Multi-region relaxed magnetohydrodynamic stability of a current sheet
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It is shown that the resistive MHD stability of a slab force-free current sheet can be calculated
using the variational principle of multi-region relaxed magnetohydrodynamics (MRxMHD) and that
the corresponding stability boundary is in exact agreement with linear tearing mode theory.

Over a decade ago, the theory of multi-region relaxed
magnetohydrodynamics (MRxMHD) was proposed by
Hole, Hudson and Dewar [1, 2] in an attempt to con-
nect Taylor’s relaxation theory [3] (which assumes global
relaxation of the plasma and cannot describe equilibria
with pressure gradients) and ideal MHD [4] (which im-
poses a continuous topological constraint on the mag-
netic field and cannot describe the formation of islands
and chaos). In all three theories, macroscopic equilibria
are obtained by extremizing the classical MHD energy
functional [5],
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but with very different constraints. Here V}, is the plasma
volume and ~ is the adiabatic index. In MRxMHD, the
plasma is partitioned into N nested volumes separated
by N — 1 ideal interfaces that are assumed to remain
magnetic surfaces during the minimization of the energy.
In each volume, the plasma undergoes Taylor relaxation,
namely the magnetic helicity
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is conserved within the volume along with the toroidal
and poloidal magnetic fluxes. While varying the plasma
potential energy, W, the ideal interfaces are allowed
to undergo geometrical deformations and the resulting
MRxMHD equilibrium states satisfy

VxB = B (3)
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where [ = 1,...N labels the volumes, p; is a constant
characterizing the Taylor states, and H . Hl is the jump
across the interface separating volumes [ and [+ 1. Equa-
tion (3) implies that the plasma pressure is constant in
each volume. Equation (4) represents the local equiv-
alent of the force-balance condition j x B = Vp. In
fact, it has been shown mathematically that MRxMHD
retrieves exactly ideal MHD in the limit N — oo [6].
And the case N = 1 obviously retrieves Taylor’s the-
ory. MRxMHD allows to calculate three-dimensional, fi-
nite pressure, macroscopic equilibria in toroidal config-
urations, which generally exhibit regions of islands and

magnetic field-line chaos [7]. The class of equilibria that
MRxMHD can describe, which is restricted to stepped-
pressure profiles, has a solid mathematical foundation
in that solutions are guaranteed to exist and with in-
tegrable plasma currents free of unphysical singularities
[8, 9]. We remark that, as of now, there are only a few
other alternative classes of 3D MHD equilibria that are
mathematically well posed [10-12].

The fact that MRxMHD is based on a variational prin-
ciple suggests that while equilibrium states are found
for which 0W = 0, their stability can also be evalu-
ated by studying the sign of §W for a finite perturba-
tion around them. In the ideal limit, N — oo, we expect
that an MRxMHD stability analysis will exactly retrieve
the results of ideal MHD stability. Some numerical work
has already confirmed this for a perturbed screw pinch
equilibrium [13]. However, for finite N, it is expected
that MRxMHD should also provide some information on
potential instabilities that develop through spontaneous
magnetic reconnection. In particular, tearing mode lin-
ear stability — and perhaps nonlinear saturation — may
be described by MRxMHD.

In this Letter, we investigate the question of how
MRxMHD stability relates to resistive MHD stability.
We show that the tearing mode stability boundary for a
slab current sheet is exactly retrieved by MRxMHD sta-
bility analysis, hence illustrating the potentially unifying
approach of MRxMHD for the calculation of equilibrium
and stability of partially relaxed plasmas.

We start by considering a force-free plasma current
slab described by the following equilibrium profiles. A
current density

() = J:o if —a<z<a
I =0 if |[x| > a

(5)
in the “toroidal direction”, z, represents a current sheet
of width § = 2a in the “radial direction”, x. The mag-
netic field corresponding to this current is, by virtue of
Ampere’s law, in the “poloidal direction”, vy,

Bjgr if —a<z<a
By(x) =4 —Bya ifz<a (6)
Bjpa ifr>a

where By, = pojz0. Equations (5) and (6) imply that
there is a j x B force in the radial direction, which must



be balanced by the presence of a guide field B, (x) and the
corresponding current j,(x) = —0;B,. The equilibrium
condition is the continuity of total pressure, namely B2+
B; = const in this case. For a strong guide field, B, >
By, the radial dependence of B, becomes very weak and
the equilibrium in each of the three regions described by
Eq. (6) approaches a Taylor state.

While this equilibrium is ideally stable [14], it is un-
stable to a tearing mode [15], and the magnetic energy
can be lowered if a certain amount of magnetic recon-
nection is allowed at the resonant surface z = 0. In
fact, since B, (0) = 0, any perturbation with wavenumber
k = (0, k,, 0) will satisfy the resonance condition k-B = 0
at x = 0. The instability threshold for the tearing mode
is independent of resistivity and can be calculated from
the linearized ideal MHD equations outside the resistive
boundary layer. Generally, it is given by the sign of

X (6Bz 10) (7)
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with an instability occurring for A’ > 0. Here B, is
the perturbed radial field for a given perturbation with
wavenumber k, and so A’ is generally a function of k. For
the current sheet equilibrium under consideration, and
in the limit of a strong guide field, A’ can be obtained
analytically [15] and is given by

0B,
=01 Ox

2k6(e™k — ko + 1)

s _
A= e~kd 4 ké—1

(®)

where k = k, is the poloidal wavenumber of the pertur-
bation. The conclusion is that this current sheet is always
unstable to a tearing mode, A’ > 0, for sufficiently small
k or sufficiently small width §, as shown in Fig. 1. More
precisely A’ > 0 for k§ < 1.28. However, if we consider
that the system is periodic in the poloidal direction, y,
then the shortest possible wavenumber is k., = 27/L
where L is the length of the current sheet in the y di-
rection. The condition for instability thus becomes a
condition for the current sheet aspect ratio,
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Tearing modes with larger wavenumbers, k = m knin
with m € N*, also become unstable for even thinner cur-
rent sheets, namely for §/L < 0.2/m. This is illustrated
in Fig. 2 where the stability threshold is shown for the
m =1 and m = 2 modes.

We now describe this current sheet equilibrium and
its stability from the perspective of MRxMHD. In the
limit of a strong guide field, the current density is piece-
wise constant, see Eq. (5). Thus we consider a three-
volume MRxMHD equilibrium, Eqs. (3)-(4), with pu; =
3 = 0 for the outer volumes and ps > 0 determining
the amplitude of the current density in the plasma. We
also impose zero pressure, p = 0, and assume that the
equilibrium field as well as the geometry of the interfaces

FIG. 1: Normalized threshold parameter for the tearing mode
instability, A’d, as a function of the normalized perturbation
wavenumber, kd, as obtained from Eq. (8). Inset: schematic
view of the current sheet (shaded red) and the associated
Poincaré plot of the field lines at constant z.

do not have any dependence on y or z. In this case, the
solution to Eq. (3) is analytical [10] and given by
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where Z = x — (x); and f; = ;. Here (x); = (z; +
x1-1)/2 and & = (z; — x;-1)/2 are determined by the
position of the ideal interfaces, x;_; and x;, defining the
boundaries of the relaxation volume [. For given values
of the geometry, x;_; and x;, the solution in volume [
is uniquely determined by three parameters, namely p;
and the enclosed toroidal and poloidal magnetic fluxes,
¥;; and V¥,;. The vacuum limit is well defined since
sin(u)/p — 1 for p — 0. The outermost interfaces, xg
and x3, are assumed to be fixed in order to prevent any
forced reconnection [16]. The location of the internal
interfaces, 1 and xs, is determined by the force-balance
condition, Eq. (4), which can be written as

fi= T+ =0 (12)

for [ = 1,2, and where
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are the forces acting on each side of each interface. The
equilibrium solution can be obtained by solving Eq. (12)
provided that {u, Uy, ¥, } are given in each volume.



We choose p1 = p3 = 0, o = 0.1, U1 = ¥ 3 = (1 —
\I/t72)/2, \I/p72 = 07 and \I/p71 = —\pr,g, = —Mgmt,gfl. The
constraint on the poloidal fluxes ¥, » and ¥, 3 ensures
that the magnetic field is continuous across the interfaces,
thereby implying that the sole current sheet is within
the inner volume. The amplitude of the current density
is proportional to ps and is chosen to be small enough,
oZo < 1, such that we are in the strong guide field limit.
We remark that the exact value of uso is irrelevant since
the tearing mode stability is expected to be independent
of the amplitude of the current, i.e., A’ is independent of
Jjz0, see Eq. (8). Finally, the toroidal flux enclosed by the
current sheet, W, 5, can be varied in order to modify the
equilibrium aspect ratio since we expect that 6/L ~ U, 5.

The stability of these MRxMHD equilibria can be as-
sessed by studying the derivative of the interface force
balance, f; , with respect to poloidal perturbations in
the interface geometry, ;. Writing the perturbed forces
and geometry in Fourier series, f; = > = fim cos(mf)
and x; = ), 1, cos(mb), where § = 2wy/L, we are
interested in the matrix elements

_ afli,mi

Oz1;.m,

where [, = |1+ (¢—1)/M] and mg = g¢—1— (I, — 1) M,
for ¢ = 1...(N — )M, with N the number of relaxed
volumes and M the number of Fourier modes. When
evaluated at fixed magnetic helicity and fluxes, the Hes-
sian matrix, H, represents the second variation of the
MRxMHD energy functional. Hence the eigenvalues of
H provide information about the stability of each per-
turbation eigenmode.

The equilibrium magnetic helicity, Eq. (2), in each vol-
ume can be calculated from Egs. (10) and (11) and is
given by

(15)
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and thus the conservation of fluxes and helicity also im-
plies the conservation of fi;.

Considering first that only m = 0,1 modes exist, an
analytical expression for the Hessian can be obtained by
expressing fi., in terms of xy s at fixed magnetic he-
licity and fluxes. The m = 0 component of the forces,
f1,0, was already obtained in Eq. (12) and we only need
to express it by using the constraint of conserved helicity.
That is,

1 1K kK
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and we immediately see that 0f; ¢/0z;1 =0. Them =1
component of the forces was calculated in [10] and is
given by

fia=(Cr, — CHai1 — Dis1zi411 — Dizi—1q - (18)

where C li and Dj are complicated functions of the equilib-
rium whose exact expression can be found in [10]. Since

at equilbrium z;; = 0, we have that 0f;1/0z0 = 0.
Therefore the Hessian is
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where A; = ﬂlKl/(ﬁlei‘iO).

When evaluating numerically the eigenvalues of the
Hessian, Eq. (19), we discover that they are all pos-
itive except one, A, which becomes negative for suffi-
ciently small current sheet aspect ratio. The correspond-
ing eigenvector is (z10,1,1,%2,0,22,1)x = (0,1,0,-1),
namely, a pure m = 1 perturbation of the two internal
interfaces with an amplitude equal and opposite. Figure
2 shows the dependence of A on §/L. The value of /L
at which X changes sign coincides with that at which A’
changes sign. Since A < 0 implies that the mode is un-
stable, we have just shown that the MRxMHD stability
boundary is in exact agreement with linear tearing mode
theory.
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FIG. 2: Solid blue curves: normalized threshold parameter for
the tearing mode instability, A’d, as a function of the current
sheet aspect ratio, /L, for the m = 1 and m = 2 modes.
Curves obtained from Eq. (8). Solid orange curve: smallest
eigenvalue, A, of the MRxMHD Hessian as a function of the
current sheet aspect ratio, §/L, as calculated from Eq. (19).
Dashed lines with stars: eigenvalues of the MRxMHD Hessian
as obtained from SPEC for the m =1 and m = 2 modes.

We can also show analytically that the condition for
the m = 1 instability, A < 0, corresponds to the tearing
mode onset condition, Eq. (9). In fact, we have that

A=Dy+C; —Cf . (20)



In the limit of a strong guide field, i < 1, and using the
fact that 3 = pu3 =0, ¥, =0, and ¥, = -V, 3 =
—p2¥e 221, we have that
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with ¢ = (2r/L)\/|u3L?/4n% — 1| ~ 27/L. Recogniz-
ing that #29 = /2 and considering a sufficiently large
system, 1 9/L > 1, the condition A < 0 becomes

(£1 F 0Zacoth (20320)) (22)
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which, to first order in §/L, gives §/L < 1/m =~ 0.3.
The more accurate, numerical solution to Eq. (24) is
0/L < 0.203 which is in agreement with the tearing mode
prediciton, Eq. (9).

Finally, we can also use the SPEC code [17] to calculate
the same MRxMHD equilibrium and the corresponding
Hessian but with an arbitrary number of poloidal mode
numbers. Figure 2 shows the eigenvalues obtained for the
m = 1 and m = 2 modes, as a function of the aspect ratio
0/L. The analytical result is recovered for the m = 1
mode and the m = 2 mode becomes unstable exactly as
expected from tearing mode theory, namely at §/L < 0.1.

The fundamental result presented in this letter is that
MRxMHD can be used to predict linear resistive stability
of force-free equilibria. That is, resistive MHD stability
can be obtained from a variational principle! We would
like to notice that, even though we have considered here
a particular current profile (with the advantage of being
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analytically tractable), we expect that the equivalence
between tearing and MRxMHD stability persists for any
current profile (described by piece-wise constant currents
in MRxMHD), although this has to be tested numerically.
However, the effect of pressure on stability still needs to
be carefully investigated. In fact, it is very possible that
the effect of pressure on tearing mode stability will be
quite restrictive in MRxMHD, given that the variational
principle from which it derives contains, as in ideal MHD,
some simplified equation of state relating pressure and
density variations [17]. We therefore must address this
question in future investigations.

An important implication of these findings is that
numerical codes like SPEC, which calculate MRxMHD
equilibria in toroidal geometry and can compute the Hes-
sian with an arbitrary large number of modes, may be
used to predict the resistive stability of tokamaks as well
as that of arbitrarily shaped stellarators. Moreover, if an
equilibrium is found unstable, the nonlinear saturation of
the mode could be easily obtained by finding the nearby,
lower energy state. In particular, this would provide a
fast way of predicting saturated island widths. Future
investigations will address this question.
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