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Abstract

Neural networks are increasingly used in complex (data-driven) simulations as surrogates
or for accelerating the computation of classical surrogates. In many applications physical
constraints, such as mass or energy conservation, must be satis�ed to obtain reliable results.
However, standard machine learning algorithms are generally not tailored to respect such
constraints.
We propose two di�erent strategies to generate constraint-aware neural networks. We test
their performance in the context of front-capturing schemes for strongly nonlinear wave
motion in compressible �uid �ow. Precisely, in this context so-called Riemann problems have
to be solved as surrogates. Their solution describes the local dynamics of the captured wave
front in numerical simulations. Three model problems are considered: a cubic �ux model
problem, an isothermal two-phase �ow model, and the Euler equations. We demonstrate that
a decrease in the constraint deviation correlates with low discretization errors for all model
problems, in addition to the structural advantage of ful�lling the constraint.

1. Introduction

Machine-learned (surrogate) models have gained great popularity in various �elds of research
and application, particularly in the context of dynamical systems [3, 28, 2] and partial di�erential
equations [15, 38, 18, 36, 25, 31]. Most physical systems are subject to secondary or inferred
constraints, such as conservation of mass and energy for inviscid �ows, satisfaction of maximum
principles or the Rankine–Hugoniot conditions in the context of hyperbolic partial di�erential
equations. Thus, it becomes crucial that the surrogate models satisfy such constraints to faithfully
represent the physical behavior of the underlying system.

Some advances have been made to develop constraint-aware methods using traditional ma-
chine learning algorithms, such as positivity preservation of output variables [9], or generating
divergence-free vector �elds [30]. With the growing capabilities of deep learning [21] it is highly
interesting to develop methods that are applicable for neural networks. Some constraints, like
bounded output variables are trivially accomplished by choosing an appropriate activation func-
tion in the output layer (refer to Section 3). On the other hand, more complex constraints are
still an open challenge. In recent years there have been some e�orts to resolve this problem.
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In [22] unconstrained neural networks are combined with an optimization algorithm during
test time to resolve constraints in the context of parsing problems. A probabilistic approach to
a�ne-linear constraints was proposed in [34]. In [27] the performance of neural networks that
resolve constraints exactly was compared to networks that satisfy them only approximately.

We are convinced that the design of constraint-aware machine learning tools depends crucially on
the underlying mathematical model and the chosen discretization method. In this contribution we
focus on the seminal wave-tracking problem in compressible �uid �ow governed by hyperbolic
conservation laws. More speci�cally, we focus on learning Riemann solvers for hydrodynamical
interfaces, while taking into account the conservation of mass and momentum. Computing
Riemann solutions is the key operation that has to be performed many times in front-capturing
schemes.
Up to our knowledge nothing has been done on constraint-aware learning methods in the �eld of
conservation laws and their discretization techniques.

The rest of the paper is structured as follows: In Section 2, we present the problem description
and a general system of conservation laws which will be our primary model problem. A brief
summary of neural networks is given in Section 3, with a speci�c focus on multilayer perceptrons.
In Section 4 two constraint-aware learning methods are presented. The �rst method (CRes) is an
analytic approach based on the form of the constraint and the underlying equations. The second
method (CAL) is more general, as the constraint is added as a penalty term during the training
process. Three case study model problems are described in Section 5, forming the foundation of
the numerical performance tests carried out in Section 7. The technical details of the algorithms
involved in the tests, such as the front-capturing �nite volume scheme, are given in the preceding
Section 6. Finally, Section 8 is dedicated to the concluding discussion.

2. Problem Description

We consider the Cauchy problem for a generic hyperbolic system of conservation laws in one
space dimension

∂t u + ∂x f (u ) = 0 in R× (0, tend),

u ( · , 0) =u 0 in R,
(1)

where u : R× [0, tend)→U is unknown, with the open set U ⊂ Rm denoting the state space
of the system. By f ∈ C 1(U ,Rm ) we denote the given �ux function. It is well known that for
nonlinear �ux functions f classical solutions may break down after a �nite time, even for smooth
initial datum u 0 : R→ U . Therefore the principle of weak solvability is applied to allow for
discontinuous solutions.
A function u ∈ L∞(R× [0, tend),U ) is called a weak solution of the Cauchy problem (1) with
initial data u 0 ∈ L∞(R,U ) if

∫ tend

0

∫

R

�

u∂tψ+ f (u )∂xψ
�

dx dt =−
∫

R
ψ(x , 0)u 0(x ) dx (2)

holds for all compactly supported test functions ψ ∈C∞0 (R× [0, tend)).

However, weak solutions (2) are not unique, and require the prescription of additional criteria to
single out a physically relevant solution. Alternatively, a unique weak solution can be selected as
the limit of solutions of versions of (2) that account for microscopic e�ects. Classical examples
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include dissipative (viscous, di�use–dispersive, relaxation) approximations, kinetic approaches
via Boltzmann hierarchies or approximation by averaged trajectories of molecular dynamics.

In the following, we assume that for u− ∈P− and u+ ∈P+ chosen from some suitable subsets
P−,P+ ⊂U , the unique weak solution to the Riemann initial data

u 0(x ) =

¨

u− for x < 0,

u+ for x > 0,
(3)

exists. The solution of (3) typically consists of a composition of elementary waves, such as
shocks, contacts and rarefactions. Out of them, we are interested in the dynamics of one speci�c,
discontinuous wave of interest, which may represent a phase boundary, a �uid interface, etc. We
refer to Figure 1 for an illustration of a typical wave pattern including a wave of interest. The
wave of interest is represented by its two adjacent states u ∗− ∈P−, u ∗+ ∈P+ and the wave speed
s ∈R. The tuple (u ∗−, u ∗+, s ) corresponds to a traveling wave

u ∗(x , t ) =

¨

u ∗− for x < s t ,

u ∗+ for x > s t ,
(4)

which is itself a weak solution of (1) with Riemann datum consisting of the two adjacent states.
The wave of interest plays a signi�cant role in the dynamics of (1). Consequently, it is important
to resolve it accurately in numerical simulations. This can be achieved by using front-tracking
algorithms such as the ghost-�uid method [11, 10], or front-capturing algorithms such as moving
mesh methods [6]. For each of these numerical algorithms it is essential to describe the dynamics
of the wave of interest precisely. In this work we will focus on a moving mesh algorithm, although
the same set of issues is relevant to alternative methods.

s

x

t

u− u+

u ∗− u ∗+

Figure 1: Example of a Riemann solution consisting of (from left to right) a rarefaction wave, a
contact discontinuity and a shock wave. The wave of interest may be in this case the
contact discontinuity.

The moving-mesh algorithm approximates the location of the wave of interest as an interface
between two (moving) cells. This approximation requires the wave speed s and the trace states u ∗−,
u ∗+ at the wave front, which are usually obtained via a Riemann solver for (1) with the Riemann
initial data (3) (see Figure 1). Such Riemann solvers can be seen as mappings of the type

R :P−×P+→Rm ×Rm ×R : (u−, u+) 7→ (u ∗−, u ∗+, s ). (5)

The tuples (u ∗−, u ∗+, s ) returned by (5) de�ne a traveling wave (4) which ful�lls the Rankine–
Hugoniot condition

s (u ∗−−u ∗+) = f (u ∗−)− f (u ∗+). (6)
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However, (6) might not hold if the solution of the Riemann problem (3) is computed from dissipative
approximations, such as the Navier–Stokes equations or particle simulations [26]. Especially
in the former case, the solution might be corrupted by noise, due to �uctuations in the particle
distribution, and therefore (6) might not hold true.
Furthermore, the computational cost associated with using accurate Riemann solvers can be quite
high, particularly when applied in a multidimensional numerical tracking scheme, whereR needs
to be evaluated across several mesh interfaces describing the wave of interest, and at each time
step.

To address the high computational costs, it is attractive to build reduced surrogate models of the
Riemann solver (5) by employing machine learning algorithms such as support vector machines
[20] or arti�cial neural networks.

However, such surrogate models are generally not constructed with the intention to satisfy crucial
physical constraints like (6) even if the original solver satis�es them. In the present work, we
investigate methods for building surrogate models that incorporate knowledge about physical
constraints of the underlying system, such as mass or momentum conservation. To be more
speci�c, we develop methods for building a reliable surrogate Riemann solver, based on neural
networks, that incorporates conservation properties such as (6) and demonstrate their use in
actual numerical simulations.
Refer to Figure 2 to get a graphical overview of the interaction between the di�erent algorithmic
components.

Γ (t )

P−

P+

Computational
Domain

Riemann Solver

s

x

t

u− u+

u ∗− u ∗+

Input:
(u−, u+)

Response:
(s , u ∗−, u ∗+)

Sa
m
pl
es

Sharp interface
front capturing g−(u−, u+) = f (u ∗−)− s u ∗−

g+(u−, u+) = f (u ∗+)− s u ∗+

Numerical fluxes

Neural Network

Figure 2: Graphical illustration showing how the neural network, the Riemann solver and the
front capturing scheme interact.

3. Neural Networks

We are interested in approximating a function of the form

F : Rdin →Rdout , (7)
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using arti�cial neural networks. In particular, we consider a speci�c feed-forward network archi-
tecture known as multilayer perceptrons (MLPs), in which the basic computing units (neurons)
are stacked in layers. The �rst layer is called the input layer, and has the sole purpose of providing
an input signal to the network. The last layer is the output layer, while all the intermediate layers
are known as the hidden layers.

In machine learning terminology, an MLP of depth K corresponds to a network with an input
layer, K −1 hidden layers and an output layer. Let us denote by Nl the number of neurons in the
l -th layer, for l = 0, ..., K . Each layer of the network (barring the input layer), receives the output
z l−1 ∈RNl−1 from the previous layer and performs an a�ne linear transformation of the form

L l (z l−1) :=w l z l−1+b l ,

where w l and b l are respectively the weights and biases associated with the layer l . The
transformed vector is then acted upon (component-wise) by a non-linear activation function
φact to form the input vector z l for the next layer. The activation function prevents the neural
network from collapsing into a single a�ne linear transformation. Several choices for φact have
been proposed, each with its own advantages [13, 16, 35]. In this work, we use the ELU activation
function [7]

φelu
act (z ) =

¨

exp(z )−1 for z < 0,

z for z ≥ 0.

Furthermore, we set the activation function after the output layer to be the identity function. To
ensure consistency, we set N0 = din, NK = dout and z 0 = x . Thus, we have the neural network
representation

Fθ (x ) =
�

L K ◦φact ◦L K −1 ◦ ... ◦φact ◦L 1
�

(x ), (8)

where θ = {w l ,b l }Kl=1 is the set of trainable parameters of the network. The schematic of an
MLP with depth 2 is shown in Figure 3.
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Figure 3: Sketch of a feed forward neural network with two hidden layers.
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The training of the neural network involves �nding the parameters θ to suitably approximate (7).
In the framework of supervised learning, this is achieved by choosing a set of labeled data

D =
�

(x i , y i ) : y i = F (x i )
	

,

and choosing a suitable loss function to measure the discrepancy between the true label and
network output. A popular choice for problems of function regression is the mean-squared error
loss function

Lmse(Fθ , D ) =
1

|D |

∑

(x ,y )∈D



y − Fθ (x )




2
. (9)

The optimal value of θ minimizes (9).

The non-linear and non-convex dependency of the loss-function with respect to θ makes the
determination of an exact optimal θ intractable. Thus, it is customary to use an iterative algorithm,
such as stochastic gradient descent, to obtain an approximation to this value. Each step of the
optimization scheme is usually performed for several data points — a so-called batch — at once to
approximate the gradients. In this context, one iteration over the whole training data set Dtrain is
called an epoch. We refer the interested readers to [16, 39] for a detailed discussion on the various
iterative optimizers used in practice.

A typical problem faced while training neural networks involves over�tting the training data. This
can severely deteriorate the networks capacity to generalize, i.e., accurately predict the output for
data points not utilized while training. One strategy to circumvent this issue involves the manual
termination of the iterative optimization process based on cross-validation. More precisely, the
data set D is split into a training set Dtrain and a validation set Dval. The network is trained to
minimize the loss only over Dtrain, while the loss is evaluated on the Dval at the end of each epoch
as an indicator of the generalization error. The training is terminated if the validation loss does
not improve for a pre-decided number of epochs, or the maximum number of epochs is reached.

An alternate strategy to avoid over-�tting involves augmenting the loss-function (9) with a penalty
term on the weights w of the network

Pwd(θ ) :=αwd

K
∑

l=1

|w l |p , (10)

where αwd ≥ 0 is a tunable hyper-parameter that controls the amount of weight decay. Typically,
one chooses p = 1 (to induce sparsity) or p = 2 as the exponent in (10). In this work, weight
decay is observed for all layers except the output layer. Other methods to avoid over-�tting are
described in [16].
Remark (Loss scaling). In many machine learning applications it is important to normalize the
output labels, as well as the input features. However, as we are interested in ful�lling constraints,
label scaling would introduce other technical inconveniences. We therefore employ an adapted
mean squared loss function for the training of the neural networks. Thus, we �rst compute the
vector of reciprocal empirical standard deviations σ−1

D = (
1
σ1,D

, . . . , 1
σdout,D

) of the labels (y i )i=1,...,N

in the data set D . The scaled mean squared loss takes the form

Lsmse(Fθ , D ) =
1

|D |

∑

(x ,y )∈D



σ−1
D · (y − Fθ (x ))





2
.
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This ensures that that an equal importance is given to the error corresponding to each component
of the output vector.
In the following, we perform input feature normalization and loss scaling without explicitly
referring to it.

4. Constraint-Aware Learning

To construct a machine-learned surrogate Riemann solver, as described in Section 2, we seek to
train a neural network that approximates the functionR in (5) with input values

x := (u−, u+) ∈P−×P+ =:X

and output values

y := (u ∗−, u ∗+, s ) ∈Rm ×Rm ×R=:Y .

Our goal is to build a surrogate model Fθ forR that is constraint-aware, i.e. during the construction
of Fθ (physical) constraints are taken into account.
In this work we restrict ourselves to algebraic constraints described by the functionΦ:X×Y →R+.
An input–output tuple (x , y ) ∈X ×Y is said to ful�l the constraint Φ if we have

Φ(x , y ) = 0. (11)

Constraints of this form can describe the underlying physical constraints of the model, such as
mass conservation. More speci�cally, the Rankine–Hugoniot condition (6) can be written in the
form (11) using the constraint function

ΦRH(x , y ) =ΦRH

�

(u−, u+), (u
∗
−, u ∗+, s )

�

:=


s (u ∗−−u ∗+)−
�

f (u ∗−)− f (u ∗+)
�



1
. (12)

A surrogate model Fθ , as in (8), ful�lls a constraint exactly if

Φ
�

x , Fθ (x )
�

= 0 for all x ∈X .

Then, an ideal surrogate model Fθ would be a solution of the optimization problem

minimize Lmse(Fθ , D ) for all D ⊂X ×Y (13)
subject to Φ

�

x , Fθ (x )
�

= 0 for all x ∈X .

This is however often a strong condition on Fθ , due to the complexity of the constraint function
Φ. In practice it might su�ce to keep the constraint deviation small, i.e. by considering a relaxed
version of the optimization problem (13) for a tolerance ε > 0, i.e.

minimize Lmse(Fθ , D ) for all D ⊂X ×Y (14)
subject to

�

�Φ
�

x , Fθ (x )
��

�≤ ε for all x ∈X .

In the next two subsections we present two approaches to build constraint-aware surrogate models.
The �rst approach satis�es constraints exactly and corresponds to the optimization problem (13).
The second approach is a relaxed method which only penalizes deviations from the constraints,
and is an example of optimization problem (14), albeit without giving explicit estimates for the
tolerance parameter ε.
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4.1. Constraint-resolving Layer Method (CRes)

If it is possible to resolve the constraint equation (11) with respect to e.g. components of the
output data, one can infer even more knowledge about the system. Let us assume that the output
variable y can be written as a vector of the form y ∼= (z ,q ) ∈Z ×Q ∼=Y such that there exists a
function Ψ :X ×Z →Q ful�lling

Φ
�

x , (z ,Ψ(x , z ))
�

= 0 for all x ∈X , z ∈Z . (15)

Using the function Ψ , we can add a new layer to the network that performs the mapping de�ned
by Ψ — see Figure 4. More formally, the neural network mapping Fθ , as in (8), is composed of a
sub-network Gθ :X →Z and Ψ, i.e.

Fθ (x ) :=
�

Gθ (x ),Ψ(x ,Gθ (x ))
�

. (16)

Hence, Φ(x , Fθ (x )) = 0 for all x ∈X , and Fθ resolves the constraint exactly. Accordingly, we call
this construction the constraint-resolving layer method (CRes), if Fθ is of the form (16). We note
that with the output layer depending on the input x , we have a slightly modi�ed version of MLPs
compared to Section 3. For explicit examples in the framework of hyperbolic conservation laws
and Rankine–Hugoniot conditions we refer to Section 5.

The advantage of the constraint-resolving layer method, compared to simply computing q =
Ψ(x , z ) as a post-processing step, is that we can use all information from the data set during
the training process, while incorporating further knowledge about the system. The drawback,
however, is that the constraint (11) has to be handled analytically and must be uniquely solvable.
Therefore a deeper understanding of the model and constraint is needed.

If the constraint can not be directly expressed, condition (15) on Ψ can be loosened, by demanding
that Ψ solves (15) only approximately — see Section 5.2 for an example where Ψ is expressing the
constraint (11) approximately.

x 1

x 2

y 2

y 3

y 1Ψ

Hidden
layers

Input
layer

Output
layer

Constraint
layer

Figure 4: A sketch of the structure of a neural network that resolves the constraint analytically.
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4.2. Constraint-adapted Loss Method (CAL)

The second, more general method to build constraint-aware neural networks is based on the idea
of penalizing deviations from the constraint (11) during the training procedure (as mentioned in
[27, 22]) . To this end, we introduce the constraint loss function

LΦ(Fθ , D ) =
1

|D |

∑

(x , · )∈D

�

�Φ(x , Fθ (x ))
�

�. (17)

Obviously, LΦ(Fθ , D ) = 0 holds if Fθ ful�lls the constraint Φ(x , Fθ (x )) = 0 on the data set D .
Combined with the mean-squared error loss we obtain the constraint-adapted loss function

Lmse,Φ(Fθ , D ) =
1

|D |

∑

(x ,y )∈D

�



y − Fθ (x )




2
+λ

�

�Φ(x , Fθ (x ))
�

�

�

, (18)

where λ> 0 is an adjustable constraint penalty parameter.
Neural networks that are trained with the loss function (18) are said to be generated with the
constraint-adapted loss method (CAL). The advantage of building surrogate models with this
method is that it is straightforward to apply and independent of the underlying model, i.e.,
no deeper knowledge about the constraint is needed (as opposed to the CRes-method). The
disadvantage, however, is that it only considers the constraint in a relaxed manner, i.e. the
deviation from the constraint is reduced but the constraint is not guaranteed to be satis�ed
exactly.

5. Case Study Model Problems

In this section we introduce three di�erent models to which we apply the constraint-aware
learning methods (CRes) and (CAL) from Section 4.
The �rst model problem is a scalar conservation law with a cubic �ux, which will serve as a toy
problem to test the proposed constraint-aware methods. The next two models are more realistic
test cases and comprise the isothermal Euler equations for two-phase �ow and the Euler equations
for an ideal gas.

Although the constraint-aware learning methods can be applied for constraints depending on
both the input and output variables x and y , the model constraints considered below are of the
form Φ=Φ(y ).

5.1. Cubic Flux Model: Undercompressive Wave

In this section we consider the cubic �ux model

∂t u + ∂x (u
3) = 0 ⇔ ∂t u + ∂x f (u ) = 0, (19)

for u : R× [0, tend)→U withU =R. This model can be seen as a simpli�ed prototype model for
phase transition dynamics [5].
As the �ux is non-convex and has an in�ection point at u = 0 (undercompressive) shock waves
may occur [23], and can be interpreted as phase boundaries. These waves can only occur at jumps
between the two phases P− := {u > 0} and P+ := {u < 0}.
The solution to the Riemann problem (3) for (19), with u∓ ∈P∓ may consist of two elementary
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waves. One of these waves is an undercompressive wave jumping from u∗− ∈ P− to u∗+ ∈ P+,
which is the wave of interest for this particular model problem — see Figure 5 for a depiction of an
exemplary wave pattern.
The uniqueness of the Riemann solution is ensured by requiring that the solution obeys an
additional algebraic relation, the so-called kinetic relation [17]. A particularly simple choice for a
kinetic relation is ϕ(u ) = 0 with

ϕ :P− ∪{0}→P+ ∪{0} : u 7→ −κu , (20)

with κ ∈ [0.5, 1]. To solve the Riemann problem (3) with u∓ ∈P∓ and to obtain the corresponding
states (u∗−, u∗+, s ) for the wave of interest, we employ the exact Riemann solver described in [4] —
see Appendix A. As in (5), the Riemann solver de�nes a functionRcubic :P−×P+→P−×P+×R:

Rcubic(u−, u+) = (u
∗
−, u∗+, s )

=

¨
�

u−, u+, s (u−, u+)
�

for u+ ∈
�

(κ−1)u−, 0
�

,
�

u−, ϕ(u−), s (u−,ϕ(u−))
�

for u+ < (κ−1)u−,

(21)

where s is the wave speed and u∗−, u∗+ the adjacent states of the undercompressive wave when
u− ∈P− and u+ ∈P+. Furthermore, s (u−, u+) is de�ned as

s (u+, u−) :=







f (u+)− f (u−)
u+−u−

for u+ 6= u−,

f ′(u+) if u+ = u−.

The wave de�ned by (u∗−, u∗+, s ) ful�lls the Rankine–Hugoniot condition

s (u∗−−u∗+) = f (u∗−)− f (u∗+), (22)

which will be the constraint that a surrogate model for (21) should satisfy. As in (12) the constraint
target function Φcubic : R×R×R, corresponding to (22), is given by

Φcubic(u
∗
−, u∗+, s ) :=

�

�s · (u∗−−u∗+)− ( f (u
∗
−)− f (u∗+))

�

�= 0. (23)

Our goal is to learn a model to approximate the Riemann solverRcubic while trying to uphold
the constraint Φcubic(u∗−, u∗+, s ) = 0. We are in a situation where the mappingRcubic respects the
constraint (23) and therefore we have to ensure that the constraint surrogate model satis�es it as
well.

As (19) is a scalar law, we can resolve the constraint (23) by computing the correct wave speed s
for a jump from u∗− to u∗+ from (6). The resolving function Ψ (see Section 4.1) is therefore given
by

Ψcubic(u
∗
+, u∗−) = s (u∗−, u∗+) :=







f (u∗−)− f (u∗+)

u∗−−u∗+
for u∗+ 6= u∗−,

f ′(u∗+) if u∗+ = u∗−.
(24)
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s
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t

u− = u∗− ∈P−

u
∗ +
∈
P +

u+

Figure 5: Example of a Riemann solution consisting of a rarefaction wave followed by an under-
compressive shock wave. The wave of interest is the undercompressive wave.

5.2. Isothermal Two-Phase Flow: Phase Boundary

We consider the dynamics of a compressible, inviscid, homogeneous �uid that occurs in liquid
or vapor phase. At constant temperature and in one spatial dimension, the �uid �ow can be
described by the isothermal Euler equations

∂t

�

ρ
m

�

+ ∂x

�

m
1
ρm 2+p (ρ)

�

= 0 ⇔ ∂t u + ∂x f (u ) = 0, (25)

where the unknowns ρ and m denote the �uid density and the �uid momentum. In the context
of this model we will write u = (ρ, m ) for the conservative variables. To close (25) we consider
the van der Waals equation of state

p (ρ) =
ρRTref

1− bρ
−aρ2, (26)

with the speci�c gas constant R = 8
3 , the reference temperature Tref = 0.85 and parameters a = 3

and b = 1
3 . For this choice the critical temperature is computed as Tcrit = 1. For any reference

temperature below the critical temperature the van der Waals pressure becomes non-monotone,
see Figure 6. We denote the interval where the pressure decreases, i.e. p ′(ρ)< 0 for all ρ ∈Aspin,
byAspin := (ρmax

+ ,ρmin
− ). In this so-called spinodal regionAspin the system changes its character

and becomes elliptic instead of hyperbolic. Thus, we want to avoid values in the spinodal region
and de�ne the admissible set of densities by A2p := (0, b ) \ (ρmax

+ ,ρmin
− ). The admissible set

A2p, where the system is hyperbolic, can be split into the liquid phaseA− := (ρmin
− , b ) and the

vapor phaseA+ := (0,ρmax
+ ). Thus, the corresponding domains in the state space are de�ned by

P− :=A−×R and P+ :=A+×R.

We consider the Riemann problem (3) with u− ∈ P− and u+ ∈ P+. In this context the wave of
interest is the (discontinuous) elementary wave that jumps from a state u ∗− ∈P−, to u ∗+ ∈P+, i.e.
the boundary between the two phases. A typical Riemann solution of (3) is sketched in Figure 7
.

The Rankine–Hugoniot conditions (6) for the system (25) are of the form
��

m − sρ
��

= 0,
��

1
ρm ·m +p − s m

��

= 0,
(27)
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Figure 6: Graph of the van der Waals pressure.

with [[ · ]] := [ · ]−− [ · ]+ denoting the jump operator. To obtain unique weak solution we have to
impose an additional entropy criterion.
The entropy inequality for (25) reads in distributional form

∂t E (ρ, m ) + ∂x

�

(E (ρ, m ) +p (ρ))v
�

≤ 0, (28)

with the mathematical entropy function E (ρ, m ) :=ρµ(ρ)+m 2

2ρ . Here, µ(ρ) :=−RTref ln(ρ−1−b )−
aρ denotes the corresponding speci�c Helmholtz free energy for the van der Waals pressure (26).
However, due to the (global) non-convexity of the pressure function (26), the entropy inequality
(28) is insu�cient for selecting unique entropy solutions — see [1, 42, 23]. Nevertheless, the
well-posedness of the problem can be restored by employing another entropy criterion, such as
Liu’s entropy criterion [24]. Then, the Riemann problem (3) with u− ∈P− and u+ ∈P+ has a
unique solution [14], which is consistent with the entropy inequality (28) — see [8].

To solve the Riemann problem (3) for (25) with u− ∈ P− and u+ ∈ P+, we apply the Riemann
solver described in [37] (using kinetic relation K7 in [37] corresponding to Liu’s entropy criterion
and neglecting surface tension e�ects). The Riemann solver yields the mapping

R2p :P−×P+→R2×R2×R : ((ρ−, m−), (ρ+, m+)) 7→ ((ρ∗−, m∗
−), (ρ

∗
+, m∗

+), s ),

by means of extracting the phase boundary wave states u ∗− := (ρ∗−, m∗
−), u ∗+ := (ρ∗+, m∗

+) and
speed s from the Riemann solution for the Riemann initial condition (3) with u− := (ρ−, m−) and
u+ := (ρ+, m+).

In this setting we seek to build a learned model that approximatesR2p while trying to ful�ll the
Rankine–Hugoniot conditions (27). Thus, the constraint target function takes the form

Φ2p(ρ
∗
−, m∗

−,ρ∗+, m∗
+, s ) :=

�

�m∗
−−m∗

+− s (ρ∗−−ρ
∗
+)
�

� (29)
+
�

�

1
ρ∗−

m∗
− ·m

∗
−+p ∗−−

1
ρ∗+

m∗
+ ·m

∗
+−p ∗+− s (m∗

−−m∗
+)
�

�.

Due to the highly nonlinear nature of the constraint (29), we refrain from the analytic resolution of
the constraint as described in Section 4.1. Instead, we construct an approximation of the function
Ψ. By multiplying the general Rankine–Hugoniot condition (6) with u ∗−−u ∗+ we arrive at the
least squares approximation for s given f (u ∗−)− f (u ∗+) and u ∗−−u ∗+:

es = es (u ∗−, u ∗+) :=

�

f (u ∗−)− f (u ∗+)
�

· (u ∗−−u ∗+)

‖u ∗−−u ∗+‖2
2

, (30)
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for u ∗− 6=u ∗+. We use formula (30) to de�ne the approximate resolving function

Ψ2p(u
∗
−, u ∗+) := es (u

∗
−, u ∗+), (31)

which will be used in the resolving layer method — see Section 4.1. Clearly, (30) is only a necessary
condition for the constraint target function Φ2p to ful�ll Φ2p(ρ∗−, m∗

−,ρ∗+, m∗
+, s ) = 0.

s

x

t

u− u+

u ∗− ∈P
− u

∗
+
∈P
+

Figure 7: Example of a Riemann solution consisting of three shock waves. The wave of interest is
the nonclassical shock wave representing the phase boundary.

5.3. Euler Equations: Contact Discontinuity

Neglecting viscosity and heat conduction, a compressible �uid �ow is described in one spatial
dimension by the Euler equations

∂t





ρ
m
E



+ ∂x





m
1
ρm 2+p (ρ,ε)
(E +p (ρ,ε))mρ



= 0 ⇔ ∂t u + ∂x f (u ) = 0, (32)

with �uid density ρ, momentum m =ρv and total energy density E as the unknowns. We will
write u = (ρ, m , E ) for the vector of the conservative variables. The total energy density can be
written as E =ρε+ 1

2ρ |m |2, where ε is the speci�c internal energy of the �uid. We consider an
ideal gas, and the pressure function takes the form

p (ρ,ε) := (γ−1)ρε, (33)

with heat capacity ratio γ= 1.4. In particular, by using (33) the system is hyperbolic and therefore
a model problem for (1).

We consider the Cauchy problem for (32) with Riemann initial data (3) with states u∓ ∈ P∓ ⊂
R+ ×R×R+ that do not produce vacuum, i.e. those pairs that ful�ll the pressure positivity
condition

2
γ−1

Ç

γp−
ρ−
+ 2
γ−1

Ç

γp+
ρ+
> v+− v−, (34)

see [41] for more details.

In this case, the Riemann solution always consists of three elementary waves one of which is
always corresponding to a contact discontinuity — see Figure 1. The contact discontinuity is
a discontinuous wave belonging to the second characteristic �eld of the �ux function for (32),
which is linearly-degenerate. As such, the entropy dissipation vanishes, and the pressure and
�uid velocity stay constant across the jump. In numerical simulations, contact discontinuities are
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especially prone to numerical di�usion and therefore di�cult to resolve accurately. Consequently,
we focus on the contact discontinuity as the wave of interest for this model problem.

To solve the Riemann problem for (32) we apply the Riemann solver described in [41]. Similar to
the two previous models, we obtain a mapping

REuler :P−×P+→R3×R3×R :
�

(ρ−, m−, E−), (ρ+, m+, E+)
�

7→
�

(ρ∗−, m∗
−, E ∗−), (ρ

∗
+, m∗

+, E ∗+), s
�

,

that provides the speed s of and the states u ∗− := (ρ∗−, m∗
−, E ∗−), u ∗+ := (ρ∗+, m∗

+, E ∗+) on either side of
the contact discontinuity which evolves from Riemann initial data (u−, u+) := ((ρ−, m−, E−), (ρ+, m+, E+)).

The Rankine–Hugoniot jump conditions for (32) are
��

m − sρ
��

= 0,
��

1
ρm ·m +p (ρ,ε)− s m

��

= 0,
��

(E +p (ρ,ε))mρ − s E
��

= 0.

(35)

Again, we want to �nd an constraint–aware approximate model for REuler. In this case, the
constraint target function is

ΦEuler(ρ
∗
−, m∗

−, E ∗−,ρ∗+, m∗
+, E ∗+, s ) (36)

=
�

�m∗
−−m∗

+− s (ρ∗−−ρ
∗
+)
�

�

+
�

�

1
ρ∗−

m∗
− ·m

∗
−+p ∗−−

1
ρ∗+

m∗
+ ·m

∗
+−p ∗+− s (m∗

−−m∗
+)
�

�

+
�

�(E ∗−+p ∗−)
m∗
−
ρ∗−
− (E ∗++p ∗+)

m∗
+
ρ∗+
− s (E ∗−−E ∗+)

�

�,

which corresponds to the mass, momentum and energy conservation of (35).

To construct the resolving layer of the CRes-method, we exploit the fact that the pressure p
and the velocity v are constant across the contact discontinuity. Then, it follows from the
Rankine–Hugoniot conditions (35) that s = v− = v+ and ρ−ε− =ρ+ε+ holds. Consequently, we
can reconstruct the whole set of variables from the quantities ρ−, ρ+, (ρ−ε−) and s . Motivated
by the properties of the wave of interest, we can de�ne the resolving function

ΨEuler(ρ−,ρ−ε−,ρ+, s ) :=
�

ρ−, ρ−s , ρ−ε−+
1
2ρ−s 2, ρ+, ρ−s , ρ−ε−+

1
2ρ+s 2, s

�

(37)
= (ρ−, m−, E−,ρ+, m+, E+, s ).

Figure 8 contains a graphical representation of the resolving layer.

6. Application of Constraint-Aware Learning Methods to Case Study Model
Problems

In this section we provide details on how the constraint-aware learning methods are applied to
the case study model problems of Section 5 and the numerical simulations. First we describe the
data set generation, then the network training, and �nally the numerical discretization scheme.
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ρ−

ρ−ε− =ρ+ε+

ρ+

s = v− = v+

ρ−

ρ−v− =m−

ρ−ε−+
1
2ρ−v 2

− = E−

ρ+

ρ+v+ =m+

ρ+ε++
1
2ρ+v 2

+ = E+

s

Figure 8: Sketch of the constraint resolving layer for the Euler model.

6.1. Data Generation

To generate training data sets Dtrain = {(x i , y i ) : i = 1, . . . , Ntrain} with Ntrain samples, we evaluate
the Riemann solver (5) on input values Xtrain = {x i : i = 1, . . . , Ntrain} with x i = (u−,i , u+,i ) ∈
X . The set Xtrain is generated in a random way for a given bounded domain B ⊂ X using a
variation of Mitchell’s algorithm [29] to generate evenly and randomly distributed points in Rdin .
Evaluation of the input points x i ∈ Xtrain by the Riemann solver (5) yields the output value set
Ytrain = {y i : i = 1, . . . , Ntrain} with y i = (u

∗
−,i , u ∗+,i , si ) =R(u−,i , u+,i ), for i = 1, . . . , Ntrain.

Furthermore, we seek to generate noisy data sets, to simulate Riemann solutions from approximate
models, such as particle simulations. To generate noisy data, we start with computing the empirical
standard deviationσ j over Ytrain for each component j = 1, . . . , dout of the output values y ∈ Ytrain.
Then we introduce a noise level parameter lnoise ≥ 0 and transform the output values y i ∈ Ytrain

as

y i , j 7→ y i , j + lnoiseσ j R ,

where R is an uniformly distributed random variable on [−1, 1]. In this way we can generate
training data sets Dtrain with an arbitrary noise level lnoise.
For the test data sets Dtest, the input data set Xtest consists of a uniform grid over the bounded
domain B ⊂X on which the Riemann solver is evaluated.

6.2. Technical Details of the Network Training

In this section we describe the technical details of the neural network training.
All training was performed withing the neural network framework PyTorch [33]. A tabular
overview of the parameters used for the results presented in Section 7 is given in Table 1.

Before training each network, we standardize the input samples of each data set by subtracting
the mean and dividing by the standard deviation. Then, we randomly split 20% from the initial
training data set to form a validation data set Dval. During the training process, we evaluate the
loss on the validation data set and we will save the network with the best validation loss (over all
epochs) to avoid over�tting. As mentioned in Section 3, we apply `2-weight decay.

For the optimization procedure we use the Adam optimizer [19] with a prescribed learning rate.
The batch size is chosen for each data set as the largest power of 2 such that we have at least 5
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batches. The weights of the networks are initialized by applying the Glorot normal initializer
[12], the bias parameters are initially set to zero.

During the training procedure not-a-number values might be encountered, as for example due
to the arbitrariness of the network output values a division by values close to zero might occur
inside the constraint target function of (18). In case any not-a-number values are encountered
during training, we stop the current epoch, decrease the learning rate and resume training from
the last valid snapshot, with the lowest validation loss that was encountered up to this point. To
further stabilize the scheme, we apply gradient norm clipping [32] with a clip value of 1.

Model problems

Parameter Cubic Two-phase �ow Euler

hidden layers 5 5 7
nodes per hidden layer 20 30 70
learning rate 5×10−4 2×10−4 5×10−5

max epochs 5×104 5×104 2×106

patience Npatience 5×103 5×103 104

weight decay αwd 10−7 10−7 10−9

Table 1: List of parameters used in Section 7.

6.3. Finite Volume Moving Mesh Front Capturing Scheme

To implement the numerical discretization of conservation laws while resolving discontinuous
wave fronts within the mesh, we apply the one-dimensional version of the front-capturing scheme
described in [6]. It is a �nite volume scheme with moving edges, such that the position xΓ (t ) of a
discontinuous wave is always be fully resolved within the mesh. In our case, we seek to keep
track of discontinuous waves that connect regions with values in P− and regions with values in
P+ as illustrated in Figure 9. In the following we present the most relevant parts of the algorithm
— for more details we refer to [6].

The �nite volume method on a time-dependent, one-dimensional mesh for the system (1) is of the
form

u n+1
i =u n

i −
∆t

∆x n
i

�

g n
i+1/2
− g n

i−1/2

�

.

Here, u n
i denotes the i th cell average of the unknown u (x , t ) at the time t n ≥ 0. The time step is

given by ∆t , the i th cell width at time t n is denoted by ∆x n
i > 0. The terms g n

i±1/2
denote the

numerical �uxes. If, at the i th cell, the wave of interest lies on the right-hand side, i.e. u n
i ∈P−

and u n
i+1 ∈P+, the right numerical �ux is given by

g n
i+1/2
= g−(u

n
i , u n

i+1) = f (u ∗−)− s ·u ∗−, with R(u n
i , u n

i+1) = (u
∗
−, u ∗+, s ). (38)

Similarly, if the wave of interest lies on the left-hand side, i.e. u n
i−1 ∈P− and u n

i ∈P+, the left
numerical �ux is

g n
i−1/2
= g+(u

n
i−1, u n

i ) = f (u ∗+)− s ·u ∗+, with R(u n
i−1, u n

i ) = (u
∗
−, u ∗+, s ). (39)
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For all other cell boundaries we apply the Lax–Friedrichs numerical �ux

g n
i+1/2
= gLF

�

u n
i , u n

i+1

�

:= 1
2

�

f
�

u n
i

�

+ f
�

u n
i+1

��

−
αLF

2

�

u n
i+1−u n

i

�

,

with the Lax–Friedrichs parameter αLF > 0.

Note, that we split the numerical �ux at the interface in two parts, one (39) for the P−-domain
and another one (38) for the P+-domain. Nevertheless, it holds that g−(u−, u+) = g+(u−, u+) if
the Rankine–Hugoniot condition (6) is ful�lled.
To compute the numerical �uxes (38), (39) at the interface, we need to evaluate the mapping
R , i.e. solve the Riemann problem for the initial data (u−, u+) and obtain (u ∗−, u ∗+, s ). This can
be expensive for more complex models, and forms our actual motivation to learn a model that
approximates the mapping R . Furthermore, the wave speed s describes the movement of the
interface edge xΓ (t ) that occurs after each time step.

t n+1

t n xi−1 xi x n
Γ

xi+1 xi+2

x n+1
Γ

sP− P+

Figure 9: Sketch of the one-dimensional front capturing scheme following a discontinuous wave
connecting the P−-domain and the P+-domain.

7. Numerical Evaluation of the Constraint-Aware Learning Methods

In this section we test the performance of the constraint-aware learning methods (Section 4). We
split the section in three parts, one for each of the model problems presented in Section 5. In each
part, we �rst study the performance of the constraint-aware neural networks generated with the
CRes- and CAL-method. This includes testing the methods for di�erently-sized data sets and with
regards to the in�uence of noisy data on the resulting networks. Thereafter, we use the resulting
networks for some simulations using the front capturing scheme from Section 6.3 and compare
the results with analytic Riemann solutions.

7.1. Performance Evaluation Procedure

To test the performance of the constraint-aware learning methods, we split the evaluation proce-
dure in two parts. First, we train the networks and test them on an unknown data set. Secondly,
we check the performance of the networks in simulations.

To train the networks, we generate the training data sets Dtrain ⊂X ×Y with di�erent number
of samples Ntrain = |D | ∈N and noise levels lnoise ≥ 0. For each data set we train three types of
networks

• standard MLP ignoring constraint-preserving mechanisms,

• MLP with a constraint-resolving layer (see Section 4.1),
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• MLP trained with a constraint-adapted loss for di�erent values for the constraint penalty
parameter λ (see Section 4.2).

As the training process is not deterministic, we train several instances for every type of network
and test all of them. After training, we evaluate the mean-squared error and constraint deviation
on a separate test data set Dtest ⊂X ×Y . This will be the �nal benchmark for the networks, as
the test data is unknown and was never seen during the training process.

In the second part of the evaluation, the neural networks are used in �uid dynamic simulations
using the front capturing scheme from Section 6.3. To be more speci�c, the neural networks are
used to evaluate the numerical �uxes (38), (39) at the wave front. To test the di�erent methods in
this setting, we run simulations for Riemann initial conditions and compute the error with respect
to the analytic Riemann solution. To avoid any intrinsic bias towards a particular choice of initial
data, we perturb the initial Riemann data and compute the mean error over several simulation
runs.

7.2. Cubic Flux Model

In this section we test the constraint-aware methods described in Section 4 for the cubic �ux
model, i.e. we seek to learn the Riemann solver (21), with κ = 0.75 in the kinetic relation (20).
The resulting networks are compared with their standard/constraint-unaware counterparts.
To this end, we consider data sets comprising Ntrain ∈ {100, 200, 500} samples, with noise levels
lnoise ∈ {0, 0.05, 0.1}. These nine data sets are sampled as described in Section 6.1 on the bounded
domain B = [0, 5]× [−2.5, 0]. The test data set Dtest consists of 10 000 samples in B . On each data
set we train a standard neural network, one with a constraint-resolving layer and a network with
the constraint-adapted loss for each constraint penalty parameter value λ ∈ {10−1, 10−2, 10−3}.
As the training procedure is non-deterministic we train 10 separate instances for every type of
network.
The mean-squared errors and mean constraint errors (in the `1 metric) on the test data set are
displayed in Figure 10. Concerning the constraint error, we can clearly see that the CRes-method
outperforms the standard networks and the CAL-method. In case of noisy data sets, the CAL-
method seems to be able to produce (depending on the constraint penalty parameter λ) better
results in terms of mean-squared errors and constraint errors than the standard approach. The
marginal improvement in the constraint error with the CAL-method in the absence of noise,
comes at the cost of a higher mean-squared error than the standard approach.

If we look at the mean-squared error, we see a di�erence between noisy and noise-free data sets
as well. If there is no noise, the standard networks and the CAL-method behaves relatively similar
Only the CRes-method has a higher mean-squared error. On the other side, if there is noise
(especially for the high noise level 0.1) the constraint aware methods yield a better mean-squared
error and constraint errors.
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Figure 10: Mean-squared errors and constraint errors on the test data set for the cubic �ux model
problem. Each sub�gure corresponds to one data set.
Horizontally the mean squared error on the test data set is plotted, vertically the mean
constraint error. Therefore, points that are located to the left and near bottom are
considered better.

To test the neural networks in numerical simulations, we consider the Riemann problem (3) with
u− =−1, u+ = 1. The exact solution can be computed via the Riemann solver from Section 5.1
and is displayed in Figure 11.
To avoid biased results due to the speci�c choice of u− and u+, we perturb the initial data with
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perturbations sampled uniformly from (−0.1, 0.1) and compute the mean of the L 1-errors over
25 runs. The simulations are performed on a grid over the interval (−2, 2) with 2000 cells. The
timestep is ∆t = 2×10−4 and we run the simulation up to tend = 0.5. For the numerical �ux
away from the interface we choose the Lax–Friedrichs �ux with αLF = 2. For these parameters,
if we apply the exact Riemann solver for the computation of the interface �uxes (38) and (39),
the absolute L 1-error amounts to approximately 4.8×10−3, which is the baseline error of the
discretization.
We repeat the simulation for each network instance we have trained in the �rst part of the test
and compute the L 1-error with respect to the exact Riemann solution. The resulting L 1-errors
are displayed in Figure 12.

For all data sets, the CRes-method yields a lower mean error than the standard networks. In case of
noisy data sets, depending on the choice of the constraint penalty parameter λ, the CAL-method
is also able to produce much better results than the standard networks. The standard networks
work quite well on the noise-free data sets, therefore the gain by applying the CAL-method is
less prominent.

−1 0 1 2 3 4

−1

0

1

x
t

u

Figure 11: Reference Riemann solution for the cubic �ux model problem. The dashed line repre-
sents the initial conditions.
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Figure 12: Mean L 1-errors for the cubic �ux model problem. The mean L 1-errors of the �nite
volume simulation are computed over 25 perturbed Riemann problems for each trained
network. The gray dots represent the error for each network instance.
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7.3. Isothermal Two-Phase Flow

In this section we re-run the computational tests from the previous section for the isothermal
two-phase �ow model (Section 5.2).
The data sets have Ntrain ∈ {1000, 2000, 5000} samples, each with noise levels lnoise = {0, 0.05, 0.1}.
The samples are generated for ρ− ∈ (1.7, 2.6), v− ∈ (−1, 1), ρ+ ∈ (0.01, 0.33), v+ ∈ (−1, 1) and then
transformed to the �uid momentum m∓ =ρ∓v∓. For the CAL-method, we consider the constraint
penalty parameter values λ ∈ {10−1, 10−2, 10−3}.

Again, we test standard networks and networks built with the CAL- and the CRes-method on a
test data set. The results are presented in Figure 13. Concerning the mean-squared error on the
test data set, the standard networks, the CAL- and the CRes-method perform similarly. However,
in terms of the constraint error on the test data set, we observe that the CRes-method performs
the best, despite using an approximate resolving function (31). The CAL-method works second
best; for λ= 10−1 it approaches the performance of the CRes-method, and for λ= 10−3 it behaves
almost like standard networks.

As the second test, we apply the networks in simulations. We consider the Riemann problem with
ρ− = 1.9, ρ+ = 0.2, and m∓ = 0. The corresponding Riemann solution is depicted in Figure 14.
The simulations are performed on a grid with 2000 uniform cells on the domain [−1, 1]. The
timestep is ∆t = 10−4, the �nal time is tend = 0.25 and the Lax–Friedrichs parameter is αLF = 2.
The numerical error of the discretization, i.e. if the exact solver is used in (38) and (39), is
approximately 5.2×10−3.
Again, we average the error over 25 simulations. For that we perturb the initial densities ρ∓
randomly by 2% of their value, i.e. we set ρ∓ · (1+ 0.02 ·R ) as the initial values, where R is an
uniformly distributed random variable on [−1, 1].
The L 1-error of the simulation with respect to the analytic solution is shown in Figure 15 for
the di�erent networks. We see that the L 1-error in case of noise-free data is similar across all
methods. However for higher noise levels, the results are more varied. For all, except one data set,
the CRes-method gives lower errors on average than the standard networks. The performance of
the CAL-method depends highly on the choice of the constraint penalty parameter λ; depending
on this choice, the CAL-method can perform better than the standard network on noisy data sets.
Between the CRes- and the CAL-method, the former gives more reliable results, and it does not
require selecting a parameter.
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model problem. Each sub�gure corresponds to one data set.
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constraint error. Therefore, points that are located to the left and near bottom are
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Figure 15: Mean L 1-errors for the two-phase �ow model problem. The mean L 1-errors of the
�nite volume simulation are computed over 25 perturbed Riemann problems for each
trained network. The gray dots represent the error for each network instance.
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7.4. Euler Equations

Just as in the previous two sections, we investigate the constraint-aware training methods —
this time for the Euler model. The data set consists of random values ρ∓ ∈ [0.05, 1.3], m∓ ∈
[−1.95, 1.95], and E∓ ∈ [0.118 75, 7.9625], which have been sampled as described in Section 6.1.
All data points are discarded that do not ful�ll the positivity condition, i.e., Riemann data that
produce a vacuum, see [41]. The resulting data sets have Ntrain ∈ {10 000, 20 000 50 000} samples,
with noise levels lnoise ∈ {0, 0.05}. The test data Dtest consists of 10 986 samples — after discarding
invalid samples according to (34) — on a uniform grid over B .

The results are depicted in Figure 16. Again, the CRes-method clearly outperforms the standard
networks and the CAL-method regarding the constraint error. Concerning the standard networks
and the CAL-method no di�erence is discernible. This is due to the fact that a much smaller
constraint penalty parameter is used than for the previous two model problems. Tests with higher
values of λ did not show a signi�cant decline in the training error, from which we can concur that
the optimization problem is seemingly much harder compared to the other two model problems.

For the continuum simulation tests, we consider the initial conditions ρ− = 1, ρ+ = 0.125, m∓ = 0,
E− = 2.5, and E+ = 0.25. which correspond to the Sod shock tube benchmark example [40]. The
analytic solution is shown in Figure 17
The mesh consists of 1000 cells on the domain (−1, 1). The timestep is ∆t = 5×10−5, the �nal
time is tend = 0.25 and the Lax–Friedrichs parameter is αLF = 6.
If we apply the exact Riemann solver for the numerical interface �uxes (38), (39), the L 1-discretization
error is approximately 0.09.
As before, we perturb the initial condition densities by 1% and measure the L 1-errors w.r.t. the
corresponding exact Riemann solutions and average the L 1-error over 25 simulations for each
method and data set.
The averaged L 1-errors are depicted in Figure 18. We can see that the CRes-method continues to
work best. The CAL-method on the other hand is often even worse than the standard approach,
despite choosing a relatively small constraint penalty parameter λ. This is due to the intrinsic
high dimensional input space of the constraint (36), which consequently makes the training with
the loss function (18) much harder.
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Figure 18: Mean L 1-errors for the Euler model problem. The mean L 1-errors of the �nite volume
simulation are computed over 25 perturbed Riemann problems for each trained network.
The gray dots represent the error for each network instance.

8. Discussion

In this work we investigated two di�erent methods (CRes and CAL) to build constraint-aware
neural networks and their application to numerical simulations. The performance of the methods
was examined on the basis of three di�erent model problems: the scalar cubic �ux model problem
(Section 5.1), the isothermal two-phase �ow model problem (Section 5.2) and the Euler model
problem (Section 5.3).
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From the results in Section 7 we can draw several conclusions. First, we note that Riemann
solvers based on neural networks with a low constraint error yield a high numerical accuracy in
numerical simulations.
Secondly, the CRes-method is able to ful�ll a constraint perfectly if an exact resolving function
Ψ, such as (24) or (37), is used — see Section 7.2 and Section 7.4. Nonetheless, even if Ψ is just
an approximation, like (31), the CRes-method outperforms the standard approach and the CAL-
method with respect to the constraint error, as shown in Section 7.3. This however comes at the
cost that the constraint has to be handled analytically. We stress that the CRes-method is more
than merely a post-processing step, as the full information from the training set can be used and
the knowledge about the constraint is incorporated in the training of the network.
On the other hand, the CAL-method is much more generic. It requires only a constraint function
(12) and includes the deviation from the constraint as a penalty term in the training procedure.
For the cubic �ux model problem and the isothermal two-phase �ow model problem this method
works well, in particular for high noise levels. In case of the Euler model problem with the
constraint (36), the CAL-method seems to reach it limits, due to the high dimensionality of the
constraint. Standard optimization algorithms such as stochastic gradient descent are apparently
not powerful enough to resolve a complex constraint such as (36) when they are included in the
loss function (18).

There remain open questions and possible improvements for the proposed methods. Concerning
the CAL-method, one could apply dynamic scheduling for the constraint penalty parameter λ, e.g.
starting with λ= 0 and slowly increasing the parameter in each epoch. Another option would
be to train the network without considering any constraints, and then retrain the model with a
constraint-aware method.
Furthermore, choosing the square norm — or other nonlinear scalings — of the constraint in (17)
might result in a di�erent performance of the resulting networks and should be investigated.
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A. Riemann Solver for the Cubic Flux Model with Kinetic Relation

For the cubic �ux model (19) we want to solve the Riemann problem

u (x , 0) =

¨

u− for x < 0,

u+ for x > 0,

with u− > 0, while selecting solutions that satisfy the kinetic relation (20). The kinetic relation
comes with a corresponding, so-called companion function (see [23]), which is de�ned in this
instance by

ϕ](u ) =−(1−κ)u .

For the scalar problem (19) it is possible to compute the wave speed

s = s (u+, u−) :=







f (u+)− f (u−)
u+−u−

for u+ 6= u−,

f ′(u+) if u+ = u−.

The Riemann solver for this problem was presented in [4] and distinguishes between �ve di�erent
cases:

1 For u+ ≥ u− the Riemann solution is a classical rarefaction wave

u (x , t ) =











u− for x
t ≤ f ′(u−),

�

f ′
�

�

[ f ′(u−), f ′(u+)]

�−1
( x

t ) for f ′(u−)≤ x
t ≤ f ′(u+),

u+ for x
t > f ′(u+).

2 For u+ ∈ [0, u−) the solution is a single Laxian shock wave

u (x , t ) =

¨

u− for x
t ≤ s (u−, u+),

u+ for x
t > s (u−, u+).

3 For u+ ∈ [ϕ](u−), 0) the interface is also a single Laxian shock wave

u (x , t ) =

¨

u− for x
t ≤ s (u−, u+),

u+ for x
t > s (u−, u+).
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4 For u+ ∈ϕ(u−,ϕ](u−): If ϕ(u−) 6=ϕ](u−) 6=ϕchar(u−) with ϕchar(u ) := − 1
2 u , the solution

consists of a Laxian shock wave followed by an undercompressive interface:

u (x , t ) =











u− for x
t < s (u−,ϕ(u−)),

ϕ(u−) for s (u−,ϕ(u−))≤ x
t ≤ s (ϕ(u−), u+),

u+ for x
t > s (ϕ(u−), u+).

If ϕ(u−) =ϕ](u−) =ϕchar(u−) the solution is a single characteristic shock wave from u− to
u+.

5 For u+ ∈ (−∞,ϕ(u−)): If ϕ(u−) 6= ϕ](u−) 6= ϕchar(u−), the undercompressive interface
follows a rarefaction wave, i.e. the solution is given by

u (x , t ) =



















u− for x
t < s (u−,ϕ(u−)),

ϕ(u−) for s (u−,ϕ(u−))≤ x
t ≤ f ′(ϕ(u−)),

�

f ′
�

�

R−

�−1
( x

t ) for f ′(ϕ(u−))≤ x
t ≤ f ′(u+),

u+ for x
t > f ′(u+).

If ϕ(u−) =ϕ](u−) =ϕchar(u−) the solution consists of a characteristic shock wave from u−
to ϕchar(u−) attached to a rarefaction wave to u+.
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