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“Begin at the beginning," the King said gravely, “and go

on till you come to the end: then stop."

— Lewis Carroll, Alice in Wonderland

“The important thing is not to stop questioning.

Curiosity has its own reason for existence. One cannot

help but be in awe when he contemplates the mysteries

of eternity, of life, of the marvelous structure of reality. It

is enough if one tries merely to comprehend a little of this

mystery each day."

— Albert Einstein
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Abstract
Virtual reality (VR), the interactive experience of being immersed in a simulated environment,

has seen a tremendous development in the last years. Numerous applications came into being,

ranging from flight simulators through a virtual ascent of Mount Everest, through surgery

simulators or scenarios to treat acrophobia. These applications serve different purposes and

are not designed for the same populations. To enhance the VR experience, the specifics of

the targeted audience must be taken into account during the development of virtual environ-

ments.

The intensity of a virtual experience depends on three main factors: the quality and rendering

of the virtual environment, the interaction opportunities and aspects inherent to the user such

as physical abilities or previous VR experiences. This thesis addresses the latter two aspects.

Part I describes the development of a body-machine interface for the immersive steering of

simulated or real drones. Chapter 2 describes a systematic analysis of spontaneous gestural

strategies selected by untrained participants asked to interact with a drone. I show the exis-

tence of patterns common to the considered population. In chapter 3, I use these patterns

to define gestural control strategies to pilot a drone. In particular, I demonstrate that using a

set of torso movements leads to better steering performances and faster learning than with a

joystick commonly used for this kind of task.

In Part II, I focused on multisensory integration, which is necessary to interact with such a

system, and the development thereof along childhood. In chapter 4, I evaluated the steering

abilities of 6-10 year-old children on the flight simulator developed earlier. These experiments

revealed that the selection of the appropriate head-trunk coordination strategy is immature in

children until the age of 8, even if these strategies are already part of the postural repertoire.

Eventually, in chapter 5, a virtual archery game highlighted the development of visuomotor

integration during childhood.

These studies emphasized the benefits of user-driven interaction interfaces over pre-existing

devices and brought up age-related interaction differences which should be considered when
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designing virtual environments.

Keywords:Virtual reality, human-machine interaction, body-machine interface, teleoperation,

motor control, motor coordination, motor development, multisensory integration, children
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Résumé
La réalité virtuelle (VR), c’est-à-dire l’expérience interactive d’être immergé dans un environ-

nement simulé par ordinateur, a connu un développement fulgurant au cours des dernières

années. De nombreuses applications ont ainsi vu le jour allant des simulateurs de vol à une

escalade virtuelle de l’Everest, en passant par des systèmes d’entraînement à la chirurgie

ou des scénarios pour traiter le vertige. Ces applications ont des buts différents et ne s’ad-

dressent pas aux mêmes publics. Pour que l’expérience de l’utilisateur soit optimale, il est

donc indispensable de prendre en compte les spécificités de chaque population cible lors du

développement d’un environnement virtuel.

L’intensité de l’expérience virtuelle dépend de trois facteurs principaux : la qualité et la pré-

sentation de l’environnement, les possibilités d’interactions et des qualités intrinsèques à

l’utilisateur, telles que ses capacités physiques ou de précédentes interactions avec la VR. Dans

cette thèse, je traite de ces deux derniers aspects.

La première partie présente le développement d’une interface corps-machine permettant à un

utilisateur de piloter de manière immersive un drone virtuel ou bien réel. Le chapitre 2 décrit

une analyse systématique des stratégies gestuelles choisies spontanément par des participants

sans expérience préalable pour interagir avec un drone. Je montre que des motifs communs

apparaissent dans la population étudiée. Dans le chapitre 3, ces motifs sont utilisés pour

définir des stratégies de contrôle gestuelles pour piloter un drone. Je démontre en particulier

que l’utilisation de mouvements du torse permet un meilleur contrôle et un apprentissage

plus rapide qu’avec un joystick communément utilisé pour ce type de tâche.

Dans deuxième partie, je me suis intéressée à l’intégration multisensorielle nécessaire pour

interagir avec ce type de système et le développement de celle-ci au cours de l’enfance. Dans

le chapitre 4, j’ai évalué la capacité d’enfants âgés de 6 à 10 ans à piloter le simulateur de vol

développé ci-dessus. Ces expériences ont montré que la sélection de la stratégie de coordina-

tion tête-tronc optimale n’était pas mature avant l’âge de 8 ans, bien que cette stratégie fasse

déjà partie du répertoire postural. Enfin, dans le chapitre 5,un jeu de tir à l’arc virtuel à permis

de mettre en lumière le développement de l’intégration visuo-motrice au cours de l’enfance.
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Ces études soulignent les bénéfices d’interfaces d’interactions centrées sur l’utilisateur en com-

paraison avec des dispositifs pré-existants et mettent en avant des différences d’interaction

liées à l’âge, qui doivent être prises en considération lors du développement d’environnements

virtuels.

Mots-clés : Réalité virtuelle, interface homme-machine, interface corps-machine, téléopération,

control moteur, coordination motrice, développement moteur, intégration multisensorielle,

enfants
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Zusammenfassung
Virtuelle Realität (VR), das interaktive Erlebnis, in einer simulierten Umgebung eingetaucht

zu sein, hat sich in den letzten Jahren enorm entwickelt. Zahlreiche Anwendungen kamen zu

Stande, von Flugsimulatoren, über Trainingssysteme für Chirurgen oder zur Behandlung von

Höhenangst, bis zur virtuellen Besteigung des Mount Everest. Diese Anwendungen dienen

unterschiedlichen Zwecken und richten sich an verschiedene Zielgruppen. Um die Benutze-

rerfahrung zu steigern, sollten die Eigenschaften jeder Zielgruppe bei der Entwicklung einer

virtuellen Umgebung berücksichtigt werden.

Die Intensität einer virtuellen Erfahrung hängt von drei Hauptfaktoren ab: der Qualität und der

Wiedergabe der virtuellen Umgebung, den Interaktionsmöglichkeiten sowie den Aspekten, die

dem Benutzer inhärent sind, wie z. B. körperliche Fähigkeiten oder frühere VR-Erfahrungen.

Die vorliegende Arbeit beschäftigt sich mit den letzten beiden Aspekten.

Teil I beschreibt die Entwicklung einer Körper-Maschine-Schnittstelle zur immersiven Steue-

rung simulierter oder echter Drohnen. Kapitel 2 präsentiert eine systematische Analyse von

spontaner Bewegungsstrategien, die von Teilnehmern ohne vorheriger Erfahrung ausgewählt

wurden, und die zur Interaktion mit einer Drohne aufgefordert wurden. Ich zeige die Existenz

von Mustern, die der untersuchten Bevölkerung gemeinsam sind. In Kapitel 3 verwende ich

diese Muster, um gestische Steuerungsstrategien zum Lenken einer Drohne zu definieren. Ich

zeige insbesondere, dass die Verwendung einer Reihe von Rumpfbewegungen zu besseren

Lenkleistungen und schnellerem Lernen führt als mit einem Joystick, der üblicherweise für

diese Art von Aufgaben verwendet wird.

In Teil II habe ich mich auf die multisensorische Integration konzentriert, die notwendig ist,

um mit solch einem System zu interagieren, und auf derer Entwicklung während der Kindheit.

In Kapitel 4 habe ich die Lenkfähigkeiten von 6- bis 10-jährigen Kindern auf dem Flugsimulator

untersucht, der zuvor entwickelt wurde. Diese Experimente zeigten, dass die Auswahl der

geeigneten Kopf-Rumpf-Koordinationsstrategie bei Kindern bis zum Alter von 8 Jahren noch

nicht ausgereift ist, selbst wenn diese Strategien bereits Teil des Haltungsrepertoires sind. In

Kapitel 5 zeigte ein virtuelles Bogenschießspiel schließlich die Entwicklung der visuomotori-
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schen Integration in der Kindheit auf.

Schlüsselwörter: Virtuelle Realität, Mensch-Maschine-Schnittstelle, Körper-Maschine-Schnittstelle,

Fernsteuerung, Bewegungskontrolle, Bewegungskoordination, motorische Entwicklung, sen-

sorische Integration, Kinder
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1 Introduction: Fundamentals of vir-

tual reality

Virtual reality (VR) describes an interactive experience in which a user is immersed into

computer-generated environment, designed to be accepted as real, through the stimulation

of one or several sensory modalities. The virtual environment (VE) can be a realistic repre-

sentation of an existing scene or represent a completely fictitious world. VR is a powerful and

versatile tool to elicit realistic perceptions of a plethora of scenarios. Well-designed environ-

ments allow for very intuitive and user-friendly interaction, with remarkably short adaptation

times. Yet, the sensory integration necessary for a lifelike perception of such simulated en-

vironments relies on elaborate and well-coordinated neural processes which develop along

childhood and into early adulthood.

User experience

The sensations a user may experience when immersed in a virtual environment can be de-

scribed at different levels. Immersion is an objective measure of the extent to which a system

presents a scenario perceived as realistic, and depends on the fidelity and diversity of stimu-

lated modalities [1, 2, 3, 4]. Presence is defined as a user’s feeling of ‘being there’ in a simulated

environment and is therefore a subjective quantification [1, 3, 5, 4, 6]. The intensity of the ex-

perience is influenced by personal factors such as spatial orientation or cognitive involvement

[7], and by technological aspects including the level of user-tracking, the use of stereoscopic

visuals, and wider fields of view. On the contrary, improving the quality of visual and auditory

content had only a minor influence [4]. Finally, the sense of agency refers to the feeling of

controlling one’s actions and by extension events in the external or virtual world [8, 9, 10].

Agency has been proposed to arise when the sensory consequences of one’s actions resemble a

prediction thereof [11, 12], and therefore requires some degree of volition [9]. Additionally, the

congruent stimulation of different sensory modalities has also been shown to enhance agency

[13]. On the contrary, discrepancies such as time delays, response inconsistency or movement
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Chapter 1. Introduction: Fundamentals of virtual reality

inaccuracy between an action and its associated feedback interfere with this feeling [14, 15],

as do asynchronous cross-modal stimulations [13]. Interestingly, displaying body-specific

visuals did not improve the experienced agency when compared to abstract shapes [15].

The user experience is shaped by three major factors: the rendering of the VE, which includes

the quality and complexity of the display and the realism of the simulated physics; the user

interface, and finally the users themselves, as intrinsic factors such as previous exposition,

physical and cognitive abilities or emotional state affect the perception of the simulated

scenario [16, 17, 18]. The interaction of these aspects is graphically represented in Figure 1.1.

Virtual environment

User interface User’s abilities

Immersion

Presence

Agency

Figure 1.1 – Elements of a Virtual Experience. The propensity to experience a simulated environment
as realistic relies on multiple factors: the rendering of the virtual world, the straightforwardness of the
interaction interface, and the user’s abilities. (Adapted from [18])

Sensory modalities to render virtual environments

The immersion of a user in a virtual world requires the creation and display of sensory repre-

sentations of the environment, usually through visual, auditory and haptic stimuli.

Vision

Most VR systems use some visual representations to immerse the user in the simulated

environment, as the sole stimulation of this sense appears to be sufficient to elicit a respectable

degree of presence [19]. The simplest manner to display a VE is through a common computer

monitor or television screen. Yet, however large this screen may be, the provided immersion is

limited by the 2-dimensional projection of the VE and the remaining perception of the real
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world. The low level of immersion provided by this approach leaves it on the edge of VR.

Cave automatic virtual environments (CAVEs) provide a higher level of immersion. A CAVE is a

cubic room, in which the walls and often also the ceiling and floor serve as projection surface

for the virtual environment [20]. Users will often wear 3-dimensional (3D) glasses, to get a

stereoscopic perception of the displayed object. They can freely move within the room, while

their real-time position is monitored to continuously adapt the projected images. Multiple

users may be present in the CAVE, but in this case the perspective adapts only to one person.

As the users still see their own body, the visual interface cannot alter its representation.

The highest level of visual immersion is provided by Head-Mounted Devices (HMDs), which

completely mask the real world. A HMD contains two small displays, placed in front of each

eye and each displaying a slightly shifted image to elicit stereoscopic imagery. Current HMDs

embed an inertial sensor, which tracks the rotations of the head and adjusts the rendering

of the VE accordingly, allowing the user to look around. Technical aspects including the

resolution, the field of view and the latency strongly affect the perception of the simulated

environment, and if sufficient standards are not met, may cause users to experience VR

sickness, which induces symptoms similar to motion sickness [21]. Additionally, the short

distance between the eyes and the displays recurrently causes eye strain and extended use

may temporarily affect visual acuity [22].

Sound

Sound can be used to enhance the immersion in a virtual environment by providing additional

and complementary information to vision, thanks to different spatio-temporal characteristics,

thus deepening the immersion. In VR, audio elements have been used in combination with

visual displays to attract the users’ attention to an invisible object or to direct their awareness

toward such an object, to notify events, to set an ambiance (see [18] for a review), or as cues in

a navigation task [23].

Haptics

Haptic renderings provide tactile feedback the form of pressure, force or vibration. Haptic

feedback increases the feeling of presence [24], and are essential when the virtual scenario

involves contact with objects or surfaces, as it improves the realism of these interactions

[25]. Interestingly, the addition of haptic information is described as beneficial, even if it is

not realistic [26]. Similarly, haptic information proved to be a helpful alternative or addition

when the users were not able to accurately integrate the information provided through other

modalities, as may be the case for neurological patients [27, 28].

3



Chapter 1. Introduction: Fundamentals of virtual reality

Haptic devices can take the form of handheld devices, particularly when the VE involves

virtual tools [29, 30, 31], gloves [32, 33] (see also [34] for an overview of commercially available

systems), or garments covering the upper or the entire body [24, 28].

1.1 Interaction interfaces

The richness of VR user experience does not only rely on the quality of the simulated envi-

ronment, but also largely on the user-friendliness of the system’s interaction possibilities. An

ideal interface should be completely transparent to the users who should not perceive the

existence of the intermediary medium [35, 36], and its use should be intuitive, meaning that

only limited training is necessary for proficiency and its use does not require an extensive

cognitive load [37]. In this respect, the requirements for VR user interfaces are comparable

to the criteria for efficient teleoperation. Examples of user interfaces will thus be considered

interchangeably from these domains.

In some cases, the interfaces are bidirectional as they provide sensory feedback while acquiring

data to support the user’s interaction with the VE. HMDs with embedded IMUs are an example

of bidirectional interface.

Handheld devices

Joysticks or game pads are typically used for navigation simulators. The popularity of these

devices derives from their conceptual simplicity and their long-term prevalence in the video

gaming community. The major drawback of these systems lies in the relationship between the

small hand or finger movements executed by the users and the corresponding actions of the

controlled object. Encoding the underlying transformation between these spaces can thus

become cognitively demanding, particularly when both categories of actions differ from each

other to a large extent.

Recent controllers, often developed along with HMDs, combine functionalities of the old-

fashioned devices such as buttons and analog sticks, or trackpads with spatial monitoring

of the hands’ position (see [38] for an overview). These controllers thus allow a (quasi-

)transparent control of continuous motions, while discrete actions are executed through

interaction with the devices’ predefined features, which possibly once more requires a certain

level of cognitive adaptation. Moreover,these systems restrain the interactions to gross hand

movements, which limits the number and the diversity of the available command input.
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1.1. Interaction interfaces

Body tracking

Body tracking refers to the real-time acquisition of parameters defining the orientation and/or

the position of body segments in space. Hardware classes include motion capture systems,

vision-based systems and inertial sensors. Motion capture systems consisting of infrared cam-

eras which track reflective markers placed on the monitored subject’s body are highly reliable

and able to precisely discern small movements. Yet, as these systems are often expensive and

require a large, dedicated space, their use is often limited to research institutes, and restrained

to a defined location. Instead, vision-based systems are often available at affordable range and

have require less spacious areas. however, simple devices may only detect planar movements

and are sensitive to occlusions. More importantly, their performance is affected by poor light-

ing conditions, thus once more constraining the compatible locations. An alternative portable

solution is provided by inertial sensors (inertial measurement units, IMUs), which combine

information from accelerometers, gyroscopes and magnetometers to provide robust estimates

of angles or positions. While lightweight and usable in a large variety of combinations, IMUs

have the flaw of being sensitive to external magnetic fields.

In the particular case of hand tracking, gloves can additionally be used, possibly also as

bidirectional interfaces. By providing haptic information while tracking the hands’ position,

interactions with virtual objects such as grasping or holding reach a new level of realism [39,

33].

The direct translation of body movements into controlling commands for virtual objects or

for teleoperation has been encapsulated under the term Body-Machine Interface (BoMI)

[40]. BoMIs have the advantage of being extremely versatile and adaptable to a plethora of

interactions and diverse populations.

Non-gestural interfaces

Non-gestural interfaces are of particular interest for users with physical limitations or dis-

abilities, which would prevent them from using hand-held devices or to execute precise and

differentiable control gestures, and include among others speech control and Brain-Machine

or Brain-Computer Interfaces (BMI, BCI).

Interacting with a virtual system through speech appears as a straightforward approach, as this

is our main way of communicating. The applications related to VR systems remain, however,

rather anecdotal [41, 42], but the example provided by other electronic systems reveals the

readiness of the necessary technology [43, 44]. Besides technical aspects of speech recognition,

the main limitation of voice control lies in its ability to transmit only discrete commands.

This restrains the modularity of the control and limits the levels of presence the users can
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experience. Additionally, interactions with a third party, such as a therapist providing guidance

during a treatment, is likely to interfere with the vocal commands . Using speech to interact

with a VE may thus be worthwhile for precise, predefined actions, where gestural control would

require a larger effort, and may need to be complemented by other interaction modalities.

BCIs directly acquire and process cortical activity, thus bypassing the motor system, and

are therefore targeted at end-users with limited physical abilities. These interfaces use non-

invasive electrodes to record different signals from the brain activity, which are translated in

real-time into commands. BCI control has been used in VR for navigation [45], object control

[46] or as in neurofeedback implementations [47]. BCIs have been also widely been developed

for teleoperation, for instance to control telepresence systems [48], wheelchairs [49] or drones

[50].

To be successfully operated, BCIs require the users to "encode" the commands in the extracted

signals. The controlled modulation of such signals necessitates practice, but even then,

may be challenging for some individuals and therefore become a cognitively demanding

task[51]. Additionally, the low signal-to noise ratio of the acquired brain activity constrains the

environments and situations in which such interfaces can be used.

1.2 Applications of virtual reality

Thanks to its wide potential and to the development of affordable and lightweight hardware,

VR has been applied in very diverse fields and with different populations. The examples

provided below aim at highlighting the large diversity of these applications, which advocates

for the development of versatile and adaptable interaction interfaces.

Leisure and entertainment

The most prominent application field for VR is the leisure and gaming industry, where immer-

sive systems have been used as supplementary features for computer games or as a risk-free

way to provide one-of-a-kind experiences such as swimming with whales [52], exploring the

top of the Everest [53] or riding a spaceship [54].

Training simulators

Besides entertainment, training simulators represent a prominent field of application for VR,

as it provides learners a safe framework to practice and develop their skills without the real-life

repercussions following errors or failure. These virtual training stations can also generate

emergency-like, complex or situations, which could not be repeatedly practiced otherwise.
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1.3. Ethical considerations

Moreover, the simulators can collect quantitative data on the task execution and provide

feedback to the assessors. Fields of application include flight and pilot training, space training

[55], and military training [56, 57].

Healthcare and medicine

Similarly to flight simulators, medical VEs allow the repeated and risk-free practice of diverse

scenarios, and permit the generation of complex or rare situations with otherwise limited

opportunities for practice. Existing simulators allowing medical students to practice among

others diagnostic manipulations [29, 30], life-saving actions [58] or surgeries [59, 31, 26, 60].

Other systems have been designed for medical education, helping prospective physicians to

spatially visualize organs or systems [61, 62].

Patient-oriented approaches mostly focus on rehabilitation after injuries to the nervous system

and address motor function[63, 64, 65], balance [66, 67], or spatial disorientation [68].

Due to the playful nature of VR-based treatments, numerous systems have been developed

specifically for pediatric conditions, including cerebral palsy[69, 70, 71], autism [72], attention

disorders (see [73] for a review) or for pain alleviation during medical procedures [74, 75].

Sociology and psychology

In psychology, VR scenarios have been successfully implemented for the treatment and as-

sessment of different disorders, including acrophobia [76], anxiety disorders [77], as well

as schizophrenia, eating disorders, or diverse phobias (see [78, 79] for reviews). One major

advantage of VR-based therapies is that patients can individually adapt the strength of the

fearful stimulus, therefore actively influencing the evolution of their treatment. It is however

worth noting that VR-based treatments do not outperform other therapeutic approaches [78,

79].

1.3 Ethical considerations

The increasing availability of highly realistic simulations has raised justified questions about

the ethical implications of using such technology, in particular with vulnerable populations

such as children or psychological patients, be it for research or with a therapeutic aim [80,

81]. State-of-the-art hardware allows the creation and rendering of largely immersive environ-

ments, causing the frontier between real and virtual worlds to thin down [4]. As mentioned

above, VR has been successfully implemented for brief treatments of diverse phobias or trau-

matic disorders through gradual expositions to the fearful stimuli. However, while healthy
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individuals are likely to recognize simulated elements, psychological patients with an altered

awareness or sense of reality may react with unexpectedly strong negative behavioral and

psychophysical responses [82].

Likewise, children and teenagers, whose perception of the reality is still under development,

also present higher risks to hybridize virtual experiences with real events [83, 84]. In a recent

study, Segovia and Bailenson demonstrated that immersive VR induced false memories in

young children after a single exposition to an unknown scenario [85]. More generally, children

have been shown to perceive virtual environments as more realistic than adults [74]. The

stronger feeling of presence may be due to the absence of prefrontal cortical activity in children,

which appeared to regulate this sensation in adults [86, 87].

1.4 Multisensory integration

Adults integrate multisensory information in a statistically optimal way

The gestural interaction with a virtual system requires the joint processing of different sen-

sory modalities including visual, somatosensory and vestibular inputs, which influence and

are influenced by motor output. The coordinated integration of different sensory inputs is

described as multisensory integration (MSI) [88]. The fusion of congruent signals has been

shown to yield estimates about surrounding elements with precision levels exceeding what

could be achieved by a single modality, in terms of speed and accuracy of target detection and

localization, or reduce detection thresholds [89, 88].

The successful handling of multiple sensory stimuli requires the brain to solve two computa-

tional problems. First the integration of informative signals provided by different modalities,

to yield a common estimate. The main challenge of this step is caused by the fact that each

sense provides signals corrupted by an unknown level of noise and may be biased [90] (see

Figure 1.2A). In adults, the accepted model of multisensory integration relies on Bayesian

causal inference, a general principle which minimizes the variance of the final estimate by

weighting the incoming stimuli using maximum-likelihood estimations [91, 90] (see Figure

1.2B).

Additionally, the brain must distinguish between sensory inputs which originate from a single

source and must therefore be fused to improve the precision of the estimate, and signals arising

from separate source which are to be processed separately. The underlying decision-making

process is an extension of the Bayesian approach described above, in which both hypotheses

are weighed by the probability of the respective causal structure [90] (see Figure 1.2C).

The integration of apparently congruent stimuli may also lead to erroneous interpretations. As
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1.4. Multisensory integration

Figure 1.2 – Bayesian models of multisensory integration. A When the sources are separate, the optimal
value matches the most probable unisensory location. B In case of a common souce, the visual and
auditory stimuli are integrated, each weighted by its relative reliability. C The Bayesian approach
can be extended to conflicting situations (e.g. one versus two sources), by weighing the two different
hypotheses by their respective inferred probability [90]

an example, the rubber hand illusion [92] is a scenario in which participants observe a rubber

hand being stroked with a paintbrush, while their own hand receives the same stimulus and is

hidden below the dummy hand. Due to congruent multisensory stimuli (vision, touch and

proprioception), participants begin to perceive the rubber hand as their own.

Visuo-vestibulo-proprioceptive integration for postural control

The integration of multiple sensory stimuli is not only beneficial to optimize the perception of

the surrounding environment, but also to obtain reliable estimates about the body’s current

state. Such estimate is necessary to drive appropriate postural reflexes including head-eye

coordination, the alignment of different body segments, or the generation of compensatory

muscle activities during steady standing or sitting, or during voluntary locomotion [93]. First,

a representation of the current body position and orientation is obtained by the integration of

visual, proprioceptive and vestibular information, which occurs at the level of the cerebellum
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Chapter 1. Introduction: Fundamentals of virtual reality

and the cerebral cortex [94, 95] (see Figure 1.3). This allows the construction of internal bodily

models representing (body schema) in the temporoparietal cortex including the vestibular

cortex and posteroparietal cortex. This information is then transmitted to the supplementary

motor area and the premotor area, where it is used as substrate for adequate motor behavior

[95, 93].

Figure 1.3 – Neural pathways of visuo-vestibulo-proprioceptive integration for postural control [95]

Development of multisensory integration

While early occurrences of MSI have been reported as early as one week after birth in situa-

tions, suggesting innate abilities for hand-eye coordination, or a sensitivity to audio-visual,

visuo-tactile, or audio-tactile properties (see [89] for a review), there is evidence that the ability

to meaningfully integrate the information from multiple sensory modalities matures along

childhood [96, 97, 89]. When asked to discriminate objects based on size of orientation using

visual and tactile cues, children younger than 8 do not show make an optimal use of the

provided multimodal sensory information [98]; instead, one modality appears to dominate

for such a decision task. Interestingly, while vision was used more reliably to discriminate

orientation, tactile information was predominantly used in trials requiring a decision based on

size. This suggests that during the maturation of these integration processes, there is not one

absolutely superior modality, but rather that the most reliable source of information depends

on the constraints of the task. Similarly, a study evaluating the use of multisensory cues during

navigation found that only adults were able to efficiently integrate self-motion with the aid

provided by visual aids, while children aged 8 and younger displayed only little improvement

10



1.4. Multisensory integration

when provided with both sensory signals [99]. However, a recent study showed that, when

provided with a supplementary feedback on the reliability of the individual cues which ad-

ditionally helped to resolve inter-cue biases, young children were able to advantageously

integrate bimodal information in a virtual audio-visual hide-and-seek task [100]. Thus, the

acquisition of efficient multimodal sensory processing may be delayed by the maturation of

the precision and hence the reliability of the individual senses.

The late development of efficient MSI has also been observed in the framework of postural

control. The contribution of the different sensory modalities on maintaining a steady posture

can be assessed by measuring the displacement of the center of pressure of standing partici-

pants asked to keep their eyes open, closed or under optocinetic stimulation while standing on

a fixed or a sway-referenced platform, the latter canceling the influx of proprioceptive informa-

tion originating from the ankle joints. Unsurprisingly, a general trend shows an improvement

of postural stability with age until early adulthood [101]. Replacing a sway-referenced platform

by a fixed support allowed adults to reduce their postural sway by 90% when watching a

sinusoidal visual stimulus, whereas children aged 7-12 only improved their stability by 50%,

thus revealing the stronger reliance on vision over somatosensory inputs in this age range

[102].

Interestingly, the postural stability was found to vary as a function of task demands [103]:

higher postural sway was observed when sitting children were asked to manually aim at a

distant object than when they were tracing a complex shape, a task requiring less postural

adjustments. Other authors similarly found that young children display mature coordination

and stability patterns during low-complexity tasks, but that adult-like behavior develops until

the second decade of life for actions deemed as more difficult (see [104] for a review).

Outline of the thesis

This thesis focuses on two fundamental elements of affecting the interaction with a virtual

system: the user interface and the user’s abilities. Part I addresses the necessity for transparent

interaction interfaces and describes a methodology for the development of such an interface

for the particular of drone steering. Chapter 2 presents a neurophysiological analysis of the

spontaneous gestural behaviors observed in naive subjects asked to interact with a simulated

drone. Chapter 3 builds on this analysis and presents the development and evaluation of two

gestural control strategies for the steering of simulated and real drones, and shows that an

efficient gestural strategy is easier mastered by untrained participants than the use of a state-of-

the-art remote controller. Part II focuses on the development of the postural and multisensory

skills necessary to successfully use an interface as described in Part I. Chapter 4 shows the

age-related maturation of head-torso coordination in the context of VR interactions. Chapter
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5 presents a simpler experiment, which demonstrates the development of the integration

of vision with head and trunk movements and of spatial orientation. Finally, Chapter 6

summarizes the results of this work and provides an outlook of their implications on various

application domains.
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Abstract

The accurate teleoperation of robotic devices requires simple, yet intuitive and reliable con-

trol interfaces. However, current human-machine interfaces (HMIs) often fail to fulfill these

characteristics, leading to systems requiring an intensive practice to reach a sufficient op-

eration expertise. Here, we present a systematic methodology to identify the spontaneous

gesture-based interaction strategies of naive individuals with a distant device, and to exploit

this information to develop a data-driven body-to-machine interface (BoMI) to efficiently

control this device. We applied this approach to the specific case of drone steering and de-

rived a simple control method relying on upper-body motion. The identified BoMI allowed

participants with no prior experience to rapidly master the control of both simulated and

real drones, outperforming joystick users, and comparing with the control ability reached by

participants using the bird-like flight simulator Birdly®.

The contents of Chapters 2 and 3 were published under:

Data-driven Body-Machine Interface for the accurate control of drones

Miehlbradt J., Cherpillod A., Mintchev S., Coscia M., Artoni F., Floreano D.*, Micera S.*

(PNAS, 2018)

Contributions as first author: design of the experiments, data collection, data

processing and analysis, preparation of the figures and redaction of the manuscript.

The flight simulators, the drone and its control were designed by A. Cherpillod.
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Introduction

Teleoperation, a subfield of human-machine interaction (HMI), describes the control at a dis-

tance of an actuated device [105]. Typical applications include deployments in environments

where it is not desirable or possible to send a human operator, such as nuclear plants [106,

107], scenes of natural hazards or more generally in search and rescue missions [108, 109,

110]. The use of teleoperated systems can augment human dexterity and precision, which

are fundamental abilities in those and other fields of application, such as minimally invasive

surgery [60] or microfabrication [111]. Patients suffering from neurological disorders may as

well benefit from teleoperated systems to substitute for lost body functions by controlling

wheelchairs [49, 112] , telepresence systems [113, 48] or robotic manipulators [114]. Successful

teleoperation requires robust and reliable control interfaces. A well-defined interaction should

be transparent [35, 36], rely on intuitive command inputs to ensure rapid proficiency and min-

imize the task-associated workload [37], and provide appropriate feedback (visual, auditory,

haptic) to strengthen the awareness of the operator [115]. A number of existing interfaces

already allow interactions with robotic devices. However, simple third-party devices such as a

joystick show limited performance even with systems with few degrees of freedom (DOFs).

The development of intuitive commands becomes yet more challenging in “non-homologous”

interactions, that is when the operator’s command behaviors significantly differ from the

machine’s realizable behavior, or when their physical abilities are restricted.

A possible approach to address this issue comes from brain-computer interfaces (BCIs), which

bypass behavioral output by directly retrieving the desired information from the cerebral

activity patterns, often relying on mental imagery. Successful examples include the control

of humanoids [116], unmanned aerial vehicles (UAVs) [50, 117, 118], wheelchairs and telep-

resence systems for motion-impaired individuals [49, 112, 113, 48]. BCIs do nonetheless

come with certain limitations, which may prevent their widespread utilization. Firstly, the

non-invasive signal acquisition is associated with a low signal-to-noise ratio and thus a high

sensitivity to perturbations. The use of these systems is therefore limited to relatively con-

trolled environments and may not be suited to everyday activities. Another limitation of this

approach comes from the execution of motor imagery tasks, which strongly constrains the

user’s focus on the completion of the control task. The system is therefore prone to errors in

case of unpredicted and undesired stimuli and a long-term operation is likely to be cognitively

demanding.

Recent and promising developments suggest that Body-to-Machine Interfaces (BoMIs) are a

valuable alternative to BCIs for able-bodied or partially impaired persons. Instead of neural

activity patterns, these systems retrieve information from body motion or from the underlying

muscular activities [40]. The broad spectrum of applications ranges from the control of
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assistive devices by neurological patients [119, 120, 121] to the control of UAVs [122, 123, 39,

124]. BoMIs present one unambiguous advantage over BCIs: they exploit the fine control the

operators can have over their body, while operating a BCI requires to actively modulate the

activity of designed cerebral areas, a task for which humans have no pre-existing ability [120].

BoMIs have therefore the potential to be more robust to external sensory perturbations and

more straightforward to master.

Among the various types of mobile robots, drones have the potential to extend human percep-

tion in unprecedented ways for several civilian applications and disaster mitigation scenarios

[125], but proficient teleoperation of drones with a standard joystick may require extensive

training sessions. Therefore, the identification of more intuitive BoMIs between humans and

drones could reduce training time, improve flight efficiency, and allow the operators to shift

their focus from the control task to the evaluation of the information provided by the drone.

Over the last decade, gesture-based interfaces for the control of flying robots have gained

increasing interest, including approaches using commands from the head [126, 127], the

hand [122, 128, 129], the upper body [109, 123, 130, 131, 132, 133, 134] , or even the entire

body [135]. Systems using head gestures involve a first-person view (FPV) visual feedback

presented to the user through a head-mounted display (HMD) and are thus highly intuitive,

yet this approach prevents the user from visually exploring the environment without affecting

the flight trajectory. Relying on other body parts for the control decouples the steering from

the visual exploration. However, aside from one exception [131] these implementations only

offer a visual feedback in third-person view with the drone flying in the user’s field of view,

thus restricting the level of immersion offered to the operator. Another important limitation

comes from the implementation of discrete commands instead of a continuous mapping of

the user’s movements to the drone’s actions. This characteristic also reduces the immersion

experienced by the user, as modulations of the control input have no effect on the trajectory

of the drone [136] . Only one approach interfaced Microsoft’s Kinect with a quadcopter, with a

direct translation of the user’s gestures into velocity commands for the drone [137]. Lastly, the

majority of the HMIs for the control of drones make use of pre-selected movements, that the

participants have to reproduce. The definition of the control strategy may thus be biased by the

designers’ preferences and fail to encounter patterns that are intuitive to potential operators.

Recent works addressed this issue through Wizard-of-Oz sessions [130, 132, 134] or interviews

[138] to develop more intuitive interfaces, yet still with a focus on discrete commands.

Outline

Chapter 2 presents a structured methodology to identify intuitive communication strategies

for non-homologous continuous human-machine interactions, and we detail this approach in
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the case of immersive gesture-based drone control. Briefly, we first recorded the upper-body

kinematics and muscle activities during the generation of movements that would imitate

the behavior of a flying drone and identified two main interaction strategies used by the

participants. In chapter 3 we assessed the capacity of potential users to actively steer the path

of the virtual drone employing these two strategies. Eventually, we evaluated the transferability

of the skills acquired during simulation training to the control of a real drone. (See Figure 1.4

for an overview)

Figure 1.4 – Study overview
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2 Identification of spontaneous gestu-

ral strategies during human-drone

interactions
2.1 Methods

Participants

We recruited 19 young healthy participants for Experiment 1, 17 of which completed the

experiment (23.7 ± 1.1 years old, one woman). In all the experiments, the participants who

decided to interrupt the experiment suffered from virtual reality sickness. Their data was

excluded from the analyses. All participants gave their written consent for their participation

in the study and for the use of their data including pictures and videos. All experiments were

approved by the local ethical committee.

Experimental conditions

Pilot experiments revealed that neither the flight dynamics (simulated fixed-wing drone or

quadcopter), nor the participant’s position (sitting, standing or lying face down) affected the

movement strategy, or the subjective levels of comfort and immersion (Figure 2.1). To facilitate

the translation towards the control of a real drone, we selected the sitting position, which

requires only light equipment, yet is safer for the operator than standing upright. For the same

reason, we decided to simulate the dynamics of a fixed-wing drone, as these aircrafts typically

display a longer flight autonomy and thus allow the exploration of wider territories [125].

Experimental paradigm

The participants were shown an automatically controlled flight sequence in FPV through a

HMD (Oculus Rift, Development Kit 2, Oculus VR, LLC), and were instructed to follow the

movements of the simulated aircraft using self-selected, flight-like upper-body movements.
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interactions

Figure 2.1 – (A) Reported sensation of flying on a 7-point scale (0: strongly disagree, 7: strongly agree).
(B) Body postures reported as the most intuitive with the fixed-wing flight style. (C) Body postures
reported as the most intuitive with the quadcopter flight style. (D) Overall preferred flight style

Figure 2.2 – Setup for experiment 1

The sequence consisted of alternations of a 6-second baseline (constant forward motion,

speed 12 m/s) and 7-second randomized directional maneuvers (Right banked turn, Left

banked turn, Upward pitch, and Downward pitch). Each new action was notified by a text

indication one second prior to movement initiation. In total, we recorded ten repetitions of

each maneuver. (See Figure 2.2 for a representation of the setup)

Flight simulator

We created a FPV flight simulator using FlightGear with the YASim dynamics model. Low-level

controls, such as propeller thrust and flap inclination were regulated through PID controllers

implemented in a C++ software running in parallel and communicating with the simulator

through UDP/IP. This software also generated a randomized maneuver list before each flight

sequence, and synchronization voltage pulses sent to the motion capture system through an

Arduino board at the beginning of each maneuver.
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2.1. Methods

Motion capture

We acquired the participants’ three-dimensional (3D) kinematics using an eight-camera

motion capture system (Vicon Bonita, Vicon Motion Systems, Oxford, UK) and reflexive

markers placed on their upper body following Vicon’s Plug-in Gait model [139]. Missing data

points were estimated offline using pattern fill interpolations provided by the motion capture

software (Vicon Nexus 1.7.4, Vicon Motion Systems Ltd., UK). All marker trajectories were

low-pass filtered at 6 Hz using a zero-lag fourth-order Butterworth filter and were resampled

at 100 Hz.

Recording of muscle activities

The EMG signals from 32 upper limb and torso muscles (sternocleidomastoid, STER, trapezius

superior, TRAP, infraspinatus, INF, latissimus dorsi, LAT, rhomboid major, RHO, pectoralis

major, PEC, rectus abdominis, ABD, deltoid anterior, DANT, medialis, DMED, and posterior,

DPOST, biceps brachii long head, BIC, triceps brachii long head, TRI, brachialis, BRA, pronator

teres, PRO, extensor digitorum communis, EXT, flexor carpi radialis, FLEX; see Figure 2.3 for

a representation of the electrode placement) were recorded bilaterally using superficial Ag-

AgCl electrodes (Kendall H124SG, ECG electrodes, 30x24 mm) and two wireless transmission

systems (Desktop DTS, Noraxon Inc., USA). The skin was cleaned with medical ethanol and

the electrodes were placed according to the standard procedure for surface electromyography

for non-invasive assessment of muscles (SENIAM) guidelines [140]. Apparatus failures during

the recording sessions rendered the EMG data of 6 participants unsuitable for analysis.

Extraction of the kinematic variables

Using the raw 3D positions of the markers, we computed the trajectories of the center of mass

(COM) of the torso, and right and left upper and lower arms using de Leva’s landmarks and

inertia parameters [141, 142], as well as the bilateral shoulder and elbow joint angles, and

the torso rotations relative to the laboratory framework explained by sequences of Cardan

angles [143, 144]. The torso was modeled as a ball-and-socket joint and its rotation angles

were computed using the ‘Z-X-Y’ sequence (i.e. lateral flexion – flexion/extension – rotation).

The shoulder was also modeled as a ball-and-socket joint. Here, we used the ’X-Z-Y’ sequence

(flexion/extension – abduction – internal/external rotation) to minimize the occurrence of

gimbal lock. The elbow was modeled as a hinge and pivot joint and the corresponding

angles were obtained through the ’Z-X-Y’ rotation sequence, where the second value was not

considered (flexion – pronation/supination)[143, 144].
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Pectoralis major (PEC) †

Deltoid medialis (DMED)  * †

Deltoid anterior (DANT)  * †

Deltoid posterior (DPOS)

Triceps brachii long head (TRI)  * †

Biceps brachii long head (BIC)

Rectus abdominis (ABD)

Brachialis (BRA)

Flexor carpi radialis (FLDS) 

Extensor digitorum communis † 

Pronator teres (PRO)

Sternocleidomastoid (STRCM) * †

Trapezius superior (TRAP) * †

Rhomboid major (RHO)  †

Latissimus dorsi (LAT) *†

Infraspinatus (INFRA) †

Supplementary Figure 2: Locations of the muscles whose activity was recorded in the virtual pursuit task.  * muscles selected for the 

A

B

Figure 2.3 – (A) Front view. (B) Back view. * muscles selected for the subjects using only their torso, †
muscles selected for the subjects using both their torso and their arms

EMG pre-processing

The raw EMG data were first resampled at 500 Hz and detrended. The signals were then

low-pass filtered at 250 Hz, high-pass filtered at 50 Hz, rectified, and low-pass filtered at 5 Hz

to remove noise using seventh-order Butterworth filters [145]. Eventually, each channel was

normalized to its overall maximum.

Strategy clustering

We derived the angular velocities for the bilateral elbow and shoulder angles using the central

differences formula, computed the root mean square (RMS) velocity for each joint and the

norm of the vector containing the RMS values for all four joints. A two-class k-means clustering

applied on the latter value clustered the subjects according to their upper-limb use.

Informativeness of the kinematic variables

The Reliable Independent Component Analysis (RELICA)[146, 147] method was used to parse

the kinematic variables into maximally-independent components (ICs). RELICA enables to

select the components, which are the most stable to data resampling and therefore more likely

to carry significant information [148, 149]. For each subject, ICA was run twenty-five times,

each time after performing a resampling of the original data, and yielded a couple of optimal
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2.1. Methods

mixing and unmixing matrices of reliable ICs. Next, the absolute value of the weight that

each input variable has on each extracted IC (variable weight) was computed. The Segment

Weight was then defined as the sum of the variable weights corresponding respectively to the

3-dimensional COMs or rotation angles. The cumulative segment weight (CSW) was defined

as the sum of the segment weights for all the retained ICs, and values were then normalized so

that the sum of all the CSWs equaled 100 %. Finally, the Total Segment Weight (TSW) of each

segment and its standard deviation were estimated as the average of the CSW across all the

subjects within each group.

Variability of the muscular activities

We used non-negative sparse principal component analysis (NSPCA) to identify the muscles

with the highest contribution to the overall variability of the dataset. NSPCA sorts out the

components with the highest variance, while enforcing a non-negative constraint on their

activation coefficients. This excludes the muscles, which were continuously active during

the trials, and are therefore non-discriminant features [150, 151]. The new projection is

computed iteratively from an initial estimation until convergence at a local optimum. For each

participant, the principal components explaining on average 85% of the dataset’s variance

were used as initial values for the iterative scheme. Remaining (small) negative weights

after convergence were set to zero. The non-negative components were normalized with

respect to their norms. The weights were summed over all non-negative components, yielding

coefficients, which represent the positive contribution of each muscle to the overall variability.

Eventually, these coefficients were averaged across each group of subjects, and the muscles

with a final weight above 0.45 were considered as significantly active.

Linear decoding of kinematic and muscular datasets

For each repetition of each maneuver, we discarded the first and last second of each sequence,

which corresponded to the transitions between poses. We fitted linear discriminant (LDA)

classifiers independently to the kinematic variable and the mean absolute values (MAV) of the

muscular activities (100 ms non-overlapping windows) using leave-one-out cross-validation.

In the subject-by-subject classification, one execution of one maneuver was used as test set.

In the generalization step, we trained the classifier on the data of all-but-one subjects and

evaluated its performance on the data of the remaining subject. The performance of the

classifiers is reported as the percentage of correctly classified samples for each class.
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Statistical analyses

For all experiments, the statistical analyses were performed using custom routines written in

Matlab. Unless otherwise specified, the comparisons between the experimental conditions

were computed with a Kruskal-Wallis test (α = 0.05) and Bonferroni-corrected for multiple

comparisons. The comparison between the variances was computed using Levene’s test.

2.2 Results

Simulated human flight gives rise to two major distinct movement strategies

Out of the 17 participants who completed the experiment, 15 selected similar strategies which

resembled gliding flight, and symmetrically involved both limbs (Figure 2.4D). The two outliers,

which were excluded from subsequent analyses, performed very distinctive movements: one

participant employed solely the arms, pointing towards the direction of change, and the

second one impersonated a form of active, powered flight (Figure 2.4C). We categorized the

participants according to their upper-limb usage, with a k-means classification on the norm

of the root mean square (RMS) angular velocities of the different joints and found that 10

subjects used predominantly their torso but did not actively involve their arms (i.e., their arms

were either rested on their thighs or extended sideward like wings, see Figure 2.4A), while 5

subjects combined torso and arm movements (Figure 2.4B). To account for these different

patterns, we further analyzed both groups separately (hereafter “Torso” and “Torso & Arms”

groups).

Figure 2.4 – Representative traces of the muscle activities and shoulder abduction angles during the
execution of the open-loop task. (A) Participant using only the torso. (B) Participant actively using
both the torso and the upper limbs. (C) Participant categorized as outlier. (D) Participant clustering
according to the selected movement strategies.(top: rhomboid major, middle: deltoid anterior, bottom:
triceps brachii lateral head)
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Muscle activity patterns confirm the presence of two movement strategies

We assessed the activity of major upper body muscles groups during the imitation task and

compared their contribution to the overall data variability across subgroups using NSPCA.

The Torso group displayed a sparse pattern, with six pairs of muscles located on the superior

back (sternocleidomastoid, trapezius superior, latissimus dorsi) and on the upper arm (deltoid

anterior, deltoid medialis, triceps brachii, see Figure 2.5A) found to significantly contribute

to the overall variability. The Torso & Arms group in turn showed a more uniform pattern,

with ten pairs of muscles out of sixteen considered as carrying the relevant variability. All

the contributors for the Torso group were also selected here. The additional muscles were

located on the forearm (extensor digitorum communis) and in the upper trunk (infraspinatus,

rhomboid major, pectoralis major, see Figure 2.5B). These results confirm the existence of two

distinct motion strategies, one involving only the torso, the other one including both torso

and arm movements.

Figure 2.5 – Cumulated factor loadings showing the contribution of each muscle to the overall variance
in the EMG dataset. (A) Participants using only their torso. (B) Participants using their torso and their
arms. The retained muscles (indicated by the black stars) are STRCM, TRAP, LAT, DANT, DMED and
TRI for the Torso group; STRCM, TRAP, INFRA, LAT, RHO, PEC, DANT, DMED, TRI and EXDC for the
Torso & Arms group. The bar graphs represent the means + standard error of the mean over 4 (Torso
group), respectively 5 subjects (Torso & Arms group).

Kinematic variables show uniform levels of discriminant information

We evaluated and compared the amount of discriminant information provided by all consid-

ered upper-body segments, that is the torso, both upper arms, and both forearms, as defined

by the three-dimensional position of their COM, as well as the absolute orientation angles

for the torso and the shoulder and elbow angles. We used the RELICA method to parse the

multivariate dataset into independent components, and to identify the variables carrying
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the relevant information. The averaged segment scores for the Torso group show that the

information is uniformly distributed across all variables. In particular, we found no signifi-

cant difference between the amount of information held by the torso COM and torso angles

(ITorsoCOM = 9.25 ± 1.00, ITorsoAngles = 10.16 ± 0.65, p = 0.098), which indicates that the posi-

tional and angular variables are of equal interest for decoding the movements of this strategy

(Figure 2.6A). Similarly, the level of information was nearly uniformly distributed across the

individual segments for the Torso & Arms group. We also assessed the difference between the

cumulated informativeness carried by all COMs and all joint angles. Once more, we found

that the two subsets of variables held equivalent levels of information (IallCOMs = 51.93 ± 1.33,

IallAngles = 48.07 ± 1.98, p = 0.062, Figure 2.6B). The discriminant information thus appeared

to be equally distributed across all kinematic variables. In view of future applications, we

decided to restrict the subsequent steps of our analysis to the angular data, which can be more

robustly extracted with wearable sensors [152].

Figure 2.6 – Information levels held by the upper body segments in terms of 3-dimensional position or
joint angles. (A) Participants using only the torso. The 3-dimensional displacement and the angles of
the torso appear to hold equivalent levels of information (B) Participants using the torso and the arms.
The informativeness is equally shared between the positional and angular data of all segments and
joints. The bar graphs represent the means + standard deviation over 10 (Torso group) and 5 (Torso &
Arms group) subjects.

Selected kinematic variables lead to higher decoding performances than selected

muscles

Next, we assessed the decoding power held by the full sets of kinematic variables and the

muscular activities, and by the reduced (selected) sets of both types of signals as identified
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in the previous section. For each subject, we implemented LDA classifiers employing one

set of variables with leave-one-out cross-validation. Eventually, we performed a generalized

classification, using the data of all-but-one subjects to build the classifier, which was then

tested on the data of the remaining subjects (Figure 2.7). The EMG-based classification for the

Torso group yielded low accuracies, with similar results for the entire dataset (ATorso, allEMG =

37.65 ± 26.42%), and the selected variables (ATorso, selectedEMG = 34.87 ± 27.29%, p = 0.6).

In particular, the “Forward” and “Up” commands were poorly recognized, with scores in

the range of chance level. In contrast, the data of the Torso & Arms group led to satisfying

performances, again with similar results for the entire dataset (ATorsoArms, allEMG = 76.11 ±
6.23%), and the selected variables (ATorsoArms, selectedEMG = 72.15 ± 10.70%, p = 0.77); with all

movements equivalently well decoded.

The kinematics-based classification yielded outcomes comparable with the EMG-based de-

coders. The accuracy obtained for the Torso group was similar when using the full dataset

(ATorso, allKin = 55.90 ± 8.51%) and the selected variables (ATorso, selectedKin = 60.13 ± 17.16%, p =

0.93). Likewise, the decoding power for the Torso & Arms group was in the same range for the

full dataset (ATorsoArms, allKin = 76.13± 14.43%) and for the selected variables (ATorsoArms, selectedKin

= 75.08 ± 16.11%, p = 0.12). The generalized classification led to lower, yet not significantly dif-

ferent accuracies, for the Torso group (ATorso, gen= 53.02 ± 14.88 %, p = 0.175) and Torso & Arms

group (ATorsoArms, gen= 40.69 ± 8.78%, p = 0.021, not significant at the corrected Bonferroni

level).

These results confirm the good decoding power of the selected datasets as we observed only

minor changes in the decoding performance when the full sets of variables were reduced to

the selected subsets, indicating that the retained factors carried the discriminant information.

In general, we obtained higher decoding accuracies for the Torso & Arms group than for the

Torso group. This reflects the higher inter-movement variability displayed by the Torso &

Arms group, due to the higher number of degrees of freedom. Overall, the selected kinematic

variables, i.e. the joint angles, yielded the best decoding ability. Therefore, we used the joint

angles (torso angles for the Torso group; torso, shoulder and elbow angles for the Torso & Arms

group) as inputs for a closed-loop implementation.
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Chapter 2. Identification of spontaneous gestural strategies during human-drone
interactions

Figure 2.7 – Classification accuracy as percentage of correctly classified samples. (A-D) Subject by
subject and (E) generalized classification for the Torso group. (F-I) Subject by subject and (J) generalized
classification for the Torso & Arms group. The selected EMG were STRCM, TRAP, LAT, DANT, DMED,
TRI for the Torso group and STRCM, TRAP, INFRA, LAT, RHO, PEC, DANT, DMED, TRI, EXDC for the
Torso & Arms group. The selected kinematic variables consisted of the (absolute) torso rotation angles
for the Torso group and the torso, and bilateral shoulder and elbow angles for the Torso & Arms group.
The bar graphs represent the means + standard deviation over 4 (Torso group) and 5 (Torso & Arms
group) subjects.
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3 A Body-Machine Interface for the

control of simulated and real drones

3.1 Methods

Experiment 1 - BoMI control of a simulated drone

Participants

We recruited 48 new, young healthy participants, 44 for of which completed the experiment

(26.9 ± 5.9 years, seven women in the Torso group; 22.2 ± 4.1 years, six women in the Torso

and Arms group). 6 subjects, randomly selected in each group, repeated the experimental

protocol on three consecutive days (25.5 ± 2.1 years, three women in the Torso group; 28.3 ±
4.8 years, three women in the Torso and Arms group). The participants were assigned to the

groups using covariate adaptive randomization with the gender as covariate [153]. 7 additional

participants performed the 3-day experiment using the joystick (24.8 ± 4.2 years, 2 women)

Figure 3.1 – Setup for experiment 2
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Experimental paradigm

The participants were shown a virtual environment in FPV through a HMD. The experimental

session consisted of three distinct parts. The subjects were first shown a one-minute demon-

stration sequence during which the simulated aircraft was flying autonomously through

waypoints, while an avatar displayed the control movements corresponding to the motion

of the aircraft. The participants were then asked to fly along a waypoint path alternating

simple forward motion (baseline) and one of four directional maneuvers (Right banked turn,

Left banked turn, Upward pitch, and Downward pitch), until they reached nine minutes of

training. Eventually, we evaluated the participants’ final ability to steer the virtual drone on

two sequences of forty-two waypoints, corresponding to ten repetitions of each maneuver.

For the overnight retention, the participants repeated the training and the evaluation on 3

consecutive days. (See Figure 3.1 for a representation of the setup).

Flight simulator

We developed a virtual environment using the game engine Unity3D, in which we embedded

a simulated fixed-wing drone flying with a constant speed of 12 m/s. Cloud-shaped waypoints

(diameter 0.6 m, inter-waypoint distance 40 m [154]) represented a path to follow, alternating

simple forward motion (baseline) and one of four directional maneuvers (Right banked turn,

Left banked turn, Upward pitch, and Downward pitch). A waypoint was validated when

the simulated aircraft crossed its supporting vertical plane, defined as the plane passing

through the waypoint and perpendicular to the vector connecting the previous and the current

waypoint (Figure 3.2). The distance between the drone was computed at the position at which

the drone crossed the supporting plane.

Closed-loop control of the flight simulator

The participants’ 3D upper-body kinematics were recorded and streamed to the control

routine in soft real-time using an eight-camera motion capture system as described above. The

raw marker positions were imported into a custom Matlab routine using Vicon’s DataStream

SDK. The routine extracted the angular excursions for the torso, shoulders and elbows as

described previously, and computed the corresponding pitch and roll angles for the virtual

drone, and transmitted the latter values to the simulator via Ethernet after applying a moving

average filter with a window of 10 frames to prevent instabilities, which could arise form the

brief disappearance of the markers used for motion capture.
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3.1. Methods

Definition of the Torso and Torso and Arms control strategies

We implemented two distinct control modes, corresponding to the two main movement

strategies derived from the previous experiment. In the Torso mode, the flexion/extension

of the trunk was directly transmitted as pitch angle, whereas the roll was computed as a

linear combination of lateral flexion and axial rotation. The Torso and Arms strategy was

implemented using a previously trained linear regression. The training set for the regression

algorithm was derived from the data gathered from the participants using their torso and

upper limbs during the strategy identification experiment. We extracted the joint angles

corresponding to the stable phase of each maneuver and computed the average poses for each

subject. The postures were then averaged across all participants of this group, and the resulting

values were centered and rendered symmetric (i.e. the forward, up and down maneuvers

were centered vertically, and the amplitude of the right and left movements was averaged). In

order to enhance the inter-maneuver differentiation, we augmented the amplitude of each

directional maneuver along the direction of displacement. Eventually, the computed joint

angles were used as input for an avatar and were displayed as guideline to four participants

familiar with the experimental setup during a repetition of the open-loop experiment. The

recorded kinematics, and the pitch and roll values of the virtual aircraft served as training data

for the linear regressor.

Performance

A performance metric was computed for each waypoint as a function of the distance d between

its center and the virtual drone, when the drone crossed the vertical plane supporting the

waypoint (Figure 3.2):

perf(d) = 100 ·e−( d
σ

)2
(3.1)

The decay factor σ was computed as the value yielding a performance of 1% when a waypoint

was validated at a distance equal to the overall mean distance and 2.5 standard deviations.

This value was computed from pilot data and corresponded to 21 m.

Learning

For each subject, we computed a learning curve using a moving average over a window of

five waypoints. The individual curves were linearly interpolated between the query points

to obtain a continuous representation of the performance in time and averaged across the

subjects of each group. The resultant average curves were modeled by exponential functions

31



Chapter 3. A Body-Machine Interface for the control of simulated and real drones

Figure 3.2 – Each waypoint was supported by a vertical plane, positioned perpendicularly to the
trajectory from the previous waypoint. The distance d between the drone and the waypoint was
computed at the instant at which the drone crossed the supporting plane.

of the following form [155]:

Perf(t) = a · (1−e−bt ) (3.2)

Experiment 2 - BoMI control of a real drone

Participants

12 new, young healthy subjects were recruited to participate in Experiment 3, 10 of which

completed the experiment (23.9 ± 1.2 years, one woman).

Experimental paradigm

The experimental session began with a training in simulation, consisting of a one-minute pas-

sive sequence teaching the control movements, followed by nine minutes of active waypoint

navigation of the simulated aircraft, as in Experiment 2. After completion of the training, the

participants were given the control of a real drone with FPV video streaming, which they could

fly freely in the flight environment during two minutes to get used to its dynamics. Eventually,

the subjects were asked to steer the drone through 6 circular gates forming an eight-shaped

path comprising right and left turns as well as one ascent and one descent (Figure 3.4), for a

total of ten loops.
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3.1. Methods

(a) Pilot wearing the HMD providing visual feed-
back from the camera embedded on the drone.

(b) Custom-made quadcopter and circular gates to
be crossed during the piloting task

Figure 3.3 – Setup for the BoMI steering of a real quadcopter

Quadcopter and flight environment

We used a quadcopter (weight 0.7 kg, diagonal motor-to-motor distance 32 cm) with an

embedded gimbal camera controlled by the operators’ head movements to provide them a

visual feedback through an HMD (Fatshark Dominator HD2). The control of the quadcopter

reproduced the flight dynamics of a fixed-wing drone[154], as in the simulator. After an

automated take off, the drone had a constant forward speed of 0.5 m/s.

The participants’ raw, 3D trunk kinematics were acquired using an eight-camera motion

capture system, and streamed in (soft) real-time to the control routine, as described above.

Torso extension and flexion were translated into upward and downward commands to the

quadcopter. Torso lateral flexion and axial rotation were linearly combined and translated into

left or right turns. Backward and lateral displacements of the quadcopter were constrained.

The roll and pitch angles computed from the operator’s posture were transmitted to the drone’s

ground computer as previously described for the simulated aircraft. The ground computer

sent commands to the drone through a wireless communication established thanks to two

3DR 915 MHz transmitter modules (3D Robotics, Inc.) connected respectively to the computer

and to the drone. A motion capture system (Optitrack, Natural Point Inc.) monitored the

position and orientation of the drone. This information was transmitted at 20 Hz to the ground

computer and redirected to the drone through the same wireless communication as for the

commands. These attitude data were used by the autopilot to actively stabilize the quadcopter

through a stability control loop running at 250 Hz.

Using six circular gates, we set up a path shaped as a figure of eight comprising the four

maneuvers evaluated in the simulation (right and left banked turns, upward and downward

pitch). The gates had a diameter of 1.52 m. The three lower gates had a height of 1.5 m, while

the higher three reached a height of 2.8 m. The length of the descending and ascending paths,
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Figure 3.4 – Setup for experiment 3

as well as the diameter of the semicircular curves spanned 3 m (Figure 3.4). A virtual repulsive

fence was present to restrict the flying space of the drone and to avoid collision with the walls,

ground and ceiling. A safety pilot who could take over control the drone when necessary was

present in the flight arena.

Performance

The participants’ performance and learning during the VR training were assessed as described

above. We evaluated the ability of the participants to steer the drone along the predefined

path using the percentage of validly crossed gates (PVC) [50], defined as:

PV C = NV ali dGates

NV ali dGates +NCol l i si ons +NSa f et yPi l ot Inter venti ons
(3.3)

An attempt was considered valid when the drone crossed the gate without any collision with

the gate itself or its supports, or any intervention of the safety pilot.

3.2 Results

Experiment 2 - BoMI control of a simulated drone

Participants steering the aircraft using only their torso outperformed those using their

torso and arms

Over a single practice session, all participants displayed a continuous performance improve-

ment. The final performance, evaluated at the end of the session, was significantly higher for

the group using only the torso (PerfTorso = 84.58 ± 17.79%) than for the group using the Torso
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3.2. Results

& Arms strategy (PerfTorsoArms = 62.59 ± 25.88%, p = 0.004) or the joystick (PerfJoystick = 59.42

± 31.35%, p = 0.029). The performance of the Torso group was however comparable to the

results obtained by the participants using Birdly® (PerfBirdly = 93.01 ± 5.87, p =, 0.43 Figure

3.5).

Three-day training leads to a homogeneous performance for the Torso strategy

After three training sessions, the participants using only their torso showed lower variability in

their final performances than those using the Torso & Arms strategy (F5,5 = 10.96, p = 0.02) and

the joystick (F6,5 = 19.88, p = 0.005). This was observed even if, with this reduced number of

participants, there were no differences in terms of performances across the three strategies

(p=0.25).

Figure 3.5 – Control of the simulated drone. (A) Performance evolution during the training phase and
final evaluation after one session. The dotted lines represent the performance averaged across partici-
pants, the full lines the modeled learning curves, and the diamonds indicate the mean performance (*
p < 0.05, ** p < 0.01). (B) Final evaluation on three training sessions on consecutive days. The diamonds
indicate the mean performance.

Experiment 3 - BoMI control of a real drone

We evaluated the transferability of the skills acquired during the VR training to the control of an

actual drone using the Torso strategy, as this approach proved to be superior for the control of a

virtual aircraft. The participants began with a nine-minute VR training as described previously.

Afterwards, they were given the control of a real quadcopter with FPV video feedback, which

they could freely fly for two minutes to get used to its dynamics. Eventually, they were asked to

steer the drone through six gates arranged along a trajectory shaped as a figure of eight (Figure

3.4)
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Kinematic-based control skills transfer from simulation to real environment

After completing the VR training and the free flight, the participants were able to steer the

quadcopter along the defined path with an average PVC of 87.67 ± 9.88%. This result suggests

a transfer of the control skills acquired in simulation and confirms the usability of the Torso

strategy for the steering of a real drone.

3.3 Discussion

We proposed a systematic selection process to identify effective body movement patterns in

non-homologous HMIs and to reduce the sensor coverage necessary for the acquisition of

the discriminant information. We applied the described method to the specific case of flight

and derived a simple body-machine interface for drone control. We found that, despite the

non-innate nature of flying, two common motives emerged during the spontaneous selection

of congruent movements during a virtual imitation task. These two major patterns proved to

be valid command inputs for the control of a virtual drone, with the simpler strategy involving

only movements of the torso leading to higher performances than the strategy employing

both the torso and the arms. Eventually, we demonstrated that a real quadcopter could be

controlled with the first, simpler strategy.

When using only their torso to steer the trajectory of the simulated drone in the virtual

environment, inexperienced participants needed less than 7 minutes of practice to reach a

performance of 84.58% (Figure 6A). By comparison, users performing the same task with a

joystick typically used for piloting drones only reached an average score of 59.42% (Figure

6A). Furthermore, the performance level obtained using the identified BoMI is comparable

to the performance of subjects using the bird-flight simulator Birdly ® to steer the virtual

drone [154](Fig. 5) However, the participants using this platform displayed higher initial

performance and a steeper improvement. Yet, the Birdly ® platform provides haptic and

vestibular feedback in addition to the visual information used in this study, factors known to

improve the execution of teleoperated tasks [152]. The lying position imposed by Birdly ® may

also have affected the rapid proficiency, since this platform allows the entire body to move as a

whole, and this posture may be more closely associated to the idea of flying. Nonetheless, the

comparable final steering performance suggests that the identification of intuitive BoMIs can

compensate to a certain extent the absence of additional sources of feedback, while requiring

only minimal recording apparatus. Moreover, the Torso control method led to 87.7% of gates

crossed without collisions during the steering of a real drone along a complex trajectory

following a 9-minute training in simulation.

On a single session, the two implemented gestural strategies led to significantly different
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performance levels, with the participants using the Torso strategy outperforming those using

the Torso & Arms approach (Figure 6A). This difference was expected, since the Torso & Arms

strategy was derived from the movement patterns displayed by 5 out of 15 participants of

Experiment 1, being therefore less representative of the population. Additionally, while the

Torso strategy mapped 3 body DOFs (torso rotations) to 2 drone DOFs, the participants using

their torso and arms had to correctly coordinate 13 DOFs to control the 2 rotations of the

aircraft. Such an approach may however be of interest in the perspective of an extension of

this work including additional commands or behaviors. All the subjects who practiced for

three consecutive days improved their performance confirming the importance of practice.

However, the intra-group variability significantly differed across the control methods after

the third training session, as the steering ability displayed by some participants using either

the joystick or the Torso and Arms strategy remained low (Figure 6B). Instead, all the subjects

using the Torso strategy displayed a final performance above 77% and the overall performance

variability significantly decreased over time. Therefore, the Torso strategy was the only ap-

proach which all participants managed to master following the three-day training, suggesting

that this method may be suited to a broader range of users.

Surveying the spontaneous interaction strategies selected by non-trained users is a concept

that has already been applied for the development of intuitive controllers for UAVs, either by

means of interviews [138] or through Wizard-of-Oz experimentations [132, 134]. However,

these systems focus on the identification of discrete commands and have the user interact

with the drone from an external perspective. Conversely, our work presents the first case of a

data-driven, gesture-based interface for the continuous and immersive control of drones using

an immersive visual feedback. Our present approach could easily be translated into a wearable

implementation using an inertial measurement unit (IMU) to acquire the 3-dimensional torso

angles. This would provide a substantial benefit over HMIs using video-based motion tracking,

which imposes constraints on lighting conditions in the operating environment and on the

users’ freedom of displacement, and thus limit the applicability of such a controller in natural

environments.

A possible limitation of this study could be found in the mapping (scaling and offset constants)

used to translate upper-body movements into commands of the simulated and real drones.

The chosen mapping has shown to be sufficiently sensitive to steer the drone along the

relatively smooth waypoint paths used in the experiments described here. However, we

cannot exclude that sinuous trajectories involving sharp changes of directions may require

different or even adaptive mapping values. Indeed, it is known that humans make directional

errors when relying only on proprioception to estimate the spatial location of their limbs, and

that these errors are proportional to the distance to the body centerline [156, 157] . Building

on this knowledge, previous studies showed that non-linear transformations of the users’ arm
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movements led to faster and more precise control of a robotic arm than a simple scaling [35,

158]. Further studies will be needed to understand the role of more complex mappings to

extend the results of this work.

Another limitation comes from the small diversity of our study population, which consisted

mainly of young, male university students. It is unknown to which extent experience and

observation shape the human representation of non-innate behaviors such as flight. We can

therefore not exclude that factors such as age, gender, physical condition or familiarity with

technology could lead to the identification of different body motion patterns. However, such

discrepancies may highlight interesting causes in motor learning and representation rather

than invalidating the proposed identification method.

3.4 Conclusion

The results of this study have a significant importance for the field of teleoperation and more

generally HMIs. Often, control strategies are predefined and selected to comply with existing

interfaces rather than derived from spontaneous representations of the interaction. The

implementation of a methodology to identify body-machine patterns for specific applications

could lead to the development of more intuitive and effective interfaces, which could in turn

reduce the training time required to reach proficiency, limit the workload associated with

the operation of the system and eventually improve the reliability of teleoperated missions.

Moreover, the method described in this chapter could be extended to different populations,

machines, and operations, including individuals with limited or impaired body functions.
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Part IIOn the use of virtual reality to expose

developmental coordination patterns

along childhood
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Introduction

Coordinated motor behavior and efficient integration of stimuli from different sensory modal-

ities are essential steps for successful interactions with the surrounding environment [159].

The development of these abilities follows a long-lasting and elaborate process, starting long

before birth and extending into early adulthood. At the level of motor development, the skills

are usually grouped into two categories. First, gross motor skills comprise postural control, lo-

comotion and require the use of axial and proximal muscles. The maturation of these abilities

shows a steep increase until the age of 2, and continues to refine until later during childhood

[160, 161, 162, 163]. Conversely, fine motor skills include precise actions including functional

hand movements, but also require multisensory integration such as hand-eye coordination.

The time course of fine motor development typically extends over a longer time period and

adult patterns are generally not observed before late childhood [164, 165].

The acquisition of a steady posture is a prerequisite for goal-directed behaviors such as

reaching from a sitting position or locomotion [159, 164]. According to the ontogenetic

model of postural development during childhood described by Assaiante et al., two main

principles guide the selection of a given balance strategy: the choice of a stable reference,

which shifts from the pelvis to the head [166, 159], and the gradual mastery of the involved

degrees of freedom (DOF) [167, 168, 159].The coordination strategy evolves from an "en-

block" behavior, which minimizes the number of DOF to be controlled [169, 170] to a fully

articulated strategy, where each DOF is controlled individually. Mature, multi-jointed patterns

are acquired at different ages, depending on the involved joint and the task characteristics.

During locomotion, the "en-block" stabilization has been observed from the acquisition of

upright stance until 6 years, while children aged 7 and more started to display a segmental

control [168]. Similarly, rigid forearm-trunk coupling was observed until 6 years in seated both

during voluntary trunk movements and in response to trunk perturbations [171]. Instead, in

a reaching task, adult head-trunk-arm coordination patterns were observed in children as

young as 2-3 years old for movements in the pitch plane and from 4 years onwards in the roll

and yaw planes[172]. Yet, the activity and temporal recruitment of postural muscles appears

to reach mature levels only after the age of 11 [166]. The ability to decouple head and trunk

movements proves to be particularly useful when having to avoid or circumvent an obstacle

while walking, where anticipatory head movements were observed from 5.5 years onwards,

while younger children displayed a rigid head-trunk connection [173]. Children thus first build

a repertoire of postural strategies, before learning how and when to adequately implement

them. It is worth mentioning that the development of postural control is not a linear process.

Periods with rapid morphological changes such as early adolescence destabilize the recently

acquired patterns and require a recalibration of the sensory-motor strategies [174].
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Notwithstanding, successful postural stabilization does not only involve appropriate multi-

jointed coordination, but often also requires the integration of the information provided by

different sensory modalities. The Bayesian model of multisensory integration (MSI) suggests

that adults fuse redundant sensory inputs in a statistically optimal way by weighting the

sources according to their uncertainty [91, 175]. The ability to combine different cues to

obtain more precise estimates of one’s surroundings appears late in childhood development

[98, 176], that is after the individual modalities have matured [177, 97], unless additional

feedback on the reliability of each cue is provided [100]. Younger children will thus favor the

information provided by the most modality with the highest reliability, in a given context [98,

178]. In the context of postural control, children and adolescents until 15 years standing on

an oscillating platform displayed better stabilization with open than with closed eyes, thus

indicating a strong reliance on vision [174, 162]. The display of an optic flow to elicit automatic

postural movements led to stronger responses in children and adolescents when compared to

adults, and the ability to stabilize these movements improved with age until late adolescence

[179]. This effect was further enhanced when the participants were standing on a sway-

referenced platform [102, 101]. When standing on the unstable platform, which attenuates

the proprioceptive feedback, adults use primarily vestibular information to stabilize their

posture, and this ability matures only during late adolescence [101]. Interestingly, children

aged 7–10 years have been shown to display similar spatiotemporal muscle activation patterns

than adults in response to platform oscillations [180], revealing an earlier development of

automatic postural responses. Similarly, the predominance of visual cues over self-motion has

been shown in children up to 11 years in a navigation task [99, 181]. The late maturation of

visuo-vestibular and visuo-proprioceptive integration has been correlated with the individual

development of these modalities when put in conflict: while adult levels were observed from 3

years for proprioception and from 14 years for vision, vestibular function in 15 year-old still

displayed lower levels of vestibular function than adults [182].

The subjective straight-ahead (SSA), which defines the perception of the antero-posterior

orientation of the body, is a suitable candidate to act as a common reference during the

calibration of visuomotor integration. As a by-product of MSI, the SSA can be altered by acting

on vision through prismatic goggles[183], on vestibular information through subthreshold

rotations [184, 185], or through stimulation of the neck muscles [94]. Neck muscles have

been shown to contribute to the integration of proprioceptive and visuo-vestibular cues in

the absence of vision [184].This yielded a hierarchical model in which the head orientation in

space is defined by the trunk orientation in space and the orientation of the head relative to the

trunk. These results have, however, all be obtained on adult populations, and the maturation

pattern of the SSA is still poorly understood.

The reliance on visual cues can be further challenged by the use of experimental setups
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involving immersive virtual reality (VR) where the participants are immersed in a digital

environment through a head-mounted display (HMD) or thanks to a specifically designed

room with projections on the walls, floor and ceiling (Cave automatic virtual environment,

CAVE [20]). Most VR systems use a visual rendering of the simulated environment, although

other senses have been additionally involved to deepen the immersion [18]. Over the last

years, and thanks to the development of lightweight HMDs [186], the use of VR is expanding to

applications in education [187, 188, 189, 190] and research [85, 191, 181] with healthy children,

and for neurorehabilitation [192, 71, 28, 193] or distraction from painful medical procedures

[74, 75] for pediatric patients. Yet, the majority of these applications offer none or limited

interactions with the virtual environment. Therefore, little is known about how children

perceive the effect of their actions when immersed in VR. Recently, Adams et al. showed that

children displayed stronger and longer-lasting responses than teenagers to prism adaptation

in immersive VR [194].

We previously developed a body-machine interface (BoMI) for the immersive control of a

first-person view (FPV) flight simulator, and showed that healthy adults reached a higher

steering performance with this approach than with a standard joystick [195]. In chapter 4, we

evaluated the ability of school-aged children to control this flight simulator using either their

head or their torso, and we assessed the intersegmental coordination patterns which emerged

during the execution of this task. In chapter 5, we present a different VR system which allows

to specifically study the use of the SSA as a reference frame.
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4 Development of head-trunk coordi-

nation for the gestural control of an

immersive flight simulator
Abstract

The development of appropriate motor coordination patterns is essential for interacting with

the surrounding world. This process relies on a balanced integration of inputs from different

sensory modalities. This integration can be challenged under altered sensory feedback, as

is the case for vision in immersive virtual reality. We have previously developed a Body-

Machine Interface (BoMI) for the immersive control of simulated and real drones, which

was rapidly mastered by adult users without prior piloting experience. Here, we assessed the

development of the motor skills necessary to the control of the BoMI along childhood. We

found that children younger than 9 years old fail to select the most efficient coordination

strategy. In particular, when asked to steer the flight simulator with their upper body, the

younger participants did not use the ’en-block’ behavior displayed by older children and

adults, albeit preferentially selecting this strategy in other tasks.
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Chapter 4. Development of head-trunk coordination for the gestural control of an
immersive flight simulator

The contents of this chapter are part of the publication in preparation:

Immersive virtual reality interferes with the selection of postural strategies in young

children

Miehlbradt J., Cuturi L., Gori M., Micera S.

Contributions as first author: design of the experiments, adaptation of the ex-

perimental setup, data collection, processing and analysis, preparation of the figures

and redaction of the manuscript.

46



4.1. Methods

4.1 Methods

Participants

Thirty-six typically developing children aged 6-10 participated in the study. Two children asked

to stop the experiment and two other ones did not comply with the instructions; their data

was excluded from further analyses. The age groups were as follows: nine 6 year-olds (5 girls),

eight 8 year-olds (2 girls), four 9 year-olds (1 girls) and eleven 10 year-olds (2 girls). Parental

written consent was obtained for all underage participants and the study was approved by

the ethics committee of the health service of the city of Genoa, Italy. In addition, 13 healthy

adults participated to the study (3 women, 10 men, age 28.5 ±3.4 years). The adult participants

gave their written consent for participating to the experiment and this part of the study was

approved by the ethical commission of the Canton of Geneva, Switzerland.

Virtual environment

The virtual environment (VE) was developed using the game engine Unity3D and consisted

of a FPV flight simulator, embedding the dynamics of a fixed-wing drone flying at a constant

speed of 12 m/s, as previously described [154, 195]. A succession of coins to catch (distance

between consecutive coins: 58 m) represented a path to follow, randomly alternating simple

forward motion and one of four directional maneuvers (right turn, left turn, ascent, descent).

The coins’ initial diameter was 1 m and every time one coin was caught, the next one was

enlarged to 2 m. To minimize possible effects of path planning abilities, we additionally

displayed a colored line smoothly connecting the coins, computed as a Catmull-Rom spline

[196]. During the training sequences (see below), a supplementary visual aid was rendered

in the form of a dotted line connecting the participant’s position in the VE to the upcoming

coin. Similarly, to provide the participants a visual cue of their own position in space, an eagle

was displayed below their visual horizon, rendering the impression to ride on the bird’s back.

Finally, to keep the experiment engaging, a tinkling sound was played when the coin was

caught at a distance smaller than 10 m, which also added points to a total score for the trial,

displayed at the top of the screen.

Control of the flight simulator

The participants were asked to control the flight simulator using either head or trunk move-

ments. The ascent (upward pitch) and descent (downward pitch) were achieved by flexion

and extension of the controlling body part. Gains of 2.5 and 1.5 were applied to the ascent and

descent respectively. The right and left turns were computed as lateral flexion + 2·axial rota-

tion. The head and torso rotations were reset to zero before each sequence, at the participants’
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Figure 4.1 – Virtual environment, as seen by the participants, showing the coins to collect and the
yellow line to aid in navigation.

self-selected neutral position corresponding to a straight, forward flight.

Experimental setup

The participants were equipped with a head-mounted display (HMD, Oculus Rift) through

which they were shown the virtual environment, and an inertial measurement unit (IMU,

X-sens MTw Awinda) placed in their back between the scapulae and maintained with a custom

harness to acquire their trunk’s 3-dimensional (3D) rotation (Figure 4.2). The IMU embedded

within the HMD was used both to control the view in the VE and to acquire the head rotations.

The kinematic data were acquired with a sampling period of 68 ms.

Experimental protocol

Upon arriving, the participants were shown the movements to control the simulator using

the head or the torso. They were equipped with the HMD and the IMU, and were seated on a

stool or on a chair and asked not to lean against backrest. The participants were randomly

allocated to start the experiment using the head or the torso. For the torso-controlled trials,

the participants were advised to keep their neck rigid as to move their entire upper body

as a whole. Similarly, before starting the head-controlled trials, the experimenter made the

participant aware that moving their trunk was unnecessary. The recording sessions took place

on two consecutive days (see Figure 4.3). On day 1, the participants had to steer the simulator

along four paths with each body part. The first sequence contained 26 coins and was an
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Figure 4.2 – Experimental setup including the Oculus Rift and one IMU placed in the back

initial evaluation of the performance (hereafter: Before). The second and third sequences

each contained 50 coins and included the supplementary visual feedback. These sequences

were considered as training. The fourth sequence contained 18 coins and did not display the

additional visual feedback anymore (hereafter: After) All the sequences controlled with a given

body part were executed successively. On day 2, one sequence containing 26 coins had to

be performed with each body part (hereafter: Day After). Breaks were allowed between the

sequences, at the participants’ demand.

Evaluation Before

26 coins

Training1

50 coins

Training 2

50 coins

Evaluation After

18 coins

Evaluation Day After

26 coins

//

Day 2Day 1Day 1

Figure 4.3 – Experimental protocol

Descriptive variables

The kinematic data was divided into segments corresponding to the intervals between con-

secutive coins. The descriptive variables were computed on these segments and averaged for

each sequence (see also Appendix A).
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Distance to coin center, horizontal and vertical error [m] For each coin, the unsigned

distance to its center was computed when the participant crossed the vertical plane perpen-

dicular to the trajectory supporting the coin (see Figure 3.2). The unidimensional errors were

computed at the same location, taking into account only the distance in the corresponding

plane. Lower values indicate a better precision in the task execution.

Path ratio [·] The path ratio was defined as the quotient of the traveled path and an ideal

path computed by a Catmull-Rom interpolation between the coins (seesection 4.1). The path

ratio was computed for the entirety of the sequence. High values indicate large deviations

from the ideal path.

Time [s] The duration of the interval between two consecutive coins was extracted as an

indirect indicator of path efficiency. Longer durations indicate large deviations from the ideal

path.

Rotation amplitudes [°] For the head and torso rotations, the amplitudes in each direction

were computed as the interquartile range of all the values recorded during the interval.

Torso speed [°/s] The mean and maximum torso angular velocities were extracted for each

direction individually and normed. In addition, the ratio of the mean and maximum velocities

were computed for the individual directions. A speed ratio close to 1 stands for a smooth

velocity profile, while low values indicate jerky patterns [197, 198].

Head-torso correlation [·] The head-torso correlation assesses the stiffness of the segmental

bond, and was computed in the sagittal, medial and axial planes, and between the latter two

planes.

Anchoring index [·] The head anchoring index ∆σ describes whether the head stabilization

occurs with respect to the torso or with respect to the external space and is defined as follows

[167, 172]:

∆σ=σr −σa (4.1)

whereσa is the standard deviation of the absolute head angles andσr the standard deviation of

the head angles relative to the torso. Positive ∆σ values indicate a preferred head stabilization

to the external space and negative values a better head stabilization to the torso.
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Cross-correlation peak time [s] The peak time of the head-torso cross-correlation indicates

which is the leading body part. Negative delays indicate that the head is moving ahead of the

body, while positive delays mean that the body is leading.

Dynamic time warping (DTW) distance [·] DTW is an algorithm measuring the similarity

between two time series, which may vary in speed, by computing an optimal match between

the sequences. A similarity metric is computed as the sum of the absolute differences between

each pair of matched indices. Since this metric is affected by the number of data points present

in the sequences, the segments to be compared were linearly interpolated to yield the same

number of data points [199, 200].

Spectral arc length (SAL) [·] SAL is a dimensionless measure quantifying movement smooth-

ness based on the arc length of the movement speed profile’s normalized Fourier magnitude

spectrum [201]. SAL values are negative values, where higher absolute values are related to

jerkier movements.

Number of velocity peaks, normalized to the duration of the segment [peaks/s] The time-

normalized number of velocity peaks was computed in each plane for head and torso rotations,

as well as for the rotations of the simulator as a measure of movement smoothness. A lower

number of peaks indicates smoother movements [202].

Principal Component Analysis

Principal component analysis (PCA) was computed on the dataset containing the kinematic

variables extracted from all trials, or from the head- and torso-controlled trials respectively.

Outliers were detected as data points whose euclidean distance to the centroid of the zscored

dataset deviated from the average value by more than 4 standard deviations. These points

were given a weight of 0.5 in the PCA computation. The variables with normalized loadings >

0.75 on the first (all trials, head-controlled trials) or the first two principal components were

considered as significant and were regrouped into functional clusters.

Cluster separability

We assessed the separability among age-defined clusters in the space defined by the first two

principal components using the Davis-Boulding index (DBI) between each pair of clusters

[203].
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Statistical analyses

Statistical evaluations were performed using paired t-tests or repeated-measures ANOVA,

using the age as between-subjects factor and the control type and/or experimental phase as

within-subjects factors. The p-values were corrected using the Greenhouse-Geisser correction,

when Mauchly’s test indicated a violation of sphericity. The p-values were adjusted to the false

discovery rate when multiple ANOVAs were performed. Post hoc analyses were conducted

using Tukey’s honest significant differences test.

4.2 Results

Controlling body part and age affect steering performance

The participants’ ability to steer the flight simulator was assessed by the average distance

to the center of the coins during three phases (see Figure 4.5, higher values indicate lower

performances): before and after the training (Before and After, see 4.1) and on the subsequent

day (Day After). Figure 4.4 displays examples of navigation trajectories and the corresponding

head and torso kinematics. A repeated measures ANOVA revealed a significant effect of Age

(F(4,35) = 7.45, p < 0.001), Control (F(1,35) = 29.52, p < 0.001) and Phase (F(2,70) = 15.44, p

< 0.001), as well as significant interactions for Age and Phase (F(8,70) = 4.41, p = 0.003), Age

and Control (F(4,35) = 5.97, p < 0.001), Phase and Control (F(2,70) = 11.94, p < 0.001) and Age,

Phase and Control (F(8,70) = 4.21, p = 0.003).
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Figure 4.4 – Performance on the steering task

A post hoc Tukey test (see Table ??) revealed that 6 year-olds performed better in the head-
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than in the torso-controlled trials in all phases (Before: p = 0.002, After: p = 0.009, Day After: p

< 0.001). This difference was also significant for the 8 year-old for the evaluation Before (p <

0.001), but not during the other phases. The 6 year-olds improved their steering between the

evaluation before and after training (p = 0.013) and between before training and the second

day (p = 0.014). Similarly, the average distance to the targets diminished in the 8 year-olds

between the evaluation before and after training (p = 0.001) and between before training and

the second day (p = 0.002). In the torso-controlled trials, the 6 year-olds showed significantly

lower performance than the 10 year-olds before training (p = 0.023) and on the second day (p

= 0.02) and than adults in all phases (Before: p = 0.06, After: p = 0.042, Day After: p = 0.001).

Likewise, the 8 year-olds performed worse than the 10 years olds and the adults before training

(p = 0.015 and p = 0.005 respectively). In the head-controlled trials, the 6 year-olds displayed

higher distances than the adults after training (p = 0.001), and than the 10 year-olds and the

adults on the second day (p = 0.013 and p = 0.002 respectively).

Figure 4.5 – Performance on the steering task
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Age Control - Phase1 Control - Phase2 Difference p Cohen’s d
6 Head - Before Torso - Before -38.6 0.002 ** -1.17

Head - After Torso - After -14.27 0.01 ** -0.83
Head - Day After Torso - After -14.58 0.008 ** -0.85
Torso - Before Torso - After 30.43 0.013 * 0.85
Torso - Before Torso - Day After 32.15 0.014 * 0.97

8 Torso - Before Torso - After 50.51 0.001 ** 1.26
Torso - Before Torso - Day After 52.42 0.002 ** 1.28

(a) Effect of experimental condition

Control - Phase Age1 Age2 Difference p Cohen’s d
Head - After 6 Adults 2.76 0.002 ** 1.55
Head - DayAfter 6 10 2.05 0.013 * 1.13

6 Adults 2.47 0.002 ** 1.44
Torso - Before 6 10 40.01 0.023 * 1.34

6 Adults 46.41 0.006 ** 1.66
8 10 50.63 0.015 * 1.45
8 Adults 57.03 0.005 ** 1.78

Torso - After 6 Adults 16.54 0.042 * 1.09
Torso - DayAfter 6 10 11.39 0.02 * 1.07

6 Adults 14.8 0.001 ** 1.52

(b) Effect of age

Table 4.1 – Significant simple effects for the steering performance, * p < 0.05, ** p < 0.01, *** p < 0.001
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Additional visual feedback

To evaluate the potential benefits of an additional visual information, we compared the task

performance before, at the beginning at the end and after the training. The introduction

of the visual feedback (Early training) led to a mild improvement, except for the 8 year-

olds who displayed a substantial drop in the distance to the targets in the torso controlled

trials. Similarly, the suppression of the feedback line after the training did not worsen the

performance, which instead remained at a stable level or further improved. Thus the observed

progress in the steering abilities is most likely attributable to practice, and not the presence of

the supplemental visual aid.
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Figure 4.6 – Effect of the additional visual feedback on the task performance

Segmental coordination differs between torso and head trials

Principal Component Analysis (PCA) applied to all the recorded trials revealed that the first

principal component (PC) accounted for 34% of the dataset’s variability and separated the

head-controlled from the torso-controlled trials (p < 0.001, see Figure 4.7). The kinematic

variables displaying normalized loadings > 0.75 were regrouped into functional clusters:

Cluster 1 encompassed variables describing the torso movements and Cluster 2 variables

associated with the correlation of the head and the torso (see Figure 4.8).

We next assessed the effect of the controlling body segments and the possible interactions

thereof with the participants’ age and the experimental phase on the selected kinematic

variables using repeated measure ANOVAs. The variables with significant effects of Control, or

interactions of Control with Age and/or Phase are summarized in Table 4.2, and Figure 4.9

displays 8 representative variables by age and experimental phase.
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Effect Variable F DOF1 DOF2 p η2
p

Control Torso Amplitude, roll 56.98 4 35 <0.001 *** 0.62
Torso Amplitude, pitch 128.91 4 35 <0.001 *** 0.79
Torso Amplitude, yaw 72.52 4 35 <0.001 *** 0.67
Mean Speed torso, roll 73.84 4 35 <0.001 *** 0.68
Mean Speed torso, pitch 119.41 4 35 <0.001 *** 0.77
Mean Speed torso, yaw 97.61 4 35 <0.001 *** 0.74
Max Speed torso, roll 76.45 4 35 <0.001 *** 0.69
Max Speed torso, pitch 111.96 4 35 <0.001 *** 0.76
Max Speed torso, yaw 85.77 4 35 <0.001 *** 0.71
Torso Speed norm, mean 131.52 4 35 <0.001 *** 0.79
Torso Speed norm, max 121.77 4 35 <0.001 *** 0.78
Head-torso correlation roll 283.23 4 35 <0.001 *** 0.89
Head-torso correlation roll-yaw 1792.71 4 35 <0.001 *** 0.98
Head-torso correlation yaw-roll 195.11 4 35 <0.001 *** 0.85
AI, roll-roll 83.59 4 35 <0.001 *** 0.7
AI, pitch-pitch 196.7 4 35 <0.001 *** 0.85
Cross-correlation peak time, pitch 313.97 4 35 <0.001 *** 0.9
Cross-correlation peak time, roll-yaw 115.65 4 35 <0.001 *** 0.77
Cross-correlation peak time, yaw-roll 208.79 4 35 <0.001 *** 0.86
DTW distance, roll 231.23 4 35 <0.001 *** 0.87
DTW distance, yaw 161.63 4 35 <0.001 *** 0.82

Age:Control Torso Amplitude, roll 4.31 8 70 0.017 * 0.33
Head-torso correlation roll 6.49 8 70 0.002 ** 0.43
Head-torso correlation yaw-roll 5.37 8 70 0.005 ** 0.38
AI, pitch-pitch 8.97 8 70 <0.001 *** 0.51
Cross-correlation peak time, pitch 3.56 8 70 0.036 * 0.29
Cross-correlation peak time, yaw-roll 13.37 8 70 <0.001 *** 0.6
DTW distance, roll 9.66 8 70 <0.001 *** 0.52
DTW distance, yaw 9.24 8 70 <0.001 *** 0.51

Phase:Control Mean Speed torso, pitch 5.99 4 35 0.012 * 0.15
Mean Speed torso, yaw 5.29 4 35 0.021 * 0.13
Max Speed torso, pitch 5.94 4 35 0.017 * 0.15
Torso Speed norm, mean 4.75 4 35 0.029 * 0.12
Torso Speed norm, max 4.72 4 35 0.037 * 0.12
Head-torso correlation roll 4.38 4 35 0.037 * 0.11
AI, pitch-pitch 4.68 4 35 0.031 * 0.12

Age:Phase:Control Mean Speed torso, pitch 3.61 8 70 0.005 ** 0.29
Torso Speed norm, mean 3.32 8 70 0.009 ** 0.27

Table 4.2 – Variables selected after PCA on all trials, with significant effect of Control, or interactions of
Control with Age and Phase
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Efficient head-torso coordination develops with age

To extract the specific variability inherent to the torso steering, we repeated the procedure

described above using only the data from the corresponding trials.

On this partial dataset, PCA revealed an age-based separation in the space spanned by the

first two PCs, accounting respectively for 25.91% and 19.38% of the total variance (see Figure

4.10). Individually, both PC1 and PC2 showed a decreasing trend with age.

Considering the kinematic variables with normalized loadings on the first two PCs larger than

0.75 yielded five functional clusters (see Figure 4.11): Cluster 1 (PC1) and Cluster 2 (PC2)

holding variables describing the torso movements, Cluster 2 (PC1) corresponding to head

movements, Cluster 1 (PC1) characterizing head-torso correlation and finally Cluster 3 (PC2)

containing only the error.

The effects of Age and the interaction of Age with Phase on the identified variables was assessed

by repeated measures ANOVAs. The results of this analysis are displayed in Table 4.3, and

Figure 4.12 shows 8 representative variables by age and experimental phase.

Torso involvement in head-controlled trials decreases with age

Eventually, we reiterated the same analytic process with the data corresponding to the head-

controlled trials. The PCA revealed a soft age-based separation along the first principal
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Effect Variable F DOF1 DOF2 p η2
p

Age Error 6.92 4 35 0.003 ** 0.44
Head Amplitude, pitch 6.32 4 35 0.004 ** 0.42
Head Amplitude, roll 5.92 4 35 0.004 ** 0.4
Torso Amplitude, roll 3.12 4 35 0.041 * 0.26
Torso Amplitude, pitch 6.94 4 35 0.003 ** 0.44
Torso Amplitude, yaw 3.67 4 35 0.027 * 0.3
Mean Speed Torso, roll 1.53 4 35 0.226 0.15
Mean Speed Torso, pitch 3.31 4 35 0.037 * 0.27
Mean Speed Torso, yaw 3.05 4 35 0.041 * 0.26
Max Speed Torso, roll 0.75 4 35 0.563 0.08
Max Speed Torso, pitch 3.29 4 35 0.037 * 0.27
Max Speed Torso, yaw 4.15 4 35 0.016 * 0.32
Torso Speed norm,mean 2.32 4 35 0.088 0.21
Torso Speed norm,max 2.87 4 35 0.048 * 0.25
Head-torso correlation, roll-roll 4.56 4 35 0.01 * 0.34
Cross-correlation peak time, yaw-roll 9.57 4 35 <0.001 *** 0.52
DTW distance, roll-roll 5.7 4 35 0.005 ** 0.39
DTW distance, yaw-yaw 6.89 4 35 0.003 ** 0.44

Age:Phase Error 4.51 8 70 0.007 ** 0.29
Head Amplitude, pitch 3.45 8 70 0.007 ** 0.1
Head Amplitude, roll 3.81 8 70 0.005 ** 0.11
Torso Amplitude, roll 2.62 8 70 0.036 * 0
Torso Amplitude, pitch 3.27 8 70 0.01 ** 0.14
Torso Amplitude, yaw 2.44 8 70 0.041 * 0.1
Mean Speed torso, roll 3.27 8 70 0.01 * 0.02
Mean Speed torso, pitch 4 8 70 0.004 ** 0.19
Mean Speed torso, yaw 3.36 8 70 0.009 ** 0.21
Max Speed torso, roll 2.51 8 70 0.038 * 0
Max Speed torso, pitch 1.93 8 70 0.087 0.14
Max Speed torso, yaw 2.29 8 70 0.045 * 0.14
Torso Speed norm,mean 4.17 8 70 0.003 ** 0.17
Torso Speed norm,max 1.97 8 70 0.085 0.11
Head-torso correlation, roll-roll 1.81 8 70 0.105 0.12
Cross-correlation peak time, yaw-roll 2.38 8 70 0.041 * 0.07
DTW distance, roll-roll 1.92 8 70 0.088 0.14
DTW distance, yaw-yaw 1.3 8 70 0.263 0.11

Table 4.3 – Variables selected after PCA on torso-controlled trials, with significant effect of Age, or
interactions of Age with Phase
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component, accounting for 25% of the total variance (see Figure 4.13). Clustering the variables

with normalized loadings larger than 0.75 yielded one single cluster describing the movements

of the torso.

We conducted repeated measures ANOVAs to identify the selected variables on which Age

and the Age:Phase interaction had a significant effect; the results are summarized in Table 4.4.

Figure 4.15 displays 4 representative variables by age and experimental phase.

Cluster separability exposed different patterns between head- and torso-controlled

trials

The pairwise DBI confirmed the similarity of 6 and 8 year-olds in the head-controlled trials

(DBI = 10.39) and reveals that the separability gradually increases with age from 9 years

onwards. This analysis also reveals a persisting difference between 10 year-olds and adults. A

different pattern is observed for the torso-controlled trials, where all the age groups appear to

be well separable. Only 9 and 10 year-olds share higher similarities (DBI = 4.61).
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Figure 4.9 – Representative kinematic variables (all trials), showing a significant effect of control type
or control:age interaction

Figure 4.10 – Principal component analysis of torso-controlled trials. Left: projection of the original
data onto the space defined by the first two PCs. Right, top: proportion of variance explained by each
PC. Right, bottom: projected value on the first two PCs, by age and experimental phase (bars indicate
mean+standard error of the mean)
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Figure 4.12 – Representative kinematic variables (torso-controlled trials), showing a significant effect
of experimental phase or phase:age interaction
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Figure 4.13 – Principal component analysis of head-controlled trials. Left: projection of the original
data onto the space defined by the first two PCs. Right, top: proportion of variance explained by
each PC. Right, bottom: projected value on the first PC, by age and experimental phase (bars indicate
mean+standard error of the mean)
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Effect Variable F DOF1 DOF2 p η2
p

Age Torso Amplitude, roll 1.98 4 35 0.13 0.18
Torso Amplitude, pitch 4.09 4 35 0.016 * 0.31
Torso Amplitude, yaw 4.3 4 35 0.015 * 0.32
Mean Speed torso, roll 2.42 4 35 0.076 0.21
Mean Speed torso, pitch 4.25 4 35 0.015 * 0.31
Mean Speed torso, yaw 4.31 4 35 0.015 * 0.32
Max Speed torso, roll 2.55 4 35 0.068 0.22
Max Speed torso, pitch 4.45 4 35 0.015 * 0.32
Max Speed torso, yaw 4.81 4 35 0.015 * 0.34
Torso Speed norm, mean 3.99 4 35 0.016 * 0.3
Torso Speed norm, max 4.34 4 35 0.015 * 0.32

Age:Phase Torso Amplitude, roll 2.78 8 70 0.018 * 0.05
Torso Amplitude, pitch 2.6 8 70 0.038 * 0.04
Torso Amplitude, yaw 3.04 8 70 0.016 * 0.01
Mean Speed torso, roll 3.21 8 70 0.015 * 0.11
Mean Speed torso, pitch 2.92 8 70 0.021 * 0.07
Mean Speed torso, yaw 3.26 8 70 0.015 * 0.11
Max Speed torso, roll 2.29 8 70 0.054 0.12
Max Speed torso, pitch 1.04 8 70 0.41 0.04
Max Speed torso, yaw 2.7 8 70 0.02 * 0.1
Torso Speed norm, mean 3.34 8 70 0.015 * 0.09
Torso Speed norm, max 1.23 8 70 0.316 0.05

Table 4.4 – Variables selected after PCA on head-controlled trials, with significant effect of Age, or
interactions of Age with Phase

Figure 4.15 – Representative kinematic variables (head-controlled trials), showing a significant effect
of experimental phase or phase:age interaction
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Figure 4.16 – Pairwise separability of the age-defined clusters assessed by the Davies-Bouldin index.
Dark values indicate better separability
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Discussion

We evaluated the ability of children aged 6-10 and young adults to perform an immersive

piloting task in VR, using either their head or their torso as controlling body part. All the

participants were able to steer the simulator using their head. However, the 6 year-olds showed

significantly lower performances than the 10 year-olds and the adults, and this difference

was even after practicing the task. On the contrary, 6 and 8 year-olds initially struggled to

use the torso to control the simulator, but substantially improved their performance with

training. Yet, their average error in the navigation task remained significantly higher than the

10 year-olds’ and the adults’. Overall, the 6 year-olds performed worse with the torso than

with the head. This difference also appeared when comparing the initial evaluations of the

8 year-olds. Kinematically, the major distinction between the head- and torso-controlled

trials could be explained by variations in the movements of the torso, but also by modulations

of the head-torso coordination. Age-related differences in the torso-controlled trials were

attributable to a combination of variables describing head and torso movements, as well

as the coordination of these segments. Conversely, the age-associated variation among the

head-controlled trials could be explained by variables describing the torso kinematics.

Even though younger children performed significantly worse than 10 year-olds and adults,

their scores in the head-controlled trials reached a range comparable with the results from

other age groups, revealing that, in a simplified experimental environment, children as young

as 6 are able to understand and perform an immersive virtual navigation task. This suggests

that HMD-induced optical flow induces vection in young children in a way similar to adults,

expanding results obtained with visual stimuli presented on screens [204, 205, 206]. The ability

to navigate in a 3D environment also requires a sufficiently developed spatial perception.

While 6 year-olds have been shown to perceive planar spaces similarly to adults [207], the

visual integration of 3D spaces begins to develop at 6 years [208] and continues to mature

until early adolescence [209]. The different developmental time courses for the head- and

torso-based control of the simulator were confirmed when we evaluated the separability of

the age-defined clusters. We observed a high similarity between 6 and 8 year-olds in the head-

controlled trials, which decreased later on, which corroborates the pivotal changes occurring

from 8 years onwards. Interestingly, this analysis also highlights a persisting difference between

10 year-olds and adults, which may be explained by the tight spread of the adult data along

the first PC (low inter-cluster distance). Conversely, in the torso-controlled trials, all the

clusters were highly separable, suggesting that the maturation of the underlying coordination

processes happens over a longer time period.

When comparing the steering performance across sessions, we found that only 6 and 8 year-

olds improved their skills in the torso-controlled trials, and that the improvement persisted
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overnight. Yet, 6 year-olds performed significantly better using their head than their torso

in all phases. 10 year-olds outdid 6 year-olds in the evaluations before training and on the

second day when using the torso, and on the second day when using the head. Likewise,

the adult group showed lower errors than the 6 year-olds at all phases when using the torso,

and in the evaluations after training and on the second day when using the head. These

differences were observed in 8 year-olds in the initial evaluations when comparing the head-

and torso-controlled trials and with respect to 10 year-olds and adults in the torso-controlled

trials. These results also reveal that the ability to steer the simulator is already mature at the

age of 8, but only starts to evolve towards adult levels at this age. The earlier maturation of the

head control is not surprising, as the joint control of vision and steering direction yields a task

with lower complexity.

The kinematic analysis of the head-controlled trials showed that the major age-related differ-

ence could be attributed to differences in the torso movements, with rotation amplitudes, and

mean and maximum rotation velocities decreasing with age. The ability to decouple head

from torso movements thus develops along childhood, confirming previous results obtained

during obstacle avoidance during locomotion [173, 159], where adults display anticipatory

head movements [210]. However, mature coordination patterns appear later with our experi-

mental setup when compared to simple locomotion. This is in line with observations revealing

that developing children tend to increase their head-body stiffness with increasing task diffi-

culty [167]. In our case, the increased difficulty can be imputed to the use of immersive VR,

which provides altered visual information and requires higher cognitive processing abilities to

appropriately interpret the displayed VE [86, 87].

In the torso-controlled trials, the age-related differences were explained by kinematic vari-

ations of both body segments and in their coordination. In general, movement amplitudes

decreased with age. The higher head movement amplitudes in younger children reveal that

these age groups had the tendency to erroneously involve this body part to control the sim-

ulator. Smaller amplitudes of the torso movements suggest an increase in torso positioning

accuracy with age, as previously demonstrated [160]. Interestingly, the amplitude of the torso

movements in the pitch plane uniquely increased with age, suggesting that younger children

had more difficulties to properly engage their bodies for up- and downward movements of the

simulator. Yet, larger torso movements may also be the result of larger deviations from the path

to follow and not a consequence thereof: indeed, while the coins were placed on a trajectory

necessitating only small directional changes, correcting one’s direction from further distances

required maneuvers of larger amplitude. More importantly, the differences in head-torso

coordination indicate that adults and older children favorably selected an "en-block" strategy,

with a stiff intersegmental link. This comes in opposition with previous studies, where such

a behavior was preferentially observed in younger children [173, 159]. One study found a
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similar behavior in adults, who displayed a head-to-torso stabilization in dimensions in which

independent head were not beneficial [172]. This is concomitant with our results, as head

movements in the torso-controlled trials tended to disturb the participants’ spatial orienta-

tion. Younger children instead failed to use this simpler coordination pattern, suggesting that

the increased difficulty provided by the VR setup prevented them from selecting the most

adequate coordination strategy, thus corroborating the model of postural development as a

two-step process in which children first acquire a repertoire of postural strategies and later on

learn how and when to select the appropriate strategy [159].

Limitations of the study

The results of this study should be interpreted taking in consideration the unequal group sizes,

particularly the small number of 9 year-old participants. The robust behavioral differences

we found between 6 and 10 year-olds suggest the occurrence of developmental changes

between this ages, for which we could not find any statistical evidence here. Likewise, the

small proportion of female subjects did not allow us to evaluate any gender-associated effects,

which have been previously observed for example in task execution [211, 174] and in the

development of functional networks [212].

Other aspects to consider come from the design of the task and the virtual environment

itself. First, in our experimental protocol, the participants were directly asked to steer the

flight simulator along the path defined by the coins, without having some time to freely

experience the dynamics and the sensitivity of the system. Having to focus simultaneously

on the task and on the mapping of one’s movements to the actions of the simulator likely let

to an initially high cognitive load and delayed the appropriation of the control strategy. In

sensitive participants, this initial period tended to induce some first symptoms of VR sickness.

In addition, young children happened to be discouraged by this early hurdle, leading some

of them to interrupt the experiment. Second, the gamification of the steering task which

rewarded the successful collection of a coin by a tinkling sound and points added to a global

score appeared to encourage the participants to aim at each coin individually, rather than

to follow a smooth, long-ranging trajectory. This again increased the difficulty of the task,

by requiring a multitude of small and rapid adjusting movements. Another issue resided in

the continuous character of the task, particularly for the participants showing difficulties

to remain close to the displayed path. While steering the simulator along the path required

only maneuvers of small amplitude and a rudimentary understanding of the surroundings,

returning to the trajectory after deviating thereof necessitated both a higher steering precision

and a stronger spatial cognition. Validating a given waypoint with a large error therefore

negatively influenced the possible score on the following ones, thus doubly penalizing less

skilled participants. Finally, preventing the participants from adapting the speed may have
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induced some variability in the level of perceived difficulty, particularly for younger children,

who have been shown to experience stronger vection than adults in response to backward

optical flows [204]. The consistency of this parameter does however allow a more formal

comparison of the task execution performance across subjects.

Conclusion

We showed that young children are able to understand a body-machine interface to interact

with immersive VR, but that 6 year-olds fail to successfully use such a system when a decou-

pling of vision and steering commands is required. In particular, the stronger reliance on

vision than on vestibular or proprioceptive inputs may have prevented younger children from

selecting the most efficient head-torso coordination strategy. The results of this study highlight

the importance of the end user’s abilities for successful interactions with VEs, and should be

considered when designing HMIs for populations including children and/or patients with

neuromotor conditions.

68



5 Development of visual-body coordi-

nation and perception of the straight-

ahead direction
Abstract

The integration of visual information with head and trunk movements is essential to interact

with the surrounding environment, and develops along childhood. The subjective straight-

ahead (SSA), that is the perception of the antero-posterior orientation of the body, could

be used as a common reference to calibrate this integration. Using an immersive virtual

reality scenario, we investigated the use of the SSA as a spatial reference, the development of

the vision-head-trunk integration during childhood, and the impact of motor coordination

maturation on these aspects. We found that in 6 year-olds, the head is a necessary intermediate

for the integration of vision with trunk movements. Instead, 10-11 year olds showed mature

behavior in terms of multisensory integration and head-trunk coordination. These results

expose a possible role of the SSA in the calibration of the vision-head-trunk integration during

childhood and its age related development.

The contents of this chapter are part of the publication in preparation:

Get Out of the Body! Virtual Reality Displays Link Between Visual-Body Coordi-

nation and Egocentric Reference Developments

Esposito D., Miehlbradt J., Tonelli A., Mazzoni A., Gori M.,in preparation

Contributions as second author: design of the experiments, data collection, re-

vision of the analysis and manuscript.
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5.1 Methods

Experimental setup

Using the game engine Unity3D, we designed a VE representing an archery field, in which an

arrow had to be guided towards a target by planar (yaw) rotations of the head or the trunk.

The participants were immersed in the VE through a HMD (Oculus Rift. Targets appeared at

a distance of 60 m from the starting position at three different positions: straight ahead and

with lateral deviations of ± 30° (Figure 5.1, panels A and B). The participants’ torso movements

were acquired using an IMU (X-sens) maintained in their back by a custom harness and their

head rotations were measured by the IMU embedded in the HMD (Figure 4.2). To reduce the

risk of losing balance, the participants were seated on a chair which allowed the upper body to

move freely.

Figure 5.1 – Virtual environment for the archer game. A,B position of the targets, C trajectory for a
central trial, D trajectory for a lateral trial

Experimental conditions and protocol

We implemented eight different experimental conditions, corresponding to the combinations

of three 2-level factors:

• Control designates the body part used to guide the arrow, that is either the head or the

torso. When the head was the guiding segment, it controlled both the vision and the

direction of the arrow. Instead, in the trunk-controlled condition, the visual field was
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moved according to the sum of the head and trunk rotation angles, while the arrow was

guided only by the torso.

• Direction describes the position of the target and could take the value of central or

straight ahead of the participant or lateral, meaning at 30° left- or rightwards away from

the straight-ahead direction (see Figure 5.1, panels C and D);

• Coordination refers to the constraints put on the non-controlling body part: in the

free condition, the angle of the arrow is equal to the angle of the controlling part and

the movements of the non-controlling part have no influence. Instead, in the conflict

condition, the orientation of the arrow is defined by the relative angle between the

controlling and non-controlling body parts: θar r ow = θcontr ol l i ng −θnon−contr ol l i ng . In

this case, the participants thus had to keep the non-controlling body part still.

The participants initialized the trial by aligning the controlling body part to the center for

lateral trials or to the indicated lateral target during central trials. The conditions were tested

in random order, and eight repetitions were performed blockwise for each condition. Before

each block, the experimenter described the upcoming condition to the participant.

Participants

We recruited eleven 6 year-old children (5 females), twelve 10-11 year-old children (3 females,

age = 10.1±0.8 years), and ten adults (5 women, age = 32.2±1.1 years). Informed consent was

obtained from the adult participants and from the parents of the underage participants. The

study was approved by the local ethics committee.

Analysis

We computed two metrics to describe the participants’ task performance:

• The score is a value between 0 and 100, proportional to the distance to the center of the

target and is computed as:

score = 100 ·max

(
0,1− distance to center

target radius

)
(5.1)

• The sum of distances is the sum of the frame-by-frame deviations from the straight

path and is computed as the dot product between the position of the arrow and the

position of the target:

sum of distances =∑
i

−−−−−−−−−−−−→
arrow positioni ·−−−−−−−−−−−−→target position (5.2)
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The data from each condition were averaged and subjected to repeated measures ANOVA,

with Age as between-subjects factor, and Control, Direction and Coordination as within-

subjects factors. The Greenhouse-Geisser correction was applied, due to violations of the data

sphericity. Post hoc analyses were computed using Tukey’s HSD test.

5.2 Results

Figure 5.2 – Score (top) and sum of distances (bottom), grouped by controlling body segment and
target direction.

Score

The repeated measures ANOVA revealed that all the main effects and the four-way interaction

were significant for the score (see Table 5.1).

The overall differences due to age were significant between 6 and 10-11 year-olds (p < 0.001)

and between 6 year-olds and adults (p < 0.001), with the younger children displaying lower

scores in both cases.
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Effect Df F value p value
Age 2,33 17.86 < 0.001 ***
Control 1,33 562.54 < 0.001 ***
Direction 1,33 256.19 < 0.001 ***
Coordination 1,33 213.30 < 0.001 ***
Age:Control:Direction:Coordination 2,33 3.62 0.04 *

Table 5.1 – ANOVA table for the score. * p < 0.05, ** p < 0.01, *** p < 0.001

The post hoc analysis of the effect age on the experimental conditions revealed a significant

effect for all conditions except when the head was guiding towards lateral targets, freely from

the trunk (see Table 5.2).

Condition Age group 1 Age group 2 p value
Trunk, central, free 6 10-11 0.002 **
Trunk, lateral, free 6 10-11 0.048 *
Head, central, conflict 6 10-11 0.010 **
Head, lateral, conflict 6 10-11 0.001 ***
Trunk, central, conflict 6 Adults 0.014 *
Head, central, free 6 Adults 0.012 *
Trunk, lateral, conflict 10 Adults 0.046 *

Table 5.2 – Significant post hoc tests for the score, assessing the effect of age on the experimental
conditions. Age group 1 indicates the group for which the score was lower. * p < 0.05, ** p < 0.01, *** p <
0.001

Sum of distances

The repeated measures ANOVA revealed that all the main effects and the four-way interaction

were significant for the sum of distances (see Table 5.3).

Effect Df F value p value
Age 2,33 19.21 < 0.001 ***
Control 1,33 231.13 < 0.001 ***
Direction 1,33 142.43 < 0.001 ***
Coordination 1,33 167.13 < 0.001 ***
Age:Control:Direction:Coordination 2,33 5.08 0.013 *

Table 5.3 – ANOVA table for the sum of distances. * p < 0.05, ** p < 0.01, *** p < 0.001

The sum of distances were significantly higher for 6 than 10-11 year-olds (p = 0.001) and for 6

year-olds when compared to adults (p < 0.001).
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The post hoc analysis on the sum of distances revealed significant effects of age for all the

conditions in which the trunk was the guiding segment. None of the conditions involving the

head were significant (see Table 5.4).

Condition Age group 1 Age group 2 p value
Trunk, lateral, free 6 10-11 0.020 *
Trunk, lateral, conflict 6 10-11 0.008 **
Trunk, central, free 6 Adults 0.022 *
Trunk, central, conflict 6 Adults 0.002 *

Table 5.4 – Significant post hoc tests for the sum of distances, assessing the effect of age on the
experimental conditions. Age group 1 indicates the group for which the sum of distances was higher. *
p < 0.05, ** p < 0.01, *** p < 0.001

5.3 Discussion

The overall difference between 6 year-olds and the older age groups, both on the score and the

sum of distances reveals that visuomotor integration is immature at this age. No significant

difference was observed between 10 year-olds and the other two age groups, but visual ob-

servations suggest a continuous developmental trend of these abilities. These outcomes are

coherent with previous works on head-trunk coordination [173], and multisensory integration

[98, 97].

The simplest experimental condition appeared to use the head as control segment, when

guiding the arrow towards lateral targets, and without conflict, as in this case, the younger

children showed no difference with the older age groups. The visuomotor integration involved

only two agents (vision and head movement), and possible proprioceptive noise at the torso

level had no impact on the task execution. This suggests a certain level of maturation of

the visuomotor integration at the age of 6, which is however not robust to more complex

situations. This also confirms the ability of our younger participants to adequately perceive

the VE. Adding the coordination constraint between the head and the trunk led to differences

in the score between 6 and 10-11 year-olds, which can be imputed to immature coordination

patterns in the younger children [159] or higher proprioceptive noise at the torso level [160].

These differences were however not observed in the sum of distances, confirming that the

maturation of gross motor control of the head is acquired at the age of 6 [161].

Conversely, when the trunk was used as controlling segment, 6 year-olds performed worse

than older children or adults both in terms of score and of the sum of distances. As in the

head-controlled trials, the condition showing the earliest development involved lateral targets

and no conflict on the trunk movements, where 10-11 year-olds and adults displayed similar

results by both metrics. When aiming at central targets, adult-level scores were reached at
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10 years, but the sum of distances appeared to further improve during adolescence. Lastly,

constraining the head affected both children groups, revealing that the adult-like patterns

observed under other conditions are not yet robust to such a level of difficulty at 10-11 years.

This corroborates previous results showing that refinement of motor control prevails until

adolescence [173].

The overall effect of direction on the score and the sum of distances highlights the importance

of the SSA for in the encoding of spatial information. The lower performance observed in

younger children suggests however, that the precision of the SSA is not yet mature in early

childhood and acquires robustness with age[213].

Conclusion

These results confirm a descending development of postural coordination, with an increase

in interjoint modularity. Likewise, while younger children extensively rely on the head for

visuomotor integration of trunk movements, 10 year-old children and adults display the ability

to bypass this intermediate information. In addition, we highlighted the role of the SSA for

spatial orientation, and showed that its precision and robustness also develops with age.

Finally, 10-11 year-old children generally display adult like coordination and multisensory

integration, but these patterns are not robust under the most complex condition, confirming

a refinement in gross motor control until adolescence.
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6 Conclusion and outlook

6.1 Summary

Virtual reality is a powerful and versatile tool which allows to create realistic perceptions

of computer-simulated environments. The last decade saw a tremendous increase in the

development of dedicated hardware, which in turn led to a multitude of applications in very

diverse domains. Some of these implementations may influence the daily life of the users

directly, as is the case for VR-based treatment of phobias, or indirectly as for flight or surgery

training simulators. VR has also proven to be a valuable tool for research, providing advances

in neuroscience on aspects including somatosensory processing or sensorimotor integration

[214] and social phenomena such as interpersonal interactions [215].

The potential benefits which could arise form well-designed VR scenarios motivate the quest

for smooth and flawless interactions. However, while the hardware to display such envi-

ronments and provide the immersion is robust and easily available, the development of

user-centered interaction interfaces is often left aside, favoring pre-existing devices. In addi-

tion, individual mental or physical abilities of VR users also contribute to the quality of the

interaction with the virtual system. Yet, except for a small number of studies, the effect of a

parameter as important as age on the ability to interact with a VE has rarely been studied [194,

83].

This thesis addressed two aspects, central for the successful interactions with VEs: the design

of user-centered, application-specific interfaces and the age-related development of the

sensorimotor patterns enabling these interactions.

Chapter 2 presents a systematic methodology to design a BoMI for the non-homologous con-

trol of a virtual drone, and by extension the teleoperation of a real quadcopter. We surveyed

the kinematic and muscular patterns displayed by participants without previous experience
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during simulated interactions with a virtual drone, using self-selected upper-body gestures.

A clustering analysis revealed the existence of two major, common gestural patterns, within

which we could identify discrete maneuvers using only the (relative) angles of the involved

body segments. In Chapter 3, these two sets of gestures were implemented as control strate-

gies first for a virtual drone and later on also for a real drone. We observed that the strategy

using solely movements of the torso led to better steering performances in a waypoint naviga-

tion task than a joystick commonly used in this kind of applications, and that within 3 days

of short practice, all the participants were able to master this interface. Conversely, in the

group using the joystick, about half of the participants displayed only minimal improvement

across sessions. The second strategy, which involved arm movements and trunk movements

led to scores comparable to the joystick. This demonstrated the superiority of a user-centered,

gestural approach for non-homologous interactions with virtual systems.

In Chapter 4, we evaluated the ability of young children to control an adapted version of the

immersive flight simulator, when piloting with the trunk or with the head. We found that the

selection of the appropriate head-trunk coordination strategy was not mature until the age of

8. Finally, Chapter 5 used an alternate VE to expose the developmental pattern of visuomotor

integration along the head-trunk axis and revealed that important maturation steps occur

between the ages of 6 and 10, and continue to refine towards adolescence.

6.2 General discussion

The BoMI proposed in Part I despite being very simple, has proved to surpass the perfor-

mances obtained with a well-known third-party device. There is however room for further

improvements and developments, which can be organized around different axes. First, the

current implementation only provides control over two DOF, the pitch and the roll. Controlling

the velocity is an absolute necessity, both to provide adaptability to different environments

or surroundings, and to accommodate personal preferences of the users. In the case of a

fixed-wing drone, the yaw cannot be independently controlled, thus eliminating the need to

implement additional directional command. However, should the BoMI be applied to the

control of a quadcopter, a UAV with more DOF, several other maneuvers would be of interest

including hovering and lateral displacements. Likewise, automated commands for takeoff and

landing are required.

Moreover, in the implementation described in this work, the translation of the pilot’s gesture

into steering commands relies on basic linear transformations, in which the gains have been

kept constant across participants. Yet this model is far from optimal, as demonstrated by

previous studies, which relied on the non-linear distribution of directional reaching errors

in the space surrounding the body to define a new, intuitive mapping [158]. The linear
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approximation we used in our model was be suited for the application in which it was tested,

presumably because the control of the simulator only required small-amplitude movements,

centered around the neutral starting position. Conversely, modifications of the setup which

would require larger movements may reveal the limits of the linear mapping.

The selection of the gestural strategies for the particular case of FPV flying has been done based

on a screening study carried out in young healthy adults. It may be that different patterns

would emerge if this study was repeated on a different demographic group. In particular,

the young children who were asked to use the simulator may have spontaneously selected a

different set of gestures. More interestingly, evaluating the distribution of precision errors in

the space surrounding a body would not only provide the bases for a better adapted interaction

interface for this age group, but also provide an insight onto the development of the spatial

representation of this space.

Indeed, postural and coordination patterns have been shown to develop beyond childhood

[173], a claim which is supported by evidence for maturation of the central nervous system

until early adulthood both at the structural and functional level[216, 217, 163].

Another aspect worth investigating relies in the previous experience of the tested population

or the expected final users of such a system. Even in the case of low-complexity control

movements associated with a low cognitive load, intrinsic factors may affect the ability of any

individual to learn and master a BoMI similar to the ones presented in this work. In particular,

recent studies have shown that the regular playing of action video games provided substantial

advantages in learning, including novel sensorimotor tasks [16, 17]. Thus far, it is unknown

whether action video gaming affects the accuracy of the body scheme, and to which extent

regular players may display a faster improvement in learning how to use such a BoMI.

6.3 Outlook

The results presented in this thesis have potential implications for several VR-related domains.

Firstly, the methodology developed in Chapter 2 to identify gestural interaction strategies

and a suitable set of sensors to acquire the discriminant information is adaptable to any

situation in which an object, real or simulated has to be controlled efficiently and intuitively.

The application of this method could thus bring an evolution to the device-centered field of

VR interfaces. Similarly, applying this method at the level of the individual, starting either

from a global working solution or from a blank page could allow the design of individualized

interfaces.

Moreover, the BoMi we developed allowed untrained users to master the control of a virtual
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drone after a short period of training and these ability translated to the steering of a real

quadcopter. Nowadays, drones are increasingly used to acquire rapid visual mappings over

inaccessible scenes, but this service is too often delayed because no experienced drone pilot

is available. Reducing the training time would enable any person present on such a scene

to rapidly take over the drone-aided mapping, which could in turn save some precious time

during rescue missions.

Next,we demonstrated that children aged 6 and above are able to perceive an adapted im-

mersive VE, if not as adults, at sufficiently mature level to execute adequate interactions.

Therefore, VR can be considered as a suitable tool to investigate the age-related development

of visuomotor function and other aspects of multisensory integration during childhood, or as

a therapeutic means.

Nonetheless, our results highlight the importance of considering the perception which will

be experienced by the end users of a particular implementation. This is particularly crucial

when these end users significantly differ from the developing team, as is the case for children

or neurological patients. The risk is otherwise to develop systems which will fail to achieve

their (therapeutic) goals.

To conclude, this work demonstrated the benefits of closely investigating user-related ef-

fects on VR experiences We showed that a data-driven interface significantly outperforms

an existing controlling device, even though it is considered as the standard approach and

well-mastered by experienced users. We also showed that children may perceive VEs similarly

to adults, but lack the functional sensorimotor coordination to properly interact with these

systems. These results can serve as a base for good practice guidelines for the development of

new VR applications.
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A Descriptive kinematic variables

Variable description Group
1. Distance to coin center [m]

Steering performance
2. Horizontal distance to coin center [m]
3. Vertical distance to coin center [m]
4. Path ratio [·]
5. Time [s]
6. Head rotation amplitude, pitch [°]

Head movements7. Head rotation amplitude, roll [°]
8. Head rotation amplitude, yaw [°]
9. Torso rotation amplitude, pitch [°]

Torso movements

10. Torso rotation amplitude, roll [°]
11. Torso rotation amplitude, yaw [°]
12. Mean torso speed, roll [°/s]
13. Mean torso speed, pitch [°/s]
14. Mean torso speed, yaw [°/s]
15. Maximum torso speed, roll [°/s]
16. Maximum torso speed, pitch [°/s]
17. Maximum torso speed, yaw [°/s]
18. Mean torso speed, norm [°/s]
19. Maximum torso speed, norm [°/s]

Table A.1 – Description and grouping of the kinematic variables - part I: Task performance, head and
torso movements
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Appendix A. Descriptive kinematic variables

Variable description Group
20. Head-torso correlation, pitch-pitch [·]

Head-torso coordination

21. Head-torso correlation, roll-roll [·]
22. Head-torso correlation, roll-yaw [·]
23. Head-torso correlation, yaw-roll [·]
24. Head-torso correlation, yaw-yaw [·]
25. Head anchoring index, roll [·]
26. Head anchoring index, pitch [·]
27. Head anchoring index, yaw [·]
28. Peak time of head-torso cross-correlation, pitch-pitch [s]
29. Peak time of head-torso cross-correlation, roll-roll [s]
30. Peak time of head-torso cross-correlation, roll-yaw [s]
31. Peak time of head-torso cross-correlation, yaw-roll [s]
32. Peak time of head-torso cross-correlation, yaw-yaw [s]
33. DTW distance, roll [·]
34. DTW distance, pitch [·]
35. DTW distance, yaw [·]
36. Torso SAL [·]

Movement smoothness

37. Head SAL [·]
38. "Bird" SAL [·]
39. Number of peaks, head pitch [peaks/s]
40. Number of peaks, head roll [peaks/s]
41. Number of peaks, head yaw [peaks/s]
42. Number of peaks, torso pitch [peaks/s]
43. Number of peaks, torso roll [peaks/s]
44. Number of peaks, torso yaw [peaks/s]
45. Number of peaks, "bird" path pitch [peaks/s]
46. Number of peaks, "bird" path roll [peaks/s]
47. Number of peaks, "bird" path yaw [peaks/s]
48. Torso speed ratio, roll [·]
49. Torso speed ratio, pitch [·]
50. Torso speed ratio, yaw [·]

Table A.2 – Description and grouping of the kinematic variables - part II: Coordination and smoothness
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B Statistical analyses

Age Control - Phase1 Control - Phase2 Difference p Cohen’s d

6 Head - Before Head - After 6.1 0.113 0.6

Head - Before Head - DayAfter 6.42 0.072 0.63

Head - Before Torso - Before -38.6 0.002 ** -1.17

Head - Before Torso - After -8.17 0.518 -0.41

Head - Before Torso - Day After -6.45 0.138 -0.44

Head - After Head - Day After 0.32 0.693 0.12

Head - After Torso - Before -44.7 <0.001 -1.42

Head - After Torso - After -14.27 0.01 ** -0.83

Head - After Torso - Day After -12.55 <0.001 -1.14

Head - Day After Torso - Before -45.01 <0.001 -1.43

Head - Day After Torso - After -14.58 0.008 ** -0.85

Head - Day After Torso - Day After -12.87 <0.001 *** -1.17

Torso - Before Torso - After 30.43 0.013 * 0.85

Torso - Before Torso - Day After 32.15 0.014 * 0.97

Torso - After Torso - Day After 1.72 0.997 0.09

8 Head - Before Head - After -0.07 1 -0.14

Head - Before Head - Day After 0.6 1 0.25

Head - Before Torso - Before -56.89 <0.001 -1.45

Head - Before Torso - After -6.37 0.911 -3.59

Head - Before Torso - Day After -4.47 0.775 -2.03

Head - After Head - Day After 0.67 0.219 0.55

Head - After Torso - Before -56.82 <0.001 -1.45

Head - After Torso - After -6.3 0.83 -3.8

Head - After Torso - Day After -4.4 0.78 -2.05

Head - Day After Torso - Before -57.49 <0.001 -1.46
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Appendix B. Statistical analyses

Age Control - Phase1 Control - Phase2 Difference p Cohen’s d

Head - Day After Torso - After -6.97 0.763 -3.88

Head - Day After Torso - Day After -5.07 0.652 -2.15

Torso - Before Torso - After 50.51 0.001 ** 1.26

Torso - Before Torso - Day After 52.42 0.002 ** 1.28

Torso - After Torso - Day After 1.9 0.999 0.27

9 Head - Before Head - After 1.48 0.998 1.04

Head - Before Head - Day After 1.61 0.997 1.12

Head - Before Torso - Before -7.75 0.992 -1.25

Head - Before Torso - After -3.74 0.995 -0.74

Head - Before Torso - Day After -1.9 0.996 -0.65

Head - After Head - Day After 0.13 0.998 0.28

Head - After Torso - Before -9.23 0.984 -1.52

Head - After Torso - After -5.22 0.945 -1.07

Head - After Torso - Day After -3.38 0.945 -1.3

Head - Day After Torso - Before -9.37 0.983 -1.54

Head - Day After Torso - After -5.35 0.939 -1.1

Head - Day After Torso - Day After -3.51 0.932 -1.34

Torso - Before Torso - After 4.01 1 0.52

Torso - Before Torso - Day After 5.85 0.998 0.89

Torso - After Torso - Day After 1.84 0.999 0.33

10 Head - Before Head - After 0.69 0.999 0.37

Head - Before Head - Day After 1.21 0.991 0.7

Head - Before Torso - Before -5.85 0.978 -1.4

Head - Before Torso - After -5.61 0.773 -0.93

Head - Before Torso - Day After -2.31 0.912 -0.7

Head - After Head - Day After 0.52 0.109 0.68

Head - After Torso - Before -6.53 0.969 -1.68

Head - After Torso - After -6.3 0.485 -1.08

Head - After Torso - Day After -3 0.773 -1.03

Head - Day After Torso - Before -7.06 0.956 -1.84

Head - Day After Torso - After -6.82 0.397 -1.17

Head - Day After Torso - Day After -3.52 0.625 -1.24

Torso - Before Torso - After 0.24 1 0.03

Torso - Before Torso - Day After 3.53 0.998 0.74

Torso - After Torso - Day After 3.3 0.91 0.51

Adults Head - Before Head - After 0.42 1 1.25

Head - Before Head - Day After 0.45 1 1.23
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Age Control - Phase1 Control - Phase2 Difference p Cohen’s d

Head - Before Torso - Before -0.63 1 -0.67

Head - Before Torso - After -0.06 1 -0.23

Head - Before Torso - Day After -0.09 1 -0.14

Head - After Head - Day After 0.03 1 0.11

Head - After Torso - Before -1.05 1 -1.13

Head - After Torso - After -0.48 1 -1.17

Head - After Torso - Day After -0.51 1 -0.58

Head - Day After Torso - Before -1.08 1 -1.15

Head - Day After Torso - After -0.51 1 -1.18

Head - Day After Torso - Day After -0.54 1 -0.6

Torso - Before Torso - After 0.57 1 0.53

Torso - Before Torso - Day After 0.54 1 0.39

Torso - After Torso - Day After -0.03 1 -0.02

Table B.1 – Significant simple effects for the steering performance (I - Experimental Conditions), * p <
0.05, ** p < 0.01, *** p < 0.001
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Appendix B. Statistical analyses

Control - Phase Age1 Age2 Difference p Cohen’s d

Head - Before 6 8 7.67 0.288 0.73

6 9 6.49 0.526 0.54

6 10 7.26 0.155 0.76

6 Adults 8.44 0.07 0.95

8 9 -1.18 0.999 -0.92

8 10 -0.41 1 -0.28

8 Adults 0.77 1 0.98

9 10 0.77 1 0.33

9 Adults 1.95 0.988 2.12

10 Adults 1.19 0.994 0.74

Head - After 6 8 1.5 0.37 0.75

6 9 1.87 0.235 0.78

6 10 1.84 0.06 0.91

6 Adults 2.76 0.002 ** 1.55

8 9 0.37 0.996 0.6

8 10 0.34 0.992 0.28

8 Adults 1.26 0.51 3.41

9 10 -0.02 1 -0.03

9 Adults 0.9 0.832 2.9

10 Adults 0.92 0.587 1.29

Head - Day After 6 8 1.85 0.115 0.78

6 9 1.69 0.241 0.73

6 10 2.05 0.013 * 1.13

6 Adults 2.47 0.002 ** 1.44

8 9 -0.17 1 0.09

8 10 0.19 0.999 0.76

8 Adults 0.62 0.908 1.67

9 10 0.36 0.99 0.84

9 Adults 0.79 0.847 2.07

10 Adults 0.43 0.942 1.15

Torso - Before 6 8 -10.62 0.959 -0.09

6 9 37.33 0.192 0.98

6 10 40.01 0.023 * 1.34

6 Adults 46.41 0.006 ** 1.66

8 9 47.95 0.099 1.02

8 10 50.63 0.015 * 1.45

8 Adults 57.03 0.005 ** 1.78
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Control - Phase Age1 Age2 Difference p Cohen’s d

9 10 2.67 1 0.43

9 Adults 9.08 0.98 2.3

10 Adults 6.4 0.983 1.73

Torso - After 6 8 9.46 0.657 0.52

6 9 10.91 0.598 0.52

6 10 9.81 0.419 0.57

6 Adults 16.54 0.042 * 1.09

8 9 1.45 1 0.33

8 10 0.35 1 0.05

8 Adults 7.08 0.83 4.99

9 10 -1.1 1 -0.14

9 Adults 5.63 0.937 1.81

10 Adults 6.73 0.714 1.21

Torso - Day After 6 8 9.65 0.197 0.73

6 9 11.04 0.152 0.84

6 10 11.39 0.02 * 1.07

6 Adults 14.8 0.001 ** 1.52

8 9 1.39 0.999 0.65

8 10 1.75 0.993 0.71

8 Adults 5.15 0.737 2.57

9 10 0.36 1 0.09

9 Adults 3.76 0.921 1.91

10 Adults 3.41 0.842 1.2

Table B.2 – Significant simple effects for the steering performance (II - Age), * p < 0.05, ** p < 0.01, *** p
< 0.001
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Appendix B. Statistical analyses

Effect Variable F DOF1 DOF2 p η2
p

Control Torso Amplitude, roll 56.98 4 35 <0.001 *** 0.62

Torso Amplitude, pitch 128.91 4 35 <0.001 *** 0.79

Torso Amplitude, yaw 72.52 4 35 <0.001 *** 0.67

Mean Speed Torso, roll 73.84 4 35 <0.001 *** 0.68

Mean Speed Torso, pitch 119.41 4 35 <0.001 *** 0.77

Mean Speed Torso, yaw 97.61 4 35 <0.001 *** 0.74

Max Speed Torso, roll 76.45 4 35 <0.001 *** 0.69

Max Speed Torso, pitch 111.96 4 35 <0.001 *** 0.76

Max Speed Torso, yaw 85.77 4 35 <0.001 *** 0.71

Torso Speed norm, mean 131.52 4 35 <0.001 *** 0.79

Torso Speed norm, max 121.77 4 35 <0.001 *** 0.78

Head-torso correlation, roll 283.23 4 35 <0.001 *** 0.89

Head-torso correlation, roll-yaw 1792.71 4 35 <0.001 *** 0.98

Head-torso correlation, yaw-roll 195.11 4 35 <0.001 *** 0.85

AI, roll 83.59 4 35 <0.001 *** 0.70

AI, pitch 196.70 4 35 <0.001 *** 0.85

Cross-corr peak time, pitch 313.97 4 35 <0.001 *** 0.90

Cross-corr peak time, roll-yaw 115.65 4 35 <0.001 *** 0.77

Cross-corr peak time, yaw-roll 208.79 4 35 <0.001 *** 0.86

DTW distance, roll 231.23 4 35 <0.001 *** 0.87

DTW distance, yaw 161.63 4 35 <0.001 *** 0.82

Age:Control Torso Amplitude, roll 4.31 8 70 0.017 * 0.33

Torso Amplitude, pitch 3.12 8 70 0.057 0.26

Torso Amplitude, yaw 1.35 8 70 0.321 0.13

Mean Speed Torso, roll 2.67 8 70 0.086 0.23

Mean Speed Torso, pitch 2.81 8 70 0.073 0.24

Mean Speed Torso, yaw 1.29 8 70 0.342 0.13

Max Speed Torso, roll 1.67 8 70 0.228 0.16

Max Speed Torso, pitch 2.23 8 70 0.134 0.20

Max Speed Torso, yaw 1.62 8 70 0.240 0.16

Torso Speed norm, mean 1.79 8 70 0.208 0.17

Torso Speed norm, max 1.68 8 70 0.227 0.16

Head-torso correlation, roll 6.49 8 70 0.002 ** 0.43

Head-torso correlation, roll-yaw 2.88 8 70 0.068 0.25

Head-torso correlation, yaw-roll 5.37 8 70 0.005 ** 0.38

AI, roll 2.92 8 70 0.068 0.25

AI, pitch 8.97 8 70 <0.001 *** 0.51
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Effect Variable F DOF1 DOF2 p η2
p

Cross-corr peak time, pitch 3.56 8 70 0.036 * 0.29

Cross-corr peak time, roll-yaw 1.40 8 70 0.305 0.14

Cross-corr peak time, yaw-roll 13.37 8 70 <0.001 *** 0.60

DTW distance, roll 9.66 8 70 <0.001 *** 0.52

DTW distance, yaw 9.24 8 70 <0.001 *** 0.51

Phase:Control Torso Amplitude, roll 0.44 4 35 0.676 0.01

Torso Amplitude, pitch 2.49 4 35 0.145 0.07

Torso Amplitude, yaw 2.34 4 35 0.158 0.06

Mean Speed Torso, roll 0.79 4 35 0.514 0.02

Mean Speed Torso, pitch 5.99 4 35 0.012 * 0.15

Mean Speed Torso, yaw 5.29 4 35 0.021 * 0.13

Max Speed Torso, roll 1.13 4 35 0.374 0.03

Max Speed Torso, pitch 5.94 4 35 0.017 * 0.15

Max Speed Torso, yaw 4.04 4 35 0.056 0.10

Torso Speed norm, mean 4.75 4 35 0.029 * 0.12

Torso Speed norm, max 4.72 4 35 0.037 * 0.12

Head-torso correlation, roll 4.38 4 35 0.037 * 0.11

Head-torso correlation, roll-yaw 3.97 4 35 0.060 0.10

Head-torso correlation, yaw-roll 3.16 4 35 0.086 0.08

AI, roll 2.67 4 35 0.132 0.07

AI, pitch 4.68 4 35 0.031 * 0.12

Cross-corr peak time, pitch 1.14 4 35 0.373 0.03

Cross-corr peak time, roll-yaw 0.19 4 35 0.853 0.01

Cross-corr peak time, yaw-roll 1.42 4 35 0.303 0.04

DTW distance, roll 2.44 4 35 0.143 0.07

DTW distance, yaw 2.59 4 35 0.137 0.07

Age:Phase:Control Torso Amplitude, roll 0.95 8 70 0.531 0.10

Torso Amplitude, pitch 2.37 8 70 0.068 0.21

Torso Amplitude, yaw 1.56 8 70 0.218 0.15

Mean Speed Torso, roll 1.58 8 70 0.202 0.15

Mean Speed Torso, pitch 3.61 8 70 0.005 ** 0.29

Mean Speed Torso, yaw 2.31 8 70 0.065 0.21

Max Speed Torso, roll 1.77 8 70 0.144 0.17

Max Speed Torso, pitch 1.94 8 70 0.129 0.18

Max Speed Torso, yaw 2.10 8 70 0.093 0.19

Torso Speed norm, mean 3.32 8 70 0.009 ** 0.27

Torso Speed norm, max 2.07 8 70 0.105 0.19
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Effect Variable F DOF1 DOF2 p η2
p

Head-torso correlation, roll 1.52 8 70 0.219 0.15

Head-torso correlation, roll-yaw 0.82 8 70 0.611 0.09

Head-torso correlation, yaw-roll 1.61 8 70 0.195 0.16

AI, roll 0.24 8 70 0.975 0.03

AI, pitch 1.42 8 70 0.253 0.14

Cross-corr peak time, pitch 0.50 8 70 0.858 0.05

Cross-corr peak time, roll-yaw 0.83 8 70 0.611 0.09

Cross-corr peak time, yaw-roll 2.02 8 70 0.116 0.19

DTW distance, roll 0.94 8 70 0.533 0.10

DTW distance, yaw 0.38 8 70 0.925 0.04

Table B.3 – ANOVA on the variables selected after PCA, on all trials
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