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Abstract

Vibrationally resolved electronic spectra of polyatomic molecules provide valuable information

about the quantum properties of both electrons and nuclei. This chapter reviews the recent progress

in ab initio semiclassical calculations of such spectra, based on the thawed Gaussian approximation

and its extensions. After reviewing molecular quantum dynamics induced by the interaction with

electromagnetic field and the most common semiclassical approximations to quantum dynamics, we

explain details of the thawed Gaussian approximation and its variants. Next, we discuss the time-

dependent approach to steady-state and time-resolved electronic spectroscopy, and review several

standard models that facilitate interpreting vibrationally resolved electronic spectra. Finally, we

present the on-the-fly ab initio implementation of the thawed Gaussian approximation and provide

several examples of both linear and pump-probe spectra computed with this methodology, which,

at a low additional cost and without sacrificing the ease of interpretation, outperforms the standard

global harmonic approaches.

Keywords: absorption, stimulated emission, fluorescence, photoelectron spectrum, vibronic spectrum,

Herzberg-Teller spectrum, Franck-Condon principle, Condon approximation, direct semiclassical dynamics,

first-principles semiclassical dynamics
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I. INTRODUCTION

Vibrationally resolved electronic spectroscopy provides a powerful tool for studying both

electronic and nuclear motions in molecules: The measured spectrum contains precious in-

formation about the shapes of molecular potential energy surfaces, such as displacements be-

tween their minima, Duschinsky rotation between the normal modes of the ground-state and

excited-state surfaces, couplings among vibrational modes, and nonadiabatic couplings be-

tween electronic states. The steady-state version of molecular electronic spectroscopy, used

for many years, has been usually interpreted through the time-independent Franck–Condon

picture, but an alternative, time-dependent approach (Heller, 1981b, 2018; Mukamel, 1999;

Tannor, 2007), which examines the evolution of the nuclear wavepacket before evaluating

the spectra, is more fundamental. The time-dependent approach is also much more natural

for interpreting time-resolved spectra, and will be used exclusively in this chapter.

Accurate calculations of vibrationally resolved electronic spectra are difficult because they

require both accurate potential energy surfaces, which necessitate expensive electronic struc-

ture calculations, and accurate nuclear quantum dynamics, impossible in high dimensions.

As a result, such calculations are typically limited to accurate nuclear quantum dynamics

calculations on potential energy surfaces which are either full-dimensional but approximate,

such as those based on global harmonic models (Baiardi et al., 2013), or which take into

account only a few degrees of freedom. To include all degrees of freedom as well as their

anharmonicity without constructing global potential energy surfaces, various authors de-

veloped a number of trajectory-based on-the-fly ab initio (also called “direct dynamics”

or “first-principles dynamics”) quantum and semiclassical methods (Ceotto et al., 2009b;

Curchod and Mart́ınez, 2018; Gabas et al., 2017; Ianconescu et al., 2013; Richings et al.,

2015; Saita and Shalashilin, 2012; Shalashilin and Child, 2004; Šulc et al., 2013; Tatchen and

Pollak, 2009; Wong et al., 2011). Despite their success, which has, in fact, motivated the

writing of this chapter, these methods are rather expensive when it comes to computing the

vibrational structure of electronic spectra, since their convergence requires a large number

of classical trajectories. In this chapter, we will, therefore, devote most attention to the

on-the-fly ab initio version (Wehrle et al., 2014, 2015) of the thawed Gaussian approxima-

tion (TGA) (Heller, 1975), which provides a computationally efficient compromise between

accurate but expensive multiple-trajectory semiclassical methods and cheap but restrictive

and often flawed global harmonic methods. The TGA can be easily run in full dimension-

ality, and even its single-trajectory version captures some anharmonicity of the potential.

Obviously, it cannot describe high resolution spectra, tunneling, wavepacket splitting, and

very anharmonic dynamics in floppy molecules, yet, we will show several examples of sur-

prisingly accurate molecular absorption, emission, and photoelectron spectra computed with

the TGA.
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Below, we define the notation and acronyms used in this chapter, the remainder of which

is organized as follows: Section II, devoted to the quantum molecular dynamics induced

by the interaction with electromagnetic field, introduces the most common approximations

for the molecule-field interaction. Section III reviews briefly the most popular semiclassical

approaches for solving the time-dependent Schrödinger equation. One of these, the thawed

Gaussian approximation, is discussed in more detail, together with its extensions in Sec-

tion IV. In Section V, the time-dependent approach to both steady-state and time-resolved

spectra calculations is presented in the framework of approximations explained in Section II.

We also discuss rotational averaging, important in describing electronic spectra beyond the

Condon approximation but often ignored in theoretical calculations. In Section VI, several

“standard” models useful for interpreting molecular electronic spectra are defined and ac-

companied with numerical examples demonstrating both their advantages and shortcomings.

Intricacies of the on-the-fly ab initio implementation of the thawed Gaussian approximation

are discussed in Section VII and several examples of absorption, emission, photoelectron,

and pump-probe spectra computed with this approximation are presented in Section VIII.

Finally, a conclusion and outlook are given in Section IX.

A. Notation

Throughout this chapter, we consider a molecular system with S relevant electronic

states and D vibrational degrees of freedom. Electronic states are indexed by a Greek

letter, such as α = 1, . . . , S, while vibrational modes are indexed by a Latin letter, such

as j = 1, . . . , D. Three different vector spaces play an important role in such systems: the

ambient 3-dimensional space R3, the nuclear D-dimensional real coordinate space RD, and

the electronic S-dimensional complex Hilbert space CS. To distinguish vectors and oper-

ators on these spaces, 3-dimensional vectors are denoted with an arrow (e.g., ~ε), nuclear

D-dimensional vectors or D ×D matrices use no special notation (e.g., generalized nuclear

coordinates q), and the electronic S-dimensional vectors or S × S matrices (such as µ or

A) representing electronic states or operators are denoted with the bold font. Scalar and

matrix products in both the 3-dimensional and nuclear D-dimensional spaces are denoted

with a dot (as in ~µ21 ·~ε or pT ·m−1 · p), whereas the matrix product in the electronic Hilbert

space use no special notation; it is expressed by a juxtaposition of matrices (as in AB).

Finally, the nuclear operators are denoted with a hat ˆ (as in p̂). The ground vibrational

state g of the ground electronic state 1 is denoted by |1, g〉. Angular frequency of light ω is

used in all expressions, while the numerical results are displayed in terms of the wavenumber

ν̃ = ω/(2πc).
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B. List of acronyms

3TGA three thawed Gaussians approximation

CASPT2 complete active space second-order perturbation theory

CCSD coupled cluster singles and doubles

ETGA extended thawed Gaussian approximation

MP2 Møller-Plesset second-order perturbation theory

n-TGA n thawed Gaussians approximation

TGA thawed Gaussian approximation

II. MOLECULAR QUANTUM DYNAMICS INDUCED BY THE INTERACTION

WITH ELECTROMAGNETIC FIELD

Vibrationally resolved electronic spectra reflect the molecular motion following elec-

tronic excitations induced by the interaction with visible or ultraviolet electromagnetic field.

Such an electronic excitation can induce nonadiabatic dynamics between different electronic

states, but we will assume the validity of the Born-Oppenheimer approximation, which will

allow us to focus on adiabatic dynamics, i.e., dynamics on a single Born-Oppenheimer po-

tential energy surface because many interesting phenomena in continuous-wave electronic

spectroscopy depend only on dynamics on a single surface. Likewise, in time-resolved spec-

troscopy with well-separated ultrashort pulses, one can get rather far by considering only

a sequence of such elementary steps, each of which takes place on a single surface. There-

fore, we will not cover nonadiabatic dynamics here and instead refer the interested reader

to various books and reviews of this vast subject (Baer, 2006; Bircher et al., 2017; Domcke

and Stock, 1997; Domcke and Yarkony, 2012; Levine and Martinez, 2007; Mukamel, 2000;

Nakamura, 2012; Ryabinkin et al., 2017).

A. Exact dynamics, electric dipole approximation, and quasiresonant condition

To justify our focus on electronically adiabatic dynamics we start the discussion with the

full molecular wavefunction that involves both electronic and nuclear degrees of freedom.

This will be useful because all our applications come from electronic spectroscopy, where the

electromagnetic field induces the transition of the molecule to a different electronic state;

this transition is followed by nuclear adiabatic dynamics on the corresponding, new potential

energy surface.

The simplest electronic transition involves only two electronic states and, in this two-
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dimensional electronic basis, the time-dependent molecular wavepacket can be written as

ψ(t) =

(
|ψ1(t)〉
|ψ2(t)〉

)
, (1)

where |ψα(t)〉 is a time-dependent nuclear wavepacket moving on the αth potential energy

surface. Evolution of ψ(t) is determined by the time-dependent molecular Schrödinger

equation

i~
d

dt
ψ(t) = Ĥfull(t)ψ(t), (2)

driven by the “full” time-dependent Hamiltonian

Ĥfull(t) = Ĥ + V̂int(t), (3)

where Ĥ is the time-independent molecular Hamiltonian and V̂int(t) the interaction potential

of the molecule with the electromagnetic field. The exact solution of Eq. (2), which can be

formally written as

ψ(t) = T exp

[
− i

~

∫ t

t0

Ĥfull(t
′) dt′

]
ψ(t0), (4)

where T is the time-ordering operator, is greatly simplified by invoking the following ap-

proximations.

Within the electric dipole approximation (Schatz and Ratner, 2002), the interaction po-

tential is given by

V̂int(t) = −~̂µ · ~E(t), (5)

where ~̂µ is the molecular electric transition dipole moment and ~E(t) the electric field at the

location of the molecule. This approximation requires the wavelength of the electromagnetic

field to be longer than the size of the molecule, which is quite well justified for medium size

molecules and visible light.

We further assume that there are no nonadiabatic or spin-orbit couplings between the

two electronic states and, as a consequence, that the only electronic transitions are induced

by the interaction with the electromagnetic field. This so-called Born-Oppenheimer ap-

proximation implies that the molecular Hamiltonian Ĥ is a diagonal S-dimensional matrix

diag(Ĥ1, . . . , ĤS). To rigorously justify neglecting nonadiabatic or spin-orbit couplings, sev-

eral criteria (Baer, 2006; Bircher et al., 2017; Domcke and Yarkony, 2012; Nakamura, 2012)

can be used, starting from static criteria such as the size of the energy gap between electronic

states or the strength of nonadiabatic couplings, to more dynamical criteria such as the pop-

ulation dynamics. Among the most rigorous dynamical criteria, “adiabaticity”(MacKenzie

et al., 2012; Zimmermann and Vańıček, 2010; Zimmermann and Vańıček, 2012a,b) is defined

as the overlap of the adiabatically and nonadiabatically evolved molecular wavefunctions: If

adiabaticity is close to 1, the nonadiabatic effects can be safely neglected, whereas if adia-

baticity is much smaller than 1, they must be included in the simulation. Although rigorous,
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this criterion by itself would not be very practical; fortunately, there exist efficient approxi-

mate semiclassical methods to estimate the adiabaticity without solving the full Schrödinger

equation (2) exactly (Zimmermann and Vańıček, 2010; Zimmermann and Vańıček, 2012a,b).

A visible or ultraviolet electromagnetic field will excite electronic transitions, and if it is

approximately in resonance with the transition from state 1 to state 2, we are allowed to

retain only the off-diagonal elements of the transition dipole moment:

~̂µ ≈

(
0 ~̂µ12

~̂µ21 0

)
. (6)

This is a special case of the quasiresonant condition [see Marquardt and Quack (1989);

Quack (1978, 1979); Quack and Sutcliffe (1985)].

B. Perturbation theory, zero-temperature and Condon approximations

If the electromagnetic field is strong, one must treat it explicitly and worry about the

coupled dynamics on the two surfaces at least during the excitation process; in other words,

one must evolve the two-component state ψ(t). For sufficiently weak fields or for short

interaction times, one may employ the time-dependent perturbation theory. Whereas the

first-order perturbation theory is often sufficient for linear spectroscopy, the second order

is required, e.g., for resonance Raman spectroscopy and the third or higher order for more

sophisticated nonlinear and time-resolved spectroscopic techniques (Mukamel, 1999).

Within the first-order perturbation theory, the molecular state evolves as

ψ(t) = Û(t)ψ(0)− i

~

∫ t

−∞
dt′Û(t− t′)V̂int(t

′)Û (t′)ψ(0), (7)

where Û(t) = exp (−iĤt/~) denotes the molecular evolution operator in the absence of the

electromagnetic field. For electronic transitions, expression (7) simplifies; the only interesting

part is the first-order term describing the wavepacket generated by the field on the second

potential energy surface:

|ψ2(t)〉 =
i

~

∫ t

−∞
dt′Û2(t− t′)~̂µ21 · ~E(t′)Û1(t′)|ψ1(0)〉, (8)

This equation implies that the initial state first evolves freely on the first surface, then,

at time t′, interacts with the field, which induces instantaneously an electronic transition

to the second electronic state, and, finally, evolves for the remaining time on the second

surface. The total wavepacket generated in the excited state is obtained by integrating this

elementary process over all possible interaction times t′. In practical terms, since Ûα(t) =

exp(−iĤαt/~) is the nuclear evolution operator on surface α, one only has to solve the
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nuclear Schrödinger equation

i~
d

dt
|φ(t)〉 = Ĥα|φ(t)〉 (9)

with a time-independent Hamiltonian Ĥα and general initial state |φ(0)〉 instead of the

more complicated molecular equation (2) with a time-dependent Hamiltonian. The solution

of Eq. (9) can be written formally as

|φ(t)〉 = exp
(
−iĤαt/~

)
|φ(0)〉. (10)

At room temperature, most of the molecules are typically in the vibrational ground state

|1, g〉 of the ground electronic state, which is, in particular, an eigenstate of Ĥ1, hence, the

first evolution operator Û1(t′) yields only a phase factor exp(−iE1,gt/~), the only effect of

which is an overall shift of the electronic spectrum by the zero-point vibrational energy E1,g

of the initial potential energy surface (we will show this explicitly below). As a result, in

the case of electronic transitions, the only interesting dynamics occurs after time t′, in the

second electronic state, and hence, as promised, the problem reduces to adiabatic dynamics

on the second surface. The assumption that the initial state is a vibrational ground state

of Ĥ1 is usually referred to as the zero-temperature approximation and avoids the necessity

of Boltzmann averaging over different initial states. It is a good approximation for vibra-

tionally resolved electronic spectroscopy. [Note that we anticipated the low-temperature

approximation already in Eq. (1) by focussing our attention to pure states of the molecule.

This is justified as long as we are not interested in rotationally resolved spectra, which would,

at room temperature, necessitate a density operator treatment.]

Finally, one also frequently makes the Condon approximation (Condon, 1927, 1928;

Franck and Dymond, 1926), which amounts to ignoring the dependence of the transition

dipole on nuclear coordinates: ~µ12(q) ≈ const = ~µ12. Note that removing the coordinate

dependence from ~µ12(q) permits taking the product ~̂µ21 · ~E(t′) outside of the integral over

dt′ in Eq. (8).

III. SEMICLASSICAL APPROXIMATION TO QUANTUM DYNAMICS

Approximations for treating the molecule-field interaction, which were discussed in the

previous section, simplify the solution of the time-dependent Schrödinger equation (2). Un-

fortunately, even after making these approximations, the quantum propagation of a wave-

function of a large molecule is impossible due to the exponential scaling of the computational

cost with dimensionality. In addition, quantum dynamics requires construction of global po-

tential energy surfaces, which is another task scaling exponentially with dimensions.

Semiclassical trajectory-based methods circumvent these two challenges and thus provide

an interesting alternative for molecular dynamics simulations. On one hand, the propaga-

tion of classical trajectories requires only local knowledge of the potential energy surfaces,
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allowing on-the-fly evaluation of necessary ab initio data. On the other hand, and in contrast

to even simpler classical molecular dynamics, semiclassical trajectories carry along phases,

and as a result can approximately describe nuclear quantum effects, such as the zero-point

energy and quantum coherence. Many semiclassical methods have been proposed in the

literature; here we can mention only a few, and therefore we focus on those that have been

combined with ab initio evaluation of the electronic structure.

Probably the simplest semiclassical method is the single-trajectory thawed Gaussian ap-

proximation (Heller, 1975, 2018), in which the quantum wavepacket is approximated by a

single Gaussian whose center moves along a classical trajectory. Because it has a finite

nonzero width and because it is allowed to rotate and stretch in phase space, the thawed

Gaussian captures some quantum effects. The TGA, however, obviously cannot describe

wavepacket splitting, and therefore is expected to be valid only for rather short times and

describe only low or medium resolution spectra. Below, we will discuss in detail various ex-

tensions and present several on-the-fly ab initio applications of this method, and hopefully

surprise the reader by the usefulness of the TGA in electronic spectroscopy.

Wavepacket splitting and full anharmonicity of the potential can be captured by multi-

trajectory methods, such as the initial value representation (Miller, 1970, 2001) or the frozen

Gaussian approximation (Heller, 1981a), in which the propagated wavepacket is represented

by an ensemble of rigid Gaussians. The two concepts are merged in one of the most accu-

rate semiclassical approximations, the Herman–Kluk initial value representation (Herman

and Kluk, 1984; Kay, 2005; Miller, 2001), which can be derived from the stationary-phase

approximation to the Feynman path integral propagator. In the Herman-Kluk initial value

representation, the nuclear quantum evolution operator, Û(t) = exp(−iĤt/~), needed in

evaluating Eq. (8), is approximated as

e−iĤt/~ ≈ h−D
∫

dq0dp0 Rt(q0, p0)eiSt(q0,p0)/~|qtpt〉〈q0p0|, (11)

where (qt, pt) denote the phase-space coordinates at time t of a point along the classical

trajectory and St(q0, p0) is the corresponding classical action. In the position representation,

Glauber’s canonical coherent states |qtpt〉 (Glauber, 1963) from Eq. (11) are Gaussians

〈q|qtpt〉 =

(
det g

πD

)1/4

exp

[
−1

2
(q − qt)T · g · (q − qt) +

i

~
pTt · (q − qt)

]
, (12)

with a time-independent D ×D width matrix g,

Rt(q0, p0) =

√
det

[
1

2

(
Mt,qq + g−1 ·Mt,pp · g − i~Mt,qp · g +

i

~
g−1 ·Mt,pq

)]
(13)

is the Herman–Kluk prefactor, and symbols Mt,xy = ∂xt/∂y0 represent the four D × D
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sub-blocks of the 2D × 2D stability matrix

Mt =

(
Mt,qq Mt,qp

Mt,pq Mt,pp

)
:=

(
∂qt
∂q0

∂qt
∂p0

∂pt
∂q0

∂pt
∂p0

)
. (14)

Note that the form of the coherent state wavefunctions in Eq. (12) differs from that

of Klauder (Child and Shalashilin, 2003; Klauder and Skagerstam, 1985) by a factor

exp(iptqt/2~), which modifies the action St but leaves the classical equations of motion

for qt and pt unchanged. The phase-space integral in Eq. (11) is usually evaluated by

sampling the initial conditions of classical trajectories using Monte Carlo techniques; the

subsequent propagation requires computing the potential energy V to evolve the action S,

the force (i.e., − gradV ) to evolve positions and momenta, and the Hessian of V to evolve

the stability matrix Mt.

Despite some progress, the application of the Herman–Kluk initial value representation

to large systems is difficult. First, the oscillatory nature of the integrand in Eq. (11) implies

that a very large number of trajectories is required to converge the results. Second, calculat-

ing the Hessian is much more expensive than evaluating the force needed in classical ab initio

molecular dynamics. The computational cost can be reduced by invoking various additional

approximations, such as the prefactor-free propagator (Zhang and Pollak, 2003), time aver-

aging (Kaledin and Miller, 2003), and Filinov filtering (cellularization) (Heller, 1991; Makri

and Miller, 1988; Walton and Manolopoulos, 1996), which has been used to improve Monte

Carlo statistics (Church et al., 2017; Walton and Manolopoulos, 1996; Wang et al., 2001)

and to derive new approximate semiclassical methods (Antipov et al., 2015; Church et al.,

2017; Thoss et al., 2001; Šulc and Vańıček, 2012; Zambrano et al., 2013). Thanks to these

acceleration techniques, the Herman-Kluk propagator has been successfully merged with on-

the-fly dynamics and used to calculate vibrationally resolved spectra (Ceotto et al., 2009a,b;

Tatchen and Pollak, 2009; Wong et al., 2011) and internal conversion rates (Ianconescu et al.,

2013). Time averaging has proved useful in on-the-fly simulations as a central ingredient of

the multiple-coherent-states time-averaged semiclassical initial value representation (Ceotto

et al., 2009a,b, 2011). This method is especially well suited for the determination of vibra-

tional frequencies and prediction of vibrational spectra (Buchholz et al., 2016; Ceotto et al.,

2011, 2013; Gabas et al., 2017). A clever choice of the initial coherent states allows a drastic

reduction of the number of trajectories required for convergence of desired spectral regions.

Both the thawed Gaussian approximation and various forms of the initial value represen-

tation are general methods for approximating quantum dynamics and are exact in arbitrary

harmonic systems, but most require the knowledge of the potential Hessian along the tra-

jectory. In the case of electronic spectroscopy, which is the main subject of this chapter,

there is a class of methods that only require the force, and not the Hessian of the potential,

but at a cost of being exact only for displaced harmonic systems. These closely related
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methods are known as the phase averaging (Mukamel, 1982, 1999), Wigner averaged classi-

cal limit (Egorov et al., 1998, 1999), linearized semiclassical initial value representation (Shi

and Geva, 2005), or dephasing representation (Vańıček, 2004, 2006; Zambrano et al., 2013).

IV. THAWED GAUSSIAN APPROXIMATION

The main goal of this chapter is to demonstrate the power of on-the-fly ab initio semi-

classical dynamics in electronic spectroscopy on the example of the thawed Gaussian ap-

proximation. Let us, therefore, discuss this method and its extensions in more detail.

A. Thawed Gaussian approximation

The TGA (Heller, 1975) relies on the fact that a Gaussian wavepacket propagated ex-

actly quantum-mechanically in an arbitrary time-dependent harmonic potential remains

Gaussian. The TGA improves on the frequently used global harmonic models (discussed

below, in Section VI A) by approximating the potential energy surface to the second order

only locally, in what is known as the local harmonic approximation. Although approximat-

ing the initial state in electronic spectroscopy with a Gaussian is only reasonable within

the Condon approximation, let us first discuss this simplest case because it will serve as

a starting point for extensions to more general forms of the initial wavepacket needed to

describe Herzberg–Teller spectra.

A general D-dimensional Gaussian wavepacket at time t can be written in the position

representation as

ψ(q, t) = N0 exp

{
i

~

[
1

2
(q − qt)T · At · (q − qt) + pTt · (q − qt) + γt

]}
, (15)

where N0 = [det(ImA0/π~)]1/4 is a normalization constant, (qt, pt) are the phase-space

coordinates of the center of the wavepacket, At is a symmetric complex width matrix, and

γt a complex number whose real part is a dynamical phase and imaginary part guarantees the

normalization at times t > 0. The wavepacket is propagated with an effective Hamiltonian

Ĥeff(t) ≡ Heff(q̂, p̂, t) =
1

2
p̂T ·m−1 · p̂+ Veff(q̂, t), (16)

where m = diag(m1, . . . ,mD) is the diagonal mass matrix and Veff an effective time-

dependent potential given by the local harmonic approximation of the true potential V

at the center of the wavepacket:

Veff(q, t) = V |qt + (gradq V |qt)T · (q − qt) +
1

2
(q − qt)T · Hessq V |qt · (q − qt). (17)
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In this equation, (gradq V )i := ∂qiV is the gradient of V and (Hessq V )ij := ∂qi∂qjV is the

symmetric Hessian matrix of V . Insertion of the wavepacket ansatz (15) and the effective

potential (17) into the nuclear time-dependent Schrödinger equation (9) yields a system of

ordinary differential equations for the time-dependent parameters of the Gaussian (Heller,

1975):

q̇t = m−1 · pt , (18)

ṗt = − gradq V |qt , (19)

Ȧt = −At ·m−1 · At − HessqV |qt , (20)

γ̇t = Lt +
i~
2

Tr
(
m−1 · At

)
. (21)

In the last equation, Lt denotes the Lagrangian

Lt =
1

2
q̇Tt ·m · q̇t − V (qt)

=
1

2
pTt ·m−1 · pt − V (qt) . (22)

The system of differential equations (18)-(21), which is within the local harmonic approxi-

mation equivalent to the solution of the Schrödinger equation (9), implies that phase-space

coordinates qt and pt follow classical Hamilton’s equations of motion, while the propagation

of the width At and phase γt involves propagating the 2D × 2D stability matrix (14), and

therefore requires evaluating the Hessians of the potential energy surface V .

B. Propagation of the parameters of the thawed Gaussian wavepacket

Equations (18)–(19) for the position and momentum are classical Hamilton’s equations

of motion for Hamiltonian H(q, p), so qt and pt can be readily propagated with the Verlet

algorithm or other symplectic integrators. Solving equations (20)-(21) for the width matrix

At and generalized phase γt is more complicated. The approach by Heller (1976) and Hage-

dorn (1980) [see also (Lee and Heller, 1982) and (Faou et al., 2009)] suggests splitting the

complex symmetric width matrix At into a product of two complex D×D matrices Pt and

Qt:

At = Pt ·Q−1
t , (23)

Pt = m ·Qt. (24)

Differential equations for Qt and Pt, obtained from Eqs. (20), (23), and (24),

Q̇t = m−1 · Pt, (25)

Ṗt = −HessqV |qt ·Qt, (26)
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can be interpreted as Hamilton’s equations of motion of the Hamiltonian

Hsc(Q,P ; qt) =
1

2
Tr
[
P † ·m−1 · P +Q† · HessqV |qt ·Q

]
, (27)

which depends on time through the parameter qt. The solution can then be written explicitly

in terms of the stability matrix Mt:(
Qt

Pt

)
= Mt

(
Q0

P0

)
; (28)

In other words, Qt and Pt are solutions of a linear Hamiltonian system, obtained by lin-

earizing the original system about the center of the thawed Gaussian. Choosing the initial

values as Q0 = (2 ImA0/~)−1/2 and P0 = A0 · Q0 guarantees, in addition, that the sum

H(qt, pt) +Hsc(Qt, Pt) equals the total energy of the thawed Gaussian wavepacket (Begušić

et al., 2019).

As for γt, which is a generalization of classical action and represents both the dynamical

phase and normalization, it is evaluated as

γt = γ0 +

∫ t

0

Lτdτ +
i~
2

∫ t

0

Tr
(
m−1 · Aτ

)
dτ (29)

= γ0 +

∫ t

0

Lτdτ +
i~
2

∫ t

0

Tr
(
Q̇τ ·Q−1

τ

)
dτ (30)

= γ0 +

∫ t

0

Lτdτ +
i~
2

ln (detQt) , (31)

where the conditions imposed on Q and P are used in order to obtain the final expression.

Because the determinant in Eq. (31) is complex, a proper branch of the logarithm must be

taken in order to make γt continuous in time. If continuity were not imposed on γt, the

wavepacket would show sudden jumps by ±π in the overall phase. Phase continuity is also

important in the evaluation of the correlation function (to be discussed in Section V), which

requires taking a square root of a complex determinant det(A0 +At). The continuity of the

correlation function is enforced by taking the appropriate branch of the square root.

C. Extended thawed Gaussian approximation (ETGA)

To tackle the propagation of more general initial states, Lee and Heller (1982) proposed

an extension of the TGA that assumes the initial state to be a Gaussian multiplied by a

polynomial (Lee and Heller, 1982; Patoz et al., 2018):

φ(q, 0) = P (q − q0)ψ(q, 0). (32)

The basic idea of the extended TGA (ETGA) is the same as of the original TGA; it uses the

local harmonic approximation (17) for the potential along the trajectory qt, but makes no

other approximation.
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Because the only dependence of ψ(q, 0) on p0 comes from the exponent pT0 · (q − q0) [see

Eq. (15)], the polynomial prefactor in Eq. (32) can be replaced by the same polynomial in

the derivatives with respect to p0:

φ(q, 0) = P

(
~
i

∂

∂p0

)
ψ(q, 0). (33)

Appendix D of Begušić et al. (2018a) provides a detailed proof that the local harmonic

approximation implies that the ETGA wavepacket at time t has the simple form (Lee and

Heller, 1982)

φ(q, t) = P

(
~
i

∂

∂p0

)
ψ(q, t), (34)

where the dependence of ψ(q, t) on initial conditions q0 and p0 is taken into account. In

particular, equations of motion (18)-(21) for qt, pt, At, and γt remain unchanged.

As for the parameters of the polynomial, the simplest possibility beyond the original

TGA is to consider only the constant and linear terms, which will be the only ones re-

quired in the Herzberg–Teller approximation (66) for the transition dipole moment, used

in Subsection V D for calculations of electronic spectra beyond the Condon approximation.

Appendix D of Begušić et al. (2018a) provides a detailed demonstration that in this case

(Lee and Heller, 1982)

φ(q, t) =
[
a0 + bTt · (q − qt)

]
ψ(q, t), (35)

where the linear parameter of the polynomial at time t is

bt = (−At ·Mt,qp +Mt,pp) · b0 (36)

= (Q0 ·Q−1
t )T · b0. (37)

Because all ingredients needed in Eq. (36) are already evaluated for the propagation of the

parameters of the Gaussian, the evaluation of bt comes at almost no additional cost.

D. Multiple thawed Gaussians (n-TGA)

Another natural way to generalize the TGA is by considering superpositions

ψ(q, t) =
n∑
i=1

ciψi(q, t), (38)

of thawed Gaussian wavepackets ψi(q, t), where each component ψi(q, t) is normalized at time

0 and propagated with its own effective time-dependent Hamiltonian Ĥeff,i(t) according to

the original TGA prescription. Let us call this method multiple thawed Gaussians or n-

TGA. The expansion (38) is useful only if the initial state ψ(q, 0) is accurately represented

by a small number of Gaussians; below, we shall see an example with n = 3. If n is very

large, it is more convenient to use the frozen Gaussians (Heller, 1981a), which are easier to

propagate.
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E. (Non)conservation of norm, inner product, and energy

One of the basic properties of quantum evolution is the conservation of probability, which

is reflected in the conservation of the norm of the wavefunction:

‖ψt‖ = ‖Û(t)ψ0‖, (39)

where ‖ψ‖2 = 〈ψ|ψ〉 and Û(t) = exp(−iĤt/~) is a time-evolution operator for a time-

independent Hermitian Hamiltonian Ĥ. [In Eq. (39), we have and, in the rest of this short

section, we shall use a shorthand notation ψt for ψ(t).] It is easy to show that time-

independent Hamiltonians conserve energy, defined as the expectation value

Et := 〈ψt|Ĥ|ψt〉 (40)

of the Hamiltonian:

Et := 〈ψ0|Û(t)†ĤÛ(t)|ψ0〉 = 〈ψ0|Û(t)†Û(t)Ĥ|ψ0〉 = 〈ψ0|Ĥ|ψ0〉 = E0, (41)

where we used the facts that Û(t) commutes with Ĥ and that Û is unitary, i.e.,

Û †Û = [exp(−iĤt/~)]† exp(−iĤt/~) = Û−1Û = 1 (42)

because Ĥ is Hermitian. The conservation of norm remains valid even for time-dependent

Hermitian Hamiltonians Ĥ(t), for which the time-evolution operator is a function of both

the initial and final times:

Û(t, t0) = T exp

(
−i

∫ t

t0

Ĥ(τ)dτ/~
)
. (43)

In contrast, the energy is not conserved because [Ĥ(t), Û(t, t0)] 6= 0 since even [Ĥ(t1), Ĥ(t2)] 6=
0 in general for two different times t1 and t2.

It is easy to show that if the evolution operator Û(t, t0) conserves not only the norm,

but also the inner product 〈ψt|φt〉, then Û(t, t0) must be linear. Conservation of the inner

product implies, of course, the conservation of the norm, since ‖ψ‖ = 〈ψ|ψ〉1/2. However,

there are operators Û(t, t0) that conserve the norm but not the inner product; by the previous

argument such operators must be nonlinear.

The time-evolution operator of the TGA is a perfect example of such a “pathological” op-

erator because it corresponds to a time-dependent effective Hamiltonian Ĥeff(t) that depends

on the initial state ψ0. Therefore

ÛTGA ≡ ÛTGA(t, t0, ψ0), (44)

which implies that it is a nonlinear operator. It comes as no surprise that ÛTGA does not

preserve the inner product between two different states:

〈ψt|φt〉 = 〈ψ0|ÛTGA(t, t0, ψ0)†ÛTGA(t, t0, φ0)|φ0〉 6= 〈ψ0|φ0〉 . (45)
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In contrast, ÛTGA still conserves the norm of any initial state:

‖ψt‖2 = 〈ψt|ψt〉 = 〈ψ0|ÛTGA(t, t0, ψ0)†ÛTGA(t, t0, ψ0)|ψ0〉

= 〈ψ0|ψ0〉 = ‖ψ0‖2 .

Finally, the non-conservation of energy by the TGA follows from the time dependence

of Ĥeff(t). In fact, one can go further and partition the energy of the thawed Gaussian

wavepacket as ETGA = Ecl + Esc into a “classical” energy of the guiding trajectory,

Ecl = H(qt, pt) =
1

2
pTt ·m−1 · pt + V (qt), (46)

and the “semiclassical” energy associated with the finite width of the wavepacket:

Esc =
1

2
Tr
(
m−1 · Π2

t

)
+

1

2
Tr
(
Hessq V |qt · Σ2

t

)
(47)

= Hsc(Qt, Pt; qt), (48)

where

Σ2
t := 〈ψt|(q̂ − qt)⊗ (q̂ − qt)T |ψt〉 =

~
2

(ImAt)
−1 = Qt ·Q†t , (49)

Π2
t := 〈ψt|(p̂− pt)⊗ (p̂− pt)T |ψt〉 =

~
2
At · (ImAt)

−1 · A†t = Pt · P †t (50)

are position and momentum width (covariance) matrices. Since the guiding trajectory (qt, pt)

is propagated with the exact, time-independent Hamiltonian H (q, p), the classical energy

Ecl is conserved exactly. In contrast, the semiclassical contribution Esc = Hsc(Qt, Pt; qt)

can be interpreted as a classical energy of the trajectory (Qt, Pt) guided by a Hamiltonian

Hsc(Q,P ; qt) that depends on time via qt. As a result, Esc depends on time and is responsible

for the nonconservation of the total energy ETGA.

From Eqs. (46) and (48), it follows that the total energy can be written as

ETGA = H(qt, pt) +Hsc(Qt, Pt; qt) (51)

Although it may be tempting, the sum in the right-hand side of Eq. (51) cannot be inter-

preted as a classical Hamiltonian in variables q, p, Q, and P ; whereas the equations (18),

(25), and (26) for q̇t, Q̇t, and Ṗt can, indeed, be obtained as Hamilton’s equations of motion

for such a “total Hamiltonian”, the classical equation of motion for pt [Eq. (19)] does not

contain a term arising from the dependence of Hsc on qt. Interestingly, if the dependence

of Hsc on qt vanishes, which happens in a global harmonic potential or if one approximates

Hessq V |qt at all times by a constant, reference Hessian, the right-hand side of Eq. (51) can

be interpreted as a Hamiltonian H(q, p,Q, P ), and the energy is conserved exactly (Begušić

et al., 2019).
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The above considerations generalize easily to the ETGA. The corresponding evolution

operator ÛETGA again depends on both the initial and final time as well as on the initial

state φ0. Expression (34) for φ(q, t) implies that ÛETGA is fully determined by these three

parameters, so

ÛETGA ≡ ÛETGA(t, t0, φ0). (52)

As a consequence, the ETGA conserves the norm, but both the inner product and energy

generally depend on time.

By now it should be obvious that multiple thawed Gaussians do not even preserve the

norm of the initial state. It is a simple consequence of the nonconservation of the inner

product by the TGA:

‖ψt‖2 =
n∑

i,j=1

c∗i cj 〈ψi,t|ψj,t〉 6=
n∑

i,j=1

c∗i cj 〈ψi,0|ψj,0〉 = ‖ψ0‖2 . (53)

Because they do not conserve the norm, the multiple thawed Gaussians do not conserve the

inner product either. That the energy generally depends on time is clear.

V. TIME-DEPENDENT APPROACH TO ELECTRONIC SPECTROSCOPY

Quantum and semiclassical dynamics methods, discussed in Sections III and IV, yield the

quantum or semiclassical molecular wavepacket at time t. In order to compare with experi-

mental electronic spectra, it is necessary to translate the knowledge of the time-dependent

molecular state to a cross-section that can be measured experimentally. To be specific, let us

inspect in detail the linear electronic absorption spectrum and, at the end, mention briefly

the main differences that show up in nonlinear spectroscopy on the example of time-resolved

stimulated emission spectrum.

A. Linear absorption spectra

Within the electric-dipole approximation and first-order time-dependent perturbation the-

ory, the absorption cross section for a linearly polarized light of frequency ω can be expressed

as the Fourier transform

σ(~ε, ω) ≈ ω

2~cε0

∫ ∞
−∞

Cµµ(~ε, t)eiωtdt (54)

of the dipole time autocorrelation function

Cµµ(~ε, t) = Tr [ρ̂µ̂(t)µ̂] , (55)
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where ~ε is the unit polarization vector of the electric field, ρ̂ is the density operator of the

initial state, µ̂ := ~ε · ~̂µ is the projection of the molecular electric dipole operator on the

direction ~ε of the field, and

µ̂(t) = eiĤt/~µ̂e−iĤt/~ (56)

is this projected molecular dipole moment operator at time t (in the Heisenberg picture).

Assuming the zero temperature approximation, the initial state is ρ̂ = |1, g〉〈1, g|, i.e., the

ground vibrational state g of the ground electronic state 1; in particular, it is a pure state.

Assuming, furthermore, that the incident radiation is in resonance only with a single pair

of electronic states 1 and 2 (quasi-resonance condition), that those states are not vibroni-

cally coupled (Born-Oppenheimer approximation), the dipole time autocorrelation function

reduces (Heller, 1981b) to

Cµµ(~ε, t) ≈ 〈1, g|eiĤ1t/~µ̂12e
−iĤ2t/~µ̂21|1, g〉 (57)

where Ĥ1 and Ĥ2 are the nuclear Hamiltonian operators in the ground and excited electronic

states, and µ̂21 is the matrix element of the projected molecular transition dipole moment

matrix µ̂.

To evaluate the autocorrelation function (57), let us rewrite it, without any further ap-

proximation, as

Cµµ(~ε, t) ≈ Cφφ(t)eiE1,gt/~ (58)

in terms of the vibrational zero-point energy E1,g of the ground electronic state and

wavepacket autocorrelation function

Cφφ(t) = 〈φ(0)|φ(t)〉 (59)

of the (un-normalized) initial wavepacket |φ(0)〉 = µ̂21|1, g〉 propagated on the excited-state

surface with the Hamiltonian Ĥ2:

|φ(t)〉 = e−iĤ2t/~|φ(0)〉. (60)

B. Condon approximation

The electric transition dipole moment is, in general, a function of nuclear coordinates,

yet, within the Condon approximation (Condon, 1926), this moment is assumed to be in-

dependent of the molecular geometry and is commonly approximated with its value at the

equilibrium geometry qeq of the initial state:

µ12(q) ≈ const = µ12(qeq). (61)
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Within the Condon approximation, the spectrum can be written as the Fourier transform

σ(~ε, ω) ≈ ω

2~cε0

µ2
12

∫ ∞
−∞

Cψψ(t)ei(ω+E1,g/~)tdt (62)

of the wavepacket autocorrelation function

Cψψ(t) = 〈ψ|ψ(t)〉 = 〈ψ|e−iĤ2t/~|ψ〉 (63)

of a normalized initial state |ψ〉 = |1, g〉.
The beauty of Eqs. (62) and (63) lies in their simple interpretation [see also Fig. 1,

left]: the absorption of a photon of frequency ω lifts the stationary vibrational ground

state |ψ〉 = |1, g〉 of the ground-state surface instantaneously to the excited-state surface,

where this, now nonstationary state starts moving under the influence of the excited-state

Hamiltonian alone. In particular, the explicit form of the electromagnetic field does not play

any role and the linear absorption spectrum is determined solely by the field-free dynamics

of the wavepacket ψ(t) on the excited-state surface. Indeed, this fact is the essence of linear

response theory, which is here equivalent to the first order time-dependent perturbation

theory.

V2

V1

τ
V2

V1

FIG. 1. Schematic representation of physical processes underlying two types of vibrationally re-

solved electronic spectra. Left: Linear absorption. Right: Time-resolved stimulated emission.

C. Connection to fidelity amplitude

Note that since the initial state |ψ〉 ≡ |1, g〉 is an eigenstate of Ĥ1, the spectrum can be

also written as

σ(~ε, ω) =
ω

~cε0

µ2
12 Re

∫ ∞
0

f(t)eiωtdt, (64)

where

f(t) = 〈ψ1(t)|ψ2(t)〉 = 〈ψ|eiĤ1t/~e−iĤ2t/~|ψ〉 (65)

is a wavepacket cross-correlation function, also known as the fidelity amplitude (Gorin et al.,

2006), between two states ψ1(t) and ψ2(t), both starting from the same initial state ψ, but
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one evolved with Ĥ1 and the other with Ĥ2. As the name suggests, the fidelity amplitude

measures the similarity between the quantum evolutions on the ground and excited sur-

faces. Not only is expression (64) “nicer” than Eq. (62) because it does not contain the

zero-point energy in the exponent, it is also much more general because it remains valid

for nonstationary initial states, such as arbitrary superpositions of vibrational eigenstates or

states prepared by the pump pulse in time-resolved spectroscopy. Moreover, this alternative,

although less known expression for an electronic spectrum is not just a mathematical curios-

ity; indeed, it is the direct outcome of the derivation of the spectrum using the first-order

time-dependent perturbation theory, and it is only due to the additional assumption that ψ

is a vibrational ground state (or another eigenstate) of Ĥ1 that one obtains the much better

known expression (62) for the spectrum in terms of the wavepacket autocorrelation function

(63).

The more general correlation function (65) has many important applications: Outside of

electronic spectroscopy (Egorov et al., 1998, 1999; Li et al., 1996; Pollard et al., 1990b; Rost,

1995; Shemetulskis and Loring, 1992; Shi and Geva, 2005), it has proved useful, e.g., in NMR

spin echo experiments (Pastawski et al., 2000) and theories of quantum computation (Gorin

et al., 2006), decoherence (Gorin et al., 2006), and inelastic neutron scattering (Petitjean

et al., 2007). In chemical physics, the fidelity amplitude was also used as a measure of the

dynamical importance of diabatic (Zimmermann and Vańıček, 2010), nonadiabatic (Zim-

mermann and Vańıček, 2012a), or spin-orbit couplings (Zimmermann and Vańıček, 2012b),

and of the accuracy of molecular quantum dynamics on an approximate potential energy

surface (Li et al., 2009; Zimmermann et al., 2010).

D. Herzberg-Teller approximation

The widespread use of the Condon approximation (61) is justified by its validity in many

systems; it can describe most of the strongly symmetry-allowed transitions both qualitatively

and quantitatively. However, a number of molecules exhibit “electronically forbidden” tran-

sitions, i.e., transitions α ← β with ~µαβ(qeq) = 0, which cannot be described within the

Condon approximation. Such systems, as well as systems in which the Condon term is small

but not exactly zero, can be treated with the Herzberg–Teller approximation (Herzberg and

Teller, 1933) that takes into account at least the gradient of the transition dipole moment

with respect to nuclear degrees of freedom:

~µ(q) ≈ ~µ(qeq) + ∂q~µ|Tqeq · (q − qeq). (66)

Although the Herzberg–Teller approximation is often discussed in terms of vibronic cou-

plings between different electronic states (Seidner et al., 1992), this relation is not obvious

from Eq. (66). It becomes, however, clear from a remarkable equality (Begušić et al., 2018a;
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Patoz et al., 2018)

∂qj ~µ(q) = [~µ(q),Fj(q)] + ∂qj~µnu(q)1 (67)

satisfied by the gradient of the matrix representation ~µ(q) of the molecular dipole operator

~̂µmol at the nuclear configuration q. In this equation, matrix elements of ~µ(q) are defined as

partial, electronic expectation values

~µαβ(q) := 〈α(q)|~̂µmol|β(q)〉, (68)

elements of the matrix Fj(q) of nonadiabatic vector couplings are obtained as

Fαβ,j := 〈α(q)|∂qjβ(q)〉, (69)

and ~µnu is the nuclear component of ~̂µmol.

Direct interpretation of relation (67), which is proven in Appendix B of Begušić et al.

(2018a), explains the concepts of vibronic transitions and intensity borrowing. Namely, the

gradient of the transition dipole moment between states α and β can be nonzero only if there

exists an intermediate state γ that is nonadiabatically (i.e., vibronically) coupled to one of the

states and electric-dipole coupled to the other state. Typically, the nonadiabatic couplings

with the ground state (β = 1) can be neglected at the ground-state optimized geometry,

around which the transition dipole moment is expanded. This leads to an expression (Li

et al., 2010)

∂qj~µα1 ≈ −
∑
γ

Fαγ,j~µγ1 (70)

that explains the meaning of intensity borrowing, in which the symmetry forbidden transition

to the formally dark state α occurs due to borrowing of the transition intensity from the

neighboring bright electronic states γ that are vibronically coupled to the state α. Note that,

despite introducing nonadiabatic couplings between excited electronic states, the original

Born-Oppenheimer picture may be valid—the vibronic couplings that induce the transition

do not necessarily influence the nuclear wavepacket dynamics. Although these nonadiabatic

couplings are essential for describing the existence of symmetry-forbidden spectra, their

contribution to the field-free Hamiltonian of the system may be negligible. The rather high

resolution of the absorption spectrum of benzene (discussed in Section VIII B) supports these

considerations—otherwise, significant population transfer would lead to the shortening of

the excited-state lifetime and, consequently, to significant broadening of the spectral lines.

E. Rotational averaging of the spectrum

To compare with an experiment in gas phase or another isotropic medium, one has to

average the vibronic spectrum (54) over all orientations of the molecule with respect to the
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polarization ~ε of the electric field. This procedure assumes the rotations to be classical and,

therefore, cannot be used to compute rotationally resolved spectra.

Within the Condon approximation, the transition dipole moment is independent of co-

ordinates, and this averaging is trivial, namely

Cµµ(~ε, t) =
1

3
C|~µ||~µ|(t), (71)

where |~µ| is the magnitude of the transition dipole moment, so only a single calculation is

required—for the transition dipole moment aligned with the field.

For a general dipole moment (Andrews and Thirunamachandran, 1977; Gelin et al., 2017),

it is useful to define the spectrum tensor ←→σ (ω), from which the spectrum (54) for a specific

polarization ~ε, is obtained by “evaluation”:

σ(~ε, ω) = ~εT · ←→σ (ω) · ~ε. (72)

The rotational averaging of the spectrum corresponds to the averaging of σ(~ε, ω) over all

unit vectors ~ε. Due to the isotropy of the 3-dimensional Euclidean space, the average over

all orientations need not be performed numerically, and is, instead, reduced to an arithmetic

average over only three arbitrary orthogonal orientations of the molecule with respect to the

field:

σ(~ε, ω) =
1

3
Tr←→σ (ω)

=
1

3
[σxx(ω) + σyy(ω) + σzz(ω)] (73)

=
1

3
[σ(~ex, ω) + σ(~ey, ω) + σ(~ez, ω)] .

Appendix A of Begušić et al. (2018a) contains an explicit proof of these equalities. Within

the Condon approximation, in which ~µ is coordinate-independent, the orientational average

(73) simplifies further into the standard textbook recipe (71).

F. Time-resolved electronic spectra

In the case of nonlinear spectra, the autocorrelation picture is no longer valid. In con-

trast, the more general picture using fidelity amplitude (64) still applies. A wide variety of

nonlinear time-resolved spectra belong to the pump-probe scheme, in which an ultrashort

pump pulse prepares a nonstationary nuclear wavepacket in an excited electronic state, and

an ultrashort probe pulse measures the dynamics of this wavepacket after a certain time

delay τ . There are many possible experimental setups depending on the polarization and

mutual orientation of the pump and probe laser beams and on the direction in which the

signal is detected (Mukamel, 1999), but, to be specific, we will only consider time-resolved

stimulated emission here [see Fig. 1, right].
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Besides the assumptions used for linear spectra, a simplified picture of time-resolved

stimulated emission assumes that the pump and probe pulses can be treated independently

(nonoverlapping pulses approximation) and are short compared with the nuclear vibrational

period and, at the same time, long compared with the time scale of the relevant electronic

transition (ultrashort pulse approximation).

Assuming the validity of the zero-temperature, electric dipole, rotating-wave, and Con-

don approximations, and combining them with the third-order time-dependent perturbation

theory, one obtains the differential time-resolved stimulated emission spectrum at frequency

ω and time delay τ between the pump and probe pulses as the Fourier transform

σ(ω, τ) ∝ Re

∫ ∞
0

dt f(t, τ) eiωt (74)

of the wavepacket correlation function (Pollard et al., 1990b; Šulc and Vańıček, 2012; Wehrle

et al., 2011)

f(t, τ) = 〈ψ1(t, τ)|ψ2(t, τ)〉, (75)

where τ is the time delay between the pump and probe pulses, t denotes the time elapsed

after the probe pulse, and

|ψα(t, τ)〉 := e−iĤαt/~e−iĤ2τ/~|ψ〉 (76)

stands for the initial state evolved for the delay time τ with the excited state Hamiltonian

and subsequently for time t with either the ground or excited state Hamiltonian (α = 1, 2).

As written, the correlation function f(t, τ) from Eq. (75) has an immediate interpreta-

tion as the quantum fidelity amplitude between states ψ1(t, τ) and ψ2(t, τ). This fidelity

amplitude now corresponds to evolutions for time t+ τ of the same initial state ψ with two

Hamiltonians, a time-independent Hamiltonian equal to Ĥ2 and a time-dependent Hamilto-

nian equal to Ĥ2 until time τ , and equal to Ĥ1 at later times. Note that the correlation func-

tion f(t, τ) can be also interpreted as a correlation function (65) from linear spectroscopy,

but applied to a nonstationary initial state exp(−iτĤ2/~)|ψ〉 prepared by the pump pulse

(Pollard et al., 1990b; Shemetulskis and Loring, 1992).

VI. “STANDARD MODELS” OF ELECTRONIC SPECTROSCOPY

Having reviewed the time-dependent approach to spectroscopy, we are ready to discuss

several models commonly used for approximating molecular potential energy surfaces in

calculations of vibrationally resolved electronic spectra. Due to their simplicity, these models

facilitate approximate evaluations of spectra even of molecules for which obtaining more

accurate surfaces would be impossible. Moreover, it is easier to analyze these models than

the exact potential surfaces.
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From now on, we assume that translations have been removed and that rovibrational

coupling can be neglected within the accuracy provided by the methods used for dynamics.

Therefore, we may assume that the nuclear Hamiltonian for the αth electronic state of a

nonlinear polyatomic molecule has been reduced from 3N to D = 3N − 6 dimensions, and

is expressed in normal mode coordinates as

Hα(q, p) =
1

2
pT ·m−1 · p+ Vα(q), (77)

where q and p are D-dimensional vectors of position and momentum, and m is a D-

dimensional diagonal mass matrix.

In vibrational spectroscopy, only one electronic state is involved, and therefore only one

potential energy surface is needed. The simplest model is the harmonic potential,

V1(q) =
1

2
(q − q1)T · k1 · (q − q1), (78)

where k1 is a D-dimensional diagonal force constant matrix and where we assume that the

minimum occurs at q = q1 with energy V1(q1) = 0. The harmonic model often provides a

good approximation close to the minimum of a potential energy surface, but breaks down,

of course, in anharmonic and floppy systems.

In electronic spectroscopy, the situation is much richer because energy surfaces describing

different electronic states can have different minima, different force constants, and even

different normal modes. To be specific, let us consider only two electronic states. The

simplest model for the excited state surface is the displaced harmonic potential

V2(q) := ∆E + V1(q −∆q) = ∆E +
1

2
(q − q2)T · k1 · (q − q2) , (79)

where ∆E is the adiabatic excitation energy and ∆q = q2 − q1 is the displacement from the

minimum of the harmonic potential V1 given by Eq. (78). Modes j with nonzero ∆qj are

the modes excited by the electronic transition.

There are two natural ways to construct displaced harmonic models as approximations

to an anharmonic system: the adiabatic shift and vertical gradient approximations. Both

methods use Eqs. (78) and (79) with k1 given by the Hessian of the ground surface at the

equilibrium geometry, and thus avoid computing excited-state Hessians. In the adiabatic

shift approximation, q2 is given by the optimized excited-state geometry, whereas in the

vertical gradient approximation, this optimization is avoided and the q2 parameter in the

model (79) is obtained by evaluating the gradient of the ab initio excited-state potential

energy at the ground-state equilibrium geometry (Avila Ferrer and Santoro, 2012; Egidi

et al., 2014; Fortino et al., 2019):

q2 := q1 − k−1
1 · gradq V2,ab initio|q1 . (80)
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V1

V2

Vertical

Adiabatic

FIG. 2. In the vertical harmonic and adiabatic harmonic models, the excited-state potential energy

is expanded to the second order about the minimum of the ground-state and excited-state potential

energy surfaces, respectively.

An improvement that accounts for changes in the force constants in the excited state is

provided by the displaced and distorted harmonic potential

V2(q) := ∆E +
1

2
(q − q2)T · k2 · (q − q2) (81)

with a diagonal matrix k2 6= k1. Finally, one can also include the Duschinsky rotation

between the ground-state and excited-state normal modes, to obtain the most general har-

monic model, described still by Eq. (81), but allowing a general D × D symmetric force

constant matrix k2.

A harmonic model, given by Eqs. (78) and (81), which has been constructed as an approx-

imation to an anharmonic system, is said to be a global harmonic approximation. Among

all possible global harmonic approximations, two special ones stand out. In the vertical har-

monic approximation, both V1 and V2 are expanded to the second order about the minimum

of the ground state potential V1 (see Fig. 2). This approach provides a good approximation

in the Franck-Condon region, and is therefore expected to be accurate for short propagation

times, which determine the initial decay of the autocorrelation function C(t) and hence the

overall envelope of the electronic spectrum. In the adiabatic harmonic approximation, in

contrast, each Vα is expanded about its own minimum (see Fig. 2); in particular, k2 is given

by the Hessian of V2 at the minimum of V2. Often, but not always, this second approach

provides a better approximation for the period of oscillations and hence for the vibrational

peak spacing in the spectra.

Further improvements require including anharmonicity. The one-dimensional Morse po-

tential

Vα(q) = Vα,0 + dα(1− e−aα(q−qα))2 (82)

is a good starting point for including anharmonicity of the degrees of freedom corresponding

to bond stretches. In Eq. (82), qα is again the location of the minimum Vα,0 of the potential,

while parameters aα and dα are both related to the curvature and anharmonicity of the

potential. The adiabatic excitation energy is given by the difference ∆E := V2,0 − V1,0.
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Anharmonicity in the symmetric torsional or umbrella motions can be represented by a

quartic perturbation to the quadratic potential:

Vα(q) = Vα,0 +
1

2
kα(q − qα)2 +

1

12
δα(q − qα)4. (83)

Here, δα controls the magnitude of the perturbation, and we have, for simplicity, written

out Vα explicitly only for one degree of freedom.

One can, of course, generate more accurate anharmonic potential energy surfaces by

fitting more sophisticated analytical functions to ab initio energies evaluated at an appro-

priately chosen set of molecular configurations. In contrast, in the on-the-fly approach, the

potential required for the dynamics is evaluated only along the trajectory; the fitting and

construction of global surfaces are avoided. The on-the-fly approach has the advantage that

the true molecular potential does not have to be approximated—instead, one can employ the

best available electronic structure to obtain the energy at the point of interest. The draw-

back is, of course, that the on-the-fly approach works only in connection with semiclassical,

mixed quantum-classical, or trajectory-based quantum methods, but not with methods that

rely on global or semiglobal surfaces.

Finally, in electronic spectroscopy, one can choose to approximate one surface by a global

harmonic model, while treating the other with the on-the-fly approach. This combined

global harmonic/on-the-fly approximation is popular in linear spectroscopy, where the initial

wavepacket is commonly the ground vibrational state of the initial electronic state. Because

the harmonic approximation is valid near the minimum of the surface, it produces an accu-

rate initial wavepacket. For wavepackets generated this way, the on-the-fly and combined

methods are equivalent in the linear spectra calculations. In contrast, in the simulations

of time-resolved spectra, the nuclear dynamics is performed in both electronic states; as a

result, the global harmonic, combined, and on-the-fly approaches all give different results

(Begušić et al., 2018b).

A. Several few-dimensional examples

Let us demonstrate the basic features and shortcomings of various models by computing

linear absorption spectra of several few-dimensional examples. The first system is a pair of

two-dimensional harmonic potentials with a nondiagonal excited-state force constant, and

thus exhibiting the Duschinsky effect. Figure 3 shows the spectra computed using either the

global harmonic model, which is exact here, or one of two approximate models. The simpler,

displaced harmonic oscillator model does not account for the change in the force constant

and, therefore, results in incorrect peak positions and intensities. Including the distortion of

the surface in the displaced and distorted harmonic model fixes the peak positions; however,
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the intensities are still rather poor because this model neglects the mode-mixing present in

the system.

Global harmonic = exact = TGA
Displaced and distorted harmonic
Displaced harmonic
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FIG. 3. Absorption spectrum of a pair of two-dimensional harmonic potentials. The excited-

state surface is displaced, distorted, and rotated with respect to the ground-state surface. The

relative dimensionless displacements ∆i =
√
miω1,i/2~(q2,i − q1,i) between the minima of the two

potentials are ∆a = 1 and ∆b = 0.5, the wavenumbers of the two modes are ν̃1,a = 1000 cm−1 and

ν̃1,b = 650 cm−1 in the ground state, and ν̃2,a = 800 cm−1 and ν̃2,b = 600 cm−1 in the excited state;

the modes are coupled via the off-diagonal elements k2,ab = k2,ba = k1,aa/10 of the symmetric force

constant matrix of the excited state, where k1,aa is the element of the ground-state force constant

corresponding to the mode a.

Due to their simplicity, intuitive interpretation, and acceptable accuracy in many molec-

ular systems, global harmonic models have served as the methods of choice for computing

vibronic spectra. However, they tend to fail in floppy molecules and the thawed Gaussian

approximation aims to correct this by including the anharmonicity of the potential at least

partially. Let us see how this works in practice on two examples of one-dimensional quartic

potentials (83) with different degrees of anharmonicity.

In the less anharmonic case (Fig. 4A), the vertical harmonic model yields an incorrect

peak spacing due to incorrect description of the classical motion of the wavepacket on the

excited-state surface. The peak spacing, directly related to the period between the recur-

rences of the autocorrelation function, is captured correctly with the adiabatic harmonic

model, which approximates the classical dynamics much better. However, the envelope

of the spectrum is determined not by the position but by the shape of recurrences. The

shape, in turn, depends on the width and phase of the wavepacket in the Franck–Condon

region. Because the adiabatic harmonic model is not a good representation of the potential

in this region, some of the peak intensities are incorrect. In contrast, the vertical model,

constructed from the Franck-Condon data, recovers the envelope of the progression almost

perfectly. Nevertheless, in this weakly anharmonic system, the adiabatic harmonic model

works, overall, better than the vertical model.
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FIG. 4. Absorption spectra of two quartic potentials with different degrees of anharmonicity. In

both cases, the ground state is a global harmonic potential of wavenumber ν̃1 = 1000 cm−1 and the

minimum of the excited-state quartic potential is shifted by a relative dimensionless displacement

∆ = 3 (see caption of Fig. 3 for definition of ∆). Quartic parameter δ2 was chosen according to

the formula δ2 = (kVH
2 −kAH

2 )/(q2,i− q1,i)
2 so that the adiabatic wavenumber was ν̃AH

2 = 800 cm−1

and vertical wavenumber was either (A) ν̃VH
2 = 1100 cm−1 (less anharmonic case) or (B) ν̃VH

2 =

1400 cm−1 (more anharmonic case).

In the more anharmonic case (Fig. 4B), both global harmonic models fail to reproduce

the exact spectrum. The adiabatic model no longer recovers the peak spacing and, therefore,

describes well only the first few peaks of the progression. The vertical harmonic model again

yields incorrect peak positions; however, it performs somewhat better than the adiabatic

approach because it reproduces at least the envelope of the spectrum. A similar effect has

been observed (Wehrle et al., 2015) in the absorption spectrum of ammonia (see Section VIII

below).

Finally, the thawed Gaussian approximation reproduces the exact spectrum better than

both global harmonic models because it makes only a local harmonic approximation, which

describes the true potential more accurately at all times. In general, modes of different

degrees of anharmonicity are excited when a molecule interacts with an external electro-

magnetic field; however, one cannot know in advance their relative contributions to the

spectrum. Therefore, it is hard to decide, a priori, whether to use the vertical or adiabatic

harmonic model. In contrast, the thawed Gaussian approximation is expected to be at least

as accurate as the better of the two global harmonic approaches, and, in addition, requires

less human input.
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VII. ON-THE-FLY AB INITIO IMPLEMENTATION OF THE THAWED GAUS-

SIAN APPROXIMATION

Because the center of the thawed Gaussian wavepacket follows a classical trajectory, the

thawed Gaussian approximation requires only local information about the potential energy

surface, and is perfectly suited for on-the-fly evaluation of energies, forces, and Hessians

using an ab initio electronic structure code. As a consequence, any ab initio dynamics code

can be easily extended to include the thawed Gaussian approximation.

The computational cost of the Hessian evaluation is often significantly higher than the

cost of the corresponding gradients. However, the Hessians of the potential are not needed

for the classical propagation of the center of the wavepacket; therefore, Hessians at differ-

ent points along the classical trajectory can be evaluated in parallel after the full classical

trajectory is known, significantly accelerating the calculation. Because the Hessian of the

potential energy changes more slowly than its gradient, the computational cost is further

reduced by evaluating the Hessians only once in every several steps of the trajectory (typ-

ically, every few femtoseconds). The Hessians at intermediate steps can be obtained by

interpolation. Alternative approaches exist, such as those based on Hessian updates (Ceotto

et al., 2013; Zhuang et al., 2013) or Gaussian process regression (Alborzpour et al., 2016;

Laude et al., 2018), in which the frequency of ab initio Hessian calculations can be further

reduced by using the energies and gradients to improve the accuracy of the interpolation

or extrapolation procedure. In summary, if parallelization and interpolation are employed,

the Hessian evaluation ceases to be a bottleneck of the thawed Gaussian approximation as

it can be often performed even faster than the propagation of a single classical trajectory.

Once all the ab initio data are collected, the molecular geometries, gradients, and Hes-

sians of the potential are transformed from the 3N Cartesian coordinates to the internal

3N − 6 dimensional coordinate space. The mass-scaled normal mode coordinates are well-

suited for vibrational dynamics of molecules: they provide an intuitive interpretation of the

dynamics and spectra in terms of the vibrational modes of one electronic state. Although

some electronic structure codes accept normal-mode and even general internal coordinates

as input, working with the Cartesian coordinates to communicate between the dynamics

and electronic structure codes is much more robust.

The coupling between the internal (vibrational) and external (translational and rota-

tional) degrees of freedom is reduced by translating and rotating the molecular configura-

tion to the Eckart frame. Let ξref be the 3N -dimensional Cartesian coordinate vector of

a reference configuration and ξ a corresponding vector of a general configuration that we

wish to transform. Furthermore, let XA denote the 3-dimensional vector representing the

coordinates of the Ath atom and X := (X1, X2, . . . , XN) the 3 × N matrix containing the

coordinates of all atoms. Finally, let MA be the mass of the Ath atom and M the N × N
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diagonal matrix with N atomic masses on the diagonal.

The translations are separated and the translational Eckart condition,

N∑
A=1

MAX
trans
A = 0, (84)

is satisfied in the center-of-mass coordinate frame, Xtrans
A := XA −XCM, where

XCM :=
N∑
A=1

MAXA/

N∑
A=1

MA (85)

is the center-of-mass coordinate vector. Satisfying the rotational Eckart condition,

N∑
A=1

MAX
ref
A ×Xrot

A = 0, (86)

where Xrot
A := R · Xtrans

A and R denotes a rotation matrix, is equivalent to finding a 3 × 3

special orthogonal matrix R that minimizes the square distance

∥∥Xref −Xrot
∥∥2

:=
N∑
A=1

MA

∣∣Xref
A −Xrot

A

∣∣2 (87)

in the mass-scaled Cartesian coordinates between the reference configuration Xref and the

final translated and rotated configuration Xrot (Kudin and Dymarsky, 2005); this problem

can be solved, e.g., with the Kabsch (Kabsch, 1978) or quaternion (Coutsias et al., 2004;

Kearsley, 1989) algorithm. The Kabsch algorithm consists in computing the 3 × 3 cross-

covariance matrix

S = Xtrans ·M · (Xref)T , (88)

finding its singular value decomposition S = UΣV T (where U and V are real orthogonal

matrices), and finally recovering the rotation matrix through

R = V

1 0 0

0 1 0

0 0 det(V UT )

UT . (89)

To summarize the procedure of separating translations and rotations in a single equation,

let us revert to the 3N -dimensional vector space notation and define a 3N × 3N block-

diagonal rotation matrix Rξ, composed of N identical 3 × 3 rotation matrices R on the

diagonal, and a 3N -dimensional center-of-mass configuration ξCM containing the N three-

dimensional vectors XCM. The final rotated and translated configuration is given by

ξrot = Rξ · (ξ − ξCM). (90)
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Let O be the orthogonal matrix that diagonalizes the mass-scaled Cartesian Hessian matrix

evaluated at ξref, i.e.,

OT ·m−1/2 · HessξV |ref
ξ ·m−1/2 ·O = Ω2, (91)

where m is the 3N×3N diagonal mass matrix and Ω a 3N×3N diagonal matrix with normal

mode frequencies on the diagonal. Then, the transformation from Cartesian to mass-scaled

normal mode coordinates is given by

q = LT ·m
1
2 · (ξrot − ξref), (92)

where L is a 3N × (3N − 6) submatrix of O from which the six translational and rotational

degrees of freedom are dropped. Similarly, the gradients and Hessians are transformed using

gradqV = LT ·m−
1
2 ·Rξ · gradξV, (93)

HessqV = LT ·m−
1
2 ·Rξ · HessξV ·RT

ξ ·m−
1
2 · L. (94)

VIII. EXAMPLES OF ON-THE-FLY AB INITIO CALCULATIONS OF ELEC-

TRONIC SPECTRA

Having presented, in Section VI A, simple examples demonstrating merits and short-

comings of commonly used models for describing electronic spectra, let us look at realistic

examples based on the on-the-fly ab initio calculations of molecules of increasing size. The

examples use the thawed Gaussian approximation and its extensions (the extended TGA and

the 3TGA), described in Section IV, together with the on-the-fly ab initio implementation

described in Section VII.

A. Absorption and photoelectron spectra of ammonia

Due to its floppy nature, ammonia provides a challenging test of approximations. Ab-

sorption and photoelectron spectra of ammonia have, therefore, been used to validate new

methods, such as the use of curvilinear internal coordinates (Capobianco et al., 2012) or the

combination of the discrete variable representation for the large-amplitude motion and the

global harmonic model for the modes orthogonal to it (Baiardi et al., 2017). The experi-

mental Ã1A
′′
2 ← X̃1A

′
1 (S1 ← S0) absorption spectrum of ammonia contains a single long

progression due to the highly displaced umbrella mode. The nuclear configuration changes

from non-planar (pyramidal) in the X̃1A
′
1 state to planar in the Ã1A

′′
2 state, thus inducing a

large-amplitude motion on the excited-state potential energy surface. Interestingly, the ex-

citation of the totally symmetric N–H stretch mode, which also accompanies this electronic

transition, is not observed as a separate progression (Tang et al., 1990)—this is an example

of the missing-mode effect (Tutt et al., 1987).
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FIG. 5. Absorption spectrum of NH3. A: Comparison of the experimental spectrum recorded at

the temperature of 175 K (Chen et al., 1999) with the spectra computed with the on-the-fly ab

initio TGA using CASPT2 and B3LYP electronic structure methods. B: Spectra evaluated using

the on-the-fly, vertical harmonic, and adiabatic harmonic models (all using CASPT2). All spectra

are rescaled and shifted so that the highest spectral peak in each spectrum is of unit intensity and

positioned at the same wavenumber. Adapted with permission from J. Phys. Chem. A 119, 5685

(2015). Copyright 2015 American Chemical Society.

The computation of the absorption spectrum

σabs(ω) =
ω

3~cε0

|~µ21|2Re

∫ ∞
0

〈ψ(0)|ψ(t)〉ei(E1,g/~+ω)tdt (95)

involves the propagation of the initial vibrational wavepacket |ψ(0)〉 = |1, g〉 on the excited-

state potential energy surface V2(q). Equation (95) assumes the Condon approximation and

accounts for the orientational averaging of the spectrum, hence the factor of three in the

denominator.

Figure 5A compares the experimental spectrum with spectra calculated (Wehrle et al.,

2015) with the on-the-fly ab initio TGA at two different levels of electronic structure theory:

time-dependent density functional theory, with the B3LYP functional, and the CASPT2

method. Interestingly, the peak spacings, which are well described by the on-the-fly TGA,

are not affected by the level of theory employed for the electronic structure. Unlike the on-

the-fly approach, which partially includes the anharmonicity of the excited-state surface, the
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FIG. 6. Photoelectron spectrum of NH3. A: Comparison of the experimental spectrum recorded at

the temperature of 77 K (Edvardsson et al., 1999) with the spectra computed with the on-the-fly ab

initio thawed Gaussian approximation using either the CCSD or MP2 electronic structure method.

B: Comparison of the spectra evaluated with the on-the-fly, adiabatic harmonic, and vertical har-

monic models (all using CCSD). All spectra are rescaled and shifted so that the highest spectral

peak in each spectrum is of unit intensity and positioned at the same wavenumber. Adapted with

permission from J. Phys. Chem. A 119, 5685 (2015). Copyright 2015 American Chemical Society.

global harmonic methods fail to recover the correct shape of the spectrum (see Fig. 5B). The

adiabatic harmonic model gives an inaccurate approximation of the excited-state surface,

resulting in a double progression which is otherwise hidden in the experiment through the

missing-mode effect. The vertical harmonic model captures at least the overall envelope of

the spectrum but overestimates the frequency of the umbrella mode and, consequently, the

spacings between the peaks.

Within the Condon approximation, a rotationally averaged photoelectron spectrum can

be computed also with Eq. (95), but now the state 2 is a cationic state instead of an excited

state of the neutral molecule (see, e.g., Lami et al. (2004)). The photoelectron spectrum of

ammonia (Fig. 6) is better resolved than the absorption spectrum and, therefore, provides

a more stringent test of the on-the-fly ab initio TGA (Wehrle et al., 2015). Yet, the TGA

performs rather well. As in the absorption spectrum, the choice of the electronic structure

method (Fig. 6A) affects only slightly the on-the-fly result, whereas the adiabatic harmonic
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FIG. 7. Herzberg–Teller part of the wavepacket propagated with the ETGA is a Gaussian multiplied

by a linear polynomial in nuclear coordinates. The 3TGA approximates the Herzberg-Teller part

with two displaced Gaussians (black dotted lines). Reprinted from Chem. Phys. 515, 152 (2018).

.

model contains spurious progressions and the vertical harmonic model completely misses the

positions of the peaks (Fig. 6B).

B. Absorption spectra beyond Condon approximation

In general, the transition dipole moment is a function of nuclear coordinates, and the

absorption spectrum is calculated by propagating the modified initial wavepacket |φ(0)〉 =

µ̂21|1, g〉, which includes the transition dipole moment as a factor:

σabs(~ε, ω) =
ω

~cε0

Re

∫ ∞
0

〈φ(0)|φ(t)〉ei(E1,g/~+ω)tdt. (96)

As discussed in Section V D, within the Herzberg–Teller approximation, the transition dipole

moment is a linear function (66) of nuclear coordinates; as a result, the initial nuclear

wavefunction takes the form

φ(q, 0) =
[
µ21(q0) + ∂qµ21|Tq0 · (q − q0)

]
ψ(q, 0), (97)

where ψ(q, 0) is the wavefunction (15) of the initial Gaussian state |ψ(0)〉 = |1, g〉. Because

the projection of the transition dipole moment µ21(q) = ~µ21(q) ·~ε changes depending on the

orientation of the molecule with respect to the polarization ~ε of the electric field, one has to

carefully average the spectrum over all orientations, as discussed in Section V E.

Wavepacket |φ〉 can be evolved with the extended thawed Gaussian approximation, de-

scribed in Section IV C (Patoz et al., 2018). The ETGA wavepacket (97) conserves its form

and the corresponding parameters are propagated according to Eqs. (35) and (36). In con-

trast to the original TGA, the probability density at the center of the ETGA wavepacket is
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not maximum, but actually vanishes. Therefore, the local harmonic approximation about

the wavepacket’s center becomes questionable.

To address this issue, one can use another generalization of the TGA suitable for evaluat-

ing the Herzberg–Teller spectra, but which also accounts for the wavepacket splitting. Recall

that in Section IV D, we mentioned the possibility of using multiple thawed Gaussians to

represent the initial wavepacket. Indeed, the Herzberg–Teller part of the initial wavepacket

is well described by two displaced Gaussians of opposite sign (see Fig. 7) (Begušić et al.,

2018a); the total initial wavepacket in the three thawed Gaussians approximation (3TGA),

which also contains a Condon term, is

φ3TGA(q, 0) = µ21 gq0(q) + fd [gq0+∆d
(q)− gq0−∆d

(q)] . (98)

In Eq. (98), gqc(q) is a normalized Gaussian centered at qc, with zero initial momentum and

phase (p0 = γ0 = 0):

gqc(q) := N0 e
i
2~ (q−qc)T ·A0·(q−qc) , (99)

∆d is a displacement vector and fd a scaling factor ensuring normalization. The two dis-

placed Gaussians are centered at the extrema of the Herzberg–Teller part of the initial

wavepacket; note that there are always exactly two local extrema, regardless of the number

D of vibrational degrees of freedom (for a proof, see Appendix E of Begušić et al. (2018a)).

An extreme case of Herzberg-Teller spectra occurs in molecules, in which the electronic

transition is symmetry-forbidden, but vibronically allowed due to the nonzero elements of

the gradient of the transition dipole moment (Herzberg, 1966). A prototypical example is

the absorption spectrum of benzene Ã
1
B2u ← X̃

1
A1g (Herzberg, 1966; Li et al., 2010), in

which the nonzero elements, corresponding to the doubly degenerate e2g vibrational modes,

arise due to the nonadiabatic coupling between the first and higher excited electronic states

(as discussed in Section V D and in Begušić et al. (2018a); Li et al. (2010); Quack and Merkt

(2011)). The absorption spectrum contains a single progression, attributed to the totally

symmetric ring-breathing mode, and a number of weak hot bands. Because the ETGA and

3TGA, as described above, do not treat finite-temperature effects, we will only discuss the

peaks of the main progression.

The spectra shown in Fig. 8A imply that in benzene the local harmonic approximation

holds even for the Herzberg–Teller wavepacket because the 3TGA spectrum is only slightly

red-shifted (≈ 10 cm−1) with respect to the ETGA spectrum (Begušić et al., 2018a). The

global harmonic models (Fig. 8B) are not as accurate as the on-the-fly approach (Begušić

et al., 2018a; Patoz et al., 2018). Whereas the relative intensities of adiabatic harmonic

peaks have errors of 20 to 50% and the vertical harmonic model fails completely, the relative

intensities of the on-the-fly peaks lie within 5% of the experimental values. Finally, Fig. 8C

confirms that including the Herzberg–Teller contribution in this system is absolutely essential

because the purely electronic Condon spectrum is zero.
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FIG. 8. Calculated absorption spectra of benzene Ã
1
B2u ← X̃

1
A1g electronic transition compared

to the experimental (Fally et al., 2009; Keller-Rudek et al., 2013) spectrum measured at 293 K. A:

Comparison of the on-the-fly ab initio ETGA and 3TGA spectra. B: Comparison of the on-the-fly,

adiabatic harmonic, and vertical harmonic spectra evaluated with ETGA, i.e., within the Herzberg–

Teller approximation. C: Comparison of the Condon and Herzberg–Teller approximations (both

evaluated using the on-the-fly approach). All spectra are horizontally shifted and rescaled according

to the highest peak. To clarify the difference between the adiabatic harmonic and on-the-fly spectra,

we show the scaled intensities of the experimental, adiabatic harmonic, and on-the-fly peaks. The ab

initio calculations are based on the B3LYP/6-31+G(d,p) electronic structure method. The ETGA

requires only a single trajectory, which was propagated for longer times than the trajectories used

in the 3TGA. Therefore, in A, the broadening is determined by the length of the shorter 3TGA

simulation, while in B and C, where only the ETGA is considered, the spectra are broadened less.

A: Adapted from Chem. Phys. 515, 152 (2018). B and C: Adapted with permission from J. Phys.

Chem. Lett. 9, 2367 (2018). Copyright 2018 American Chemical Society.
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C. Emission spectra of large systems: Quinquethiophene

Computational efficiency is, of course, one of the advantages of a single- or few-trajectory

methods, permitting the treatment of larger systems, which are inaccessible to multi-

trajectory semiclassical methods. Wehrle et al. (2014) applied the on-the-fly ab initio TGA

to compute the emission spectra of oligothiophenes with up to five thiophene units, i.e., up

to quinquethiophene, which, due to its size (105 vibrational degrees of freedom), poses a

formidable challenge to both quantum dynamical and electronic structure methods.

An emission spectrum is obtained by taking the vibrational ground state, |2, g〉, of the

excited-state surface as the initial wavepacket |ψ(0)〉 and by evolving |φ(t)〉 on the ground-

state surface. Within the Condon approximation and zero-temperature limit, the spon-

taneous emission (or fluorescence) spectrum, measured as the rate of emission per unit

frequency between ω and ω+ dω, is a dimensionless quantity that can be computed as (see,

e.g., Lami et al. (2004); Niu et al. (2010))

σem(ω) =
ω3

3π2~c3ε0

|~µ21|2 Re

∫ ∞
0

〈ψ(t)|ψ(0)〉ei(ω−E2,g/~)tdt, (100)

where E2,g denotes the eigenenergy of the state |2, g〉 and |ψ(t)〉 = exp(−iĤ1t/~)|ψ(0)〉.
Oligothiophenes, including quinquethiophene, undergo a change in symmetry upon the

transition from the first excited to the ground electronic state: whereas the excited-state ge-

ometry is planar, the ground-state minimum is twisted along the inter-ring torsional degrees

of freedom (see Fig. 9A). Therefore, the initial wavepacket, constructed at the minimum of

the excited-state surface, starts its evolution at the top of a potential barrier of the ground-

state surface. In this scenario, one could expect the exact wavepacket to split, and therefore

the TGA to fail. However, due to the rather low magnitudes of the imaginary frequen-

cies corresponding to the torsional modes, the simple spreading of the thawed Gaussian

wavepacket (Fig. 9B) provides an adequate description of the dynamics along these modes,

at least during the short time required for simulating the low-resolution emission spectrum

(Wehrle et al., 2014). This picture is confirmed in Fig. 10A, in which the experimental and

calculated spectra are shown to agree both in the positions and intensities of the peaks.

(Note that, in contrast to previous examples, here the computed spectra were not shifted; a

small shift between the experimental and computed peaks is most likely due to the error of

electronic structure method.)

The single TGA trajectory can be used not only to evaluate the spectrum, but also to

understand the spectral features and to generate partially uncoupled models (Wehrle et al.,

2014) that are accessible to more rigorous quantum approaches, such as the multi-layer

multi-configurational time-dependent Hartree (ML-MCTDH) method (Wang and Thoss,

2003). The reason is that the stability matrix Mt, needed in TGA, provides information

about the dynamical coupling within each pair of modes. The simplified system is obtained
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FIG. 9. Inter-ring torsional modes of quinquethiophene and the spreading of the wavepacket.

A: Schematic representation of a section of the potential energy surface along one of the four

torsional normal mode coordinates; the excited-state minimum has a planar configuration, whereas

the ground-state minimum is twisted. B: Spreading of the wavepacket along the four inter-ring

torsional degrees of freedom induced by the inverted potential. To distinguish the four modes, their

excited-state wavenumbers are shown in the legend. The width of the wavepacket along the mode

i is measured by the standard deviation of the probability density, Σi(t) = (2ImAii,t/~)−1/2; the

figure shows relative values with respect to the initial widths. B: Adapted from J. Chem. Phys.

140, 244114 (2014), with the permission of AIP Publishing.

by neglecting the couplings below a chosen threshold (Wehrle et al., 2014); after the decou-

pling, the independent subsystems that contain no significantly excited modes are dropped

from the analysis (Wehrle et al., 2014). Remarkably, the whole process of generating the

partially uncoupled fewer-dimensional models is fully automated and thus completely avoids

“chemical intuition.” Comparison of the full- and reduced-dimensionality TGA calculations

of quinquethiophene spectra in Fig. 10B proves that the main progression of the spectrum is

generated by only four inter-ring-stretch and ring-squeeze modes. To account for the broad-

ening of the peaks, it is necessary to include in the model only four additional vibrational

modes, corresponding to the chain and C-H bond deformations. Overall, by including as

few as eight vibrational modes, the computed spectrum reproduces very well the full 105-
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FIG. 10. Emission spectrum of quinquethiophene. A: Comparison of the experimental spectrum

and the spectrum computed with the full-dimensional on-the-fly ab initio TGA using all 105 normal

modes. B: Comparison of the spectra computed either with the full-dimensional on-the-fly ab initio

TGA or with the TGA applied to the automatically generated reduced-dimensionality models. The

spectra are labeled by the the number of normal modes treated. Adapted from J. Chem. Phys.

140, 244114 (2014), with the permission of AIP Publishing.

dimensional result. A related “divide-and-conquer” semiclassical approach, in which the

decoupling is done differently, has been used by Ceotto and coworkers to evaluate vibra-

tional spectra of fullerene and other large systems that would be otherwise inaccessible to

semiclassical initial value representation (Ceotto et al., 2017).

D. Vibrationally resolved pump-probe spectra

In a pump-probe experiment, the difference between the pump-on and pump-off spectra

is measured. Within the approximations made in Section V F, the differential absorption

cross-section at a probe delay time τ (often simply called the “pump-probe spectrum”) is

evaluated as the half-Fourier transform (Domcke and Stock, 1997; Mukamel, 1999; Pollard

et al., 1990b)

σPP(~ε pu,~ε pr, ω, τ) =
4π2ω|Ẽpu(ω21)|2

~3cε0

|µpu
21 |

2

×Re

∫ ∞
0

[
|µpr
n2|

2C∗ESA(t, τ)− |µpr
21|

2CTRSE(t, τ)− |µpr
21|

2CGSB(t, τ)
]
eiωtdt,

(101)

where µpu
αβ and µpr

αβ are the transition dipole moments ~µαβ [Eq. (68)] projected onto the

polarization vectors ~ε pu and ~ε pr of the pump and probe electric fields, and Ẽpu(ω21) is the

Fourier transform of the pump electric field amplitude evaluated at the transition frequency

ω21 between the ground and excited electronic states (Begušić et al., 2018b). The three terms
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in the integrand arise from three different physical processes: absorption to a higher-excited

electronic state n (“excited-state absorption”),

CESA(t, τ) =
〈

1, g
∣∣∣eiĤ2τ/~eiĤnt/~e−iĤ2(t+τ)/~

∣∣∣ 1, g〉 , (102)

time-resolved stimulated emission,

CTRSE(t, τ) =
〈

1, g
∣∣∣eiĤ2τ/~eiĤ1t/~e−iĤ2(t+τ)/~

∣∣∣ 1, g〉 , (103)

and ground-state bleach,

CGSB(t, τ) =
〈

1, g
∣∣∣eiĤ1t/~e−iĤ2t/~

∣∣∣ 1, g〉 . (104)

In the following discussion, we concentrate on the time-resolved stimulated emission spec-

trum and only in the final result we add the ground-state bleach; the excited-state absorption

signal can be computed in a similar way. Although the excited-state absorption is not neg-

ligible, it is commonly found at a different frequency than the other two contributions.

Therefore, the excited state absorption can be analyzed separately, unlike the ground-state

bleach and stimulated emission, which often overlap (Berera et al., 2009).

As shown in Section V F, to evaluate the time-resolved stimulated emission spectrum,

one must first propagate the nuclear wavepacket for time τ in the excited state, and then

propagate it for time t simultaneously in both the ground and excited states [Eqs. (75) and

(76)]. Within the Condon and ultrashort pulse approximations, the ground-state bleach

contribution to the spectrum is much simpler to evaluate because it is equal to a scaled

linear absorption spectrum discussed in Section V A.

Figure 11 shows the time-resolved stimulated emission spectrum of phenyl radical, com-

puted with the on-the-fly ab initio TGA in Begušić et al. (2018b). Because the Herzberg–

Teller contribution to the absorption spectrum of phenyl radical is negligible (Begušić et al.,

2018a; Patoz et al., 2018), the Condon approximation was used for the time-resolved spec-

trum.

The spectrum exhibits oscillations over a broad range of wavenumbers, reflecting the

dynamics of the wavepacket in the excited state: As the wavepacket leaves the Franck–

Condon region, the energy gap decreases, shifting the spectrum towards lower wavenumbers

[Eq. (113)]. Along with the changes in the position of the spectrum, the vibrational resolution

also changes periodically as a function of the delay time (see Fig. 12). As the wavepacket

moves away from the initial position, the spectra become broader and less resolved; the

resolution of the spectrum is recovered when the wavepacket returns to the Franck–Condon

region. The period of ≈ 36 fs observed in the time-resolved stimulated emission spectrum

corresponds to the wavenumber of the most-displaced mode in the excited electronic state

(924 cm−1). The time-resolved stimulated emission component of the pump-probe spectrum

in Fig. 11B changes significantly with the delay time τ , whereas the ground-state bleach
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FIG. 11. Time-resolved stimulated emission spectrum (A) and the pump-probe spectrum (B)

including both the stimulated emission and ground-state bleach of phenyl radical evaluated with

the on-the-fly ab initio TGA. Both spectra were rescaled according to the maximum of the pump-

probe spectrum in the right panel. Ab initio calculations are based on the B3LYP/SNSD (Baiardi

et al., 2013) electronic structure method. Reprinted from J. Chem. Phys. 149, 244115 (2018).
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FIG. 12. Computed time-resolved stimulated emission spectra of the phenyl radical at several

probe delay times τ . All spectra are scaled by the maximum of the on-the-fly spectrum at zero

delay time. Adapted from J. Chem. Phys. 149, 244115 (2018).

is constant; a similar pattern has been observed in other systems, both experimentally

(Fragnito et al., 1989; van der Veen et al., 2011) and in calculations based on harmonic

models (Pollard and Mathies, 1992; Pollard et al., 1990a,b).

Useful measures for analyzing the pump-probe spectra as a function of the delay time τ

are the mean 〈ω〉τ :=
∫
ωσ0(ω, τ)dω and width (more precisely, standard deviation) ∆ωτ :=√

〈ω2〉τ − 〈ω〉2τ of the normalized spectral lineshapes (Ferrer et al., 2013; Pollard et al.,

1990b)

σ0(ω, τ) =
σPP(ω, τ)/ω∫

(σPP(ω, τ)/ω)dω
. (105)

Both quantities can be expressed in terms of the energy gap operator ∆V̂ = V̂2− V̂1 and the

excited-state wavepacket |ψ(τ)〉 = |ψα(0, τ)〉 [Eq. 76] at time τ . The mean of the spectrum
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is determined by the expectation value of the energy gap (Pollard et al., 1990b),

〈ω〉τ =
1

~
〈ψ(τ)|∆V̂ |ψ(τ)〉, (106)

while the width is given by the standard deviation of the energy gap (Pollard et al., 1990b):

∆ωτ =
1

~

√
〈ψ(τ)|∆V̂ 2|ψ(τ)〉 − 〈ψ(τ)|∆V̂ |ψ(τ)〉2. (107)

For a thawed Gaussian wavepacket ψ(τ) and within the local harmonic approximation,

the mean and width of the spectra can be evaluated analytically (Begušić et al., 2018b) as

〈ω〉LHA
τ =

1

~
[∆Vτ +

1

2
Tr(∆V ′′τ · Σ2

τ )], (108)

∆ωLHA
τ =

1

~

√
(∆V ′τ )

T · Σ2
τ ·∆V ′τ +

1

2
Tr(∆V ′′τ · Σ2

τ ·∆V ′′τ · Σ2
τ ), (109)

where ∆Vτ , ∆V ′τ , ∆V ′′τ are, respectively, the energy gap, its gradient, and Hessian evaluated

at the center qτ of the wavepacket at time τ :

∆Vτ = V2|qτ − V1|qτ , (110)

∆V ′τ = gradq V2|qτ − gradq V1|qτ , (111)

∆V ′′τ = HessqV2|qτ − HessqV1|qτ . (112)

Remarkably, evaluating the mean and width of the pump-probe spectrum from expressions

(106)–(107) does not require running trajectories on the ground surface; this is only necessary

if the full, frequency-resolved spectrum is wanted.

If the two potential surfaces have similar curvatures (∆V ′′τ ≈ 0), then Eqs. (108) and

(109) simplify further to:

〈ω〉appr
τ = ∆Vτ/~ (113)

∆ωappr
τ =

1

~
√

(∆V ′τ )
T · Σ2

τ ·∆V ′τ . (114)

According to Eq. (113), the mean of the spectrum can be computed by evaluating the energy

gap along a single excited-state classical trajectory. The widths of the spectra, however,

require the full TGA propagation on the excited-state surface as well as the ground-state

gradients along the excited-state trajectory.

Comparison between the global harmonic and the more accurate on-the-fly results (see

Fig. 12) indicates the presence of anharmonicity effects. In spite of a very good description

of the mean of the spectrum (see Fig. 13), the global harmonic approximation completely

loses the accuracy of the frequency-resolved features. Moreover, the success of the global

harmonic approximation in describing at least the mean of the spectra is due to a partial

error cancellation arising from omitting anharmonicity in both potential energy surfaces.
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FIG. 13. Means (A) and widths (B) of the computed time-resolved stimulated emission spectra of

the phenyl radical. Adapted from J. Chem. Phys. 149, 244115 (2018).

IX. CONCLUSION AND OUTLOOK

In this chapter, we have discussed one of many possible approaches to the calculation of

vibrationally resolved electronic spectra of molecules: The on-the-fly ab initio semiclassical

thawed Gaussian approximation avoids constructing a global potential energy surface by

evaluating the potential energy, its gradient, and Hessian only where needed along a classical

trajectory and, moreover, takes into account all degrees of freedom. At the other extreme are

approaches using exact quantum propagation on reduced-dimensionality surfaces, globally

harmonic surfaces, or other approximate surfaces such as those with the potential energy

function expressed in the “sum-of-products” form.

The very simple TGA cannot compete with the accuracy of exact quantum methods if

those are feasible in a given system. Yet, the TGA has two properties of central importance

for molecular quantum dynamics and, in particular, for evaluating vibrationally resolved

electronic spectra: First, the TGA is exact in a globally harmonic potential, which is often a

decent starting point for approximating the exact potential energy surface of a rigid molecule.

Moreover, the TGA performs well in nearly-harmonic potentials, outperforming the global

harmonic approaches by including anharmonicity at least partially. Second, the TGA is exact

in the short-time limit and, in practice, accurate at times before the wavepacket splitting

takes place; this is often sufficient for describing low-resolution vibronic and ultrafast time-

resolved spectra.

42



PR
EP
RI
NT

In Section VIII, we have shown several examples of on-the-fly ab initio calculations of

both steady-state and time-resolved molecular electronic spectra. Surprisingly, the Condon

absorption and photoelectron spectra computed with the TGA are accurate even in the

rather floppy molecule of ammonia. We have mentioned two extensions of the TGA for eval-

uating spectra beyond the Condon approximation. Both the extended TGA and the 3TGA

allow the treatment of Herzberg-Teller spectra of fairly large molecules. In benzene and other

molecules in which wavepacket splitting is negligible, the spectra are well described with the

simpler, one-trajectory ETGA, at a cost of the original TGA. As shown on the emission spec-

trum of quinquethiophene, the on-the-fly ab initio TGA is feasible in rather large molecules.

In this particular system, the accuracy of the spectrum is not corrupted by the double-well

nature of the potential energy surface, which justifies using the Gaussian wavepacket ansatz

in the simulation of low-resolution electronic spectra. On the quinquethiophene example,

we have also shown that the single-trajectory TGA would be useful even if its accuracy were

unsatisfactory; when this happens, the reduced-dimensionality models generated through

the automatic decoupling procedure can be subsequently treated with more accurate semi-

classical or exact quantum dynamical methods. A similar automated “divide and conquer”

approach, based on somewhat different criteria for the decoupling, was used successfully

by Ceotto and coworkers for computing vibrational spectra (Ceotto et al., 2017). The last

of the examples, namely the pump-probe spectrum of the phenyl radical, proves that the

on-the-fly ab initio calculations are feasible even when more trajectories are required and

that the blind application of global harmonic models is dangerous: Due to cancellation of

errors between the ground and excited states, the global harmonic models can yield accu-

rate observables, such as means of spectra, even in anharmonic systems whose vibrationally

resolved spectra are strongly affected by the anharmonicity.

Because the TGA and its extensions mentioned in this chapter require only a single or

few classical trajectories, along with the corresponding Hessians, such methods allow an on-

the-fly implementation in conjunction with rather high-level ab initio electronic structure

calculations. In contrast, many-trajectory approaches such as the variants of the Herman-

Kluk initial value representation, on one hand result in more accurate nuclear dynamics, but,

on the other hand, require many trajectories for convergence, which makes them practical

only with less accurate electronic structure methods. Overall, it seems that until on-the-

fly ab initio many-trajectory approaches become more efficient, the TGA will remain an

interesting option for evaluating spectra of slightly anharmonic molecules. Therefore, it is

also worthwhile to explore ways to eliminate the shortcomings of the TGA without increasing

too much the computational cost.

The local harmonic approximation, employed in the TGA, holds as long as the wavepacket

is compact because wavepacket spreading leads to incorrect description of the potential at

its tails. Consequently, the single Gaussian wavepacket ansatz cannot describe wavepacket

43



PR
EP
RI
NT

splitting or tunneling through barriers. Yet, when the initial wavepacket happens to land on

the top of a potential barrier, which happens in many molecules, the splitting is inevitable.

Typical examples are provided by the absorption spectrum of formaldehyde (Bonfanti et al.,

2018; Tatchen and Pollak, 2009) and emission spectrum of ammonia (Tang et al., 1991).

In ammonia, wavepacket splitting is captured at least qualitatively by representing the ini-

tial wavepacket as a sum of two Gaussians slightly displaced along the floppy mode. The

resulting emission spectrum includes also the progression assigned to the low-frequency um-

brella mode, whereas the single-trajectory TGA reproduces only the N-H stretch progression

(Begušić et al.).

Another possible target for improvement is a further reduction of the computational

cost by exploring different approximations to the Hessians needed in the thawed Gaussian

propagation, such as Hessian updating (Ceotto et al., 2013; Zhuang et al., 2013) or interpo-

lation schemes. An extreme possibility is using only one Hessian for the whole propagation.

Note that this is different from a global harmonic approximation because the single-Hessian

approximation will affect only the wavepacket width and phase, while the center of the

wavepacket will follow the exact, anharmonic on-the-fly classical trajectory, as in the origi-

nal TGA. Such an approximation can be useful when dealing with very large systems, where

the quadratic scaling of the Hessian calculations becomes the computational bottleneck.

Remarkably, using only one Hessian for the thawed Gaussian propagation decouples the

classical propagation of the center of the wavepacket [Eqs. (18) and (19)] from the semi-

classical part [Eqs. (20) and (21)], resulting in a higher-dimensional classical Hamiltonian

structure and rigorous conservation of energy (Begušić et al., 2019), neither of which is true

in the original TGA.

As for the time-resolved spectra calculations, the discussion in Sections V F and VIII D

did not take into account finite pulse duration. If the pulses are much shorter than the

vibrational period, this ultrashort pulse approximation is valid; however, when the time

resolution is lower, the oscillations in the spectra corresponding to high-frequency vibrational

modes disappear. In most experiments, the pulse duration is in the impulsive limit (i.e.,

satisfies the ultrashort pulse approximation) only for the low-frequency vibrational modes,

while the dynamics in the faster modes is not observed. To account for pulse duration in

the TGA and therefore permit a more direct comparison with experiment, all one has to do

is extend the pump-probe methodology from Section VIII D by evaluating the third-order

response function (Begušić and Vańıček) and then convolving it with the pulse envelopes

(Pollard and Mathies, 1992).

In conclusion, we believe that, despite its age and simplicity, it is too early to discard the

TGA and that, thanks to their simplicity, on-the-fly ab initio calculations in general, and

TGA in particular, can be useful not only for the interpretation of existing experimental

data, but also for the design of new experiments. Finally, we would like to acknowledge the
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T. Begušić, M. Cordova, and J. Vańıček. Single-Hessian thawed Gaussian approximation. J. Chem.

Phys., 2019. doi:10.1063/1.5090122.

R. Berera, R. van Grondelle, and J. T. M. Kennis. Ultrafast transient absorption spec-

troscopy: principles and application to photosynthetic systems. Photosynthesis Research, 101

(2–3):105–118, 2009. doi:10.1007/s11120-009-9454-y. URL http://link.springer.com/10.1007/

s11120-009-9454-y.

M. P. Bircher, E. Liberatore, N. J. Browning, S. Brickel, C. Hofmann, A. Patoz, O. T. Unke,

T. Zimmermann, M. Chergui, P. Hamm, U. Keller, M. Meuwly, H. J. Woerner, J. Vańıček, and
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B. Li, C. Mollica, and J. Vańıček. Efficient evaluation of accuracy of molecular quantum dynamics

using dephasing representation. J. Chem. Phys., 131(4):041101, 2009. doi:10.1063/1.3187240. URL

http://link.aip.org/link/?JCP/131/041101/1.

J. Li, C.-K. Lin, X. Y. Li, C. Y. Zhu, and S. H. Lin. Symmetry forbidden vibronic spectra

and internal conversion in benzene. Phys. Chem. Chem. Phys., 12(45):14967–76, 2010. doi:

10.1039/c0cp00120a. URL http://www.ncbi.nlm.nih.gov/pubmed/20949142.

Z. Li, J.-Y. Fang, and C. C. Martens. Simulation of ultrafast dynamics and pump–probe

spectroscopy using classical trajectories. J. Chem. Phys., 104(18):6919–6929, 1996. doi:

10.1063/1.471407. URL http://link.aip.org/link/?JCP/104/6919/1.

R. MacKenzie, M. Pineault, and L. Renaud-Desjardins. Optimizing adiabaticity in quantum me-

chanics. Canad. J. Phys., 90(2):187, 2012. doi:10.1139/p2012-005.

N. Makri and W. H. Miller. Monte carlo path integration for the real time propagator. J. Chem.

Phys., 89:2170–2177, 1988.

R. Marquardt and M. Quack. Infrared-multiphoton excitation and wave packet motion of the

harmonic and anharmonic oscillators: Exact solutions and quasiresonant approximation. J. Chem.

Phys., 90(11):6320–6327, 1989. doi:10.1063/1.456348.

W. H. Miller. Classical S matrix: Numerical application to inelastic collisions. J. Chem. Phys.,

53(9):3578–3587, 1970. doi:10.1063/1.1674535. URL http://scitation.aip.org/content/aip/

journal/jcp/53/9/10.1063/1.1674535.

W. H. Miller. The semiclassical initial value representation: A potentially practical way for adding

quantum effects to classical molecular dynamics simulations. J. Phys. Chem. A, 105(13):2942,

2001.

S. Mukamel. On the semiclassical calculation of molecular absorption and fluorescence spectra.

J. Chem. Phys., 77(1):173–181, 1982. doi:10.1063/1.443638. URL http://link.aip.org/link/

?JCP/77/173/1.

S. Mukamel. Principles of nonlinear optical spectroscopy. Oxford University Press, New York, 1

edition, 1999. ISBN 978-0195092783.

S. Mukamel. Multidimensional femtosecond correlation spectroscopies of electronic and vibrational

excitations. Annu. Rev. Phys. Chem., 51:691 – 729, 2000.

H. Nakamura. Nonadiabatic Transition: Concepts, Basic Theories and Applications. World Scien-

tific Publishing Company, 2 edition, 2012. ISBN 978-981-4329-77-4.

Y. Niu, Q. Peng, C. Deng, X. Gao, and Z. Shuai. Theory of excited state decays and optical

spectra: Application to polyatomic molecules. J. Phys. Chem. A, 114(30):7817–7831, 2010. doi:

10.1021/jp101568f.

51



PR
EP
RI
NT

H. M. Pastawski, P. R. Levstein, G. Usaj, J. Raya, and J. Hirschinger. A nuclear magnetic reso-

nance answer to the boltzmann–loschmidt controversy? Physica A, 283(1-2):166–170, 2000. ISSN

0378-4371. doi:10.1016/S0378-4371(00)00146-1. URL http://www.sciencedirect.com/science/

article/pii/S0378437100001461.
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and intersystem crossing of binuclear metal complexes in solution. J. Am. Chem. Soc., 133(12):

305–315, 2011.
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