trajectory, grey is such that for all t € [O,t;ﬁf] and all j € {1,...,k}, Qi(gres(t)) N Ostatic =0

and Qref (t}Ef) = {Gend-

The proof for Theorem 3 follows directly from the enforced terminal constraint (8c) and manifold con-
straints (8f), which by Theorem 1 implies €;(gre f(t))NOstatic = 0 in each phase. Thus Theorem 3 guarantees
that the optimal reference trajectory is such that for all points on the trajectory g,.f, selected points of the
vehicle geometry are contained in the interior of manifolds in R4, thus avoiding all known static obstacles
in the map.

The next section, describes a real-time path following model predictive controller, using g,.s as a refer-
ence path in order to address the concerns of fast real time control (as generating an optimal trajectory by
(8) for ever changing values of N, large values of N can be computationally expensive) and to address the
issue that Ogqtie being an offline data set of static obstacle information may not accurately describe the
obstacles in the environment. To address the issue of apriori unknown and possibly moving obstacles, we
introduce a new dynamic set Ogy, of point cloud data (acquired in real time with a LIDAR like sensor) in
the next section and learn a dynamically changing manifold M., ;) centered around a point on the vehicle.

3.3 Dynamic obstacles and model predictive control

Let Ogyy be a point cloud of dynamic obstacles not accounted for in G and let O = Ogtqtic U Ogypn. While
Theorem 3 provides an effective method to plan trajectories in presence of static obstacles; for dynamic
obstacles we formulate an MPC path following scheme tracking the planned g,.y with a reference geometric
path to follow. Treating g,y as simply a parametrized geometric path and not a time-bound trajectory
allows the controller to move to g,.;y and follow along g,.; at a speed that is feasible for the real vehicle
dynamics (as there may be a difference between the real vehicle dynamics and the model used for planning)
and for constraints placed by the new dynamic obstacles.

Also since path-following under dynamic obstacles can lead to unforeseeable situations, we address here
only the problem in a semi-cooperative setting. Under such a setting, we assume that path gr.s is not
permanently made infeasible, i.e. we can move to any point to g,.y without being hindered by an obstacle
permanently (a point may be unreachable for a finite amount of time, but the obstacles will move away
in a finite time span, to make the point reachable). In such a setting, we also do not address adversarial
obstacles, that are either actively trying to collide with the vehicle or accidentally in a state such that no
control action by the MPC controller can avoid collision.

At any time ¢, let ¢(t) be the vehicle state. Let ¢1(t) = so(q(t)) be the position of a sensor on the vehicle
in R?, given the state of the car, q(t). Let M.,) be a dynamic manifold learned using Theorem 1 at each
time t using new data from the sensor, allowing detection and avoidance of dynamic obstacles in O. Let
t;ef and gref : [O,t;ef] = R™ be the reference end time and reference geometric curve mapping into the
vehicle’s state space as given by Algorithm 3.

Let J : Reeq — R be a map from a manifold in R, to its cost to go, assigned in the dynamic program
from Algorithm 1 to reach the end of the sequence. Then choose a manifold,

M,y = argmin g, J(M) s.t. c1(t) € int(M)

i.e. Mg,y is the manifold in Rge, with the minimum cost to go such that the current sensor position
is contained in its interior. Recall that M., (;) is the dynamically learned manifold, centered around the
sensor position and thus M,y N M, (1) # 0. It is assumed that the initial state of the vehicle in such that
My (to) N Mg, (1) # 0 and the recursive feasibility of the MPC shown later will ensure that this remains
true for all ¢ > tg.

Then for the path following MPC problem considered over a finite horizon 7', a heuristic reference
terminal state for the horizon [¢,¢ + T is then chosen as follows.

Let N (Mg, 1)) be the set of immediate neighbors of M, () in Rseq including M., 4 itself. Let t,,(w,t) >
0 be a positive offset parameter at time and path parameter (¢, w), given by

tw(w,t) = AIGMAX; (g yrel) tw st. grep(w+1,) € int(M) and M € N(M, 1))

and let wy(w,t) := min(w + t,(w, t), t;ef) be a forward shift for any w € [0, t;ef]. Then choose
w*(t) = argmin,, ¢ g rer) ||gres (W) = g()l] 8.8 greg (wr(w, 1)) € Unten (Mo,) M)

This ensures gr.f(w*(t)) is the closest point on g,c¢ to the current vehicle state g(t) such that a future point
Qref(wy(w*(t),t)) lies within the neighborhood N (M., t)) and that g,y (wy(w*(t),t)) is the closest possible
point to the end goal that can be selected within the neighborhood N (M.,). Recall that for any state
q € R", we mean by ¢ € int(M), that the corresponding selection of vehicle points p; € R? is in int(M).
Note that this minimization is always feasible, since M., ;) belongs to N (M, 1)) and it is assumed the
current vehicle state is in M, ;) and thus one can always trivially choose g,cs(w*(t)) and gpes(wy(w*(t),1))
to be points in M.,) (since M.,) is a manifold chosen at time ¢ from R,c, and ¢,.y passes through every
manifold in R, by design).
Now let the heuristic end goal for the MPC over the horizon [t,¢ + T| be given as

Qo) = qrep(wy(w™(1),1))

and let
) (M) s.t. gLh(t) € int(M)

end

MC3(t) = afgminMeN(M

ca(t)

be the manifold in the neighborhood N (M., ;) with minimum cost to go, containing the end goal q;flz(t).

Thus we have three manifolds at each time ¢; M., ;) accounting for new or dynamic obstacles in O, and
My), Mey (1) € Rseq, accounting for only static obstacles in Ogtqtie for manifolds leading from gz (w*(t))
to quL{i(t). The following optimal control problem can then be solved at each time ¢ to get a path following
NMPC controller.

Algorithm 4 Path Following MPC

Input: N =3, g0 = q(t), g5 = qzzg(t), manifolds: { M.,), Me,), Meyr) } @ safety time margin: tsqpe > 0

and a maximum blocking time: Tyocring. The cost functionals:

0(4(s), (s)) = nld(s) = gres (min{w*(t) + s,w (w*(£), OPII* + 2/ [a(s)| |

G(i(ty)) = vlld(ts) — a-<h(t)]1?

for some constants 71, 7va,7v3 > 0
Solve: OCP (8) subject to an additional constraint Tyiocking > t} > tsafe and get the optimal solution wuepy
Output: Applied control action: wu(t) = uep(0)

Algorithm 4 thus proposes a moving horizon version of the free end time, N—phase optimal control
problem in (8) with N = 3, tracking a geometric curve ¢,.f, thus giving a path following MPC controller.
The MPC controller computes the control signal to follow the geometric reference path as closely as possible

starting at ¢(t) while avoiding the manifold constraints in order to reach a end state ¢"“/(¢) such that

end
Qopt (tﬁcv Opt) = quLJ;(t) (by the imposed terminal constraint in (8)). The computed control signal at time ¢,

u(t) is applied to the system, to reach a new state and the optimization problem for Algorithm 4 is resolved
again at the new state. Section 4 gives more details on the discrete time implementation of such a scheme.
With the initial state in (8), set as the current state g(t) and the end goal ¢y in (8) set to the heuristically

ref
end

selected end goal ¢, (t), note that when the true state genq is in N (M,)), the heuristic end goal as given

ref

end

above will always be ¢’ 7 (t) = gena, as it is the closest point in the neighborhood to the end goal. Thus the

heuristic end goal over the horizon moves forward towards genq as soon as such a movement is permitted
by the obstacle environment, enabling the path following MPC to progress towards the end goal.

The manifolds M., (4) is enforced to ensure that the dynamic obstacles are avoided for all time [, t—|—t}].
Manifolds M.,) and M., are used to plan future motion towards the goal once a blocking obstacle has
moved away. The switching time t} > tgafe ensures that a safety time margin is permitted for the vehicle
to come to a halt or reverse its motion to avoid a moving obstacle, during the next iteration of the MPC
algorithm. The amount of time the vehicle has to spend within M., ;) before it can proceed with motion

through the originally planned manifolds M.,) and M., is given by t}. If a obstacle is blocking the

path of motion for the vehicle then the problem in (8) is infeasible as we require for a t}opt < tffv opt < o0,

) = q;elg(t). Thus, an assumption is made on the obstacles, such that the obstacle will move

QOpt (tjfv
away in a maximum time Tyiocking and thus we have t{ = Thiocking When the motion is blocked and we
plan the motion through M.,) and M., for the time [t + Thiocking, infty). Note however that if the

obstacle does not move away in time Tyjocking, the re-solving of the MPC at the next time iteration again

opt

sets t{ = Thiocking and thus the MPC can be permanently blocked from making progress by an obstacle and
also the controller will not collide with such an obstacle for any time [0, 00), since there is a safety margin
of tsqfe seconds left from the previous iteration in which the vehicle can be brought to a halt.

The following assumptions on the obstacle environment are made to give formal guarantees on the
convergence and recursive feasibility properties for the MPC scheme.

Assumption 1.

(i) The dynamic obstacles follow a semi-cooperative policy for their motion such that at any time t €
[0,00], the obstacle will remain outside M.,) for the time interval [t,t + tsafe] seconds. Note that
this is not exploited by the MPC to behave in a adversarial manner and push obstacles around, since
tsafe 15 only a lower bound for t}. This assumption simply means that there is a mon-zero safety
time margin teqre for the MPC to take a control action such that a collision can be avoided, given the
current state of the vehicle.

(i) Obstacles do not permanently make q;i{l(t) unreachable in Rseq (i.e. blocking obstacles will eventually
move away). (This time may be different from Tyiocking, the assumption is just required to ensure that
we do not have infinite iterations of the MPC with t}c = Thiocking and thus the MPC is prevented from
making any progress towards the goal)

(i4i) The vehicle dynamics and input constraints are such that the vehicle has a mazimum velocity and
acceleration/braking such that in ts.pe seconds it can go from the mazimum velocity to zero velocity
in teape/2 seconds and the reference trajectory can be tracked with zero position and orientation error
for any velocity profile within the limits set by the state and input constraints, given a zero error at
the initial state.

Given such assumptions, the following theorem can be established for an MPC scheme for following g f
as a reference path in the presence of dynamic obstacles.

Theorem 4. Given assumption 1-(i) and (i), the closed loop solution q(t) obtained by applying a control
signal u(t) = uop(0) using Algorithm 4 is such that for allt € [0,00) and all j € {1,...,k}, Q;(q(t))NO =0,
i.e. selected points on the vehicle geometry avoid all obstacles (dynamic and static) from O = OgqynUOstatic.

Proof. At some time ¢t if (8) is feasible then t}opt is strictly greater than tsqr. (by the imposed constraint).
This implies there is a strictly positive time t}opt > tsafe before any Q;(q(t)) exits int(M.,,). Further by
assumption 1-(i), all obstacles are guaranteed to remain outside int(M.,) for [t, + tsqpe]. Thus for all
t' € [t,t +tsarel, 2(q(t)) NO = 0. Given the optimal solution at time ¢, going from ¢(t) to qujﬁl(t), for any
time ' € [t, ¢+ tsafe/2], Algorithm 4 can be re-solved for which a feasible solution from ¢(t') to ¢"*/(#') can

end
end

be obtained as a motion from ¢(t') to g;¢f(t) (albeit with a different time profile) followed by motion along
Grey from qﬁg}i(t) to qf_g]?(t'). (Such a solution exists by virtue of the assumption 1-(iii), which state that a

given state trajectory is can be tracked with zero error in position and yaw for any velocity profile). Thus
(8) remains feasible for all t' € [t,t + tsqfe/2]. By recursively applying this argument for any ¢ € [0, 00), (8)
remains feasible for [t,¢ + tsqf./2] for each t € [0,00). Thus (8) remains feasible for all ¢ € [0,00) if (8) is
feasible at t = 0 and Q;(q(t)) N O = 0. O

Theorem 5. Given assumption 1-(ii), there exists a finite time teng such that ¢(tend) = Gend

Proof. By assumption 1-(ii), for any time ¢, qf_gj‘f (t) is reachable in some finite time, i.e. there exists a finite

time ¢’ € [0, 00) such that ¢(¢') = qﬁ;‘;l(t) (note that here by reachable we mean the actual state ¢ reaching

the goal qﬁ’g}i(t) and not just the MPC prediction ¢,p,¢). Thus there exists a finite time ¢ > ¢ such that

w*(t') > w*(t). Thus ¢"/ (') is closer t0 gena along e than quLZ(t). Since w*(¢') is upper bound by t;ef,

end
there must exist a finite ¢’ such that w*(#') = t;ef, ie., qgfﬂ;(t’) = @eng- Then a finite time t.,q > t’ exists
such that q(tend) = Gend- O

4 Numerical results

Figure 2 shows the result of learning individual manifolds around different centers using Theorem 1. We
use r = 30 m in f,. and a H space generated by a finite basis of sine and cosine with K = 10. In order to
avoid the dependence on a dynamically changing and large M in Theorem 1, we preprocess the sensor data
to return a single closest point in a sector of resolution 6,5 by dividing the [0, 27| interval into Npgre = 90
intervals. With Np, large enough we are assured that the sensor data accurately enough represents the
obstacles. Thus M in Theorem 1 is fixed to be Npq,¢ for fast online optimization. The preprocessed visible
points are shown in red in Figure 2.

Figure 3 shows R, for a parking scenario with gsqrt = (0,0,0,0) and geng = (6,31.5,0,0). Using this
Rseq and Theorem 3, Figure 4 shows the optimal trajectory plan gr.s from gsiqrt t0 geng. Figure 5 shows
the closed loop behavior of the MPC scheme in presence of a dynamic obstacle. A second car (displayed as
a green polytope) is added to the environment (not accounted for in Ogq4.) and drives out in the opposite
direction of the controlled car (displayed as a red polytope). The planned motion at time ¢ (gop:(+)) is shown
in cyan and the goal state at time ¢ (q:f;g(t)) is shown as a pink dashed polytope. The final goal state gepnq
is shown as a black dashed polytope. When the new obstacle is encountered, as shown in Figure 5b, the
path for the vehicle to move forward is blocked. In order to avoid the obstacle (moving in the opposite
direction), the car reverses its motion and moves in reverse from Figure 5b to 5c (the front edge of the car
can be seen moving from 2o = 20 m in 5b to 2o = 17 m in 5¢). Eventually space is freed by the moving
obstacle (Figure 5d) and the car drives forward again to eventually reach the parking state geng.

The slip free Dubin’s car model from (6) is used for the non-holonomic vehicle with the state ¢ =
(21, 22, ¢,v) comprising of the z1, zo coordinate position in the ground plane, yaw orientation ¢ and car’s
forward speed v. The controls used are a steering input § and acceleration a.

Definition 2. (Vehicle Geometry)

For describing the vehicle geometry we use an elongated hexagon for the car shape projected on the z1 — 2z
ground plane. Nine vertices are placed on the hexagon corners and side and backward face bisectors. The
sensor for the car is placed at its center. The corresponding selection functions Q; (7 =0,...,9) are defined
as Qj(q(t)) = (p) cos ¢ — phsin g + z1(t), pl sin ¢ + phsin ¢ + 29(t))7 if (p],ph) are coordinates of the point
when the car state is (0,0,0,0)T.

For solving the free end time optimal control problem in (8), we use a time scaling input as a decision
variable along with time scaled vehicle dynamics. The continuous time problem is converted to discrete
time using a multiple shooting approach with RK4 integration of step-size: 0.1.

The control and state bounds imposed were Upo, = {(—1, —1)T < u < (1,1)T}, Xpos := {(—00, —00, —00,
z < (400, +00, +00,4)} and tsqre = 0.05 seconds with ks = 0.4, kgee = 5.

On an Intel Core i7, 2.8 GHz processor using an interior point solver (ipopt) the average solve times
for the algorithms were as follows: Manifold Learning: 200 ms, free end 4—phase time optimal trajectory
generation: 34.9 sec and the free end time 3—phase path following MPC: 754 ms. Note also that the
longer solve times for the MPC and optimal trajectory generation are to be expected as we are solving a

IN

multiphase, free end time optimal control problem, which is typically computationally expensive compared
to a trajectory tracking like approach. Faster implementation schemes thus need to be explored to make
the MPC controller compatible for real time implementation.

5 Conclusion

A novel manifold learning approach was presented to learn representations of complex and dynamic obstacle
environments and to provide computationally tractable constraints for optimal control algorithms. The use
of the manifold constraints for obstacle detection and avoidance was demonstrated with three variants of
optimal control problems; a dynamic programming approach for corridor planning, an optimal trajectory
generation problem and a nonlinear MPC problem for path following. The three variants were deployed to
drive a vehicle in a car parking scenario in presence of static and dynamic obstacles. Recursive feasibility
of the MPC under semi-cooperative obstacle movements was shown. MPC schemes taking into account
obstacle speed and movement plan or adversarial obstacles remains a subject for future investigation and
was not covered in this work.

References

[1] A. Liniger, A. Domahidi, and M. Morari, “Optimization-Based Autonomous Racing of 1:43 Scale RC
Cars,” Optimal Control Applications and Methods, vol. 36, no. 5, p. 628 — 647, Jul. 2014.

[2] A. T. Rashid, A. A. Ali, M. Frasca, and L. Fortuna, “Path planning with obstacle avoidance based on
visibility binary tree algorithm,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1440 — 1449,
2013.

[3] D. Connell and H. M. La, “Dynamic path planning and replanning for mobile robots using rrt,” arXiv
preprint arXiw:1704.04585, 2017.

[4] J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “A nonlinear model predictive control algorithm
for obstacle avoidance in autonomous ground vehicles within unknown environments,” Army Tank
Automotive Research Development and Engineering Center Warren MI, Tech. Rep., 2015.

[5] M. G. Plessen, D. Bernardini, H. Esen, and A. Bemporad, “Spatial-based predictive control and geo-
metric corridor planning for adaptive cruise control coupled with obstacle avoidance,” IEEE Trans. on
Control Systems Technology, vol. 26, no. 1, pp. 38-50, Jan 2018.

[6] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli, and M. Diehl, “An auto-generated
nonlinear mpc algorithm for real-time obstacle avoidance of ground vehicles,” in 2013 European Control
Conf. (ECC), July 2013, pp. 4136-4141.

[7] T. Mercy, W. V. Loock, and G. Pipeleers, “Real-time motion planning in the presence of moving
obstacles,” in 2016 European Control Conf. (ECC), June 2016, pp. 1586-1591.

[8] Salmah, Sutrisno, E. Joelianto, A. Budiyono, I. E. Wijayanti, and N. Y. Megawati, “Model predictive
control for obstacle avoidance as hybrid systems of small scale helicopter,” in 2013 3rd International
Conf. on Instrumentation Control and Automation (ICA), Aug 2013, pp. 127-132.

[9] S. M. Erlien, S. Fujita, and J. C. Gerdes, “Shared steering control using safe envelopes for obstacle
avoidance and vehicle stability,” IEEE Trans. on Intelligent Transportation Systems, vol. 17, no. 2, pp.
441-451, Feb 2016.

[10] A. Bemporad and C. Rocchi, “Decentralized hybrid model predictive control of a formation of un-
manned aerial vehicles,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 11900 — 11906, 2011, 18th
IFAC World Congress.

[11]

A. Bemporad, C. Pascucci, and C. Rocchi, “Hierarchical and hybrid model predictive control of quad-
copter air vehicles,” IFAC Proceedings Volumes, vol. 42, no. 17, pp. 14 — 19, 2009, 3rd IFAC Conf. on
Analysis and Design of Hybrid Systems.

J.-H. Chuang, “Potential-based modeling of three-dimensional workspace for obstacle avoidance,” IEEE
Trans. on Robotics and Automation, vol. 14, no. 5, pp. 778-785, Oct 1998.

T. Paul, T. R. Krogstad, and J. T. Gravdahl, “Uav formation flight using 3d potential field,” in 2008
16th Mediterranean Conf. on Control and Automation, June 2008, pp. 1240-1245.

T. Schouwenaars, B. D. Moor, E. Feron, and J. How, “Mixed integer programming for multi-vehicle
path planning,” in 2001 European Control Conf. (ECC), Sept 2001, pp. 2603-2608.

J. Miura, “Support vector path planning,” in 2006 IEEE/RSJ International Conf. on Intelligent Robots
and Systems, Oct 2006, pp. 2894—2899.

N. Morales, J. Toledo, and L. Acosta, “Path planning using a multiclass support vector machine,”
Applied Soft Computing, vol. 43, pp. 498 — 509, 2016.

H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-end learning of driving models from large-scale video
datasets,” CoRR, vol. abs/1612.01079, 2016.

M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort,
U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-driving cars,”
CoRR, vol. abs/1604.07316, 2016.

L. Caltagirone, M. Bellone, L. Svensson, and M. Wahde, “Simultaneous perception and path generation
using fully convolutional neural networks,” CoRR, vol. abs/1703.08987, 2017.

M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner, L. D. Jackel, and U. Muller,
“Explaining how a deep neural network trained with end-to-end learning steers a car,” CoRR, vol.
abs/1704.07911, 2017.

A. Domokos, J. M. Ingram, and M. M. Marsh, “Projections onto closed convex sets in hilbert spaces,”
Acta Mathematica Hungarica, vol. 152, no. 1, pp. 114-129, Jun 2017.

70 70

60 60 4
50| 50|
40 40
E 304 E 304
& &
20 4 204
10 10 4
04 04
—10 —10
-20 60 -20 60
70 70
60 | 60 |
50 4 50 4
40 4 40 4
i 304 i 304
N N
20 4 204
10 A 10 A
04 04
—-10 T T T T v T y —-10 T T T T v T y
-20 -10 0 10 20 30 40 50 60 —-20 -10 0 10 20 30 40 50 60
21 [m] 21 [m]
(c) Car reversing to avoid obstacle (d) Space found after obstacle moved forward
70 70
60 60 4
50 4 50 4
40 4 40 4
E 304 E 304
& &
20 4 20 4
10 A 10 A
01— 01—
—10 ; T ; T : . y —10 ; T ; T : . :
-20 -10 0 10 20 30 40 50 60 —-20 -10 0 10 20 30 40 50 60
z1 [m] z1 [m]
(e) Transition into the reverse parking position (f) Executing the reverse parking

Figure 5: Path Following MPC with Dynamic Obstacles (M., (¢, in bold black, unused manifolds in faded

black, sensor data as red point cloud, g in cyan, q;eb];(t) in dashed pink, genq in dashed black, ¢(t) in red,

qref as black dotted line)

