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Abstract

Ongoing advances in imaging techniques create new demands regarding the analysis of images

in medicine and biology. Image segmentation is a key step of many image analysis pipelines

and its proper execution is a particularly challenging task. This thesis is dedicated to the

development of segmentation algorithms for biomedical structures in 2D and 3D images.

In this work, we aim to improve upon classical parametric active contours/surfaces, whose

limitations we address.

This thesis is organized in three parts. First, we introduce two representation models. They

adapt their resolution to the level of detail of the object to be segmented. We then focus

on the formulation of cost functions, called energies, that guide the curve/surface toward

the boundary of the target in the image. Among others, we present novel energies based on

ridge and texture information. Finally, with these two ingredients in hand, we design new

semi-automated active contours/surfaces, also called snakes, for various applications. Our

methods are generic enough to be used with a broad variety of data. In particular, we illustrate

their performance in segmenting real biomedical images. In addition to those three parts,

we provide mathematical tools for signal processing that we designed to efficiently process

periodic functions.

To find the optimal curve/surface that best fits a given target, we adopt throughout the thesis

a subdivide and conquer strategy. First, we look at several smoothed versions of the original

image and, for each, adapt the resolution of the snake curve/surface to the level of detail

of the target (i.e., subdivide). Then, we segment the object of interest at each resolution

recursively, from the coarsest to the finest image (i.e., conquer). This robust subdivide and

conquer strategy exploits the multiresolution property of our curve/surface representations,

as well as characteristics of smoothed images (few details and low noise).

Finally, we give a special attention to the conversion of our algorithms into usable software

that respect the open-source, user-friendly and reproducibility criteria.

Keywords: Biomedical image analysis, segmentation, active contours, active surfaces, geomet-

ric representation, parametrization, local refinement, subdivision, multiresolution, energy,

ridge, texture, usable software, splines, inner product.
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Résumé

Les nouvelles techniques d’imagerie ont donné naissance à de nouvelles exigences concer-

nant l’analyse d’images biomédicales. La segmentation constitue une étape clé de l’ana-

lyse d’images dont la bonne exécution est une tâche particulièrement ardue. Cette thèse

se consacre au développement d’algorithmes pour la segmentation de structures biomédi-

cales dans des images 2D et 3D. A travers ce travail, nous aspirons notamment à améliorer

les méthodes dîtes classiques de modèles déformables paramétriques, en identifiant leurs

limitations.

Cette thèse est organisée en trois parties. Dans un premier temps, nous introduisons deux mo-

dèles de représentation qui adaptent leur résolution au niveau de détail de l’objet à segmenter.

Ensuite, nous formulons des fonctions de coût, appelées énergies, qui permettent de guider

nos courbes/surfaces vers le pourtour des objets d’intérêt dans des images. Entre autres, nous

présentons de nouvelles énergies basées sur la détection de texture et de lignes de crêtes.

Enfin, avec ces deux éléments en main, nous concevons de nouveaux modèles déformables

semi-automatisés, également appelés snakes. Nos approches sont suffisamment générales

pour être utilisées avec de nombreux types de données. En particulier, nous illustrons leurs

performances pour la segmentation d’images biomédicales réelles. En plus de ces trois par-

ties, nous fournissons des outils mathématiques de traitement du signal, conçus pour traiter

efficacement des fonctions périodiques.

Pour trouver la courbe/surface qui délimite au mieux le pourtour de l’objet d’intérêt, nous

adoptons tout au long de cette thèse une stratégie qui consiste à subdiviser pour régner.

Tout d’abord, nous réalisons plusieurs versions lissées de l’image originale. Pour chacune

d’elles, nous adaptons la résolution du snake au niveau de détail de l’objet à segmenter (i.e.,

subdiviser). Ensuite, nous segmentons récursivement l’objet d’intérêt à chaque niveau de

résolution, en allant de l’image la plus grossière à la plus fine (i.e., régner). Cette stratégie

est robuste et exploite la propriété de multirésolution de nos représentations, ainsi que les

caractéristiques des images lissées qui contiennent peu de détails et sont peu bruitées.

Enfin, nous portons une attention toute particulière à convertir nos algorithmes en logiciels

qui soient libres d’accès, faciles d’utilisation et reproductibles.

Mots clefs : Analyse d’images biomédicales, segmentation, contours actifs, surfaces actives,
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Résumé

représentation géométrique, paramétrisation, raffinement local, subdivision, multirésolution,

énergie, ligne de crête, texture, logiciels utilisateur, splines, produit scalaire.
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1 Introduction

1.1 Context

Image analysis is usually understood as the extraction of meaningful information or measure-

ments from images. It typically consists of three main steps: Feature extraction, segmentation

to locate object boundaries, and meaningful description through statistical metrics and inter-

pretation (e.g., classification or recognition) (Figure 1.1).

In this thesis, the focus is on the development and use of novel segmentation algorithms for

biomedical image analysis. Moreover, we give a special attention to convert these algorithms

to friendly and usable software.

1.1.1 Biomedical Image Analysis

In the biomedical field, the characterization of the spatial and temporal organization of

a structure is an ever growing need [1–4]. Various advances in imaging techniques have

made this possible by improving spatial resolution and speed of acquisition, which has led

to improved temporal resolution as well. Such progresses do not come without additional

difficulties though: the size, number and complexity of recorded data are constantly increasing.

Typically, to study an in vivo development of cells (time-lapse), one needs to process and

analyze hundreds of images containing hundreds of cells each.

Final shape

Feature Extraction 
Edge 
Ridge 

Texture 
…

Segmentation

Interpretation 
Statistical shape analysis 

Classification 
Tracking 

…

Figure 1.1 – Image analysis workflow.
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The human analysis and processing of such large amounts of multidimensional data is time

consuming. Moreover, there is important variability among experimenters, as well as within

the realizations of a single experimenter. This has promoted the development of computerized

image analysis tools that 1) considerably decrease processing time; 2) bring robustness and

reproducibility to an extent that is not achievable by humans.

Coined bioimage informatics [5, 6], this emerging field has worked towards developing new

algorithms for the image analysis workflow, and making them accessible to the whole com-

munity. Many open source bioimage analysis tools have thus been developed [7, 8], such

as ImageJ [9], Fiji [10], Icy [11], CellProfiler [12, 13] and Ilastik [14] for the biologists, and

3DSlicer [15], MIA [16] and GIMIAS [17] for the medical world.

Recently, the emergence of deep learning techniques [18] (a.k.a. neural networks) has drasti-

cally transformed the field of bioimage informatics and its quest for more accurate and faster

diagnostics. Deep learning-based approaches have for example been used in medical imaging

to detect skin [19] and brain [20] cancers. Successful use of these learning-based techniques

in various biomedical imaging problems are found on a regular basis [21, 22] and the trend is

likely to continue.

1.1.2 Segmentation

Image segmentation is a key step of many image analysis pipelines (Figure 1.1). The goal of

segmentation is to partition an image into different regions, such that pixels in each region

have similar properties. In other words, segmentation separates a desired object of interest

from its background. This usually consists in finding the boundaries or the homogeneous

region of the target. In biomedical imaging, the objects of interest are typically cells or

anatomical structures (e.g., vessels and organs).

The conceptual interest of segmentation is that it aims for a high-level description of an

object in an image (e.g., a shape) rather than focusing on individual pixels. Segmentation

is thus tasked with changing the representation of an image into something that is more

meaningful to analyze. The best apparatus to detect and extract high level information from

an image is the visual cortex [23]. For this reason, many segmentation methods such as

edge or ridge detectors and neural networks are inspired by human visual perception models.

If properly executed, segmentation makes the subsequent extraction of information much

easier. The whole difficulty lies in the fact that the proper execution of segmentation is a

particularly challenging task. Segmentation is highly application dependent and it is an

ill-defined problem.

A large variety of segmentation algorithms exists [24]. Unavoidably, no existing segmenta-

tion method can be considered generic enough for all applications. They differ depending

on the imaging modality (e.g., x-ray tomography, fluorescence microscopy), the application

domain, and the level of automation. Among classical methods, we can cite intensity thresh-
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olding [25–27], edge detection, and watershed approaches [28–32]. These methods perform

well in good imaging conditions, but they are known to be sensitive to noise, which often

results in over-segmentation, and poor image contrast. Popular alternative segmentation

methods are deformable models, also known as active contours/surfaces. Active contours are

more flexible compared to other approaches as they combine efficient and well-controlled

image segmentation with extensive and eased user interaction. Deformable models allow

for manual edition of the segmentation outcome, which is a significant advantage as auto-

matic segmentation methods rarely reach 100% accuracy. Active contours/surfaces are further

described in Section 1.2 and constitute the main topic of this thesis.

1.1.3 Usable Bioimaging Software

Eventually, the reason bioimage analysis algorithms are developed is to help biologists and

physicians analyze their data. As those practitioners may have only basic programming

training and image processing knowledge, it is of fundamental importance to convert the

developed algorithms to friendly and usable software if one aims to have a meaningful impact

in the community.

To ensure the success of a bioimage segmentation software, some requirements have been

established [33, 34]. Among them we focus our attention on three specific ones.

• User-friendly: Bioimaging software has to be usable by non-programming experts. The

interface should be intuitive and easy-to-use, and documentations such as clear instruc-

tions or video tutorials have to be provided.

• Open-source: The openness of a software provides the necessary transparency. It is

fundamental for a biologist or a scientist to be able to understand how the algorithms

work and to be able to adapt it for research purpose if needed. Another advantage of the

openness is that it is publicly accessible.

• Reproducibility: One should be able to replicate the experiments carried out by the

developer. Hence, data and parameters used for the software validation should always

be provided.

1.2 A Survey on Active Contours/Surfaces

Active contours/surfaces, also called “snakes”, are among the most popular tools for image

segmentation. They were first proposed in 2D by Kass et al [35] in 1988 and generalized

to the 3D case by Terzopoulos et al. [36]. They have became popular models to segment

structures in biomedical images as they provide an excellent trade-off between flexibility

and efficiency [37–43]. They consist in a deformable curve/surface that is deformed from an

initial-user provided position towards the boundary of an object of interest in a 2D/3D image.

The deformation of the snake contour is driven by the minimization of a suitable objective
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function, often called energy in this context [44]. They allow for user interactions, either to

specify the initial position or for manual corrections if needed. Two components thus play an

important role in the construction of an active contour: The geometric representation of the

snake, which describes the nature of its contour and determines some geometric properties

(e.g., smoothness, shape reproduction); and a suitable energy functional that drives the fitting

of the curve/surface to the image data. The choice of this energy term is crucial because

it determines the quality of the segmentation outcome [44, 45]. The choice and design of

both the geometric model and energy of the snake depend on the application and imaging

modality.

Many snake models have been proposed [37, 46]. Currently, active contours/surfaces are

described either implicitly (e.g., level sets [47, 48]), or explicitly, with point/mesh-based [43]

and parametric snakes [49–52]. For the energy term, the most common approaches are based

on edge and intensity information aggregated from either inside or on the curve [44].

1.2.1 Curve/Surface Representation

Snakes are usually categorized based on their curve/surface representation.

Geodesic snakes (or Level-set methods) are based on the idea developed by Osher and

Sethian to model propagating solid/liquid interfaces with curvature-dependent speeds

[53]. In geodesic approaches [47, 54–56], the curve/surface of the snake has an im-

plicit representation described as the zero level-set of a higher-dimensional mani-

fold (Figure 1.2 (a)). Formally, the continuous curve/surface is given by Φ−1(0) ={
p ∈Rn

∣∣Φ(p) = 0
}
, where Φ : Rn → R is a scalar function defined all over the image

domain. These snakes can be extended to any number of dimension and they are

particularly flexible in terms of topology. Indeed, under a suitable energy functional,

they have the ability to automatically handle topology changes. However, they tend to

be computationally expensive since they evolve a manifold with a higher number of

dimensions than the actual contour/surface to segment. They have many degrees of

freedom, which can lead to overfitting in practice. In summary, geodesic snakes based

on level-sets are well suited to segment shapes with high variability, otherwise they are

suboptimal.

Point-snakes/active meshes are historically the first snakes [35, 49]. They have a simple

discrete representation where the shape is described by a set of ordered points (2D

or 3D) (Figure 1.2 (b)). Point-snakes can handle topology changes and their discrete

nature allows for an easy implementation. Moreover, in 3D they are compatible with

open source libraries for optimization or visualization. However, they have two main

drawbacks. First, the discrete nature of the representation does not ensure smoothness

of the curve/surface, which requires an internal regularization term. Second, a lot of

parameters are required to encode shapes, even the simple ones. In fact, there are two (or

three in 3D) degrees of freedom for each snake point. This large number of parameters
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(a) (b) (c)

Figure 1.2 – The three main curve representations of active contours. (a) A geodesic snake,
defined as a continuous curve corresponding to the zero level-setΦ−1(0) of a scalar function
Φ; (b) a point-snake over the grid associated to a discrete image model. The discrete curve is
displayed as shaded pixels and here satisfies an 8-neighbor connectivity; (c) a parametric snake,
where the coordinate functions are depicted in solid lines, and the dashed lines indicate the
weighted basis functions. The symbols “+" are the control points. Source: These illustrations
are taken from [37].

makes the segmentation algorithm none robust, and results in a high computational

complexity.

Parametric snakes have a continuous spatial representation via the use of basis functions.

They are encoded by a set of control points and a continuous parameter [50, 57] (Fig-

ure 1.2 (c)). Contrary to point-snakes, they are built to ensure continuity and smoothness.

They require fewer parameters, which leads to a faster optimization and better robust-

ness. One can also encode more complex shapes by increasing the number of control

points. Since the curve/surface of parametric snakes is represented explicitly, it is easy

to introduce prior knowledge such as shape constraints [58, 59]. Moreover, they allow

the user to suitably modify results in a user-friendly way by moving some control points.

However, well-known drawbacks of parametric approaches are the restricted nature

of the shape that they can generate, and their inability to deal with topology changes

such as contour/surface merging and splitting, although solutions have been proposed

for specific cases [60]. Parametric snakes are at the heart of this thesis and are further

described in Chapter 2.

1.2.2 Snake Energy

The energy functional of the snake drives the evolution of the curve/surface to fit object

boundaries. Kass et al. [34] originally formulated the snake energy as a linear combination of

three terms:
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• the image energy Eimage, which is purely data driven and is responsible for guiding the

curve/surface of the snake towards the boundary of interest;

• the internal energy Eint, which ensures smooth boundaries of the segmented object. In

the formulation of parametric snakes, the smoothness of the representation is often

ensured by the choice of the basis functions, thus eliminating the need for an explicit

internal energy term;

• the constraint energy Ec, which gives rise to external constraints to put the snake near

the desired local minimum. This can be done through an interface to let the user interact

with the snake.

The total energy of the snake is expressed as

Esnake(Θ) = Eimage(Θ)+Eint(Θ)+Ec(Θ), (1.2.1)

where Θ stands for the curve/surface representation (manifolds, snake points or control

points). The deformation of the contour consists in an optimization procedure in which the

snake is iteratively updated from an initial position until the minimum of Esnake(Θ) is obtained.

The optimalΘopt
1 is thus obtained as

Θopt = argmin
Θ

Esnake(Θ). (1.2.2)

Many methods exist to minimize the energy functional (e.g., gradient descent, partial differen-

tial equations approaches, dynamic programming, Powell-like line-search method [61]), and

each optimization scheme is usually linked to a particular snake representation.

The image energy is the most important of the three terms in (1.2.1) since it incorporates

image information (features) to guide the snake towards the boundary of the object of interest.

Different image energy terms are used in practice. The most commonly approaches can be

categorized into two broadly defined categories:

• contour-based methods Econtour, which use local image information and are purely

based on edge or ridge maps obtained by computing the gradient or Hessian of an

image [35, 44, 50, 62]. They provide a good localization of the contour of the object to

segment. However, they have a narrow basin of attraction making a good initialization

critical;

• region-based methods Eregion, which use statistical information(e.g., intensity distribu-

tion, texture) to distinguish different homogeneous regions [44, 48, 57, 63, 64]. The

region-based energies have a larger basin of attraction and can converge even if ex-

plicit edges are not present. However, they do not provide a good localization of the

boundaries of the object to segment.

1Note thatΘopt is not necessarily unique.
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(a) Ridges. (b) Homogeneous intensity
region delimited by edges.

(c) Texture.

Figure 1.3 – Features in biomedical images. (a) The cell membranes of a C. elegans embryo
are separated by ridges; (b) two dividing cells that form an homogeneous intensity region
delimited by edges; (c) a tumor whose intensity distribution is not homogeneous. Here, the
best feature to distinguish the tumor from the background is its texture. Sources: (a) R. Jankele
and P. Gönczy, EPFL; (b) http://www.cellimagelibrary.org/images/35450/; (c) image taken
from [65].

In order to benefit from the advantages of both methods, a unified image energy was proposed

in [44] and in [64]. Typically, Eimage can be expressed by the following combination

Eimage(Θ) = bEcontour(Θ)+ (1−b)Eregion(Θ), (1.2.3)

where b ∈ [0,1] is a trade-off parameter that balances the contribution of the two energies. It

is generally agreed that the choice of the features, i.e., the visual attributes that differentiate

the target from its surroundings, to detect through Eimage depends on the modality and

application. In Figure 1.3, we highlight some features to detect according to the structure to

segment.

1.2.3 Challenges

In the context of bioimage segmentation, there are ongoing challenges for snake-model

algorithms [37].

• Robustness: The snake has to robustly perform in real-life imaging conditions (e.g.,

images with heavy noise and low contrast);

• Flexibility and prior knowledge: The snake has to be versatile enough to accommodate

a wide range of shapes. At the same time, one should have the possibility to integrate

prior knowledge (e.g., shape constraints) into the segmentation procedure;

• Computational efficiency: It is crucial to provide reasonably fast implementations that

run on standard computers, especially when dealing with 3D data.
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1.3 Contributions

This thesis is dedicated to the study and development of segmentation algorithms for biomed-

ical structures in 2D and 3D images. We identify limitations of parametric snakes and address

them providing new representation models as well as novel energies. We then merge these

theories to construct new active contours/surfaces for various applications.

Throughout this thesis, we focus on closed (i.e., periodic) curves/surfaces. Those models

indeed have a wide range of applications in bioimaging [66, 67]. In addition, we are interested

in models that accurately represent shape with few control points as possible, since those

have better robustness and lower computational cost (see Section 1.2.3).

For the optimization process, we adopt a subdivide and conquer strategy. First, we look at

several smoothed versions of the original image and, for each, adapt the resolution of the

snake curve/surface to the level of detail of the target (i.e., subdivide). Then, we segment

the object of interest at each resolution recursively, from the coarsest to the finest image (i.e.,

conquer). This robust strategy exploits the multiresolution property of our new representation

models, as well as characteristics of smoothed images (few details and low noise).

Finally, we give special attention to the conversion of our algorithms into usable software, as

described in Section 1.1.3.

Hereafter we provide a short summary of our five main scientific contributions and their

related publications.

1. Locally refinable parametric snakes [68, 69]: We introduce the possibility to locally in-

crease the number of control points of 2D/3D parametric snakes by inserting basis

functions at specific locations. Our approach relies on scaling and refinable functions

that are related to wavelets.

2. Subdivision snakes [70–73]: Subdivision snakes are our most significant contribution. We

introduce subdivision schemes, traditionally used in computer graphics for modeling,

into a new framework for 2D/3D multiresolution snakes. We also derive the energy

terms associated to this subdivision representation. Subdivision snakes have the ability

to adapt the resolution of their curve/surface to the level of detail of their target. It

allows us to also propose and adopt a coarse-to fine optimization strategy. Those snakes

are more robust to noise and initialization than parametric snakes, and their geometric

representation is also easier to extend to higher dimensions. Moreover, subdivision

snakes can handle topology changes such as curve/surface merging and splitting.

3. Ridge and texture-based energies [73, 74]: We propose two new energies, which allow for

segmentation methods that are valid for a wider range of applications. The first energy

attracts the snake towards ridges in the image and takes into account the direction of

the normal to the curve/surface. The second energy incorporates texture information

and can be used with any filter-based texture features.

8



1.4. Roadmap of The Thesis

Energies
Contour-based: Edge and Ridge Detection

Region-based: Intensity and Texture Information

Chapter 5 — Publications [68,70,72-74]

Representation models
Scaling and Refinable Functions

Subdivisions

Chapters 3 and 4 — Publications [68-72]

Signal Processing Tools
Inner-Product Calculus

Stochastic model of closed curves

Appendices A and B — Publications [75,76]

Active Contours/Surfaces
Bioimaging Software for Segmentation:

• Locally refinable parametric snakes
• Texture-driven parametric snakes
• Multiresolution subdivision snakes (2D-3D)
• Active tessellations

Chapters 6 and 7 — Publications [68,70,72-74]

Figure 1.4 – Content and roadmap of the thesis.

4. Bioimaging software: We implement our algorithms as 2D and 3D software that respect

user-friendliness, open access and reproducibility criteria.

5. Mathematical tools for periodic signal processing [75, 76]: We introduce a calculus of the

inner-product between two compactly supported and periodized basis functions. This

tool is often needed in signal processing, especially in the construction of snakes. In

addition, we present two approaches, variational and statistical, for the reconstruction

of periodic continuous-domain signals from their corrupted discrete measurements.

In Figure 1.4, we give an outlook of these contributions, separated in modules, and their

interconnections.

1.4 Roadmap of The Thesis

The thesis is organized as follows.

In Chapter 2, we review parametric snakes, which are fundamental theoretical tools for this

thesis. We also recall the mathematical concepts that are extensively used throughout our

work.

We continue by introducing two new representation models. We first propose the generic

formulations of locally refinable parametric curves and surfaces in Chapter 3. Then, we
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present in Chapter 4 subdivision schemes that generate curve and surfaces satisfying the

property of multiresolution.

In Chapter 5, we adapt standard energies initially defined for parametric snakes to our new

representation models. In addition, we propose two novel energies that detect ridges and

incorporate texture information.

The theories presented until now are merged in Chapters 6 and 7 to design new active contours

and surfaces, respectively.

Finally, conclusions are drawn in Chapter 8.

In Appendices A and B, we introduce two signal processing theories to efficiently process

periodic functions.
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2 Review of Parametric Snakes

In this chapter, we review parametric snakes that are the foundation for our research. We

also introduce notations and notions that are relevant for this thesis. Finally, we briefly revisit

exponential B-splines that constitute basis functions and introduce periodic exponential

splines that naturally appear in the reconstruction of closed curves.

2.1 Geometric Representation

2.1.1 Parametric Closed Curves

A 2D planar curve r :R→R2 is described by a pair of one dimensional coordinate functions

(r1(t ),r2(t )), where t ∈R is a continuous parameter. Each of these functions is parametrized

by a suitable linear combination of shifted basis functions {ϕ(· −m)}m∈Z, where ϕ : R→ R,

specified by a sequence of control points {c[m] = (c1[m],c2[m])}m∈Z, such that

r(t ) =
(

r1(t )

r2(t )

)
= ∑

m∈Z
c[m]ϕ(t −m), t ∈R. (2.1.1)

We are interested in closed curves in order to be able to segment blob-like or elliptical struc-

tures as it is often the case in bioimages. In this case, the two coordinate functions r1 and r2 are

periodic with the same period. The parametric snake is thus characterized by an M-periodic

sequence of control points {c[m]}m∈Z with c[m] = c[m +M ]. We re-express (2.1.1) as the finite

summation

r(t ) =
M−1∑
m=0

∑
n∈Z

c[m +Mn]ϕ(t −m −Mn)

=
M−1∑
m=0

c[m]
∑

n∈Z
ϕ(t −m −Mn)

=
M−1∑
m=0

c[m]ϕM (t −m), (2.1.2)
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(a)

(b)

(c)

Figure 2.1 – A parametric curve (a) and its coordinate functions (b) and (c). We used the
exponential B-spline presented in [64, (8)] as basis function ϕ and M = 4. The blue dots are
the control points and the dashed lines are the basis functions.

where t ∈ [0, M [ and ϕM is the M-periodization of the basis function ϕ defined by

ϕM (t ) = ∑
n∈Z

ϕ(t −Mn). (2.1.3)

Without loss of generality, the period can also be normalized to one so that r(t ) = r(t +1) for

all t ∈R and hence, we only consider t ∈ [0,1[, such that

r(t ) =
M−1∑
m=0

c[m]ϕM (M t −m). (2.1.4)

The number M of control points determines the degree of freedom of the model. A small M

leads to smooth and constrained shapes, while increasing M brings additional flexibility to

approximate intricate shapes. We show in Figure 2.1 a parametric curve and its coordinate

functions where the period was normalized to unity.

2.1.2 Parametric Representation of Tensor-Product Surfaces

A 3D surface σ : R2 → R3 is described by a triplet of coordinate functions

(σ1(u, v),σ2(u, v),σ3(u, v)), where u, v ∈R are continuous parameters. Each coordinate func-

tion is parametrized by a suitable linear combination of integer-shifted separable basis func-

tions
{
ϕ1(u −m)ϕ2(v −n)

}
m,n∈Z weighted by a sequence of control points {c[m,n]}m,n∈Z. The

functions ϕ1 and ϕ2 determine the shapes that the parametric surface can adopt. Then, the

parametric representation of the surface is given by the equation

σ(u, v) =

σ1(u, v)

σ2(u, v)

σ3(u, v)

= ∑
m∈Z

∑
n∈Z

c[m,n]ϕ1(u −m)ϕ2(v −n), (2.1.5)
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(a) Torus. (b) “Figure 8” immersion. (c) Sphere.

(d) Roman surface. (e) Pinched torus.

Figure 2.2 – Parametric surfaces constructed with the family of interpolatory basis functions
proposed in our paper [77]. Blue dots: control points.

where {c[m,n] = (c1[m,n],c2[m,n],c3[m,n])}m,n∈Z are the 3D control points describing the

shape. To be a closed surface,σ(u, v0) must be periodic in u for all v0. To satisfy this condition,

it is necessary to apply periodic boundary conditions along the first index of the sequence of

control points. Therefore, the sequence of control points becomes M1-periodic and satisfies

c[m,n] = c[m +M1,n]. In (2.1.5), we normalized this period to unity and the new expression

is given by

σ(u, v) =
M1−1∑
m=0

∑
n∈Z

c[m,n]ϕ1,M1 (M1u −m)ϕ2(M2v −n), (2.1.6)

where ϕ1,M1 is the M1-periodization of ϕ1 given by (2.1.3). The basis functions ϕ1 and ϕ2 are

usually chosen to be compactly supported. The infinite sums in (2.1.5) and (2.1.6) can thus

be reduced to a finite one, where the limits depend on the size of the support of the basis

functions. In Figure 2.2, we illustrate some parametric shapes designed from (2.1.5) and (2.1.6).

2.1.3 Desirable Properties of the Basis Functions

The basis functions in (2.1.4) and (2.1.6) are responsible for the smoothness of the curve/sur-

face as well as the shape that the snake can reproduce. Moreover, important considerations

have to be taken into account to properly select the generator ϕ. Hereafter, we describe in

detail these requirements for the 2D case. The extension to surfaces is straightforward by

taking their bivariate analogous.
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Riesz basis: Uniqueness and stability of the representation are guaranteed by the so-called

Riesz-basis condition for the basis function ϕ [78]: There must exist two positive con-

stants 0 < A,B <∞ such that,

A‖c‖2
`2(Z) ≤

∥∥∥∥∥ ∑
m∈Z

c[m]ϕ(·−m)

∥∥∥∥∥
2

L2(R)

≤ B‖c‖2
`2(Z). (2.1.7)

Approximation power: A fundamental requirement is that the closed curve model given

by (2.1.4) should have the capability of approximating any closed curve as closely as

desired as the number M of control points tends to infinity. A necessary (and sufficient)

condition [78] is that ϕ should be able to reproduce constants, which we formalize by

∀t ∈R,
∑

m∈Z
ϕ(t −m) = 1. (2.1.8)

In the literature, this constraint is often named the partition-of-unity condition [78].

Affine invariance: We want to represent shapes independently from their location and orien-

tation. The parametric form of the model must be preserved at least through scaling and

rigid-body transformations. This is guaranteed if the model (2.1.4) is affine invariant,

which means that

A r(t )+b =
M−1∑
m=0

(A c[m]+b)ϕM (M t −m), (2.1.9)

where A ∈R2×2 and b ∈R2. It is easy to show that the constraint (2.1.9) is ensured if and

only if the partition-of-unity condition (2.1.8) is satisfied.

Compact and small support: For practical and computational efficiency reasons, ϕ is often

chosen to be of compact support [52, 78]. In fact, in this case the change of position of a

control point modifies the shape only locally. This allows for a local control by the user.

A broad family of basis functions that fulfills the above properties are the exponential B-splines.

Moreover, they have relevant reproduction properties for the segmentation of biomedical

structures. For these two reasons, exponential B-splines are often used to represent parametric

snakes. We briefly describe these functions in Section 2.3.1.

2.2 Image Energies

The evolution of the curve/surface described in Section 2.1 is driven by the optimization of a

cost functional referred to as snake energy. Using the notations introduced in Section 1.2.2, the

optimization process for parametric snakes is performed by iteratively updating the collection

of control pointsΘ= {c[m]}m∈{0,...,M−1} from a starting position.

We here provide examples of standard image energies (see Section 1.2.2) for parametric snakes

that are relevant to our work. The most common approaches are based on edge and intensity
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Figure 2.3 – Schematic representation of a parametric snake (red contour) in interaction with
a target (green region).

information aggregated from either inside or on the curve/surface. Their expressions are

set with a minus sign since the snake optimization is defined as a minimization process

(see (1.2.2)). In the following, we denote by C the contour parametrized by r and we recall that

the relation between r and the control points is given by (2.1.2).

2.2.1 Contour-based energy

One traditional approach to detect edges is to use the magnitude of the gradient [50, 62]. The

energy functional is then given by

Eedge(Θ) =−
∮
C

∣∣∇∇∇ f (r)
∣∣dr, (2.2.1)

where dr is an infinitesimal vector element of C, ∇∇∇ f (r) is the gradient vector of the input image

f and r is the snake curve. A drawback of this approach is that it does not take into account

the direction of the gradient. An improvement was proposed in [44], using the fact that, at the

boundary of the object of interest, the image gradient should be perpendicular to the contour.

In this case, the energy is expressed by

Eedge(Θ) =−
∮
C

〈∇∇∇ f (r),n(r)
〉

dr, (2.2.2)

where 〈·, ·〉 is the scalar product, n(r) is the unit vector normal to the curve r, and ∇∇∇ f (r) is

the within-plane gradient of the image f at location (r1,r2). In Figure 2.3, we present the

configuration of the various quantities involved.

The 3D extension of (2.2.2) is proposed in [52] and is expressed by

Egrad(Θ) =−
Ó

S

〈∇∇∇ f (σ),dσ
〉

, (2.2.3)

where S is the surface parametrized byσ (see (2.1.6)) and dσ represents the vector differential

area.
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These approaches give a good localization of the edges. However, they are sensitive to noise

and have a poor basin of attraction (Figure 2.5), which implies that the snake has to be

initialized near to the object to segment [37].

2.2.2 Region-based energy

Region-based energies discriminate a homogeneous region from its background [64, 79, 80].

They are usually based on intensity information. The idea is to build a curve rλ around

the snake r, obtained by dilating it by a factor
p

2 with respect to its center of gravity. The

surfaces enclosed by r and rλ, denoted byΩ andΩλ, respectively, are such thatΩ⊂Ωλ and

the surfacesΩ andΩλ \Ω have the same area. We illustrate these quantities in Figure 2.4. The

corresponding energy functional is given by

Eintensity(Θ) =− 1

|Σ|
∣∣∣∣Ï

Ω
f (x)dx1dx2 −

Ï
Ωλ\Ω

f (x)dx1dx2

∣∣∣∣ , (2.2.4)

where dx1dx2 is an infinitesimal vector element ofΩ, f is the input image, and |Σ| is the area

ofΩwith Σ :=Σ(Θ) defined by

Σ(Θ) =
Ï
Ω

dx1dx2. (2.2.5)

The term in the absolute value in (2.2.4) can be positive or negative depending on whether we

segment a bright object over a dark background or inversely. The minus sign and the absolute

value thus ensure that Eintensity is always minimized. Equations (2.2.4) and (2.2.5) require

the computation of surface integrals, which are computationally expensive. To decrease

the computational cost, an approach is to apply Green’s theorem to convert them into line

integrals [44]. This can only be achieved if the curve/surface is defined continuously and

it does not self-intersect. For instance, the expanded formula of Σ is obtained by Green’s

theorem and (2.1.4) as [44, 64]

Σ(Θ) =−
∮
C

r2dr1

=−
M−1∑
m=0

M−1∑
n=0

c1[m]c2[n]
∫ M

0
ϕ̇M (t −m)ϕM (t −n)dt . (2.2.6)

Note that the area obtained by (2.2.6) is signed due to the clockwise or anti-clockwise orienta-

tion of the curve. We therefore take the absolute value of Σ in (2.2.4).

The 3D extension of (2.2.4) is proposed in [52] and adopt a strategy similar to the one we

followed in the 2D case. We build a surface σλ around the snake σ, obtained by dilating it by a

factor 3
p

2 with respect to its center of gravity. The volumes enclosed by σ and σλ, denoted

by V and Vλ, respectively, are such that V ⊂Vλ and V and Vλ \V have the same volume. The

corresponding energy functional is expressed by

Eintensity(Θ) =− 1

|V|
∣∣∣∣Ñ

V
f (x)dx1dx2dx3 −

Ñ
Vλ\V

f (x)dx1dx2dx3

∣∣∣∣ , (2.2.7)
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2.3. Splines

Figure 2.4 – Illustration of the contours C and Cλ, and the shellΩλ \Ω.

(a) Initialization. (b) Eedge. (c) Eintensity. (d) 0.5
(
Eedge+Eintensity

)
.

Figure 2.5 – Illustration of the edge- and region-based energies. In order to benefits from the
advantages of both energies, we use the combination (1.2.3) for b = 0.5.

where dx1dx2dx3 is an infinitesimal vector element of V , V is the volume of V , and the relation

between σ and its control points is given by (2.1.6).

Region-based energies are robust to noise and have a larger basin of attraction than contour-

based energies [37] (Figure 2.5). However, the functionals (2.2.4) and (2.2.7) are well suited

only when the intensity distributions of the object and its background have different variances

and means [44, 74].

2.3 Splines

2.3.1 Exponential B-Splines as Basis Functions

Exponential B-splines are popular not only in sampling and approximation theory but also

to represent parametric curves and surfaces. They are the exponential counterpart of the

well-known polynomial B-splines [81–83]. They are compactly supported [81] and have

relevant reproduction properties for the segmentation of biomedical structures. An exponen-

tial B-spline of order L is fully characterized by its unordered list of (complex-valued) poles

α= (α1,α2, . . . ,αL), where the αn can be non-distinct. It is supported in [0,L] and its causal

form is characterized in the frequency domain as

β̂α(ω) =
L∏

n=1

1−eαn−jω

jω−αn
. (2.3.1)
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Figure 2.6 – L-th order exponential B-splines β(α,...,α) for L ∈ {1, . . . ,5} (from left to right).

We illustrate in Figure 2.6 several exponential B-splines, where we see that a wide range of

behaviors can be obtained by varying L andα. An exponential B-spline has the property of

reproducing exponential polynomials, i.e., it generates the whole family
{
eαn t t p

}
p∈{0,...,Lαn −1},

where Lαn is the multiplicity of the element αn ∈ α. If all the poles are equal to zero (i.e.,

α= 0L), we obtain the classical polynomial B-splines of degree (L−1).

The most relevant properties of exponential B-splines for our purposes are [81]

• The exponential B-splines are always well-defined (i.e., bounded and compactly sup-

ported), and form a Riesz basis if and only if
(
αn1 −αn2

) 6∈ 2πjZ for all purely imaginary

pairs such that n1 6= n2 [81];

• An exponential λβα satisfies the partition-of-unity condition (2.1.8) if it contains at least

one vanishing pole (i.e., if 0 is an element ofα), with λ a normalization constant;

• The convolution of two exponential B-splines yields another B-spline of augmented

order

βα1 ∗βα2 =βα1∪α2 , (2.3.2)

where (α1 ∪α2) denotes the concatenation of the two lists of polesα1 andα2.

2.3.2 Exponential Splines and Their Periodic Counterpart

Exponential Splines

Exponential splines are naturally associated to a differential operator of a given order [84] and

are defined by the following definition [81].

Definition 2.3.1. Let Lα,α= (α1, . . . ,αL), be a differential operator of order L given by

Lα = (D−α1I) · · · (D−αLI), (2.3.3)

where D and I are the derivative and identity operators, respectively. We say that a function
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-1.0 -0.5 0.5
t

-0.6

-0.4

-0.2

0.2

0.4

Figure 2.7 – Illustration of the periodic exponential spline associated to Lα = D+ I. Dots: N = 4
nodes (tn ,r (tn)).

r :R→R is an exponential spline with parameterα if

Lαr (t ) =
N∑

n=1
anδ(t − tn), (2.3.4)

for some integer N ≥ 1, weights an ∈R, knot locations tn ∈R, and δ is the Dirac distribution.

The exponential B-splines βα described in Section 2.3.1 are examples of exponential splines

where the knots are at the integer, i.e. tn = n. Every cardinal exponential spline of parameter

α can be expressed as a linear combination of integer shifted exponential B-splines βα of the

same order [81].

Periodic Exponential Splines

Here we adapt Definition 2.3.1 to the periodic setting, where the Dirac impulse δ is replaced

by the Dirac comb X=∑
n∈Zδ(·−n).

Definition 2.3.2. Consider the differential operator Lα given in (2.3.3). We say that a function

r :T= [0,1) →R is a periodic exponential spline with parameterα if

Lαr (t ) =
N∑

n=1
anX(t − tn) (2.3.5)

for some integer N ≥ 1, weights an ∈R, and knot locations tn ∈T.

We illustrate the periodic exponential spline associated to Lα = D+ I in Figure 2.7.

2.3.3 Periodic Exponential Splines as Optimal Interpolators for Closed Curves

The reconstruction of continuous signals from a sequence of samples (also known as interpo-

lation problem) plays an essential role in signal and image processing as it constitutes a bridge

between the discrete and continuous worlds. Two reconstruction paradigms over the real line

have been widely developed in the literature: variational and statistical. In the variational
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approach, the reconstructed signal is solution of an optimization problem that establishes a

tradeoff between fidelity to the data and smoothness conditions via a regularization term [85].

In the statistical approach, the signal is modeled as a random process defined from a Gaussian

white noise and is optimally reconstructed using estimation theory [86]. Two fundamental

results are that 1) these two frameworks are deeply connected [87]; and 2) the solution of

either problem can be expressed as a spline function in relation with a differential operator

involved in regularization (variational approach) or whitening (statistical approach) [88, 89].

In the context of this thesis, we are interesting in the reconstruction of a continuous closed

curve from its samples. This implies to reconstruct periodic continuous-domain functions

that are the coordinate functions of the closed curve. This motivated us to develop the theory

of the variational and statistical approaches in a periodic setting and in a very general context,

i.e., for a broad class of differential operators and for general measurements that include

sampling. This theory is fully presented in Appendix B and is subject to our publication [76].

In this section, we summarize some of our results showing that periodic exponential splines

naturally appear when we optimally reconstruct a closed curve from its samples.

We consider the following problem. Let {r(tn)}n∈{1,...,N }, tn ∈ T = [0,1), be N samples of a

continuous closed curve r(t) = (r1(t),r2(t)), t ∈T, where the coordinate functions r1 and r2

are 1-periodic. We look for the optimal closed curve ropt that best connects its N (possibly

noisy) observed data yn = (y1,n , y2,n) ≈ r(tn), for n = 1, . . . , N .

Variational Approach

We consider the variational problem

ropt =
(

r1,opt

r2,opt

)
= argmin

(r1,r2)

(
N∑

n=1

((
y1,n − r1(tn)

)2 + (
y2,n − r2(tn)

)2
)
+λ

(
‖Lαr1‖2

L2
+‖Lαr2‖2

L2

))
,

(2.3.6)

where Lα is the differential operator given by 2.3.3 and the parameter λ quantifies the tradeoff

between the fidelity to the data and the regularization constraint. The solution ropt of (2.3.6) is

unique and its coordinate functions ri ,opt, i = 1,2, are periodic exponential splines associated

to the operator (L∗
αLα) (see Appendix B.3).

Statistical Approach

We change perspective and consider that the coordinates functions ri , i = 1,2, of r are real

periodic Gaussian processes with zero-mean and are related to Lα. We are looking for the

optimal estimator ropt = r̃MMSE over T of r, in the sense that each of its coordinate functions

r̃i ,MMSE, i = 1,2, satisfies

r̃i ,MMSE = argmin
r̃i

E
[
‖ri − r̃i (·|{yi ,n}n∈{1,...,N })‖2

L2

]
(2.3.7)
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2.3. Splines

(a) Lα = D+ I and N = 40. (b) Lα = D2 +4π2I
and N = 15.

(c) Lα = D and N = 40. (d) Lα = D2 and N = 40.

Figure 2.8 – Reconstruction of stochastic closed curves for different operators Lα. Solid blue
line: unknown stochastic curve r; dashed red line: estimator r̃MMSE of r; Dots: samples.

among the estimators r̃i (·|{yi ,n}n∈{1,...,N }) of ri such that r̃i (tn |{yi ,n}n∈{1,...,N }) for n = 1, . . . , N .

The solution of (2.3.7) is unique and is a periodic exponential spline associated to (L∗
αLα) (see

Appendix B.4). It means that the unique optimal closed curve r̃MMSE has coordinate functions

that are periodic splines. In Figure 2.8, we optimally reconstruct (in the sense of (2.3.7))

stochastic closed curves from their observed data {yn}n∈{1,...,N } for different operators Lα.
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3 Parametrization with Local Refine-
ment

The geometric representation of active contours/surfaces determines their ability to approxi-

mate the shape of interest as well as the speed of convergence of related optimization algo-

rithms. It is thus of great interest that one can allocate additional degrees of freedom to the

curve/surface only where an increase in local detail is required.

A crucial aspect in the development of local refinement algorithms is to refine specific re-

gions while keeping the rest of the curve/surface unchanged. This local refinement is not

inherent to standard methods as Non-Uniform Rational Basis Splines (NURBS) or classical

parametrizations of curves/surfaces. Existing methods to insert points at specific locations

were developed in [90–94].

In this chapter, we present a new parametrization for curves and tensor-product surfaces

where the degrees of freedom (i.e., control points) can be locally increased without altering

the shape of the curve/surface. In a segmentation context, these additional control points

then allow to locally deform the shape with better accuracy. We locally improve the level of

detail of the parametric model by inserting basis functions at specific locations. Our approach

is generic and relies on refinable and scaling functions that are related to wavelets [95, 96].

Among all scaling and refinable functions, throughout this chapter we focus on the one of

compact support, as it is a desirable property in practice.

This chapter is based on our publications [68, 69], in collaboration with D. Schmitter and M.

Unser. The chapter is organized as follows: In Section 3.1 we fix the notations. We review

refinable functions in Section 3.2. Finally, the main contribution is described in Section 3.3,

where we propose a novel and generic parametrization of closed curves, as well as tensor-

product surfaces, that are locally refinable.
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Chapter 3. Parametrization with Local Refinement

Figure 3.1 – Refinement of a quadratic B-spline with a refinement factor ρ equal to 2 (solid
blue line). It can be expressed as a linear combination of four contracted versions (green
dashed lines) of integer-shifted quadratic B-splines.

3.1 Notations

We denote by t a continuous parameter inR. We defineα= (α1,α2, . . . ,αL) where theαn can be

non-distinct, and denote by Lαn the multiplicity of the element αn ∈α, for n = 1, . . . ,L. We de-

note by ϕα a function that reproduces exponential polynomials in

span
{
eαn t , . . . , t Lαn −1eαn t

}
n∈{1,...,L}, i.e., for all i ∈ {0, . . . ,Lαn−1} there exists a sequence {c[m]}m∈Z

such as

t i eαn t = ∑
m∈Z

c[m]ϕα(t −m). (3.1.1)

Exponential B-splines (see Section 2.3.1) are examples of such functions [81].

3.2 Scaling and Refinable Functions

In this section, we define the notions of scaling and refinable functions.

Definition 3.2.1. A basis function ϕ is called a scaling function for a refinement factor ρ > 1 if

it verifies the refinement relation given by

ϕ(t ) = ∑
m∈Z

h[m]ϕ(ρt −m), (3.2.1)

where h is the discrete refinement filter [97, 98].

If ϕ is a scaling function, it can thus be expressed as a linear combination of its contracted

version shifted by integers. Examples of such functions are polynomial B-splines [81]. In

Figure 3.1, we illustrate the refinement of a quadratic B-spline for ρ = 2, whose corresponding

refinement filter is defined by its z-transform as

H(z) = 1

4

(
1+ z−1)3

. (3.2.2)
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Definition 3.2.2. A basis functionϕα is called a refinable function1 for a refinement filter ρ > 1,

if it verifies the refinement relation given by

ϕα(t ) = ∑
m∈Z

h α
ρ

,ρ[m]ϕα
ρ

(ρt −m), (3.2.3)

where {hα,ρ[m]}m∈Z are the coefficients of the discrete refinement filter [101, 102].

The non-standard aspect here is the fact that the scheme is non-stationary, meaning that the

basis functions on both sides of (3.2.3) involve different parameters, i.e.,α and α
ρ . If ϕα is a

refinable function, its dilatation by ρ can be expressed as a linear combination of the integer

shifts of the generator ϕα
ρ

. Examples of such functions are exponential B-splines [81]. When

α= 0, we obtain a scaling function as defined in Definition 3.2.1.

When the functions ϕ and ϕα in (3.2.1) and (3.2.3) are compactly supported, then the support

of h and hα,ρ are compact as well. We denote by {n0, . . . ,n0 +N −1} the support of the filters

where N is the size.

3.3 Representation with Local Refinement

In the following, we first describe the local refinement of parametric closed curves. We

use scaling functions in order to present the theory in a clear manner, but the extension to

refinable functions is straightforward. We then extend the theory in 3D using the general case

of refinable functions.

3.3.1 Closed Curves

We consider a closed curve r parametrized by (2.1.2), where we choose (compactly supported)

scaling functions (see Definition (3.2.1)) as basis functions. The shape is encoded by M control

points and we briefly recall the parametrization as

r(t ) =
M−1∑
m=0

c[m]ϕM (t −m), (3.3.1)

where t ∈ [0, M [. In a non-periodic formulation (see (2.1.1)), the local refinement of r with

respect to one particular control point c[p] consists in replacing the shifted basis function

ϕ(·−p) by the linear combination of its N contracted version given by (3.2.1). To ensure the

periodicity in (3.3.1), we do it for each scaling functionϕ(·−p−nM), n ∈Z. In Proposition 3.3.1,

we derive the new formulation of r in which we locally increased its number of control points.

1In relation with the classical definition of a scaling function used in multiresolution models [99], refinable
functions defined in Definition 3.2.2 are sometimes also called scaling functions [99, 100].
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(a)

(b)

(c)

(d)

Figure 3.2 – Locally refinable closed curve. (a) A parametric closed curve r represented with
the quadratic B-spline and M = 5. The bold line corresponds to the part of the curve that
is controlled by c[p] (blue dot); (b) the first coordinate function of r with its shifted basis
functions (dotted lines). We highlight ϕ(· − p) in a blue dashed line; (c) the curve r after
local refinement with respect to c[p]. We used the refinement filter defined by (3.2.2). The
bold line of the curve initially encoded by c[p] is now controlled by four new control points
{c̃p [n]}n∈{0,...,3} (green dots.). The shape of r remains unchanged; (d) the first coordinate
function of r, where the blue dashed line in (b) was replaced by four new basis functions
(green dashed lines), such as in Figure 3.1. As the quadratic B-spline is not an interpolating
function, we projected the control points on the curve for better clarity of these plots.

Proposition 3.3.1. A parametric closed curve that has been locally refined with respect to c[p]

can be expressed as

r(t ) =
M−1∑
m=0
m 6=p

c[m]ϕM (t −m)+
n0+N−1∑

n=n0

c̃p [n]ϕρM (ρt −ρp −n), (3.3.2)

where ρ is the refinement factor and N is the size of the discrete filter h, whose support is

{n0, . . . ,n0 +N }. The functions ϕM and ϕρM are the M- and ρM-periodization of ϕ as defined

by (2.1.3), respectively, and

c̃p [n] = h[n]c[p]. (3.3.3)

The proof is given in Appendix 3.4.1. We give Proposition 3.3.1 for closed curves as we focus

on those models in this thesis. However, the extension of this Proposition to open curves is

straightforward. The local refinement described by Proposition 3.3.1 allows the part of the

curve initially controlled by c[p] to be described by N new control points {c̃p [n]}n∈{n0,...,n0+N−1}.

We thus increase the approximation power of the curve at this specific region. By approxima-

tion power we mean the ability of the model to approximate a shape with accuracy. The error

of approximation decreases when the number of control points increases [103]. The local

refinement of a parametric curve for ρ = 2 is illustrated in Figure 3.2.

26



3.3. Representation with Local Refinement

3.3.2 Tensor-Product Surfaces

The idea to locally refine tensor-product surfaces is similar than in 2D. We use (compactly

supported) refinable functions as generators ϕα1 and ϕα2 to construct surfaces described

by (2.1.5). We apply the refinement relation (3.2.3) locally, i.e., only with respect to the par-

ticular control point c[p, q] associated to the basis functions ϕα1 (u −p) and ϕα2 (v −q). The

refinement factors are equal to ρ1 and ρ2 in the directions u and v , respectively.

Proposition 3.3.2. A locally refined parametric tensor-product surface is expressed as

σ(u, v) = ∑
(m,n)∈Z2

(m,n) 6=(p,q)

c[m,n]ϕα1 (u −m)ϕα2 (v −n)

+
n1+N1−1∑

i=n1

n2+N2−1∑
j=n2

c̃p,q [i , j ]ϕα1
ρ1

(ρ1u −ρ1p − i )ϕα2
ρ2

(ρ2v −ρ2q − j ), (3.3.4)

where N1 and N2 are the sizes of the discrete filters h α1
ρ1

,ρ1
and h α2

ρ2
,ρ2

, respectively, whose supports

are {n1, . . . ,n1 +N1 −1} and {n2, . . . ,n2 +N2 −1}, and

c̃ p,q [i , j ] = c[p, q]h α1
ρ1

,ρ1
[i ]h α2

ρ2
,ρ2

[ j ]. (3.3.5)

Thereby, p and q are freely chosen.

The proof is given in Appendix 3.4.2. The infinite sums in (3.3.4) are in practice reduced to

finite ones, as we consider compactly supported basis functions. One can refine the surface at

several specific locations by applying Proposition 3.3.2 with respect to each corresponding

control point.

We denote by σp,q the region of the surface σ that is initially controlled by c[p, q], i.e.,

σp,q (u, v) = c[p, q]ϕα1 (u −p)ϕα2 (v −q). The local refinement described by Proposition 3.3.2

leaves the shape of the surface unchanged while dividingσp,q in (N1 ×N2) smaller areas; each

being controlled by one of the new control points
{

c̃p,q [i , j ]
}

i∈{n1,...,n1+N1−1}, j∈{n2,...,n2+N2−1}. We

thus increase the approximation power of the surface at the specific region σp,q . In Figure 3.3,

we illustrate a local refinement on a cylindrical surface. We show the influence of the refine-

ment for each direction u and v in Figure 3.4. Finally, in Figure 3.5, we compare our local

approach to the global one used with the classical parametrization (2.1.2).
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(a) Refinement of σp,q . (b) Deformation with and without refinement.

Figure 3.3 – Local refinement of a cylindrical surface. (a) One of the small areas (red pattern)
obtained by the local refinement ofσp,q (green pattern); (b) the displacement of the control
point c[p, q] deforms the entire region σp,q (left), while the local refinement with respect to
c[p, q] allows to accurately control a specific part of σp,q (right).

(a) Refinement in the direction u
with ρ1 = 2.

(b) Refinement in the direction v
with ρ2 = 2.

(c) Refinement in both directions u
and v with ρ1 = 2 and ρ2 = 2.

Figure 3.4 – Refinement of σp,q (green pattern) with respect to c[p, q] performed in direction
u in (a), v in (b) as well as in both directions in (c). Red pattern: surface controlled by one of
the new points c̃p,q .

(a) Initial parameter domain. (b) Global approach. (c) Local refinement.

Figure 3.5 – Increase of the approximation power of the region σp,q (green pattern). We
compare our method to the global approach used with classical parametrizations. (a) Initial
configuration; (b) configuration obtained after globally increasing by a factor 3 the number of
control points in each direction. The entire parameter domain is affected; (c) configuration
obtained by applying a local refinement with respect to the control point c[p, q] with ρ1 = ρ2 =
3. The region σp,q is divided into 9 areas, whereas the rest of the parameter domain remains
unchanged.
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3.4 Appendices

3.4.1 Proof of Proposition 3.3.1

Using (2.1.2) we write

r(t ) =
M−1∑
m=0
m 6=p

c[m]ϕM (t −m)+c[p]ϕM (t −p). (3.4.1)

By combining (2.1.3) and (3.2.1), ϕM (t −p) can be expressed as

ϕM (t −p) = ∑
n∈Z

ϕ(t −p −Mn)

= ∑
n∈Z

∑
m∈Z

h[m]ϕ(ρt −ρp −ρMn −m)

= ∑
m∈Z

h[m]
∑

n∈Z
ϕ(ρt −ρp −ρMn −m)

= ∑
m∈Z

h[m]ϕρM (ρt −ρp −m). (3.4.2)

Therefore,

c[p]ϕM (t −p) = ∑
m∈Z

c[p]h[m]︸ ︷︷ ︸
c̃p [m]

ϕρM (ρt −ρp −m). (3.4.3)

By taking into account the size of the filter h, which is equal to N , as well as its localization on

{n0, . . . ,n0 +N } we can simplify the infinite sum in (3.4.3) to obtain

c[p]ϕM (t −p) =
n0+N−1∑

m=n0

c̃p [m]ϕρM (ρt −ρp −m). (3.4.4)

By combining (3.4.1) and (3.4.4) we obtain (3.3.2).

3.4.2 Proof of Proposition 3.3.2

Using (2.1.5) we write

σ(u, v) = ∑
(m,n)∈Z2

(m,n) 6=(p,q)

c[m,n]ϕα1 (u −m)ϕα2 (v −n)+c[p, q]ϕα1 (u −p)ϕα2 (v −q)︸ ︷︷ ︸
σp,q (u,v)

. (3.4.5)

Using the refinement property (3.2.3) we obtain

σp,q (u, v) = c[p, q]

(∑
i∈Z

h α1
ρ1

,ρ1
[i ]ϕα1

ρ1
(ρ1u −ρ1p − i )

) (∑
j∈Z

h α2
ρ2

,ρ2
[ j ]ϕα2

ρ2
(ρ2v −ρ2q − j )

)
= ∑

i∈Z

∑
j∈Z

c[p, q]h α1
ρ1

,ρ1
[i ]h α2

ρ2
,ρ2

[ j ]︸ ︷︷ ︸
c̃p,q [i , j ]

ϕα1
ρ1

(ρ1u −ρ1p − i )ϕα2
ρ2

(ρ2v −ρ2q − j ). (3.4.6)
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Chapter 3. Parametrization with Local Refinement

To simplify the infinite sums in (3.4.6) we take into account the size of the filters h α1
ρ1

,ρ1
and

h α2
ρ2

,ρ2
, which is equal to N1 and N2, respectively, as well as their localization on

{n1, . . . ,n1 +N1 −1} and {n2, . . . ,n2 +N2 −1}. We obtain

σp,q (u, v) =
n1+N1−1∑

i=n1

n2+N2−1∑
j=n2

c̃p,q [i , j ]ϕα1
ρ1

(ρ1u −ρ1p − i )ϕα2
ρ2

(ρ2v −ρ2q − j ). (3.4.7)

By combining (3.4.5) and (3.4.7), we obtain (3.3.4).
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4 Subdivision-Based Representation

As exposed in Chapter 2, parametric snakes have a continuous representation via the use of

basis functions. They are parametrized by only a few control points, which results in a faster

optimization and better robustness. They are usually built in a way that ensures continuity

and smoothness, and it is easy to introduce shape constraints. However, two well-known

drawbacks of parametric approaches are (i) the restricted nature of the shape that they can

generate; and (ii) their inability to deal with topology changes such as contour merging and

splitting. On the contrary, point-snakes/active meshes can handle topology changes. In

addition, their discrete nature allows for an easy implementation and is compatible with

open-source libraries for optimization or visualization. However, they rely on a large number

of parameters (i.e., snake points/mesh vertices), which requires an internal regularization

term and makes the optimization more challenging.

In this chapter, we present a geometric representation that combines the advantages of point-

snakes and parametric snakes. In our representation, the curve/surface is driven by a set of a

few master points, the control points, that are the parameters of the model. Then, slave points

describing the curve/surface are generated by specific iterative procedures. The property that

makes it possible is called subdivision [101, 104–106], which is one of the basic geometric tools

in computer graphics for representation and modeling [107, 108]. It is tightly linked to the

theory of wavelets [109] and allows describing a contour/surface of arbitrary topology [71,110–

112] by an initial set of a few control points which, by the iterative application of refinement

rules, becomes continuous in the limit. The discrete nature of the representation is convenient

in practical applications. At the same time, it implicitly yields a continuously defined model

whose smoothness depends on the particular choice of the subdivision mask. The main

benefits of subdivision schemes are their simplicity of implementation, the possibility to

control their order of approximation, and their multiresolution property, which allows for the

contour of a shape to be represented at varying resolutions.

This chapter is based on our publications [70, 71] and work [72], in collaboration with P.

Novara, L. Romani, D. Schmitter, V. Uhlmann and M. Unser. It is organized as follows: We

first fix the notations in Section 4.1. In Section 4.2, we introduce and describe the theory of
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Chapter 4. Subdivision-Based Representation

subdivision that is relevant to the construction of closed curves. In Section 4.3, we present

several subdivision schemes that possess various properties such as being interpolatory

(a useful property for user-interactive applications), having different sizes of support, and

reproducing polynomials. In Section 4.4, we show how subdivision schemes can be used

to reproduce trigonometric functions for the construction of elliptic and circular curves. In

Section 4.5, we emphasize the connection between the subdivision-based and parametric

representations. Finally, in Section 4.6 we extend the theory to the construction of subdivision

surfaces.

4.1 Notations

We represent by p[·] a discrete sequence of points p[m] = (p1[m], p2[m]), indexed by m ∈Z,

where p1 and p2 are the corresponding coordinates. We write p(k)[·] = (p1(k)[·], p2(k)[·]) to

describe a (2k M)-periodic sequence, k ≥ 0, with the property that p(k)[m +n2k M ] = p(k)[m],

∀n ∈Z. The discrete convolution of p(k)[·] with a scalar mask h[·] is defined as(
h ∗p(k)

)
[m] = ∑

n∈Z
h[m −n]p(k)[n]. (4.1.1)

4.2 Subdivision Schemes

A subdivision scheme generates a continuously defined function as the limit of an iterative

algorithm that is applied to an initial set of M control points. A refinement rule is applied

repeatedly k times to double the number of points at each iteration, ultimately yielding a set

of 2k M points. Note that, at each iteration, the new set of points does not necessarily contain

the previous ones. The subdivision scheme is said to be convergent when the set of points

converges to the continuous curve r = (r1,r2) with r1,r2 ∈ C0 as k →∞.

A closed curve at resolution k is represented by a (2k M)-periodized coordinate sequence

p(k)[·]. The refinement rule from (k −1) to k is defined by

p(k)[m] = h ∗p(k−1)↑2
[m], (4.2.1)

where h is the subdivision mask of the subdivision scheme [113] and ↑2 denotes an upsampling

by a factor of 2, given by

p(k)↑2
[m] =

{
p(k)[n], m = 2n

0, otherwise.
(4.2.2)

In practice, the mask h has a finite number of non-zero elements so that the infinite sum

in (4.2.1) is often reduced to a finite one. Applying (4.2.1) iteratively, we can express the

refinement rule as a function of the initial set of control points p(0). The subdivision points at

the kth iteration (k ≥ 1) are thereby described by

p(k) = h0→k ∗p(0)↑
2k

, (4.2.3)
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4.2. Subdivision Schemes

Figure 4.1 – Flowchart of a subdivision scheme. The periodic sequence p(k), associated to the
subdivision points at iteration k, converges to the continuous curve r; h is the subdivision
mask and the sequence h0→k , defined by (4.2.4), allows obtaining p(k) directly from the initial
set of control points p(0).

where

h0→k = h↑2k−1 ∗h↑2k−2 ∗·· ·∗h↑2 ∗h. (4.2.4)

The derivation of (4.2.3) is given in Appendix 4.7.1. Note that each set of points p(k) is en-

coded with the M control points
{

p(0)[m]
}

m∈{0,...,M−1}. The subdivision scheme is illustrated

in Figures 4.1 and 4.2.

In the following, the term control points designates the M initial points
{

p(0)[m]
}

m∈{0,...,M−1}

and the term subdivision points describes the 2k M points
{

p(k)[m]
}

m∈{0,...,2k M−1} at the kth

iteration (k ≥ 1).

4.2.1 Convergent Subdivision Schemes

Let h be a subdivision mask with z-transform1 H(z) = ∑
n∈Zh[n]zn , z ∈ C \ {0}. A necessary

condition for the corresponding (stationary) subdivision scheme to be convergent [114] is that

∑
n∈Z

h[2n] = ∑
n∈Z

h[2n +1] = 1. (4.2.5)

This condition is similar to the partition-of-unity condition (2.1.8) presented for basis func-

tions in Section 2.1.3. The subdivision scheme thus reproduces constants and H(z) = (1+
z)B(z), where B(z) is a Laurent polynomial and B(1) = 1 [115].

For any convergent subdivision scheme, the points of the sequence p(k), as k →∞, sample

the limit curve r, in the sense that [115–117]

r(t )|t= m
2k

= p(k)[m]. (4.2.6)

When the coordinates function of the curve satisfy r1,r2 ∈ C1, the derivative ṙ = dr
dt is also

sampled by

ṙ(t )|t= m
2k

= 2k (p(k)[m +1]−p(k)[m]) (4.2.7)

in the limit case k →∞ [116, 118]. The derivation of (4.2.7) is given in Appendix 4.7.2. A neces-

1This is the conventional definition of the z-transform used in subdivision theory.
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Chapter 4. Subdivision-Based Representation

(a) p(0). (b) p(1). (c) p(2). (d) p(4). (e) r.

Figure 4.2 – Illustration of non-interpolating (first row) and interpolating (second row) sub-
division schemes. (a) Control points. Dots in (b)-(d): Subdivision points of the first, second
and fourth iterations. As the points become denser with each iteration, they converge to the
continuous curve r (e), which is still encoded by the five control points (blue crosses). In the
case of the interpolating scheme, the subdivision points interpolate the limit curve at each
iteration of the process.

sary and sufficient condition for a subdivision scheme to converge uniformly to a continuous

limit function is [114, 118]
H(1) = 2

H(−1) = 0

max
m

|h0→k [m +1]−h0→k−1[m]| −→
k→+∞

0.
(4.2.8)

In practice, few iterations are enough for the contour points to be sufficiently dense.

4.2.2 Interpolating Subdivision Schemes

A subdivision scheme is said to be interpolating if h[2m] = δ[m], where δ denotes the Kro-

necker delta. It means that, at each step k, the subdivision points interpolate the limit curve

r and
{

p(k−1)[m]
}

m∈Z ⊂ {
p(k)[m]

}
m∈Z. We illustrate an interpolating subdivision scheme in

Figure 4.2 (second row).

4.2.3 Affine Invariance

As mentioned in Section 2.1.3, an important requirement for the construction of snakes, as it is

our final motivation, is that the representation model be affine invariant to ensure to describe

the curve independently from its location and orientation.
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4.3. Design of Subdivision Schemes

Definition 4.2.1. A subdivision scheme is said to be affine invariant if, for any (2×2) matrix A

and translation vector b ∈R2, the following relation holds:

lim
k→∞

h0→k ∗
(
Ap(0) +b

)
↑2k

= A
(

lim
k→∞

h0→k ∗p(0)

)
+b

= Ar+b. (4.2.9)

Proposition 4.2.2. Every convergent subdivision scheme is affine invariant.

The derivation of Proposition 4.2.2 is given in Appendix 4.7.3.

4.3 Design of Subdivision Schemes

In the context of segmentation, the continuously defined limit curve of a convergent subdi-

vision scheme can be used to describe an active contour. In this case, the properties of the

snake are determined by the choice of the subdivision mask h. There are thus three important

properties to consider for h. The first defines its capability to perfectly reproduce specific

shapes, such as polynomial or trigonometric curves. The second is whether the control points

interpolate the curve or not. The third is the support of the mask. This can affect the optimiza-

tion of the snake and, generally, a short mask is preferred over a large one in a context of user

interaction. In practice, a tradeoff between the advantages and limitations regarding these

properties has to be made. The purpose of this section is to offer guidance on the choice of

the subdivision mask. We discuss the two most interesting families: the Deslauriers-Dubuc

and the minimum-support subdivision schemes.

4.3.1 Generation of Polynomials

Proposition 4.3.1 gives a criterion that a subdivision scheme must verify to generate polyno-

mials.

Proposition 4.3.1. (Conti and Hormann [115, Equation (7)]) A subdivision scheme generates

polynomials up to degree (L−1) if the z-transform of the subdivision mask takes the form

H(z) = (1+ z)LB(z), (4.3.1)

where B(z) is a Laurent polynomial with B(1) = 1
2L−1 and B(−1) 6= 0.

4.3.2 Deslauriers-Dubuc Subdivision Scheme

The Deslauriers-Dubuc subdivision scheme is convergent and interpolating [119], [120]. It

reproduces polynomials up to degree (L−1) [109, 121, 122]. The mask has a support of size

2(L−1)+1 and is computed by solving the system [100, 123]H(z)+H(−z) = 2

H(z) = R(z)Q(z),
(4.3.2)
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Chapter 4. Subdivision-Based Representation

where R(z) = (1+ z)L and Q(z) is the shortest-possible polynomial. We solve (4.3.2) using

Bézout’s theorem and we obtain

H(z) = (−1)
L
2
(
1− z2)L

z−L

(
L∑

q=1

(−1)q aq

(z −1)q

)
, (4.3.3)

where {aq }q∈{1,...,L} are the coefficients of the simple-fraction decomposition

2(−1)
L
2 zL

(z2 −1)L
=

L∑
q=1

aq

(
1

(z +1)q + (−1)q

(z −1)q

)
. (4.3.4)

Example-Reproduction of Third-Degree Polynomials: We now focus on the particular case

when L = 4. It corresponds to the well-known subdivision scheme introduced by Deslau-

riers and Dubuc in [119] that reproduces polynomials up to degree 3. The corresponding

subdivision mask h has a support of size 7 and its z-transform is defined by

H(z) =− 1
16 z−3 + 9

16 z−1 +1+ 9
16 z − 1

16 z3. (4.3.5)

4.3.3 Minimum-Support Subdivision Scheme

The minimum-support subdivision scheme has the property to generate polynomials with

the shortest mask. However, it is not interpolating, meaning that the control points do not lie

on the limit curve. In a segmentation context, it results that it is less intuitive for the user to

interact with the curve. The mask associated to the scheme that generates polynomials up to

degree (L−1) is defined as

H(z) = 1

2L−1
(1+ z)L (4.3.6)

and has a support of size L+1 [124].

Example-Shortest Generation of Third-Degree Polynomials: In this example, we construct a

minimum-support subdivision scheme that generates polynomials up to degree 3. The

corresponding mask is of size 5 and is defined by

H(z) = 1

8
+ 1

2
z + 3

4
z2 + 1

2
z3 + 1

8
z4. (4.3.7)

4.4 Design of Non-Stationary Subdivision Schemes

The subdivision schemes that we have described so far are called stationary, meaning that

the subdivision mask h is the same at each iteration k. A subdivision scheme is called non-

stationary if the subdivision mask hk is different at each iteration k, with the rest of the

procedure being the same as in Section 4.2. Non-stationary subdivision schemes are required

to reproduce exponential polynomials, which allows to construct trigonometric functions.
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4.4. Design of Non-Stationary Subdivision Schemes

The refinement rule is now

p(k) = hk ∗p(k−1)↑2
, (4.4.1)

where hk is the subdivision mask at the kth iteration. The relation between the periodic

sequence p(k) at the kth iteration and the control points p(0) is still defined by (4.2.3) but h0→k

is now computed by

h0→k = h1↑
2k−1

∗h2↑
2k−2

∗·· ·∗hk−1↑2
∗hk . (4.4.2)

If we set h = hk , we recover all the formulas of the stationary scheme. Furthermore, every

convergent stationary subdivision scheme verifies the property of affine invariance stated

in Definition 4.2.1 (see Proposition 4.2.2). In the non-stationary setting, however, it must be

verified case by case [115].

4.4.1 Generation of Exponential Polynomials

We define α = (α1,α2, . . . ,αL) and denote by Lαn the multiplicity of the element αn ∈α, for

n = 1, . . . ,L. A non-stationary subdivision scheme is said to generate exponential polynomials

if it generates the whole family
{
eαm t t n

}
n∈{0,...,Lαm −1}. In this case, the subdivision mask at the

kth iteration is characterized byαk = α
2k and its z-transform is denoted by Hα

k .

4.4.2 Generation of Trigonometric Functions

The generation of trigonometric functions allows one to efficiently construct a scheme that

is capable of generating circles and ellipses, which are useful structures in the context of

segmentation in bioimaging. We now present a criterion that a (non-stationary) subdivision

scheme must verify to generate trigonometric functions.

Proposition 4.4.1. (Romani [102, Proposition 2]) A non-stationary subdivision scheme perfectly

generates ellipses if the z-transform of the subdivision mask at the kth iteration verifies

Hk (z) = (1+ z)

(
1+e

j2π

2k M z

)(
1+e

−j2π

2k M z

)
Qk (z), (4.4.3)

where Qk (z) is a polynomial in z.

That means that the subdivision scheme has to generate exponential polynomials and that(
0, j2π

M , −j2π
M

)
⊂α. In the following we provide two examples of ellipse-generating subdivision

schemes: the non-stationary Deslauriers-Dubuc and the non-stationary minimum-support

subdivision schemes.

4.4.3 Non-Stationary Deslauriers-Dubuc Subdivision Scheme

The non-stationary Deslauriers-Dubuc subdivision scheme is interpolating and capable of

reproducing the exponential polynomials defined in Section 4.4.1 [100, 123], [125]. As for the
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stationary case, the mask at the kth iteration has a support of size 2(L−1)+1 and is obtained

by solving Hα
k (z)+Hα

k (−z) = 2

Hα
k (z) = Rαk (z)Qk (z),

(4.4.4)

where Rα(z) =
L∏

n=1
(1+eαn z), αk = α

2k , and Qk (z) is a polynomial in z. Vonesch et al. [100]

extensively studied this scheme and proposed simplified solutions to solve (4.4.4) by applying

Bézout’s identity

Ck (Z )Dk (Z )+Ck (−Z )Dk (−z) = 2, (4.4.5)

where Z = z+z−1

2 , Ck (Z ) = z− L
2 Rαk (z), and Dk (Z ) = z

L
2 Qk (z). The shortest polynomial Dk (Z )

is given by

Dk (Z ) =
(

K∑
q=1

Lq∑
s=1

(−1)s aq,s

(Z +Zq )s

)
Ck (−Z ), (4.4.6)

where K < L is the number of different elements of α,
{

Zq
}

q∈{1,...,K } are the roots of Ck (Z )

with multiplicity Lq , and
{

aq,s
}

q∈{1,...,K },s∈{1,...,Lq } are the coefficients of the simple-fraction

decomposition

2

Ck (−Z )Ck (Z )
=

K∑
q=1

Lq∑
s=1

aq,s

(
1

(Z −Zq )s +
(−1)s

(Z +Zq )s

)
. (4.4.7)

Example-Ellipse-Reproducing Scheme: We construct a non-stationary Deslauriers-Dubuc sub-

division scheme that is capable of reproducing ellipses. Therefore, we want to be able

to construct trigonometric functions. According to Proposition 4.4.1,
(
0, j2π

M , −j2π
M

)
⊂α.

Moreover, it was shown in [100] that the elements ofαmust come in complex-conjugate

pairs and that, if 0 is an element of α, then it must have even multiplicity. Hence,

α=
(
0,0, 2jπ

M ,−2jπ
M

)
. The mask at iteration k is of size 7. By solving (4.4.4), for M = 4, we

obtain the scheme

hk [m] =



− 2kp−1

2(1+ 2k+1p−1)2(1+ 2kp−1)
, |m| = 3

(1+ 2k+1p−1+ 2kp−1)2

2(1+ 2k+1p−1)2(1+ 2kp−1)
, |m| = 1

1, m = 0

0, otherwise.

(4.4.8)

Note that, when k → ∞, the mask hk converges towards the stationary Deslauriers-

Dubuc scheme defined by (4.3.5) which reproduces polynomials of degree up to 3.

4.4.4 Non-Stationary Minimum-Support Subdivision Scheme

The non-stationary minimum-support subdivision scheme generates exponential polynomi-

als defined in Section 4.4.1 with the shortest mask [81]. It has a support of size L +1 and is
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given by

Hα
k (z) = 1

2L−1

L∏
n=1

(
1+e

αn
2k z

)
. (4.4.9)

Example-Shortest Ellipse-Generating Scheme: We construct a non-stationary minimum-support

subdivision scheme that is capable of generate ellipses. Therefore, we choose

α=
(
0, 2jπ

M ,−2jπ
M

)
. By imposing the affine invariance of Definition 4.2.1, the subdivi-

sion mask at iteration k is of size 4 and is given by sinc−2( 1
M )Hα

k (z), where

Hα
k (z) = 1

4

(
1+

(
1+e

−2jπ

2k M +e
2jπ

2k M

)
z +

(
1+e

−2jπ

2k M +e
2jπ

2k M

)
z2 + z3

)
. (4.4.10)

4.5 Connection with Scaling Functions and Parametric Curves

For any convergent stationary subdivision scheme, there is a continuously-defined function ϕ

associated to the mask h0→k , given by (4.2.4), and applied to initial data δ [116, 117], which

is the Kronecker delta. The function ϕ is called the basic limit function of the subdivision

scheme [106] (a.k.a. fundamental function [119]) and is defined as

ϕ(t )|t= m
2k

= lim
k→+∞

h0→k [m]. (4.5.1)

The function ϕ is actually a scaling function (see Definition 3.2.1) that verifies the two-scale

refinement relation [126]

ϕ(t ) = ∑
n∈Z

h[n]ϕ(2t −n), (4.5.2)

and recursively, we have that

ϕ(t ) = ∑
n∈Z

h0→k [n]ϕ(2k t −n). (4.5.3)

In Figure 4.3, we illustrate the basic limit functions of the Deslauriers-Dubuc and minimum-

support subdivision schemes that reproduce polynomials up to degree 3 (see (4.3.5) and (4.3.6),

respectively). They correspond to the Deslaurier-Dubuc interpolation function [119], given

by the auto-correlation of the Daubechies scaling function [99, 109, 122], and the cubic B-

spline β(0,0,0,0) (see Section 2.3.1). By combining (4.2.3), (4.2.6) and (4.5.1), for any convergent

stationary subdivision scheme we write

r(t )|t= m
2k

= lim
k→+∞

p(k)[m]

= lim
k→+∞

(
h0→k ∗p(0)↑

2k

)
[m]

= ∑
n∈Z

p(0)[n]ϕ

(
m −2k n

2k

)
= ∑

n∈Z
p(0)[n]ϕ(t −n), (4.5.4)
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Figure 4.3 – Illustration of the basic limit functions of the stationary Deslauriers-Dubuc (red
solid line) and minimum-support (blue dashed line) subdivision schemes that reproduce
polynomials up to degree 3.

where m ∈ Z and t = m
2k ∈ R is a continuous parameter. We recover the formulation of a

parametric curve. It means that in the particular case where the basis functions of parametric

curves are scaling functions, there is a connection with the proposed work: the discrete filters

of the scaling functions can be used as subdivision masks for stationary schemes.

4.6 Subdivision Surfaces

4.6.1 Notation and Terminology

A triangular mesh M(k), at resolution k, is defined by the set

P(k) =
{

p(k)[m] ∈R3, m ∈ {0, . . . , Nk −1}
}

of Nk points. These points are implicitly connected

by triangles. The valence ξ of the vertex p(k)[m] denotes the number of its adjacent vertices

in the mesh M(k). A vertex is extraordinary if its valence is different from six, otherwise it is

regular. A mesh M(k) is called regular if all its vertices have valence six.

4.6.2 Subdivision Schemes

Given the coarse mesh M(0), we apply repeatedly k times a subdivision rule to obtain a finer

mesh M(k), which does not necessarily contain the coarser mesh M(k−1). At the limit of the

process, we obtain the continuously defined surface σ= (σ1,σ2,σ3) with σ1,σ2,σ3 ∈ C0. The

subdivision rule from (k −1) to k is defined by

P(k) = Sk−1P(k−1), (4.6.1)

where Sk is the subdivision operator at the kth iteration of the subdivision scheme. As in 2D,

we say that a subdivision scheme is stationary if the subdivision rules in Sk are the same at

each iteration; otherwise, it is non-stationary. The vertices of the mesh at the kth iteration
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4.6. Subdivision Surfaces

(k ≥ 1) can be directly obtained from the initial set of control points P(0) by

P(k) = Sk−1Sk−2 · · ·S0P(0). (4.6.2)

Formulation (4.6.2) makes it obvious that P(k) depends exclusively on the N0 vertices of P(0),

which we call control points. The Nk vertices of the mesh M(k) at the kth iteration (k ≥ 1) are

called subdivision points.

4.6.3 Properties

In the literature there is a wide range of subdivision schemes to produce surfaces. They differ

in the properties that they confer to the limit surface.

Reproduction of specific shapes: The ability of a subdivision scheme to reproduce ellipsoids

or spheres [71, 101, 105, 127].

Interpolation: At each iteration, the control points lie on the limit surface [111, 128–131].

Smoothness: The subdivision rule given in [132] leads to C1 limit surfaces, while the ones

developed in [110, 133] produce C2 continuous limit surfaces everywhere except at

extraordinary vertices where they are only C1 continuous. Non-stationary schemes

generalizing the Doo-Sabin and Catmull-Clark schemes were proposed in [134]. Theo-

rems to analyze the smoothness of a non-stationary scheme in regions with regular and

extraordinary vertices can be found in [135] and [136], respectively.

Affine invariance: The geometry of the limit surface changes in synchrony with any affine

transformation that would be applied to the initial mesh. Conditions on the subdivision

operators Sk to ensure this property are given in [105, 137].

4.6.4 Examples of Subdivision Schemes

Stationary Loop’s scheme

Loop’s scheme is a widely used subdivision scheme for triangular meshes. It has been de-

veloped by Charles Loop in 1987 [110]. It generates a limit surface which is C 2-continuous

everywhere, except at extraordinary vertices where the regularity is C 1. This scheme refines

each triangle of a coarse mesh into four subtriangles (Figure 4.5 (a) and (b)). A subdivision

iteration from k to (k +1) consists in two steps.

Vertex-Point Rule: The location of every former vertex p(k)[m], m ∈ {0, . . . , Nk −1}, is updated.

A new vertex p(k+1)[q], q ∈ {0, . . . , Nk+1 −1}, is obtained by the convex combination

p(k+1)[q] =α p(k)[m]+β ∑
p(k)[u]∈Vm

p(k)[u], (4.6.3)
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(a) Vertex-point stencil. (b) Edge-point stencil.

Figure 4.4 – Stencils for vertex-point (a) and edge-point (b) rules of Loop’s scheme.

where Vm is the set of the ξ adjacent vertices of p(k)[m] in M(k), α= 3
8 +

(
3
8 + 1

4 cos( 2π
ξ )

)2

and β= 1−α
ξ . In Figure 4.4 (a) we illustrate the vertex-point stencil where the local linear

combination (4.6.3) is suggested graphically.

Edge-Point Rule: For every edge in the coarser mesh, a new vertex is inserted. Let us consider

the two old adjacent triangles made of the vertices p(k)[m0], p(k)[m1], p(k)[m2] and

p(k)[m3], with m0,m1,m2,m3 ∈ {0, . . . , Nk −1}, such that p(k)[m0]p(k)[m1] is the common

edge (Figure 4.4 (b)). The subdivision rule yields

p(k+1)[q] = 3
8

(
p(k)[m0]+p(k)[m1]

)+ 1
8

(
p(k)[m2]+p(k)[m3]

)
, (4.6.4)

where q ∈ {0, . . . , Nk+1 −1}.

This scheme is stationary, easy to implement, and has the property to be affine invariant. In

Figure 4.5, we illustrate the sphere approximated by Loop’s scheme using an octahedron as

initial mesh. Extensions of Loop’s scheme to get additional properties like optimal shrinkage

and exponential polynomial reproduction are considered in [71].

Non Stationary BLOB scheme

The Butterfly-Loop optimal blending (BLOB) scheme is a new subdivision scheme that we

introduced in [71]. It is an affine-invariant non-stationary subdivision scheme for the recursive

refinement of any triangular mesh that is regular or has extraordinary vertices of valence 4.

In particular, when applied to an arbitrary convex octahedron, it produces a G1-continuous

surface with a blob-like shape as the limit of the recursive subdivision process. In case of a

regular octahedron, the subdivision process provides an accurate representation of ellipsoids.

Like Loop’s scheme, it belongs to the class of primal subdivision schemes [127, 137] since, at

each step of the refinement process, a finer mesh is created by splitting the faces of the coarse

mesh. However, we use a level-dependent vertex-point stencil and a much larger (and also

level-dependent) edge-point stencil. A subdivision iteration from k to (k +1) consists in two

steps.
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(a) M(0) (b) M(1) (c) M(2)

(d) M(3) (e) M(4) (f) M(5)

Figure 4.5 – Sphere approximated by Loop’s scheme, starting from an octahedron.

Vertex-Point Rules: The location of every former vertex p(k)[m], m ∈ {0, . . . , Nk −1}, is updated.

A new vertex p(k+1)[q], q ∈ {0, . . . , Nk+1 −1}, is obtained by the convex combination

p(k+1)[q] =


a(k) p(k)[m]+b(k) ∑

p(k)[u]∈Vm

p(k)[u], p(k)[m] is regular,

ã(k) p(k)[m]+ b̃(k) ∑
p(k)[u]∈Vm

p(k)[u], p(k)[m] has valence four,

(4.6.5)

where Vm is the set of the ξ adjacent vertices of p(k)[m] in M(k),

a(k) = 4
(
v (k)

)2+2v (k)+1

4(v (k)+1)2 , b(k) = 2v (k)+1
8(v (k)+1)2 ,

ã(k) = 45
(
v (k)

)2+18v (k)+1

48(v (k)+1)2 , b̃(k) = 3
(
v (k)

)2+78v (k)+47

192(v (k)+1)2 ,
(4.6.6)

and

v (k) = 1

2

(
ej λ

2(k+1) +e−j λ

2(k+1)

)
, λ ∈ [0,π)∪ j(0,2acosh(500)). (4.6.7)

The parameter λ influences the final shape of the limit surface. These rules are illus-

trated in Figures 4.6 (a) and 4.7 (a).

Edge-Point Rules: For every edge in the coarser mesh, a new vertex is inserted. We distinguish

three cases: the old edge has 1) two regular endpoints; 2) two extraordinary endpoints

with valence four; 3) one regular endpoint and one extraordinary endpoint with valence

four. We graphically provide the corresponding linear combinations in Figure 4.6 (b)
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(a) Vertex-point stencil. (b) Edge-point stencil.

Figure 4.6 – Stencils for vertex-point (a) and edge-point (b) rules of the BLOB scheme in the
regular regions of the mesh.

(a) Vertex-point rule for a ver-
tex of valence 4.

(b) Edge-point rule for an edge with
two end-point vertices of valence 4.

(c) Edge-point rule for an edge with one
end-point vertex of valence 4 and the
other of valence 6.

Figure 4.7 – Stencils for vertex- and edge-point rules of the BLOB scheme involving extraordi-
nary vertices of valence four.

and Figure 4.7 (b) and (c), respectively. The involved coefficients are defined by

c(k) = 2v (k)+1
16(v (k)+1)3 , d (k) =

(
2v (k)+1

)2

8(v (k)+1)3 , e(k) = 1
16(v (k)+1)3 ,

f (k) = (2v (k)+1)(4
(
v (k)

)2+6v (k)+3)

16(v (k)+1)3 , d̃ (k) = 16
(
v (k)

)2+18v (k)+5

32(v (k)+1)3 , ẽ(k) = 2v (k)+5
64(v (k)+1)3 ,

f̃ (k) = 32
(
v (k)

)3+64
(
v (k)

)2+54v (k)+15

64(v (k)+1)3 , g (k) =
(
2v (k)+3

)(
2v (k)+1

)
8(v (k)+1)2 , h(k) = 1

8(v (k)+1)2 ,

(4.6.8)

where v (k) is defined in (4.6.7).

The vertex-point rules have the same size and structure as the one of Loop’s subdivision

scheme [110], and the size and structure of the edge-point rules are the same as those of

the modified Butterfly scheme [128]. This is why we named this scheme the Butterfly-Loop

optimal blending subdivision scheme. In Figure 4.8, we illustrate the sphere approximated by

the BLOB scheme using an octahedron as initial mesh. This scheme is non-stationary, so more

challenging to implement than Loop’s scheme. However, it provides a better approximation of

the sphere than Loop’s scheme while starting from a coarse mesh with few control points [71].

In a segmentation context, this suggests that the BLOB scheme will be more accurate when

delineating spherical shapes with a small number of control points. As more control points
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(a) M(0) (b) M(1) (c) M(2)

(d) M(3) (e) M(4) (f) M(5)

Figure 4.8 – Sphere approximated by the BLOB scheme, starting from an octahedron.

are included, the two schemes will produce outcomes of equivalent quality [71].
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4.7 Appendices

4.7.1 Derivation of Equation (4.2.3)

Using (4.2.1), we have that

p(1)[m] = ∑
n∈Z

h[m −2n]p(0)[n] (4.7.1)

and

p(2)[m] = ∑
n∈Z

h[m −2n]p(1)[n]

= ∑
n∈Z

h[m −2n]
∑

q∈Z
h[n −2q]p(0)[q]

= ∑
q∈Z

(∑
l∈Z

h[m −4q −2l ]h↑2 [2l ]

)
p(0)[q]

= ∑
q∈Z

(h ∗h↑2 )︸ ︷︷ ︸
h0→2

[m −4q]p(0)[q]. (4.7.2)

Combining (4.2.1), (4.7.1), and (4.7.2), we recursively obtain

p(k)[m] = ∑
n∈Z

h0→k [m −2k n]p(0)[n], (4.7.3)

where h0→k is given by (4.2.4).

4.7.2 Derivation of Equation (4.2.7)

ṙ(t )|t= m
2k

= lim
ε→0

r(t +ε)− r(t )

ε

∣∣∣
t= m

2k

= lim
k→∞

2k
(

r(t + 1

2k
)− r(t )

)∣∣∣
t= m

2k

, (4.7.4)

where we used ε= 1
2k . Combining this result with (4.2.6), we obtain

ṙ(t )|t= m
2k

= lim
k→+∞

2k (p(k)[m +1]−p(k)[m]), (4.7.5)

which ends the proof.

4.7.3 Proof of Proposition 4.2.2

For any convergent subdivision scheme, we have the necessary condition (4.2.5). Under

this condition, it follows directly from (4.2.1) that constant functions are reproduced [115].

It means that if p(0)[m] = 1, ∀m, then we have that, for a fixed k, p(k)[m] = 1, ∀m. We
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rewrite (4.2.3) for this particular case and we obtain that∑
n∈Z

h0→k [m −2k n] = 1, ∀m ∈Z. (4.7.6)

Let A be a (2×2) matrix and b ∈R2 be a translation vector. We calculate(
h0→k ∗ (Ap(0) +b)↑2k

)
[m] =

(
A

(
h0→k ∗p(0)↑

2k

))
[m]+b

∑
n∈Z

h0→k [m −2k n]. (4.7.7)

We use (4.2.3) and (4.7.6) in (4.7.7) to obtain(
h0→k ∗ (Ap(0) +b)↑2k

)
[m] = Ap(k)[m]+b. (4.7.8)

For k →+∞ in (4.7.8), we obtain

lim
k→∞

(
h0→k ∗ (Ap(0) +b)↑2k

)
[m] = Ar(t )|t= m

2k
+b, (4.7.9)

which corresponds to the condition of affine invariance.
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5 Image Energies

In the previous chapters, we introduced two new representation models for curves/surfaces.

In Table 5.1, we summarize the geometric representations and their parameters Θ that we

have seen so far. We now focus on the second main aspect of active contours/surfaces, namely

the snake energy. We recall that the energy is a function of Θ that is minimized during the

optimization process by adapting the values ofΘ, i.e,

Θopt = argmin
Θ

Esnake(Θ). (5.0.1)

In particular, we focus on the image energy term (see (1.2.1) and Section 1.2.2). The choice of

this term is crucial as it drives the evolution of the snake contour to fit image data, and thus

determines the quality of the segmentation. It is generally tuned according to the features of a

given segmentation task.

In this chapter, we collect and unify all the image energies that were proposed in our pub-

lications [68, 70, 73, 74] and work [72]. These have been carried out in collaboration with

A. Depeursinge, A. Galan, L. Romani, D. Sage, D. Schmitter, V. Uhlmann and M. Unser. The

chapter is organized as follows: In Sections 5.1 and 5.2, we first adapt the standard edge-

and region-based energies, initially defined for parametric snakes in Section 2.2, to our new

representation models (see Chapters 3 and 4). Then, in Sections 5.3 and 5.4, we identify some

limitations of these energies and propose new ones, namely ridge- and texture-based energies,

that overcomes these problems.

We strongly recommend the reader to refer to Table 5.1 throughout this chapter.
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Table 5.1 – Summary of the representation models and their parametersΘ.

Model Parameters Relation

Parametrization Θ= {c[m]}m∈{0,...,M−1}
r := r(Θ) (2.1.2)
σ :=σ(Θ) (2.1.6)

Locally refinable Θ= {c[m]}m∈{0,...,M−1},m 6=p r := r(Θ) (3.3.2)
parametrization

⋃ {
c̃p [n]

}
n∈{n0,...,n0+N−1} σ :=σ(Θ) (3.3.4)

Subdivision
Θ= {

p(0)[m]
}

m∈{0,...,M−1} p(k) := p(k)(Θ) (4.2.3)
with M = N0 in 3D P(k) :=P(k)(Θ) (4.6.2)

5.1 Edge-based Energy

By definition an edge is a border between areas of high and low gray value. The energy

term (2.2.2) is an efficient edge-based energy proposed by [44] that we briefly recall as

Eedge(Θ) =−
∮
C

〈∇∇∇ f (r),n(r)
〉

dr. (5.1.1)

It relies on edge maps derived from the image and incorporates information about the direc-

tionality of the snake curve. This allows the snake to discriminate on which side of an object it

is located (e.g., inside or outside an object).

5.1.1 Derivation for the Locally Refinable Parametrization

The energy term Eedge(Θ) has the advantage of being independent of the parametrization. It

can thus be applied to our new parametrization (3.3.2), that is to a parametric closed curve

that has been locally refined with respect to the control point c[p]. In Proposition 5.1.1, we

derive1 the explicit formula of Eedge(Θ) associated to locally refinable curves in which the

control pointsΘ= {c[m]}m∈{0,...,M−1}
m 6=p

⋃
{c̃p [n]}n∈{n0,...,n0+N−1} are highlighted.

Proposition 5.1.1. Let r be a locally refinable curve as described in Proposition 3.3.1. Then, the

edge-based energy term Eedge(Θ) can be expressed as

EedgeLR(Θ) =
M−1∑
m=0
m 6=p

c2[m]
∫ M

0
G(r(t ))ϕ̇M (t−m)dt+ρ

n0+N−1∑
n=n0

c̃p,2[n]
∫ M

0
G(r(t ))ϕ̇ρM (ρt−ρp−n)dt ,

(5.1.2)

where ρ is the refinement factor, {n0, . . . ,n0 +N } is the support of the refinement filter, r := r(Θ)

and c̃p = (c̃p,1, c̃p,2) are given by (3.3.2) and (3.3.3), respectively, and ϕ̇(t ) = dϕ(t )
dt . The image G

1This work is based on our publication [68], in collaboration with D. Schmitter and M. Unser.
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is given by

G(x1, x2) =−
∫ x1

−∞
∆ f (τ, x2)dτ, (5.1.3)

where ∆ f is the Laplacian of the image f .

The proof of Proposition 5.1.1 is given in Appendix 5.6.1.

5.1.2 Discretization for the Subdivision-based Representation

The subdivision-based representation presented in Chapter 4 is discrete by nature. We derive2

the corresponding discrete edge-based energy term as

EedgeSD(p(k)(Θ)) =− 1

2k

2k M−1∑
m=0

〈∇∇∇ f (p(k)[m]),n(p(k)[m])
〉

, (5.1.4)

where p(k)[m] is the location of the m-th subdivision point defined by (4.2.3), and ∇∇∇ f (p(k)[m])

and n(p(k)[m]) are the within-plane gradient of the image f and the approximation of the unit

normal vector, respectively, at p(k)[m]. The vector n(p(k)[m]) is defined by

n(p(k)[m]) =
(

n1(p(k)[m])

n2(p(k)[m])

)
= 1

b1

(
2k (p2(k)[m +1]−p2(k)[m])

−2k (p1(k)[m +1]−p1(k)[m])

)
(5.1.5)

and converges to

n(p(k)[m]) −→
k→∞

n(r(t )|t= m
2k

) = 1

b2

(
ṙ2(t )|t= m

2k

−ṙ1(t )|t= m
2k

)
, (5.1.6)

where n(r) is the unit vector normal to the curve r and, b1 and b2 are constants such that

‖n(p(k))‖ = 1 and ‖n(r)‖ = 1.

Proposition 5.1.2. The energy defined by (5.1.4) converges to the standard energy Eedge(Θ), i.e.,

EedgeSD(p(k)(Θ)) −→
k→∞

Eedge(Θ) =−
∮
C

〈∇∇∇ f (r),n(r)
〉

dr. (5.1.7)

The proof of Proposition 5.1.2 is given in Appendix 5.6.2. This proposition guaranties the

efficiency of our discrete formulation (5.1.4) as it has the proper limit commonly used in the

continuous case.

Extension to the surface energy

Following the notations of Section 4.6, we derive3 the discrete formulation for subdivision

surfaces of the gradient energy (2.2.3). The term is expressed as

2This work is based on our publication [70], in collaboration with D. Schmitter, V. Uhlmann and M. Unser.
3This work is based on our work [72], in collaboration with L. Romani and M. Unser.
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EgradSD(P(k)(Θ)) =− 1

22k

Nk−1∑
m=0

〈∇∇∇ f (p(k)[m]),n(p(k)[m])
〉

, (5.1.8)

where ∇∇∇ f (p(k)[m]) and n(p(k)[m]) are the gradient of f and the approximation of the unit

normal vector, respectively, at the vertex p(k)[m]. The expression of n(p(k)[m]) is given by

n(p(k)[m]) =
∑

T∈Om
nt (T )

||∑T∈Om
nt (T )|| , (5.1.9)

where Om is the set of all the triangles to which p(k)[m] belongs and nt (T ) is the normal of the

triangle T .

Proposition 5.1.3. The energy given by (5.1.8) converges to the standard energy Egrad(Θ), i.e.,

EgradSD(P(k)(Θ)) −→
k→∞

Egrad(Θ) =−
Ó

S

〈∇∇∇ f (σ),dσ
〉

, (5.1.10)

where S is the surface described by σ and dσ represents the vector differential area.

The proof of Proposition 5.1.3 is given in Appendix 5.6.4. This proposition justifies our dis-

cretization (5.1.8) for the gradient energy.

5.2 Region-based Energy using Intensity Distribution

The region-based energy (2.2.4) allows to distinguish between homogeneous regions in the

image using intensity information. We recall its definition as

Eintensity(Θ) =− 1

|Σ|
∣∣∣∣Ï

Ω
f (x)dx1dx2 −

Ï
Ωλ\Ω

f (x)dx1dx2

∣∣∣∣ . (5.2.1)

It maximizes the contrast between the mean intensity over the surfaceΩ enclosed by r and

the mean intensity over the shellΩλ \Ω. The surfaceΩλ is built from rλ = (rλ,1,rλ,2), a dilated

version of r, such that Ω⊂Ωλ, and Ωλ \Ω and Ω have the same area. This last criteria is to

enforce Eintensity(Θ) = 0 when f takes a constant value, for instance in flat regions of the image.

Note that the energy (5.2.1) implicitly supposes that r does not self-intersect.

5.2.1 Derivation for the Locally Refinable Parametrization

The energy term Eintensity(Θ) is independent of the parametrization. We explicit4 the formula

in case of locally refinable closed curves, where the refinement has been done with respect to

the control point c[p].

4This work is based on our publication [68], in collaboration with D. Schmitter and M. Unser.
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Proposition 5.2.1. If r is locally refinable in the sense of Proposition 3.3.1, then the region-based

energy Eintensity(Θ) can be expressed as

EintensityLR(Θ) =− 1

|Σ|

∣∣∣∣∣∣∣2
M−1∑
m=0
m 6=p

c2[m]
∫ M

0
F (r(t ))ϕ̇M (t −m)dt

+2ρ
n0+N−1∑

n=n0

c̃p,2[n]
∫ M

0
F (r(t ))ϕ̇ρM (ρt −ρp −n)dt

−
M−1∑
m=0
m 6=p

cλ2[m]
∫ M

0
F (rλ(t ))ϕ̇M (t −m)dt

−ρ
n0+N−1∑

n=n0

c̃λp,2[n]
∫ M

0
F (rλ(t ))ϕ̇ρM (ρt −ρp −n)dt

∣∣∣∣∣ , (5.2.2)

where ρ is the refinement factor, c̃p = (c̃p,1, c̃p,2) is given by (3.3.3), {n0, . . . ,n0+N } is the support

of the refinement filter and F is the pre-integrated image along the first dimension defined by

F (x1, x2) =
∫ x1

−∞
f (τ, x2)dτ. (5.2.3)

The signed area Σ :=Σ(Θ) enclosed by r is given by

Σ(Θ) =−
M−1∑
m=0
m 6=p

M−1∑
n=0
n 6=p

c2[m]c1[n]
∫ M

0
ϕM (t −m)ϕ̇M (t −n)dt

−ρ
M−1∑
m=0
m 6=p

n0+N−1∑
n=n0

c2[m]c̃p,1[n]
∫ M

0
ϕM (t −m)ϕ̇ρM (ρt −ρp −n)dt

−
n0+N−1∑

m=n0

M−1∑
n=0
n 6=p

c̃p,2[m]c1[n]
∫ M

0
ϕρM (ρt −ρp −m)ϕ̇M (t −n)dt

−ρ
n0+N−1∑

m=n0

n0+N−1∑
n=n0

c̃p,2[m]c̃p,1[n]
∫ M

0
ϕρM (ρt −ρp −m)ϕ̇ρM (ρt −ρp −n)dt . (5.2.4)

The proof is given in Appendix 5.6.5.

5.2.2 Discretization for the Subdivision-based Representation

The discrete region-based energy that we propose5 for subdivision curves is expressed as

EintensitySD(p(k)(Θ)) =− 1

2k
∣∣Σ(p(k))

∣∣
∣∣∣∣∣2 2k M−1∑

m=0
F (p(k)[m])n1(p(k)[m])

−
2k M−1∑

m=0
F (pλ(k)[m])n1(pλ(k)[m])

∣∣∣∣∣ , (5.2.5)

5This work is based on our publication [70], in collaboration with D. Schmitter, V. Uhlmann and M. Unser.
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where pλ(k) is the sequence of subdivision points that describes the curve rλ, n1 is the first

coordinate of the approximation of the unit normal vector given by (5.1.5), and F is defined

by (5.2.3). We define the signed area Σ(p(k)) :=Σ(p(k)(Θ)) as

Σ(p(k)(Θ)) = 1

2k

2k M−1∑
m=0

p1(k)[m]n1(p(k)[m]). (5.2.6)

Proposition 5.2.2. The area (5.2.6) and the energy defined by (5.2.5) converges to

Σ(p(k)(Θ)) −→
k→∞

Σ(Θ) =
Ï
Ω

dx1dx2, (5.2.7)

and

EintensitySD(p(k)(Θ)) −→
k→∞

Eintensity(Θ) =− 1

|Σ|
∣∣∣∣Ï

Ω
f (x)dx1dx2 −

Ï
Ωλ\Ω

f (x)dx1dx2

∣∣∣∣ , (5.2.8)

where Σ := Σ(Θ) is the signed area enclosed by the contour r and, Ω and Ωλ are the surfaces

enclosed by the curve r and rλ, respectively.

The proof of Proposition 5.2.2 is given in Appendix 5.6.6. This proposition justifies our discrete

formulation (5.2.5) of Eintensity(Θ).

Extension to volume energy

We consider a continuously defined, orientable, closed limit surfaceσ of a subdivision scheme

that does not self-intersect. Following the notations of Section 4.6, for the 3D extension

of (5.2.5) we propose6

EintensitySD(P(k)(Θ)) =− 1∣∣V(P(k))
∣∣22k

∣∣∣∣∣2 Nk−1∑
m=0

F (p(k)[m])n1(p(k)[m])

−
Nk−1∑
m=0

F (pλ(k)[m])n1(pλ(k)[m])

∣∣∣∣∣ , (5.2.9)

wherePλ(k) is the set of subdivision points that defines the surfaceσλ, n1 is the first coordinate

of the approximation of the unit normal vector given by (5.1.9), and F is the pre-integrated

volumetric image along the first dimension defined by

F (x1, x2, x3) =
∫ x1

−∞
f (τ, x2, x3)dτ. (5.2.10)

The quantity V(P(k)) is the signed volume of the triangular mesh M(k) that defines σ. To

obtain this volume, we decompose the mesh in tetrahedrons, each one being composed of the

center of gravity and a triangle of the mesh. We then sum the volume of each tetrahedron to

obtain V(P(k)).

6This work is based on our work [72], in collaboration with L. Romani and M. Unser.
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(a) Original image. (b) Edge detection. (c) Ridge detection.

Figure 5.1 – Illustration of edge and ridge detection. Source: R. Jankele and P. Gönczy, EPFL.

Proposition 5.2.3. The volume V(P(k)) and the energy (5.2.9) converges to

V(P(k))(Θ) −→
k→∞

V(Θ) =
Ñ

V
dx1dx2dx3, (5.2.11)

and

EintensitySD(P(k)(Θ)) −→
k→∞

Eintensity(Θ) =− 1

|V|
∣∣∣∣Ñ

V
f (x)dx1dx2dx3 −

Ñ
Vλ\V

f (x)dx1dx2dx3

∣∣∣∣ ,

(5.2.12)

where V and Vλ are the volume enclosed by σ and its dilated version σλ, respectively, V := V(Θ)

is the signed volume of V , and dx1dx2dx3 is an infinitesimal vector element of V .

The proof of Proposition 5.2.3 is given in Appendix 5.6.7. This proposition justifies our discrete

formulation (5.2.9) as it converges to the standard energy (2.2.7).

5.3 Ridge-based Energy

In some application, the structures of interest are delimited by ridges, i.e., thin lines darker

or brighter than their neighborhood. If we perform an edge detection on ridge areas we will

obtain a double line, one from each side of the ridge (Figure 5.1). Edge-based energies, such

as (2.2.2), are thus not well suited for these kind of applications. In this section, we propose7

an oriented ridge-based energy. We provide its continuous and discrete formulations.

To detect ridges, a common approach is to compute the Hessian matrix U at location

x = (x1, x2) as

U(x) =
∂2u(x1,x2)

∂x2
1

∂2u(x1,x2)
∂x1∂x2

∂2u(x1,x2)
∂x2∂x1

∂2u(x1,x2)
∂x2

2

 , (5.3.1)

where u(x1, x2) = f (x1, x2)∗ (
g (x1)g (x2)

)
with f the input image and g (xi ) = 1

σ
p

2π
e

−(xi )2

2σ2 for

i = 1,2. High values of the standard deviation σ ∈ R increase the basin of attraction of the

7This work is based on our publication [73], in collaboration with D. Sage, A. Galan and M. Unser.
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ridge

v     (x     )ridgemin

v     (x     )ridgemax

xridge
snake

n(x)

Figure 5.2 – Ridge feature. When minimizing the ridge-based energy (5.3.4), the snake (red
line) tends to align with the center of the ridge (green line).

active contour. We define the ridge strength at location x by

ξ(x) =
√
|λmin(x)|

√
|λmin(x)−λmax(x)|, (5.3.2)

where λmin(x) and λmax(x) are the minimum and maximum eigenvalues of U(x), respectively.

On the ridge, the ridge strength is maximum and the eigenvector vmin(x) is normal to the ridge.

The oriented ridge-based energy that we propose is

Eridge(Θ) =−
∮
C
ξ(r)

|〈vmin(r),n(r)〉|
‖vmin(r)‖ dr, (5.3.3)

where n(r) is the unit vector normal to the curve r and dr is an infinitesimal vector element of

C. The energy (5.3.3) is minimal when the vectors vmin and n are aligned and when the snake

lies on the ridge (Figure 5.2). This energy term is independent from the parametrization so it

can be applied either to parametric or locally refinable parametric curves defined by (2.1.2)

and (3.3.2), respectively. The discretization of (5.3.3) for subdivision curves is given by

EridgeSD(p(k)(Θ)) =− 1

2k

2k M−1∑
m=0

ξ(p(k)[m])

∣∣〈vmin(p(k)[m]),n(p(k)[m])
〉∣∣∥∥vmin(p(k)[m])

∥∥ , (5.3.4)

where p(k) is defined by (4.2.3), and n(p(k)[m]), ξ(p(k)[m]) and vmin(p(k)[m]) are the approxi-

mations of the unit normal vector, the ridge strength and the eigenvector, respectively, at the

mth subdivision point. The vector n(p(k)[m]) is given by (5.1.5) and we have that

n(p(k)[m]) −→
k→∞

n(r(t )|t= m
2k

), (5.3.5)

ξ(p(k)[m]) −→
k→∞

ξ(r(t )|t= m
2k

), (5.3.6)

and

vmin(p(k)[m]) −→
k→∞

vmin(r(t )|t= m
2k

). (5.3.7)

Our discretization(5.3.4) is justified by the following proposition.
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Proposition 5.3.1. The discrete energy EridgeSD(p(k)(Θ)) converges to the continuous one

Eridge(Θ), i.e.,

EridgeSD(p(k)(Θ)) −→
k→∞

Eridge(Θ) =−
∮
C
ξ(r)

|〈vmin(r),n(r)〉|
‖vmin(r)‖ dr. (5.3.8)

Given (4.2.6), (5.3.5), (5.3.6) and (5.3.7), the proof of Proposition 5.3.1 is straightforward.

5.4 Texture-based Energy

Most often, structures cannot be fully characterized from their internal distribution of pixel

values. Therefore, segmentation methods based on image intensity alone, such as the en-

ergy term (2.2.4), do not perform well on images where the contrast between the object of

interest and the background is low [44, 74]. The incorporation of texture information is one

complementary way to account for the spatial organization of the pixels inside the desired

object [138–140]. It allows one to capture the morphological structure of a tissue [141].

We propose8 a new energy term that combines image intensity and texture information.

The method is developed for 2-dimensional images and is valid for any 2D filter-based tex-

ture feature extraction method, including Gabor filters [142] or circular harmonic wavelets

(CHW) [143]. The optimal balance between intensity and texture is learned using Fisher’s

linear discriminant analysis (LDA).

5.4.1 Texture Analysis with Filters

We use a set of N filters φn : R2 → R to extract texture properties at a given position of the

input 2-dimensional image f . We create a sequence
{

fn
}

n∈{0,...,N } of 1+N intensity and texture

channels defined by

fn(x) =
{

f (x), n = 0∣∣( f ∗φn)(x)
∣∣ , n 6= 0,

(5.4.1)

where x = (x1, x2) is a coordinate position and φn is a filter. For better clarity, we present the

formulation for gray images but the extension to color images is straightforward: For a color

image in red-green-blue (RGB) representation, we instead compute the response maps of the

red, green, and blue image components. In this case, we have a sequence of 3(1+N ) channels{
fn

}
n∈{0,...,3(1+N )−1}.

The proposed method is valid for any collection of filters
{
φn

}
n∈{1,...,N } extracting texture

information. Here after we describe two state-of-the-art filters: CHWs and Gabor filters.

8This work is based on our publication [74], in collaboration with A. Depeursinge and M. Unser.
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Circular Harmonic Wavelets

CHWs provide an estimation of the local organization of image directions (LOID) in a rotation-

invariant fashion and at a low computational price. The LOID was found to be a fundamental

property of structures found in e.g. biomedical tissue [144]. It allows one to linearly character-

ize the local circular frequencies, which are at the origin of the success of texture approaches

based on local binary patterns [145].

In (5.4.1) let φn =φ(p,q) be the CHWs of harmonic index p = 0, . . . ,P −1 and scale q = 1, . . . ,Q

for n = 1, . . . , N . The N = P ·Q positive response maps
∣∣ f ∗φn

∣∣ characterize local circular

frequencies in f up to a maximum harmonic order (P −1) and scale Q [143]. They are also

locally rotation invariant [146]. The CHWs are defined in the Fourier domain indexed with

polar coordinates (ω,θ) as

φ̂(p,q)(ω,θ) = 2q ĥ(2qω) ·ejpθ. (5.4.2)

There, ĥ is a purely radial function that controls the scale profile of the wavelet. We use

Simoncelli’s radial wavelet for ĥ, which is expressed by

ĥ(ω) =
cos

(
π
2 log2

(2ω
π

))
, π

4 <ω≤π
0, otherwise.

(5.4.3)

Gabor Filters

Gabor filter banks allow extracting multi-directional and multi-scale texture information via

a systematic parcellation of the Fourier domain with elliptic Gaussian windows [142]. They

are not rotation-invariant and are therefore best suited for application where the absolute

feature orientation is meaningful. In the spatial domain, Gabor kernels are complex Gaussian-

windowed oscillatory functions defined as

φ(u,s)(x) = γ2
s

πσ1σ2
e
−γ2

s

((
x̃u,1
σ1

)2+
(

x̃u,2
σ2

)2
)

ej2πγs x̃u,1 , (5.4.4)

where (x̃u,1, x̃u,2) = Rθu x defines the radial and orthoradial elliptic Gaussian axes at the orien-

tation θu via the rotation matrix Rθu . In polar Fourier, σ1 and σ2 are the radial and orthoradial

standard deviations of the Gaussian window, respectively, and γs is the radial position of its

center.

We follow the procedure described in [142] to extract response maps at multiple orientations

{θu}u∈{1,...,U } and frequencies
{
γs

}
s∈{1,...,S}, where σ1 and σ2 are defined to cover all directions

and scales up to the maximum frequency γS .
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5.4.2 Energy Term

We propose an energy that combines image intensity and texture information. It is expressed

by

Etexture(Θ) =
N∑

n=0
wnEn(Θ), (5.4.5)

where the wn are weights balancing the importance of the region-based energies En , that

allow for the distinction between homogeneous regions in the channel fn . The weights are

of great importance for the efficiency of (5.4.5). In Section 5.4.3 we will present an adequate

method to choose them. For En , we adopt a strategy similar to the term (5.2.1) i.e., the energy

functional is given by

En(Θ) =− 1

|Σ|
∣∣∣∣Ï

Ω
fn(x)dx1dx2 −

Ï
Ωλ\Ω

fn(x)dx1dx2

∣∣∣∣ , (5.4.6)

where
{

fn
}

n∈{0,...,N } is the sequence of images described in Section 5.4.1, Ω and Ωλ are the

surfaces enclosed by the curves r and its dilated version rλ, respectively, andΣ :=Σ(Θ) =Î
Ωdx

is the area ofΩ. The discrete counterpart of (5.4.6) for subdivision curves is given by

En(p(k)(Θ)) =− 1

2k
∣∣Σ(p(k))

∣∣
∣∣∣∣∣2 2k M−1∑

m=0
Fn(p(k)[m])n1(p(k)[m])

−
2k M−1∑

m=0
Fn(pλ(k)[m])n1(pλ(k)[m])

∣∣∣∣∣ (5.4.7)

(see Proposition 5.2.2), where pλ(k) is the sequence of subdivision points that describes the

curve rλ, n1 is the first coordinate of the approximation of the unit normal vector given

by (5.1.5), and the signed area Σ(p(k)) is defined by (5.2.6). The image Fn is given by

Fn(x1, x2) =
∫ x1

−∞
fn(τ, x2)dτ. (5.4.8)

5.4.3 Fisher’s Linear Discriminant Analysis

The N +1 channels
{

fn
}

n∈{0,...,N } contain information about the object to be segmented and

the background of the image f . While some of these information allows to well discriminate

the target from its background, others can be redundant. It is thus important to well balance

these information. This is the purpose of the weights in (5.4.5).

To adequately set the weights {wn}n∈{0,...,N } in (5.4.5), we use Fisher’s LDA [147], which is a

supervised technique for dimensionality reduction and classification. Given two classes C and

B , Fisher’s LDA seeks the most discriminant hyperplane, characterized by the normal vector

w, that maximizes the between-class variance while minimizing the within-class variance. In

our segmentation context, the two classes are the core of the target (C) and the background (B)

of f . The vector w ∈RN+1 then contains the optimal weights wn for the energy term (5.4.5).
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Table 5.2 – Summary of the Different Types of Image Energies.

Type Feature
Continuous Discrete
Formulation Formulation

Contour-based
Edge (2.2.2) in 2D/ (2.2.3) in 3D (5.1.4) in 2D/ (5.1.8) in 3D

Ridge (5.3.3) (5.3.4)

Region-based
Intensity (2.2.4) in 2D/ (2.2.7) in 3D (5.2.5) in 2D/ (5.2.9) in 3D

Texture (5.4.5) and (5.4.6) (5.4.5) and (5.4.7)

LetΩC andΩB be two regions of interest of C and B, respectively, in the image (see Figure 6.4).

We consider f(x) = ( f0(x), . . . , fN (x)), where fn is given by (5.4.1), for x = (x1, x2) belonging to

ΩC orΩB. The optimal solution is given by [148]

w ∝ (SC +SB)−1(µC −µB), (5.4.9)

where SC,SB ∈R(N+1)×(N+1) are covariance matrices. Their expressions are given by

µI =
1

|ΣI |
Ï
ΩI

f(x)dx1dx2 (5.4.10)

and

SI = 1

|ΣI |
Ï
ΩI

〈
f(x)−µI , f(x)−µI

〉
dx1dx2, (5.4.11)

where I = {B,C}, µI is the mean vector of size N +1 of the class C or B, and |ΣI | is the area of

ΩI . In practice, we discretize f , and the integrals in (5.4.10) and (5.4.11) are sums over the

pixels ofΩI .

5.5 Conclusion

This chapter is a unification of the image energies that were developed in our publications.

Those energies shall be validated in the two next chapters, in which implementation tools to

speed up their computation are also presented. We summarized in Table 5.2 the standard and

novel energies that we have seen so far. One can refer to this table throughout its reading.
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5.6 Appendices

5.6.1 Proof of Proposition 5.1.1

We first recall the following theorem.

Green’s Theorem: Let C be a positively oriented, piecewise-smooth, simple closed curve in a

plane and letΩ be the region bounded by C. If Q and A are functions of (x1, x2) defined on an

open region containingΩ and have continuous partial derivatives there, then∮
C

(Q(r1,r2)dr1 + A(r1,r2)dr2) =
Ï
Ω

(
∂A(x1, x2)

∂x1
− ∂Q(x1, x2)

∂x2

)
dx1dx2, (5.6.1)

where the path of integration along C is counterclockwise.

We rewrite (2.2.2) as

EedgeLR(Θ) =−
∮
C

(
∂ f (r1,r2)

∂r1
dr2 − ∂ f (r1,r2)

∂r2
dr1

)
. (5.6.2)

Using Green’s theorem with Q(r1,r2) =−∂ f (r1,r2)
∂r2

and A(r1,r2) = ∂ f (r1,r2)
∂r1

, (5.6.2) is expressed as

the surface integral

EedgeLR(Θ) =−
∫ ∫

Ω
∆ f (x)dx1dx2 =

∮
C

G(r)dr2

=
∫ M

0
G(r(t ))

dr2(t )

dt
dt . (5.6.3)

Taking the derivative of the second component r2 of r in (3.3.2) and combining it with (5.6.3),

we obtain (5.1.2).

5.6.2 Proof of Proposition 5.1.2

We first recall the following theorem.

Theorem of the Riemann Sum: Let g : [a,b] →R be a real function that is Riemann-integrable

on [a,b]. The Riemann sum Rn is defined by

Rn = b −a

n

n−1∑
m=0

g

(
m

b −a

n

)
(5.6.4)

and converges to lim
n→+∞Rn = ∫ b

a g (t )dt .

By combining (4.2.6), (5.1.4), and (5.1.6), we obtain that

lim
k→∞

EedgeSD(p(k)(Θ)) =− lim
k→∞

1

2k

2k M−1∑
m=0

g

(
m

2k

)
︸ ︷︷ ︸

E

, (5.6.5)
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Figure 5.3 – Flat image of a regular mesh that forms a closed surface. We show the mesh for
two subdivision steps of an interpolating subdivision scheme. The initial coarse mesh M(0)

(black) is made of N0 = 9 control points that are on a rectangular grid of size (N0,u ×N0,v ), with
N0,u = N0,v = 3. At the first subdivision step, we obtain a regular mesh M(1) (red) made of
22N0 = 36 vertices (black and red circles) that are on a rectangular grid of size (2N0,u ×2N0,v ).
The indices correspond to the pair (p, q) of p(k)[p, q],k = 0,1.

where g (t ) = 〈∇∇∇ f (r(t )),n(r(t ))
〉

is Riemann-integrable on [0, M ] because f ,r1,r2 are differen-

tiable. We use the theorem of the Riemann sum with a = 0, b = M , and n = 2k M to obtain

E =−
∫ M

0

〈∇∇∇ f (r(t )),n(r(t ))
〉

dt

=−
∮
C

〈∇∇∇ f (r),n(r)
〉

dr, (5.6.6)

which concludes the proof.

5.6.3 Notation and Properties of Regular Meshes

In this section, we present properties of regular meshes, i.e., without extraordinary vertices,

that will be used in Appendices 5.6.4 and 5.6.7. For subdivision schemes applied to regular

meshes, the vertices of a mesh M(k), k ≥ 0, are on a rectangular grid (u, v) and

Nk = 22k N0. (5.6.7)

Let the N0 control points be on a rectangular grid of size (N0,u ×N0,v ), such that N0,u , N0,v ∈N
and N0,u N0,v = N0. We re-express the set P(k), initially defined in Section 4.6.1, as

P(k) = {p(k)[p, q] ∈R3, p ∈ {0, . . . ,2k N0,u −1}, q ∈ {0, . . . ,2k N0,v −1}} (Figure 5.3).

For convergent subdivision schemes applied to regular meshes, we have that

lim
k→∞

p(k)[p, q] =σ(u, v)|
(u,v)=

(
p

2k , q

2k

). (5.6.8)
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5.6.4 Proof of Proposition 5.1.3

We first recall a classical result.

Theorem of the double Riemann sum: Let g : [a,b]× [c,d ] →R2 be a real continuous function

that is Riemann integrable on [a,b]× [c,d ]. The Riemann sum Rn,m defined by

Rn,m = b −a

n

d − c

m

n−1∑
p=0

m−1∑
q=0

g

(
p

b −a

n
, q

d − c

m

)
(5.6.9)

satisfies

lim
n→+∞ lim

m→+∞Rn,m =
∫ b

a

∫ d

c
g (u, v)dudv. (5.6.10)

We first prove Proposition 5.1.3 for regular meshes that are topologically equivalent to a

torus. Surfaces that are topologically equivalent to a torus are periodic along u, v and are

parametrized by

σ(u, v) =
N0,u−1∑

p=0

N0,v−1∑
q=0

c[p, q]ϕN0,u (u −p)ϕN0,v (v −q), (5.6.11)

where (u, v) ∈ [0, N0,u]× [0, N0,v ], the c[p, q] are the control points, and ϕN0,u and ϕN0,v are the

N0,u- and N0,v -periodizations (Equation (2.1.3)), respectively, of a suitable basis function ϕ.

Using the notation for regular meshes described in Appendix 5.6.3, we rewrite EgradSD(P(k)(Θ))

as

EgradSD(P(k)(Θ)) =− 1

22k

2k N0,u−1∑
p=0

2k N0,v−1∑
q=0

〈∇∇∇ f (p(k)[p, q]),n(p(k)[p, q])
〉

. (5.6.12)

Combining (5.6.8) and (5.6.12), we have that

lim
k→∞

EgradSD(P(k)(Θ)) =− lim
k→∞

1

22k

2k N0,u−1∑
p=0

2k N0,v−1∑
q=0

g (
p

2k
,

q

2k
)︸ ︷︷ ︸

E

, (5.6.13)

where g (u, v) = 〈∇∇∇ f (σ(u, v)),n(σ(u, v))
〉

is Riemann integrable on [0, N0,u]× [0, N0,v ] because

f ,σ1,σ2,σ3 ∈ C1. We use the theorem of the double Riemann sum with a = c = 0, b = N0,u ,

d = N0,v , n = 2k N0,u , and m = 2k N0,v to obtain that

E =−
∫ N0,u

0

∫ N0,v

0

〈∇∇∇ f (σ(u, v)),n(σ(u, v))
〉

dudv. (5.6.14)

We have that

dσ= (σu ∧σv )dudv

= n(σ(u, v))dudv. (5.6.15)
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So, using (5.6.14) and (5.6.15), we finally obtain that

E =−
Ó

S

〈∇∇∇ f (σ),dσ
〉

. (5.6.16)

This concludes the proof for regular meshes with a topology equivalent to a torus. For reg-

ular meshes that form closed surfaces with a different topology, the proof is the same. The

parametrization (5.6.11) still holds for (u, v) ∈ [0, N0,u]× [0, N0,v ] but the bounds of the sum

over q depend on the support of ϕ and additional conditions over the control points may be

necessary.

For meshes with extraordinary vertices, we give a gist of the proof, as a detailed one may imply

the introduction of too many notations and notions. The gist of the proof is based on the

following mathematical pipeline:

• we consider a portion of the initial mesh that contains one extraordinary vertex only,

and we locally express the limit surface σ as the union between the limit point of the

extraordinary vertex and the sequence of rings {ε(k)}k≥0 defined by the regular vertices

around it [136, 149];

• for each ring ε(k), we apply the reasoning that we used for regular meshes where the

Riemann integral is instead defined on a local part of the surface σ;

• finally, doing this for each ring and taking the union over k we conclude the proof.

5.6.5 Proof of Proposition 5.2.1

We rewrite (2.2.4) as

EintensityLR(Θ) =− 1

|Σ|
∣∣∣∣2∫ ∫

Ω
f (x)dx1dx2 −

∫ ∫
Ωλ

f (xλ)dx1dx2

∣∣∣∣
=− 1

|Σ|
∣∣∣∣2∮

C
F (r)dr2 −

∮
Cλ

F (rλ)dr2,λ

∣∣∣∣ , (5.6.17)

where C and Cλ are the positive oriented contours described by r and rλ, respectively, and the

image F is given by (5.2.3). The area can be expressed as Σ :=Σ(Θ) =Î
Ωdx1dx2, while Green’s

theorem (recalled in Appendix 5.6.1) yields the signed area

Σ=−
∮
C

r2dr1. (5.6.18)

Using equation (3.3.2) and its derivative, and combining with (5.6.17) and (5.6.18), we ob-

tain (5.2.2) and (5.2.4).
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5.6.6 Proof of Proposition 5.2.2

We use (4.2.6), (5.1.6), (5.2.5), and the theorem of the Riemann sum (recalled in Appendix 5.6.2)

with a = 0, b = M , n = 2k M , and g (t ) = F (r(t ))ṙ2(t ) with F defined in (5.2.3). The function g is

Riemann-integrable on [0, M ] because f ∈ C1. We obtain that

lim
k→∞

EintensitySD(p(k)(Θ) = 1

|Σ|
∣∣∣∣2∫ M

0
F (r(t ))ṙ2(t )dt −

∫ M

0
F (rλ(t ))ṙλ,2(t )dt

∣∣∣∣
= 1

|Σ|
∣∣∣∣2∮

C
F (r)dr2 −

∮
Cλ

F (rλ)drλ,2

∣∣∣∣ , (5.6.19)

where C and Cλ are the positive oriented contours that describe r and rλ, respectively. We use

Green’s theorem with A = F and Q = 0. We finally obtain that

lim
k→∞

EintensitySD(p(k)(Θ) = 1

|Σ|
∣∣∣∣2Ï

Ω
f (x)dx1dx2 −

Ï
Ωλ

f (xλ)dxλ1 dxλ2

∣∣∣∣
= 1

|Σ|
∣∣∣∣Ï

Ω
f (x)dx1dx2 −

Ï
Ωλ\Ω

f (x)dx1dx2

∣∣∣∣ . (5.6.20)

For Σ(p(k)), we apply the same reasoning as previously, using first the theorem of the Riemann

sum and then Green’s theorem, to obtain that

Σ(p(k)(Θ)) −→
k→∞

Σ(Θ) =
Ï
Ω

dx1dx2. (5.6.21)

5.6.7 Proof of Proposition 5.2.3

We first recall the following theorem.

Gauss’ theorem: Let V be a subset of Rn that is compact and has a piecewise-smooth boundary

S . If G is a continuously differentiable vector field defined on a neighborhood of V , then we

have that Ó
S
〈G,dS〉 =

Ñ
V

div(G)dV. (5.6.22)

For this proof, we follow the same procedure as described in Appendix 5.6.4, with the same

gist of proof for meshes with extraordinary vertices. Hereafter, we thus only detail the proof

for regular meshes with a topology equivalent to a torus.

Using the notation for regular meshes introduced in Appendix 5.6.3, we can rewrite

EintensitySD(P(k)(Θ)) as

65



Chapter 5. Image Energies

EintensitySD(P(k)(Θ)) =− 1∣∣V(P(k))
∣∣22k

∣∣∣∣∣2 2k N0,u−1∑
p=0

2k N0,v−1∑
q=0

F (p(k)[p, q])n1(p(k)[p, q])

−
2k N0,u−1∑

p=0

2k N0,v−1∑
q=0

F (pλ(k)[p, q])n1(pλ(k)[p, q])

∣∣∣∣∣ . (5.6.23)

As σ is the limit surface of the subdivision scheme, i.e., σ= lim
k→∞

M(k), we have that

lim
k→∞

∣∣V(P(k)(Θ))
∣∣= |V| , (5.6.24)

where V(P(k)) and V are the volume enclosed by M(k) and σ, respectively. Combining (5.6.8),

(5.6.23) and (5.6.24) we obtain

lim
k→∞

EintensitySD(P(k)(Θ)) =− lim
k→∞

1

22k |V |

∣∣∣∣∣2 2k N0,u−1∑
p=0

2k N0,v−1∑
q=0

g (
p

2k
,

q

2k
)

−
2k N0,u−1∑

p=0

2k N0,v−1∑
q=0

gλ(
p

2k
,

q

2k
)

∣∣∣∣∣
= E , (5.6.25)

where g (u, v) = F (σ(u, v))n1(σ(u, v)) and gλ(u, v) = F (σλ(u, v))n1(σλ(u, v)) are Riemann in-

tegrable on [0, N0,u]× [0, N0,v ] because f ,σ1,σ2,σ3, σλ,1,σλ,2,σλ,3 ∈ C1. We use the theorem

of the double Riemann sum (recalled in Appendix 5.6.4) with a = c = 0, b = N0,u , d = N0,v ,

n = 2k N0,u and m = 2k N0,v to obtain that

E =− 1

|V |
∣∣∣∣2∫ N0,u

0

∫ N0,v

0
F (σ(u, v))n1(σ(u, v))dudv

−
∫ N0,u

0

∫ N0,v

0
F (σλ(u, v))n1(σλ(u, v))dudv

∣∣∣∣
=− 1

|V |
∣∣∣∣2∫ N0,u

0

∫ N0,v

0
〈G(σ(u, v)),n(σ(u, v))〉dudv

−
∫ N0,u

0

∫ N0,v

0
〈G(σλ(u, v)),n(σλ(u, v))〉dudv

∣∣∣∣ , (5.6.26)

where G(x1, x2, x3) = (F (x1, x2, x3),0,0). Thus, we have that

E =− 1

|V |
∣∣∣∣2Ó

S
〈G,dσ〉−

Ó
Sλ

〈G,dσ〉
∣∣∣∣ . (5.6.27)
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The use of Gauss’ theorem then yields

E =− 1

|V |
∣∣∣∣2Ñ

V
div(G)dV −

Ñ
Vλ

div(G)dV

∣∣∣∣
=− 1

|V |
∣∣∣∣2Ñ

V
f dV −

Ñ
Vλ

f dV

∣∣∣∣
=− 1

|V |
∣∣∣∣Ñ

V
f (x)dx1dx2dx3 −

Ñ
Vλ\V

f (x)dx1dx2dx3

∣∣∣∣ , (5.6.28)

which concludes the proof in case of regular meshes.
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6 Design of Active Contours

In this chapter, we merge the theories on curve representation and image energy presented so

far, and summarized in Tables 5.1 and 5.2, to design four new active contours. Each one has a

specific purpose that addresses a limitation of standard parametric snakes [64].

We developed our active contours with the following characteristics:

• The concern to fill in the requirements mentioned in Section 1.2.3, that is robustness,

reasonable computational time, flexibility, and friendly user interaction.

• The energy consists in an image energy term only (see Section 1.2.2 and (1.2.1)). In

fact, we use representation models that ensure the smoothness of the curve, which

eliminates the need for an explicit internal energy term. We also obviate the constraint

energy and we instead provide an interface allowing the user to interact with the snake.

• The optimization process is efficiently carried out by a Powell-like line search method [61]

that can be summarize as follows: For each control point, a direction is chosen depend-

ing on the partial derivatives of the energy. Then, the control point is displaced along the

selected direction to minimize the energy. The process is repeated until convergence.

• A validation is performed on both synthetic and real data. We use the Jaccard J index to

measure the overlap between a segmentation resultΩ and the corresponding ground

truthΩGT. It is defined as

J = |Ω∩ΩGT|
|Ω∪ΩGT|

. (6.0.1)

Clearly, 0 ≤ J ≤ 1, and perfect overlap is described by J = 1.

• An implementation as a user-friendly plugin1 for the bioimaging platform Icy [11].

In order for the software to be usable (see Section 1.1.3), we provide a website with

the source code, some documentations (abstract, link to the related scientific paper

and demo), and the necessary data and parameters needed to replicate some of our

experiments.

1All plugins can be found at http://bigwww.epfl.ch/demo/deformable-models-segmentation.html.
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We present the four new active contours in independent sections that are structured as follows:

We first describe the framework. Then, we provide implementation details or algorithms that

speed up the computation. Finally, we perform an extensive validation of the snake. The main

contributions related to the design of the active contour are summarized in a concluding part.

This chapter is organized as follows: In Sections 6.1 and 6.2, we present new parametric snakes

that are either locally refinable or that incorporate texture information. In Sections 6.3 and 6.4,

we propose a new family of active contours by taking advantage of subdivisions, and we

illustrate their use on different applications.
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6.1 Locally Refinable Parametric Snakes

The shapes of biological structures often exhibit different levels of detail [45, 66]. For conven-

tional parametric snakes, this is dealt with in a global fashion by simply increasing the number

of control points resulting in an increase of the degrees of freedom of the model [50,150]. While

this improves the approximation power of the snake model [151], it renders the optimization

more challenging and increases the computation substantially. Moreover, introducing more

degrees of freedom in the part of the curve where they are not required does not necessarily

improve the segmentation outcome. On the other hand, few parameters allow for faster opti-

mization [152–154] but with less accurate approximation. A precise location of the insertion

of the additional control points is thus preferable.

In this section, we propose2 a new parametric snake that has the ability to locally increase its

approximation power. This allows for a more efficient allocation of the degrees of freedom

of the snake by concentrating them on segments of higher complexity. This is controlled by

a user-interface that permits the refinement of an initial segmentation around an anchor

position selected by a user. For this purpose we exploit the refinability property of scaling

functions [95]. We demonstrate the accuracy of our snake and its robustness under noisy

conditions on phantom data. We also present segmentation results on real cell images, which

are our main target.

6.1.1 Framework

We represent our active contour by a parametric closed curve that is locally refinable with

respect to the control point c[p], as described by (3.3.2). Its shape is parametrized by the

control pointsΘ= {c[m]}m∈{0,...,M−1}
m 6=p

⋃
{c̃p [n]}n∈{n0,...,n0+N−1}, where c̃p is given by (3.3.3), M is

the number of control point before refinement and {n0, . . . ,n0 +N −1} is the support of the

refinement filter. Note that the index p is freely chosen and that one can refine the curve at

several specific locations by applying Proposition 3.3.1 with respect to each corresponding

control point.

For the snake energy, we use a combination of the edge and region-based energies (5.1.2)

and (5.2.2) such as

Esnake(Θ) = bEEdgeLR(Θ)+ (1−b)EintensityLR(Θ), (6.1.1)

where b ∈ [0,1] is a trade-off parameter that balances the contribution of the two energies. The

curve of the snake is thus deformed based on gradient and intensity information from image

data.

2This section is based on our publication [68], in collaboration with D. Schmitter and M. Unser. A demo of the
corresponding plugin and related documentation are available at http://bigwww.epfl.ch/demo/locally-refinable-
snake/.
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6.1.2 Implementation Details

The local refinement is handled by the user through an interface by clicking on the control

point c[p]. He can also adjust the parameter b and the refinement factor ρ > 1.

From a computational point of view, the few number of control points allowed by the locally

refinable parametric curve speeds up the optimization. Moreover, the use of the explicit

equations (5.1.2) and (5.2.2) allows for the exact analytical computation of the energy gradient

with respect to each control point. To further speed up the computation of Esnake, that is

evaluated at each iteration of the optimization process, we 1) precompute and store in look-

up tables the images (5.1.3) and (5.2.3) that only depend on the input image f ; and 2) use

the inner-product calculus that we propose in Appendix A to efficiently compute the exact

calculation of the signed area Σ in (5.2.2).

6.1.3 Experiments and Validation

We performed experiments on phantom and real data to test the accuracy and the robustness

of our proposed method. For each experiment, in (3.3.2) we chose as refinement factor ρ = 2

and we used quadratic B-splines as scaling functions, i.e., ϕ=β(0,0,0) (see Section 2.3.1). The

corresponding refinement filter h is defined by its z-transform by

H(z) = 1

4

(
1+ z−1)3

. (6.1.2)

Phantom data

We created a test image simulating fluorescence microscopy showing a cell. We then corrupted

this image by different levels of additive Gaussian white noise. For each image, we segmented

the structure of interest using our locally refinable parametric snake as well as a traditional

parametric snake [64]. For both snakes we used the same initialization with M = 4 control

points (Figure 6.1 (d)).

For our snake, we first performed an optimization without local refinement. In this way, our

initial segmentation is rough at first but the upside is a fast segmentation. Then, the user

clicks on a desired control point through the interface and the corresponding basis function is

refined. Finally, we optimized again to refine local details.

Signal-to-noise ratios (SNRs) corresponding to the noise level and Jaccard indices are shown

in Table 6.1 and illustrated in Figure 6.1. Both Table 6.1 and Figure 6.1 show the improved

accuracy induced by the local refinement and the robustness of our method.
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(a) SNR=−13,40dB. (b) SNR=−16,16dB. (c) SNR=−17,35dB.

(d) Initialization.

(e) Close-up of a bound-
ary region.

Figure 6.1 – Robustness with respect to noise of the locally refinable parametric snake. (a)-(c)
Comparison for different SNR between two quadratic B-spline snakes with M = 4: locally
refinable (top row) and traditional (bottom row) snakes; (d) initialization for both snakes; (e)
close-up of a boundary region between the test cell and its background, SNR=−17,35dB.

Real data

We have applied our snake on two real fluorescence microscopy images, where the ground

truth is unknown. They are challenging because of the presence of noise, and because the

structures of interest have different level of detail. The segmentation outcomes are satisfactory

(Figure 6.2).

Table 6.1 – Jaccard indices for segmentation of noisy data.

SNR [dB] With local refinement Without local refinement

−7,44 0.95 0.79 (fail)
−10,95 0.95 0.73 (fail)
−13,40 0.95 0.79 (fail)
−15,07 0.94 0.81 (fail)
−16,16 0.94 0.83 (fail)
−16,88 0.92 0.84 (fail)
−17,35 0.91 0.78 (fail)
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(a) Heligmosomoides polygyrus
bakeri.

(b) Sickle cell.

Figure 6.2 – Segmentation of an Heligmosomoides polygyrus bakeri (a) and a sickle cell (b) on
fluorescence microscopy images using locally refinable parametric snakes.

6.1.4 Conclusions

We have presented a new and complete formulation of locally refinable parametric snakes

for image segmentation. Through a user interface, we introduced the possibility of inserting

additional basis functions at a specific location. Our method is generic and can be used

with any valid scaling function. It allows for a fast and efficient energy computation with few

control points. We have demonstrated its ability of improving segmentation results as well as

its robustness under noisy conditions. The primary contributions related to this work are:

• A novel parametrization of closed curves that are refinable locally (see (3.3.2));

• The derivation of corresponding edge and region-based energies (5.1.2) and (5.2.2)

• The demonstration of the benefits of refinability in the context of semi-interactive

segmentation.
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6.2 Texture-Driven Parametric Snakes

In this section, our motivation is to develop a general and versatile framework for interactive

segmentation of a single structure of interest in an image, possibly under low-contrast con-

ditions. We want the user to be able to easily specify the desired structure and to modify the

outcome when needed.

As it was mentioned in Section 2.2, the most common energies of active contours are based

on edge or intensity information aggregated from either inside or on the curve [44]. However,

these intensity-only schemes do not perform well on images where the contrast between the

object of interest and the background is low. In this context, an efficient approach to account

for the spatial organization of the pixels inside the desired object is to incorporate texture

information. It allows one to capture the morphological structure of a tissue [141].

Recent approaches were proposed to incorporate texture information into active contours [155–

158]. Among them, common characterizations of texture properties were gray-level co-

occurrence matrices [139], Gabor filters [140, 159, 160], sparse texture dictionaries [161], varia-

tional image decompositions [162], or deep learning based on convolutional neural networks

(CNN) [138, 163–167]. Those methods can be categorized into supervised and unsupervised

methods. A limitation of unsupervised approaches, such as in [162], is that the incorporation

of prior knowledge is difficult. Meanwhile, a limitation of supervised approaches such as

CNNs is that they cannot be trained on-the-fly with only a few labeled pixels, as required for

natural interactions with snakes. For instance, in the interactive methods of [139] and [161],

texture is learned from the pixels inside the manual initialization of the snake or by providing

region boxes for the foreground and the background, respectively.

In this section, we design3 a new texture-driven parametric snake for the supervised and

interactive segmentation of single structures of interest in images. The framework is based on

the theory presented in Section 5.4, that is an energy term that combines image intensity and

texture information, and the Fisher’s linear discriminant analysis (LDA) that finds the optimal

balance between the two type of information. A very small number of samples provided by the

user is sufficient to perform adequate on-the-fly training. The framework is valid for any filter-

based texture feature extraction method, including Gabor filters [142] or circular harmonic

wavelets (CHW) [143]. Here, we mainly focus on CHWs as they provide a powerful tool to

model local circular frequencies at multiple scales with invariance to local image rotations.

We perform a comprehensive performance evaluation of the texture-driven parametric snake

on both synthetic and natural images. We measure its robustness and accuracy with respect

to noise and initialization, as well as to parameter sensitivity. In addition, we compare our

model to supervised and interactive segmentation methods. Regarding the advantages of our

method, it is worth noting that a comparison to fully automatic approaches as CNN would not

be relevant as they cannot be trained on-the-fly. Overall, our approach allows one to efficiently

3This section is based on our publication [74], in collaboration with A. Depeursinge and M. Unser. A demo of the
corresponding plugin and related documentation are available at http://bigwww.epfl.ch/demo/texture-snake/.
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segment subtle structures in low-contrast images with only a few clicks while allowing a high

level of interaction with the user.

6.2.1 Framework

We describe our snake by the parametric closed curve (2.1.2) encoded by M control points

Θ = {c[m]}m∈{0,...,M−1}. We use as basis function ϕ the exponential B-spline defined in [64]

(Equation (8)) by

ϕ(t ) = sinc

(
1

M

)−2

β(
0,− 2jπ

M , 2jπ
M

) =


cos
( 2π|t |

M

)
cos

(
π
M

)−cos
(

2π
M

)
1−cos

(
2π
M

) 0 ≤ |t | ≤ 0.5,

1−cos
(

2π(1.5−|t |)
M

)
2
(
1−cos

(
2π
M

)) 0.5 ≤ |t | ≤ 1.5,

0 1.5 ≤ |t |,

(6.2.1)

with M ≥ 3.This basis function ensures that the snake can perfectly reproduce elliptical shapes

using few control points, which is relevant to delineate blob-like objects. In addition, the snake

is versatile enough to provide good approximations of any closed curves. The exponential

B-spline has a small support, which is advantageous for both computational aspects and the

user interaction (moving one control point affects the structure of the snake locally only).

Moreover, it verifies the partition-of-unity condition (2.1.8), which ensures that our model is

invariant under affine transformations.

To drive the deformation of the curve, we use the energy functional Esnake(Θ) = Etexture(Θ)

given by (5.4.5) that combines image intensity and texture information. It is obtained as fol-

lows: we first perform a texture analysis of the image using a bank of N filters
{
φn

}
n∈{1,...,N } (see

Section 5.4.1); then, we perform Fisher’s LDA (see Section 5.4.3) to obtain a vector of weights

that balances the original image f0 = f and the positive response maps
{

fn = ∣∣ f ∗φn
∣∣}

n∈{1,...,N }.

Finally, the term (5.4.5) allows for the distinction between homogeneous regions in each

channel fn weighted by wn . The flowchart of the proposed framework is depicted in Figure 6.3.

6.2.2 Implementation Details

Fast Implementation

The main computational bottleneck of our framework is the evaluation of the surface integrals

in (5.4.6), which needs to be performed (N +1) times at each iteration of the optimization

process. We use Green’s theorem to efficiently implement (5.4.6) with line integrals as

En(Θ) =− 1

|Σ|
∣∣∣∣2∮

C
Fn(r)dr2 −

∮
Cλ

Fn(r)dr2

∣∣∣∣ , (6.2.2)

where C and Cλ are the positive oriented contours described by r and rλ, respectively, and

the image Fn is given by (5.4.8). Similarly, we have that Σ := Σ(Θ) = ∮
C r1dr2. The use of

Green’s theorem dramatically reduces the computational cost. To further accelerate the
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Figure 6.3 – Flowchart of the proposed framework: a texture analysis is first performed with a
bank of filters

{
φn

}
n∈{1,...,N }. Note that the symbol ∗ denotes a convolution. Then, the original

image f0 = f and the resulting positive response maps
{

fn = ∣∣ f ∗φn
∣∣}

n∈{1,...,N } are balanced

using Fisher’s linear discriminant analysis. We thus obtain the vector of weights w ∈R(N+1).
Finally, the curve r of the snake is deformed through the minimization of the region-based
energy Etexture given (5.4.5). This term allows for the distinction between homogeneous regions
in each channel fn weighted by wn .

Figure 6.4 – Extraction ofΩC (blue ROI) andΩB (green ROI) for training Fisher’s LDA.

computation, we 1) precompute and store in lookup tables the images Fn and the weights

wn , for n ∈ {0, . . . , N }; and 2) use the inner-product calculus that we propose in Appendix A to

efficiently compute the signed area Σ in (5.4.6).

Supervision of Fisher’s LDA

Two rectangular ROIs ΩC and ΩB, necessary to train Fisher’s LDA (see Section 5.4.3), are

automatically extracted from the initialization of the snake. The first one is localized at the

center of gravity of the initialization and the second one outside of the snake (Figure 6.4). A

manual mode is also provided to adjust either one of the ROIs when needed. In the global

framework, Fisher’s LDA is trained on-the-fly once during the initialization of the snake. The

resulting weights remain then unchanged during the entire optimization process.
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6.2.3 Experiments and Validation

We proceed in three steps to evaluate the performance of the proposed texture-driven para-

metric snake. First, we test the effect of the parameters on the accuracy of the outcome

and study the robustness with respect to initialization and noise. Second, we compare the

proposed snake in term of accuracy against other segmentation methods. Third, we illustrate

applications on real data. In all the following experiments we use CHWs in our method to

extract texture information.

Databases

To validate our model, we created three databases drawn from the real textures of the Prague

Texture Segmentation Benchmark4 [168]. Each database was created based on the following

pipeline. First, we selected a set of texture classes; then, each texture was combined in pairs

using a binary mask of blob-like shape to create an image of (512×512) pixels. The mask was

obtained by thresholding a mixture of several Gaussians with random parameters. To vary the

shape to be segmented, we used the five different masks of Figure 6.5 for each combination.

For the first database, called Database 1, we used a set of ten textures of different classes

(e.g., wood, stone, flowers). The textures are shown in Figure 6.6 (a). Database 1, made of

450 images, allows us to test the snake on a diverse set of texture patterns. An image of this

database is illustrated in Figure 6.16. The two other databases were constructed using five

textures of the same class. Database 2 is made of the class “wood" and Database 3 of the class

“flower". The corresponding textures are shown in Figure 6.6 (b) and (c). We use those two

databases, made of 100 images each, to study the efficiency of the snake when segmenting

similar textures that differ only in subtle ways.

Databases 1, 2, and 3 are made of color images in the RGB representation. One advantage of

the proposed snake is that it can handle several channels. In the case of RGB images, it uses

both texture and intensity information in every color channel. However, the multichannel

information can be predominant over the texture. Typically, textures of Database 3 are very

similar (i.e., flowers) but often the color differs. Hence, in order to evaluate the ability of our

snake to discriminate textures, as opposed to colors, the validation is performed on both RGB

and grayscale versions of the three databases. The grayscale images are obtained by averaging

the red, green, and blue channels of the RGB images.

For all experiments, Fisher’s LDA is trained using two fixed ROIs that contain the foreground

and background in each mask of Figure 6.5.

4The textures were taken from http://mosaic.utia.cas.cz/index.php?act=intro.
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Figure 6.5 – Masks used for the evaluation.

Parameters and Validation of the Model

Degrees of Freedom of the Curve: The number M of control points is an important parameter

of the proposed snake. The choice of M depends on the application. A large value

of M increases the ability of the snake to approximate intricate shapes but makes the

optimization process more complex and penalizes robustness. To illustrate this, we

segmented Database 1 for different values of M , for P = 5 harmonics and Q = 3 scales.

The corresponding Jaccard indices are reported in Figure 6.7. The default box spans

from the 0.25 quantile to the 0.75 quantile. The dark (grey, respectively) dots are the

outliers defined as points beyond 1.5 (3, respectively) times the interquantile range from

the edge of the box. We observe that the median increases as M increases. However,

the segmentation becomes less robust as the number of outliers increases. The best

tradeoff between accuracy and robustness was found to be M = 6 for Database 1. In fact,

keeping M small acts as a regularizer for the curve.

Influence of P and Q for the CHW Decomposition: We study the impact of the number of har-

monics and scales on the accuracy of the segmentation outcome. For fixed P and

Q, we can reconstruct the image fsnake to generate a two-dimensional projection that

estimates what the snake “sees” using

fsnake =
N∑

n=0
wn fn , (6.2.3)

where {wn}n∈{0,...,N } are the weights in (5.4.5) estimated with Fisher’s LDA. In Figure 6.8,

fsnake is shown for different values of P and Q, along with their Jaccard index. The

original image is a grayscale image of Database 2. The initialization of the snake and the

original image are depicted in Figure 6.9.

We observe that the wavelet scale acts as regularizer. It smooths the textures on fsnake. At

high P and Q, the image is less detailed and the snake is less likely to be trapped in local

minima but, when Q is too large, the boundary of the object is not well-defined, which

results in an inaccurate segmentation. Increasing the number of harmonics leads to a

better discrimination of the two textures. However, more than 5 harmonics yields no

more relevant information, resulting in decreased segmentation performance because

Fisher’s LDA fails to find adequate separating hyperplanes in spaces with too many

dimensions.

In a second experiment, Database 2 was segmented using various values of P and a
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(a) Database 1.

(b) Database 2.

(c) Database 3.

Figure 6.6 – Textures used for the evaluation.

fixed Q equal to 3. The results are shown in Figure 6.10. It can be observed that the

accuracy improves from P = 1 to P = 5, which is even more remarkable on grayscale

images. Then, the accuracy plateaus and decreases. To conclude, the combination of 5

harmonics with 3 scales provides enough information to discriminate the textures while

preserving an accurate segmentation. Hence, P = 5 and Q = 3 were fixed in all following

experiments.

Dependence on Initialization: An important aspect is the initial position from which the snake

is optimized. Circular shapes for closed snakes are common initial contours. We seg-

mented Database 1 using the five initializations shown in Figure 6.11. The corresponding

Jaccard indices are reported in Figure 6.12. The best accuracy is obtained for the first

two initializations. In fact, the energies En , n ∈ {0, . . . , N }, given in (5.4.6), are sensitive to

the image contrast between the core and the shell of the snake. Hence, the snake should

be initialized such that the core intersects the object of interest and the shell intersects

the background.
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Figure 6.7 – Segmentation performance on Database 1 (RGB images) according to the number
M of control points. We used 3 scales and 5 harmonics.

Robustness with Respect to Noise: We investigated the robustness of the texture-driven snake

to noise in the image as a function of the number M of control points. We generated 100

realizations of noisy data for each one of five levels of additive white Gaussian noise. We

ran the optimization process until convergence using the proposed texture-driven snake.

SNR corresponding to a given noise level and median Jaccard index were computed.

We used a pixelwise SNR that compares the noisy image and the ground-truth image.

The results are summarized in Table 6.2. The initialization of the snake is overlaid in

the thumbnails which depict the noise-corrupted images. Its overlap with the ground

truth corresponds to J = 0.55. From the results, we observe that the texture-driven snake

is robust with respect to noise since it is able to give a proper segmentation outcome

even for low SNRs. This can be explained by the fact that each energy En in (5.4.5) ,

for n = 0, . . . , N , estimates the mean intensity over regions, while Gaussian noise has

zero mean. The performance of the snake decreases faster for numerous control points,

where higher noise levels induce many local minima.

Comparisons with Existing Approaches

We carry out two experiments in which we compare the proposed texture-driven snake in

term of accuracy against two segmentation methods: 1) the exponential B-spline parametric

snake described in [64]. This snake has the same reproduction properties and smoothness as

the proposed snake but relies on a different region-based energy (intensity information only).

The implementation of this method was taken from the free open-source image-processing

package Icy [11]; 2) the texture-based discrete parametric snake described in [139]. This

algorithm generates texture feature maps from gray-level co-occurence matrices (GLCM) and

selects the features that are best suited using a relative standard deviation criteria. We used

the implementation given in the platform MESA [169]. In the following, we refer to those
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P=1 P=3 P=5 P=7

Q
=

1

J=0.66 J=0.89 J=0.85 J=0.82

Q
=

3

J=0.69 J=0.91 J=0.92 J=0.90

Q
=5

J=0.81 J=0.81 J=0.89 J=0.80

Q
=7

J=0.75 J=0.66 J=0.65 J=0.68

Figure 6.8 – Illustrations of fsnake for P = 1,3,5,7, and Q = 1,3,5,7.
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Table 6.2 – Jaccard indices for the segmentation of noisy data on RGB (top) and grayscale
(bottom) images.
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Figure 6.9 – Initialization on the original image, J = 0.62.

Figure 6.10 – Segmentation performance on Database 2 for various numbers P of harmonics.
We used 3 scales and 6 control points.

methods as “intensity-based snake" and “GLCM-based snake", respectively. Similarly to our

framework, those two snakes allow for user interaction and can be trained on-the-fly. We

recall that a comparison to fully automatic approaches would not be appropriate since we

focus on methods that can be trained on-the-fly with one image. It is worth noting that the

two competing methods assume grayscale images.

Mean and Variance Equalization: The goal of this experiment is to emphasize the importance

of textural information by illustrating the limitations of the intensity-based snake, and

to justify our choice to use CHWs to extract texture information. To only have texture

information in the grayscale databases 1, 2, and 3, we equalized mean and variance

inside and outside the mask. We optimized the intensity-based, GLCM-based and

proposed snakes on each resulting database. Our snake and the intensity-based snake

were initialized using 6 control points. For the proposed method we used 3 scales and 5

harmonics. For the GLCM-based snake we set the sensitivity parameter to 3 and enable

the option “All angles". The corresponding Jaccard indices are reported in Figure 6.13.
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(a) Init 1. (b) Init 2. (c) Init 3.

(d) Init 4. (e) Init 5.

Figure 6.11 – Various initializations with 6 control points. Inner red circle: snake; Outer green
circle: shell. The initializations are superimposed on the image of the sum of the five masks
given in Figure 6.5.

Note that the energy of the GLCM-based snake is based on a sensitivity parameter.

Therefore, if the algorithm does not sufficiently discriminate the texture of interest,

the snake will spread over the entire image yielding low Jaccard indices. This explains

the high standard deviations for this method in Figure 6.13. We observe that, in each

case, the proposed texture-driven snake achieved an adequate segmentation of the

object of interest, whereas the intensity-based snake got trapped in local energy minima

due to the presence of inhomogeneous regions. Thus, the additional value of texture

information is clearly observed. This is reinforced by the GLCM-based snake that yields

to a higher maximum Jaccard index than the intensity-based snake on Databases 1 and

2. However, in each database, the GLCM-based snake is less accurate and robust than

the proposed snake. The bad result on Database 3 could be explained by the fact that the

feature selection algorithm in [169] penalizes feature maps with high relative standard

deviation, which is not a true discriminative criteria when compared to Fisher’s LDA.

We want to compare the effectiveness of our method when using CHWs or Gabor

filters in the texture analysis. We thus repeated the experiment using the Gabor filters,

described in Section 5.4.1, with 3 scales and 5 orientations. The results are given in

Figure 6.14. The performances of Gabor filters and CHWs are similar on Database 1.

On Database 2, Gabor filters are more efficient. This is due to the strong and constant

directionality of the textures in this database (Figure 6.6 (b)), which is efficiently captured
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Figure 6.12 – Segmentation performance on Database 1 for the initializations depicted in
Figure 6.11. We used 6 control points, 3 scales, and 5 harmonics.

by Gabor filters because they are not invariant to image rotations. However, this lack of

rotation-invariance explains that their efficiency significantly decreases on Database

3 where the flower petals have different orientations within the same texture class

(Figure 6.6 (c)). This justify our choice to use CHWs in our experiments in order to be

more robust. Moreover, an advantage of our framework is that one can choose the filters

that are best suited to his application.

Original Data: In this experiment, we evaluate the segmentation performance on the original

databases described in Section 6.2.3. For comparison purposes, we also provide results

obtained with the proposed snake when w = 1 to investigate the influence of Fisher’s

LDA. The GLCM-based snake was initialized with a circle inside the texture of interest

and we set the sensitivity parameter to 3 and enable the option “All angles". We initialized

the other methods with a circle centered on the image and let them evolve automatically

until convergence using 6 control points. For our snake we used 3 scales and 5 harmonics.

We compared the final segmentation result to the corresponding ground truth of the

synthetic data. The associated Jaccard indices are reported in Figure 6.15. Illustrations

of the segmentation results are shown in Figure 6.16. We observe that, for each database,

we obtain more accurate segmentation outcomes with the proposed texture-driven

snake, either on RGB or grayscale images. We also remark that removing Fisher’s LDA

from the proposed method (i.e., when w = 1) significantly decreases the performances.

This shows the importance of the weights w and that Fisher’s LDA is an adequate method

to choose them. Finally, the proposed method gets better results and robustness when it

is applied on RGB images rather than on grayscale images. This is striking for Database

3 and highlights the advantage of our method to be able to deal with different channels.
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Figure 6.13 – Segmentation performance for the three databases when mean and variance
were equalized inside and outside the mask. For the proposed snake we used 6 control points,
3 scales, and 5 harmonics.

Real Data Scenarios

We illustrate the behavior of the proposed snake on real data scenarios. For each experiment

we manually initialized the snake and let the optimization evolve until convergence for P = 5

and Q = 3. As user interaction is one of the main assets of our framework, we locally refined

some segmentation outcomes by manually moving one or several control points.

Photographic Images: We applied our snake on 4 natural photographs taken from Unsplash5,

a website dedicated to sharing copyright-free photography. Those images are chal-

lenging as the background and the object of interest have similar color. Moreover, the

illumination is not uniform which makes the texture more difficult to extract. The initial-

izations, segmentation outcomes and manual edits are shown in Figures 6.17, 6.18, 6.19,

and 6.20.

Biological Images: Texture information is also widely used to characterize biological tissues.

We applied our snake to 3 microscopy images from the Cell Image Library 6. Those im-

ages are challenging as the color inside and outside the structure to segment are similar,

and they contain several textures. The initializations and segmentation outcomes are

shown in Figures 6.21, 6.22, and 6.23. The qualitative assessment of the segmentation

yields satisfactory results.

5The images were taken from https://unsplash.com/, as of September 2018.
6The images were taken from http://www.cellimagelibrary.org/, as of September 2018.
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Figure 6.14 – Segmentation performance obtained with the proposed snake for the three
databases when mean and variance were equalized inside and outside the mask. We used 3
scales and 5 harmonics for the CHW decomposition, and 3 scales and 5 orientations for the
Gabor filters.

6.2.4 Conclusions

We have presented a new parametric snake that efficiently allows one to segment structures

with similar intensity distribution and low contrast with the background. Our main contribu-

tion related to this work is the derivation of a new energy that combines intensity and texture

information (see (5.4.5) and Section 5.4). The contribution of the two types of information

is balanced using Fisher’s LDA (Section 5.4.3). The method is general and any suited filter

banks can be used to extract texture features. This framework is trained on-the-fly from small

collections of pixels provided by the user. One main advantage of this method is that one

can easily interact with the snake to edit the segmentation outcome when required. We have

compared the performance of our snake to existing ones. In particular, we have observed that

the texture-driven snake always performs better than classical parametric snakes that rely on

intensity information only. This improvement was even more substantial when the intensity

distributions are similar over the background and the object of interest. We have studied the

parameter sensitivity of our proposed method as well as its robustness to noise. Finally, we

have shown its practical usefulness on real images.
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Figure 6.15 – Segmentation performance for the three databases. Database 1: 450 images;
Database 2 and Database 3: 100 images. For the proposed snake we used 6 control points, 3
scales, and 5 harmonics.

(a) Proposed snake, J = 0.95. (b) Proposed snake without Fisher’s
LDA, J = 0.90.

(c) Intensity-based snake, J = 0.60. (d) GLCM-based snake, J = 0.87.

Figure 6.16 – Segmentation of an image of Database 1. The intensity-based snake and GLCM-
based snake are optimized on the grayscale version of the image as they can not handle several
channels.
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(a) Initialization. (b) Outcome. (c) Manual edit.

Figure 6.17 – Segmentation of a squirrel. Source: J de Gier.

(a) Initialization. (b) Outcome. (c) Manual edit.

Figure 6.18 – Segmentation of a leaf. Source: Joshua Newton.

(a) Initialization. (b) Outcome. (c) Manual edit.

Figure 6.19 – Segmentation of leaves. Source: Mikael Kristenson.
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(a) Initialization. (b) Outcome.

Figure 6.20 – Segmentation of a mushroom. Source: Nancy Newton.

(a) Initialization. (b) Outcome.

Figure 6.21 – Segmentation of a hair follicle on a light micropgraph. Source: Ivor Mason, 2012,
CIL:39094.

(a) Initialization. (b) Outcome.

Figure 6.22 – Segmentation of a nascent digestive vacuole on an electron microscopy image.
Source: Richard Allen, University of Hawaii, 2012, CIL:39720.

(a) Initialization. (b) Outcome.

Figure 6.23 – Segmentation of a fossil of red sponge coral on a microscopy image. Source:
Norm Barker, 2009, CIL:41842.
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6.3 Multiresolution Subdivision Snakes

Subdivision is a powerful scheme to generate a continuously defined curve starting from

an initial set of points. As it was motivated in Chapter 4, this geometric representation

combines the advantages of parametric and point snakes. Moreover, its discrete nature and

multiresolution property are particularly relevant for the design of active contours.

The use of subdivisions for the construction of segmentation models was pioneered by [170]

and [171] for Doo-Sabin surfaces [132] and the DLG-scheme [172], respectively. In the first

case, left ventricles are modeled whereas, in the second case, they improved editing semantics

of traditional snakes.

In this section, we propose7 a general approach that remains valid for any subdivision scheme

as we derive the construction of a 2D subdivision snake in a generic way. The main contri-

butions related to this work are: 1) a new geometrical representation based on subdivision.

A crucial aspect is the choice of the subdivision mask that determines important properties

of the model such as its approximation properties, the capability of reproducing circular,

elliptical, or polynomial shapes [123], as well as the possibility of being interpolatory [173,174]

or not; 2) the derivation of associated energy functions; 3) the presentation of an integrated

strategy where the snake is optimized in a coarse-to-fine fashion. This multiscale approach is

algorithmic and inherently recursive: We increase the number of points describing the curve

as the algorithm progresses to the solution; at each step, the scale of the image feature (on

which the optimization is performed) is matched to the density of the point cloud. This speeds

up the computation and increases the robustness.

We give several examples of explicit constructions of subdivision snakes. We illustrate their

use on real images as well as on test data simulating real biological conditions. We compare

our proposed model to existing parametric snakes and measure its robustness and accuracy

with respect to noise and initialization. Specifically, we show that the proposed coarse-to-fine

approach allows the optimizer to 1) have a larger basin of attraction which makes it robust to

initial conditions; 2) escape some local optima; 3) be efficient by progressively increasing the

snake resolution; 4) delineate structures of different sizes contained within an image without

having to adapt the initialization.

6.3.1 Framework

We implicitly describe the contour of our snake by the continuously defined limit curve r

of a convergent subdivision scheme given by (4.2.6) and (4.2.3). Its shape is encoded by the

M control points Θ = {
p(0)[m]

}
m∈{0,...,M−1}. This representation implies that the properties

of the snake (e.g., smoothness, shape reproducibility) are determined by the choice of the

7This section is based on our publication [70], in collaboration with D. Schmitter, V. Uhlmann
and M. Unser. A demo of the corresponding plugin and related documentation are available at
http://bigwww.epfl.ch/demo/subdivision-snake/.
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subdivision mask h. We shown in Section 4.2.3 that affine invariance is ensured for every

convergent subdivision scheme.

For the snake energy, we use a combination of the edge- and region-based terms (5.1.4)

and (5.2.5) such as

Esnake(p(k)(Θ)) = b EedgeSD(p(k)(Θ))+ (1−b) EintensitySD(p(k)(Θ)), (6.3.1)

where b ∈ [0,1], is a tradeoff parameter that balances the contribution of the two energies, and

p(k) describes the contour of the snake and is given by (4.2.3).

6.3.2 Optimization: a Multiresolution Approach

The segmentation outcome, when using active-contour models, depends on the initialization

of the snake. A larger basin of attraction allows for a rougher initialization. With common

singleresolution segmentation algorithms, a tradeoff has to be made between the desired

accuracy and the amount of blurring one applies to an image. Blurring enlarges the basin of

attraction but also decreases the resolution of an object, which in turn affects the quality of the

delineation. Multiresolution approaches are powerful methods to speed up the optimization

process and improve robustness. Existing methods mainly rely on the construction of an

image pyramid, where the active contour is upsampled from a coarse scale to a finer scale

of the image [175–177]. One limitation of those methods is that the object to segment may

not have the same topology on the coarsest and finest images. In this section, we present

a multiresolution approach which is inherent to the iterative process of subdivisions. The

subdivision snake has the advantage that the resolution of the representation can be adapted

to the resolution of the object to be segmented. The number of subdivision points used

to describe the snake and to determine its energies (5.1.4) and (5.2.5) is controlled by the

number k of subdivisions. If fewer points are used, the optimization is faster. We exploit

this multiresolution property both to enlarge the basin of attraction and to accelerate the

optimization.

Algorithm: We apply K successive lowpass filters Gk to the original image to obtain K

smoothed images fk . The snake is first optimized on the coarsest image f1 that corre-

sponds to the lowest resolution and, hence, the structure of interest only contains few

details. The initialization on f1 can be very rough because the blurring enlarges the

basin of attraction. The snake is optimized on f1 and is then used as initialization at the

next resolution level on f2. The process continues until the optimization reaches the

finest resolution level that corresponds to the original image f . Because the smoothed

images contain fewer details and less noise than the original one the snake is more

robust to initial conditions. The subdivision scheme allows us to adapt the number

of subdivision points describing the curve r to the level of detail in the image. Thus,

we start with few subdivision points (i.e., one subdivision step), which allows for fast

optimization. At each subsequent iteration of the multiresolution algorithm, we keep
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ALGORITHM 6.3 – Multiresolution algorithm.

Input: original image f , low-resolution snake encoded by p(0)

Initialization: p(1) = p(0)↑2
∗h

For K iterations (K ≥ 1) over k:

compute: image fk = f ∗Gk

optimize: p(0)opt = argmin
p(0)opt

Esnake
(

fk ,p(k)(p(0)opt )
)

p(k)opt = p(0)opt↑
2k
∗h0→k

increase the resolution of the snake: p(k+1) = p(k)opt↑2
∗h

Until: high-resolution segmentation on the original image f

constant the number of control points and increase the density of the subdivision points.

The pseudo-code in Algorithm 6.3 describes this algorithm. Note that the position of the

control points p(0) changes after each optimization. We denote by p(0)opt the sequence

describing the optimized control points. From now on, we denote by Esnake( f ,p(k)(Θ))

the energy of the snake as it also depends on the image on which it is optimized. The

images fk and their pre-integrated versions (5.2.3) are pre-computed, which accelerates

the segmentation process and decreases the memory requirements.

6.3.3 Experiments and Validation

We compare the proposed multiresolution snake to parametric singleresolution snakes [50].

We first test the robustness with respect to initial conditions and, in a second step, we measure

its robustness with respect to noise as well as its ability to segment objects of varying sizes

in an image. Finally, we illustrate applications on real data where the ground truth is not

available.

Accuracy and Robustness to Initial Conditions

We carry out two experiments in which we compare our multiresolution subdivision snake

to a parametric singleresolution snake based on quadratic B-splines as described in [50]. In

order to compare snakes with the same reproduction properties, we construct our subdivision

snake with a minimum-support subdivision scheme that generates polynomials of degree up

to 2 (see Section 4.3.3).

In the first experiment, we test the accuracy of the segmentation. We created a test image of

(854×768) pixels that simulates realistic conditions in fluorescence microscopy (Figure 6.24

(second row)), including noise. It shows a rod-shaped cell representative of a Schizosaccha-
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Table 6.4 – Jaccard indices for segmentation obtained with the singleresolution and subdivision
snakes, both generating polynomials of degree up to 2.

σ [pixel] J Result

32 0.803 fail
16 0.860 fail

Singleresolution 8 0.950 succeed
snake 4 0.544 fail

2 0.544 fail
0 0.544 fail

Subdivision snake 0 0.989 succeed

romyces pombe (S. pombe) [178]. We then blurred the test image with five Gaussian kernels

having different standard deviations σ whose values are given in Table 6.4. Four resulting

images are shown in Figure 6.24 (first row). The higher the standard deviation, the fewer

details are present in the filtered image. The initialization of the snakes was drawn manually

with M = 8 control points (Figure 6.24 (second row)). Its overlap with the actual structure

corresponds to the Jaccard index J = 0.544. We first optimized our subdivision snake using the

multiresolution algorithm described in Section 6.3.2. At each iteration we did one subdivision

step corresponding to a multiplication by a factor of 2, starting with 2M = 16 subdivision

points. The curve evolves guided by the edge-based energy EedgeSD, i.e., we choose b = 1

in (6.3.1). The optimized contours at different levels of the multiresolution algorithm are

shown in Figure 6.24 (first row). We compared the final segmentation to the ground truth of

the synthetic data; the corresponding Jaccard index is given in Table 6.4. We consider that

a snake succeeds in segmenting the structure of interest if J ≥ 0.95. We then independently

optimized the parametric singleresolution snake with the edge energy Eedge, given by (2.2.2),

on the six images (the five blurred images and the original one) using the same initialization.

Results are shown in Figure 6.24 (third row) and the corresponding Jaccard indices are given in

Table 6.4. The segmentation succeeded only on the smoothed image corresponding to σ= 8.

The singleresolution snake is able to segment the structure of interest only on a smoothed

image because the basin of attraction is too narrow otherwise for the edge energy. The vari-

ance of the Gaussian filter has to be well-chosen according to the initialization. We conclude

that the multiresolution approach improves the accuracy of the segmentation. This result is

explained by the fact that the multiresolution is initialized on the coarsest image with reduced

details and a large basin of attraction. By adapting the resolution of the subdivision snake to

the image details, it is able to converge to the structure to segment on the original image.

In the second experiment, we evaluate the impact of the multiresolution approach on the

robustness of the snake with respect to the initialization. For this experiment, we generated

another test image of (854×768) pixels of a sickle cell [179] acquired through fluorescence
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Figure 6.24 – Comparison of the accuracy of the segmentation between our multiresolution
subdivision snake and the parametric singleresolution snake. Both snakes generate polyno-
mials of degree up to 2. First row: Evolution of the subdivision snake during the six-level
multiresolution process. The last illustration shows the final segmentation on the original
image. Second row: Initialization. Third row: Several segmentation results obtained with the
parametric singleresolution snake for different blurred versions of the original test image.

microscopy (Figure 6.25 (d)). We compared the basin of attraction of both the singleresolution

and the multiresolution subdivision snakes using M = 6 control points. Each basin of attrac-

tion was computed as follows: a rough approximation of the goldstandard was constructed.

This shape was rescaled to construct several initial positions of the snake. We then optimized

the active contour using an edge-based energy (i.e., Eedge and EedgeSD). For each segmentation

result, we computed the Jaccard index and associated a grayscale value to J where white corre-

sponds to J = 0 and black to J = 1. Finally, we generated an image where each initialization was

drawn with the color corresponding to the Jaccard index of the corresponding segmentation

result. For the singleresolution snake, we realized this experiments on two images: the original

one and a smoothed version with σ = 10. The results are shown in Figure 6.25 (a) and (b),

respectively. For our subdivision snake, we used the multiresolution approach on the original

image. The result is given in Figure 6.25 (c). The white regions in the images showing the basin

of attraction correspond to positions that were not considered for initialization, including the

boundary of the shape to segment. Note that the average Jaccard values inside the shape to

segment appear to be less uniform than outside. This can be attributed to the two following

reasons: First, as seen on the original image (Figure 6.25 (d)), the outside of the shape is

completely uniform in intensity while the inside of the shape exhibits variations in pixel values.

Snakes evolving from outside of the object therefore encounter no risk of getting diverted from

their target due to variations of pixel intensities. Snakes which start to deform from the inside

of the shape are, however, evolving on a nonuniform region and are more likely to get trapped

into local energy minima. Second, for a given number of control points, smaller snakes tend to

96



6.3. Multiresolution Subdivision Snakes

(a) σ= 0 (b) σ= 10 (c) Multiresolution (d) Test image

Figure 6.25 – Comparison of the basin of attraction of the multiresolution subdivision snake
versus the parametric singleresolution snake using an edge energy. (a)-(b) Basins of attraction
of the singleresolution snake obtained for the original image and for a blurred version (σ= 10);
(c) basin of attraction of the multiresolution subdivision snake obtained on the original image
(d).

diverge more easily than larger ones. This effect is simply due to the fact that, if their number is

fixed, control points are physically closer in smaller shapes. During the optimization process

and as the control points are moved, it becomes therefore more likely for the snake to get

entangled. In the present experiment, initial shapes inside the object to segment are smaller

than the ones outside the object, and optimization results tend to get more unstable due to the

enhanced risk of entanglement. We observe that the singleresolution snake is very sensitive to

the initialization. On the contrary, the subdivision snake leads to accurate segmentation even

for initializations far from the object to segment.

Robustness with Respect to Noise

As further test of robustness, we performed segmentation on the test image described in

Figure 6.24 (second row) with different levels of additive white Gaussian noise. We still used

the multiresolution subdivision snake constructed with the minimum-support subdivision

scheme that generates polynomials of degree up to 2 (see Section 4.3.3) and M = 8 control

points. The initial overlap of our snake with the ground truth corresponds to J = 0.593

(Figure 6.26 (e)). SNRs corresponding to a given noise level and associated Jaccard indices

were computed. We used a pixelwise SNR that compares the noisy image and the ground truth

image. The results are summarized in Table 6.5 and Figure 6.26. For all cases, we obtained

J > 0.95.

Segmentation of Objects of Varying Sizes

The multiresolution algorithm for segmentation presented in Section 6.3.2 suggests that the

approach is very robust to initialization. To verify this property, we created a test image of

size (5,500×2,700) pixels composed of eight circular cells of different sizes (Figure 6.27). The

initializations correspond to circles with a radius of 461 pixels centered in each cell (Figure 6.27

(a)). By adjusting the variance of the lowpass filters to the smallest structure present in the
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(a) SNR=−7.83dB. (b) SNR=−13.80dB.

(c) SNR=−16.60dB. (d) SNR=−17.82dB.

(e) Initialization.

(f) Close-up of a boundary
region.

Figure 6.26 – Robustness with respect to noise of the multiresolution subdivision snake. A close-
up of a boundary region between the test rod-shape and its background for SNR=−17.82dB is
depicted in (f).

Table 6.5 – Jaccard indices for the segmentation of noisy data.

SNR [dB] J

−7.83 0.990
−13.80 0.987
−16.60 0.987
−17.82 0.984

image, we were able to segment all the cells. We used a multiresolution subdivision snake

based on the ellipse-reproducing Deslauriers-Dubuc scheme defined by (4.4.8). Results are

shown in Figure 6.27 (b) and the corresponding Jaccard indices are presented in Table 6.6 (first

line). Each structure was accurately segmented with J ≥ 0.95.

Real Data

We illustrate the behavior of the proposed snake on real data. In this context, the ground

truth is unknown and we have to rely on qualitative assessments to validate the accuracy

of the segmentation. We applied our multiresolution subdivision snake, constructed with

the non-stationary minimum-support subdivision scheme that generates ellipses defined

by (4.4.10), to four microscopic images (Figure 6.28). These images are challenging because

of the presence of noise and of objects with different sizes. Moreover, shapes can be close to

each other. They represent elliptic cells (Figure 6.28 (a), inverted contrast), rod-shaped cells

of S. pombe (Figure 6.28 (b)), a sickle cell (Figure 6.28 (c)), and circular cells (Figure 6.28 (d)).

The qualitative assessment of the segmentation yields satisfactory results. We used b = 0.5
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(a) Initializations. (b) Segmentation outcomes.

Figure 6.27 – Segmentation of circles with different radii using the ellipse-reproducing
Deslauriers-Dubuc subdivision scheme defined by (4.4.8).

Table 6.6 – Jaccard indices for the segmentation of circles of various sizes obtained with the
stationary and the non-stationary Deslauriers-Dubuc schemes.

Radius [pixels] 55 75 95 115 165 195 315 415
Reproducing scheme

Ellipses 0.992 0.994 0.995 0.996 0.996 0.996 0.997 0.998
Polynomials of degree up to 3 0.810 0.778 0.764 0.772 0.756 0.777 0.771 0.765

in (6.3.1) and the average time to delineate one cell was less than 0.2 seconds on a 1.7 GHZ

processor with 8 GB RAM.

Note that, as the principal motivation for our work is the segmentation of biological images,

it was important trough those experiments to show that our model can reproduce circular

or elliptic shapes. However, the reproduction properties of the presented schemes are not

restricted to those shapes. More complex shapes can be segmented by increasing the number

of control points.

6.3.4 Discussion

Guidelines for the Choice of the Subdivision Scheme

In Chapter 4, we presented two main families of subdivision schemes: the Deslauriers-Dubuc

and the minimum support subdivision schemes. We highlighted their properties in case of

stationary or non-stationary approaches (see Sections 4.3 and 4.4, respectively). Here after, we

discuss the choice of the subdivision mask to construct our snake according to the application.

Minimum-Support vs. Deslauriers-Dubuc Subdivision Schemes: The computation of the

snake energy and the speed of the optimization algorithm is related to the length of the

support N of the subdivision mask. More precisely, the complexity when calculating

the subdivision points (4.2.3) is O((N −1)k ). Therefore, the fastest algorithm is obtained

using minimum-support subdivision schemes. In return, the Deslauriers-Dubuc subdi-
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(a) Elliptic cells. (b) S. pombes. (c) Sickle cell. (d) Circular cells.

Figure 6.28 – Segmentation of real data using multiresolution subdivision snakes con-
structed with the non-stationary minimum-support subdivision scheme that generates el-
lipses (see (4.4.10)). First row: snake initializations. Second row: segmentation outcomes.

vision is interpolating. This can be an advantage if user interaction is involved, because

it facilitates the editing of the curve. We present in Figure 6.29 an intermediate stage in

the segmentation of a dividing cell. User interaction makes it possible to improve the

result by moving the control points. However, the interaction is more intuitive when

they lie on the curve (Figure 6.29 (b)). Otherwise, it is difficult to know which parameter

controls the part of the curve that has to be modified (Figure 6.29 (a)).

The choice of the subdivision mask ultimately depends on the application: for an

automatic method, we suggest to use a minimum-support subdivision scheme; whereas,

when one would like to benefit from friendly user interactions, it is preferable to use a

Deslauriers-Dubuc subdivision scheme.

Stationary vs. Non-Stationary Subdivision Schemes: Non-stationary subdivision schemes are

somewhat more complicated than stationary ones because the subdivision mask is

different at each iteration. Their main advantage lies in their capability to reproduce

cosinus and sinus, which allows for an efficient construction of ellipses and circles. In

biomedical imaging, circular or elliptic structures are often encountered. It is there-

fore desirable for the snake to be able to reproduce these shapes. The non-stationary

schemes presented in Sections 4.4.3 and 4.4.4 reproduce ellipses with the minimum

number of control points M = 3, whereas the reproduction is only approximated with

the stationary schemes for M < +∞. As the speed of the algorithm scales with the

number of control points, it is preferable to use a non-stationary subdivision scheme

with few control points to segment elliptic structures. To illustrate this property, we

computed the error when approximating a circle as a function of M with the stationary

Deslauriers-Dubuc subdivision scheme defined by (4.3.5). In Figure 6.30, we see that

the error decreases as M increases. However, a large number of control points is needed

to obtain an acceptable error. Therefore, the segmentation of circular shapes with a
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(a) Non-interpolating control
points.

(b) Interpolating control points.

Figure 6.29 – User-friendly interaction according to the interpolation property of the sub-
division scheme. Blue crosses: control points; red curve: snake; green circles: control
points for which it is difficult to know which part of the curve they control. Source:
http://www.cellimagelibrary.org/images/35450/.

small number of control points p(0) is more accurate with a non-stationary scheme. To

highlight this property, we performed the same experiment as the one presented in Fig-

ure 6.27, using the stationary Deslauriers-Dubuc scheme that reproduces polynomials

of degree up to 3 (see (4.3.5)). We used the same initializations and M = 4 control points.

The results are shown in Figure 6.31. We computed the Jaccard indices and compared

them to the ones obtained previously with the non-stationary scheme (see Table 6.6).

All the Jaccard indices are worse than 0.95, which is due to the fact that the stationary

scheme does not approximate well circles for M = 4.

To conclude, if the structure of interest has many details, that requires a high number

of control points, then we suggest the use of stationary schemes, thereby privileging

computation simplicity while preserving the accuracy of the result; otherwise, one

should use a non-stationary scheme.

Summary: The properties and advantages of each subdivision scheme presented in Sec-

tions 4.3 and 4.4 are summarized in Table 6.7. As in biomedical imaging we often deal

with elliptic structures and that biologists may need to interact with the segmentation re-

sult, we recommend the use of non-stationary Deslauriers-Dubuc subdivision schemes.

Choice of the Multiresolution Parameters in Practice

Regarding the variance and the number of subdivision steps at each level of the multiresolution

algorithm, we found in practice that six subdivision iterations are enough to obtain satisfactory

convergence. At each resolution level, we compute one subdivision step, so that the samples

of the curve are upsampled by a factor 2. As smoothing is equivalent to a downsampling

operation, we obtain the variance of the coarser lowpass filter by decreasing the resolution
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5 7 9 11 13 15 17 19

5

10

15

Stationary Non stationary

(a)

(b) M = 3

(c) M = 20

Figure 6.30 – Approximation of trigonometric curves with the stationary (red solid line) and
non-stationary (blue dashed line) Deslauriers-Dubuc subdivision schemes. (a) Evolution of
the approximation error as a function of the control points. Approximated ellipses for M = 3
(b) and M = 20 (c) are given for each scheme.

Figure 6.31 – Segmentation of circles of different sizes obtained with the multiresolution subdi-
vision snake based on the stationary Deslauriers-Dubuc scheme that reproduces polynomials
of degree up to 3 (see (4.3.5)).

of the original image by a factor 2 at each iteration. Hence, we propose a multiresolution

algorithm with 6 levels where the first one is characterized by σ = 25 and 2M subdivision

points. At each iteration, the value ofσ is divided by two and one subdivision step is performed.

The value of the parameters at each step are summarized in Table 6.8. The choice of these

parameters holds when the snake is initialized far from the object to segment. Otherwise,

a smaller variance can be used for the coarsest lowpass filter but the convergence of the

subdivision scheme is still required on the finest level.

6.3.5 Conclusions

We have presented the 2D generic construction of multiresolution snakes based on subdivision.

The snakes approximate closed curves with arbitrary precision by iteratively refining a set of

control points. We have provided several examples of explicit constructions of such snakes

and discussed their properties. We have shown how they should be chosen according to

desired properties that depend on the structures to be segmented. We have also proposed
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Table 6.7 – Properties of the different subdivision schemes.

Subdivision scheme Ellipse
reproduction

Interpolant Shortest mask

Minimun-support (MS) No No Yes
Non-stationary MS Yes No Yes

Deslauriers-Dubuc (DD) No Yes No
Non-stationary DD Yes Yes No

Table 6.8 – Parameters of the multiresolution algorithm.

Level 1 2 3 4 5 6
Parameter

σ 32 16 8 4 2 0
p(k) p(1) p(2) p(3) p(4) p(5) p(6)

a multiresolution algorithm to adapt the resolution of the curve to the level of detail in the

image. We have compared our framework to traditional parametric singleresolution snakes

and shown that our snakes have a larger basin of attraction, which means that they are more

robust with respect to initial conditions. Furthermore, the multiresolution property accelerates

the optimization. We have validated our snakes on test data as well as on real bioimages. The

primary contributions related to this work are:

• A new geometrical representation based on subdivision;

• The derivation of associated energy functions such as the region- and edge-based

terms (5.1.4) and (5.2.5), respectively;

• The presentation and integration of an algorithmic coarse-to-fine optimization strategy

(see Section 6.3.2).
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6.4 Active Tessellations

In this section, we address8 the segmentation of the cell aggregates that appear in images of

several biological specimen such as C. elegans embryo or cornea endothelium (Figures 6.32

and 6.38). This task is challenging because of the proximity of the cells and the presence of

gaps in the membranes.

Over the past decade, automated methods were proposed for the segmentation of cell mem-

branes, including intensity thresholding, morphological operations, Voronoi-based meth-

ods [180], labeling procedures [181], or watershed transform [28–32]. Those methods have

three main limitations. First, they suffer from leakage in case of dimmed membranes. Second,

they are sensitive to noise and might result in over-segmentation. Third, it is not easy to intro-

duce prior knowledge to improve the accuracy of the segmentation [182]. Recent approaches

are based on the detection of membrane patterns coupled with graph-cut [183], or on deep

learning [184]. If these methods are better suited for incorporating prior knowledge, they do

not allow for easy and user-friendly interaction. Moreover, they may provide non-continuous

cell boundaries, which complicates the extraction of quantitative measurements. Topology

adaptive methods, such as level sets or T-snakes [60, 185], are not required in this context as

the topological structure of the cell aggregate is generally known.

As it was exposed in Chapter 2, parametric snakes are built to ensure continuity and smooth-

ness, which prevents leakage, and they are encoded by only a few control points, which results

in fast optimization and provides robustness to noise. Moreover, the underlying shape has a

continuous representation in terms of basis functions, which facilitates the incorporation of

prior knowledge. However, parametric snakes are not well suited to segment objects that are

close to each other: They might yield overlapping segmentations (Figure 6.32 (c)) as the snakes

are optimized independently. In the literature, only few works regarding active contours ad-

dress the segmentation of touching objects. An extension of traditional parametric snakes to

track non-occluding objects that transiently touch each other is presented in [42, 186]. These

methods could only segment cell aggregates with thick membranes or non-touching cells.

Networks of active contours were introduced in [187] and [188]. However, they involve many

parameters (nodal points).

In this section, we propose a new active contour with a geometric representation that keeps

the advantages of parametric snakes while addressing globally the segmentation problem of

cell aggregates. The model consists in a smooth tessellation, so-called active tessellation, that

is globally deformed towards the cell membranes through the minimization of a suitable ridge-

based energy. The smooth tessellation is encoded by a set of control points and generated

through a subdivision scheme. By construction, the segmented tiles are non-overlapping

and the tessellation structure bridges membrane gaps. After optimization, each cell of the

8This section is based on our publication [73], in collaboration with D. Sage, A. Galan and M. Unser. A demo
of the corresponding plugin and related documentation are available at http://bigwww.epfl.ch/demo/active-
tessellation/.
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(a) Seed points. (b) Watershed.

(c) Five classical snakes. (d) Active tessellation.

Figure 6.32 – Segmentation of a C. elegans embryo; Source: R. Jankele and P. Gönczy, EPFL. (a)
Seed points used for the initialization of each method; (b) watershed method; (c) five classical
snakes [64]; (d) active tessellation.

aggregate can be individually extracted to compute statistical descriptors. We illustrate the

benefits of the proposed active tessellation on real biological applications in the context of

semi-interactive segmentation.

6.4.1 Framework

Our active contour model is a smooth tessellation, as described in Figure 6.33 (e). Its shape is

parametrized by control points that are grouped in tiles (Figure 6.33 (b)). Each tile is associated

with a closed curve that specifies its smooth boundary (Figure 6.33 (c)). This smooth curve is

generated from the control points via a subdivision scheme. The smooth tessellation is the

union of the closed curve of each tile. As two control points that belong to two adjacent tiles

are connected by two continuous edges (Figure 6.33 (d)), we keep only the edge of the largest

tile (Figure 6.33 (e)). The remaining edges are then optimized by fitting them to the image data

via energy optimization using the ridge energy presented in Section 5.3.

A Tiling Made of Closed Subdivision Curves

We use the subdivision process presented in Chapter 4 to generate the closed curve of each tile.

In the present case, p(0) is the M-periodic sequence that contains the control points of a tile.

We apply the recursive refinement (4.2.3) to obtain the (2k M)-periodic sequence of subdivision

points p(k), such that the contour points are sufficiently dense. For the subdivision mask h we

use the convergent Deslauriers-Dubuc subdivision scheme defined by (4.3.5) which generates

C1-continuous functions and reproduces polynomials up to degree 3. We choose this scheme

as it has the advantages to be interpolating, which facilitates the editing of the curve, and

affine invariant. Moreover, it ensures smoothness as it produces C 1-continuous curve. In

Figure 6.34, we illustrate the generation of a tile using the interpolating Delauriers-Dubuc

subdivision scheme.

105



Chapter 6. Design of Active Contours

(a)
(b)

(c)

(d)

(e)

Figure 6.33 – Construction of the smooth tessellation. Given seed points (a), we first generate
control points (blue crosses) grouped in tiles (b). Then, we specify the smooth boundary of
each tile with a continuous closed curve by applying a subdivision scheme to its control points
(c). Finally, we keep one of the common edges (d) to obtain the final smooth tessellation (e).

(a) p0. (b) Subdivision steps. (c) p6(p0).

Figure 6.34 – Interpolating Deslauriers-Dubuc subdivision scheme. (a) Control points p0;
(b) subdivision steps that converge to the continuous curve (c) which is encoded by the five
control points p0 (blue crosses).

An Oriented Ridge-based Energy

To attract the smooth tessellation towards the cell membranes, we use the discrete formulation

of the oriented ridge-based energy (5.3.4), that is Esnake = EridgeSD. LetΘ be the control points

of the active tessellation. They generate a set of N points ptess := ptess(Θ) that delineates the

smooth tessellation. Then, the ridge-based energy (5.3.4) can be re-expressed as

EridgeSD(ptess(Θ)) =− 1

N

N−1∑
m=0

ξ(ptess[m])

∣∣〈vmin(ptess[m]),n(ptess[m])
〉∣∣∥∥vmin(ptess[m])

∥∥ , (6.4.1)

where n(ptess[m]), ξ(ptess[m]) and vmin(ptess[m]) are the approximation of the unit normal

vector defined by (5.1.5), the ridge strength and the eigenvector of the Hessian matrix of the

image, respectively, at the mth point of the tessellation. This energy is minimal when the

active tessellation lies on the ridge.
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6.4.2 Implementation Details

We initialize the active tessellation as follows: We construct a Voronoi diagram around seed

points and then apply a mask to shrink the Voronoi tiles in the neighborhood of the cell

aggregate. This mask is obtained by constructing the convex hull of the seed points. The

vertices of the resulting tiles are the control pointsΘ of the active tessellation. Note that the

seed points are manually specified through the interface or automatically detected from a

provided image of the cells’ nuclei.

We follow a coarse-to-fine optimization strategy. We first optimize the active tessellation made

of the few control points of the Voronoi tiling. We obtain a rough segmentation that is less

likely to be stuck in local minima. We then double the number of control points to increase

the flexibility of the active tessellation and we optimize it once again. This strategy makes our

active contour less sensitive to initialization.

6.4.3 Experiments and validation

We perform three experiments to evaluate the performance of our active tessellation. We first

investigate its robustness with respect to noise and dim membranes on synthetic data. Then,

we illustrate applications on real data.

Synthetic Data

We compare our approach in term of accuracy against the watershed method [189] imple-

mented by I. Arganda-Carreras and D. Legland for the bioimage platform Fiji9. In the experi-

ments, we compute the Jaccard index for each cell and take the average. It is this average value

that we refer to as Jaccard index in the next sections.

We created a test image that simulates the fluorescence microscopy of a C. elegans embryo

with 5 cells (Figure 6.35 (a)). We use the same seed points to initialize the two methods. The

initial configuration of the active tessellation is illustrated in Figure 6.35 (a). Its initial similarity

with the ground truth corresponds to J = 0.64.

Robustness with Respect to Noise: We corrupted the test image by different levels of additive

Gaussian noise (20 realizations per level of noise, Figure 6.35 (d)). The SNR correspond-

ing to a given noise level and Jaccard index were computed. The SNR that we use is the

ratio of the mean value of the signal and the standard deviation of the noise. The results

are given in Figure 6.36 and illustrated in Figures 6.35 (e) and (f). We observe that the

active tessellation is robust with respect to noise since it is able to give a proper seg-

mentation outcome even for low SNRs. On the contrary, the accuracy of the watershed

method degrades significantly for a SNR below 2.4.

9The source code is available at https://imagej.net/Classic_Watershed.
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(a) Test image. (b) Active tessellation, J = 0.98. (c) Watershed, J = 1.0.

(d) Noisy image. (e) Active tessellation, J = 0.90. (f) Watershed, J = 0.46.

(g) Image with dimmed mem-
branes.

(h) Active tessellation, J = 0.94. (i) Watershed, J = 0.44.

Figure 6.35 – Segmentation outcomes. (a)-(c) Test images. (a) Initial configuration of the
active tessellation; (d)-(f) noisy data with SNR= 0.81; (g)-(i) image with 23.95% of membrane
information loss.

Figure 6.36 – Segmentation of noisy data. Evolution of the Jaccard index as a function of the
SNR. Filled area: standard deviation across the 20 realizations.
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Figure 6.37 – Evolution of the Jaccard index as a function of the dimming percentage.

Robustness with Respect to Dim Membranes: We progressively dimmed the fluorescence sig-

nal on the membranes of the test image (Figure 6.35 (g)). We computed the Jaccard index

as a function of the information-loss percentage. This dimming percentage corresponds

to the ratio of the mean intensity on the membrane of the test image over the one of

the corrupted image. The resulting plot is given in Figure 6.37 and we illustrate results

in Figures 6.35 (h) and (i). The active tessellation accurately segments the cells until

49% of information loss while the watershed method can tolerate no more than 15%

of information loss, then it quickly decreases. As this model is only based on intensity,

it leaks through dim membranes. Due to the structure and smoothness of the active

tessellation, the proposed framework does not suffer from leakage.

Real Data

We applied our active tessellation on real biomedical images. These images are challenging

because of the presence of noise and gaps in the membranes. For each segmentation, the

initial configuration of the active tessellation has 2.6 control points per cell in average. We

compute the Jaccard index of each outcome considering a manual segmentation as ground

truth. The results obtained are satisfactory in most cases (Figures 6.32 and 6.38).

6.4.4 Conclusions

We have presented a new subdivision-based active contour for the segmentation of cell

aggregates. We have modeled the active contour by a smooth tessellation and used the

oriented-ridge-based energy term designed in Section 5.3 to efficiently attract the curve

toward the membranes. The tessellation structure prevents from overlapping segmentation of

the cells and from leakage issues. Moreover, each cell of the segmentation outcome can be
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(a) J = 0.86. (b) J = 0.95.

Figure 6.38 – Cell segmentation of (a) cornea endothelium; (b) C. elegans embryo a in light-
sheet fluorescence-microscopy image. Source: R. Jankele and P. Gönczy, EPFL.

easily extracted as a continuous closed curve making possible the computation of cell metrics.

We have demonstrated the robustness of our method under noisy conditions and to dim

membranes. We have also illustrated its behavior on real bioimages. The main contributions

related to this work are:

• The construction of a smooth tessellation to describe an active contour;

• The derivation of an oriented ridge-based energy functional (see (5.3.3) and (5.3.4));

• The implementation of the whole framework.
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7 Active Subdivision Surfaces

In this chapter, we extend the 2D multiresolution subdivision snake exposed in Section 6.3 to

its 3D counterpart for the extraction of volumetric structures.

Subdivision is widely used in computer graphics for representation and modeling [107, 108].

As it was motivated in Chapter 4, this geometric representation combines the advantages

of parametric and mesh-based approaches: The continuously defined limit surface is fully

driven by the initial coarse mesh which consists of only few parameters.

The use of subdivision to construct segmentation models was pioneered in 2D by [171]

for the DLG-scheme [172]. We then presented a generic framework that is valid for any

convergent subdivision schemes in [70]. The extension to 3D models is more challenging.

From a computational point of view, the geometry of the surface and the mesh connectivity

increase the complexity of the implementation. Shapes are encoded with more control points,

with three degrees of freedom for each one, which renders the optimization more complicated

and slower. Moreover, it might be necessary to maintain evenly spaced control points to favor

a representative sampling of the surface. In the literature, only few works used subdivision

to segment volumes. The authors of [170] presented the modelization of left ventricles using

Doo-Sabin surfaces [132], while the segmentation of branch vessel structures was performed

in [190] using Loop’s subdivision scheme [110].

In this chapter, we present1 the generic construction of active subdivision surfaces in the

context of any subdivision scheme that operates on triangular meshes. The main contribu-

tions related to this work are 1) a new 3D geometrical representation based on subdivision.

The subdivision operator confers important properties to the surface such as smoothness,

reproduction of desirable shapes and interpolation; 2) the derivation of region- and gradient-

based energy functions that are guaranteed to have the proper limit proposed in [52]; 3) the

presentation and integration of an algorithmic coarse-to-fine optimization strategy. This

speeds up the computations and increases the robustness. We have implemented the method

1This section is based on our work [72], in collaboration with L. Romani and M. Unser. A demo of the corre-
sponding plugin and related documentation are available at http://bigwww.epfl.ch/demo/subdivision-surfaces/.
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as a user-friendly open-source plugin2 for the bioimaging platform Icy [11].

Throughout this chapter we use the notations described in Section 4.6. Moreover, we consider

orientable closed surfaces, i.e., compact and without boundary, since we want our active

surface to segment blob-like objects within 3D images.

The chapter is organized as follows: In Section 7.1, we describe the generic construction of

active subdivision surfaces on triangular meshes. Then, in Section 7.2, we provide a coarse-

to-fine optimization strategy. In Section 7.3, we perform an extensive validation of active

subdivision surfaces on both synthetic and real biological images. In particular, we show that

the scheme is robust in the presence of noise and with respect to the initialization. Finally,

conclusions are drawn in Section 7.4.

7.1 Framework

We implicitly represent the surface of the deformable model by the continuously defined,

orientable, closed limit surface σ of a convergent subdivision scheme

σ= lim
k→∞

M(k), (7.1.1)

where M(k) is the triangular mesh at the k-th subdivision step obtained by (4.6.2). Its shape

is encoded by the M = N0 control points Θ = P(0) =
{

p(0)[m]
}

m∈{0,...,M−1}. The number M

of control points determines the number of degrees of freedom of the model. A small M

leads to simple and constrained shapes, while an increase in M brings additional flexibility to

approximate arbitrary surfaces. This representation implies that the properties of the active

surface depend on the choice of the subdivision scheme (see Section 4.6.3). A mandatory

requirement is affine invariance. Moreover, the quality of the segmentation outcome can

be influenced as follows: first, the regularity of the surface defines the smoothness of the

segmentation result; second, the geometric reproduction properties have to match the shape

of interest.

We reduce the energy of the active subdivision surface to an image energy term (see Sec-

tion 1.2.2). The smoothness of the surface is ensured by choosing a subdivision scheme

that produces at least C1 surfaces. We use a combination of the gradient- and region-based

terms (5.1.8) and (5.2.9) such as

Esnake(P(k)(Θ)) = bEgradSD(P(k)(Θ))+ (1−b)EintensitySD(P(k)(Θ)), (7.1.2)

whereP(k) :=P(k)(Θ), given by (4.6.2), describes the surface and b ∈ [0,1] is a tradeoff parameter

that balances the contribution of the two energies.

2See footnote 1.
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7.2. A Coarse-to-Fine Optimization Strategy

7.2 A Coarse-to-Fine Optimization Strategy

In Section 6.3, we have shown the advantage of a multiresolution strategy, for 2D subdivision

models, to accelerate the segmentation and to make it more robust to the initialization. The

use of such algorithms is even more relevant in 3D as the optimization is more difficult. There,

we propose an integrated coarse-to-fine-optimization strategy that combines the refinement

of 1) the mesh resolution, to make the computation faster and less sensitive to the initialization;

2) the number of control points, to maintain a favorable sampling of the mesh throughout the

process.

Coarse-to-Fine Mesh Resolution: The energy terms (5.1.8) and (5.2.9) depend on the subdivi-

sion pointsP(k), which is the source of the main computational bottleneck. The accuracy

of the energy and, therefore, of the segmentation, increases with the resolution of the

mesh. However, it also considerably slows down the computation. Moreover, active

surfaces tend to be sensitive to the initialization, especially when using gradient-based

energy. To address those issues, we optimize the active surface in a coarse-to-fine fash-

ion that is inherent to the iterative process of subdivisions. Our algorithm exploits the

following properties: 1) a smoothed volume contains fewer details and less noise than

the original one; 2) the resolution of the mesh (i.e., the number of subdivision points)

can be adapted to the resolution of the object to be segmented (i.e., the level of detail in

the volume).

Algorithm: We apply K successive lowpass filters Gk to the original volume f to obtain

K smoothed volumes fk , with the width of Gk being higher than that of Gk+1. The active

subdivision surface is first optimized on the coarsest volume f1, where the object of

interest only contains few details. The initial mesh on f1 can be coarse as well since the

shape of the underlying object tends to get simplified. The optimization on f1 is fast and

the outcome is then used as initialization at the next resolution level on f2. We refine

the mesh and optimize it on f2. The process continues until the optimization reaches

the finest resolution level that corresponds to the original volume f .

Coarse-to-Fine Density of the Control Points: The segmentation of intricate shapes requires a

large number M of control points in order to catch all the details. However, the segmen-

tation becomes less robust when M increases as the optimization iterative process is

more likely to be stuck in local minima. Moreover, the deformation of the surface can

lead to an undesirable distribution of the control points along the surface, which results

in an unfavorable sampling of the mesh. To avoid it during the optimization, we start

with few control points and then progressively increase M . This is made possible by the

fact that the mesh M(k) is entirely defined by any coarser mesh M(q), 0 ≤ q ≤ k −1. In

this way, our initial segmentation is rough at first, with a poor flexibility of the active

subdivision surface. The upside is a good distribution of the control points and, thus,

of the subdivision points over the surface. We then progressively refine local details by

increasing M . The final number of control points depends on the intricacy of the shape

to be segmented.
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ALGORITHM 7.1 – Coarse-to-fine optimization strategy.

Input: original volume f , initial control points P(0), level k f for
the final control points P(k f )

Initialization: P(1) = S0P(0) (low-resolution mesh)
C=P(0) (set containing the control points)
k0 = 0 (current level of the control points)

For K iterations over k ≥ k0 +1:

compute: fk = f ∗Gk

optimize: Copt = argmin
Copt

Esnake( fk ,P(k)(Copt))

P(k)opt = Sk−1Sk−2 · · ·Sk0Copt

refine the resolution of the mesh: P(k+1) = SkP(k)opt

refine the density of the control points:

If (k0 < k f ) Copt = Sk0Copt and k0 ← k0 +1

Until: high-resolution segmentation on the original volume f

The pseudo-code in Algorithm 7.1 describes the entire coarse-to-fine optimization strategy. It

combines the refinement of the resolution of the mesh with that of the density of the control

points. In this code, the set C contains the control points. Note that they change after each

round of optimization. We thus denote by Copt the set of the optimized control points. From

now on, we denote by Esnake( f ,P(k)(Θ)) the energy of the active surface as it also depends on

the volume image on which it is optimized. The volumes fk and their pre-integrated versions

are precomputed, which accelerates the segmentation process.

7.3 Experiments and Validation

We proceed in four steps to evaluate the performance of the proposed active subdivision

surface. We first test its robustness to noise and, in a second step, its sensitivity to the initializa-

tion. Then, we investigate its accuracy in the context of the segmentation of an intricate shape,

when a lot of flexibility is required from the active surface. Finally, we illustrate applications

on real biomedical data where the ground truth is not available.

For each experiment, we use Loop’s scheme, presented in Section 4.6.4, to represent our active

subdivision surface. We carry out the optimization by a Powell-like line-search method [61].

The experiments are performed on a 1.7 GHZ processor with 8 GB RAM.

We use the Jaccard index J to measure the overlap between a segmentation result V and the
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Figure 7.1 – Initialization on the volumetric image, J = 0.39.

corresponding ground truth VGT. It is defined as

0 ≤ J = |V ∩VGT|
|V ∪VGT|

≤ 1. (7.3.1)

7.3.1 Robustness to Noise

We investigate the robustness to noise of the active subdivision surface as a function of the

number M of control points. The test images consist in a binary sphere of radius 40 voxel units

on a 3D array of size (256×256×256) voxels. We corrupted the test image by six levels of additive

white Gaussian noise (50 realizations per level of noise). We initialized the active subdivision

surface with the roughly spherical surface described by the high-resolution mesh M(4) given

in Figure 4.5 (e). Its overlap with the ground truth corresponds to J = 0.39 (Figure 7.1). We ran

the optimization process for 3,500 iterations using only the region-based energy EintensitySD,

i.e., we choose b = 0 in (7.1.2), and the coarse-to-fine strategy described in Section 7.2. The

signal-to-noise ratio corresponding to a given noise level and the median Jaccard index were

computed. The SNR that we use is the ratio of the mean value of the signal and the standard

deviation of the noise. The results are summarized in Table 7.2, where M is the final number

of control points. We observe that the active subdivision surface is robust to noise since it is

able to segment satisfactorily, even for low SNRs. This can be explained by the fact that the

region energy EintensitySD, given by (5.2.9), estimates the mean intensity over regions, while

Gaussian noise has zero mean.

7.3.2 Robustness to the Initialization

To study the sensitivity of the active subdivision surface to its initialization, we compared our

model in terms of accuracy and speed against other segmentation methods such as the active

parametric surface described in [52] and the 3D active mesh of [43]. The implementation of

the two methods was taken from the package Icy [11].

The test image is the binary sphere of Section 7.3.1. For each method, the initialization is

(essentially) a sphere of radius r voxel units centered in the image. The goal is to segment the

115



Chapter 7. Active Subdivision Surfaces

TABLE 7.2 – Jaccard Indices for the Segmentation of Noisy Data.
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TABLE 7.3 – Parameters of the Coarse-to-Fine Optimization Strategy.

Iteration Control Points Mesh Filter Size γ

1 P(0) 6 pts M(2) 66 pts 7
2 P(1) 18 pts M(3) 258 pts 2
3 P(1) 18 pts M(4) 1026 pts none

binary sphere from several initializations by varying the value of r .

We initialized our active subdivision surface with the low-resolution mesh M(2) illustrated

in Figure 4.5 (c), the control points being the 6 vertices that make up the octahedron (see

Figure 4.5 (a)). We optimized the model using the gradient-based energy EgradSD, i.e., we

choose b = 1 in (7.1.2), and the coarse-to-fine strategy with the parameters given in Table 7.3.

In this table, γ denotes the standard deviation of a Gaussian filter. For the active mesh, we

set the mesh resolution to 12, the time-evolution step to 0.1, the window size to 100, the

contour smoothness to 0.04, and we evolved the mesh using a gradient-based energy with

weight (−0.1). For the active parametric surface, we set the number of control points to 12 as

it favors ellipsoid-like shapes during the segmentation process. We deformed the parametric

surface using Egrad, given by (2.2.3). For this method only, we ran the optimization on both the

original image and on a smoothed version of the image filtered with a Gaussian kernel with

γ= 7. We computed the Jaccard index of the segmentation outcome over all initializations

and methods. The results as well as the segmentation time (without preprocessing) are given

in Table 7.4. In this table,“failed" means that the active mesh did not detect the sphere and

vanished, or that the parametric surface self-intersected. Active subdivision surfaces and

active parametric surfaces have a similar performance in terms of accuracy and speed as soon

as the initialization is close enough to the object to segment. Otherwise, the basin of attraction

of the active parametric surface is too narrow for the gradient-based energy. We observe that

the standard deviation γ= 7 is large enough to attract the active parametric surface for almost

every initial configuration. However, in each case the segmentation is less accurate as the

boundary of the sphere to segment is smoothed. The active mesh performs well, provided that

the initialization includes the sphere to segment. Otherwise, it systematically fails. The active

subdivision surface led to accurate segmentation even for initializations far from the object

to segment. This result is explained by the use of the coarse-to-fine optimization strategy

since the model is initialized on the coarsest image with reduced details and a large basin of

attraction. In addition, the proposed method is also the fastest.

7.3.3 Segmentation Accuracy

In this section, we generated a binary synthetic blebbing cell [191] located at the center of a

volumetric image of size (256×256×256) voxels (Figure 7.2 (a)). The presence of blebs on the
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TABLE 7.4 – Accuracy and Efficiency with Respect to the Initialization.
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TABLE 7.5 – Parameters of the coarse-to-fine optimization strategy.

Iteration Control Points Mesh Filter Size γ

1 P(0) 6 pts M(2) 66 pts 10
2 P(1) 18 pts M(3) 258 pts 5
3 P(2) 66 pts M(4) 1026 pts 2.5
4 P(3) 258 pts M(5) 4098 pts none

surface of the cell makes the segmentation challenging and requires a lot of flexibility from

the segmentation model. We then compared our proposed method in terms of accuracy to

the two segmentation methods mentioned in Section 7.3.2.

For each method, the initialization is (essentially) a centered sphere of radius 50 voxel units.

Its overlap with the blebbing cell corresponds to J = 0.56. We initialized the active subdivision

surface with the low-resolution mesh M(2) illustrated in Figure 4.5 (c), encoded by the 6

control points that form the octahedron of Figure 4.5 (a). For the energy Esnake, we set the

tradeoff parameter to b = 0.8 in (7.1.2). We evolved the active subdivision surface using the

coarse-to-fine optimization strategy with the parameters given in Table 7.5. For the active

mesh, we set the mesh resolution to 5, the time-evolution step to 0.1, the window size to 100,

the contour smoothness to 0.05, and we optimized the mesh using a region-based energy with

weight 1. For the active parametric surface, we used a mix of the gradient-based energy Egrad

and the region-based energy Eintensity, given by (2.2.3) and (2.2.7), respectively, with a tradeoff

parameter equal to 0.8.

For this last segmentation method, we repeated the experiment for different numbers of

control points. They are listed in Table 7.6, where we also show a comparison of the final

Jaccard index3. 3D views as well as 2D orthogonal views of the segmentation outcomes are

illustrated in Figures 7.2 and 7.3, respectively. We observe that both our proposed method and

the active mesh accurately segment the blebbing cell and give smooth meshes (Figure 7.2 (b)

and (c)). The active mesh tends to extend outside of the boundary of the object compared to

the active subdivision surface (Figure 7.3, YZ plane). However, it segments better two close

blebs (Figure 7.3, XZ plane). Clearly, the active parametric surface has the worst performance.

The segmentation with 12 control points leads to a very smooth surface. However, only the

main sphere of the blebbing sphere is segmented, as the flexibility afforded by 12 control

points is low. With the additional flexibility afforded by 36 control points it is able to segment

some blebs. However, irregularities in the surface start to appear. When we further increase the

flexibility of the active parametric surface, the distribution of the control points misbehaves;

moreover, irregularities and twists of the surface grow too large.

3The ideal segmentation of just the main sphere of the blebbing cell would correspond to J = 0.88.
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Chapter 7. Active Subdivision Surfaces

(a) Ground truth. Blue lines: planes used for the 2D views of Figure 7.3.

(b) Active subdivision surface. (c) Active mesh. (d) Active parametric surface
(12 control points).

(e) Active parametric surface
(36 control points).

(f) Active parametric surface (62
control points).

(g) Active parametric surface (96
control points).

Figure 7.2 – 3D views of the segmentation outcomes.

Plane
Active subdivision

surface
Active mesh

Active parametric surface
(36 control points)

XY

XZ

YZ

Figure 7.3 – 2D orthogonal views of the segmentation outcomes.
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TABLE 7.6 – Jaccard Indices for the Segmentation of a Blebbing Cell.

Method J

Active Subdivision Surface 0.98
Active Mesh 0.96

Active Parametric Surface (12 control points) 0.87
Active Parametric Surface (36 control points) 0.93
Active Parametric Surface (62 control points) 0.87

Active Parametric Surface (96 control points) 0.69

(a) Initialization. (b) Intermediate stage. (c) Outcome.

Figure 7.4 – Segmentation of the nucleus of the neuron of a rat in a 3D microscopic volume.
Dots: control points.

7.3.4 Segmentation on Real Biomedical Images

We illustrate the behavior of the proposed active subdivision surface on two real biomedical

images, with unknown ground truth. We rely on qualitative assessments to validate the

accuracy of the segmentation. The volumetric data of Figure 7.4 represent the optical density

of the neuron of a rat in a 3D microscopic image [1]. The volumetric data of Figure 7.5

results from the MRI acquisition of a human brain, with the purpose of measuring its total

intracranial volume (TIV). TIV is used in medicine to detect temporal morphological changes

related to neurological diseases [4]. However, its segmentation is challenging because of the

numerous irregularities that compose the brain, such as the convoluted areas formed around

the temporal lobe and the cerebellum. The qualitative assessment of our segmentations yields

satisfactory results.
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(a) Initialization. (b) Intermediate stages. (c) Outcome.

Figure 7.5 – TIV segmentation of a 3D MRI scan. Dots: control points.

7.4 Conclusions

We have presented the 3D generic construction of a new family of active surfaces on triangular

meshes. The deformable model is characterized by few control points and a natural discrete

implementation. It can approximate closed surfaces with arbitrary precision by iteratively

refining a set of 3D control points. We have also proposed an integrated coarse-to-fine

optimization strategy to adapt the resolution of the mesh to the level of detail in the volume. It

results in speed-up of the optimization and better robustness. Moreover, this multiresolution

strategy allows us to maintain a favorable sampling of the mesh by gradually increasing the

flexibility of the model during the optimization. We have applied our proposed method to a

variety of problems that involve synthetic data and real biomedical images. We have compared

our framework with two segmentation methods and shown that our model is robust with

respect to noise and initial conditions. The primary contributions related to this work are:

• A new geometrical representation based on subdivision;

• The design of the gradient-based energy (5.1.8) as well as the robust region-based energy

term (5.2.9);

• The presentation and integration of an algorithmic coarse-to-fine optimization strategy

(see Section 7.2).
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8 Conclusion

We end this thesis with a concluding chapter. We first recap the novel scientific contributions

and results. Then, we briefly comment on further directions of research.

8.1 Contributions

We focused on the problem of segmentation in the context of biomedical image analysis. We

identified limitations of parametric snakes and addressed them providing new representation

models as well as novel energies. With these two ingredients in hand, we constructed new

active contours and surfaces. In the following, we summarize our contributions grouped by

field.

Representation

• Locally refinable parametrization: We presented a new parametrization for curves and

tensor-product surfaces where the number of control points can be locally increased

without altering the shape. In a segmentation context, these additional control points

then allow to locally deform the shape with better accuracy.

• Subdivision-based representation: We introduced subdivision schemes, traditionally

used in computer graphics, into a segmentation framework by describing a snake as

a subdivision curve/surface. The main benefits of this representation is it simplicity

of implementation and its multiresolution property, which allows for the contour of a

shape to be represented at varying resolutions.

Image Energy

• Edge- and region-based energies: We adapted standard edge- and region-based energies

to our locally refinable parametric closed curves. In addition, we provided discrete edge-

and region-based energies tailored for the subdivision-based representation.
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• Ridge-based energy: As edge-based energies do not perform well on ridge areas, we

proposed an oriented ridge-based energy. We provided the continuous and discrete

formulations.

• Texture-based energy: We proposed a novel energy that combines image intensity and

texture information. The two types of image information are balanced using Fisher’s

linear discriminant analysis and the framework can be used with any filter-based texture

features. We provided the continuous and discrete formulations. This energy was moti-

vated by the inefficiency of standard edge- and region-based energies to discriminate a

target from its background in images with a low contrast between the two.

Optimization

• Subdivide and conquer strategy: We presented and integrated to our snakes an algorith-

mic coarse-to-fine optimization strategy. First, we successively apply lowpass filters to

the original image to obtain several smoothed images. We initialize the snake on the

coarsest image and adapt its resolution to the scale of the target feature (i.e., subdivide).

Then, we perform a first optimization on this image that is fast, and we use the outcome

as initialization at the next resolution level. We successively increase the resolution of

the snake and the image until the optimization reaches the finest resolution level that

corresponds to the original image (i.e., conquer). This subdivide and conquer strategy

was tailored for our representations that satisfy the multiresolution property. It improves

the robustness in the presence of noise and enlarges the basin of attraction of our snakes

compared to traditional parametric snakes.

Bioimaging Software for Segmentation

With the previous contributions in hand, we designed new active contours/surfaces that

are generic enough to be applied in a wide range of applications. We implemented the

corresponding framework as bioimaging software for segmentation.

• 2D locally refinable snakes: We presented new parametric snakes that are locally refin-

able. We exploited our parametrization for locally refinable closed curves, as well as our

corresponding edge- and region-based energies. Our method is generic and can be used

with any valid scaling function. Locally refinable snakes segment intricate shapes with

better accuracy using fewer control points than classical parametric snakes.

• 2D/3D subdivision snakes: We proposed a generic framework to construct subdivision

snakes. We exploited subdivision schemes to represent the snakes, and as energy terms

we used our discrete formulations of the edge- and region-based energies. These snakes

satisfy the property of multiresolution, which allowed us to well adopt the subdivide

and conquer strategy. In addition, they are robust in the presence of noise and have a

enlarged basin of attraction compared to classical parametric snakes.
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• 2D active tessellations: We presented a new active contour to segment cell aggregates.

We described the snake by a smooth tessellation built from subdivision schemes, and we

deformed it in a global manner using our oriented ridge-based energy. By construction,

cells are segmented without overlap and the tessellation structure is maintained even

on dim membranes. Leakage, which afflicts usual image-processing methods, is thus

prevented. In addition, the proposed method is robust to membrane gaps and to high

levels of noise.

• 2D texture-driven parametric snakes: We proposed new parametric snakes that are

efficient to segment structures with a similar intensity distribution as their background.

We represented the snake with a classical parametric closed curve and used our texture-

based energy. This framework is interactive and is trained on-the-fly from small collec-

tions of pixels provided by the user. These snakes are robust to noise and improve the

segmentation performance when compared to classical parametric snakes that rely on

intensity information only.

Mathematical Tool for Signal Processing

• Inner-product calculus: We introduced an inner-product calculus to evaluate corre-

lations and L2 distances between closed curves represented by basis functions. In

particular, we presented formulas for the direct and exact evaluation of correlation

matrices in the case of closed (i.e., periodic) parametric curves and periodic signals.

Our first motivation for this work was to provide an efficient way to compute the exact

calculation of the area enclosed by parametric snakes.

• Stochastic model of closed curves: We presented two approaches for the reconstruction

of periodic continuous-domain signals, that are the coordinate functions of a closed

curve, from their noisy measurements. We focused on two reconstruction paradigms:

variational and statistical. We showed that the two approaches are connected, and that

for each one the optimal solution is a periodic spline related to a differential operator.

8.2 Research Outlook

The research presented in this thesis opens several interesting avenues for future investigation.

Some of them are listed below.

• Extend the texture-driven parametric snake for the segmentation of 3D and multi-modal

data: A combination of medical image modalities (e.g. MRI, CT with various contrasts)

can provide complementary information about the texture of a specific tissue (e.g. organ,

tumor). Hence, as our texture-driven parametric snake handles several channels, it

could be of interest to use images of different modalities as inputs of the framework.
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• Incorporate normal control in active subdivision surfaces: The introduction of adjustable

normals in a deformable model has several advantages: First, it provides additional

control over the shape, which facilitates the reproduction of sharp corners or circon-

volutions; second, it allows for the design of directional energy functionals. We would

like to introduce normal control in active surfaces by using normal-based subdivision

schemes for their representation. Our publication [192] is a first step in this direction.

• Further exploit subdivision schemes: Subdivision is a powerful paradigm for the genera-

tion of surfaces of arbitrary topology. In this thesis, we focused on closed subdivision

curves/surfaces of genus 0. We plan to account for other kinds of topological properties.

For instance, to segment cell aggregates, we could use a subdivision scheme to generate

a smooth tessellation composed of several tiles, instead of generating each tile indepen-

dently, as our active tessellation does. This method would be more elegant, simpler to

implement and much easier to extend to 3D.

• Incorporate deep neural networks into deformable models: A snake energy is usually

tailored to detect specific features in images. This approach has some limitations. If the

features of the object to segment are also present in an object of the image background,

the segmentation will fail as too many features would be detected. In this context, we

could use the potential of neural networks. It is possible to train an appropriate deep

neural network to detect exclusively the desired edges or features of the object of interest.

Then, we could directly use our energies with the output of the network.
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A An Inner-Product Calculus for Peri-
odic Functions and Curves

In this chapter, our motivation1 is the design of efficient algorithms to process closed curves

represented by basis functions or wavelets. To that end, we introduce an inner-product

calculus to evaluate correlations and L2 distances between such curves. In particular, we

present formulas for the direct and exact evaluation of correlation matrices in the case of

closed (i.e., periodic) parametric curves and periodic signals. We give simplifications for

practical cases that involve B-splines. To illustrate this approach, we also propose a least-

squares approximation scheme that is able to resample curves while minimizing aliasing

artifacts. Another application is the exact calculation of the enclosed area (see (2.2.6)).

A.1 Introduction

A.1.1 Notations

We consider parametric closed curves as given by (2.1.4), that we briefly recall as

r(t ) =
(

r1(t )

r2(t )

)
=

M−1∑
m=0

c[m]ϕM (M t −m), (A.1.1)

where t ∈ [0,1]. To a closed curve ri is assigned the couple (ϕi , Mi ), where ϕi is the basis

function and Mi is the associated number of control points. We express the corresponding

Mi -periodized basis function by

ϕi ,Mi (t ) = ∑
n∈Z

ϕi (t −nMi ). (A.1.2)

1This work is based on our publication [75], in collaboration with D. Schmitter and M. Unser.
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We define the vectorϕi , of size Mi , that contains the basis {ϕi ,Mi (Mi ·−m)}m∈{0,...,Mi−1}, as

ϕi (t ) =


ϕi ,Mi (Mi t )

...

ϕi ,Mi (Mi t −Mi +1)

 . (A.1.3)

The condensed notation

ri (t ) = CT
i ϕi (t ) (A.1.4)

is equivalent to (A.1.1). There, Ci is the (Mi ×2) matrix defined as

Ci =


ci ,1[0] ci ,2[0]

...
...

ci ,1[Mi −1] ci ,2[Mi −1]

 . (A.1.5)

In the case of 1D signals, the matrix Ci collapses to a vector.

A.1.2 Inner Products

The exact computation of inner products is a frequent operation in signal and image pro-

cessing such as for the evaluation of L2 distances, orthogonal projections or similarity mea-

surements. Thus, our interest here is in the efficient calculation of the L2-distance between

two curves that may be parametrized with a different number of control points [99, 193]. We

express the L2-inner product between the two closed curves r1,r2 ∈ L2([0,1]) as

〈r1,r2〉L2([0,1]) =
∫ 1

0
rT1 (t )r2(t )dt

= tr
(
CT

1

(∫ 1

0
ϕ1(t )⊗ϕ2(t )dt︸ ︷︷ ︸

A12

)
C2

)
, (A.1.6)

where A12 is the correlation matrix of size (M1×M2) specified as
[
A12

]
k,l =

〈[
ϕ1

]
k ,

[
ϕ2

]
l

〉
L2([0,1])

and ⊗ denotes the tensor product. To evaluate (A.1.6), the entries of the correlation matrix

require the evaluation of some integrals. We present in Section A.2 a calculus that facilitates

these computations in the continuous domain.

A.2 Inner-Product Calculus

A.2.1 General Calculation

We start by providing a general formula for precomputing the matrix A12 and then discuss a

number of situations that can be resolved analytically.
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Proposition A.2.1. Let ϕ1 and ϕ2 be two compactly supported generators with

supp{ϕ1} = [a1,b1], supp{ϕ2} = [a2,b2], M1 ≥ supp{ϕ1}, and M2 ≥ supp{ϕ2}. The entries of

the (M1 ×M2) cross-correlation matrix A12 =
∫ 1

0 ϕ1(t )⊗ϕ2(t )dt are given by

[
A12

]
k,l =

1

M1

m2∑
m=m1

a12(−τk,l ,m), (A.2.1)

where

a12(t ) =
∫
R
ϕ1(u)ϕ2(

M2

M1
(u − t ))du

=
(
ϕ1 ∗ϕ2(−M2

M1
·)
)

(t ), (A.2.2)

τk,l ,m = M1

(
m + k

M1
− l

M2

)
, m1 = dmin(p1, p2))e, m2 = bmax(1 + p1,1 + p2)c,

p1 =
(

1
M2

(a2 + l )− 1
M1

(a1 +k)
)
, and p2 =

(
1

M2
(a2 + l )− 1

M1
(b1 +k)

)
. There, b·c and d·e denote

the floor and the ceil function, respectively.

The proof of Proposition A.2.1 is given in Appendix A.5.1. In the case where the generators are

even or odd functions with respect to the same axis, Proposition A.2.1 is simplified as specified

by Corollary A.2.2.

Corollary A.2.2. Let ϕ1 and ϕ2 be two even or odd functions with respect to the same axis of

symmetry.

a) The correlation between the one-periodic functions
[
ϕ1

]
k and

[
ϕ2

]
l is

[
A12

]
k,l =

1

M1

(
a12(−τk,l )+a12(M1 −τk,l )+a12(−M1 −τk,l )

)
, (A.2.3)

where τk,l = M1( k
M1

− l
M2

).

b) If ϕ1 and ϕ2 have the same parity, then the correlation is expressed as

[
A12

]
k,l =

1

M1

(
a12(|τk,l |)+a12(|τk,l |−M1)

)
, (A.2.4)

with τk,l = M1

(
k

M1
− l

M2

)
.

Observe that, if M1 = M2, further simplifications of Proposition A.2.1 are obtained. For in-

stance, the case when ϕ1 =ϕ2 or ϕ2 = ϕ̇1 = dϕ1

dt implies that a12 = ȧ11. Also note that, due to

the periodicity of the generators and to M1 = M2, the matrix A12 is circulant and thus entirely

specified by its M1 entries {
[
A12

]
0,l }l∈{0,...,M1−1} [194]. This matrix is diagonalizable and hence,

an explicit expression for its inverse is easy to obtain.
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A.2.2 Specific Cases of a12 in Practice

(Exponential) B-splines, that we reviewed in Section 2.3.1, are basis functions that are widely

used in signal processing and have interesting mathematical properties that can be exploited to

simplify the proposed inner-product calculus. In this section, we illustrate how the expression

of a12 is simplified for specific cases that frequently appear in practice and that involve B-

splines. We use the notations and properties presented in Section 2.3.1.

Correlation Between Polynomial B-Splines

The function a12 for the case of polynomial B-splines of different orders is determined accord-

ing to Proposition A.2.3.

Proposition A.2.3. Let ϕ1 =β0L1
and ϕ2 =β0L2

. Then,

a12(t ) =
(

M2

M1

)L2−1 L1∑
l=0

L2∑
k=0

(
L1

l

)(
L2

k

)
(−1)l+k+L2ςL1+L2−1(t + kM1

M2
− l ), (A.2.5)

where ςL is the polynomial simple element of degree L defined as ςL(t ) = t L sgn(t )
2(L!) for L ∈N.

The proof is given in Appendix A.5.2.

Correlation Between Exponential B-Splines

In the case where ϕ1 = βα1 and ϕ2 = βα2 are two exponential B-splines of order L1 and L2,

respectively, and M1 = M2, we obtain

a12(t ) =
(

L2∏
n=1

eα
∗
2,n

)
βα1∪(−α∗

2 )(t +L2), (A.2.6)

where α∗ is the complex conjugate of α [81]. Equation (A.2.6) corresponds to the cross-

correlation of two exponential B-splines which yields an exponential B-spline of augmented

order. Proposition A.2.4 provides a simplified expression of (A.2.6) in the case where ϕ1 =βα
and ϕ2 = ϕ̇1.

Proposition A.2.4. Let ϕ1 =βα be an exponential B-spline of order L that contains at least one

vanishing pole (we suppose αL = 0), and ϕ2 = β̇α. Then,

a12(t ) =−
(

L−1∏
n=1

eα
∗
n

)
∆βα∪(−(α∗\{0}))(t +L−1), (A.2.7)

where ∆ f (t) = ( f (t)− f (t −1)) denotes the finite difference of f , and α \ {αn} describes a list

from which the element αn has been excluded.

The proof is given in Appendix A.5.3. Note that, the same kind of formula also applies for

fractional B-splines [195].
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A.3 Applications

A.3.1 Resampling of a Spline Curve

The general scheme to reduce the size of a polygonal or spline curve r1 is to decrease its

number M1 of control points [196]. The standard method is to simply resample the curve [78].

However, this does not take into account details localized between two samples, which alters

the accuracy of the approximation while eventually introducing aliasing artifacts [151]. We

propose a new method which consists in computing the L2 approximation r2 of the curve r1,

with M1 > M2. This is equivalent to compute argmin
C2

‖r1 − r2‖2
L2

. It is not difficult to show that

the general solution, in the context of our framework, is given by

C2 = A−1
22 A21C1, (A.3.1)

where C1 and C2 are the coefficient matrices of size (M1 ×2) and (M2 ×2), respectively. The

entries of the matrices A21 and A22, of size (M2 × M1) and (M2 × M2), respectively, can be

evaluated using Proposition A.2.1 and Proposition A.2.3.

To experimentally compare resampling and approximation, we propose to reduce the outline

r1 of the map of Switzerland defined by M1 = 930 control points interpolated with the linear

spline ϕ1 =β(0,0) (Figure A.1, black curve). We resample r1 with both the sampling and the L2

approximation methods for different values of M2 < M1 control points and in the basis of the

quadratic spline ϕ2 =β(0,0,0). We illustrate the case M2 = 40 in Figure A.1. We observe that the

resampled curves act as smoothed versions of r1 with less details and increased regularity. We

compute their approximation error for each value of M2 . In Figure A.2, it is seen that the best

approximation of the reduced version of the map, without aliasing artifacts, is obtained with

our proposed method (Figure A.1, green curve).

A.3.2 Area Enclosed by a Parametric Curve

In this section, we consider a non-intersecting curve r1 and its derivative ṙ1 = M1CT
1 ϕ̇1. The

factor M1 is due to the normalization in (A.1.1). The computation of the area enclosed by a

parametric curve usually involves the evaluation of a surface integral. We propose instead to

use Green’s theorem [197] to express this surface integral as a contour integral, which results

in a signed area expressed as

I =
∮

r1

r1,2dr1,1 = 〈r1,2, ṙ1,1〉L2([0,1]) = M1cT1,2A12c1,1, (A.3.2)

whereϕ2 = ϕ̇1, M2 = M1, and c1,1 and c1,2 are the first and second column of the matrix (A.1.5),

respectively. The sign of I depends on the direction in which the curve is traversed.

In the case of centered (exponential) B-splines, (A.3.2) is easily computed. For ϕ1 = βα, we

evaluate the entries of the matrix A12 using Corollary A.2.2.a) and Proposition A.2.4. We obtain
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Figure A.1 – Resampling of the outline of the map of Switzerland (black curve). Solid red curve
and dashed blue curve: resampled versions obtained by the L2 approximation and sampling
methods, respectively, with M2 = 40 samples. Green curve: reduced version of the map obtain
with the L2 approximation.
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Figure A.2 – Evolution of the approximation error as a function of the number M2 of samples.

[
A12

]
k,l =

1

M1

1∑
n=−1

∆cβα∪(α\{0})(k − l +nM1), (A.3.3)

where ∆c f (t ) = f (t + 1
2 )− f (t − 1

2 ) denotes the centered finite difference of f . As the matrix is

circulant, we only compute these values for k = 0 and l ∈ {0, . . . , M1 −1}. For instance, if the

parametric curve (A.1.4) is constructed with the centered linear B-splineϕ1 =β(0,0) (Figure A.3,

solid green line), we have ∆cβα∪(α\{0}) =∆cβ(0,0,0) (Figure A.3, dot-dashed blue line), where

β(0,0,0) is the centered quadratic B-spline (Figure A.3, dashed red line). Then, each row of the

correlation matrix is expressed as a periodic shift of the centered finite difference
[1

2 0 −1
2

]
.

132



A.4. Conclusion

Figure A.3 – Solid green line: centered linear B-spline; red dashed line: centered quadratic
B-spline; blue dot-dashed line: ∆cβ(0,0,0); pink diamonds: ∆cβ(0,0,0)(k) for k =−1,0,1.

A.4 Conclusion

The computation of inner products between periodized basis functions requires the evaluation

of a correlation matrix A12. This matrix frequently appears in periodic settings in classical

L2-based signal processing as well as in image processing when dealing with parametric

closed curves. We have presented exact formulas to evaluate its entries and gave simplified

expressions for particular cases. As the correlation matrix itself does not depend on the

weights (or control points) that specify the signal (or parametric curve), its values can be

precomputed and stored in look up tables for a fast evaluation of L2 distances. We also

proposed an L2 approximation method to resample a curve, which consists in describing

the curve in a different basis using less control points. These new points are found by a

least-squares minimization: The general solution requires the evaluation of two correlation

matrices that can be precomputed using our proposed formulas. We compared our approach

to the classical uniform resampling method and showed that the best approximation was

obtained with our method. We also illustrated the use of the proposed formulas to evaluate

the area enclosed by a parametric closed curve. Our inner-product calculus allows for a fast

and exact evaluation of correlation integrals, which frequently appear in practice and are often

only approximately computed up to date.
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A.5 Appendices

A.5.1 Proof of Proposition A.2.1

∫ 1

0
ϕ1,M1 (M1t −k)ϕ2,M2 (M2t − l )dt =

∫ 1− l
M2

− l
M2

ϕ1,M1 (M1(t ′+ l

M2
)−k)ϕ2,M2 (M2t ′)dt ′

=
∫ 1+ a2

M2

a2
M2

ϕ1,M1 (M1(t + l

M2
)−k)ϕ2(M2t )dt

=
∫ 1+ a2

M2

a2
M2

+∞∑
m=−∞

ϕ1(M1t −M1(m + k

M1
− l

M2
)︸ ︷︷ ︸

τk,l ,m

)ϕ2(M2t )dt .

(A.5.1)

We set m1 = dmin(p1, p2)e, m2 = 1 + bmax(p1, p2)c, p1 = ( 1
M2

(a2 + l ) − 1
M1

(a1 + k)) and

p2 = ( 1
M2

(a2 + l )− 1
M1

(b1 +k)). Now, (A.5.1) is simplified as

m2∑
m=m1

∫ 1+ a2
M2

a2
M2

ϕ1(M1t −τk,l ,m)ϕ2(M2t )dt = 1

M1

m2∑
m=m1

∫
R
ϕ1(t −τk,l ,m)ϕ2(

M2

M1
t )dt

= 1

M1

m2∑
m=m1

∫
R
ϕ1(t )ϕ2(

M2

M1
(t +τk,l ,m))dt

= 1

M1

m2∑
m=m1

a12(−τk,l ,m), (A.5.2)

where a12(t) =
(
ϕ1 ∗ϕ2(−M2

M1
·)
)

(t) and we have used the fact that

ϕ2(±M2
2 −M2n) = 0 if |n| ≥ supp{ϕ2}+M2

2M2
and that ϕ1(±M1

2 −M1p) = 0 if |p| ≥ supp{ϕ1}+M1

2M1
.

A.5.2 Proof of Proposition A.2.3

We define by ∆L
b the Lth-order causal finite-difference operator with b 6= 0, defined as

∆L
b f (t ) =

L∑
k=0

(
L

k

)
(−1)k f (t − k

b
). (A.5.3)

The Fourier transform F of the causal polynomial B-spline β0L is given by

F {β0L (t )}(ω) = β̂0L (ω) =
(1−e−jω

jω

)L

= ∆̂L
1 (ω)F {ςL−1(t )}(ω), (A.5.4)
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where F {ςL(t )}(ω) = 1
(jω)L+1 . Let ϕ1 =β0L1

and ϕ2 =β0L2
. We compute

a12(t ) =
(
β0L1

∗β0L2
(−M2

M1
·)
)

(t )

=F−1
{
β̂0L1

(ω)
M1

M2
β̂0L2

(−M1

M2
ω)

}
(t )

=F−1


(

1−e−jω

jω

)L1 M1

M2

1−ej
M1
M2

ω

−j M1
M2
ω

L2
 (t )

=F−1

(−1)L2

(
M2

M1

)L2−1

(
1−e−jω

)L1

(
1−ej

M1
M2

ω
)L2

(
jω

)L1+L2

 (t )

= (−1)L2

(
M2

M1

)L2−1

F−1
{
∆̂

L1
1 (ω)∆̂L2

− M2
M1

(ω)ς̂L1+L2−1(ω)

}
(t )

=
(

M2

M1

)L2−1 L1∑
l=0

L2∑
k=0

(
L1

l

)(
L2

k

)
(−1)l+k+L2ςL1+L2−1(t + kM1

M2
− l ). (A.5.5)

A.5.3 Proof of Proposition A.2.4

The derivative of an exponential B-spline that contains a vanishing pole is given by

β̇α∪{0} =∆βα. Let ϕ1 =βα and ϕ2 = ϕ̇1. Using (A.2.6), we compute

a12(t ) = (
βα∗ β̇α(−·)) (t )

=−(
βα∗∆βα\{0}(−·)

)
(t )

=−
(

L−1∏
n=1

eα
∗
n

)
∆βα∪(−(α∗\{0}))(t +L−1). (A.5.6)
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B Periodic Splines and Gaussian Pro-
cesses for the Resolution of Linear
Inverse Problems

This chapter deals with the resolution of inverse problems in a periodic setting or, in other

terms, the reconstruction of periodic continuous-domain signals from their noisy measure-

ments. We focus1 on two reconstruction paradigms: variational and statistical. In the vari-

ational approach, the reconstructed signal is solution to an optimization problem that es-

tablishes a tradeoff between fidelity to the data and smoothness conditions via a quadratic

regularization associated to a linear operator. In the statistical approach, the signal is modeled

as a stationary random process defined from a Gaussian white noise and a whitening operator;

one then looks for the optimal estimator in the mean-square sense. We give a generic form

of the reconstructed signals for both approaches, allowing for a rigorous comparison of the

two. We fully characterize the conditions under which the two formulations yield the same

solution, which is a periodic spline in the case of sampling measurements. We also show that

this equivalence between the two approaches remains valid on simulations for a broad class

of problems. This extends the practical range of applicability of the variational method.

B.1 Introduction

This chapter deals with inverse problems: one aims at recovering an unknown signal from its

corrupted measurements. To be more specific, the motivation of this work is the reconstruc-

tion of an unknown continuous-domain and periodic signal f from its M noisy measurements

ym ≈ 〈νm , f 〉 = ∫ 1
0 νm(t ) f (t )dt for m = 1. . . M , where the νm are measurement functions. The

goal is then to build an output signal fopt that is as close as possible to f .

B.1.1 Inverse Problems in the Continuous Domain

Inverse problems are often formulated in the discrete domain [198–202]. This is motivated by

the need of manipulating digital data on computers. Nevertheless, many naturally occurring

1This work is based on our publication [76], in collaboration with J. Fageot and M. Unser.
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signals depend on continuous variables (e.g., time or position). This leads us to attempt

recovering a signal fopt(t ) that depends on the continuous variable t ∈ [0,1]. In contrast with

the classical discrete setting, our search space for this reconstructed signal is thus infinite-

dimensional [203]. Moreover, we choose a regularization based on true derivatives (as opposed

to finite differences) to impose some smoothness on the reconstructed signal, a concept that

is absent in the discrete setting.

When considering continuous-domain reconstruction methods, a majority of works, typically

in machine learning, deal with sampling measurements. The goal is then to recover f from its

(possibly noisy) values ym ≈ f (tm) at fixed location tm . In order to investigate a more general

version of inverse problems, we shall consider generalized measurements [204, 205]. They

largely exceed the sampling case and include Fourier sampling or convolution (e.g., MRI, x-ray

tomography [206, 207]). Our only requirement is that the measurements ym depend linearly

on, and evolve continuously with, the unknown signal f up to some additive noise, so that

ym ≈ 〈νm , f 〉.

B.1.2 Variational vs. Statistical Methods

In the discrete domain, two standard strategies are used to reconstruct an input signal x

from its noisy measurements y ≈ Hx, where H models the acquisition process [202]. The

first approach is deterministic and can be tracked back to the ’60s with Tikhonov’s seminal

work [85]. The ill-posedness of the problem usually imposes the addition of a regularizer. By

contrast, Wiener filtering is based on the stochastic modelization of the signals of interest and

the optimal estimation of the targeted signal x. This chapter generalizes these ideas for the

reconstruction of continuous signals from their discrete measurements.

In the variational setting, the reconstructed signal is a solution to an optimization problem

that imposes some smoothness conditions [208]. More precisely, the optimization problem

may take the form

fopt = argmin
f

( M∑
m=1

(
ym −〈νm , f 〉)2 +λ‖L f ‖2

L2

)
, (B.1.1)

where L is a linear operator. The first term in (B.1.1) controls the data fidelity. The regular-

ization term ‖L f ‖2
L2

constrains the function to satisfy certain smoothness properties (for this

reason, the variational approach is sometimes called a smoothing approach). The parameter

λ in (B.1.1) quantifies the tradeoff between the fidelity to the data and the regularization

constraint.

In the statistical setting, the signal is modeled as a random process and is optimally recon-

structed using estimation theory [86]. More precisely, one assumes that the continuous-

domain signal is the realization of a stochastic process s and that the samples are given by

ym = 〈νm , s〉+εm , where εm is a random perturbation and νm a linear measurement function.

In this case, one specifies the reconstructed signal as the optimal statistical estimator in the
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mean-square sense

fopt = argmin
s̃

E
[
‖s − s̃(·|y)‖2

L2

]
, (B.1.2)

where the estimators t 7→ s̃(t |y) are computed from the generalized samples ym . The solution

depends on the measurement function νm and the stochastic models specified for s and εm . In

our case, the random process s is characterized by a linear operator L that is assumed to have

a whitening effect (it transforms s into a periodic Gaussian white noise, see Definition B.4.1),

while the perturbation is i.i.d. Gaussian.

B.1.3 Periodic and General Setting

The variational and statistical approaches have been extensively studied for continuous-

domain signals defined on the infinitely supported real line. However, it is often assumed

in practice that the input signals are periodic. In fact, a standard computational approach

to signal processing is to extend by periodization the signals of otherwise bounded support.

Periodic signals arise also naturally in applications such as the parametric representation of

closed curves [64, 70, 209]. This has motivated the development of signal-processing tools

and techniques specialized to periodic signals in sampling theory, error analysis, wavelets,

stochastic modelization, or curve representation [75, 151, 210–214].

In this chapter, we develop the theory of the variational and statistical approaches for periodic

continuous-domain signals in a very general context, including the following aspects:

• We consider a broad class of measurement functions, with the only assumptions that

they are linear and continuous.

• Both methods refer to an underlying linear operator L that affects the smoothness

properties of the reconstruction. We deal with a very broad class of linear operators

acting on periodic functions.

• We consider possibly non-quadratic data fidelity terms in the smoothing approach.

B.1.4 Related Works

The topics investigated in this chapter have already received some attention in the literature,

mostly in the non-periodic setting.

Reconstruction over the Real Line: Optimization problems of the form (B.1.1) appear in

many fields and receive different names, including inverse problems in image pro-

cessing [202], representer theorems in machine learning [215], or sometimes interpo-

lation elsewhere. Schoenberg was the first to show the connection between (B.1.1)

and spline theory [216]. Since then, this has been extended to other operators [217],

or to the interpolation of the derivative of the signal [51, 218]. Many recent meth-

ods deal with non-quadratic regularization, especially for the reconstruction of sparse
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discrete [219, 220] or continuous signals [203, 221–223]. We discuss this aspect more

extensively in Section B.6.2.

A statistical framework requires the specification of the noise and of the signal stochastic

model. The signal is then estimated from its measurements. A classical measure of the

quality of an estimator is the mean-square error. This criterion is minimized by the min-

imum mean-square error (MMSE) estimator [86, 224]. The theory has been developed

mostly for Gaussian processes and in the context of sampling measurements [87]. We

are especially interested in innovation models, for which one assumes that the signal

can be whitened (i.e., transformed into a white noise) by the application of a linear oper-

ator [225, 226]. Non-periodic models have been studied in many situations, including

the random processes associated with differential [227,228] or fractional operators [229].

Extensions to non-Gaussian models are extensively studied by Unser and Tafti [230].

The statistical and variational frameworks are deeply connected. It is remarkable that the

solution of either problem can be expressed as spline functions in relation with the linear

operator L involved in regularization (variational approach) or whitening (statistical

approach). Wahba has shown that the two approaches are strictly equivalent in the

case of stationary Gaussian models [88]. This equivalence has also been recognized by

several authors since then, as shown by Berlinet and Thomas-Agnan [87], and Unser

and Blu [89]. In the non-stationary case, this equivalence is not valid any more and the

existence of connections has received less attention.

Reconstruction of Periodic Signals: Some strong practical concerns have motivated the need

for an adaptation of the theory to the periodic setting. Important contributions in that

direction have been proposed. Periodic splines are constructed and applied to sampling

problems by Schoenberg [231] and Golomb [232]. The smoothing spline approach

is studied in the periodic setting by Wahba [88] for derivative operators of any order.

Although the periodic extension of the classical theory is briefly mentioned by several

authors [87, 88, 233], we are not aware of a global treatment. Providing a general analysis

in the periodic setting is precisely what we propose in this chapter.

B.1.5 Outline and Main Contributions

Section B.2 contains the main notations and tools for periodic functions and operators. In

Section B.3, we state the periodic representer theorem (Theorem B.3.4). It fully specifies the

form of the solution in the variational approach in a very general setting. For the specific case

of sampling measurements, we show that this solution is a periodic spline (Proposition B.3.6).

Section B.4 is dedicated to the statistical approach. We introduce a class of periodic stationary

processes (the Gaussian bridges) for which we specify the MMSE estimator in the case of

generalized linear measurements (Theorem B.4.4). We also provide a theoretical comparison

between the variational and statistical approaches by reformulating the MMSE estimation

as the solution of a new optimization problem (Proposition B.4.5). This highlights the strict

equivalence of the two approaches for invertible operators and extends known results from
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sampling to generalized linear measurements. For non-invertible operators, we complete

our analysis with simulations in Section B.5. In particular, we give empirical evidence of the

practical relevance of the variational approach for the reconstruction of periodic stationary

signals. We provide in Section B.6 a comparison between our results in the periodic setting

and the known results over the real line. Finally, we conclude in Section B.7. All the proofs

have been postponed to the Appendix sections.

B.2 Mathematical Background for Periodic Signals

Throughout the chapter, we consider periodic functions and random processes. Without loss

of generality, the period can always be normalized to one. Moreover, we identify a periodic

function over R with its restriction to a single period, chosen to be T = [0,1). We use the

symbols f , s, and s̃ to specify a function, a random process, and an estimator of s, respectively.

We call S(T) the space of 1-periodic functions that are infinitely differentiable, S ′(T) the space

of 1-periodic generalized functions (dual of S(T)), and L2(T) the Hilbert space of square

integrable 1-periodic functions associated with the norm ‖ f ‖L2 = (
∫ 1

0 | f (t )|2dt )1/2. Working

with S ′(T) allows us to deal with functions with no pointwise interpretation, such as the Dirac

comb defined by

X= ∑
k∈Z

δ(·−k), (B.2.1)

where δ is the Dirac impulse. The duality product between an element f ∈S ′(T) and a smooth

function g ∈S(T) is denoted by 〈 f , g 〉. For instance, 〈X, g 〉 = g (0) for every g . When the two

real functions are in L2(T), we simply have the usual scalar product 〈 f , g 〉 = ∫ 1
0 f (t)g (t )dt .

All these concepts are extended to complex-valued functions in the usual manner with the

convention that 〈 f , g 〉 = ∫ 1
0 f (t )g (t )dt for square-integrable functions. The complex sinusoids

are denoted by ek (t) = ej2πkt for any k ∈ Z and t ∈ T. Any periodic generalized function

f ∈S ′(T) can be expanded as

f (t ) = ∑
k∈Z

f̂ [k]ej2πkt = ∑
k∈Z

f̂ [k]ek (t ), (B.2.2)

where the f̂ [k] are the Fourier coefficients of f , given by f̂ [k] = 〈 f ,ek〉. Finally, the convolution

between two periodic functions f and g is given by

( f ∗ g )(t ) = 〈 f , g (t −·)〉. (B.2.3)

If f , g ∈ L2(T), we have that ( f ∗ g )(t ) = ∫ 1
0 f (τ)g (t −τ)dτ.
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B.2.1 Linear and Shift-Invariant Operators

Let L be a linear, shift-invariant (LSI), and continuous operator from S(T) to S ′(T). The shift

invariance implies the existence of L̂[k] ∈C such that

Lek = L̂[k]ek , (B.2.4)

for any k ∈Z. We call L̂[k] the frequency response of the operator L; it is also given by

L̂[k] = 〈L{X},ek〉 =
∫ 1

0
L{X}(t )e−j2πkt dt . (B.2.5)

The sequence (L̂[k]) is the Fourier series of the periodic generalized function L{X}, and is

therefore of slow growth [234, Chapter VII]. This implies that L, a priori from S(T) to S ′(T),

actually continuously maps S(T) into itself. This is a significant difference with the non-

periodic setting — we discuss this point in the conclusion in Section B.7. Therefore, one can

extend it by duality from S ′(T) to S ′(T). Then, for every f ∈S ′(T), we easily obtain from (B.2.4)

that

L f (t ) = ∑
k∈Z

�(L f )[k]ek (t ), where �(L f )[k] = f̂ [k]L̂[k]. (B.2.6)

The null space of L is NL = { f ∈S ′(T) | L f = 0}. We shall only consider operators whose null

space is finite-dimensional, in which case NL can only be made of linear combinations of

sinusoids at frequencies that are annihilated by L. We state this fact in Proposition B.2.1 and

prove it in Appendix B.8.1.

Proposition B.2.1. Let L be a continuous LSI operator. If L has a finite-dimensional null space

NL of dimension N0, then the null space is of the form

NL = span{ekn }N0
n=1, (B.2.7)

where the kn ∈Z are distinct.

From (B.2.4) and (B.2.7), we deduce that L̂[k] = 0 if and only if k = kn for some n ∈ [1 . . . N0].

In the following, we consider real-valued operators. In that case, we have the Hermitian

symmetry L̂[−k] = L̂[k]. Moreover, ekn ∈NL if and only if e−kn ∈NL. The orthogonal projection

of f on the null space NL is given by

ProjNL
{ f } =

N0∑
n=1

f̂ [kn]ekn . (B.2.8)

Let KL =Z\{kn}n∈{1...N0}. Then, (B.2.2) can be re-expressed as f = ProjNL
{ f }+∑

k∈KL
f̂ [k]ek

and we have that L f (t ) =∑
k∈KL

f̂ [k]L̂[k]ek (t ), which yields the Parseval relation∫ 1

0
|L f (t )|2dt = ∑

k∈KL

| f̂ [k]|2|L̂[k]|2. (B.2.9)
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Figure B.1 – Illustrations of periodic L-splines. Dots: nodes
(
tm , f (tm)

)
. The spline in (a)

corresponds to the periodization of an exponential B-spline (see Figure 1 in [81]).

B.2.2 Periodic L-Splines

Historically, splines are functions defined to be piecewise polynomials [235]. A spline is hence

naturally associated to the derivative operator of a given order [84] in the sense that, for a

fixed N ≥ 1, a spline function f : R→ R satisfies L f (t ) =∑
amδ(t − tm) with L = DN the N th

derivative. Splines have been extended to differential [81, 236–238], fractional [217, 239] or,

more generally, spline-admissible operators [230]. We adapt here this notion to the periodic

setting, where the Dirac impulse δ is replaced by the Dirac comb X.

Definition B.2.2. Consider an LSI operator L with finite-dimensional null space. We say that a

function f is a periodic L-spline if

L f (t ) =
M∑

m=1
amX(t − tm) (B.2.10)

for some integer M ≥ 1, weights am ∈R, and knot locations tm ∈T.

Periodic L-splines play a crucial role in the variational and statistical approaches for the

resolution of inverse problems in the periodic setting. We represent some periodic splines

associated to different operators in Figure B.1.

B.3 Periodic Representer Theorem

We now consider a continuous LSI operator L with finite-dimensional null space NL. Let ν

be the vector of the linear measurement functions ν1, . . . ,νM . They usually are of the form

νm = δ(·− tm) for time-domain sampling problems. Here, we consider general linear mea-

surements to include any kind of inverse problems. In this section, our goal is to recover a

function f from observed data y = (y1, . . . , yM ) such that ym ' 〈νm , f 〉. To do so, we consider

the variational problem

min
f

(
F (y,ν( f ))+λ‖L f ‖2

L2

)
, (B.3.1)
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where F :RM ×RM →R+ is a strictly convex and continuous function called the cost function.

This function controls the fidelity to data. A special attention will be given to the quadratic

data fidelity of the form

F (y,ν( f )) =
M∑

m=1
(ym −〈νm , f 〉)2. (B.3.2)

We give the solution of (B.3.1) for the space of 1-periodic functions in Theorem B.3.4. To derive

this solution, we first introduce and characterize the space of functions on which (B.3.1) is

well-defined.

B.3.1 Search Space

The optimization problem (B.3.1) deals with functions such that L f is square-integrable, which

leads us to introduce HL = { f ∈S ′(T) | L f ∈ L2(T)}. Due to (B.2.9), we have that

HL = { f ∈S ′(T) | ∑
k∈KL

| f̂ [k]|2|L̂[k]|2 <+∞}. (B.3.3)

Similar constructions have been developed for functions over R or for sequences by Unser et

al. [222, 240]. We now identify a natural Hilbertian structure on HL. If L :HL → L2(T) is invert-

ible, then HL inherits the Hilbert-space structure of L2 via the norm ‖L f ‖L2 . However, when L

has a nontrivial null space, ‖L f ‖L2 is only a semi-norm, in which case there exists f 6= 0 (any

element of the null space of L) such that ‖L f ‖L2 = 0. To obtain a bona fide norm, we complete

the semi-norm with a special treatment for the null-space components in Proposition B.3.1.

Proposition B.3.1. Let L be a continuous LSI operator whose finite-dimensional null space is

defined by NL = span{ekn }N0
n=1. We fix γ2 > 0. Then, HL is a Hilbert space for the inner product

〈 f , g 〉HL = 〈L f ,Lg 〉+γ2
N0∑

n=1
f̂ [kn]ĝ [kn]. (B.3.4)

The proof is given in Appendix B.8.2. We have that ‖ f ‖2
HL

= ‖L f ‖2
L2
+γ2‖ProjNL

{ f }‖2
L2

, where

ProjNL
{ f } is given by (B.2.8). The coefficient γ2 balances the contribution of both terms.

B.3.2 Periodic Reproducing-Kernel Hilbert Space

Reproducing-kernel Hilbert spaces (RKHS) are Hilbert spaces on which the evaluation maps

f 7→ f (t ) are well-defined, linear, and continuous. In this section, we answer the question of

when the Hilbert space HL associated to an LSI operator L with finite-dimensional null space

is a RKHS. This property is relevant to us because periodic function spaces that are RKHS are

precisely the ones for which one can use measurement functions of the form νm =X(·− tm)

in (B.3.1).

Definition B.3.2. Let H⊆S ′(T) be a Hilbert space of 1-periodic functions and H′ be its dual.

Then, we say that H is a RKHS if the shifted Dirac comb X(·− t0) ∈H′ for any t0 ∈T.
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This implies that any element f of a RKHS has a pointwise interpretation as a function t → f (t ).

As is well known, for any RKHS there exists a unique function h :T×T→R such that h(·, t0) ∈H′

and 〈 f ,h(·, t0)〉 = f (t0), for every t0 ∈T and f ∈H. We call h the reproducing kernel of H.

Proposition B.3.3. Let L be a continuous LSI operator with finite-dimensional null space. The

Hilbert space HL (see (B.3.3)) is a RKHS if and only if

∑
k∈KL

1

|L̂[k]|2 <+∞. (B.3.5)

Then, the reproducing kernel for the scalar product (B.3.4) is given by h(t ,τ) = hγ(t −τ), where

hγ ∈S ′(T) is

hγ(t ) =
N0∑

n=1

ekn (t )

γ2 + ∑
k∈KL

ek (t )

|L̂[k]|2 . (B.3.6)

The proof is given in Appendix B.8.3. Note that the reproducing kernel only depends on the

difference (t −τ).

B.3.3 Periodic Representer Theorem

Now that we have defined the search space of the optimization problem (B.3.1), we derive the

representer theorem that gives the explicit form of its unique periodic solution.

Theorem B.3.4. We consider the optimization problem

min
f ∈HL

(
F (y,ν( f ))+λ‖L f ‖2

L2

)
, (B.3.7)

where

• F :RM ×RM →R+ is strictly convex and continuous;

• L is an LSI operator with finite-dimensional null space;

• ν= (ν1, . . . ,νM ) ∈ (H′
L)M such that NL ∩Nν = {0};

• y = (y1, . . . , yM ) ∈RM are the observed data; and

• λ> 0 is a tuning parameter.

Then, (B.3.7) has a unique solution of the form

fRT(t ) =
M∑

m=1
amϕm(t )+

N0∑
n=1

bnekn (t ), (B.3.8)

where am ,bn ∈R, ϕm = hγ∗νm , and hγ is given by (B.3.6). Moreover, the vector a = (a1, . . . , aM )

satisfies the relation PTa = 0, with P the (M ×N0) matrix with entries [P]m,n = 〈ekn ,νm〉.
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The proof of Theorem B.3.4 is given in Appendix B.8.4. The optimal solution depends on

(M +N0) coefficients, but the condition PTa = 0 implies that there are only (M +N0 −N0) = M

degrees of freedom. In the case when F is quadratic of the form (B.3.2), the solution is made

explicit in Proposition B.3.5.

Proposition B.3.5. Under the conditions of Theorem B.3.4, if F is given by (B.3.2), then the

vectors a and b satisfy the linear system(
a

b

)
=

(
G+λI P

PT 0

)−1 (
y

0

)
, (B.3.9)

where P ∈CM×N0 is defined by [P]m,n = 〈ekn ,νm〉 and G ∈RM×M is a Gram matrix such that

[G]m1,m2 =
∫ 1

0

∫ 1

0
νm1 (t )hγ(t −τ)νm2 (τ)dtdτ. (B.3.10)

The proof is given in Appendix B.8.5. In the case of sampling measurements, we show moreover

in Proposition B.3.6 that the optimal solution is a periodic spline in the sense of Definition B.2.2.

We recall that such measurements are valid as soon as the search space HL is a RKHS, a

situation that has been fully characterized in Proposition B.3.3.

Proposition B.3.6. Under the conditions of Proposition B.3.5, if L satisfies (B.3.5) and if the

measurements are of the form νm =X(·− tm), tm ∈T, then the unique solution of (B.3.7) is a

periodic (L∗L)-spline with weights am and knots tm .

The proof is given in Appendix B.8.6.

B.4 Periodic Processes and MMSE

In this section, we change perspective and consider the following statistical problem: given

noisy measurements of a zero-mean and real periodic Gaussian process, we are looking for

the optimal estimator (for the mean-square error) of the complete process over T.

B.4.1 Non-Periodic Setting

In a non-periodic setting, it is usual to consider stochastic models where the random process

s is a solution to the stochastic differential equation [230]

Ls = w, (B.4.1)

where L is a linear differential operator and w a continuous domain (non-periodic) Gaussian

white noise. When the null space of the operator is nontrivial, it is necessary to add boundary

conditions such that the law of the process s is uniquely defined.

146



B.4. Periodic Processes and MMSE

TABLE B.1 – Gaussian bridges for several operators.

D+ I D D2 +4π2I D2

L̂[k] j2πk +1 j2πk 4π2(1−k2) −4π2k2

NL span{0} span{e0} span{e1,e−1} span{e0}

Gaussian
bridges

γ2
0 = 1
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t

-0.2

0.2

0.4
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s
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t
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s

B.4.2 Gaussian Bridges

In the periodic setting, the construction of periodic Gaussian processes has to be adapted. We

first introduce the notion of periodic Gaussian white noise, exploiting the fact that the law of a

zero-mean periodic Gaussian process s is fully characterized by its covariance function rs(t ,τ)

such that

E[〈s, f 〉〈s, g 〉] =
∫ 1

0

∫ 1

0
f (t )rs(t ,τ)g (τ)dtdτ. (B.4.2)

Definition B.4.1. A periodic Gaussian white noise2 is a Gaussian random process w whose

covariance is rw (t ,τ) =X(t −τ).

For any periodic real function f , the random variable 〈w, f 〉 is therefore Gaussian with mean

0 and variance ‖ f ‖2
L2

. Moreover, 〈w, f 〉 and 〈w, g 〉 are independent if and only if 〈 f , g 〉 = 0.

Hence, the Fourier coefficients ŵ [k] = 〈w,ek〉 of the periodic Gaussian white noise satisfy the

following properties:

• ŵ[k] =ℜ(ŵ[k])+ j ℑ(ŵ[k]);

• ŵ[−k] = ŵ[k];

• ℜ(ŵ[k]), ℑ(ŵ[k]) ∼N (0, 1
2 ), ∀k > 0;

• ŵ[0] ∈R and ŵ[0] ∼N (0,1);

• ℜ(ŵ[k]), ℑ(ŵ[k]), and ŵ[0] are independent.

Put differently, for any nonzero frequency k, E[ŵ[k]2] = 0 and E[ŵ[k]ŵ[k]] = 1. This means

that ŵ [k], k 6= 0, follows a complex normal distribution with mean 0, covariance 1, and pseudo-

covariance 0 [241]. When L has a nontrivial null space, there is no hope to construct a periodic

process s solution of (B.4.1) with w a periodic Gaussian white noise. Indeed, the operator L

kills the null-space frequencies, which contradicts that ŵ [kn] 6= 0 almost surely for n = 1. . . N0.

2Without loss of generality, we only consider Gaussian white noise with zero-mean and variance 1.

147



Appendix B. Periodic Splines and Gaussian Processes for the Resolution of Linear Inverse
Problems

One should adapt (B.4.1) accordingly by giving special treatment to the null-space frequencies.

We propose here to consider a new class of periodic Gaussian processes: the Gaussian bridges.

Given some operator L and γ0 > 0, we set

Lγ0 = L+γ0ProjNL
, (B.4.3)

where ProjNL
is given by (B.2.8). Note that Lγ0 = L for any γ0 when the null space of L is trivial.

Moreover, we remark that

‖Lγ0 f ‖2
L2

= ‖L f ‖2
L2
+γ2

0‖ProjNL
{ f }‖2

L2
= ‖ f ‖2

HL
, (B.4.4)

where ‖ f ‖2
HL

= 〈 f , f 〉HL is given in (B.3.4) (with γ= γ0).

Definition B.4.2. A Gaussian bridge is a periodic Gaussian process s, solution to the stochastic

differential equation

Lγ0 s = w, (B.4.5)

with w a periodic Gaussian white noise and Lγ0 given by (B.4.3) for some LSI operator L with

finite-dimensional null space and γ0 > 0. We summarize this situation with the notation

s ∼GB(L,γ2
0). When the null space is trivial, in which case the parameter γ2

0 is immaterial, we

write s ∼GB(L).

The Gaussian-bridge terminology is inspired by the Brownian bridge, the periodic version of

the Brownian motion3. Several realizations of our Gaussian bridges for various operators are

shown in Table B.1 for γ2
0 = 1. The influence of the parameter γ2

0 is illustrated in Figure B.2.

Proposition B.4.3. The covariance function of the Gaussian bridge s ∼GB(L,γ2
0) is

rs(t ,τ) = hγ0 (t −τ), (B.4.6)

where hγ0 is defined in (B.3.6). It implies that

E[〈s, f 〉〈s, g 〉] = 〈hγ0 ∗ f , g 〉. (B.4.7)

In particular, we have that

E[|ŝ[k]|2] = ĥγ0 [k]. (B.4.8)

The proof of Proposition B.4.3 is given in Appendix B.8.7. An important consequence is that

a Gaussian bridge is stationary since its covariance function only depends on the difference

(t −τ).

3Our definition differs from the classical one, in which the Brownian bridge is zero at the origin instead of being
zero-mean [242].
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B.4.3 Measurement Model and MMSE Estimator

For this section, we restrict ourselves to operators L for which the native space HL is a RKHS.

In that case, using (B.4.8) and (B.3.6), the Gaussian bridge s satisfies

E[‖s‖2
L2

] = ∑
k∈Z

E[|ŝ[k]|2] = ∑
k∈KL

1

|L̂[k]|2 +
N0∑

n=1

1

γ2
0

, (B.4.9)

which is finite according to (B.3.5). Therefore, the Gaussian bridge s is (almost surely) square-

integrable.

The observed data y are assumed to be generated as

y = 〈ν, s〉+ε, (B.4.10)

where s ∼ GB(L,γ2
0) is a Gaussian bridge (see Definition B.4.2), ν= (ν1, . . . ,νM ) is a vector of

M linear measurement functions, and ε are independent random perturbations such that

ε ∼N (0,σ2
0I). Given y in (B.4.10), we want to find the estimator s̃ of the Gaussian bridge s,

imposing that it minimizes the quantity E[‖s − s̃‖2
2].

Theorem B.4.4. Let y = (y1, . . . , yM ) be the noisy measurement vector (B.4.10) of the Gaussian

bridge s ∼ GB(L,γ2
0), with measurement functions νm ∈ H′

L, m = 1. . . M. Then, the MMSE

estimator of s given the samples {ym}m∈[1...M ] is

s̃MMSE(t ) =
M∑

m=1
dmϕm(t ), (B.4.11)

where ϕm = hγ0 ∗νm with νm ∈H′
L, d = (d1, . . . ,dM ) = (G+σ2

0I)−1y, and G is the Gram matrix

defined in (B.3.9).

The proof is given in Appendix B.8.8. Theorem B.4.4 can be seen as a generalization of the

classical Wiener filtering, designed for discrete signals, to the hybrid case where the input

signal is in a (periodic) continuous-domain and the (finite-dimensional) measurements are

discrete. A leading theme of this chapter is that the form of the MMSE estimator s̃MMSE is very

close to the one of the solution of the representer theorem fRT with λ=σ2
0 and for a quadratic

cost function. This connection is exploited in Section B.4.4.

B.4.4 MMSE Estimation as a Representer Theorem

The MMSE estimator given in Theorem B.4.4 can be interpreted as the solution of the opti-

mization problem described in Proposition B.4.5.
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Proposition B.4.5. Consider an LSI operator L with finite-dimensional null space, γ> 0, and

νm ∈H′
L for m = 1. . . M. We set Lγ as in (B.4.3). Then, the solution of the optimization problem

min
f ∈HL

( M∑
m=1

(ym −〈 f ,νm〉)2 +λ‖Lγ f ‖2
L2

)
(B.4.12)

exists, is unique, and given by

fopt(t ) =
M∑

m=1
dmϕm(t ), (B.4.13)

where ϕm = hγ ∗νm and d = (d1, . . . ,dM ) = (G+λI)−1y. In particular, the unique minimizer

of (B.4.12) is the MMSE estimator given in Theorem B.4.4 for λ=σ2
0 and γ= γ0.

The proof of Proposition B.4.5 follows the same steps as the ones of Theorem B.3.4 (form of

the minimizer for the periodic representer theorem) and Proposition B.3.5 (explicit formulas

in terms of system matrix for the vectors a and b), with significant simplifications that are

detailed in Appendix B.8.9. Proposition B.4.5 has obvious similarities with Theorem B.3.4, but

it also adds new elements.

• Proposition B.4.5 gives an interpretation of the MMSE estimator of a Gaussian bridge

given its measurements as the solution to an optimization problem. This problem is

very close to the periodic representer theorem (Theorem B.3.4) for a quadratic cost

function. However, (B.4.12) differs from (B.3.7) because the regularization also penalizes

null-space frequencies.

• If the null space NL is trivial, then

fRT = s̃MMSE (B.4.14)

for λ=σ2
0. This means that Theorem B.3.4 (smoothing approach) and B.4.4 (statis-

tical approach) correspond to the same reconstruction method. This equivalence is

well-known for stationary processes on R in the case of time-domain sampling measure-

ments [88]. Our results extend this to the periodic setting and to the case of generalized

linear measurements.

• If the null space is nontrivial, then Theorem B.3.4 and Proposition B.4.5 yield different

reconstructions. In particular, this implies that one cannot interpret the optimizer fRT

in Theorem B.3.4 as the MMSE estimator of a Gaussian bridge. Yet, the solutions get

closer and closer as γ0 → 0. In Section B.5, we investigate more deeply this situation.

B.5 Quality of the Estimators on Simulations

We consider s̃γ,λ(t |y) =∑M
m=1 dmϕm(t ) as the linear estimator of s given y, whereϕm = hγ∗νm ,

d = (G+λI)−1y, and G is defined in Proposition B.3.5. To simplify notations, we shall omit
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y when considering s̃γ,λ(·|y) = s̃γ,λ. Each pair (λ,γ) gives an estimator. In particular, if s is a

Gaussian bridge, then s̃MMSE = s̃γ0,σ2
0
, according to Theorem B.4.4. The mean-square error

(MSE) of s̃γ,λ over N experiments is computed as MSE = 1
N

∑N
n=1 ‖sn − (

s̃γ,λ
)

n‖2
L2

, where the sn

are independent realizations of s that yield a new noisy measurement yn and
(
s̃γ,λ

)
n = s̃γ,λ(·|yn)

is the estimator based on yn . We define the normalized mean-square error (NMSE) by

NMSE = MSE
1
N

∑N
n=1 ‖sn‖2

L2

≈
E[‖s − s̃γ,λ‖2

L2
]

E[‖s‖2
L2

]
. (B.5.1)

In this section, we first detail the generation of Gaussian bridges (Section B.5.1). We then

investigate the role of the parameters λ (Section B.5.2) and γ2 (Section B.5.3) on the quality

of the estimator s̃γ,λ. We primarily focus on time-domain sampling measurements with

〈ν, s〉 = (s(t1), . . . , s(tM ))T, where the tm are in T.

B.5.1 Generation of Gaussian Bridges

We first fix the operator L with null space NL of dimension N0 and γ0 > 0. Then, we generate

(2Ncoef +1) Fourier coefficients {ŵ[k]}k∈[−Ncoef...Ncoef] of a Gaussian white noise according to

Definition B.4.1. Finally, we compute the Gaussian bridge s as

s(t ) = ∑
k∈KL

|k|≤Ncoef

ŵ[k]

L̂[k]
ek (t )+

N0∑
n=1

ŵ[kn]

γ0
ekn (t ). (B.5.2)

Since N0 <∞, (B.5.2) provides a mere approximation of the Gaussian bridge. However, the

approximation error can be made arbitrarily small by taking Ncoef large enough. In Figure B.2,

we generate s ∼GB(D2 +4π2I,γ2
0) for four values of γ2

0. For small values of γ2
0, the null-space

component dominates, which corresponds in this case to the frequency |k| = 1. When γ2
0

increases, the null-space component has a weaker influence.

B.5.2 Influence of λ

We evaluate the influence of the parameter λ for the case of the invertible operator L = D+ I.

In this case we have that ProjNL
= 0 (since NL = {0}), which simplifies (B.4.3). Hence, the

parameter γ2
0 is immaterial and we denote by s̃λ the estimator associated to λ> 0. We consider

s ∼GB(D+ I) and σ2
0 = 10−2.

Time-Domain Sampling Measurements

We generated N = 500 realizations of s. From each one, we extracted M = 30 noisy measure-

ments. We then computed 30 estimators {
(
s̃λ

)
n}λ∈L1 , where L1 is the set of values obtained by

uniform sampling of the interval [0.001,0.03]. The plot of the NMSE (approximated according

to (B.5.1)) as a function of λ is given in Figure B.3 (a). The minimum error is obtained for
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Figure B.2 – Illustration of s ∼GB(D2 +4π2I,γ2
0) for different values of γ2

0.

λ' 0.01, which corresponds to σ2
0. This result validates the theory presented in Theorem B.4.4.

Actually, when λ is small, the estimator interpolates the noisy measurements while, for a

large λ, the estimator tends to oversmooth the curve. The MMSE estimator makes an optimal

tradeoff between fitting the data and smoothing the curve. These observations about λ retain

their validity for other operators, including noninvertible ones.

Fourier-Domain Sampling Measurements

We consider complex exponential measurement functionals, inducing 〈ν, s〉 = (ŝ[k1], . . . , ŝ[kM ])T,

where the km are in Z. We define Nν = {km}m=1...M , such that (−km) ∈Nν for every km ∈Nν.

We consider the measurements ν= (ek1 , . . . ,ekM ). Note that these measurement functionals

are complex, which calls for a slight adaptation of the framework presented so far4. The noise

ε= (ε1, . . . ,εM ) is then also complex and satisfies the properties:

• εm =ℜ(εm)+ j ℑ(εm);

• εm1 = εm2 , km1 =−km2 ;

• ℜ(εm), ℑ(εm) ∼N (0,
σ2

0
2 ), ∀km 6= 0;

• εm ∈R and εm ∼N (0,σ2
0), km = 0;

• ℜ(εm), ℑ(εm) and εm1 , km1 = 0, are independent.

This means that E[|εm |2] =σ2
0 for every m.

4One could equivalently consider cosine and sine measurements, to the cost of heavier formulas.
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(a) Time-domain sampling. (b) Fourier-domain sampling.

Figure B.3 – Evolution of the NMSE in terms of λ for s ∼GB(D+ I) for time and Fourier-domain
sampling measurements.

We repeated the experiment done with the time-domain sampling using exactly the same

procedure and parameters, and Nν = {−2,−1,0,1,2}. The experimental curve of the evolution

of the NMSE with λ is given in Figure B.3 (b). Again, the minimum is obtained for λ' 0.01 =σ2
0.

We now want to compare this curve to the theoretical one.

For the Fourier-sampling case, we were also able to derive the corresponding closed-form

formulas for the NMSE (B.5.1).

Proposition B.5.1. Let s be a Gaussian bridge associated with an invertible operator L, and

ym = ŝ[km]+εm , m = 1. . . M, with km ∈Nν the sampled frequencies and ε a complex Gaussian

noise with variance σ2
0 as above. Then, the MSE of the estimator s̃λ = s̃λ(·|y) is given by

E
[
‖s − s̃λ‖2

L2

]
=

M∑
m=1

ĥ[km](λ2 + ĥ[km]σ2
0)

(ĥ[km]+λ)2
+ ∑

k∉Nν

ĥ[k], (B.5.3)

where h is the reproducing kernel of HL.

The proof is given in Appendix B.8.10. Note that ĥ[k] = 1/|L̂[k]|2 is real-valued and strictly

positive for every k. From (B.5.3), we also recover the property that the optimum is reached for

λ=σ2
0 since each of the M terms that appear in the first sum is minimized for this value of λ.

The theoretical curve forNν = {−2,−1,0,1,2} is given in Figure B.3 (b) and is in good agreement

with the experimental curve. We explain the slight variation (0.15% for the L2-norm over

λ ∈ [0.001,0.03]) by the fact that (B.5.1) is only an estimation of the theoretical NMSE.

B.5.3 Influence of γ2

In this section, we only consider noninvertible operators since invertibility has already been

addressed in Section B.4.4 (see (B.4.14)). In order to evaluate the specific influence of γ, we set
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λ=σ2
0. Hence, s̃γ,σ2

0
= s̃γ. We generated N = 500 realizations of a Gaussian bridge s, and from

each one, we extracted M = 30 noisy measurements. We repeated this for several operators L

and values of γ2
0 and σ2

0. For each case, we compared s̃MMSE to s̃γ→0, s̃γ→∞, and fRT in (B.3.8),

seen here as an additional estimator. The corresponding NMSEs (see (B.5.1)) are given in

Table B.2. We make four observations.

1. In each case, the best result is obtained with s̃MMSE, as expected. We see, moreover,

that limγ→0E[‖s − s̃γ‖2
L2

] ' E[‖s − fRT‖2
L2

]. This is in line with the fact that the func-

tional (B.3.7) to minimize in Theorem B.3.4 corresponds to (B.4.12) with γ= 0.

2. For small values of γ2
0 (i.e., 10−3 or 100), we see that E[‖s − fRT‖2

L2
] ' E[‖s − s̃MMSE‖2

L2
].

This means that the performances of s̃MMSE and fRT are very similar. This is illus-

trated in Figure B.4 (a), where s̃MMSE and fRT do coincide. Meanwhile, we see that

limγ→∞E[‖s − s̃γ‖2
L2

] À E[‖s − s̃MMSE‖2
L2

]. This is also illustrated in Figure B.4 (a) for

L = D. The reconstruction for γ→+∞ significantly fails to recover the original signal s,

as the corresponding estimator tends to have zero-mean.

3. For intermediate values of γ2
0 (i.e., γ2

0 = 103 or 106 according to σ0 and the order of

the operator), the minimal NMSE is obtained for s̃MMSE only. We also observe that

E[‖s − fRT‖2
L2

] < limγ→∞E[‖s − s̃γ‖2
L2

]. This is illustrated in Figure B.4 (b) for L = D2 +4π2I,

γ2
0 = 106 and σ2

0 = 10−4, where we can distinguish s̃MMSE, s̃γ→∞, and fRT.

4. For large values of γ2
0 (i.e., γ2

0 = 109), we observe that

limγ→∞E[‖s − s̃γ‖2
L2

] ' E[‖s − s̃MMSE‖2
L2

] and E[‖s − fRT‖2
L2

] > E[‖s − s̃MMSE‖2
L2

]. In fact, for

largeγ2
0, the Gaussian bridge tends to have vanishing null-space frequencies (with (B.5.2),

we have that ŝ[kn] = ŵ [kn]/γ0 for n = 1. . . N0). Meanwhile, the reconstructed signal fRT

is not constrained to attenuate null-space frequencies. The null-space part in (B.3.8)

is mainly responsible for a higher error compared to s̃MMSE. This is highlighted in

Figure B.4 (c).

Observations 2), 3), and 4) suggest the existence of three regimes. For further investiga-

tion, we present in Figure B.5 the evolution of NMSE as a function of logγ2 for L = D and

γ2
0 = 100,103, and 106. The minimal error is always obtained for γ2 ' γ2

0, as predicted by

the theory. For the three cases, we observe two plateaus: one for γ2 ∈ (0, v1) and the other

for γ2 ∈ (v2,∞), where v1, v2 > 0. It means that, for each value of γ2
0, the estimators s̃γ

with γ2 ∈ (0, v1) ((v2,∞), respectively) are very similar and the reconstruction algorithms are

practically indistinguishable. The values of v1 and v2 depend on γ2
0. When γ2

0 = 100 (106,

respectively), we have that γ2
0 ∈ (0, v1) ((v2,∞), respectively). However, γ2

0 = 103 ∈ [v1, v2]

belongs to none of the plateaus.

Two main conclusions can be drawn from our experiments. First, we have strong empirical

evidence that

s̃γ −→
γ→0

fRT, (B.5.4)

which we conjecture to be true for any Gaussian-bridge model. This is remarkable because

154



B.6. Discussion

��� ��� ��� ���
�

-���

-���

-���

-���

���

���

� �
˜
���� ��� �

˜
γ→∞ �

(a) L = D, γ2
0 = 1, and σ2

0 = 10−2.

��� ��� ��� ���
�

����

����

����

����

����

����

� �
˜
���� ��� �

˜
γ→∞ �

(b) L = D2 +4π2I, γ2
0 = 106, and σ2

0 =
10−4.

��� ��� ��� ���
�

-����

-����

-����

����

����

����

� �
˜
���� ��� �

˜
γ→∞ �

(c) L = D2, γ2
0 = 109, and σ2

0 = 10−4.

Figure B.4 – Illustrations of s ∼ GB(L,γ2
0), s̃MMSE, fRT, and s̃γ→∞ for several operators and

values of γ2
0 and σ2

0. We used M = 30 noisy measurements y = (y1, . . . , yM ).

(a) γ2
0 = 1. (b) γ2

0 = 103. (c) γ2
0 = 106.

Figure B.5 – Evolution of NMSE according to γ for s ∼GB(D,γ2
0).

it presents the reconstruction based on the periodic representer theorem as a limit case of

the statistical approach. Second, we empirically see that, for reasonably small values of γ2
0,

the estimators corresponding to γ2 ≤ γ2
0 are practically indistinguishable from the MMSE

estimator. This is in particular valid for the representer-theorem reconstruction, for which we

then have that

fRT ≈ s̃MMSE. (B.5.5)

The variational method is theoretically suboptimal to reconstruct Gaussian bridges. However,

based on our experiments, it is reasonable to consider this method as practically optimal for

small values of γ2
0 and λ=σ2

0.

B.6 Discussion

B.6.1 Comparison with Inverse Problems on the Real Line

It is worth noting that the periodic setting has important differences as compared to recon-

struction methods over the complete real line, which motivated and played an important role

in this chapter.
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TABLE B.2 – Comparison of NMSE for s̃γ→0, fRT, s̃MMSE, and s̃γ→∞ over N = 500 iterations.
Bold: optimal result.
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• The role of the Dirac impulse δ is played by the Dirac comb X in the periodic setting.

It is indeed the neutral element of the periodic convolution (B.2.3) and appears in the

definition of the periodic L-splines (Definition B.2.2) and RKHS (Definition B.3.2).

• In the real-line setting, in addition to smoothness properties, functions are also char-

acterized by their property of decay at infinity [243]. For periodic functions, we only

consider the smoothness properties, which brings substantial simplifications.

• In general, a continuous LSI operator does not preserve the asymptotic behavior of the

input function. For instance, a test function in the space S(R) of smooth and rapidly

decaying functions is not necessarily mapped to a rapidly decaying function. In contrast,

any continuous LSI operator maps the space of periodic test functions S(T) onto itself

(see Section B.2.1). This greatly simplifies the study of operators that act on periodic

functions.

• The null space of a continuous LSI operator can differ for the two cases. In particular,

when acting on periodic functions, the null space of the nth derivative Dn is reduced

to constant functions for every n ≥ 1. This is crucial due to the role of the null space in

Theorems B.3.4 and B.4.4.

• In Proposition B.3.3, we give a necessary and sufficient condition for a continuous

LSI operator of finite-dimensional null space to specify a RKHS in the sense of Defi-

nition B.3.2. This is significantly more complicated over the real line, for which only

partial results are known [222].

• We have seen that it is not always possible to find a periodic solution s to the equation

Ls = w , where w is a periodic Gaussian white noise. This lead us to modify the stochastic

differential equation (see (B.4.5)) and to introduce the family of Gaussian bridges.

• In Theorem B.4.4, we give the MMSE estimator of the complete process s, not only for

the estimation of s(t0) at a fixed time t0. In the non-periodic setting, however, solutions

of stochastic differential equations are generally not square-integrable. For instance, if s

is a nontrivial stationary Gaussian process, then

E[‖s‖2
L2(R)] =

∑
k∈Z

E[‖1[k,k+1) · s‖2
L2(R)]

(i )= ∑
k∈Z

E[‖1[0,1) · s‖2
L2(R)] =∞, (B.6.1)

where 1[a,b) is the indicator function on [a,b) and (i ) exploits stationarity. Another

example is the Brownian motion, whose supremum over [0, t ] grows faster than t p for

any p < 1/2 (almost surely) when t goes to infinity [244], hence being of infinite energy.

As a consequence, it is irrelevant to consider the MMSE estimator of the complete

process and one ought to, for instance, restrict to MMSE estimators of local values s(t0)

of the process.
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B.6.2 Comparison with TV Regularization

A tendency in the field of signal reconstruction is to rely on sparsity-promoting regularization,

motivated by the fact that many real-world signals are sparse in some adequate transform

domain [230, 245, 246].

The vast majority of works focuses on the finite-dimensional setting via `1-type regularization.

However, some authors have recently promoted the reconstruction of infinite-dimensional

sparse signals [203, 247]. The adaptation of discrete `1 methods to the continuous domain is

based on the total-variation (TV) regularization norm, for which it is possible to derive repre-

senter theorems (see [222, Theorem 1]). A comparison between Tikhonov and TV variational

techniques is proposed by Gupta et al. [223] for non-periodic signals. In brief, at identical

measurements and regularization operator L, Tikhonov regularization favors smooth solutions

restricted to a finite-dimensional space, while TV regularization allows for adaptive and more

compressible solutions. In [223, Table I], it was shown on simulations that Tikhonov methods

perform better on fractal-type signals, while TV methods are better suited to sparse signals.

We expect similar behaviors for the periodic setting.

At the heart of the present chapter is the connection between L2-regularization and the

statistical formalism of MMSE estimation of Gaussian processes. A theoretical link between

deterministic and stochastic frameworks is much harder to provide for sparsity-inducing

priors. There is strong empirical evidence that sparse stochastic models are intimately linked

to TV-based methods [230], but the extent to which such estimators approach the MMSE

solution is still unknown.

B.7 Conclusion

We have presented two approaches for the reconstruction of periodic continuous-domain

signals from their corrupted discrete measurements. The first approach is based on opti-

mization theory and culminates with the specification of a periodic representer theorem

(Theorem B.3.4). In the second approach, a signal is modeled as a stationary periodic ran-

dom process and the reconstruction problem is transformed into an estimation problem.

Theorem B.4.4 then gives the optimal estimator (in the mean-square sense) for Gaussian

bridges.

We have also provided theoretical and experimental comparisons of the two approaches and

identified two main findings. First, for invertible operators, the statistical and variational

approaches are equivalent and correspond to an identical reconstruction scheme. For nonin-

vertible operators, however, this equivalence is not valid anymore, but the variational method

corresponds to the statistical reconstruction when the parameter γ vanishes. More impor-

tantly, for small values of γ2
0, the variational method is practically equivalent to the optimal

statistical reconstruction. This demonstrates the efficiency of the representer theorem for

reconstructing Gaussian bridges, even for noninvertible operators.
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B.8 Appendices

B.8.1 Proof of Proposition B.2.1

The main argument is very classical in the non-periodic setting. We detail it for the sake of

completeness and adapt it to the periodic case.

Let p be a function of NL. As L is shift-invariant, p(·− t0) ∈NL for every t0 ∈T. Moreover, NL

is closed in S ′(T) (as any finite-dimensional linear subspace), thus the first derivative p ′ = p(1)

of p is in NL as the limit of the function 1
t0

(p(·− t0)−p) ∈NL when t0 → 0. We propagate this

property to all the derivatives of p.

We now have that NL is a finite-dimensional space of dimension N0 and p(k) ∈ NL, ∀k ∈
[1 . . . N0]. Hence, the family of (N0 +1) functions p, p(1), . . . , p(N0) satisfies an equation of the

form aN0 p(N0)+·· ·+a0p = 0, where ak ∈C and (a0, . . . , aN0 ) 6= 0. This implies that p, as solution

of a differential equation with constant coefficients, is a sum of functions of the form q(t )eµt

with q a polynomial and µ ∈C.

Finally, since we deal with 1-periodic functions, this constrains q to be a constant function

and µ= 2πjk with k ∈Z. This concludes the proof.

B.8.2 Proof of Proposition B.3.1

The linearity, Hermitian symmetry, and non-negativity are easily obtained. We only need to

verify that ‖ f ‖HL = 〈 f , f 〉
1
2
HL

= 0 ⇔ f = 0. For this, we observe that

〈 f , f 〉HL = 0 ⇔
∫ 1

0
|L f (t )|2dt +γ2

N0∑
n=1

| f̂ [kn]|2 = 0

⇔ ∑
k∈KL

| f̂ [k]|2 |L̂[k]|2︸ ︷︷ ︸
6=0

+γ2
N0∑

n=1
| f̂ [kn]|2 = 0, (B.8.1)

which implies that f̂ [k] = 0 for all k ∈Z. Hence, 〈 f , f 〉HL = 0 ⇔ f = 0.

B.8.3 Proof of Proposition B.3.3

For the proof, we set A = ∑
k∈KL

1
|L̂[k]|2 . The Hilbert space HL is a RKHS if and only if X ∈H′

L or,

equivalently, if there exists C > 0 such that

∀ f ∈S(T), |〈X, f 〉| ≤C‖ f ‖HL . (B.8.2)
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Assume that A <+∞. Let c be the sequence such that c[k] = 1/L̂[k] if k ∈KL and c[k] = 1/γ

otherwise. Using the Cauchy-Schwarz inequality, we have, for every f ∈S(T), that

〈X, f 〉2 = (∑
f̂ [k]

)2 ≤
(∑ |c[k]|2

)(∑∣∣∣ f̂ [k]

c[k]

∣∣∣2)
= (N0/γ2 + A)‖ f ‖2

HL
. (B.8.3)

Hence, (B.8.2) is satisfied for C = (N0/γ2 + A)1/2 > 0. For the converse, we define fm ∈ S(T)

such that

f̂m[k] =
0, if |k| > m or k = kn ,n ∈ [1 . . . N0]

1
|L̂[k]|2 , otherwise.

Then, we readily observe that lim
m→+∞

|〈X, fm〉|
‖ fm‖HL

=p
A. Therefore, as soon as A =+∞, 〈X, f 〉/‖ f ‖HL

is not bounded in S(T) and HL is not a RKHS.

The reproducing kernel is characterized by the relation f (τ) = 〈h(·,τ), f 〉HL for every f ∈HL.

Let R be the operator, often called the Riesz map, such that 〈Rg , f 〉HL = 〈g , f 〉 for any f ∈HL

and g ∈H′
L. Then, h(·,τ) = R{X(· −τ)}. Moreover, we have that 〈Rek ,em〉HL = δ[k −m]. In

addition,

〈Rek ,em〉HL = 〈LRek ,Lem〉+γ2
N0∑

n=1
R̂ek [kn]êm[kn]

= 〈Rek ,L∗Lem〉+γ2
N0∑

n=1
R̂ek [kn]δ[m −kn]

= |L̂[m]|2R̂ek [m]+γ2
N0∑

n=1
R̂ek [kn]δ[m −kn]. (B.8.4)

Hence, R is characterized for k,m ∈Z by the relation

|L̂[m]|2R̂ek [m]+γ2
N0∑

n=1
R̂ek [kn]δ[m −kn] = δ[k −m]. (B.8.5)

For k ∈ KL, we deduce from (B.8.5) that R̂ek [m] = 1/|L̂[k]|2 if m = k and 0 otherwise. We

also deduce that, for k = kn , �Rekn [m] = 1/γ2 if m = kn and 0 otherwise. Thus, R is shift-

invariant (R̂ek [m] = 0 for every m 6= k), meaning that h(t ,τ) depends only on (t −τ). Moreover,

the Fourier multiplier of R, which is also the discrete Fourier transform of hγ(t) = h(t ,0), is

R̂[k] = 1/|L̂[k]|2 if k ∈KL and 1/γ2 if k = kn . This is equivalent to (B.3.6) and concludes the

proof.

B.8.4 Proof of Theorem B.3.4

To prove Theorem B.3.4, we first show that the optimization problem (B.3.7) has a unique

solution by convex-optimization arguments. Then, we connect this solution to the abstract
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representer theorem (see for instance [248, Theorem 16.1]) to deduce the form of the solution.

We start with some preliminary results for the first part.

Lemma B.8.1. Under the condition of Theorem B.3.4, the functional φ : HL → R+ defined

by φ( f ) = F (y,〈ν, f 〉)+λ‖L f ‖2
L2

is strictly convex and coercive, meaning that φ( f ) →∞ when

‖ f ‖HL →∞.

Proof. Strict convexity: φ is convex as a sum of two convex functions. For the strict convexity,

we fix µ ∈ (0,1) and f , g ∈HL. It is then sufficient to show that the equality

φ(µ f + (1−µ)g ) =µφ( f )+ (1−µ)φ(g ) (B.8.6)

implies that f = g . The functions F (y,ν{·}) and ‖L·‖L2 are convex, therefore (B.8.6) together

with the linearity of both ν and L implies the two relations

F (y,µν( f )+ (1−µ)ν(g )) =µF (y,ν( f ))+ (1−µ)F (y,ν(g ))

‖µL f + (1−µ)Lg‖2
L2

=µ‖L f ‖2
L2
+ (1−µ)‖Lg‖2

L2
. (B.8.7)

Now, taking advantage of the strict convexity of F (y, ·) and ‖·‖2
L2

, we deduce that ν( f ) =ν(g )

and L f = Lg . This means, in particular, that ( f −g ) is in the intersection of the null spaces of ν

and L, assumed to be trivial. Finally, f = g as expected.

Coercivity: The measurement functional ν is linear and continuous, hence there exists

A > 0 such that ‖〈ν, f 〉|2 ≤ A‖ f ‖2
HL

for any f ∈ HL. Moreover, since ν is injective and lin-

ear when restricted to the finite-dimensional null space NL, there exists B > 0 such that

‖〈ν, p〉‖2 ≥ B‖p‖2
HL

for any p ∈NL. Any f ∈HL can be decomposed uniquely as

f = ∑
k∈KL

f̂ [k]ek +
N0∑

n=1
f̂ [kn]ekn = g +p. (B.8.8)

In that case, we easily see that ‖g‖HL = ‖L f ‖L2 . In particular, we deduce that

‖ f ‖2
HL

= ‖g‖2
HL

+‖p‖2
HL

≤ ‖L f ‖2
L2
+ 1

B
‖〈ν, p〉‖2

≤ ‖L f ‖2
L2
+ 1

B

(‖〈ν, f 〉‖+‖〈ν, g 〉‖)2

≤ ‖L f ‖2
L2
+ 1

B

(‖〈ν, f 〉‖+ A1/2‖L f ‖L2

)2

≤C
(
‖L f ‖2

L2
+‖〈ν, f 〉‖2

)
(B.8.9)

for C > 0 large enough. Now, consider a sequence of functions fm ∈HL such that ‖ f ‖HL →∞.

We want to show that, for m large enough, φ( fm) is arbitrarily large. Due to (B.8.9), for m large

enough, ‖L fm‖L2 or ‖〈ν, fm〉‖ are arbitrarily large. The former implies obviously that φ( fm)

can be made as large as we want. It is also true for the latter because φ( fm) ≥ F (y,〈ν, fm〉) and

F is coercive. This means that φ( fm) goes to infinity when m →∞, hence φ is coercive.
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As φ is a strictly convex and coercive functional (Lemma B.8.1), the optimization prob-

lem (B.3.7) has the unique solution fRT. We denote z0 = 〈ν, fRT〉. The function fRT can be

uniquely decomposed as

fRT = ∑
k∈KL

f̂RT[k]ek +
N0∑

n=1
f̂RT[kn]ekn = gRT +pRT. (B.8.10)

We recall the abstract representer theorem. This result can be found in [223, Theorem 8] with

a formulation close to ours.

Proposition B.8.2. Let H be a Hilbert space, ν = (ν1, . . . ,νM ) be a vector of M linear and

continuous measurement functionals over H, and y0 ∈RM . There exists a unique minimizer of

the optimization problem

min
f ∈H

‖ f ‖H s.t. ν= y0, (B.8.11)

which is of the form fopt =
M∑

m=1
amRνm , where am ∈R and R :H′ →H is the Riesz map of H.

We consider the Hilbert space H̃L = { f ∈HL, ProjNL
{ f } = 0}, on which ‖L f ‖L2 is a Hilbertian

norm. The linear measurements νm are in the dual space H̃′
L, once restricted as linear func-

tionals on H̃L. The interpolation constraint is chosen as y0 = z0 −ν(pRT). Applying Proposi-

tion B.8.2 to this case, we deduce that there exists a unique minimizer

hopt = argmin
h∈H̃L,ν(h)=y0

‖Lh‖L2 (B.8.12)

which is of the form hopt =∑M
m=1 amRνm , R being the Riesz map between H̃′

L and H̃L. In our

case, the function Rνm is given by Rνm =∑
k∈KL

ν̂m [k]
|L̂[k]|2 ek . In particular, one easily sees from

the expression of ϕm that it satisfies

Rνm =ϕm −γ2ProjNL
{νm}. (B.8.13)

Moreover, we have that hopt = gRT. Indeed, gRT is clearly among the functions h over which

one minimizes and one cannot have that ‖Lhopt‖L2 < ‖LgRT‖L2 (otherwise, the function

f = hopt +pRT would be a minimizer of (B.3.7) different from fRT, which is impossible). Putting

things together, we get that

fRT = gRT +pRT =
M∑

m=1
amRνm +pRT

=
M∑

m=1
amϕm −γ2

M∑
m=1

amProjNL
{νm}+pRT. (B.8.14)

Since (−γ2 ∑M
m=1 amProjNL

{νm}+pRT) is in the null space of L, it can be developed as
∑N0

n=1 bnekn ,

giving (B.3.8).
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The last ingredient is to remark that am satisfies PTa = 0. This comes from the fact that, by

construction,
∑

amRνm ∈ H̃′
L and, by applying the Riesz map,

∑
amνm ∈ H̃L, meaning that the

projection of this element into the null space is zero. This is precisely equivalent with the

expected condition.

B.8.5 Proof of Proposition B.3.5

We compute (B.3.7) for F the quadratic cost function. We have that

fRT =∑M
m=1 amϕm +∑N0

n=1 bnekn , as given by (B.3.8). It then suffices to find the optimal vectors

a and b. We therefore rewrite (B.3.7) in terms of these two vectors.

From simple computations, we have, with the notations of Proposition B.3.5, that

〈ν,
∑N0

n=1 bnekn 〉 = Pb and 〈ν,
∑M

m=1 amϕm〉 = Ga, where we used for the latter that

Gm1,m2 = 〈νm1 ,hγ∗νm2〉 = 〈νm1 ,ϕm2〉. Hence,

‖y−〈ν, f 〉‖2 = ‖y−Ga−Pb‖2. (B.8.15)

From the definition of hγ in (B.3.6), we see that (L∗Lhγ)∗ f = f for every f whose Fourier

coefficients f̂ [kn] do vanish for every n = 1. . . N0. Now, the relation P
T

a = 0 in Theorem B.3.4

shows precisely that
∑M

n=1 amνm satisfies this property. In particular, we deduce that

L∗L

{
M∑

m=1
amϕm

}
= (L∗Lhγ)∗

M∑
m=1

amνm =
M∑

m=1
amνm . (B.8.16)

As a consequence, we have that

‖L fRT‖2
L2

= 〈L∗L
M∑

m1=1
am1ϕm1 ,

M∑
m2=1

am2ϕm2〉

=
M∑

m1=1

M∑
m2=1

am1 Gm1,m2 am2 = (Ga)Ta. (B.8.17)

Finally, one has that

‖y−〈ν, fRT〉‖2 +λ‖L fRT‖2
L2

= ‖y−Ga−Pb‖2 +λ(Ga)Ta. (B.8.18)

By computing the partial derivatives, we find that the vectors a and b are given by (B.3.9).

B.8.6 Proof of Proposition B.3.6

Since νm =X(·−tm), the form of the solution (B.3.8) is fRT(t ) =
M∑

m=1
amhγ(t−tm)+

N0∑
n=1

bnekn (t ).

We have moreover that PTa = 0, where [P]m,n = ej2πkn tm . From (B.3.6), we then deduce that
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L∗L{hγ}(t ) =∑
k∈KL

|L̂[k]|2 ek (t )
|L̂[k]|2 =

(
X(t )−ProjNL

{X}(t )
)
. By linearity, we get that

L∗L{ fRT}(t ) =
M∑

m=1
amL∗L{hγ}(t − tm)

=
M∑

m=1
amX(t − tm)−

M∑
m=1

amProjNL
{X(·− tm)}(t )

=
M∑

m=1
amX(t − tm)−

N0∑
n=1

M∑
m=1

ame−j2πktm ekn

=
M∑

m=1
amX(t − tm)−

N0∑
n=1

[P
T

a]nekn (B.8.19)

=
M∑

m=1
amX(t − tm), (B.8.20)

where we used that [P]m,n = e−j2πktm in (B.8.19) and that P
T

a = PTa = 0 in (B.8.20). Finally, fRT

is a periodic (L∗L)-spline with weights am and knots tm .

B.8.7 Proof of Proposition B.4.3

We start from

s = ∑
k∈KL

ŵ[k]

L̂[k]
ek +

N0∑
n=1

ŵ[kn]

γ0
ekn . (B.8.21)

Our goal is to compute rs(t ,τ) = E[s(t )s(τ)]. We do so by replacing s(t ) and s(τ) with (B.8.21).

We develop the product and use the relations E[ŵ[k]ŵ[`]] = E[ŵ[k]2] = 0, E[|ŵ[k]|2] = 1 for

every k,` ∈Z, k 6= ` to deduce that

rs(t ,τ) =
( ∑

k∈KL

ek (t )e−k (τ)

|L̂[k]|2 + 1

γ2
0

N0∑
n=1

ekn (t )e−kn (τ)

)
. (B.8.22)

Since ek (t )e−k (τ) = ek (t −τ), we have shown that rs(t ,τ) = hγ(t −τ), as expected. Then, we ob-

tain (B.4.7) by injecting (B.4.6) into (B.4.2). Finally, we obtain (B.4.8) by particularizing (B.4.7)

with νm = ek .

B.8.8 Proof of Theorem B.4.4

We fix a time t0 ∈T. We first obtain the MMSE estimator for s(t0) (estimation of s at time t0).

(Note that s(t0) = 〈s,X(·− t0)〉 is well defined because X(·− t0) ∈HL by assumption).

The linear MMSE estimator of s(t0) based on y is of the form s̃t0 =
M∑

m=1
um ym . Because s and

ε are Gaussian, the linear MMSE estimator coincides with the MMSE estimator [86]. The
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orthogonality principle [Section 3.2] [86] then implies that

E[ym(s(t0)− s̃t0 )] = 0, ∀m = 1. . . M . (B.8.23)

We know from Proposition B.4.3 that E[〈s, f 〉〈s, g 〉] = 〈hγ0∗ f , g 〉. We use this relation to develop

the different terms of (B.8.23). First, we have that

E[ym s(t0)] = E[〈νm , s〉s(t0)]+E[εm s(t0)]

= E[〈νm , s〉〈s,X(·− t0)〉]+E[εm]︸ ︷︷ ︸
0

E[s(t0)]

= (hγ0 ∗νm)(t0). (B.8.24)

As the estimator is of the form s̃t0 =
M∑

m=1
um ym and exploiting that ε and s are independent, we

have that

E[〈νm , s〉yk ] = E[〈νm , s〉〈νk , s〉]+E[〈νm , s〉εk ] = 〈hγ0 ∗νm ,νk〉
E[εm yk ] = E[εm〈νk , s〉]+E[εmεk ] =σ2δ[m −k] (B.8.25)

We have therefore that

E[ym s̃t0 ] = E[〈νm , s〉s̃t0 ]+E[εm s̃t0 ]

=
M∑

k=1
ukE[〈νm , s〉yk ]+

M∑
k=1

ukE[εm yk ]

=
M∑

k=1
uk〈hγ0 ∗νm ,νk〉+umσ

2
0. (B.8.26)

We remark that 〈hγ0 ∗ νm ,νk〉 = [G]m1,m2 given in (B.3.10). Injecting (B.8.24) and (B.8.26)

into (B.8.23), we have for m = 1. . . M that (hγ0 ∗νm)(t0) = ∑M
k=1 uk [G]m1,m2 +umσ

2
0. Hence,

u = (G + σ2
0I)−1c, where c = (hγ0 ∗ ν)(t0). As s̃t0 = uTy, we finally have that

s̃t0 =
M∑

m=1
dm(hγ0 ∗νm)(t0), where d = (d1, . . . ,dM ) = (G+σ2

0I)−1y.

We have now obtained the form of the MMSE estimator s̃t0 for s(t0) at a fixed time t0. We

then deduce the MMSE estimator of the complete continuous random process s :T→R that

minimizes E[‖s − s̃‖2
L2

] among all the estimators s̃ based on y. We fix an estimator s̃. We have

that

E[‖s − s̃‖2
L2

] = E[
∫ 1

0
(s(t )− s̃(t ))2dt ] =

∫ 1

0
E[(s(t )− s̃(t ))2]dt

≥
∫ 1

0
E[(s(t )− s̃t )2]dt = E[‖s − s̃MMSE‖2

L2
]. (B.8.27)

Hence, the function s̃MMSE : t → s̃t is the MMSE estimator of the complete process s(t ).
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B.8.9 Proof of Proposition B.4.5

The proof is obtained by following the arguments of Theorem B.3.4 (for existence, unicity, and

form of the solution) and Proposition B.3.5 (for the explicit formula of the coefficients dm

in (B.4.13)) with the following simplifications:

First, the existence and unicity of a solution is now direct. Indeed, the functional to minimize

is ‖y−ν( f )‖2
2 +λ‖ f ‖2

HL
. It is clearly coercive and strictly convex because ‖·‖HL is. Second, the

abstract representer theorem can now be applied directly to the Hilbert space HL. The form of

the solution is then directly deduced. Third, the coefficients dm are found with the arguments

of Appendix B.8.5, except that there is no term for the null-space component (coefficients bn)

in that case, hence the system matrix is simpler.

B.8.10 Proof of Proposition B.5.1

We know the expression of s̃λ from Proposition B.4.5. For Fourier sampling, the ϕm are

complex exponential themselves, given by ϕm = h ∗ekm = ĥ[km]ekm , while the Gram matrix G

is diagonal since Gm1,m2 = 〈h ∗ekm1
,ekm2

〉 = ĥ[km1 ]δ[km1 −km2 ]. Hence, (B.4.13) gives that

s̃λ =
M∑

m=1

(ŝ[km]+εm)ĥ[km]

ĥ[km]+λ ekm . (B.8.28)

After simplification, we have that

s − s̃λ =
M∑

m=1

(
λŝ[km]

ĥ[km]+λ − ĥ[km]εm

ĥ[km]+λ

)
ekm + ∑

k∉Nν

ŝ[k]ek . (B.8.29)

Exploiting the Fourier-domain independence, we deduce that

E
[
‖s − s̃λ‖2

L2

]
=

M∑
m=1

λ2

(ĥ[km]+λ)2
E
[|ŝ[km]|2]

+ ĥ[km]2

(ĥ[km]+λ)2
E
[|εm |2]

+ ∑
k∉Nν

E
[|ŝ[k]|2] . (B.8.30)

From the relations E
[|ŝ[k]|2] = ĥ[k] (see (B.4.8)) and E

[|εm |2] = σ2
0, we finally obtain (B.5.3).
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[184] A. Fabijańska, “Segmentation of corneal endothelium images using a U-Net-based

convolutional neural network,” Artificial Intelligence in Medicine, vol. 88, pp. 1–13, June

2018.

[185] J.-P. Bergeest and K. Rohr, “Efficient globally optimal segmentation of cells in fluores-

cence microscopy images using level sets and convex energy functionals,” Medical

Image Analysis, vol. 16, no. 7, pp. 1436–1444, October 2012.

181



Bibliography

[186] Y. Deng, P. Coen, M. Sun, and J. W. Shaevitz, “Efficient multiple object tracking using

mutually repulsive active membranes,” PloS ONE, vol. 8, no. 6, p. e65769, June 2013.

[187] P. Jasiobedzki, “Adaptive adjacency graphs,” in Proceedings of the SPIE Conference on

Geometric Methods in Computer Vision II, vol. 2031, San Diego CA, USA, June 23, 1993,

pp. 294–304.

[188] M. Butenuth, “Segmentation of imagery using network snakes,” in Symposium of IS-

PRS Commission III, Photogrammetric Computer Vision (PCV’06), vol. 36, no. 3, Bonn,

Germany, September 20–22, 2006, pp. 1–6.

[189] P. Soille and L. Vincent, “Determining watersheds in digital pictures via flooding sim-

ulations,” in Proceedings of the SPIE Conference on Visual Communication and Image

Processing, vol. 1360, Lausanne, Switzerland, September 1, 1990, pp. 240–250.

[190] P. H. Kitslaar, R. van’t Klooster, M. Staring, B. P. F. Lelieveldt, and R. J. van der Geest,

“Segmentation of branching vascular structures using adaptive subdivision surface

fitting,” in Proceedings of the SPIE International Symposium on Medical Imaging: Image

Processing (MI’15), vol. 9413, Orlando, FL, USA, February 21-26, 2015, p. 94133Z.

[191] M. L. Coleman, E. A. Sahai, M. Yeo, M. Bosch, A. Dewar, and M. F. Olson, “Membrane

blebbing during apoptosis results from caspase-mediated activation of ROCK I,” Nature

Cell Biology, vol. 3, pp. 339–345, April 2001.

[192] L. Romani, A. Badoual, and M. Unser, “Normal-based interpolating subdivision for the

geometric representation of deformable models,” in Proceedings of the Sixteenth IEEE

International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’19), Venice,

Italian Republic, April 8–11, 2019, in press.

[193] L. Rebollo-Neira and D. Lowe, “Optimized orthogonal matching pursuit approach,” IEEE

Signal Processing Letters, vol. 9, no. 4, pp. 137–140, April 2002.

[194] P. J. Davis, Circulant Matrices, ser. Pure and Applied Mathematics. Wiley, 1979.

[195] M. Unser and T. Blu, “Fractional splines and wavelets,” SIAM Review, vol. 42, no. 1, pp.

43–67, March 2000.

[196] J. A. Parker, R. V. Kenyon, and D. E. Troxel, “Comparison of interpolating methods for

image resampling,” IEEE Transactions on Medical Imaging, vol. 2, no. 1, pp. 31–39, March

1983.

[197] M. Jacob, T. Blu, and M. Unser, “An exact method for computing the area moments

of wavelet and spline curves,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 23, no. 6, pp. 633–642, June 2001.

[198] M. R. Banham and A. K. Katsaggelos, “Digital image restoration,” IEEE Signal Processing

Magazine, vol. 14, no. 2, pp. 24–41, March 1997.

182



Bibliography

[199] N. B. Karayiannis and A. N. Venetsanopoulos, “Regularization theory in image

restoration—The stabilizing functional approach,” IEEE Transactions on Acoustics,

Speech, and Signal Processing, vol. 38, no. 7, pp. 1155–1179, July 1990.

[200] M. A. T. Figueiredo and R. D. Nowak, “An EM algorithm for wavelet-based image restora-

tion,” IEEE Transactions on Image Processing, vol. 12, no. 8, pp. 906–916, August 2003.

[201] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented Lagrangian

approach to the constrained optimization formulation of imaging inverse problems,”

IEEE Transactions on Image Processing, vol. 20, no. 3, pp. 681–695, March 2011.

[202] M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging. CRC press,

1998.

[203] B. Adcock and A. C. Hansen, “Generalized sampling and infinite-dimensional com-

pressed sensing,” Foundations of Computational Mathematics, vol. 16, no. 5, pp. 1263–

1323, October 2016.

[204] A. Papoulis, “Generalized sampling expansion,” IEEE Transactions on Circuits and

Systems, vol. 24, no. 11, pp. 652–654, November 1977.

[205] Y. C. Eldar and T. G. Dvorkind, “A minimum squared-error framework for generalized

sampling,” IEEE Transactions on Signal Processing, vol. 54, no. 6, pp. 2155–2167, June

2006.

[206] E. L. Piccolomini, F. Zama, G. Zanghirati, and A. Formiconi, “Regularization methods in

dynamic MRI,” Applied Mathematics and Computation, vol. 132, no. 2-3, pp. 325–339,

November 2002.

[207] E. Bostan, U. S. Kamilov, M. Nilchian, and M. Unser, “Sparse stochastic processes and

discretization of linear inverse problems,” IEEE Transactions on Image Processing, vol. 22,

no. 7, pp. 2699–2710, July 2013.

[208] K. W. Cassel, Variational Methods with Applications in Science and Engineering. Cam-

bridge University Press, 2013.

[209] F. S. Cohen and J.-Y. Wang, “Part I: Modeling image curves using invariant 3-D object

curve models—A path to 3-D recognition and shape estimation from image contours,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 1, pp. 1–12,

January 1994.

[210] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate of innovation,”

IEEE Transactions on Signal Processing, vol. 50, no. 6, pp. 1417–1428, June 2002.
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