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Abstract

Environmental transport processes are highly coupled with the shape of landscapes.
Modern catchment analysis with high-resolution data and huge computational
powers demand more detailed within-cell metrics for surface evolution modeling.
This dissertation involves experiments and numerical simulations of rainfall-driven
sediment transport at laboratory scales of which areas were less than the common
computational cell sizes at catchment scales. The main objective was stochastic and
physical study of unchanneled overland flow morphologies.

In the first step, a detailed laboratory study was conducted to highlight the effects of
morphological changes on hysteretic sediment transport under a time-varying rainfall.
A rainfall pattern composed of seven sequential stepwise-varying rainfall intensities
was applied to a 5-mx2-m soil erosion flume. Clockwise hysteresis loops in the
sediment concentration versus discharge curves were measured for the total eroded
soil and the finer particle sizes. However, for larger particle sizes, hysteresis effects
decreased and suspended concentrations tended to vary linearly with discharge. The
Hairsine and Rose (HR) soil erosion model agreed well with the experimental data for
the total eroded soil and for the finer particle size classes. For the larger sediment size
classes, the model provided reasonable qualitative agreement with the measurements
although the fit was poor for the largest size class. Overall, it is found that hysteresis
varies amongst particle sizes and that the HR model’s results are consistent with
hysteretic behavior of different sediment size classes.

After demonstrating the role of morphological changes (generation of a shield layer
on the topsoil) on erosion patterns, overland flow morphologies were statistically
characterized. To do so, the catchment-scale network analyses were applied on
the micro-roughnesses of unchanneled surfaces at the laboratory scale (2-mx1-m
flume). The scaling relation between the drainage area and stream length (Hack’s
law), along with exceedance probabilities of drainage area, discharge, and upstream

flow network length, are well known for catchment-scale channelized fluvial regions.
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Abstract

This work reported catchment-scale power laws on an eroding unconsolidated
sediment for which no channeling occurred. Laser scanning was used to capture the
morphological evolution of the sediment. Based on the surface scans and precipitation
distribution, overland flow was estimated with the D8 algorithm, which outputs a flow
network that was analyzed statistically. The above-mentioned scaling and exceedance
probability relationships for this overland flow network were the same as those found
for large-scale catchments and for laboratory experiments with observable channels.
In addition, the scaling laws were temporally invariant, even though the network
dynamically changed over the course of the experiment.

The statistical similarity of a small-scale unchanneled morphology to catchments
motivated us to test the applicability of a physically-based catchment scale landscape
evolution model (LEM) at laboratory scale and in absence of rills. We modeled
the overland flow as a network that preserves the water flux for each cell in the
discretized domain. This network represented the surface flow and determined the
evolution direction. The calibrated model predicted a smoother surface morphology
(and less detailed overland flow network) than that which was measured, since the
experimental soil contained small pebbles that emerged during erosion, and were
delineated by the laser scans. To investigate the quality of the prediction, we used a
low-pass filter to remove the small-scale variability of the surface morphology. Spectral
analysis confirmed that the model predictions capture the main characteristics of the
measured morphology. However, the model could not reproduce the experimental
scaling relation as the micro-roughness of the surface was not produced by the model.
In order to modify the LEM, it was solved as a stochastic partial differential equation.
The results showed that an extra term for roughness was necessary to simulate more
details of the morphology. Furthermore, a new deterministic approach (diffusion
coefficient as a step function of curvature) was proposed and tested to improve the
model predictions in the statistical sense.

This work showed the hysteresis loops for splash dominated erosion and the different
hysteretic behavior of particle sizes. Furthermore, the advantageous statistical
metrics (scaling laws) were found for unchanneled morphology evolutions and
the applicability of an LEM was shown in absence of rills. Besides the scientific
contributions, useful modeling, optimization and data analysis tools (C++ and Python

codes) were provided for future geomorphological studies.

Key words: Overland flow, Sediment transport, Landscape evolution model, Hairsine
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and Rose (HR) erosion model, Network evolution, Statistical analysis, Numerical

simulation, Spectral analysis, Optimization, C++, Python.
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Résumé

Les processus de transport dans I'environnement sont fortement couplés a la
géométrie du paysage. Les études récentes sur les bassins versants réalisées a partir
de données hautes résolutions et mettant en oeuvre d’énormes puissances de
calcul exigent des métriques plus précises a I'intérieur des mailles de calcul pour
modéliser I’évolution des surfaces. Cette these associe des expérimentations et des
simulations numériques du transport de sédiments par les précipitations a I’échelle
du laboratoire dont la superficie était inférieure a la taille des mailles de calcul dans
les modélisations de bassins versants complets. L'objectif principal était I’étude
stochastique et physique de la morphologie d’écoulements non canalisés.
Premierement, une étude détaillée en laboratoire a été réalisée pour souligner les
effets des changements morphologiques sur le transport de sédiments histérétique
dans des conditions de précipitations changeante. Un régime de pluie composé
d’'une séquence de sept intensités différentes a été appliquée a un simulateur de
pluie de 5 m par 2 m. Des boucles d’hystérésis de concentration en sédiments
tournant dans le sens horaire par rapport a des courbes de débit ont été mesurées
pour I'érosion totale du sol et pour les particules les plus petites. Cependant, pour
des particules plus grandes, I'hystérésis diminue et la concentration tend a varier
de facon presque linéaire avec le débit. Le modele d’érosion Hairsine-Rose (HR)
s’accorde bien avec les données expérimentales d’érosion totale pour les classes
de particules les plus fines. Pour les classes de particules plus grandes, le modele a
donné des résultats satisfaisants par rapport aux mesures bien que ’'adéquation soit
pauvre pour les classes de taille les plus larges. Dans I'ensemble, il a été démontré que
I'hystérésis varie parmi les tailles de particule et que les prédictions du modele HR
sont cohérentes avec le comportement hystérétique de différentes classes de taille de
sédiments.

Apres avoir démontré le role des changements morphologiques (création d'une

ix



Abstract

couche de protection a la surface du sol) de patterns d’érosion, les morphologies
de ruissellement ont été caractérisées de maniere statistique. Pour cela, les
études réalisées sur le réseau a ’échelle du bassin versant ont été appliquées a la
micro-rugosité des surface non-canalisées a I’échelle du laboratoire (simulateur de
pluie de 2 m par 1 m). Les relations d’échelles entre I'aire de drainage et la longueur
de flux (loi de Hack), avec aussi les probabilités de dépassement de I'aire de drainage,
du débit et de la longueur de I’écoulement dans le réseau a 'amont, est bien connu
pour les portions de fleuve canalisées. Ce travail couvre I’érosion de sédiments non
consolidés dans un environnement non-canalisé. Le balayage laser a été utilisé pour
mesurer |'évolution morphologique des sédiments. A partir des scans de la surface et
de la distribution des précipitations, le ruissellement a été estimé avec I'algorithme D8
qui donne en sortie un réseau d’écoulement qui a été analysé de maniere statistique.
La mise a I’échelle et les relations de probabilité de dépassement susmentionnées
pour ce réseau de ruissellement étaient les mémes que celles découvertes pour les
bassins versant a grande échelle et pour les expérimentations en laboratoire avec des
canaux observables. De plus, les lois d’échelle étaient invariantes dans le temps bien
que le réseau évoluait de facon dynamique au cours de I'expérience.

La similitude statistique entre la morphologie non-canalisée a petite échelle et
celle a I'échelle du bassin versant nous a motivé pour tester I'applicabilité d'un
modele a base physique d’évolution des échelles du paysage (LEM) a l'échelle
du laboratoire et en I'absence de ruisseau. Nous avons modélisé le ruissellement
comme un réseau qui conserve le flux d’eau pour chaque cellule dans le domaine
discrétisé. Ce réseau représentait I’écoulement de surface et déterminait la direction
de I'évolution. Le modele calibré prévoit une morphologie de surface plus lisse
(et moins de réseaux détaillés de ruissellement) que celle mesurée puisque le sol
expérimental contenait des petits cailloux qui ont émergé durant I’érosion, et qui
ont été identifiés par les scans laser. Pour examiner la qualité de la modélisation,
nous avons utilisé un filtre passe-bas pour éliminer la variabilité a petite-échelle
de la morphologie de surface. L'analyse spectrale a confirmé que les prédictions
du modele capturent les caractéristiques principales de la morphologie mesurée.
Cependant, le modele ne peut ni reproduire les relations d’échelle expérimentales, ni
la micro-rugosité de surface. Pour modifier le modéle LEM, ceci a été résolu par une
équation différentiel stochastique. Il a été constaté qu’'un terme additionnel pour
la rugosité était nécessaire pour capturer plus de détails morphologiques. En outre,

une nouvelle approche déterministe (coefficient de diffusion en tant que fonction de
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courbure) a été proposée et testée pour améliorer les prédictions de modeles dans un
sens statistique.

Ce travail a montré que les boucles d’hystérésis pour I’éclaboussement dominaient
I’érosion et les comportements hystérétiques différents pour les différentes tailles
de particule. Les métriques statistiques avantageuses (lois d’échelles) ont aussi été
trouvées pour les évolutions morphologiques non-canalisées et I'applicabilité du
modele LEM a été démontré en I’absence de ruisseaux. En plus des contributions
scientifiques, des travaux de modélisation, des outils d’optimisation et d’analyse de
données (programmes en C++ et Pyhton) ont été développés pour servir a de futures

études géomorphologiques.

Mots clés : Ruissellement, transport de sédiments, modele d’évolution du paysage,
Modele d’érosion Hairsine and Rose (HR), Evolution des réseaux, analyse statistique,

Simulation numérique, Analyse spectrale, Optimisation, C++, Python.






Zusammenfassung

Transportprozesse in der Umwelt hdngen stark von der Gestalt der Landschaft
ab. Moderne Einzugsgebietsanalysen mit hochauflésenden Daten und grossen
Rechenleistungen verlangen nach Erosionsmodellen mit detaillierteren Metriken
auf Zellenebene. Diese Dissertation beinhaltet Laborexperimente und numerische
Simulationen von

niederschlagsbedingtem Sedimenttransport. Die betrachteten Gréossenordnungen
waren dabei deutlich kleiner, als die in der klassischen Einzugsgebietsanalyse
iiblicherweise verwendeten Rechenzellen. Das Hauptziel war eine stochastische
und physikalische Studie der Morphologie von freiem (nicht-kanalisiertem)
Oberflachenabfluss.

Im ersten Schritt wurde eine detaillierte experimentelle Studie durchgefiihrt,
um den Einfluss von morphologischen Verdnderungen auf hysteretischen
Sedimenttransport unter verdnderlichem Niederschlag zu untersuchen. Ein
sequentielles Niederschlagsmuster, bestehend aus sieben schrittweise variierenden
Niederschlagsintensitdten, wurde auf einen 5-mx2-m grossen Versuchsaufbau
zur Untersuchung von Bodenerosion beaufschlagt. Es wurden im Uhrzeigersinn
verlaufende Hystereseschleifen

der Sedimentkonzentration als Funktion des Abflusses gemessen, sowohl fiir den
insgesamt abgetragenen Boden, als auch fiir die feineren Partikel. Fiir grossere Partikel
nahmen Hystereseeffekte ab und die Schwebstoffkonzentrationen verdanderten sich
tendenziell eher linear mit dem Abfluss. Hinsichtlich des insgesamt abgetragenen
Bodens, sowie fiir die feinen Partikel, stimmte das Hairsine und Rose (HR)
Erosionsmodell gut mit den experimentellen Ergebnissen tiberein. Obwohl der direkte
Modelabgleich fiir die grossten Partikel mangelhaft war, lieferte das Model eine
qualitativ hinreichend gute Ubereinstimmung fiir gréssere Partikel. Grundsitzlich

konnten wir zeigen, dass das Hystereseverhalten von der Partikelgrosse abhédngt und
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vom HR Model, innerhalb der verschiedenen Klassen von Partikelgréssen, konsistent
wiedergegeben wird.

Nach der Darlegung der Rolle von morphologischen Verdnderungen (Bildung
einer Schutzschicht im oberen Bereich des Bodens) auf das Erosionsmuster,
wurde die Morphologie des Oberflichenabflusses statistisch charakterisiert. Dazu
wurden grossskalige Einzugsgebiets-Netzwerkanalysen fiir die Untersuchung
der Mikro-Rauigkeiten von nicht-kanalisierten Oberflichen im Labormassstab
angewandt (2-m x 1-m Versuchsaufbau). Die Skalierungsbeziehungen zwischen
der Fliche des Einzugsgebiets und der Gewdisserldnge (Hacksches Gesetz),
sowie fiir Uberschreitungswahrscheinlichkeit, Abflussmenge und stromaufwirts
gelegene Netzwerkldnge, sind fiir kanalisierte, flussartige Regionen hinldnglich
bekannt. Diese Arbeit befasst sich mit der Erosion von unbefestigtem Sediment
ohne eine auftretende Kanalisierung. Die morphologische Entwicklung des
Sediments wurde mittels Laser-Scanning erfasst. Anhand der Laser-Scans und
der Niederschlagsverteilung wurde der Oberflichenabfluss mit Hilfe des D8
Algorithmus abgeschitzt. Dieser Algorithmus lieferte ein Abfluss-Netzwerk welches
statistisch untersucht wurde. Die oben erwdhnten Skalierungsbeziehungen fiir das
betrachtete Oberflichenabfluss-Netzwerk waren dieselben, wie sie fiir grossskalige
Einzugsgebiete sowie fiir Laborversuche mit sichtbarer Kanalisierung berichtet
wurden. Zusitzlich waren die Skalierungsgesetze zeitlich unveranderlich, obwohl das
Netzwerk sich im Verlauf des Experiments dynamisch verdnderte.

Die statistische Ahnlichkeit einer kleinskaligen, nicht-kanalisierten Morphologie
zu Einzugsgebieten veranlasste uns dazu, die Anwendbarkeit eines physikalisch
motivierten Landschafts-Entwicklungsmodells (LEM), welches iiblicherweise zur
Modellierung grossskaliger Einzugsgebiete verwendet wird, fiir unseren kleinskaligen
Versuchsaufbau ohne Oberflichenrillen zu testen. Der Oberflachenabfluss wurde
als ein Netzwerk modelliert, welches den (Wasser-)Abfluss fiir jede Rechenzelle
im diskretisierten Gebiet erhilt. Dieses Netzwerk stellte den Oberflichenabfluss
dar und bestimmte die Evolutionsrichtung. Das kalibrierte Model sagte eine
glattere Oberflichenmorphologie (und entsprechend ein weniger detailliertes
Abflussnetzwerk) voraus, als experimentell gemessen wurde. Dies liegt darin
begriindet, dass der Boden im Experiment kleine Kieselsteine enthielt, welche
wédhrend der Erosion aufgetaucht sind und welche vom Laserscanner erfasst wurden.
Um die Qualitdit der Modelvorhersagen zu untersuchen, wurden kleinskalige

Variationen in der Oberflichenmorphologie mittels eines Tiefpassfilters entfernt.
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Eine Spektralanalyse bestdtigte, dass das Model die Hauptcharakteristiken der
gemessenen Morphologie wiedergeben kann. Die experimentell bestimmten
Skalierungsbeziehungen konnte das Model hingegen nicht reproduzieren, da die
Mikrorauigkeit der Oberflache im Model nicht erfasst wurde. Um das LEM zu
verbessern, wurde eine stochastische partielle Differentialgleichung gelost. Es stellte
sich heraus, dass ein zusitzlicher Term fiir die Rauigkeit notwendig war, um weitere
Details der Morphologie zu erfassen. Des Weiteren wurde ein neuer deterministischer
Ansatz (Diffusionskoeffizient als eine Stufenfunktion der Kriimmung) eingefiihrt und
getestet um die Modelvorhersagen in statistischem Sinne zu verbessern.

Diese Arbeit hat Hystereseschleifen fiir Tropfenaufschlag-dominierte Erosion
sowie das unterschiedliche Hystereseverhalten in Abhédngigkeit der Partikelgrosse
gezeigt. Des Weiteren wurden sinnvolle statistische Metriken (Skalierungsgesetze) fiir
nicht-kanalisierte Morphologie-Entwicklung gefunden sowie die Anwendbarkeit einer
LEM in Abwesenheit von Oberflichenrillen gezeigt. Neben den wissenschaftlichen
Beitrdgen wurden niitzliche Modellierungs-, Optimierungs- und Datenanalysetools
(C++ und Python Codes) fiir folgende geomorphologischen Untersuchungen

entwickelt.

Schliisselworter: Oberflachenabfluss, Sedimenttransport,
Landschafts-Entwicklungsmodell, Hairsine und Rose (HR) Erosionsmodell,
Netzwerkentwicklung, Statistische Analyse, Numerische Simulation, Spektralanalyse,

Optimierung, C++, Python.
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|} Introduction

1.1 Environmental impacts of erosion

Sediment transport is a significant environmental and agricultural problem that
causes numerous disastrous side effects such as the removal of fertile agrarian soil
[Pimentel et al., 1995; Tilman et al., 2002; Novara et al., 2018], the release of carbon
from the lithosphere into the atmosphere [Quinton et al., 2010; Malusa et al., 2018]
and the mobilization of pollutants from the ground into water systems [Pavlidis
and Tsihrintzis, 2018]. The recent development of industrial activities and road
constructions has intensified this process despite the dramatically increased demand
for food and clean drinking water as a result of the global increase in population size.
In general, water and wind erosion impact 56 and 28 percent, respectively of degraded
lands and the overall cost of soil erosion in the world is estimated to be 400 billion US
dollars annually [Blanco-Canqui and Lal, 2010]. This cost includes the money spent
on the renewing of nutrients, cleaning water resources and preventing erosion. Thus,
research, management, and conservation of soil resources have become more critical

in recent years [Rodrigo-Comino, 2018].

1.2 Research motivation

In general, most of the shortcomings and failures of the current erosion models
refer to the fact that a static initial surface is assumed in the models and erosion is
calculated based on that surface, while there is a dynamic relationship between

morphological changes of a surface and erosion rate. In addition to the soil
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transport estimation accuracy, the land’s shape provides the geometry for transport
processes. Therefore, a more detailed geometrical characterization of the landscape
is crucial for soil management and different environmental analysis of water
systems. This dissertation involves detailed experiments and numerical simulations of
rainfall-driven morphological evolution at the laboratory scale and under controlled
conditions. The flumes’ areas are smaller than the common computational cell
sizes at the catchment scale. The idea is to analyze the morphological evolution
of unchanneled surfaces both statistically and physically. Detailed research questions

and methodologies are presented in section 1.5.

1.3 Theories and concepts

1.3.1 Hairsine-Rose erosion model

In contrast to wind erosion, water erosion exists in different climates and is the
dominant factor of erosion. This process is quite complex [Herman et al., 2015] and,
depending on conditions, different types of splash, rill, interrill, gully, tunnel and
streambank erosion can occur [Blanco-Canqui and Lal, 2010; Morgan and Nearing,
2011]. Several models were proposed for soil erosion prediction and sediment
transport characterization at both field and laboratory scales [Morgan and Nearing,
2011]. In large-scale models, the overall behavior of the erosion phenomenon is
measured, while process-based models focus mainly on the underlying detailed
physical descriptions. Different process-based models have been proposed by
researchers such as Haisaine-Rose (HR) model [Hairsine and Rose, 1991, 1992a, b],
Western European Prediction Erosion Project (WEPP) model [Flanagan and Nearing,
1995; Flanagan et al., 2001], Kinematic Runoff Erosion (KINEROS) model [Smith et al.,
1995], Limburg Soil Erosion Model (LISEM) [De Roo et al., 1996] and European Soil
Erosion Model (EUROSEM) [Morgan et al., 1998]. Among these models, the HR model
provides a unique description of erosion that includes different particle sizes with
different settling velocities and generation of a shield layer on the soil, which causes
protection of the original soil [Sander et al., 2011].

The HR model considers different particle size classes and incorporates a mechanistic
description of a shield layer development (that is composed of previously eroded

material that helps to protect the original soil from further erosion). This model
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was investigated theoretically [Sander et al., 1996; Lisle et al., 1998; Hairsine et al.,
1999; Parlange et al., 1999; Barry et al., 2010; Kinnell, 2013] and validated via
zero-dimensional [Heilig et al., 2001; Gao et al., 2003] and flume-scale laboratory
experiments [e.g., Jomaa et al., 2010, 2012b, 2013], as well as at the small field [Van Oost
et al., 2004]. Details of the HR model are available elsewhere [Hairsine and Rose,
1991, 19924, b], so only a summary is given here. The model’s governing equations in

the absence of flow-driven processes are:

oD oq _,

- — 1.1
ar | ox (D

0DC) 0qC) _

m.
apiP(l—H)+#adPH— viC;, i=12,.,.N (1.2
t

ot 0x
om; mi .
:viCi——adPH lZl,Z,...,N. (1.3)
ot mg

where i refers to particle size class, N is the number of size classes, t, x, D, and C;
denote the time (s), down- slope distance (m), surface water depth (m), and suspended
sediment concentration (kg m3), respectively, m; is the deposited sediment mass
per unit area (kg m2), q is the volumetric water flux per unit width (m?s™), R and
P are the excess rainfall and rainfall rates (ms™), respectively, a is the detachability
of the original soil (kgm™), p; is the mass proportion of the particle size class i in
the original soil, a, is the detachability of the deposited soil (kgm3), and v; is the
settling velocity (ms™'). The degree of shielding is measured by H = m,/m* in which
m; =Y. m; is the total mass of the deposited layer and m™ is the required mass for a
complete shielding of the original soil.

In this dissertation, the HR model is calibrated with the experimental data during
a time-varying precipitation rate (Chapter2). The calibrated model provided the
physical support for the importance of near-surface particle rearrangements on

erosion patterns of seven different particle size classes of the soil.
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1.3.2 Catchment scaling laws

Landscapes are generally separated into hillslopes and fluvial sections (river networks).
In spite of their different climates, soil types and scales, river networks have common
geometric characteristics which were widely investigated in the literature. For
example, Hack’s law [Hack, 1957] defines a scaling relation between the upstream

length (/, the longest flow path into each point) and drainage area (A):
1= Al (1.4)

where the exponent i was measured in the range of [0.5-0.7] for different river
networks [Hack, 1957; Gray, 1961; Mueller, 1972; Rigon et al., 1996, 1998]. Moreover,
for the fluvial parts of landscapes, power-law relations were found for the exceedance

probability of drainage area (P(A > a)) and upstream length (P (L > [)):

PA>a)=a P (1.5)

P(L>D=1Y (1.6)

where the exponents § and v are in the ranges of [0.42-0.45] and [0.5-0.9], respectively
[Rodriguez-Iturbe and Rinaldo, 1997; Rigon et al., 1996; Crave and Davy, 1997; Paik
and Kumar, 2011]. More investigations on landscape geometric features are reviewed
in section 1.4.1. In this dissertation, we use these metrics to characterize unchanneled
areas by considering high-resolution morphologies of overland flows at the laboratory

scale (Chapter 3).

1.3.3 The physically-based landscape evolution model

Following Gilbert’s report [Gilbert, 1877], descriptive models for river networks
emerged [e.g., Gilbert, 1877; Davis, 1892; Glock, 1931; Horton, 1945; Woldenberg,
1966]. One of the first quantitative physical descriptions of landscape evolution
was given by Davis [1892]: “The form assumed by the surface of the land depends
largely on the ratio between the processes of washing and creeping”. Afterwards,

fundamental studies on the mathematical formulation of these two complicated
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processes (“creeping” and “washing”) continued until 1989 [e.g., Smith and Bretherton,
1972; Carson and Kirkby, 1972; Kirkby, 1967, 1971, 1985; Ahnert, 1976, 1977, 1987
Dunne and Aubry, 1986]. These studies mostly concentrated on either hillslopes
le.g., Kirkby, 1971; Dunne, 1980] or fluvial networks [e.g., Shreve, 1967, 1969; Mock,
1971] and the coupling between these two regions was not robustly modeled via
physical laws. In 1989, Willgoose comprehensively classified the investigations on
landscape evolution in his Ph.D. thesis [Willgoose, 1989] and introduced the first
physically-based 2-D model with high-resolution numerical simulation [Willgoose
etal., 1991, 1992]. The model was inspired by a non-hydrologic network model that
simulated the growth of leaf veins [Meinhardt, 1976, 1982] where the process within
each cell was defined via an activation equation. Then, Howard et al. [1994] introduced
a new model without an activation parameter. With this model, it was possible to
have both creeping and flow-driven erosion within one cell. The model was followed
by Tucker and Slingerland’s numerical simulation [Tucker and Slingerland, 1994] in
which they took into account bedrock weathering [Ahnert, 1976] and bedrock channel
incision [Seidl and Dietrich, 1992; Howard, 1987; Howard et al., 1994] phenomena.

The landscape evolution model (LEM) used in this work, was firstly introduced by
Howard et al. [1994], which was then further extended and numerically solved by
Perron et al. [2008]. The derivation below is the same as Perron et al. [2008] with the
only difference that here we assume a critical stream power rather than critical shear
stress for the onset of rill erosion. By defining z(x, y, f) as surface elevation from a

fixed base level, the LEM stems from the conservation of mass:
0z R
Ps(a'i‘V-CIs):PrU (1.7)

where ¢ is time, p; and p, are respectively the bulk density of sediments and rock,
and U is the uplift rate (U = 0 in our analysis). The parameter, ¢, is the volume flux
of transportable sediment per unit width of the land surface rate which its gradient

consists of two components:
V.Gs=V.gm+V.q. (1.8)

where g, is the sediment transportation associated with water flow within the channels
and g, represents the mass sediment transport. The mass sediment transport stems

from a variety of processes such as rain splash, creeping and frost harvesting, and
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drying-wetting cycles. In our experiment, the main effects are rain splash and creeping.
This term can be modeled as a flux that is proportional to the topographic gradient
with the coefficient D:

Gm=-DVz (1.9)

The flow-driven sediment transport is caused by the fluid flow within rivers. This
term can be calculated based on two criteria: I) stream power and II) shear stress.
By defining Q as the flow stream power and QF, as the critical stream power, the

flow-driven sediment transport flux is:
V.ge=-k f(Q-QF) (1.10)

where the coefficient k; is an empirical parameter which determines sediment
transportation capacity and f({) = { H({) with H({) being the Heaviside step function.

The stream power is defined as the production of shear stress and fluid velocity:
Q=%.V (1.11)

For a uniform open channel flow, the steady shear stress flux (7) is:

-

T=pwg&RS (1.12)

where p,, R and S are the water density, hydraulic diameter, and surface
slope, respectively. By assuming w and V as the channel width and the flow

velocity,respectively, the flow rate is:
Quw=kRwV (1.13)

where k; is an empirical coefficient. A relation defines the channel width as a function
of the flow rate [Leopold et al., 1953; Rodriguez-Iturbe and Rinaldo, 1997; Knighton,
2014]:

w = ks Q% (1.14)
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where k3 and a are the coefficients and Q is the flow rate. By combining the

relations 1.11 to 1.14, the expression for Q is:

Pw8 1-a
Q=—+— S 1.15
ko ks Qu (1.15)

Finally, the transport equation is in the form of:

o
a—j = DV2z—K f(Q™S~-Q¢) (1.16)
where
kl kl *
K=pruws & Qer = 5 Ler

The two parameters D and K are functions of rainfall intensity, droplet size, sediment
properties (e.g., density, particle size, cohesion, etc.) and surface roughness [Furbish
et al., 2007; Dunne et al., 2010; Mahmoodabadi and Sajjadi, 2016; Sadeghi et al.,
2017a]. The exponent, m, takes values in the range of 0.41-0.857 [Willgoose, 1989;
Rodriguéz-Iturbe and Rinaldo, 1997]. At large scales, the first term on the right-hand
side of equation 1.16 is dominant on hillslopes and includes different processes such
as weathering [Perron, 2017], creeping and rain splash [Culling, 1960, 1963, 1965].
In Chapter 4, the LEM (equation 1.16) is calibrated with a flume-scale experiment
which includes an unchanneled overland morphology evolution under a spatially
non-uniform precipitation rate. The second term on the right-hand side of the
equation is usually assumed to model sediment transport within the river network
(since this term vanishes elsewhere). However, in our flume-scale experiment, there
are no surface incisions, and the overland flow is at all times continuous across the
entire flume. Thus, the overland flow in the experiment is modeled as a network,
although there is no river network, as found in previous applications of the LEM
[Tucker and Hancock, 2010; Benaichouche et al., 2016; Whipple et al., 2016; Perron,
2017; Hancock et al., 2017]. We selected m = 0.5 as this value is also used in studies on
optimal channel networks based on the theory of minimum energy expenditure for

river network evolution [Rinaldo et al., 1992, 1993].
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1.4 State of the art

1.4.1 Geometrical characteristics of landscapes

River networks are analogized as veins of the Earth. Therefore, their geometrical
structure and organization are among the essential factors in the environmental
transport phenomena and water resource management. The selected researches of
this domain are presented in Table 1.1. The works include finding both the geometrical

characteristics and/or physical reasons behind their fractal shapes.

Table 1.1 — Selected works on geometrical characteristics of landscapes.

Author(s) Remarks

Glock [1931] He postulated that the network evolution includes two
stages of “extension” in which the network grows and
increase its complexity and “integration” where the
network simplifies itself by reducing the number of

branches.

Horton [1945] He took the initial steps toward characterizing river
network structure by calculating the ratio of stream
lengths and number of streams for each order class of a

river network.

Hack [1957] He found that the upstream length (/, the longest
flow path into each point) and drainage area (A) were
related via a scaling relation (I = A"). The exponent
h was measured in the range of [0.5-0.7] for different
river networks [Gray, 1961; Mueller, 1972; Mosley and
Parker, 1973; Montgomery and Dietrich, 1992; Maritan
et al., 1996; Rigon et al., 1996, 1998; Willemin, 2000;
Sassolas-Serrayet et al., 2018].

Continued on next page
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Table 1.1 — continued from previous page

Author(s) Remarks
Mandelbrot [1982] He described the fractal features of different natural
systems such as clouds, mountains, rivers and
watersheds.
Tarboton et al. [1988] River networks were analyzed to find out their fractal

dimension using Richardson [Richardson, 1961] and
box-counting [Lovejoy et al., 1987] methods. They

reported a fractal dimension of 2 for the networks.

Matsushita and Ouchi  An algorithm to determine the self-affine exponents of
[1989] curves was introduced. This approach can be used to
determine the fractal dimension of the perimeter of a

basin or its main channel curve.

Marani et al. [1991] They studied the fractal dimension of river networks
and showed that in the limit, the bifurcation ratio

equaled the total area ratio.

Rinaldo et al. [1992] In this paper, they analyzed the relation between the
minimum energy expenditure and fractal structure
of river basins. The concept of minimal energy
expenditure in river networks was introduced based
on three principles: (1) minimum energy expenditure
in any link of the network, (2) equal energy expenditure
per unit area of channel anywhere in the network, and
(3) minimum total energy expenditure in the network
as a whole. It was concluded that the fractal behavior of

networks was a product of the least energy expenditure.

Continued on next page
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Table 1.1 — continued from previous page

Author(s)

Remarks

Rinaldo et al. [1993]

Helmlinger et al. [1993]

Rigon et al. [1996]

Rodriguéz-Iturbe and
Rinaldo [1997]

Birnir [2008]

Sassolas-Serrayet et al.
[2018]

They introduced fractal river networks as two
dimensional self-organized critical systems that
adjust their structure during the random perturbations
of tectonic or hydrologic origin.

They used the Digital Elevation Model (DEM) data of
two river basins and studied the effect of threshold
area on different features such as drainage density,
number of streams, basin order, Horton’s ratios
and fractal dimension. They concluded that there
was a considerable variation in different parameters

depending on the chosen threshold area.

By analyzing the power laws (based on the exceedance
probability of drainage area and moments of the
upstream length), they found interdependence of the

power law exponents.

The book contains a broad description of geometrical

features of river basins from basic to advanced levels.

Through an in-depth mathematical analysis of river
flows, he derived a theoretical value of 0.571 for Hack’s

exponent.

They demonstrated that the catchment shape depends

on the Hack’s coefficient and not on its exponent.

10
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1.4.2 Laboratory-scale rain-induced sediment transport

At the field scale, dynamic changes of the network structure require long time scales
[Shumilovskikh et al., 2016] and include many uncertain factors such as climate [e.g.,
Nearing et al., 2004; Abbaspour et al., 2009; Jafari and Bakhshandehmehr, 2013; Azari
etal., 2016; Cerda et al., 2018; Wu et al., 2018], chemical and physical properties of
sediments [e.g., Certini, 2005; Pouyat et al., 2007; van der Meij et al., 2018; Morvan
etal, 2018; Sheng et al., 2018; Karaca et al., 2018], episodic gully erosion [Patton and
Schumm, 1975; Prosser et al., 1994; Poesen et al., 1998; Leenman and Tunnicliffe, 2018],
different vegetation types [e.g., Zhou et al., 2008; Mohammad and Adam, 2010; Zhang
etal., 2015; Zhou et al., 2016; Feng et al., 2018; Ding et al., 2018], tectonic effects [e.g.,
Ballato et al., 2015; Vanmaercke et al., 2017; Jaberi et al., 2018], land use [e.g., Yang
etal., 2003; Khalili Moghadam et al., 2015; Zare et al., 2017] and the rate of sediment
production [Jaafari et al., 2015; Naghdi et al., 2017]. Experimental setups are extremely
useful tools to understand the physics and further model development. In this section,
highlighted experimental works on sediment transport and morphology evolution
during a simulated rainfall are reviewed. The experiments are separated into three
main categories: I) single drop impact (Table 1.2), IT) unchanneled surfaces (Table 1.3)

and III) channeled morphologies (Table 1.4).

1.4.2.1 Single drop impact on granular beds

This thesis includes flume-scale investigations on the rainfall-driven morphological
evolution which is the accumulation of grain-scale changes on the surface during
the rainfall event. Therefore, to have a comprehensive review of the experimental
works, single drop impact studies are included here. Raindrop impacts are the
first interactions of land and water which different kinds of processes and surface
morphologies can result depending on droplet momentum, particle distribution
of the granular bed, cohesion and humidity. This phenomenon is quite complex
and involves many unknown parameters. In recent years, particle-based models
were developed to directly simulate processes that involve fluid-particle and
particle-particle interactions via coupling the Navier-Stokes equations and granular
models such as the Discrete Element Method [e.g. Luding, 2008; Chen, 2009; Jajcevic
et al., 2013; Kloss et al., 2012; Pietsch et al., 2018]. In addition to direct numerical

simulation, process-based erosion models such as the HR model [Hairsine and Rose,

11
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1991, 1992a, b] and landscape evolution models [Willgoose, 1989; Howard, 1994;
Theodoratos et al., 2018] represent the raindrop impact via empirical relations or as
one of the factors in a more general formula. In order to develop and improve these
different physical models, laboratory work is indispensable to obtain more detailed
observations and find unknown parameters and interaction properties. In the last two
decades, thanks to the development of high-speed camera technology, it is feasible to
capture grain-scale processes with high resolution. In Table 1.2, some works in this

area are reviewed.

Table 1.2 — Some laboratory works on single drop impact on granular beds.

Author(s) Remarks

Royer et al. [2005] They studied the granular jet formation of highly loose
dry fine particles by dropping a falling solid sphere.
They showed the narrowing effect in the splashed dry
particles even when there was no surface tension. This
study highlighted the significance of dynamic coupling
between the granular material and gas flow.

Furbish et al. [2007] Rain splash of dry sand was revealed at different surface
slopes using a high-speed imaging and sticky paper
splash targets. They found a similar ejection distance
for different droplet sizes. However, the number of

detached particles increased by larger droplet sizes.

Katsuragi [2010] Considering different droplet impact speeds and grain
sizes, he found a power law (% = S—i We%) for the
resulted crater radius (R) as a function of the Weber
number (We = M) where Ry, pw, pg, v and A
are the droplet radius, water density, grain bulk density,

impact velocity and surface tension, respectively.

Continued on next page
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Table 1.2 — continued from previous page

Author(s)

Remarks

Marston et al. [2010]

Katsuragi [2011]

Emady et al. [2011]

Delon et al. [2011]

Hamlett et al. [2013]

Six types of liquid were dropped into the powder
with various packings. They found that the Weber
number and packing fraction are the main parameters
in determining the resulted surface shape after the

droplet impact.

He studied the impact depth and cratering radius.

Variety of droplets size, liquid types, sediment bed
materials and particle sizes were examined. He found
that the time scale of penetration was proportional to

the square root of the droplet viscosity.

They subjected three physically different powders to
three types of liquid drops. Tunneling occurred on
the surface of the cohesive powder beds. However, for
coarser powders, granules were formed by a spreading

mechanism at a low impact velocity.

The crater formation was studied by considering
droplet size and velocity, as well as the grain size. The
maximum (D,4x) and final (Dy;,4;) diameters were
compared as a function of the Weber number. There
was a critical the Weber number which rendered the

maximum ratio of Dyax/Dfinal-

Hydrophobic and hydrophilic granular materials were
subjected to droplet impacts. The hydrophobic
particles showed three phases of rebound, pinning
and fragmentation whereas the hydrophilic particles

revealed solely the pinning state.

Continued on next page
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Table 1.2 — continued from previous page

Author(s)

Remarks

Longet al. [2014]

Zhao et al. [2015]

Zhang et al. [2015]

Joung and Buie [2015]

They used a three-dimensional, time-resolved, particle
tracking approach to investigate the impact of a liquid
droplet onto a granular bed. It was found that only
about 0.2 % of the impact momentum was transferred

into the ejected particles.

They measured the spreading diameter of droplets,
their penetration into the surface and morphology
deformation. Different impact velocities and granular
materials with various packing fractions were tested
(droplet size = 2.8 mm, particle size = 70-110 um,
ps = 2500 kgs™). It was pointed out that the grains
underneath the droplet splash had a critical packing
fraction of ¢p* = 0.588 during the impact regardless of

the initial packing fraction.

The scale of craters generated on wet granular media
was explored (Droplet size = 1.8 mm-5.3 mm, particle
size = 90 um). They used mineral oil to neglect the
evaporation effects to the extent possible. Moreover,
they tracked the deformation of the surface using a
scanner and measured compressive stresses at different
saturation rates (0-0.8 %). They showed that the unique
energy partition originally proposed for liquid-drop
impact cratering in dry granular media also applied

for wet media.

They found that aerosol can be generated by raindrop
impact. A high-resolution camera captured the bubbles
by which the elements of the porous media delivered

into the environment.

14
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Table 1.2 — continued from previous page

Author(s) Remarks

Ryzak et al. [2015] Surface images after one, five, and ten drop impacts
were recorded to find out differences between the
consecutive impacts. They observed that the deformed
surface area and the number of detached droplets

increased by repetition of the impacts.

Katsuragi [2016] This book includes the theories behind soft impacts and

cratering phenomena.

Lee et al. [2016a] Impacts on three different natural porous stones were
investigated at various drop velocities. It was shown
that apart from low impact velocities, the spreading

diameter increased by increasing the Weber number.

Leeetal. [2016b] A numerical simulation (CFD-VOF) was validated
against the experimental data for the impact of three
different liquids on porous media. The validation was
used to find the principal model input parameters. They
reported that viscous dissipation could not be neglected

at low impact velocities.

Lardier et al. [2018] They studied the drop impact on two beds of pure sand
and loamy soil. It was found that the spread of drop was
more anisotropic on the loamy sand due to the wider

distribution of particle sizes.

1.4.2.2 Unchanneled surfaces

In this section, we review some laboratory works on sediment transport at hillslopes
where no rill is formed on morphology (Table 1.3). Unchanneled surfaces can be
generated in two ways. First, when the shear stress of the overland flow is less than

the critical shear stress needed to detach particles from the surface and make a

15
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rill. Second, when the shear stress is sufficient to detach particles, but the droplet
momentum is adequately high to smooth morphology. In other words, the advective
(rilling) effect of the overland flow is less than the diffusive (smoothing) effect of

droplet impacts [Sweeney et al., 2015].

Table 1.3 — Laboratory-scale studies of rainfall driven sediment transport on
unchanneled surfaces.

Author(s) Remarks
Neal [1938] On a 1.1-mx3.66-m flume, he studied the effect of slope

and rainfall intensity on erosion and runoff. It was

shown that on an initially dry surface, runoff did not
occur until several minutes and after a certain time, it
reached a fixed value. Moreover, he found that erosion

intensified by increasing slope and rainfall intensity.

Heilig et al. [2001] They designed a simple experiment on a
1.1-cmx3.66-cm soil surface to validate the HR
model. The results clearly revealed the formation of a
shield layer, and the quantitative data were in a good
agreement with the analytical solutions of the HR

model.

Gao et al. [2003] On a circular (diameter = 7 cm) soil surface, the effect of
ponding depth and soil detachability was investigated
on soil erosion. Detachability was a constant value
up to a critical overland flow depth and considerably

decreased for larger depths.

Continued on next page
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Table 1.3 — continued from previous page

Author(s) Remarks

Gao et al. [2005] By the same experimental setup of Gao et al. [2003], they
saturated the soil with chloride and applied different
rainfall intensities to measure chloride concentration
change over time. By including splash erosion effects in
the transport equation of the solution, they developed
a model for chloride transport that was in agreement

with the experimental data.

Walker et al. [2007] In an experiment similar to that of Gao et al. [2003], they
concluded that infiltration reduces the soil erosion rate.
They also showed that the HR model can predict this

behavior.

Tromp-van Meerveld Using flume experiments (6-mx2-m), they tested the
etal. [2008] HR model by using measured and modified settling
velocities. This study showed that the optimized settling
velocities for finer and coarser particles were higher and

lower than calculated from Stoke’s law, respectively.

Jomaa et al. [2010] They validated a 1-D HR model at different flume
widths (with 6-m length) and showed that larger
particles had a more scattered erosion than the finer

particles.

Armstrongetal. [2012] Formation of a shield layer on the soil was tested by
considering the water depth, infiltration and slope of a
25-cmx25-cm soil surface. They observed that shield
layer generation intensified by increasing the ponding
water depth, slope and infiltration. However, the effect

of infiltration was lower than the other factors.

Continued on next page
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Table 1.3 — continued from previous page

Author(s)

Remarks

Jomaa et al. [2012a]

Jomaa et al. [2012Db]

Jomaa et al. [2013]

Dongetal. [2013]

Sadeghi et al. [2017a]

They measured soil erosion rate in the presence and
absence of stone arrangement on a 6-mx2-m flume
surface. It was shown that the erosion rate was

proportional to the exposed soil.

Capability of the 1-D HR model was tested when
there are rock fragments on the soil surface. They
concluded that with high stone coverages and low

rainfall intensities, the HR model is less accurate.

Soil erosion rates were investigated in the presence
of rock fragments and multiple rainfall events. The
results revealed that for a short period of time, erosion
is dominated by initial condition and afterward, it is

mostly controlled by rainfall intensity.

They introduced a power function to calculate the
concentration of dissolved potassium in the soil
and compared the model with an experiment (on a
1-mx0.4-m soil surface). They concluded that the
solute concentration was affected by the initial soil

moisture, rainfall intensity and slope.

At different precipitation rates and flume slopes
(6-mx1-m), they measured the soil particle distribution
during the splash process by inserting local cups on
the flume surface. They pointed out that the particle
distributions at both upward and downward of the

flume-slope were different from the original soil.

18
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Table 1.3 — continued from previous page

Author(s)

Remarks

Hu et al. [2018]

Kiani-Harchegani et al.
[2018]

On a circular soil surface (diameter = 10cm), they
separated the effect of initial internal forces of particles
and splash effects. The results revealed that the soil’s
initial forces could have more than 65% contribution to

the splash erosion.

On a 6-mx1-m flume, they compared the grain size
distribution of suspended sediment with original soil at
different rainfall intensities and slopes. It was found
that the proportion of finer particles in the eroded

sediment was more than that of the original soil.

1.4.2.3 Channeled surfaces

In this category of laboratory-scale investigations, advective processes (shear-driven

erosion) overcome the diffusive ones so that rills are generated on the surface.

The experiments include physical interpretation and description (initiation of rills,

knickpoint and headcut migration, minimization of energy expenditure, etc.) and/or

geometrical characterization (drainage density, scaling laws, fractal features, etc.) of

rill networks. The selected studies are presented in Table 1.4.

Table 1.4 — Experimental investigations of sediment transport and network analysis

on incised beds.
Author(s) Remarks
Flint [1973] On a 45-cmx29-cm box, he found an exponential

growth of the network and its drainage density. He
carried out two experiments with maximum reliefs
of 16 cm and 13 cm where at the lower relief, a more

dendritic network was reported.

Continued on next page
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Table 1.4 — continued from previous page

Author(s)

Remarks

Mosley [1974]

Parker [1977]

Phillips and Schumm
[1987]

Bryan and Poesen
[1989]

He studied on soil erosion at 90 mm h™! rainfall intensity
and different slopes (3-11 %) on a 15.3-mx9.2-m flume.
Three initial surfaces of plane, divergent and convergent
were considered. By using these experiments, six
different types of erosion (sheet flow, micro rilling, rain
splash, rill incision, recession of rill headcuts and lateral

smoothing of rills) were qualitatively described.

On a 15.3-mx9.2-m flume, he analyzed rill formation on
an artificial non-smooth surface with the intersection
of two plates. He found that at low-reliefs, the network
had a “headward growth” where the internal variation
within the network was negligible. On the other hand,
he identified considerable rearrangement within the
incised network for the high-relief scenario which he

named “Hortonian growth”.

They changed the main-slope of a 3-mx2-m flume
from 1.1 to 16% and described rill networks’ structures.
The experiment revealed that by increasing slope, the
network becomes less dendritic and the junction angles

to the mainstream decreases.

The effect of slope length on runoff, infiltration and rill
development was studied. To this end, they divided a
17-mx0.85-m flume into seven sections and observed
that the infiltration pattern was heterogeneous in the
space because of surface sealing and incision. Moreover,
they concluded that it is not possible to have a generally
applicable relationship between the slope length and

discharge.
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Table 1.4 — continued from previous page

Author(s) Remarks

Wittmann et al. [1991]  They generated a dendritic area using a rotating nozzle
and found that the rill network’s fractal dimension

linearly increased by increasing the water flow rate.

Slattery and Bryan They studied erosion and rill formation on a 15-m long
[1992] flume and 8.7% slope. It was revealed that the rills
developed via the establishment of a knickpoint after
a supercritical flow. However, they could not clearly

define the rill initiation by a hydraulic metric.

Gomez and Mullen An incised surface was generated on a 6.1-mx1.8-m

[1992] flume and they identified the initiation, extension and
abstraction of the networks that were explained by
Glock [1931].

Czirdk et al. [1993] On a 60 cmx 18 cm surface, the self-affinity of roughness
was studied, resulting in the temporal and spatial

scaling exponents of 0.9 and 0.78, respectively.

Crave et al. [2000] An experiment was performed on a 14-cmx20-cm
box where the droplet size was about 5um so that
raindrop impacts did not disturb the fluvial field. It
was observed that the average elevation exponentially
decreased during about 160 min of rainfall. Moreover, a
power law with an exponent of -0.045 was reported for

the relation between drainage area and slope.

Continued on next page
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Table 1.4 — continued from previous page

Author(s)

Remarks

Hasbargen and Paola

Brunton and Bryan

Hancock and Willgoose

[2000]

[2000]

[2001]

After generating a thoroughly dissected domain (a
circular area with a diameter of about 1 m) with a
rainfall intensity and an uplift rate of 6.5 and 2.8
ums!, respectively, it was found that the ridges
were regularly migrating and reordering during the
experiment. Moreover, they measured an oscillating
erosion rate around the uplift rate and related the

oscillation to knickpoint migration in the domain.

The effect of network structure on sediment and water
fluxes was studied on a 7.1-mx2.4-m flume. They
generated three different networks and related the
sediment flux variation to morphological processes
(bank collapses, tributary development, knickpoint
incision). This study highlighted the necessity of
recording the rill network characteristics to have a more
precise measurement and interpretation of water and

sediment fluxes.

An experimental landscape evolutionona 1.5-mx1.5-m
flume was compared with a physically-based model
(SIBERIA) results. For comparison, they used the
hypsometric curve (the normalized drainage area
versus normalized elevation), width function,
cumulative area distribution, and area-slope
relationship. It was concluded that SIBERIA could

correctly simulate the experimental model landscape.
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Table 1.4 — continued from previous page

Author(s) Remarks

Romkens et al. [2002] They studied erosion and rill formation on rough,
medium and smooth surfaces with temporally
decreasing and increasing rainfall intensities (flume
size: 3.75mx0.6 m). It was shown that the erosion rate
was higher for the rough surfaces. Furthermore, surface
topography strongly affected the runoff distribution

and the rill network structure.

Hasbargen and Paola  They showed that the spatial and temporal evolution of
[2003] landscapes is intrinsically stochastic, even at constant
external forcing factors (mainly uplift and rainfall) of
the system. The sediment box was the same as that
used in Hasbargen and Paola [2000]. They also found
an exponent in the range of 0.13-0.16 for the slope-area

power-law relations.

Pelletier [2003] On a 15-mx9.2-m flume, they pointed out that
the initial main-slope patterns have a substantial
effect on morphology evolution and also on the final

configuration of a rill network.

Lague et al. [2003] With an experimental setup similar to that of Crave et al.
[2000], they investigated the effect of initial morphology
on the transient and steady-state conditions. They
found that the initial morphology plays a significant
role in the transient phase of evolution. Furthermore,
a power law relation with an exponent of -0.12 was
resulted for slope-drainage area relation, regardless of

the initial condition and uplift rate.

Continued on next page
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Table 1.4 — continued from previous page

Author(s)

Remarks

Bonnet and Crave
[2003]

Gomez et al. [2003]

Raff et al. [2004]

With the same experimental setup of Crave et al. [2000],
they studied the effect of climate variation on the mean
elevation of a basin. They observed that at a constant
uplift rate, by a sudden increase of the rainfall rate,
the average elevation decreased. However, a sudden
decrease of the rainfall intensity induced a climatic
uplift. They discovered that the fluvial network can
be affected by climate forcing in the same range of

tectonics.

Using a 4-mx2-m flume, rill network evolutions at
two slopes (5 and 20 %) and different initial surfaces
(low, medium and high roughness) were investigated.
They concluded that incised surfaces (at 20 % slope)
evolved according to the principle of minimum energy
dissipation formulated for river networks. However,
when splash played the dominant role in the erosion
process (at 5% slope), the energy dissipation calculated
by the catchment-scale formula did not decay during

the surface evolution.

They studied the evolution of an incised surface on
a 10-mx3-m flume at two different slopes (9° and 5°).
They observed that by increasing the slope, the average
depth and width of the rills increased while the ratio of
width to depth decreased.
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Table 1.4 — continued from previous page

Author(s) Remarks
Rieke-Zapp and They considered five slope shapes under a constant
Nearing [2005] rainfall intensity of 60 mm h'! and studied rill formation

by describing the patterns after 90 mins of rainfall
(flume size: 4-mx4-m). It was reported that
the energy expenditure was a physical measure for
self-organization of the rill networks. Moreover, they
observed the measured drainage density to be relatively

independent of the slope shape.

Babault et al. [2005] The experiment consisted of a 40-cmx60-cm sediment
box, surrounded by a plateau area. The central box
(40-cmx60-cm) was raised by a constant uplift rate
while eroded sediments were deposited on the plateau.
The average elevation and denudation rates were
measured. It was pointed out that when the time
scale of deposition was higher than the ones for relief
development (the central part), the relief entered a
dynamic equilibrium. The dynamic equilibrium was
defined as when the denudation equaled the relative
uplift rate (the tectonic uplift - the rate of deposition).
This study highlighted the contribution of piedmont

sedimentation to the high elevation of mountain peaks.

Bigi et al. [2006] On a circular area with a diameter of 1 m, they applied
a uniform rainfall distribution of 10.8 ums! (droplet
size < 200 um) and an uplift rate of 3.1 ums' for
13h. They observed the effectiveness of knickpoints
along streams on hillslope failures. It was concluded
that the landslides were more probable to occur at the

downstream of knickpoints.

Continued on next page
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Table 1.4 — continued from previous page

Author(s)

Remarks

Turowski et al. [2006]

Babault et al. [2007]

Yao et al. [2008]

Tatard et al. [2008]

They studied the effect of uplift rate on rill networks’
geometries on a 40-cmx60-cm sediment box with
different rainfall (45 and 140 mm h'!) and uplift (0.1-2.5
cmh!) rates. They observed that the channels’
width, depth, and cross-sectional area increased with
discharge as a power law. Moreover, channel slopes
increased linearly with increasing the uplift rate and

were independent of discharge.

In a similar experiment as that of Babault et al. [2005],
they showed the piedmont growth into the upstream
and smoothing of the incised morphology even in the

absence of diffusive effects.

Rill formation on a cohesive sediment was investigated
on an 8-mx3-m flume. They measured rill initiation,
flow depth and critical shear stress at different rainfall
intensities and slopes. They found that rill initiation
was more affected by the flume slope than the rainfall

intensity.

On a 10-mx4-m flume with 1% slope, they measured
the velocity field using the Scalable Vector Graphics
technology. They reported that the friction factor
decreased by increasing the Reynolds number (Re = 4%
where u, r and v are average velocity, hydraulic radius
and fluid kinematic viscosity, respectively). In addition,
they reported less sensitivity of the friction factor to soil

roughness at higher Re.
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Table 1.4 — continued from previous page

Author(s) Remarks

Berger et al. [2010] Using a 2-mx 1-m box, they considered three different
slopes (10, 20 and 30 %) and rainfall intensities (60, 90,
120 mm h!) and analyzed rill development. Compared
to the slope, rainfall intensity had a larger effect on
the rill formation. Furthermore, the reported that
the theory of minimization of energy expenditure was

capable of describing the rill network establishments.

Gordon et al. They conducted experiments on a 7.0-mx2.4-m flume
[2011, 2012] and non-cohesive sediment. They studied the response
of arill network to two immediate reductions of the base
level. They found that significant soil erosion occurred
when the base level was dropped and headcuts actively
migrated upstream. However, a few minutes after the
base level reduction, the sediment fluxes decreased and

the rill network migration stopped.

Shitetal. [2013] They carried out five experiments with slopes of 15°, 20°
and 25°, and rainfall intensities of 60, 90 and 120 mmh.
Rill networks were visualized and the rill sizes were
reported. They found that interrill erosion decreased as

the rills developed.

Continued on next page
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Table 1.4 — continued from previous page

Author(s)

Remarks

McGuire et al. [2013]

Heetal. [2014]

Bennett et al. [2015]

Bennett and Liu [2015]

They used a numerical model [Simpson and Castelltort,
2006] in which the Digital Elevation Model of the flume
was used as the initial condition. The numerical model
calculated the direct material transport due to the rain
splash, fluvial transport and sediment deposition. The
deposition term in the model did not have a significant
effect on the model-experiment agreement. They also
showed that the direct impact of raindrops was an
essential factor in limiting the entrainment rate and
that the rill network geometries were dependent on the

relative strength of advective and diffusive processes.

Two types of soil (clay loam and loess soils) were
subjected to two rainfall intensities on a 5-mx1-m
flume at 10 % slope. They pointed out that the erosion
rate of the loess soil was intensified as the rill was
formed on the surface whereas the loam soil had the
same sediment flux before and after the rill generation

(due to the surface cohesion).

On a 7.0-mx2.4-m flume, they described surface
incision of a cohesive soil as a result of an episodic
base-level lowering. The bifurcation, length ratios and
fractal dimension had more oscillation at the beginning
of the experiment and reached a steady value after a

relatively short time.

They assessed the self-similar characteristics of an
incised surface of cohesive sediment on a 7.0-mx2.4-m
flume and found an exponent of 0.49 for the Hack’s law
[Hack, 1957].
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Table 1.4 — continued from previous page

Author(s) Remarks

Shen et al. [2015] They generated rill networks on a cohesive soil
surface at two rainfall intensities of 50 and 100 mmh!
(10-mx3-m flume). They measured soil loss and
different geometrical characteristics such as mean rill
width, depth and inclination angle, rill density, and rill
tortuosity complexity. Overall, a more complex network

was reported at the lower rainfall intensity.

1.5 Research questions and methodologies

As described in Table 1.3, previous works on unchanneled surfaces concentrated
more on erosion rate than on the morphological changes. Generation of a
shield layer due to deposition of larger particles is mentioned ubiquitously
in the literature. However, it is not clear if the slight particle rearrangements
(without rill formation) can lead to hysteretic sediment fluxes for rainfall-driven
erosion. Furthermore, the patterns that the deposited particles make on the
surface (micro-roughness) are unknown. Therefore, introducing some metrics for
unchanneled morphology evolutions enhances future modeling and experiments
by quantifying the expected micro-roughness condition during the process.
Apart from a geometrical quantification, having more physical insights about the
unchanneled surface evolutions is crucial. In the flume-scale studies, the calibrations
of physically-based morphology evolution models are limited to the steady-state
condition of incised surfaces, and the transient states of the models are not compared
with the measurements. Additionally, it is not known how efficiently a large-scale LEM
can capture the dynamic changes of morphologies when there is no channeling. In
this dissertation, the objective is to investigate the details of high-resolution overland
flow morphologies at the laboratory scale. To this end, the statistical and physical
aspects of the morphology evolution are considered as below:

I) The effect of subtle morphological changes on the hysteresis patterns of rainfall-driven
sediment fluxes:

Hysteresis loops are omnipresent for shear-driven sediment transport in river flows
le.g., Klein, 1984; Williams, 1989; De Girolamo et al., 2015; Sun et al., 2016; Dean
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et al., 2016; Sherriff et al., 2016]. In this work, we investigate the same patterns for
rainfall-driven sediment transport. The HR model (section 1.3.1) along with a flume
experiment is implemented to study the effect of morphological change (generation
of a shield layer as a result of particle deposition) on the hysteresis loops of different
sediment particle sizes (Chapter 2). Erosion rates are measured during a temporally
variable precipitation rate. The HR model provides the theoretical support for the
descriptions by calculating the generation of the shield layer on the soil surface which
is extremely difficult to measure on the flume.

II) Statistical characterization of overland flow morphologies:

After highlighting the importance of micro-roughness variations in the dynamics
of the erosion phenomenon, the geometrical structure of unchanneled surfaces is
statistically investigated under a spatially non-uniform rainfall (Chapter3). The
details of morphology are mainly affected by deposited particles. In the analysis,
the non-incised surface is characterized as a network analogous to large scale river
networks (section 1.4.1). Based on the extracted network, the self-similarity of the
system is presented as power laws of exceedance probabilities of discharge and
drainage area, and upstream length.

II) Applicability of a physically-based catchment-scale model to unchanneled
morphologies at the laboratory scale :

After statistically characterizing the unchanneled morphology evolutions, in
Chapter4, a physically-based LEM (section1.3.3) is tested at the flume-scale.
Although there is no observable rill on the surface, the continuous flow is represented
by a discharge network. The LEM is numerically solved and calibrated to simulate the
experimental data. The objective is to find out the strong and weak points of a typical
catchment-scale model for a diffusive dominated domain at the flume-scale.

In order to resolve more details of morphology via the LEM, some modified
approaches are tested. Based on the roughness probability distribution function,
the LEM is applied as a stochastic partial differential equation in different scenarios.
The model is modified by considering heterogeneous parameters in seven different
scenarios. The modified models are calibrated to reproduce the scaling laws found
experimentally in Chapter 3. Then, the simulation results are critically compared with

the experimental and the original model to suggest the best modification approaches.
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Chapter 2. Hysteretic sediment fluxes in rainfall-driven soil erosion: Particle size
effects

2.1 Introduction

Estimates of temporal variations of suspended load with discharge are needed for the
assessment of aquatic ecosystems, estimates of contaminant export from catchments,
and the prediction of stream water quality [Walling and Webb, 1985; Wood and
Armitage, 1997; Batalla et al., 2004; O’Connell and Siafarikas, 2010; Rossi et al., 2013;
Halliday et al., 2014; Karimaee Tabarestani and Zarrati, 2015; Lloyd et al., 2016; Rose
et al., 2018]. The relationship between discharge and sediment concentration is
available for different catchments and rivers [Klein, 1984; Williams, 1989; Seeger et al.,
2004; Nadal-Romero et al., 2008; Sadeghi et al., 2008; Smith and Dragovich, 2009; Eder
etal., 2010; Alemayehu et al., 2014; De Girolamo et al., 2015; Sun et al., 2016; Dean et al.,
2016; Sherriff et al., 2016]. Depending on the variation of discharge and sediment
concentration versus time, different hysteretic concentration-discharge curves can
be generated including clockwise, anticlockwise, and figure eight. At the plot scale,
Strohmeier et al. [2016] examined soil erosion under temporally variable rainfall at
two different locations and assessed the effect of extreme rainfall events on long-time
erosion. They reported that a few extreme rainfall events can have a permanent effect
on land degradation in contrast to lower intensity but frequent events. Their results
also show the opposite case, i.e., that the soil loss can be mainly caused by a large
number of low intensity rainfall events rather than the rainfall extremes. The different
patterns were due to spatially variable factors in the landscape such as soil type, land
use, and slope.

Hysteresis loops are a feature of plot-scale and catchment-scale sediment transport.
Several studies investigated the factors and processes responsible for these loops
in order to interpret or determine the distribution of sediment sources within a
catchment [Seeger et al., 2004; Smith and Dragovich, 2009; Yeshaneh et al., 2014;
Hamshaw et al., 2018]. The difficulty of interpretation at these scales is that there are
complications arising from spatial and temporal variability in climate [Ghahramani
and Ishikawa, 2013; Arjmand Sajjadi and Mahmoodabadi, 2015; Dai et al., 2016], soil
types [Keesstra et al., 2014; Rodrigo Comino et al., 2016], land use [Cerda et al., 2009;
Prosdocimi et al., 2016], topography [Ghahramani et al., 2012], catchment connectivity
[Ghahramani and Ishikawa, 2013; Marchamalo et al., 2015; Masselink et al., 2016],
channel storage and bank erosion [Buendia et al., 2016], and soil saturation and the
initial condition of the surface soil [Seeger et al., 2004; Bussi et al., 2014; Kim and

Ivanov, 2014; Pietror et al., 2015]. Hysteresis patterns are generally seen as complex
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and their interpretation is not straightforward [Gao and Josefson, 2012; Aich et al.,
2014; Juez et al., 2018].

Simplified laboratory systems are more amenable to develop understanding of
specific processes. For instance, hysteresis loops can be obtained under a
single-peak individual storm event on a planar landscape. For this case, Sander
et al. [2011] conducted simulations using the Hairsine and Rose (HR) model
[Hairsine and Rose, 1991, 1992a, b] in which variations in the initial condition of
the deposited layer (i.e., previously eroded soil) were imposed. They found that
not only were all the specific forms of the hysteretic loops of Williams [1989] (i.e.,
clockwise—using a well-developed spatially uniform deposited layer at ¢ (time) =
0, counter-clockwise—using no deposited layer at ¢ = 0, and figure eight—having
a spatially varying deposited layer at ¢ = 0) straightforward to reproduce, but they
could also replicate the same patterns found in catchment studies by Eder et al. [2010]
and Oeurng et al. [2011]. Subsequently, Zhong [2013] extended the results of Sander
et al. [2011] to demonstrate that a variety of multilooped hysteresis patterns could be
obtained without the need for flows over a complex topography or for multiple storm
events.

The work of Sander et al. [2011] and Zhong [2013] shows that the HR model reproduces
hysteretic loops in sediment concentration versus discharge as a result of two factors.
First, the model accounts for the spatial variability in the distribution of easily erodible
sediment at the start of an event. Second, it accounts for deposition as a separate
rate process and as such directly models the preferential deposition of different
sediment sizes resulting in the growth of a deposited layer having different erosive
characteristics to the original soil bed. Thus, hysteresis is a result of interactions
between the time-varying overland flow and differences between the cohesive strength
of the original uneroded soil and deposited layer. Consequently “the [initial] spatial
distribution and particle size composition of previously deposited sediment plays a
significant role in determining the erosive response of the land surface” [Sander et al.,
2011].

The role of the surface soil composition and soil compaction due to rainfall was
investigated by Jomaa et al. [2013], who reported experimental data and associated
modeling (using the HR model) of rainfall-driven erosion. They applied multiple
rainfall events separated by a drying period, which enabled them to investigate the
effect of initial soil conditions (surface sealing, wetting-drying cycles, and initial

moisture content). They found that “the soil erosion short-time response is mainly
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controlled by the initial conditions, whereas the long-time behavior is controlled by
the precipitation rate only.” Following this work, the importance of initial surface
sediment conditions was considered by Bussi et al. [2014], who modeled sediment
transport of the Goodwin Creek catchment. They found that the “estimation of
the loose deposited sediments at the beginning of the storm event is fundamental
for proper event scale modeling of soil erosion and sediment transport of the
Goodwin Creek catchment”. Bussi et al. [2014] simulated the different hysteresis
loops of Williams [1989], although they had mixed success in reproducing the correct
orientation and loop size of the experimental data.

In more recent work on the role of initial conditions in soil erosion, Kim and Ivanov
[2014] and Kim et al. [2016a, b] have recently further developed and confirmed the
findings of Sander et al. [2011] and Jomaa et al. [2013] by carrying out a series of
detailed numerical studies on the effect of the initial deposited layer in the HR model
on erosion rates and transport of eroded sediment. Kim and Ivanov [2014] considered
combinations of two consecutive 1 h storms of differing but constant intensities that
were also separated by different time intervals. For combinations where the second
storm had the same intensity, quite different sediment transport responses during
the second storm were seen, as observed earlier by Jomaa et al. [2013]. They also
found that this nonuniqueness in the erosive response was due to the first storm
resulting in different compositions of the deposited layer (or initial conditions) prior
to the start of the second storm. Kim et al. [2016a] also demonstrated the role of the
subsurface initial moisture content in causing nonunique sediment transport under
the same rainfall history. Numerical simulations reported by Kim et al. [2016b] on
total sediment loss at the plot scale provide evidence (their supporting information
Figure S2) of the dependence of clockwise and counter-clockwise hysteresis loops on
the initial state of the deposited layer.

Previous studies at the field scale reported hysteresis loops for the total suspended
concentration, but not the corresponding results for the different particle size classes
[Alemayehu et al., 2014; De Girolamo et al., 2015; Sun et al., 2016; Dean et al.,
2016; Sherriff et al., 2016]. It is unknown whether all size classes have the same
or different hysteretic behavior as the total concentration. At the laboratory scale,
Polyakov and Nearing [2003] analyzed flow-driven erosion experiments in which they
considered both steady state and time-dependent hysteretic conditions. The steady
state experiments were carried out on an 8 m flume for two different inflow boundary

conditions, either a zero or constant sediment flux, the latter being greater than the
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transport capacity of the flow. The volumetric water discharge for both boundary
conditions was the same. The transient experiments were performed on a 2 m flume
for which the incoming sediment flux at the boundary was cycled every 0.25 h between
the two fluxes used in the steady state experiment. Both sets of experiments displayed
hysteresis in the total sediment concentration. Hysteresis in the suspended sediment
concentrations for the individual size classes was also shown for the steady state
experiment; however, size class data were not measured for the transient experiments.
Sander et al. [2007] subsequently used the HR model to reproduce the steady state
results of Polyakov and Nearing [2003] for both the total sediment concentration and
for the different size classes. For the transient experiments, flow through the flume
was supercritical and the bed morphology evolution was coupled with the overland
flow. To account for this, Sander et al. [2011] extended the finite volume scheme
of Heng et al. [2009, 2011], which combined the HR model with the Saint-Venant
equations for flow and the Exner equation for modeling bed elevation changes. Figure
3 of Sander et al. [2011] shows that their model reproduces the rapid rise and fall in
total sediment concentration at the end of the flume that results from the periodic
sediment flux boundary condition along with the associated hysteretic behavior of
the transported sediment.

There appears to be only one time-dependent laboratory study on hysteresis effects
in overland flow sediment transport [Polyakov and Nearing, 2003], and it considers
only the total suspended sediment concentration. There have been no experiments
that specifically investigate the role of particle size in hysteretic transport other than
the steady state data of Polyakov and Nearing [2003]. Consequently, the aim of this
paper is to investigate hysteretic sediment transport under rainfall-driven erosion
conditions using a well-controlled flume-scale experiment. The experiment involves
a symmetric, single-peak rainfall event made up of seven sequential 20 min periods of
differing constant intensities, with the peak intensity occurring for the fourth period.
Throughout these seven periods, discharge and sediment size class data are measured
at the flume outflow in order to quantify hysteresis in particle size class concentrations.
The data are analyzed using the HR model, which is shown to reproduce the size class
hysteretic behavior displayed by the experimental data. This investigation therefore
compliments those of Sander et al. [2007, 2011] on flow-driven erosion to the case of

rainfall-driven erosion.
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2.2 Methods

2.2.1 Experiment

The study was carried out using the 6 m x 2m EPFL soil erosion flume with two
collectors at the outlet. Rainfall was applied to the lower 5 m of the flume’s length from
10 oscillating valves that generate approximately uniform rainfall with a uniformity
coefficient of 0.86 [Tromp-van Meerveld et al., 2008; Jomaa et al., 2010]. The
precipitation rate is changed by varying the oscillation frequency of the sprinklers.
Different parts of the flume are shown in Figure 2.1. More detailed descriptions of the
flume characteristics are reported elsewhere [Viani, 1986; Baril, 1991; Jomaa et al.,
2010]. The flume was filled with an agricultural loamy soil with 4% clay, 29% silt, 41%
sand, and 26% fine gravel from a field near Sullens in the Canton of Vaud, Switzerland.
Soil characteristics are given by Baril [1991]. After ploughing and disaggregating the
top-soil to a depth of 20 cm, a mechanical smoother was moved along the flume
several times to ensure a uniform initial surface condition.

For loamy soils, the critical stream power above which entrainment occurs is in the
range 0.15-0.20 Wm! [Beuselinck et al., 2002]. In this work, the maximum stream
power was estimated to be 0.013 Wm! and therefore raindrop-driven erosion was
the dominant mechanism of sediment transport. No rills were observed during a
visual post-experiment inspection. As seen in Figure 2.2, the 140 min precipitation
period involved symmetric rising and falling limbs, divided into seven consecutive
20 min intervals, which are referred to as rainfall events and are denoted by E1 to E7,
respectively. The rainfall intensity increased from 30 mmh™! (E1) up to 60 mmh™! (E4)
on the rising limb. During the experiment, flume discharge was collected regularly in
half-liter containers (Collectors 1 and 2, Figure 2.1). Because of higher erosion rate
at the beginning of the experiment, sampling was performed continuously for the
first 10 min and thereafter every 3 min. The size and proportion of the particle size
classes are presented in Table 2.1. The collected samples were used to determine
discharge rates and sediment concentrations of the total and individual size classes.
Seven size classes were considered (Table 2.1), with concentrations denoted by C;-Cs.
For sediment concentration measurements from the collected samples, the larger
size classes (>100 um) were sieved, while for the rest a laser particle size analyzer was

employed.
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Figure 2.1 — Schematic of the EPFL soil erosion flume. The flume slope can be varied
between 0 and 30%. Precipitation is applied using 10 oscillating sprinklers located
3-m above the soil surface.

Table 2.1 — Properties of seven different particle size classes of the soil. The settling
velocities are from Tromp-van Meerveld et al. [2008].

. . . . -1
Diameter Proportion(by Mass) in Settling Velocity, v; (ms™)

the Original Soil, p; (%)

v; (ms™) Used in

Size Class From To From To

HR Model

C 0 2 3.7 8.0x1078 4.0x1078 5.0x 1077
Cy 2 20 19.4 4.0x1076 4.0x1074 1.5x107°
C3 20 50 8.3 4.0x107* 25%x1073 7.0x1074
Cy 50 100 8.7 25x1073 1.4x 1072 4.0x1073
Cs 100 315 17.7 1.4 x 1072 3.7x1072 4.0x1073
Ce 315 1000 20.6 3.7x 1072 6.9x 1072 4.0x1073
C; >1000 21.6 6.9x 1072 1.4x107! 6.0x 1072

37



Chapter 2. Hysteretic sediment fluxes in rainfall-driven soil erosion: Particle size
effects

75 T
Rising limb Falling limb
E4

~ 60 + — o
=
g
£ E3 E5
*,Z.: 45 + . o
& E2 E6
g —
= El E7
s 30 — o
22

15 +

0 f f f f f f {

0 20 40 60 80 100 120 140

Time (mins)

Figure 2.2 — Seven sequential rainfall events, each 20-mins long.

2.2.2 Model application and parameter estimation

The Hairsine and Rose model [Hairsine and Rose, 1991, 1992a, b] is described in
section 1.3.1. An analytical approximation of the HR model was presented by Sander
et al. [1996] and validated by different flume-scale and small-scale experiments [Heilig
et al., 2001; Tromp-van Meerveld et al., 2008; Jomaa et al., 2012b, 2013]. In their
solution, a uniform suspended concentration is assumed within a constant depth of
water, and spatial variability is ignored. The same approach was used in this study.
With these assumptions and the combination of equations 1.1 and 1.2, the model
consists of 14 coupled ordinary differential equations for seven particle size classes.
These equations were solved for each 20 min rainfall event (E1-E7). Every 20 min,
the final values of the sediment concentrations (C;) and deposited layer masses (m;)
provided the initial conditions for the next rainfall event.

The settling velocity is an important parameter that determines the deposition rate
of the individual particles. The ranges of settling velocity for different particle sizes
were measured by Tromp-van Meerveld et al. [2008] who used the same flume and
sediment (Table 2.1). For the larger particle size classes (C4-C7, Table 2.1), they used
a 0.47 m tube filled with water and for the rest of the particles, the settling velocity
was calculated using Stokes’ law [Stokes, 1851]. They also fitted the model to the
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experiments to find the optimal settling velocities, some of which were different
from the measured values. As discussed in detail by Tromp-van Meerveld et al.
[2008], possible explanations for this are flocculation, selective rainfall detachment,
transport mechanisms rather than suspension, turbulence, hindered settling, the
effect of infiltration, and measurement errors. The excess rainfall rate (R = P — f) was
calculated based on the saturated infiltration rate (f) and the precipitation rate (P). In
this experiment, the steady infiltration rates (f) for the different rainfall events were
4.82,4.84,4.23,4.93, 4.24,4.18, and 4.16 mmh'!, respectively, for E1 to E7. Parameters
fitted were detachability (a), redetachability (a;), mass of the shield layer to protect
the original soil (m*), and water-layer depth (D). The calibrated values for the two
collectors are presented in Table 2.2. An automatic calibration procedure was used for
each rainfall event to deduce model parameters. The objective function was defined
as the mean square error of the difference between model and experiment for the
seven particle size classes, which was minimized using particle swarm optimization
[Kennedy, 2010].

Table 2.2 — Optimized Parameters (a, aq, m* and D) for each rainfall event (E1-E7).

Rainfall Event
Parameter El E2 E3 E4 E5 E6 E7
Collector 1 a (mg cm™) 357 23 21 36 20 25 23

ag (mgem™) 435 464 597 715 485 330 320
m* (mgem™2) 114 236 280 336 385 396 408
D (mm) 6.1 7.1 80 105 84 8.3 7.9

Collector 1 a (mg cm™3) 230 25 33 35 25 22 26
ag (mg cm3) 423 436 480 562 312 239 254

m* (mgem™2) 128 251 284 374 429 452 455
D (mm) 4.8 5.4 5.7 6.7 6.0 5.6 5.4

2.3 Results and discussion

2.3.1 Experiment

2.3.1.1 Discharge

The discharge rates for each collector are shown in Figure 2.3. In the first rainfall event
(E1, Figure 2.2), most rainfall infiltrated into the soil during the first 10 min. Afterward,

the runoff increased up to a constant value as the soil became saturated, after which
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infiltration into the soil was constant (4.82 mmh!). In the following rainfall events
(E2-E7, Figure 2.2), runoff rates generally followed rainfall intensities (Figure 2.2
and 2.3). The higher discharge from Collector 2 compared to Collector 1 reflects the
two-dimensional flow in the flume. Also, the discharge for the falling rainfall limb
(E5-E7) is greater than that in the rising limb (E1-E4) for both collectors. This increase
in discharge is due to reduced infiltration into the soil, caused by surface sealing
and/or compaction of the soil resulting from raindrop impact. Additionally, due to
compaction and overland flow, the surface roughness likely reduced over time, which

resulted in increased surface flow rates.

0.10 +
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0.08 + = Collector 2
= 0.06 +
E
=2
> 0.04 T+
0.02 +
0.00 } } } } } } |
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Figure 2.3 — Discharge measured at the two collectors. Except the first rainfall event
(precipitation onto a dry soil), the discharge rapidly adapts to changes in rainfall
intensity.

2.3.1.2 Sediment concentration

Figures 2.4 and 2.5 show the total sediment concentration (C) and the concentrations
of individual particle classes (C;-C7) for Collectors1 and 2, respectively. The
maximum total sediment concentration (C) occurs in the first rainfall event, in

spite of the low precipitation rate in this period (30 mmh!). During each of the

40



2.3. Results and discussion

subsequent rainfall events, C declines to a quasisteady equilibrium. The higher
sediment concentrations in the first rainfall event (E1, Figure 2.2) stems from the
initial condition—the soil was ploughed and not compacted prior to the experiment,
leading to easily erodible soil. Additionally, there is the initial flush of fine material,
which dominates the contribution to the early peak, and then the subsequent decline
in C as the development of deposited layer reduces access to the finer soil particles
[Sander et al., 1996]. During rainfall events E2-E4 (rainfall intensities of 37.5, 45,
and 60 mmh!, respectively), C shows a small increase at the beginning of each
precipitation event and rapidly reaches a near-constant value. Finally, during the last
three rainfall events (E5-E7), due to the decreasing rainfall intensity, C decreases.
Observe that C is higher for the same precipitation rate during the rising limb
compared to falling limb, i.e., C is lower during E7 than E1, E6 than E2, and E5 than
E3. This is likely due to on-going compaction of the soil caused by raindrop impact
and development of the shield layer, leading to reduced availability of erodible fine
sediment. Both of these effects have been previously observed in flume experiments
by Jomaa et al. [2012b] and field studies by Cerda [2001], while Kim and Ivanov [2014]
also noted the effect of the shield layer development on subsequent rainfall events
with their 2-D numerical simulation at the large plot scale. We return to the shield
layer below.

The results for the individual particle size classes (Figures 2.4 and 2.5) show that
their temporal evolutions agree with, or are in contrast to, the overall behavior
displayed by C. For instance, the maximum contribution of the two finest size
classes (<2 and 2-20 mm, i.e., C; and C) is at the beginning of the first precipitation
period E1, where C; reached 1.00 and 1.38 gL! for Collectors 1 and 2, respectively,
with the corresponding values for C, being 5.11 and 6.95 gL''. The calibrated
parameters of the HR erosion model (Table 2.2) for this period also show that the
soil detachabilities were greater than for the subsequent rainfall events, where the
maximum concentrations decreased regardless of the rainfall intensity (except
for a subtle increase occurring for 60 mmh! during E4). After the second rainfall
event, the proportion of the finer particles decreased in the deposited layer (see
section 2.3.1.3) and hence also in the flume discharge. This trend was maintained
during the increasing rainfall events of E3 and E4, indicating that the availability of
finer sediments decreased over the course of the experiment.

Sediment concentrations were more sensitive to the precipitation rate variation for

the middle particle size classes. For particle size Cs, for both collectors (Figures 2.4
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Figure 2.4 — Total sediment concentration (C) and the concentration of the seven
different particle size classes (C; — C;7) for Collector 1. Regardless of the rainfall
intensity, concentrations of the first two size classes decrease with time whereas
concentrations of the larger particle sizes vary with the rainfall intensity.
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and 2.5), the concentration at the maximum rainfall intensity (60 mm h1, E4) was
comparable to that of the first rainfall event (30 mmh!, E1). For particle size class
C,, the two collectors both show that the greatest concentrations appear at the
maximum rainfall intensity (60 mm h-!, E4). For Collector 2 (Figure 2.5), the maximum
concentration of C; (0.34 gL'l) is at around 5 min, although this point is likely an
outlier. The C4 data from both Collectors 1 and 2 show that if this point were ignored,
the same temporal behavior and the same magnitudes for each separate rainfall were
measured. Data from Collectors 1 and 2 agree well for all of the size classes as well as
total concentration, demonstrating consistent sediment transport on both sides of
the flume.

The rainfall intensity had a noticeable impact on the transport of the coarser sediment
classes (C5-C;). At the precipitation rate of 30 mmh!, erosion rates of the large
particles for the rising limb (E1) tend to be less than for the falling limb (E7), which
is opposite to the behavior of the finer particle sizes. Although the condition of the
topsoil changes between the second and sixth rainfall events (E2 and E6, 37.5 mmh!)
and the third and fifth rainfall events (E3 and E5, 45 mm h™'), the concentrations of
the larger sediment sizes (Cs-C;) remain approximately equal for the same rainfall
intensity on both the rising and falling limbs. In short, the measurements show that
the larger particle size concentrations are determined primarily by the precipitation
rate, not by the condition of the soil surface. This is likely due to the deposited
layer already becoming dominated by the larger particles by the end of E1, thus the
soil surface (the deposited layer) undergoes only relatively minor changes during

subsequent events [Sander et al., 2011; Kim and Ivanov, 2014].

2.3.1.3 Hysteresis loops

Figures 2.6 and 2.7 show plots of g versus sediment concentration for Collectors 1
and 2, respectively. Although minor differences can be seen, the results for the
two collectors are similar. As described above, the maximum total sediment
concentration occurs before the maximum discharge (Figures2.3-2.5), thereby
generating a clockwise hysteresis loop [Williams, 1989; Sander et al., 2011]. As a result
of compaction during the early rainfall events, as well as the initial removal of easily
erodible fine sediment followed by the greater protection of the soil due to the growth

of deposited layer with time, and the subsequent domination of this layer by the
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larger size classes, less erosion takes place during the falling limb of discharge in
comparison to the rising limb [Colby, 1963; Miller and Baharuddin, 1987; Sander et al.,
2011; Kim and Ivanov, 2014]. Clockwise hysteresis loops were measured for the three
finest particle size classes (C;-Cs , Figures 2.6 and 2.7). However, as the sediment
particles become larger (Cy-C7), the hysteresis loops gradually become narrower and
there is almost a linear relation between the discharge and sediment concentration,
i.e., the hysteresis disappears. The concentration-discharge data show that, within

a temporally varying rainfall event, different particle sizes not only have different
hysteresis patterns, but also that their individual behaviors are strongly coupled.
This is because the hysteresis patterns for the fine particles arise due to the presence
of the larger particles within the original soil, which have a greater deposition rate
compared to the finer particles. The larger particles with their nonhysteretic behavior
limit the supply of the finer particles, resulting in hysteretic loops for these latter
sediment sizes [Sander et al., 2011].

The ploughed and smoothed flume surface initially provide a source of easily erodible
sediment that has a greater availability of fine particles. During the first rainfall event,
rapid increases in both C; and C, occur, with C, > C; as the mass proportion of
sediment in class 2 is far greater than that in size class 1 (p2 > p;, Table 2.1). Since the
deposition rate of suspended sediment is given by v; C; in equation 1.3, the smaller
classes contribute minimally to the deposited layer due to their low settling velocities.
As the main source of the fine particles is the original soil, access to these particles
becomes reduced by growth of the deposited layer (i.e., supply limited) [Parlange
et al., 1999; Bussi et al., 2014]. Therefore, both C; and C, rapidly reduce from their
initial peaks. Over successive events, the deposited layer becomes increasingly
dominated by larger particles with any previously deposited fine material being slowly

stripped out (Figure 2.8).

The availability of the finer particles reduces due to different factors. First, raindrops
non preferentially eject sediment from the bed [Legout et al., 2005]. Suspended
transport of finer sediment sizes, however, occurs preferentially, as does deposition of
larger sediment sizes. The combination of these two effects leads to a surface soil
layer that is progressively denuded of finer sediments as they are transported from
the flume. Other things being equal, this means that the sediment concentrations
for finer size classes leaving the flume will be reduced. Second, soil compaction
decreases the depth of the soil into which the raindrops penetrate, i.e., less soil is able

to be detached by the raindrop impact. Consequently, during the falling limb of the
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Figure 2.8 — Schematic depiction of raindrop impact on the soil surface. Finer particles
are available for suspension due to raindrop impact on the rising limb. Over time, the
finer particles are preferentially removed, leaving a shield layer composed mainly of
larger particle sizes [Colby, 1963].

hydrograph for the same discharge, lower sediment concentrations are observed
since it is now the larger, deposited particles that are being eroded. That the larger
particles are seen to have similar concentrations on both the rising and falling limbs
are due to their consistent availability (Figure2.9) in the deposited layer. For this
situation, changes in concentration between events are related to the rainfall intensity,
i.e., detachment limited. Thus, the different behavior across the size classes highlights
the importance of the particle size distribution in the development of hysteresis
loops. These results reinforce the findings of Bussi et al. [2014] for the Goodwin Creek
catchment and the numerical study of Kim and Ivanov [2014] on the role of initial
loose sediment (equivalent to the deposited layer in the HR model) in determining
sediment transport patterns. That is, the initial spatial distribution and sediment size
class composition of the deposited layer play an important role in determining the
different types and orientations of sediment hysteresis loops [Sander et al., 2011;
Zhong, 2013; Bussi et al., 2014].

Hysteresis in total sediment concentration-discharge plots for river flow was analyzed
by Williams [1989] who explained clockwise loops as being due to either “a depletion
of available sediment before water discharge has peaked” or to “the formation of an

armored layer prior to the occurrence of the discharge peak.” The results presented

48



2.3. Results and discussion

here on the sediment size classes composing the soil highlight the important role of
the reduction of fines within the surface soil layer—this reduction over the course of
the experiment underpins the observed hysteresis. At the same time, the surface layer
protects the underlying soil, so in that sense it is an “armored layer,” i.e., both reasons

given by Williams [1989] apply to our experiments.

2.3.2 Model

2.3.2.1 Calibrated parameters

We return to the optimized parameters for the HR model given in Table 2.2. The results
show that the maximum detachability (a) occurs in the first rainfall event (E1). This
value reduces during E2, and then varies little. Likewise, the value of critical mass
(m*) is a minimum for the first rainfall event, varying little thereafter. These results
reflect the differences in the soil structure (i.e., soil compaction) that had a significant
effect during the first rainfall event, but was negligible for later events.

Another factor is the water layer depth (D) that protects the soil from raindrop splash
erosion (equation 1.3). The modeled water depths reported in Table 2.2 increase as
expected with rainfall intensity, but also because soil compaction during the falling
limb decreases the infiltration rate and smooth the soil surface [Jomaa et al., 2013], D
tends to be lower on the falling limb of the hydrograph for the same rainfall intensity
event.

The mass of deposited sediment required for complete shielding (m*) depends on
both the rainfall rate and flow depth. For the same rainfall rate and soil condition but
for a lower water depth, raindrops are able to penetrate a greater distance into the
soil surface [Hairsine et al., 1999; Jomaa et al., 2012b]. Hence, a greater thickness, or
increased mass m*, is required for the deposited layer to absorb the raindrop energy
and fully protect the underlying soil. Consistent with this observation, the results of
Table 2.2 also show that, at different rainfall rates, higher values of m* are predicted
for Collector 2 on which the water layer (D) is less than for Collector 1.

The match of the model with the experimental results is good for the total sediment
concentration and for the finer particle size classes, with poorer matches for the larger
particles (Figures 2.4-2.7). For the largest particle size class (C7), although the trend

of the model is correct (i.e., rising and falling sediment concentrations depending
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on the precipitation rate), the modeled concentrations of the large particles are less
than measured in the experiment. As noted previously [Jomaa et al., 2012b, 2013],
in the HR model, the larger particles are assumed to be transported as suspended
load that is rapidly deposited due to their high settling velocities. However, large
particles are more likely transported due to rolling, saltation and ejection during the
experiment, which would account for the higher measured values compared to the
model predictions. A caveat on the HR model application is that, although the results
are consistent with the experimental data, the model was not used to predict the
experimental measurements, rather the model was calibrated to them. Our purpose
here was not prediction, but to test whether the HR model could reproduce the
time-dependent size class hysteretic behavior observed in the experimental results in

a physically consistent manner.

2.3.2.2 Deposited layer mass

The total mass of the shield layer and its sediment-size composition is given by
the calibrated HR model. In Figure2.9, model results for the total mass of the
deposited layer (m) and the proportion of seven particle size classes (m;-my7) are
presented for Collector 1 only as results for Collector2 are similar. At the start of
the first rainfall event, the initially ploughed and smoothed surface easily erodes,
resulting in a rapid increase in the suspended concentration (Figure 2.4), which
is immediately followed by deposition and a rapid increase of the deposited layer
(Figure 2.9). Initially, the deposited layer contains the smaller sediment size classes
(C1-C3) even though they have relatively low settling velocities. This is because the
deposition rate (as given by d; = v; C; in equations 1.2 and 1.3) shows that a high
suspended sediment concentration can compensate for a low settling velocity to still
give significant deposition of small particles. However, as time increases, the supply of
the smaller particles (C;-Cs) reduces as the original soil becomes protected, and the
smaller particles within the deposited layer are gradually redetached and advected
downstream to the flume exit, resulting in the increased contribution of all larger
sized particles, i.e., sizes C4 through C; (Figure 2.9) [Heilig et al., 2001; Salant et al.,
2008; Tromp-van Meerveld et al., 2008; Sander et al., 2011; Kim and Ivanov, 2014].

The increased rainfall at the start of the second event (E2) resulted in little change in

the flow depth (Table 2.2). At the same time, the sediment detachment rate increased,

50



2.3. Results and discussion

E2 E3 E4 ES E6 E7

10
18
50-100 pm IS
=
I
12
0 0 0
0.02 25
0.015 " 20
< - 5 &
g 001 <2 pum 1 100-315 pm <
0 F
0.005 s
0 0
3 25
: 20
2
S - 15 &
= 2-20,/50 315-1000 pm <
g T
1
15
0 0
20 100
15 1 : 180
20-50 pm >1000 pm S
3 &
T 10 — 3 {60 &
£
0 i i ; i ; i ; ; i ; i ; 0
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Time since start of rainfall (mins)

Figure 2.9 - HR model predictions of the total mass of the deposited layer (m) and the
contribution of seven different particle size classes (m; — m7) within the shield layer
(Collector 1). The variation of degree of shielding (H) is shown along with the total
mass.

51



Chapter 2. Hysteretic sediment fluxes in rainfall-driven soil erosion: Particle size
effects

resulting in an increased value of m* to protect the original soil and a corresponding
sudden decrease in H (equation 1.3). Thus, the increased rainfall rate results in
increased penetration of raindrops through the depositing layer to access a greater
amount of fine particles. For m;-mj3 (Figures 2.8 and 2.9), this increase reflects the
behavior seen at the beginning of the first event, but at a lower magnitude due to
raindrop compaction of the soil. Simultaneously, there are small increases in the
measured sediment concentrations in the effluent for size classes C;-Cs (Figures 2.4
and 2.5). Again, there is a rise in the contributions of the larger particles (m4-my7)
to the deposited layer (Figure 2.9, E2). From event E3 onward, there is a continual
removal of the small size classes (m;-m3) that is accompanied by growth in the
contribution of the largest size class, while that of classes my, ms and mg remain
relatively static. By this time, the deposited layer has become so dominated by the
largest size classes that changes in rainfall rate (Figure 2.2) and flow rate (Figure 2.3)

have only a minor impact on it.

2.4 Concluding remarks

Sediment transport as a result of multiple continual rainfall events was studied via
experiments and modeling. Specifically, we investigated the hysteresis loop patterns
of different sediment size classes versus flume discharge for time-varying precipitation
rates. To this end, seven consecutive rainfall events were applied to an initially
ploughed and smoothed soil. Sediment concentrations at the flume exit were taken
from samples from two collectors. The results were further analyzed by calibrating the
HR model to the measurements. We examined the behavior of the different particle
size classes during the multiple rainfall events in the absence of rills.

For an initially dry and ploughed soil, clockwise hysteresis loops in sediment
concentration versus discharge rate were generated for the total sediment
concentration and the concentrations of the finest particle size classes. In contrast, for
the larger particle sizes, the hysteresis loops are narrower and have a more irregular
shape. Indeed, it is not clear whether they exhibit hysteresis. The results suggest that
the contribution of the finer particles to the total eroded mass reduces over the course
of the experiment, independent of the precipitation rate (source-limited delivery).

However, the contribution of larger particles to the total eroded mass increased during
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the rising limb and decreased during the falling limb, reflecting transport-limited
behavior of the larger size classes. We remark that soil compaction is not necessary
for the appearance of hysteresis. Instead, at least for our experiments, the key factor is
the decreasing availability of finer sediments. The combination of deposited material
and compaction also protects the original soil from raindrop erosion. Another factor
affecting raindrop erosion is surface water, since increasing water depths protect the
soil. The average surface water depth changes due to compaction and the variable
precipitation rate. Consistent with the low precipitation rates applied during most
of the experiment, modeled water depths were small according to the calibrated HR
model (Table 2.2), and which we noted visually. Consequently, it is unlikely that water
depth played a significant role protecting the soil in the results reported here.

A crucial feature of the HR model is its ability to simulate the sediment size distribution
in the deposited layer (i.e., deposition of previously eroded sediment), which provides
a quantitative basis for simulating hysteresis in the discharge-sediment concentration
plots. The model results show that the reduction in the availability of the finer
sediment sizes in the deposited layer results in hysteresis in the total sediment
concentration plots, as well as in the finer size classes. Additionally, the model
results are consistent with the reduction (even absence) of hysteresis evident in the
experimental data for the larger sediment size classes.

However, the just-mentioned reduction of the proportion of fine sediment sizes is not
essential for hysteresis to occur. To be clear, the distribution of size classes plays an
important role in determining the shape and magnitude of the hysteresis loop, but it
is not the controlling factor. In the extreme case of a soil that is composed of only a
single size class, simulations with the HR model show that clockwise, anticlockwise,
and figure eight loops can still be obtained. As found by Sander et al. [2011], the
shapes of the hysteresis loops produced are still dependent on the initial condition of
the deposited layer, i.e., on the initial availability of easily erodible sediment. These
shapes are dependent on particle size. That is, as the (single) particle size increases,
the size of the loop diminishes, and hysteresis effectively ceases, in agreement with

the behavior of the largest size classes shown in Figures 2.6 and 2.7.
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3.1 Introduction

Even with markedly different environmental and geological conditions, catchment
drainage networks have similar geometrical characteristics that take the form of
power laws [Rodrigueéz-Iturbe and Rinaldo, 1997; Rinaldo et al., 2014], as measured
for different areas [Hack, 1957; Mandelbrot, 1982; Tarboton et al., 1989; Rigon et al.,
1996]. Hack’s law [Hack, 1957] states that the upstream length (/, the longest flow path
into each point) and drainage area (A) are related via a scaling relation (I = A”) where
the exponent h was measured in the range of [0.5-0.7] for different river networks
[Hack, 1957; Gray, 1961; Mueller, 1972; Mosley and Parker, 1973; Montgomery and
Dietrich, 1992; Maritan et al., 1996; Rigon et al., 1996, 1998], with an average value
of about 0.58 [Willemin, 2000]. Also, for the fluvial parts of landscapes, power-law
relations with exponent ranges of [0.42-0.45] and [0.5-0.9] were observed for the
exceedance probabilities of drainage area and length, respectively [Rodriguez-Iturbe
and Rinaldo, 1997; Rigon et al., 1996; Crave and Davy, 1997; Paik and Kumar, 2011].
Different explanations of these power laws are available [Banavar et al., 1999; Dodds
and Rothman, 2000; Birnir et al., 2001; Banavar et al., 2001; Birnir et al., 2007; Birnir,
2008; Rinaldo et al., 2014], including self-organized dynamic systems [Bak et al.,
1988; Rinaldo et al., 1993; Frigg, 2003; Markovi¢ and Gros, 2014; Watkins et al., 2016],
invasion percolation [Stark, 1991; Hunt, 2016] and minimum energy dissipation
[Rodfiguez-Iturbe et al., 1992].

Catchment drainage networks are essentially static structures in the landscape,
i.e., their temporal evolution cannot be readily measured. On the other hand,
experimental geomorphology has a longstanding tradition [e.g., Schumm and Khan,
1971; Flint, 1973; Mosley and Parker, 1973; Parker, 1977] and permits detailed and
rapid investigations of changes in surface morphology due to rainfall or overland flow
aggregation [e.g., Crave et al., 2000; Brunton and Bryan, 2000; Rémkens et al., 2002;
Hasbargen and Paola, 2003; Gomez et al., 2003; Pelletier, 2003; Turowski et al., 2006;
Babault et al., 2007; Yao et al., 2008; Tatard et al., 2008; Paola et al., 2009; Bonnet,
2009; Berger et al., 2010; Graveleau et al., 2012; Rohais et al., 2012; McGuire et al., 2013;
Reinhardt and Ellis, 2015; Sweeney et al., 2015]. For instance, dynamic changes of a
rill network in uncohesive sediment under a constant uplift rate were observed by
Hasbargen and Paola [2000]. In contrast, rill networks in a cohesive sediment evolved
along the previously generated rills [Bennett and Liu, 2015] due to surface resistance.

Singh et al. [2015] generated rill networks in a 0.5-m x0.5-m experiment under spatially
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uniform but temporally variable rainfall and constant uplift rate. They found that
the drainage area distribution was described by a power law with an exponent of
0.5. Similarly, Bennett and Liu [2015] examined rill formation at the flume scale
(7mx2.4m) and found an exponent of about 0.5 for Hack’s law.

In summary, geometrical characteristics of catchment drainage networks have a high
degree of similarity. These same characteristics are evident in channeled surfaces
in laboratory studies. Here we extend these studies by considering the flow network
on an unchanneled sediment. Specifically, we measured the surface evolution of an
unconsolidated sediment under non-uniform rainfall and overland flow such that no
(observable) rills were formed. However, the surface roughness produces a drainage
network representation of the overland flow, which is then subjected to geometrical

analysis.

3.2 Experiment

We used a 2-m x 1-m erosion flume as shown in Figure 3.1. The total sand depth
was 15cm. Uncohesive sediments with a mean diameter of 0.53 mm (Table 3.1
and Figure 3.2) were placed in three successive 5-cm layers within the flume. Each
layer was compacted by 30-min rainfall (droplet size of 3-7 mm) with an intensity of
10 mm h*! followed by consolidation via a 600 kg m? weight. Then, the sediment was
air dried for 48 h. Heterogeneous rainfall was generated by two sprinklers located
3m above the sediment surface. The distribution of rainfall intensity is shown
in Figure 3.4h. The average rainfall was 85 mmh-! with a Christiansen uniformity
coefficient [Christiansen, 1942] of 26%. The rainfall was applied continuously except
a 30-min break for each laser scan. There was no drainage from the flume bottom
and all surface flow was collected at a single, 4-cm wide outlet, located at 6 cm above
the base of the flume. The experiment started with a smooth surface. At the outlet,
the initial elevation difference between the sediment surface and the base level was
9 cm. The flow rate at the flume outlet is plotted in Figure 3.3. During the first 5 min,
the sediments became saturated and the outlet flow rate was low. Afterwards, there
was a rapid elevation drop near the outlet (blue areas in Figure 3.4a) until about ¢
= 10 min. Until this time, it was not possible to capture the flow rate due to high
sediment concentrations at the outlet. Scanning started after 15 min when the flow

rate became steady. At this stage, the sediments were saturated and the precipitation
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 » Flume outlet z
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Figure 3.1 — Schematic of the flume experiment. The flume width, W, was 1 m and
its length, L, was 2m. The sediment vertical elevation (z) was measured from the
outlet (z = 0). The relief height (the maximum elevation) was 0.19 m. Each layer was
compacted by 30-min rainfall (droplet size of 3-7 mm) with an intensity of 10 mmh-!
followed by consolidation via a 600 kg m? weight. Then, the sediment was air dried
for 48 h.

and discharge rates were equal. A 3D laser scanner (Konica Minolta Vivid 910), with
about 4-mm horizontal resolution and accuracy of 0.1 mm in the vertical direction,
was used to extract Digital Elevation Models (DEMs) at 0.25, 0.5, 1, 2, 4, 8 and 16 h. The
scanner was calibrated using 20 fixed points on two bars along the flume’s lateral walls.
Eight individual scans were taken to cover the entire flume. Following registration
and post-processing, each DEM produced was trimmed 2 cm from the side walls
and 10 cm from the upstream wall. The surface morphology data are available at:
http://doi.org/10.5281/zenodo.1292113.

Table 3.1 — Characteristics of the sand used in the experiment.

Bulk density Particle size (d) range dso d<06mm d>2mm
1584 (kgm>) 0-6 mm 0.53mm 70 (% mass) 12 (% mass)
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Figure 3.2 — Particle size distribution of the sediment.

3.3 Results and discussion

3.3.1 Morphology and drainage network evolution

The elevation change during the experiment is shown Figure3.4. The sediment
elevation was measured from the outlet (z = 0). For convenience, we refer to the
ranges z < 60 mm and z = 60 mm as the downstream and upstream, respectively.
Overall, the morphology evolution can be divided into two steps: (i) until ¢ =4 h, most
of the variation occurred at the upstream end while the downstream end did not
show any considerable evolution, and (ii) after ¢ =4 h, the downstream morphology
propagates into the upstream.

To characterize the morphology, a network was generated based on the measured
surface scans (Figure 3.4a-g) and precipitation (Figure 3.4h). Pit points were removed
following Planchon and Darboux [2002]. Similarly to large scale river networks, the
discharge distributions (Q) and drainage area (A) are computed via the D8 algorithm
[O’Callaghan and Mark, 1984]:

8
Qi:ijin+RiAxAy (3.1)
j=1
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Figure 3.3 — Measured water flow rate at the flume outlet.

Aj= i wji Aj+AxAy (3.2)
j=1
where the summation over j refers to the eight cells surrounding the ith cell. The
slopes from each cell (i) into each of the eight neighbor cells (j) were calculated, with
flow directed along the steepest descent. The value of w; is unity if the cell j flows
into cell i, otherwise it is zero. R; (mmh™') is rainfall intensity at cell i (Figure 3.4 h)
and Ax (mm) and Ay (mm) are the grid sizes in x and y directions, respectively.

The distribution of drainage area and discharge at different times are plotted in
Figures 3.5 and 3.6, respectively. At ¢ = 0.25h (Figure 3.5a), four separate branches
depicted by A-D drained into the flume’s outlet (x =0, y = 0). Then, att=0.5h
(Figure 3.5b), branch C joined B and branch BC was generated while a minor change
in the network was evident in the upper part of the network. After 1 h (Figure 3.5¢),
junction A became attached to BC and the pathway denoted ABC was formed. At t
= 2h (Figure 3.5d), the area drained by ABC inclined to the right side. Furthermore,
branch D drained a greater proportion of the precipitation as it assumed part of
the upstream area previously drained by ABC. Finally at t = 4 h, the network ABCD
was generated (Figure 3.5e). At later times (¢ = 8h & 16h), the high flow part of
ABCD became more dominant and moved to the right (Figure 3.5f & g). Variations

in the drainage area and discharge network mostly occurred in the first 8h of the
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Figure 3.4 — Measured morphology evolution during the 16-h experiment. Due to
the non-uniform rainfall, the morphology changes increase from the left side (low
precipitation rate area) towards the right (high precipitation rate area).
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experiment, similarly to the surface morphology. Changes were less rapid in the
second 8 h, although the main structure of the network was reinforced and some local
changes to the low-order pathways took place. The evolution of the downstream
(Figure 3.4e) started at the same time as the network (ABCD) was generated att=4h
(Figure 3.5e). The network’s width function was computed for each scan to quantify
its temporal evolution (Figure 3.7).

Even though the flow covers the entire surface and is continuous (except perhaps
for raindrop impacts), the D8 algorithm leads to its description as a network, which
was considerably reorganized during the 16-h rainfall duration (Figure 3.5). We recall
that these networks do not represent observable surface rills, but rather the drainage
network derived from the surface morphology as captured by the surface scans. As
shown in Figure 3.8, due to shorter erosion time scales, the fine sediment particles are
rapidly removed while the larger particles move slowly down the surface [Polyakov
and Nearing, 2003; Sander et al., 2011; Wang et al., 2014; Kim and Ivanov, 2014;
Lisle et al., 2017] or are not moved at all, resulting in a surface partially covered by
motionless pebbles. Therefore, the network evolution is a result of size-dependent

sediment particle transport and raindrop-driven rearrangement on the surface.

3.3.2 Catchment scaling laws in overland flow morphologies

We next examine the statistical characteristics of the network. We first consider Hack’s
law [Hack, 1957], which is a well-known metric used in analyses of large scale river
networks [Maritan et al., 1996; Rigon et al., 1996; Dodds and Rothman, 2001b]. For our
case, the A-[ distribution is divided into 20 bins on a logarithmic scale. For each bin,
the ratio between consecutive average moments of length were calculated. The results
are plotted in Figure 3.9 for the first to forth moments of [ (n =1,2,3,4). They show
a validation of a finite-size scaling framework for the distributions of /, in the form
of p(l) = 1=¢F(1/ A") where F(x) — 0 for x — oo and F(x) — 0 for x — 0, analogous to
large scale river networks [Rigon et al., 1996]. The power law relation is maintained for
at least two orders of magnitude, with the scaling exponent / in the range of [0.54-0.6].
Upper and lower cutoffs affecting the scaling range were expected. Lower cutoffs are
basically the limits of detectability. Upper cutoffs are associated with the maximum
cumulative area or flow rate [Rigon et al., 1996]. Another experiment at 10% slope

with an average rainfall of 60 mmh™! (Figure 3.16) showed a range of [0.51-0.55] for the
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Figure 3.5 — Drainage area (A) distribution determined using the D8 algorithm and
the measured morphologies shown in Figure 3.4a-g. Initially, the flow paths, e.g., at ¢
=0.25 and 0.5 h, reflect the initial surface condition and central drainage point at the
flume exit. The impact of the higher-intensity rainfall on the right side of the flume
is manifested in the main flow path, which increasingly moves to the right side over
time (more details given in the text).
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Figure 3.6 — Drainage discharge distribution determined using the D8 algorithm
and the measured morphologies and the rainfall intensity (Figure 3.4). In spite of
the heterogeneous rainfall intensity, the generated network and its evolution are
very similar to the drainage area network (Figure 3.5). As expected, the maximum
calculated discharge at the outlet (2.709 L min!) is consistent with the measured value
at the steady state (Figure 3.3).
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Figure 3.7 — Width function (w) of the drainage area (and discharge) network
(Figures 3.6 and 3.5). The value X is the distance of each point from the flume outlet
(along the flow paths of the network) and w(X) is the number of points with the same
distance (X) from the network outlet. The width function of the network dynamically
changed during the morphology evolution.
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Figure 3.8 — Sediment surface at =0 (a) and £ =16 h (b).

Hack exponent. For both experiments, the Hack exponents agree with those found for
large scale river networks [Hack, 1957; Gray, 1961; Mueller, 1972; Mosley and Parker,
1973; Mueller, 1973; Montgomery and Dietrich, 1992; Maritan et al., 1996; Rigon et al.,
1996, 1998], which are in the range [0.5-0.7], yet with a well defined mean h = 0.57
[Hack, 1957].

The distributions of (computed) drainage discharge, drainage area and upstream
length are plotted in Figure 3.10. In Figure 3.10a, the flume discharge can be separated
into low (g < 1.1 x 10*mmh!), medium (1.1 x 10 < g < 3 x 10° mmh'!) and high
(g =3 x10° mmh!) sections. The low discharge region mostly covers the left of the
flume (Figure 3.6) where the precipitation rate is lower. The values of P(Q > g) for
these regions do not change during the network evolution (from 0.25h to 16 h). For
the medium discharge regions, a power law relationship (P(Q > q) = g~ ) describes
the exceedance probability with an exponent of ¢ = 0.49. The high discharge
area shows the most temporal variability, which corresponds to the change of the
main streams (A-D in Figure 3.6). Since the D8 algorithm selects a single adjacent
down-gradient cell to receive water from a given cell, potentially the predicted flow
becomes more localized than in reality. Also, flow disturbances due to raindrop
impact and resulting mixing are not accounted for. Due to spatial and temporal
variations of precipitation in natural settings, the distributions of drainage area and
upstream length are more commonly used metrics for describing river networks at
large (spatial) scales. Even though in this study no rills formed, the distributions of
drainage area and upstream length under this shallow, overland flow cross a number

of scales characterized by power laws (P(A > a) = a™ and P(L > I) = ") with
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Figure 3.9 — Relation between the upstream length and drainage area (I = A"). The
curves of higher moments (n > 1) are shifted vertically for the purpose of visualization.
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Figure 3.10 — Exceedance probabilities of discharge (Q), drainage area (A) and
upstream length (/) at different times.

p =0.47 and v = 0.75, respectively (Figure 3.10b and c). Furthermore, at 10% slope
with an average rainfall of 60 mm hl exponents of 0.49, 0.47 and 0.71 were found for
power laws describing discharge, drainage area and upstream length distributions,
respectively (Figure 3.17). These results are very similar to large scale river networks
[Mandelbrot, 1982; Tarboton et al., 1989; Rigon et al., 1996; Dodds and Rothman,
2001a, b, ¢; Rinaldo et al., 2014]. These exponents are close to analytical results,
p=1-hand vy = f/h, derived by Maritan et al. [1996].

3.3.3 Further morphological features

The scaling relation between the slope and drainage area is plotted in Figure 3.11.
Similarly to large scale river networks and channeled surfaces at the laboratory scale
[e.g., Sweeney et al., 2015], a power law describes the intermediate drainage areas of
the overland flow (Figure 5). Figure 3.11 shows the curvature versus the product of
drainage slope and area (slope-area). Similar to the catchment scale [Perron et al.,
2009], the average values of curvature are negative where the product of area and
slope (A|Vz]) is low whereas positive curvature values are observed for increasing
AlVz| (Figure3.12).
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Figure 3.11 — Slope versus drainage area. A power law describes the intermediate
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Figure 3.12 — Curvature versus the product of drainage area and slope. The average
values of curvature are negative where the product of area and slope (A|Vz|) is low

whereas positive curvature values are observed as A|Vz| increases.
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3.3.4 Another experiment

In order to investigate the scaling laws at different slope and rainfall intensity, another
experiment was carried out at 10% slope and average rainfall of 60 mmh! for a
duration of 20h. Again, the surface morphology remained unchanneled during
whole experiment. The corresponding elevation field and the extracted networks are
shown in Figures 3.13-3.15. As shown in Figure 3.16, Hack’s law was observed were the
exponents were in the range of [0.51-0.55] during the experiment. The distributions of
discharge, drainage area and upstream length follow the power laws: P(Q > q) = g~ ¢,
P(A>a)=aPand P(L>1) =17V, with ¢ =0.49, B =0.47 and v = 0.71, respectively
(Figure 3.17). Furthermore, the relation between the exponents are close to analytical
results, f =1—h and v = /h, derived by Maritan et al. [1996]. These results show

that irrespective of rainfall intensity and slope, the same scaling laws were generated.
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Figure 3.13 — Elevation field at 10% slope and 60 mm h! average rainfall.
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Figure 3.14 — Drainage area at 10% slope and 60 mm h™! average rainfall.
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Figure 3.15 — Discharge flux at 10% slope and 60 mm h™! average rainfall.
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3.4 Physical interpretation of the invariant scaling laws

The consistency between the laboratory results (Figures 3.9, 3.10, 3.16 and 3.17) and
results for catchment networks [e.g., Rodriguez-Iturbe and Rinaldo, 1997] points
to an underlying governing principle operating at different scales, such as the
principle of minimum energy expenditure [Rodriguez-Iturbe et al., 1992] that applies
at equilibrium conditions for river networks. Similarly, recent work [Smith, 2018] on
equilibrium landscapes showed that overland flows minimized a Lagrangian function
of kinetic and potential energies. For both potential (viscosity dominated) and inviscid
flows and for fixed boundary conditions, energy dissipation continues monotonically
until the steady flow configuration is achieved, i.e., energy dissipation is a minimum
[Lord Rayleigh, 1893]. The energy minimization principle has been shown exactly (by
re-parametrization invariance arguments, and in the small gradient approximation) to
correspond to the steady-state solution of the general landscape evolution equation in
fluvial regions [Banavar et al., 2001]. Deriving scaling properties and self-organization
in optimal networks is therefore tantamount to analyzing the underlying equations if
steady-state solutions are sought. Laboratory-scale rill networks were also shown to
evolve towards the minimum energy expenditure [e.g., Gomez et al., 2003; Berger et al.,
2010]. However, for unchanneled morphologies, further investigation is needed since
our results suggest (approximately) time-invariant scaling laws for a rapidly eroding
surface.

The dynamics of eroding surfaces and related overland flow (including raindrop
impact) can be modeled via different approaches, from mechanistic models that
consider coupled overland flow and soil erosion [e.g., Nearing et al., 1989; Hairsine
and Rose, 1992a, b] to catchment scale landscape evolution models (LEMs) [e.g.,
Willgoose, 1989; Howard, 1994; Perron et al., 2008; Smith, 2018]. LEMs, which predict
channel networks at both the catchment and laboratory scales, are relevant to
our experimental results. We emphasize that our experiment involves continuous
overland flow on an unchanneled surface in contrast to channelized flow in a
catchment. Nonetheless, characterization of the overland flow on the measured
morphology via the D8 algorithm results in a network that is geometrically similar to
a catchment drainage network. The D8 algorithm provides a network representation
of the overland flow driven by gravity. This representation is an approximation,
but allows for a direct comparison of the unchanneled surface morphology in our

experiments with the channeled networks found in catchments and in laboratory
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experiments.

These experiments support a notable extension of what was previously thought
about the kind of recursive features shown by channeled landscapes at much larger
scales. Unchanneled landscapes were thought to obey diffusive evolution. For
splash-dominated erosion studied here, the scaling structures were replicas of
those occurring at orders of magnitude larger scales. It is totally remarkable that
the aggregation patterns are independent of the specific sediment transport type
in erosional patterns. Moreover, the temporal stability of the scaling structures
we measure here suggests that indeed the planar features of steady states are
reached almost immediately by erosional surfaces, as was speculated but never
shown for real river networks. We suggest that the results could provide a test
case for LEMs, which are applicable at both the laboratory [Sweeney et al., 2015]
and catchment scales [Perron et al., 2009] on the condition that channels are
formed. In the above-mentioned network analysis of Banavar et al. [2001], diffusion
was ignored, although it is present in LEMs. Since diffusion effects will tend to
smooth surfaces in LEM predictions, we speculate that our results will prompt
additional investigations of the role of diffusion in these models. That is, it remains to

be determined if the scale invariance uncovered in this work can be captured by LEMs.

3.5 Conclusions

An evolving unchanneled surface under a spatially non-uniform rainfall was
statistically characterized in the same manner as large scale river networks by
converting the continuous overland flow into drainage area and discharge networks.
The measurements show that although the surface morphology and the corresponding
overland flow network changed markedly during the experiment, the system preserved
Hack’s law and power laws in distributions of drainage area, length and discharge.
More importantly, the exponents, the values of which are identical to large scale river
networks, remained in a narrow range despite the considerable change in the surface
morphology and the corresponding network structure. This work provides, for the
first time, experimental support for the self-similar organization of landscapes even

where observable rills or channels are not formed on the surface.
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Chapter 4. Landscape evolution model in absence of rills

4.1 Introduction

The complexity of natural landscapes reflects the numerous factors involved in their
formation such as climate [Han et al., 2015; Francipane et al., 2015; Panagos et al., 2017;
Ranjbar et al., 2018], chemical and physical properties of the sediments [Massong and
Montgomery, 2000; Sklar et al., 2001; Park and Latrubesse, 2015], episodic gully erosion
[Pazzaglia et al., 2015], different vegetation types [Istanbulluoglu and Bras, 2005;
Jeffery et al., 2014; Corenblit et al., 2015], tectonic effects [Pedrazzini et al., 2016] and
the rate of sediment production [Rodriguez-Lloveras et al., 2015; Reusser et al., 2015;
Forte et al., 2016; Sadeghi et al., 2017b], all of which are heterogeneous and uncertain.
Landscape formation and evolution are not directly measurable in the field due to the
time scales involved. Consequently, suitably designed laboratory experiments are of
considerable value in that they provide empirical data that are amenable to testing
hypotheses of mechanisms underlying observed geomorphological changes [Paola
etal., 2009].

Physically based landscape evolution models (LEMs) [Willgoose, 1989; Willgoose
etal, 1991, 1992; Howard, 1994] are useful tools to explain the surface geometry in
landscapes and laboratory experiments [Densmore et al., 1998; Mudd, 2016; Whipple
et al., 2016, 2017; Sinclair, 2017]. In LEMs, the complex fluid-particle interactions
within landscapes are described by a governing equation for the surface elevation,
with an additional model for surface flow [Chen et al., 2014a]. For catchments, the
focus of surface flow is the stream/river drainage network, rather than the overland
flow. Typically, flow is modeled in a simplified manner that conserves the volume
flux at each cell in the landscape [O’Callaghan and Mark, 1984; Freeman, 1991;
Quinn et al., 1991; Costa-Cabral and Burges, 1994; Tarboton, 1997]. Broadly speaking,
the relative importance of the advective and diffusive processes described by the
LEM controls the landscape geometry produced. That is, considering an initially
smooth morphology, localized (channel-forming) landscape incision is favored
when advection (or surface shear stress) dominates, whereas more gradually varying
landscapes will result when (effective) diffusion dominates.

There are numerous applications LEMs to understand different features of the surface
morphology of natural landscapes [Densmore et al., 1998; Yang et al., 2015; Mudd,
2016; Whipple et al., 2016, 2017; Sinclair, 2017; Theodoratos et al., 2018]. For example,
Perron et al. [2008] derived an expression for the distance between first-order valleys

and validated the formula via measurements from five different natural landscapes
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[Perron et al., 2009]. Willett et al. [2014] showed that drainage basins that share
a common hillslope can exchange the drainage area (due to changes in surface
morphology) and thereby reorganize their structure. The criterion defining the
reorganization direction were found by using the steady state solution of an LEM
[Taylor and Leigh, 2013].

Similar to their application to natural landscapes, LEMs were also used in
analysis of laboratory experiments. Such experiments permit exploration of
different initial conditions, e.g., a smooth land surface composed of uniform and
non-cohesive sediment grains, with surface morphology changes induced by rainfall.
Advection-dominated setups focus on the evolution of the network structure (i.e.,
surface incisions) [Hancock and Willgoose, 2002; Bonnet and Crave, 2003; Hasbargen
and Paola, 2003; Lague et al., 2003; Bonnet and Crave, 2006; Paola et al., 2009; Bonnet,
2009; Graveleau et al., 2012; Rohais et al., 2012; Reinhardt and Ellis, 2015; Singh
et al., 2015]. Small raindrop sizes minimize the kinetic energy of raindrop impact,
leading to surface morphologies that evolve almost exclusively through shear stress
of surface flows. For instance, Hasbargen and Paola [2000] set up an experiment in
an elliptical basin (98 cm x 87 cm) subjected to a constant uplift rate. They pointed
out that the oscillation of the erosion rate at steady state was the result of knickpoint
migration in the domain. The spatial patterns of landslides and knickpoints in a
steady-state landscape were measured by Bigi et al. [2006]. They found a power-law
relation between the number of landslides and drainage area. In recent laboratory
experiments, Sweeney et al. [2015] used rainfalls of different droplet sizes applied
to landscapes with the same initial condition. For the different landscape patterns
so-created, they showed that the drainage density decreases with increasing droplet
size (i.e., relative increase in diffusion).

There are numerous similar studies that examined rill formation on hillslopes [e.g.,
Parker, 1977; Bryan and Poesen, 1989; Gomez and Mullen, 1992; Brunton and Bryan,
2000; Romkens et al., 2002; Pelletier, 2003; Raff et al., 2004; Nearing et al., 2004; Tatard
et al., 2008; Yao et al., 2008; Oliveto et al., 2010; Gordon et al., 2011, 2012; Stefanon
et al., 2012; Shit et al., 2013; He et al., 2014; Bennett et al., 2015; Bennett and Liu,
2015]. In these experiments, droplet sizes are large enough to induce splash-impact
erosion, which is manifested in changes in surface morphology. For instance, Gémez
et al. [2003] and Berger et al. [2010] tested the minimal energy expenditure theory
[Rinaldo et al., 1992] for rill networks considering different slopes, rainfall intensities

and initial conditions. They found that, when the land was effectively incised,
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the total energy dissipation decreased as the rills evolved. McGuire et al. [2013]
calibrated experimental data with the shallow water flow equations coupled with
a process-based erosion model [Hairsine and Rose, 1991, 1992a, b; Simpson and
Schlunegger, 2003; Simpson and Castelltort, 2006]. They found that the deposition
term in the equations had a minor effect on the (qualitative) match between the
model and experiment.

Highly heterogeneous factors of landscapes make their evolution more complex than
purely random or deterministic physical models. Hasbargen and Paola [2000] showed
that even at the ideal condition of laboratories, the chaotic feature of morphology
evolutions is unavoidable. In this regard, landscape evolution is claimed to be
comparable with turbulence in fluid mechanics [Passalacqua et al., 2006]. The
comparison is not surprising as the surface morphology is extremely coupled with the
turbulent flow on the landscape.

Stochastic Partial Differential Equations (PDEs) are known to be effective approaches
that can represent the complexity of processes, heterogeneity of properties and
inevitable uncertainties, along with simplicity in calibration and parameter estimation
[Foufoula-Georgiou et al., 2010; Fatichi et al., 2016]. SPDEs were previously introduced
as landscape evolution models [e.g., Giacometti et al., 1995; Caldarelli et al., 1997;
Pastor-Satorras and Rothman, 1998; Pelletier, 2007; Bonetti and Porporato, 2017].
For instance, Giacometti et al. [1995] introduced a fourth order PDE (inspired by
Edwards and Wilkinson [1982]) with a random noise to create a self-organized system.
However, the models were not calibrated with experimental or field landforms to see
how efficiently the models could reproduce the elevation field and its corresponding
scaling laws. In addition to using stochastic PDEs, underlying theories and their
interpretations developed to simulate more realistic landscape evolution patterns
le.g., Gabet and Mendoza, 2012; Furbish and Roering, 2013; Benson et al., 2013; Chen
etal., 2014b; Goren et al., 2014; Ancey et al., 2015; Houssais et al., 2015; Dorrell et al.,
2018; Baumgarten and Kamrin, 2018; Calvert et al., 2018]. For example, a non-local
hillslope evolution was proposed by Foufoula-Georgiou and Stark [2010] in which they
considered a model with fractional derivatives. Through one-dimensional analysis,
they found agreement between the hillslope profile from this model and three field
sites. Ferdowsi et al. [2018] proposed a glassy sediment flux model for hillslopes which
could mimic both slow creeping and fast landslides.

In Chapter3, we reported experiments with two significant differences to those

described above. First, the rainfall was non-uniform and, second, the surface
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morphologies were not incised (i.e., rills did not form). It was shown that the
morphology keeps the invariant catchment-scale power laws during its evolution. In
other words, the statistical features of fluvial parts were found in the unchanneled area.
In this Chapter, we consider the unchanneled morphology as an advective-diffusive
domain by testing the applicability of a widely-used LEM [Howard, 1994; Perron et al.,
2008] for unchanneled morphology evolution. The LEM is described in section 1.3.3.
Previous applications of the LEM to catchment scales produced an incised landscape
in which discharge occurs either as overland flow (to channels/rivers), or as flow
within the channels. In our experiment, only overland flow occurred, and the surface
was never incised. Nevertheless, we model the overland flow as a discharge network,
as done in other applications of the LEM. Additionally, we test the ability of the model
to simulate directly the measured surface morphology, a test that is not possible at the
landscape scale, and was hitherto not attempted at the laboratory experiment scale.
After analyzing the LEM with uniform coefficients, we take advantage of our
high-resolution experimental data to test some model modification scenarios.
Naming the original LEM as Modell, we investigate seven different model
modifications (Models 2-8) in three general methodologies: 1) Using a spatially
non-uniform diffusion coefficient correlated with the rainfall distribution (Model 2),
IT) Solving the LEM as stochastic PDEs (Models 3-6) and III) A deterministic method
that assumes a critical curvature for the onset of the diffusion process (Model 8). In
the stochastic form of the LEM, we separately applied spatial stochastic values for the
diffusion coefficient (Model 3), the advective coefficient (Model 4), and the critical
stream power (Model 5). Furthermore, we added a stochastic noise term to the model
which was applied independent of diffusion coefficient (Model 6) and coupled with it
(Model 7). In all cases, the parameters were calibrated using the experimental data via
a multi-objective optimization method (Borg MOEA [Hadka and Reed, 2013]). The
goal was to find out the best scenarios that have the minimum difference with the

experimental morphology and preserve of the scaling relations during evolution.

4.2 Numerical simulation and calibration

The sediment morphology after 15 minutes rainfall was used as the initial condition

for numerical simulation of the model (equation1.16). At each time step, the pit
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S matrix operations ;

outlet: z(0,0,¢) = 0 outlet: z(0,0,¢) = 0
. 0zt _ 0z°%t . 0zt _ 0z |t—dt

to_ ot _ 0zt to_ ot _ 0zt

Zy = Zw+dn an|wd” Ly = zw+dn 6n|wdn
t t—dt No
zt <z ?

Yes woetw

Figure 4.1 — The wall boundary condition assuming 7 as the unit vector normal to walls
in outward direction and dn is the discretization size along 7. %in |!, was calculated by
linear interpolation between the two consecutive scans before and after the time t.

points were removed using a fast algorithm introduced by Planchon and Darboux
[2002]. After determining the flow direction via the D8 algorithm [O’Callaghan and
Mark, 1984], the discharge was calculated by:

Qi= i w;;Qj+Rydxdy 4.1)
j=1

where j represents the 8 cells around the ith cell. The value of w;; (-) is one if the
cell j flows into cell i, otherwise it is zero. R; (mm h'1) is rainfall intensity at the cell
i (Figure 3.4h) and dx (mm) and dy (mm) are the grid sizes in x and y directions.
Because of very long simulation and optimization time, the cell sizes of 8 mm by 8 mm
were used for discretization. The D8 algorithm was used to extract the discharge
network from the morphology as it is the most common approach at large scales
[Erskine et al., 2006]. The details of water velocity field will be lost by approximating
the continuous overland flow as a network. However, the algorithm provides a simple
approach to approximate the driving shear forces on the morphology.
The numerical solution was obtained by two fractional time steps [Press et al., 2007].

The first one was the second order Runge-Kutta scheme to solve the advection term
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4.3. Model parameter study

(equation 1.16) and the second was implicit ADI algorithm for the diffusion part. More
details of the numerical formulation and discretization are explained by Perron et al.
[2008]. To overcome the wall effects, a conditional boundary condition was used as
shown in Figure 4.1. At each time step, after the matrix operations (Runge-Kutta + ADI),
the gradient normal to the boundary (g—z |,) was calculated by using the experimental
data ( % I,) which was a temporally linear interpolation of the scans. Afterwards, the
sediment elevations adjacent to the walls (z!,) were calculated based on the gradients.
In the decision block, the value of (zfu) was checked; the condition was that the

t—dt

w0 h). If the condition was not met,

elevation had to decrease at each time step (z{u <z
the slope would remain unchanged (equal to the last time step (¢ — dt)) and based on
that, the new elevation at the boundary was calculated.

The parameters D, K and Q. in equationl1.16 were calibrated by using the
experimental results. As mentioned in section 3.2, the sediment morphology was
captured at 0.25 (initial condition), 0.5, 1, 2, 4, 8 and 16 h. The objective function
was defined as the mean square error between the model and experiment at 8 h.
Particle Swarm Optimization method [Kennedy, 2010] was used for the calibration.
An in-house C++ code was written for the numerical modeling and optimization
processes. The main scripts are listed in Appendices C and D. The corresponding files

are available at: https://github.com/mcheraghi/Landscape-Evolution-Model.git.

4.3 Model parameter study

The numerical model was verified via analytical results of a 1-D advection-diffusion
equation and a 2-D Poisson equation (Appendix B). The model was further tested by
changing D in the model (equation 1.16) while K = 0.2 mm™? h‘%, Q. =10 mm? h™2.
The simulations started by the experimental DEM after 0.25h (Figure3.4). The
parameter D changed from 0 to 10000 mm? h™! and the resulted morphologies after
1 h of simulation are plotted in Figure 4.2. As can be seen, with D =0, the surface is
completely incised and as the value of D increases, the incision rate on the surface

decreases due to more smoothing effect of the diffusion term.
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4.4 Results of the original model (uniform parameters)

4.4.1 Morphology

Here, we critically examine the LEM’s ability to reproduce the observations of
Chapter 3. An obvious advantage of our laboratory experiment is that uncertainties
inherent in field-based analyses are avoided. In addition, we use the model to predict
the measured morphology directly as well as the statistical feature.

The calibrated parameters are presented in Table 4.1. The diffusion coefficient (D)
is higher than those reported for the field scale (0.16-222.4 mm? h™) [Benaichouche
et al., 2016; Martin, 2000]. This is consistent with the lack of rilling in our experiments,
as rill formation is favored for lower diffusivity [Sweeney et al., 2015]. In contrast to
the present experimental setup, previous laboratory experiments by which the LEM
was analyzed used fine particles, low rainfall intensities and small droplets, i.e., they
were designed to produce rills [Hancock and Willgoose, 2002; Bonnet and Crave, 2003;
Hasbargen and Paola, 2003; Lague et al., 2003; Bonnet and Crave, 2006; Paola et al.,
2009; Bonnet, 2009; Graveleau et al., 2012; Rohais et al., 2012; Reinhardt and Ellis, 2015;
Singh et al., 2015; Sweeney et al., 2015].

Table 4.1 — Calibrated parameters for the original LEM (Model 1).

D(mm?h!) Kmm-2h-2) Q, (mm?h ?)
17571 0.184997 13.0765
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4.4. Results of the original model (uniform parameters)

The numerical results are compared with the experimental data in Figure4.3.
the model is able to capture the main characteristics of the morphology, i.e., the
downstream (z < 60mm) have a symmetric shape while the upstream (z = 60mm)
is being eroded. In agreement with the experiment, the model shows a noticeable
movement of downstream at ¢ = 4 and 8 h. Recall that the model was calibrated using
measurements at 8 h, and then used to predict the morphology at ¢ = 16 h, where the
agreement is satisfactory.

Despite simulating the main characteristics of the morphology evolution, some
differences are seen between the model and the experiment. These differences are
likely due to the local scale fluid-particle and particle-particle interactions that are not
accounted for in the model. One of these processes is the armoring effect [Polyakov
and Nearing, 2003; Wang et al., 2014; Lisle et al., 2017]. Due to shorter erosion time
scales, the fine sediment particles are rapidly removed while the larger particles are
deposited on the surface or are not moved at all, resulting in a surface covered by
pebbles (Figure 3.8). Note that even at low values of the diffusion coefficient, the
micro-roughnesses of the hillslopes are always smooth in the model (as we have pure
diffusion on the hillslopes due to the step function in equation 1.16). Therefore, lack
of agreement between the model predictions and measurements is not related to the
parameter values but to some physical processes that are neglected in the model.
Nonetheless, the LEM can reproduce with reasonable skill the main features of the

morphology by calibrating only three parameters.

4.4.2 Spectral analysis and filtering

The networks in Figure 3.6 were generated by the experimental results where the
micro-roughnesses created low order streams. However, because the micro-roughness
of the surface is not captured, the LEM is not expected to render a detailed network
like the experiment (Figure3.6). The 2-dimensional Fourier transform of the
morphology are shown in Figure 4.4. The zero-wave number component are shifted in
the center of domain. The cross in the PSD contours is due to asymmetric boundaries
of the elevation domain. The spatially averaged power spectral density (PSD) is
plotted in Figure 4.5 as a function of the horizontal wave number (azimuthally
averaged). The PSD of the two models diverge from the experimental PSD at a wave

number range of 5-9 m™!. In order to remove the details of the discharge networks
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of Figure 3.6 and identify the main streams, the data were low-pass filtered by using
the Blackman window [Blackman and Tukey, 1958] with a cutoff wave number of
about 7m!. In Figure 4.6 the original morphologies of the model and experiment
are compared with the filtered ones. The micro-roughness of the experiment (the
large deposited stones shown in Figure 3.8b) were removed while the model results
are much less sensitive to the smoothing. In Figure 4.7, the discharge was calculated
via equation (4.1) using the original and filtered morphologies. After removing the
micro-roughness, the detailed network of the experimental results is converted to
a network that demonstrates the main flow paths on the flume. When the effect of
the large stones are removed, the low order streams of the experimental network are
removed and a more continuous field is generated. On the other hand, the discharge
network of both models are a little changed after removing the high wave numbers.
Therefore, after filtering, extracted network from the experimental and model results

show a good agreement.
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Figure 4.5 — Power spectral density of the morphology. The errorbars of the

experimental data are based on the standard deviation from the azimuthally averaged
PSD in the wave number domain.
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Figure 4.6 — The original and low-pass filtered morphologies at ¢ = 8 h.
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4.4.3 Discharge drainage network

The networks in Figure 3.6 were generated directly from the measured morphology,
i.e., with small-scale surface roughness included. The small-scale roughness
manifests itself in the computed overland patterns. However, the surface roughness is
not captured by the LEM, and so the resulting flow patterns are much less detailed
than the original experimental data (Figure 3.6). The discharge network of the filtered
experimental results are compared with the model network in Figure4.8. In both
experiment and model, the network has a dendritic form at ¢ = 0.5 h. Afterwards, the
network becomes more concentrated and the flows from the upstream are directed to
two main streams. The two streams migrate from left (low precipitation) to the right
of the flume (higher precipitation) as the experiment goes on. This migration toward
the high precipitation rate area is in agreement with the catchment-scale analysis of
Abed-Elmdoust et al. [2016] based on optimum channel networks. This migration is
responsible for the dynamic change in the erosion pattern of the upstream (Figure 4.3).
The model is able to reproduce the migration of the concentrated flow to the right

hand side, which induces the morphological evolution of the downstream.
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4.4. Results of the original model (uniform parameters)

4.4.4 Statistical analysis

We return to the discharge exceedance probabilities of the flow network generated
from the measured morphologies, as shown in Figure 3.10. An obvious question is
whether the corresponding discharge network computed for the modeled morphology
reproduces that for the measured morphology. The agreement is poor, as shown in
Figures 4.9-4.11. This relationships for the exceedance probabilities changed for the
filtered morphology to a curve with an inflection point (similar to the model results).
Overall, the model can statistically reproduce the filtered experimental data, but not
the original data.
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Figure 4.9 — The relation between the upstream length and drainage area (Hack’s
law) for the model and experiment. The model is able to reproduce the filtered
experimental data.
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The model is able to reproduce the filtered experimental data.
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4.5 LEM modification to enhance the statistical features

The original LEM (equation 1.16) is named Model 1 and is extensively described in
section 4.4. In this section, different approaches of model modification are described

which are labeled as Models 2-8. The results of the models are compared in section 4.6.

4.5.1 Spatially non-uniform diffusion based on precipitation
distribution (Model 2)

The first hypothesis is that the diffusion effect is a function of the droplet impacts on
the surface. In other words, a higher precipitation rate causes greater smoothness on

the surface. Therefore, the original LEM (equation 1.16) converts to:

92 — y(DVz) - K f(Q™S—Q,
{dt (DV2) - K f(Q er) 4.2)

D(x,y) = DR*(x,y)

where D(x, y), R*(x,y), K and Q., are the diffusion coefficient, normalized (based
on the mean) rainfall distribution (Figure 3.4-h), convective coefficient, and critical
stream power, respectively. The terms and parameters are defined in more detail
in section1.3.3. The parameters D, K and Q,, are calibrated to see the effect of a

non-uniform distribution of the diffusion coefficient on the model performance.

4.5.2 LEM as a stochastic partial differential equation (Models 3-7)

4.5.2.1 Roughness probability distribution function

The analyses in section4.4.2 show that the statistical differences between the
numerical and experimental results stem from the surface roughness. To select an
appropriate probability distribution function for the random variables, we calculate
the roughness distribution of the experimental results. The roughness field is
calculated as the difference between the original and filtered morphology (using the
Blackman window, section 4.4.2) and plotted in Figure 4.12. As expected, the majority

of roughness values are in the range of sediment particle sizes. The outliers (values
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more than 95 %) are removed from the data. Afterward, the data are normalized with
the maximum value (95 % percentile = 10.57 mm). The probability distribution of
the normalized roughness for all scans is shown in Figure 4.13. In both Figures 4.12
and 4.13, the PDFs are normalized such that z}g‘} PDF(i)ox; = 1, where 0x; is the
ith bin size. The data of Figure 4.13 were fitted with 77 different standard probability
distribution functions. The calibration was based on the root-mean square error
between the standard PDFs and experimental data. As shown in Figure 4.14, the best

fitis the “Half-Cauchy” distribution [Cauchy, 1853] in the form of:

2y

PREM =0 oy

(4.3)
where y = 0.1175. The fitted distribution is shown in Figure4.13. In the following

analysis, this distribution is used to include the spatially and temporally random

parameters in the LEM.
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Chapter 4. Landscape evolution model in absence of rills

——- fitted Half-Cauchy distribution
B PDF

0.0 0.2 0.4 0.6 0.8 1.0
Normalized roughness (-)

Figure 4.13 — The probability distribution of roughness during the 16-h course of the
experiment. The outliers (more than 95% percentile) are removed from the dataset,
and the values are normalized based on the maximum roughness.
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4.5. LEM modification to enhance the statistical features
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Figure 4.14 — The probability distribution functions that were calibrated with the
roughness distribution in Figure 4.13. The PDF numbers (1-77) are assigned based on
their fitness with the experimental roughness (error value in the plot). The error value
is the root mean square error between the experimental distribution and calibrated
PDE The distribution names are taken from the Python library.
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Chapter 4. Landscape evolution model in absence of rills

4.5.2.2 Model assumptions

Here we assume a heterogeneous diffusion coefficient (D) and add a roughness term
(Mn) to the original model (equation 1.16). The modified LEM is in the form of:

% =V.(DVz2)-K f(Q"S—Q¢) + Mn (4.4)

where D, K and Q. are the diffusion coefficient, advection coefficient and critical
stream power, respectively. In the roughness term (Mn), i is a random variable
from the Half-Cauchy probability distribution function of roughness (section4.5.2.1,
equation4.3) and M is calibrated based on the experimental data. In Table4.2,
different simulation scenarios are presented depending on the conditions of D, K,
Q. and 1. In Models 3, 4, 5, random values of D, K, Q., are assumed, respectively
while there is no roughness term in the model (M = 0). In Model 6, parameters D,
K and Q, are spatially uniform, and a random roughness term (Mn) is considered.
Finally, a spatially random diffusion coefficient (D) is coupled with the roughness

term in Model 7 such that higher roughness is associated with lower values of D.

Table 4.2 — Model assumptions for different stochastic PDEs. The parameter
n is a random variable from the Half-Cauchy probability distribution function
(equation 4.3).

D (mm?h) K (mm_% h™ %) Qer (mm% h™ %) roughness term (mm h1)
Model 3 Dyax(1—1) unifom unifom 0
Model 4 unifom Kinax(1—1) unifom 0
Model 5 unifom unifom Qnaxn 0
Model 6 unifom unifom unifom Mn
Model7 D= Dyac(1—1) unifom unifom Mn

4.5.3 Diffusion control via a critical curvature (Model 8)

As described in section 4.2, the PDE was solved in two steps. The first step was to solve
the convective part of the LEM via Runge-Kutta method. Then, the diffusion part was
solved. The problem with a uniform diffusion coefficient was that it applied the same
rate of smoothing on the whole domain. In this section, a deterministic approach is

introduced to selectively apply the diffusion (smoothing) part of the equation. Using
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4.5. LEM modification to enhance the statistical features

diffusion term network extraction
(Crank Nicholson) (discharge)
calculation of D advection term
(diffusion coefficient) (Runge Kutta)

Figure 4.15 — Calculation of the diffusion coefficient at each time step, after solving
the advection term and before applying the diffusion.

the fact that the incised parts of morphology have a larger curvature, we defined the
diffusion coefficient as a function of local curvatures. The values for D are calculated
after solving the advective part of the LEM (Figure 4.15). By this approach, the model
will have more smoothing effects on the incised parts of the surface. The model is

defined in the form of:

0z m
T V.(DVz) =K f(Q™"S—Q¢r) (4.5)

with

D(x,y,t) = p H(IV?z*(x, ¥, 1) — C¢r)

where H({) is the Heaviside step function, and z*(x, y, t) is the morphology after
solving the advective term. The new parameters, C., and ¢ are the critical curvature
and diffusion coefficient at high curvatures, respectively, which are calibrated via the

experimental data.

4.5.4 Parameter optimization of the modified models

A multi-objective evolutionary algorithm (Borg MOEA) [Hadka and Reed, 2013] was
used to find the optimum parameters. The initial condition of the numerical modeling
was the experimental data at £ = 0.25 h (Figure3.4a). Models 2-8 were calibrated using

two objective functions, f; and f>, which are based on the morphology (z) and the
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Chapter 4. Landscape evolution model in absence of rills

exceedance probability of upstream length (P(L > 1)), respectively:

N
f \/Zizl (Zi,model - Zi,exp)2
1 =

_ 4.6
N lt=8n (4.6)

f2 =1 O(RMSE(O.ZS) +RMSE(0.5)+...+RMSE(8))

with 4.7

Zlgo (Pmodel(L>lj)_Pexp(L>lj))2
RMSE (x) :\/ = o0 le=x

where z; mode1 and z; exp are model and experimental elevation at cell i; Moreover,
Prioder(L > ;) and Py (L > 1) represent the exceedance probability of upstream
length for model and experiment at /; ([ is divided into 100 equally spaced points
at the logarithmic scale). Note that only the power law parts of the exceedance
probabilities were compared (linear part of Figure 3.10c where P(L > ) = [7%).

In brief, f; defines the root mean square error of the morphology (z) at t =8h and f,
represents the summation over the root mean square errors of the upstream length
distribution at ¢ = 0.25,0.5,...,8 h. The analysis showed that the model results for the
three scaling laws (Hack’s law and the exceedance probabilities of drainage discharge
and upstream length) were correlated, i.e., once the model yields the optimized value

for f,, the error for the rest of scaling laws were minimized.

4.6 Results of the modified models

In this section, Models 2 through 8 are compared to find out the best modification
approach(s) for the original LEM (Model 1). The calibrated parameters of Models 2 (the
diffusion coefficient correlated with the rainfall distribution, equation 4.2), Models 3-7
(the stochastic PDEs, equation 4.4) and Model 8 (the diffusion coefficient as a function
of curvature, equation 4.5) are presented in Tables 4.3, 4.4 and 4.5, respectively.

In order to compare the performance of the calibrated models, the simulated
morphologies at ¢ = 8 h are shown in Figure 4.16. All the models are correctly showing
the main direction of morphology evolution (toward the right side of the domain

where the precipitation rate is higher). However, solely based on the elevation field,

108



4.6. Results of the modified models

Model 1 Model 2

Experiment
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Figure 4.16 — Elevation field (z) of the models at £ = 8h. Model 1 is the original LEM
(eguation 1.16). In Model 2, the diffusion coefficient is correlated with the rainfall
distribution. Model 3 to 7 are the stochastic PDEs which are defined in Table 4.2. In
Model 8, the diffusion coefficient is a function of curvature (equation4.5).
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Chapter 4. Landscape evolution model in absence of rills

Table 4.3 — Calibrated parameters for Model 2. The diffusion coefficient at each cell
(D(x,y)) is proportional to the rainfall intensity, R*(x,y). The spatially averaged
diffusion coefficient is shown by D.

Dmm?h!) K (mm‘% h‘%) Q¢ (mm% h‘%)
Model 2 (D = DR*(x, ) 7360 0.258 51.19

Table 4.4 — Calibrated parameters for the stochastic PDEs (Models 3-7). The spatially
random coefficients are defined according to Table 4.2.

Dmax (mm2 h-l) Kinax (mm_% h_%) Qmax (mm% h_%) M (mm h-l)

Model 3 (random D) 20518 0.414 49.09 -
Model 4 (random K) 14036 0.628 41.92 -
Model 5 (random Q) 17052 0.200 34.20 -
Model 6 (random 7)) 15921 0.387 49.85 268.6
Model 7 (random D and 1) 19131 0.270 33.71 44.8

it is not possible to have an accurate model comparison. For detailed scrutiny of
the surfaces, the corresponding power spectral densities at t = 8h are shown in
Figure 4.17. As can be seen, the high PSD values of the models and experiment are in
the same range whereas more differences are detected at high wave numbers. The
azimuthally averaged PSD in Figure 4.18 reveals that Models 2, 3, 4 and 5 do not have
the high wavenumber structure of the experimental data. Indeed, no improvements
are detected in these models as the PSD values are worse than the values in the original
model (Model 1). Model 6 (the PDE with a random roughness term) also has a lower
PSD value compared to Model 1, except for the highest wave numbers. On the other
hand, Model 8 shows a better agreement with the measured morphology.

The extracted discharge networks from the morphologies are shown in Figure 4.19.
According to the discharge fields, the low-order branches of the experimental network
are not captured by models 2, 3, 4, 5 and 7. As shown in the spectral analysis,
these models smooth the initial morphology and remove the low-discharge points
of the experiment. Models 6 (with a random roughness term) and 8 (with diffusion
as a step function of curvature) generate more accurate discharge networks at the
low-discharge areas. This comparison shows that applying the spatiotemporal random
values for the variables D, K and Q., does not improve the original deterministic
model (Model 1). In other words, if we assume the model as a stochastic PDE, adding a
stochastic roughness term (M) is crucial. In the following, we will go through models

6, and 8 which are the best scenarios.
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4.6. Results of the modified models

Table 4.5 — Optimized parameters for Model 8. The diffusion coefficient is defined as a
step function of curvature (equation 4.5, Figure 4.15).

dmm?h) Co(mml) K(mm 2hz) Qg (mm:h ?)
Model 8 (conditional D) 17728 0.002916 0.180 10.32

Morphology evolutions via Models 6 and 8 are compared with the experimental
data and the original LEM (Model 1) in Figure 4.20. Both Models 6 and 8 can simulate
the main direction of the evolution from left to right. Compared to Model 1, Model 6
shows less evolution of the low elevation area (z < 70 mm) to the upstream whereas
Model 8 results in more upward extension of the low elevation area.

In Figure 4.21, the discharge fields of Models 6 and 8 are compared with both the
experimental data and the original LEM. As previously mentioned, both Models 6 and
8 modify the discharge network of the original LEM by providing a more branched
structure at the low-discharge region. At the initial stages of erosion (¢ = 0.5h and
1 h), the network of Model 2, is more similar to the experimental data, as compared
to Model 8. Nonetheless, Model 6 generates a straight mainstream at ¢ = 2h which
is different from the experimental data. Furthermore, the upstream branches of the
network at ¢ =4 h disappear at ¢ = 8h, and reappear at ¢ = 16 h. On the other hand,
Model 8 renders a network which converges slower and shows a more consistent level
of details at the low-discharge areas.

In order to further confirm the qualitative descriptions, the relation between the
upstream length (/) and drainage area (A) is presented in Figure 4.22. Based on the
analysis of Chapter 3, the experimental data make a temporally-invariant power-law
relation between [ and A (Hack’s law). Figure4.22 shows that the original LEM
(Model 1) has a huge deviation from the experimental data. However, the scenarios 6
and 8 improve the LEM to have a better statistical representation of the experiment.
Model 8 appears to be even better than Model 6 at the upstream (low-drainage areas).
The exceedance probabilities of discharge, drainage area, and upstream length are
shown in Figures 4.23-4.25, respectively. According to Figures 4.23 and 4.24, Models
6 and 8 do not show a significant improvement in the exceedance probabilities
of drainage discharge and area. The exceedance probability of upstream length
(Figure 4.25) shows that for smaller lengths, Model 8 has a better agreement with
the experimental data. However, Model 6 shows a better performance than Model
8 at higher values of /. Overall, these results demonstrate that via adding a random

roughness term (Model 6) and having a step function for the diffusion coefficient
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Figure 4.17 — Power spectral density of the elevation fields (z) at ¢ = 8h at the
logarithmic scale. Modell is the original LEM and Models 2 to 8 are defined in
section 4.5. The low-wave number PSD values of the models and experiment are in
the same range whereas the models behave differently at high wave numbers.
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Figure 4.18 — The azimuthally-averaged power spectral density of the morphology in
the wave number domain. The errorbars of the experimental data are based on the
standard deviation from the mean. Model 1 is the original LEM and Models 2 to 8 are
defined in section 4.5.
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Figure 4.19 - Discharge distribution of the experiment and different models at =8 h.
Model 1 is the original LEM and Models 2 to 8 are defined in section 4.5.
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(Model 8), more micro-roughnesses of the morphology can be simulated by the
LEM. Nonetheless, the statistical characteristics are not completely matched with the

experimental data.
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Figure 4.20 — Continued
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Figure 4.20 — Elevation field of the experiment and Models 1, 2 and 8. Model 1 is the
original LEM and Models 2 and 8 are the modifications defined in section 4.5.
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Figure 4.21 — Continued.
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Figure 4.21 — Discharge distribution of the experiment and Models during the 16-h
course of experiment. Compared to the original LEM, Models 6 and 8 are more
in agreement with the experiment by producing a more branched network at the
low-discharge.
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Figure 4.22 — The relation between the upstream length and drainage area (Hack’s law)
for the models and experiment. Models 6 and 8 improve the original LEM to follow
Hack’s law. However, Model 8 shows more enhancement compared to Model 6.
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Figure 4.23 — Exceedance probability of drainage discharge for the experiment and

Models 1, 6 and 8.
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Figure 4.24 — Exceedance probability of drainage area for the experiment and Models
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4.7 Conclusions

This study showed that the large scale LEM was a robust simulation tool in the
absence of rills (previous investigations focused on incised landscapes), when
coupled with the D8 algorithm for shallow, overland flow. The LEM was able to
capture the morphology changes, which evolved under a highly heterogeneous
rainfall, by calibrating only three parameters, i.e., diffusion coefficient (D), advection
coefficient (K) and the critical stream power (Q.,). Erosive processes captured by the
LEM are broadly characterized as raindrop impact-induced diffusion and surface
flow-induced shear stress. Unlike previous investigations, here the surface was
continuously covered by overland flow, which was modeled as a flow network. Shear
stress-driven erosion did not occur until a soil-specific flow rate was exceeded. It was
also revealed that even at a diffusive-dominated area where the morphology was not
incised, the advective term was inevitable to define the right evolution direction. The
intricate surface flow details produced by the measured surface were not present
in the modeled surface. Filtering of the measured and modeled surfaces markedly
improved the agreement between the calculated flow networks. However, the scaling
laws reported in Chapter 3 were not maintained. In general, the LEM with a uniform
diffusion coefficient could reproduce the low-pass filtered experimental results. In
other words, small scale variability due to surface roughness that increased over the
course of the experiment was not present in the LEM, and thus had to be removed to
obtain reasonable statistical agreement between the experimental measurements
and the LEM.

Different methods were tested to improve the applicability of the LEM further.
The objective was to introduce some methods that preserve the simplicity of the
standard advective-diffusive LEM. In the first approach, the diffusion coefficient was
correlated with the rainfall distribution (Model 2). Afterward, the LEM was solved
as a stochastic PDE (Models 3-7). Finally, the diffusion coefficient was calculated
as a step function of curvature (Model 8). The analyses clarified that assuming a
spatially non-uniform diffusion coefficient correlated with the precipitation rate
did not improve the model results. Similarly, using a random distribution of the
diffusion coefficient (D), convection coefficient (K) and critical stream power (Q,,)
could not enhance the model quality. In these models, the high value (or gradient) of
the diffusion coefficient smoothed the morphology, regardless of the uniformity or

heterogeneity of the other parameters. Based on numerical simulations calibrated
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with high-resolution experimental results, this study proposed two straightforward
ways of LEM improvement: I) adding a spatiotemporal random roughness term in the
LEM and II) applying the diffusion term as a function of curvature. By using these
two approaches, the relation between the upstream length and drainage area of the
model(Hack’s law) was improved, and more details of the low-discharge region of
the experimental networks emerged in the model results. However, insignificant
enhancements were observed in the exceedance probabilities of drainage area and

upstream length.
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Conclusions and outlook

5.1 Summary and conclusions

Morphological features are undeniable in environmental transport processes as they
provide the geometry of the systems. Today’s advanced environmental analyses with
high-resolution data require more accurate criteria for surface evolution modeling.
This dissertation involved experiment and numerical simulations of rainfall-driven
sediment transport at laboratory scales where we focused on the statistical and
physical characteristics of unchanneled overland flow morphologies. In the following,
the primary outcomes are presented in accordance with the research questions

mentioned in section 1.5.

5.1.1 Rainfall-driven hysteretic sediment fluxes as a result of

morphological changes

Hysteresis loops are well-known for sediment concentration-discharge relation in
river flows [Klein, 1984; Williams, 1989; De Girolamo et al., 2015; Sun et al., 2016;
Dean et al., 2016; Sherriff et al., 2016]. In Chapter 2, the flume experiment showed
the hysteretic erosion patterns for rainfall-driven sediment transport. Clockwise
hysteresis loops occurred when a temporally variable precipitation rate was applied
on the surface. Furthermore, the hysteresis loops were wider for the finer particles,
and as the particle size increased, the erosion rate was more correlated with the
precipitation rate (narrower hysteresis loops). The HR model [Hairsine and Rose,

1991, 19924, b] was calibrated with the experimental data. The model could adequately
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reproduce the concentration of finer particles. However, the results for larger particle
size classes were less satisfactory. Because, large particles are more likely transported
due to rolling, saltation and ejection which are not included in the HR model. The
calibrated model described the generation of a shield layer due to deposition of the
larger particles during the erosion phenomenon. The model results indicated that the
subtle morphological changes caused a less availability for the finer sediments and

thus the generation of the hysteresis loops.

5.1.2 Statistical characteristics of unchanneled morphology

evolution

The hysteretic sediment fluxes in Chapter 2 demonstrated the importance of slight
near-surface particle rearrangement on erosion trends. This phenomenon raised
another question about the surface morphology: How are the deposited particles
arranged on the unchanneled surfaces? To answer this question, we inspired
from the general self-similarity concepts for river networks (Chapter3). Despite
different climates, vegetation, human activities, etc., river networks follow identical
scaling laws for upstream length and drainage area [Hack, 1957; Gray, 1961; Mueller,
1972; Rigon et al., 1996, 1998]. In our experiment, the high-resolution morphology
under a spatially non-uniform rainfall was measured by a laser scanner during the
experiments. The unchanneled morphologies showed the catchment-scale power
laws with the same range of exponents. Consequently, self-similarity of landscapes
exists at the initial stages of water-sediment interaction (rainfall) and is irrespective of
sediment transport types. This investigation provided the essential statistical metrics
for morphological evolution and particle deposition on the surface even when there is

no visible incision on the surface.

5.1.3 Catchment-scale LEM on unchanneled morphology

evolution

The remarkable statistical similarity of unchanneled surfaces with catchment-scales
urged us to test the applicability of a widely used catchment-scale model [Howard

et al., 1994; Perron et al., 2008] to laboratory-scale unchanneled surfaces. In the
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previous applications of the LEM at large scales, the unchanneled areas were modeled
via a diffusion term. In Chapter4, the model with both diffusive and advective
terms was solved for unchanneled surface evolution. The model was calibrated
by using the high-resolution morphologies captured by a laser scanner during
the 16-h experiment under a spatially non-uniform rainfall. The spectral analysis
showed that with high-resolution scans of an unchanneled surface, the standard
catchment-scale LEM was quite applicable to have the prevailing evolution rate and
direction. The highlighted point about the LEM was its simplicity as it simulated the
process with only three parameters and represented the complex overland flow by a
dynamic discharge network. One issue was the high value of diffusive coefficient that
caused smoothing of low-discharge areas (with high wave numbers of the Fourier
transform). In other words, the model produced a spatially filtered elevation field
of the experiment. In the interest of improving the statistical aspect of the model
results, seven different scenarios were tested. After comparison, two approaches were
suggested to relatively enhance the simulations: 1) Adding a random roughness term,
and 2) Determining the diffusion coefficient based on the local curvature. Compared
to the original model, the two modified cases could improve the Hack’s law. However,
the improvements for the exceedance probability of drainage area, discharge and

upstream length were not impressive.

5.2 OQOutlook

Extension of large-scale concepts into unchanneled surfaces can lead to more
accurate erosion and fluid flow estimations by providing simple statistical and
physical metrics for surface evolution. To further enhance the applicability of the
catchment-scale theories for the local soil management within the catchments, in
the following, some experimental setups and modeling approaches are suggested for
future works.

In a recent work, Sassolas-Serrayet et al. [2018] showed that the catchment’s overall
shape is more a function of Hack’s coefficient rather than the exponent. Therefore,
studying the scaling coefficients is as crucial as the exponents. On unchanneled
surfaces with two slopes of 5% and 10 %, we showed temporally invariant scaling laws

with exponents in the range of catchment scales. The next step would be to find out
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how scaling coefficients and exponents are classified in that range. In our experiment,
the surface water flow was accumulated at an outlet at the center of the flume’s width.
Changing the outlet position to have a non-symmetric condition is one way to create
networks with different overall structures. It would be interesting to examine the
effect of flume outlet on scaling exponents and coefficients and link them to the
network orientation and density. Two other factors that influence networks’ shapes
are the flume main-slope and width to length ratio. We postulate that all networks will
show the invariant scaling laws. However, the scaling exponents and coefficients are
expected to have meaningful differences for different experimental scenarios. Having
a broader laboratory studies helps a detailed clustering of the scaling laws.

In this dissertation, for the first time, an advective-diffusive LEM was calibrated with
the experimental data. By calibration, we mean starting with the initial experimental
morphology and conducting the numerical simulation of the whole course of
the experiment with both advective and diffusive parts, and not estimating the
parameters of the steady-state model based on the final state of the landscape.
In contrast to the process-based models, a simplified flow field is assumed in the
standard large-scale LEM. Therefore, it cannot render the flow velocity and the details
within the water layer (suspended sediment particle distribution, the velocity, etc.).
However, it showed to be a strong and simple method when the geomorphological
patterns are the objective. For future studies, we highly recommend calibration of the
model with experiments that include uplift and incised morphologies would. In order
to test all aspects of the model, it should be calibrated based on both the elevation
field and statistical feature of the rill network. In this work, the objective was to use the
most typical form of the catchment-scale model and therefore, the D8 algorithm was
used to extract the network. Examining the effect of the multi-directional algorithms
of network extraction [Tarboton, 1997; Costa-Cabral and Burges, 1994; Freeman, 1991;
Quinn et al., 1991] on the statistical perspective of unchanneled morphologies would
be another suggestion. Additionally, by conducting a similar experiment, comparing
the application of the catchment-scale LEM with the process-based erosion models is
also a valuable path to follow. In this regard, the objective would be to investigate the
strengths and drawbacks of each model regarding the precision, calibration simplicity,

uncertainty, and numerical simulation cost of the models.
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Data availability statement

*The modeling, optimization and data analysis tools (C++ and Python codes) with a
User’s Guide are openly available at:

https://github.com/mcheraghi/Landscape-Evolution-Model.git.

*The surface morphology data are available at: http://doi.org/10.5281/zenodo.1292113.
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;.\ More details of the experimental

setups

A.1 Surface scanning and image registration

In order to obtain the DEM data, Konica-Minolta VIVID 910 3D laser scanner was used.
The scanner was successfully used before [Perona et al., 2012; Edmaier et al., 2015].
The device is capable of measuring the surface morphology with a precision of 10 ym.
To do the scanning, the scanner was placed on a frame. The distance of the device
from the flume surface was adjustable and the frame could move along the flume via
rollers. Besides, it was possible to replace the scanner along the flume’s width.

The device includes three different lens types: WIDE, MIDDLE and TELE. The first step
in the preparation of the scanner was to test different lenses and distances to find out
the optimum condition for the soil surface scanning. The dimension of the scanned
piece and precision in the x and y directions are listed in Table A.1. A deflection test
was performed by putting two completely straight aluminum bars on the sides of the
flume. The deflection tests were done with 120 cm-WIDE and 180 cmm-WIDE cases.
Finally, the 120 cm-WIDE case was found to be the best because of easier replacement
of the scanner on the frame, fewer oscillations of the frame and more precision in the
registration and translation of different pieces.

Having the 28 pieces on the 6 mx2-m flume (Figure A.1), the areas (ay, a ... ¢2) and the
points (A,..., D) were used for registration and coordination, respectively. An example

of the scanned surface by using the above procedure is shown in FigureA.2.
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Table A.1 - Dimension and resolution of the scanner with different lens types at various
distances from the surface.

DISTANCE-LENS width (mm) Length(mm) Ax(mm) Ay (mm)

60 cm-TELE 120.94 90.99 0.38 0.38
60 cm-MIDDLE 212.95 160.69 0.65 0.69
60 cm-WIDE 380.45 285.25 1.18 1.23
120 cm-TELE 235.75 177.48 0.74 0.75
120 cm-MIDDLE 418.04 311.78 1.32 1.3
120 cm-WIDE 742.7 561.8 2.37 2.23
180 cm-TELE 346.31 260.8 1.09 1.09
180 cm-MIDDLE 609.73 457.34 1.93 1.92
180 cm-WIDE 1100.56 790.16 3.48 3.54

Figure A.1 — The pieces of scans on the flume. The numbers (1-28) show the order
of scanning. The pieces were registered using the intersection areas (a;, a, ... ¢).
Four points A, B, C, D were the labels on the flume’s frame to coordinate the overall
geometry.
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A.2. Rainfall distribution measurement

roughness (mm)

Figure A.2 — Digital Elevation Model of the flume. The 28 pieces of the 120cm-WIDE
case were joined by translation along the width and registration along the flume’s
length. All values are in (mm).

A.2 Rainfall distribution measurement

In order to have justified calibrated parameters, it is much more efficient to put
the precise rainfall distribution in the model. For obtaining a continuous profile of
the rainfall intensity, the bottles were arranged throughout the flume as shown in
Figure A.3. Afterward, the rainfall was generated for 30 minutes and the volumes of
all the bottles were measured. This process was done for two slopes (2% and 10%).
The experimental data were interpolated by modified Shepard method [Franke and
Nielson, 1980] to make a grid in the size of the morphological cells.

A.3 Sediment selection for the experiment

We searched for an experiment which created an unchanneled morphology while
there is a fast evolution. To this end, different sediment types, slope and rainfall
intensities were tested (Table A.2). Experiment 1 was done on the large flume (6 m x
2m, Figure 2.1) and the agricultural soil was initially compacted. After analyzing the
DEMs, the variation on the surface was not enough. Therefore, we used an initially

plowed dry soil in experiment 2. In this experiment, although initially some big rills
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Figure A.3 — Rainfall distribution measurement on the flume.
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A.3. Sediment selection for the experiment

Table A.2 — The experiments carried out to achieve an unchanneled fast evolving
morphology. Different rainfall intensities, sediment types and flume sizes were used.

Exp. No. Sediment Type Flume Size Slope Ave.R.I. Duration Surface Evolution
1 Cohesive 6mx2m 10% 60mmh 2h X
2 Cohesive 6mx2m 10% 60mmh! 2h X
3 Cohesive 2mx1lm 10% 80mmh 2h X
4 Uncohesive (coarse) 2mx1m 10% 80mmh! 4h X
5 Uncohesive (fine) 2mx1m 10% 60mmh 4h v/
6 Uncohesive (fine) 2mxIm 3% 80mmh’! 20h v
7 Uncohesive (fine) 2mxIm 5% 85mmh! 12h v
8 Uncohesive (fine) 2m x 1m 5% 85mmh! 16h v

were formed on the flume’s surface. But, they were disappeared after less than one
hour due to deposition of sediments at the outlet. So, two changes were necessary: I)
the flume outlet should not be open along the entire width and II) the initial sediment
surface level should be higher than the outlet’s surface.

In the next step, we made a smaller flume (2 m x 1 m) on which the flow was aggregated
at the outlet and the soil surface was 15 cm above the outlet level (Figure3.1).
Afterward, the agricultural soil was tested on the new flume in experiment 3 which
was not successful. Finally, we decided to change the sediment on the small flume.
In the experiments 4-6 the less cohesive sediment was tested. The surface evolution
was observed for the fine lake sediments in the first few hours of experiments
5-8. The results of experiment6 are shown in FigureA.4. Experiments 5 and
8 were used for the analysis in Chapters3). The LEM was calibrated with the
results of experiment 8 in Chapter4). The surface morphology data are available
at http://doi.org/10.5281/zenodo.1292113.
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(©t=9h

Figure A.4 — Morphology evolution of experiment 6 (Table A.2).
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Model verification

In this appendix, the C++ codes used for the numerical modeling of the morphology
evolution is verified. The details of the numerical approach are presented in section
4.2. Two analytical solutions were used. In the first step, a 1-D advective-diffusive
equation with periodic boundary condition will be solved. The second step, a Poisson
equation was considered. Afterward, the model was tested to see the effect of diffusion

on the incision rate.

B.1 1-D advection-diffusion

The 1-D advection-diffusion equation for f(x, y) is in the form of:

N

=D — — 0<x<?2 B.1
ot “ox2 " ox * (8.1
with:

f(x,0) = Asin(2amnx)
fO,0=f20)

(B.2)

The analytical solution for this case is:
flx, ) = eP? sinQan(x - K1) (B.3)

Considering, D=1, K=1, A=1and a = 1, the numerical and analytical results are

compared in Figure B.1. The numerical solution can capture the movement of the
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wave along x while the wave amplitude is reduced by time ().

B.2 2-D diffusion

Diffusion equation for the function for f(x, y, t) is:

0

a—‘l;:vzf+1[/ -l=sx=<-1, -l1=y=<1 (B.4)
where,

f(x,0=0

B.5
fELyn=fy0=fx-1,0=f(x1,=0 9

The steady-state analytical solution (—V? f = ) is:

1-x2 16 & {sin(kn(1+x)/2)

fx,y,+00) =y 5 3 Z 13 sinh(on) X (smh(kﬂ(l+y)/2)+smh(k7t(1—y)/2))}

(B.6)

The numerical results of the initial times and the steady state solution are compared
with the analytical results in Figure B.2 (e and f). As can be seen, the model and

analytical results are in a very good agreement.
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B.2. 2-D diffusion
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Figure B.1 — Analytical and numerical solution of equation B.1 with D, K, A,a = 1.

141



Appendix B. Model verification

1 (a)t=0 (b) t = 0.05
g 0. .
=
-1
0.30
(c)t=0.1 (d)t=0.2 023

y(m)

1
0.20'5
g
015
0 0.10
0.05
1 0.00
) (e) Numerical (f) Analytical
0
-1
_ -1 0 1

y(m)
Steady state

1 0 1
y (m) z (m)
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steady state solutions.



8] C++ scripts: Landscape evolution

2

1

model and optimization tools

The files with a User’s Guide are available at:

https://github.com/mcheraghi/Landscape-Evolution-Model.git.

Listing C.1 — ‘header.cpp’: List of functions and their description

#include<iostream>
#include <iomanip>
#include<fstream>
#include <string>
#include <sstream>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <ctime>
#include <cstdlib>
#include <list>
#include <sstream>
#include <unistd.h>
#include <chrono>
#include <random>
#include <thread>
#include <tuple>
using namespace std;
using namespace std::this_thread; // sleep_for, sleep_until

using namespace std::chrono; // nanoseconds, system_clock, seconds

#define M 121//exp8: 241(4mm), 121(8mm) exp 7:123 (8 mm)//244 (4 mm)
#define N 239 //exp8: 477(4mm), 239(8mm) exp 7:233 (8 mm)//464 (4 mm)
#define dx 8

#define dy dx

#define delta  dx

#define mainSlope 0.05

#define aveRain 84.0 //(@m/h)

#define CFL 0.9

#define Tmax 16.0

#define PI 3.14159265359

struct objectives

{

double a; double b; double c; double d;
b

class interface

{

143



Appendix C. C++ scripts: Landscape evolution model and optimization tools

public:

41 int runOption;
void getRunOption (string addressRUN, string addressOPT);
b

class matrixOperations
{
public:
int transpose(double *A, double *B, int row, int col);
int multiple (double *A, double #B, double *C, int Ar, int Ac, int Br, int Bc);
int getMinor(double #+src, double =+xdest, int row, int col, int order);
51 double calcDeterminant( double *+xmat, int order);
void matrixInversion (double *A, int order, double xY);
friend class functionSet;

b

class functionSet:public matrixOperations
{
private:
int *DIR, *INPUT, =drainTo, *drainFrom;
double *CURVE, *R, =D, =alpha, =down, *up, =right, =left,*downBC, *upBC, =rightBC, =leftBC, xscanTime, xparam,*Omega,*K;
61 double xa, *b, xc, =*d;
ifstream inputl,input2;
ofstream outputl,output2, output3;

int PHICalc(double *Q, double *SLOPE, double =PHI);

int Thomas(double *,double *,double *,double #,double *,int);

void d2s(double num, char s[], unsigned int width);

public:

double E, Dave, Kave, m, n, OmegaAve, noiseAve;//E:tectonic, Dave:Diffusion, K:convection, m:discharge expoenent,n:slope exponent

,Tave: critical stream power (Omega =Taves:random number) , noiseAve:coefficient of deposition term
71 double t;

int BCstep;

int varD;

double slopeLocal[8], dt, error;

double epsilon, gamma; //epsilon: the value for filling process, gamma: the value for BC

int allocate (double *X,double *Y,double =Z,double *Q,double *dZstar,double =Zstar,double =PHI);

void readLand (double #X,double *Y,double *Z, string strl);

int filling (double *, double *, double x);
void smoothZ(double *);
81 void direction (double *, double =, double = );
void L_down(double x);
void drainageQ (double *Q);
int mainRiver (double *X, double *Y, double *Z, double =L, double =BV, double BVmin, double *SLOPE, double *Q,
double *CURVE,double =LL, double *PHI, string folder, string fileName);//the main path is determined base on the
based value (BV) and its minimum value (BVmin)
int calcDrainFrom (double =BV);
void UpLenght(double *L);
int statistics (double #*X, double *Y, double *Z, double *Q, double *AREA, double *SLOPE, double *CURVE, double *PHI,
double *L, double =LL, double percentage, string folder);
91  void prepareFile(string folderName, string fileName);
void drainageAREAandLL (double *AREA, double *LL, double sorder); //The drainage area without considering the rainfall
void writeExceedance (double sparamMain, double *paramTemp, int NumPoints, string folderName, string fileName);
//it writes the exceedance probabilities of a specific parameter
void Kmean(double =X, double Y, double xcenter, int numpoints, int myK, string folderName, string fileName);
void Ktest(double =X, double *Y, double xcenter, int maxK, string folderName, string fileName);
void findMinMax(double*param, double *min, double *max);
void normalize (double =X);
double average (double #X);
double RMS(double =X, int size);
101 double correlation (double *X, double *Y, int size);
double meanSquareError (double *X, double #Y, int size);
int Qcomponents(double #X, double *Y, double *Q, double *Qx, double *Qy);

void defineRain(string strl, int uni);

void defineRandom_Noise_D_K_Omega (double *Z,int varNoise, int varD,int varK,int varOmega) ;
void defineD (int varD);

void defineRandomD (int varD);// 0 or 1 is put directly in the function

void defineK(int varK);

void defineOmega(int varOmega) ;

144



111  void slopeCalc(double *Z, double *SLOPE);
void curveCalc(double *SLOPE, double *CURVE);
objectives multiObjective_Zerror_discharge (double *X, double =Y, double *Z, double xZstar, double *Q, double *SLOPE,
double *PHI, double sdZstar, string initialTime, string finalTime,string+ filename);
double objective_discharge (double *X, double *Y, double *Z, double *Zstar, double *Q, double *SLOPE, double *PHI,
double =dZstar, string initialTime, string finalTime,string+ filename);
int temporalBCset(double *X, double *Y, double #Z,string+ filename); //sets the boundary according to the experimental data
void filter33 (double *param, double xfiltered, int filtTime);
double filternn (double *param, double =filtered, int n);//it filters param by an n by n cells
double filterCELL (double *param, int i,int j, int n);//it filters param[i,j] by an n by n cells
121 void filterNetwork (double *Z1, double *Z2, double *Y, double *Qopt);
int dtCalc(double *Q, double *SLOPE);
int RungeKutta(double *Z, double *Zstar, double *Q, double *SLOPE, double *dZstar, double *PHI, double *Y);
int crankNicholson(double *Zstar, double xY);
int boundarySet(double *Z, double *Y);
int replaceError(double *Z, double =Zstar);
int addNoise(double *Z, double dt); //in numeric file
int writeDATA (double #X, double *Y, double *Z, double #X1, double *X2, double *X3, double X4, double *X5, double *X6,
double *X7, string folder, int step);
int writeXYZ(double #X, double *Y, double *Z, string folder, int step);
131 int analytic (double *X, double *Y, double *Z);
int RUN(double *X, double *Y, double *Z, double xZstar, double *Q, double *Qx, double *Qy, double *SLOPE, double *CURVE,
double *PHI, double xdZstar, double *AREA, double *LL,double *downL, string addressRUN, double initialTime,
double finalTime, string initialTimeZ, string finalTimeZ);
double objectivel (double *X, double *Y, double *Z, double *Zstar, double *Q, double *SLOPE, double *PHI, double xdZstar,
string initialTime, string finalTime, string+ filename);
double stepRun(double *X, double %Y, double *Z, double *Zstar, double *Q, double *SLOPE, double *PHI, double *dZstar,
double initialT , double finalT, string finalZ) ;
double objective2 (double *X, double Y, double *Z, double *Zstar, double *Q, double *SLOPE, double *PHI, double xdZstar);
int calibratePSO (double *X, double =Y, double *Z, double *Zstar, double *Q, double *SLOPE, double *PHI, double xdZstar,
141 string addressOPT, string initialTime, string finalTime,string* filename);
int calibrateMontCarlo (double =X, double =Y, double *Z, double xZstar, double *Q, double *SLOPE, double *PHI);
int confidencelnterval (double q[], double percentage[], double *X, double *Y, double *Z, double *Zstar, double *Q, double *SLOPE,
double *PHI, double xdZstar,double T1, double T2, string initialTime, string finalTime);
int confidencelntervall (double q0[], double percentage[], double *X, double *Y, double *Z, double *Zstar, double *Q,
double *SLOPE, double *PHI, double xdZstar,double T1, double T2, string initialTime, string finalTime);
void SetCursorPos(int XPos, int YPos);
b

Listing C.2 — ‘main.cpp’: The main functions

#include "header.h"

//The output folder, the input DEM file and the rain contour has to be specified,

void mainRUN ()

{

double *X,*Y,*Z,*Q, *Qx, *Qy, *AREA,xSLOPE,*CURVE,*L,*LL,+downL,* Zstar ,* dZstar ,*PHI, * order;
/! the parameter dzstar in mainRUN is replaced by L

int RunOpt, i, j;

X = (doublex) calloc (MsN , sizeof(double));
10 Y = (doublex) calloc (M«N , sizeof(double));
%, = (doublex) calloc M*N , sizeof(double));
Q = (doublex) calloc (MsN , sizeof(double));
Qx = (doublex) calloc (M=N , sizeof(double));
Qy = (doublex) calloc M*N , sizeof(double));
SLOPE = (doublex) calloc MsN , sizeof(double));
CURVE = (doublex) calloc M=N , sizeof(double));
Zstar = (doublex) calloc M«N , sizeof(double));
dZstar = (doublex) calloc M«N , sizeof(double));
PHI = (doublex) calloc M=N , sizeof(double));
20 L = (doublex) calloc M=N , sizeof(double));
AREA = (doublex) calloc M=N , sizeof(double));
JLIL = (doublex) calloc (M=N , sizeof(double));
downL = (doublex) calloc M=N , sizeof(double));
order = (doublex) calloc MsN , sizeof(double));

interface III;

functionSet M(H;

M. allocate (X,Y,Z,Q, dZstar, Zstar ,PHI);
M. Dave =17571.0;

MH.K = 0.185;
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30 MOIm = 0.5;

MO.n = 1.0;
M(H. tetaC = 13.07;
MOH.E = 0;

M. rndCoef = 10;
char +path1=NULL;
size_t size;
string path=getcwd (pathl, size);
cout<<"\n current Path"<<path;
path = path.substr(0,path.size () —6); /1 take the "/model" part
string addressRUN = path+"/results";
//boost:: filesystem :: path full_path( boost:: filesystem :: current_path () );
//full_path —="/model";
//string addressRUN = "/home/mohsen/Man2/DATA/RUNS/runl/results"; //the output file
M.varD = 0; //0: uniform, 1: variable D
double initialTime = 0.25;//NOT 0.5 and 1.0!
double finalTime = 16.0;//NOT 0.5 and 1.0!
string initialTimeZ, finalTimeZ;
if (dx == 8)
{
50 if(initialTime == 0.25)
initialTimeZ = path+"/input/00hl15min 8mm.dat"; //the input file

4

else if(initialTime == 0.5)

initialTimeZ = path+"/input/00h30min_8mm.dat"; //the input file

else if(initialTime == 1.0)

initialTimeZ = path+"/input/01h00min 8mm.dat"; //the input file

else if (initialTime == 2.0)

initialTimeZ = path+"/input/02h00min_8mm.dat"; //the input file

else if(initialTime == 4.0)

initialTimeZ = path+"/input/04h00min_8mm.dat"; //the input file
60 else if(initialTime == 8.0)

initialTimeZ = path+"/input/08h00min 8mm.dat"; //the input file

if (finalTime == 0.25)

finalTimeZ = path+"/input/00h15min_8mm.dat"; //the input file

else if(finalTime == 2.0)

finalTimeZ = path+"/input/02h00min_8mm.dat"; //the input file

else if (finalTime == 4.0)

finalTimeZ = path+"/input/04h00min 8mm.dat"; //the input file

else if(finalTime == 8.0)

finalTimeZ = path+"/input/08h00min_8mm.dat"; //the input file
70 else if(finalTime == 16.0)

finalTimeZ = path+"/input/16h00min_8mm.dat"; //the input file

M. defineRain (path+"/input/Rain8mm. dat" ,1); /// const = O:uniform rain
}
else
{
if (initialTime == 0.25)
initialTimeZ = "/home/mohsen/LandScapeCode/input/00hl5min_4mm.dat"; //the input file
if (initialTime == 0.5)

80 initialTimeZ = "/home/mohsen/LandScapeCode/input/00h30min 4mm.dat"; //the input file
if (initialTime == 1.0)
initialTimeZ = "/home/mohsen/LandScapeCode/input/01h00Omin 4mm. dat"; //the input file
else if(initialTime == 2.0)
initialTimeZ = "/home/mohsen/LandScapeCode/input/02h00min_4mm.dat"; //the input file
else if (initialTime == 4.0)
initialTimeZ = "/home/mohsen/LandScapeCode/input/04h00min 4mm. dat"; //the input file
else if (initialTime == 8.0)
initialTimeZ = "/home/mohsen/LandScapeCode/input/08h00min_4mm.dat"; //the input file
if (finalTime == 0.25)

9C

finalTimeZ = "/home/mohsen/LandScapeCode/input/00hl5min_4mm.dat"; //the input file
else if (finalTime == 2.0)

finalTimeZ = "/home/mohsen/LandScapeCode/input/02h00min 4mm. dat"; //the input file
else if (finalTime == 4.0)

finalTimeZ = "/home/mohsen/LandScapeCode/input/04h00min_4mm.dat"; //the input file

else if(finalTime == 8.0)
finalTimeZ = "/home/mohsen/LandScapeCode/input/08h00min_4mm.dat"; //the input file
else if (finalTime == 16.0)
finalTimeZ = "/home/mohsen/LandScapeCode/input/16h00min 4mm. dat"; //the input file

100 M(H. defineRain (" /home/mohsen/LandScapeCode/input/Raindmm. dat" ,0); ///
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}
string filename[] = {path+"/input/00hl5min_8mm.dat", path+"/input/00h30min_8mm.dat", path+"/input/01h00min_8mm.dat",
path+"/input/02h00min_8mm.dat", path+"/input/04h00min_8mm.dat", path+"/input/08h00min_8mm.dat", path+"/input/16h00min_8mm.dat"};

if (dx == 4) //attention that the file names have the same size
{
string filename[] = {"/home/mohsen/LandScapeCode/input/00h15min_4mm.dat", "/home/mohsen/LandScapeCode/input/00h30min_4mm.dat",
" /home/mohsen/LandScapeCode/input/01h00Omin 4mm. dat" ," /home/mohsen/LandScapeCode/input/02h00min 4mm. dat",
" /home/mohsen/LandScapeCode/input/04h00min_4mm. dat", "/home/mohsen/LandScapeCode/input/08h00min_4mm.dat",
110  "/home/mohsen/LandScapeCode/input/16h00min 4mm. dat"};
cout <<filename[1l] << endl;
}
M. temporalBCset (X, Y, Z,filename);// captures the BCs from the scans
MH.RUN(X, Y, Z, Zstar, Q, Qx, Qy, SLOPE, CURVE, PHI, dZstar, AREA, LL,downL, addressRUN, initialTime, finalTime,
initialTimeZ , finalTimeZ);//0:constant D, 1: variable D [refer to defineD(int varD) function]
//M(H. mainRiver (X, Y, Z, Zstar, Q, SLOPE, CURVE, PHI, dZstar, addressRUN);

120 void mainOPT ()
{
time_t tstart, tend;
tstart = time(0);
double *X,*Y,*Z,=Q,=SLOPE, »CURVE, * dZstar , » Zstar , = PHI;

X = (doublex) calloc (M*N , sizeof(double));

Y = (doublex) calloc M«N , sizeof(double));

VA = (doublex) calloc M*N , sizeof (double));

Q = (doublex) calloc (M«*N , sizeof(double));

SLOPE = (doublex) calloc M=N , sizeof(double));
130 CURVE = (doublex) calloc M+N , sizeof(double));

dZstar = (doublex) calloc (M+N , sizeof(double));

Zstar = (doublex) calloc M=N , sizeof(double));

PHI = (doublex) calloc M=N , sizeof(double));

interface III;
functionSet M(H;
double T1 = 0.25;
double T2 = 8;
char xpathl=NULL;
size_t size;
140 string path=getcwd (pathl, size);
cout<<"\n current Path"<<path<<endl;
path = path.substr (0,path.size () -6); // take the "/model" part
string addressOPT = path+"/results";
M. allocate (X,Y,Z,Q, dZstar, Zstar,PHI);
//string addressOPT = "/home/mohsen/LandScapeCode/2D/Results/exp8/OPTIMIZATION/ interpolatedBC/confidenseInterval /uniD_opAt8h.dat";
//the output file for optimization
MMH.varD = 0;
string initialTime = path+"/input/00hl5min 8mm.dat"; //the input file
string finalTime = path+"/input/08h00min_8mm.dat"; //the input file
150 M. defineRain (path+"/input/Rain8mm.dat" ,1); ///

string filename[] = {path+"/input/00h15min_8mm.dat", path+"/input/00h30min_8mm.dat", path+"/input/01h00min_8mm.dat",
path+"/input/02h00min_8mm. dat", path+"/input/04h00min_8mm.dat", path+"/input/08h00min_8mm.dat", path+"/input/16h00min_8mm.dat"};

if (dx == 4) //attention that the file names have the same size
{
string filename [] = {"/home/mohsen/LandScapeCode/input/00hl5min_4mm.dat", "/home/mohsen/LandScapeCode/input/00h30min_4mm.dat",
" /home/mohsen/LandScapeCode/input/01h00min_4mm. dat" , " /home/mohsen/LandScapeCode/input/02h00min_4mm. dat" ,
" /home/mohsen/LandScapeCode/input/04h00min_4mm. dat", "/home/mohsen/LandScapeCode/input/08h00min_4mm.dat",
160  "/home/mohsen/LandScapeCode/input/16h00min 4mm. dat"};

cout <<filename[l] << endl;

}
M(H. temporalBCset (X, Y, Z,filename);// captures the BCs from the scans
M. calibratePSO (X, Y, Z, Zstar, Q, SLOPE, PHI, dZstar, addressOPT, initialTime ,finalTime,filename);
double q[3] = {17571,0.184997,13.0765};
double percentage[3] = {0.1,0.1,0.1};
tend = time(0);
cout << "It took "<< difftime (tend, tstart)/3600 <<" hours"<< endl;
170 }
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void mainAnalysis ()

{

double *X,*Y,*Z,*Zmodel,*Q, *Qx, *Qy, *AREA,+*SLOPE,*CURVE,*downL,*L,*LL,*Zstar ,+PHI, spower, *SLOPE_CURVE, xorder;
// the parameter dzstar in mainRUN is replaced by L
int RunOpt, i, j;

X = (doublex) calloc M=N , sizeof(double));
Y = (doublex) calloc (M*N , sizeof(double));

180 Z = (doublex) calloc M=N , sizeof(double));
Zmodel = (doublex) calloc (M=*N , sizeof(double));
Q = (doublex) calloc (M*N , sizeof(double));
Qx = (doublex) calloc MsN , sizeof(double));
Qy = (doublex) calloc M=N , sizeof(double));
SLOPE = (doublex) calloc M=N , sizeof(double));
CURVE = (doublex) calloc (MsN , sizeof(double));
SLOPE_CURVE = (doublex) calloc M«N , sizeof(double));
Zstar = (doublex) calloc M«N , sizeof(double));
PHI = (doublex) calloc MsN , sizeof(double));

190 L = (doublex) calloc M=N , sizeof(double));
AREA = (doublex) calloc M*N , sizeof(double));
ILIL, = (doublex) calloc MsN , sizeof(double));
downL = (doublex) calloc (M«*N , sizeof(double));
power = (doublex) calloc M=N , sizeof(double));
order = (doublex) calloc M«N , sizeof(double));
interface 111;

functionSet M(H;
M. allocate (X,Y,Z,Q,L, Zstar,PHI);
200 M. epsilon = 0.05;

string r = "0.5";

char +pathl1=NULL;
size_t size;
string path=getcwd (pathl, size);
cout<<"\n current Path"<<path;

path = path.substr(0,path.size () —6); /1l take the "/model" part
string folder = path+"/results";
string fileName[] = { path+"/input/00h15min_8mm. dat",
path+"/input/00h30min_8mm. dat" ,
210 path+"/input/01h00min_8mm. dat",

path+"/input/02h00min_8mm. dat",

path+"/input/04h00min_8mm. dat" ,

path+"/input/08h00min_8mm. dat",

path+"/input/16h00min_8mm. dat" };
M. defineRain (path+"/input/Rain8mm. dat" ,0); ///
string modelName[] = {"/home/mohsen/LandScapeCode/2D/Results/exp8/RUNS/87_8mm/XYZ00..dat",
" /home/mohsen/LandScapeCode/2D/ Results / exp8/RUNS/87_8mm/XYZ01 .. dat",
" /home/mohsen/LandScapeCode/2D/ Results / exp8/RUNS/87_ 8mm/XYZ02 .. dat" ,
" /home/mohsen/LandScapeCode/2D/ Results / exp8 /RUNS/87_8mm/XYZ03 .. dat" ,

220 "/home/mohsen/LandScapeCode/2D/ Results/exp8/RUNS/87_8mm/XYZ04 .. dat",

" /home/mohsen/LandScapeCode/2D/ Results / exp8/RUNS/87 8mm/XYZ05 .. dat" ,
" /home/mohsen/LandScapeCode/2D/ Results / exp8/RUNS/87_8mm/XYZ06 .. dat" };

string outName([] = {"0.25h.csv", "0.5h.csv", "lh.csv", "2h.csv", "4h.csv", "8h.csv", "16h.csv"};
int ii, jj;

for (i = 0; i < 7; i++4)

{

string input = fileName([i]; //the input file

string makefolder = "mkdir " + folder;

system (makefolder.c_str());
230 M(d.readLand (X, Y, Z,input);
/I/MH. filternn (Z, Zstar, 30);
//M(H. replaceError (Z, Zstar); //Zstar to Z
M. defineRain (" /home/mohsen/LandScapeCode/input/Rain8mm. dat" ,0) ;
M. temporalBCset (X, Y, Zstar,fileName);
M. filling (Z, PHI, Y);
M. direction (Z, PHI, Y);

M. drainageQ (Q) ;

MCH. drainageAREAandLL (AREA, LL, order) ;
240 M(H.L_down (downL) ;

M. slopeCalc (Z,SLOPE) ;

MdH. curveCalc (Z,CURVE) ;
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/ /M. Qcomponents (X, Y, Q, Qx,Qy);
MH. writeDATA (X, Y,Z,Z,SLOPE,Q,AREA,LL, CURVE,downL, folder,
M. writeXYZ (X, Y,Z, folder, i);

}
double min, max;
M. findMinMax (AREA, &min, &max) ;

250 cout << min <<" "<<max<<endl;
M. findMinMax (Q, &min, &max);
cout << min <<" "<<max<<endl;
}
int main()

{
int mainNumb;

cout << " Bonjour Mohsen, Entre le nombre de fichier (RUN:1, OPT:2 and ANALYSIS: 3)" << endl;

260 cin >> mainNumb;
cout << " Attention: Le resolution est: " <<dx<<" nm'<< endl;
cout << " Je vais checker" << endl;
if (mainNumb == 1)
{
cout << " OK, On y va :) !!!" << endl;
mainRUN () ;
}
else if (mainNumb == 2)
{
270 cout << " OK, On y va :) !!!" << endl;
mainOPT () ;
}
else if (mainNumb == 3)
{
cout << " OK, On y va :) !!!" << endl;
mainAnalysis () ;

}

else
{
280 cout << "NO, No, Le shifre doit etre 1, 2, ou 3!!!!" << endl;
}
return 0;
}

//for analytical solution, changes:dx dz delta,M\N, E = 1, K = 0, in PHI function if ( K==0 PHI = E) ,readinput function,

/+double ERROR = 5;

int num = 0;

double t = 0;

double step = Tmax/10.0, captureTime = t + step;
290 M. writeDATA(X, Y, Z, Q, num);

while (t < Tmax)

{

M. dtCalc (Q, SLOPE);

M. RungeKutta(Z, Zstar, Q, SLOPE, dZstar, PHI);

M. crankNicholson (Z, Zstar);

M. replaceError (Z, Zstar);

M. boundarySet(Z) ;

t+=MCH. dt;

ERROR = M(H. error;

300 cout <<"CHANGE (MM) =" << ERROR << " " << "t =" << t << endl;

if (t>captureTime)
{M(H. writeDATA (X, Y, Z, Q, ++num);captureTime+=step;}
}

M. analytic (X, Y, Z);+*/

Listing C.3 — ‘network.cpp’: Drainage network extraction

#include "header.h"

int functionSet:: allocate (double *X,double =Y,double *Z,double =Q,double xdZstar, double =Zstar,double *PHI)

{

int i,j;
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param = (doublex) calloc M*N , sizeof(double));
CURVE = (doublex)calloc =N , sizeof(double));
R = (doublex) calloc M+N , sizeof(double));
D = (doublex) calloc M=N , sizeof(double));
alpha = (doublex)calloc =N , sizeof(double));

Omega = (doublex) calloc M«N , sizeof (double));
K = (doublex) calloc M«N , sizeof(double));

DIR = (int %) calloc M=N, sizeof(int));
INPUT = (int *) calloc (=N, sizeof(int));
drainTo = (int %) calloc M=N, sizeof(int));
drainFrom = (int #) calloc (&N, sizeof(int));

a = (doublex)callocM=N , sizeof(double));
b = (doublex)calloc M«N , sizeof(double));
¢ = (doublex)calloc (M«N , sizeof(double));
d = (doublex)calloc M«N , sizeof(double));

down = (double #) calloc(20+M, sizeof(double));
up = (double x) calloc(20«M, sizeof(double));
left = (double =) calloc(20+N, sizeof(double));
right = (double %) calloc(20+N, sizeof(double));
scanTime = (double x) calloc (20, sizeof(double));
downBC = (double %) calloc(M, sizeof(double));
upBC = (double *) calloc(M, sizeof(double));
leftBC = (double =) calloc (N, sizeof(double));
rightBC = (double #) calloc(N, sizeof(double));

for (j=0; j<N; j++)
for (i=0; i<dM ; i++)

{
35 X[jM + i] = 0; Y[j*M + i] = 0; Z[j*M + i] = 0; DIR[j*M + i] = 0; INPUT[jsM + i] = 0; drainTo[j+M + i] = 0;
Q[j*M + i] = 0; dZstar[j*M + i] = 0; Zstar[j+*M + i] = O;PHI[j*M + i] = 0, CURVE[j*M + i] = 0;
}
return 0;
}
void functionSet:: defineRain(string strl, int uni)
//gets the normalized rainfall distribution and calculates the rainfall based ont the avergae rainfall given in the
//header file (aveRain)
45 {

o

~
a

int i,j;

double number;

inputl.close () ;

inputl.open(strl.c_str());//

if (uni ==0)

{

for(j=0; j<N; j++)

for (i=0; iM; i++)
R[jMei] = 1.0;

}
else
{
if ('inputl)
{
cout << "The file can’t be opened" << endl;
cout << MVMMVMVMVVMVWMVVMVMVMVMMVMVWWMVMME << endl;
cout << MVWMVMVMVWMVMVMVMVWWMVVVMVWIVMVWMMVI << end];
cout << MVMVMVMVMVWMVMVMVMVWWMVVVMVMVWWMVMMI' << end]l;
cout << strl<<endl;
}
else
{

for (j=0; j<N; j++)
for(i=0; iM; i++)
{

inputl>>number;

inputl>>number;
inputl>>R[j*Mi|;
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if (R[j-M+i] < 0)

R[j*Mri] = 0;
R[j*M+i] == aveRain; //for variable rainfall it is R[j#M+i] = =aveRain;
}

inputl.close () ;

void functionSet:: defineD (int varD)
{
int i,j;
if (varD == 0)
{
for (j=0; j<N; j++)
for (i=0; idM; i++)

95 D[j*M+i] = Dave;//D[j*Mt+i] = DavexR[j+M+i]/aveRain;D[j+M+i] = Dave
}
else
{
for (j=0; j<N; j++)
for(i=0; idM; i++)
D[j*M+i] = Dave*R[j+M+i]/aveRain;//D[j+M+i] = DavesR[j+Mki]/aveRain;D[j+M+i] = Dave
}

105 void functionSet :: defineRandom_Noise_D_K_Omega(double #Z,int varNoise,int varD,int varK,int varOmega)
/it calculates the parameters according to the value and sign of the noises

{
double random, randl;
double noise;
int i,j;
std :: random_device rd;
std :: default_random_engine generator(rd());
std :: cauchy_distribution<double> cauchy(0,0.11757900431008157) ;
for(i = 1; i<dM=1; i++) //adding the noise into the field
115 for(j = 1; j<N-1; j++)
{
random = 10;
while (random>1)
random = abs(cauchy(generator));
noise = noiseAves+random=dt;
randl = (double) rand() / (RAND_MAX);
if (rand1>0.5)
{
if (varNoise != 0)
125 Z[jsM + i] = Z[j*M + i] + noise;
if (varD != 0)
D[j*M+i] = Davex(1-random) ;
else
D[j«M+i] = Dave;
if (varK != 0)
K[j*M+i] = Kavex(1-random) ;
else
K[j+Mri] = Kave;
if (varOmega != 0)

135 Omega[j*M+i] = OmegaAvesrandom;
else
Omegal[j+Mii] = OmegaAve;
}
else if (randl<0.5)
{
if (varNoise != 0)
Z[j*M + i] = Z[j*M + i] - noise;
if (varD != 0)
145 D[j#*M+i] = Daves(1-random) ;

else
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D[j*M+i] = Dave;

if (varK != 0)

K[j*M+i] = Kavesrandom;

else

K[j+M+i] = Kave;

if (varOmega != 0)

Omega[j+Mti] = OmegaAves(1—random) ;
else

Omegalj+Mt+i] = OmegaAve;

void functionSet::defineRandomD (int varD) // 0 or 1 is put directly in the function

{
srand ( time (NULL) );
int i,j;
double random;
165 std::random_device rd;
std :: default_random_engine generator(rd());

std :: cauchy_distribution<double> cauchy(0,0.11757900431008157) ;
if (varD == 0)

{
for (j=0; j<N; j++)
for (i=0; idM; i++)
D[j*M+i] = Dave;//D[j«M+i]
}
else
175 {

Dave+R[j#Vi+i]/aveRain;D[j+M+i] = Dave

for (j=0; j<N; j++)

for (i=0; idM; i++)

{

random = 10;

while (random>1)

random = abs(cauchy(generator));

D[j*M+i] = Davex(1-random);//D[j+M+i] = Dave+R[j+M+i]/aveRain;D[jM+i] = Dave
}
185 }

}

void functionSet::defineK(int varK) //varK ==0:fixed K, varK ==1:random K
{
int i,j;
double random;
std ::random_device rd;
std :: default_random_engine generator(rd());

std :: cauchy_distribution<double> cauchy(0,0.11757900431008157) ;
195 if (varK == 0)

{
for (j=0; j<N; j++)
for(i=0; i<M; i++)

K[j*M+i] = Kave;//D[j*M+i] = DavexR[j*M+i]/aveRain;D[j+M+i] = Dave
}

else

{

for (j=0; j<N; j++)

for (i=0; idM; i++)
205 f

random = 10;

while (random>1)

random = abs (cauchy(generator));

K[j*M+i] = Kavex(1-random);//D[j+M+i] = Dave+R[j+M+i]/aveRain;D[jsM+i] = Dave

215 void functionSet ::defineOmega(int varOmega)
{

int i,j;
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double random;
std :: random_device rd;
std :: default_random_engine generator(rd());
std :: cauchy_distribution<double> cauchy(0,0.11757900431008157) ;
if (varOmega == 0)
{
for (j=0; j<N; j++)
225  for(i=0; idM; i++)

Omega[j+M+i] = OmegaAve; //D[j*M+i] = Dave*R[j+M+i]/aveRain;D[jM+i] = Dave
}
else
{
for (j=0; j<N; j++)
for(i=0; i i++)
{
random = 10;
while (random>1)
235 random = abs(cauchy(generator));
Omega[j+M+i] = OmegaAvesrandom; //D[j+M+i] = DavesR[j*M+i]/aveRain;D[j«M+i] = Dave
}
}
}

void functionSet::readLand(double *X, double *Y, double *Z, string strl)
{
int i,j;
double number;
245 inputl.close();
inputl.open(strl.c_str());//

if (!inputl)

{

cout << "The file can’t be opened" << endl;

cout << 'MVMVMVMVWMVMVVMVVVMVVMVMVMMMWY << endl ;
cout << 'MVMMMVWMVMVMVVWMVMVWMVVVMVMWVMVMI' << endl ;
cout << MVWMVMVWMVMVMVWMVMVMVMWMVWMVWWMMMI << endl;
cout << strl<<endl;

255 }

else

{

//FOR RUNNING FROM THE BEGINING (ARCGIS DATA)

for (j=0; j<N; j++)
for (i=0; i<M; i++)

{

inputl>>X[j«Mri];
inputl>>Y[j«Mi];
265 inputl>>Z[jaVii];
}
inputl.close () ;
}
}
void functionSet::smoothZ(double *Z)
{
int i,j;
for(j=1; j<N-1; j++)
for(i=1; i<M-1; i++)
275  Z[jsM + i] = 0.25+Z[j-M + i] + 0.125+(Z[j*M + i + 1] + Z[(j + DM+ i] + Z[jM+ i — 1] + Z[(j — )M + i])
+ 0.0625+(Z[(j + DsM + i + 1] + Z[(j + DM+ i — 1] + Z[(j — DM+ i — 1] + Z[(j — DM + i + 1]);

int functionSet:: filling (double *Z, double *Zstar, double *Y)
{

int i,j;
double min, count = 0;

for(i = 0; i <M, i++)

285 {

if (Z[0sM + i]<= Z[1:M + i]+epsilon)
Z[0sM + i]= Z[1+M + i] +epsilon ;
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if (Z[(N - 1)sM + i]<= Z[(N — 2)*M + i]+epsilon )
ZI(N- 1)sM + i]= Z[(N - 2)+M + i]+epsilon;

Z[0sM + M/2] = 0;

for(j = 0; j <N ; j++)

{

if (Z[j*M + 0]<= Z[j*M + 1]+epsilon )
Z[j*M + 0]= Z[j*M + 1] + epsilon;

if (Z[j*M + M - 1]<= Z[j*M + M — 2]+epsilon )
Z[jsM + M - 1]= Z[j*M + M - 2] + epsilon;
}
Z[0sM + 0] = (Z[1sM + 0] + Z[0+M + 1])/2;
ZIOM + M - 1] = (Z[1sM+ M - 1] + Z[0sM + M - 2])/2;
ZIN- )M+ 0] = (Z[(N- 1)sM+ 1] + Z[(N - 2)M + 0])/2;
ZIN- 1)sM+M- 1] = (ZIN-2)M+ M- 1] + Z[N- 1)sM+ M- 2])/2;

for(j=1; j<N-1; j++)

{

Zstar[jsM + 0] = Z[j-M + 0];
Zstar[jM + M - 1] = Z[jsM + M - 1];
}

for(i=1; i<M=1; i++)

{

Zstar [0+M + i] = Z[0=M + i];

Zstar [(N-1)sM + i] = Z[(N-1):M + i];
}

for (j=N-2; j>0; j—)
for(i=1; i<M-1; i++)

{

Zstar[jsM + i] = 20000;
}

for(j=1; j<N-1; j++)
for (i=1; i<M-1; i++)
{

min = Z[j-M + i + 1];
if (Z[(j — DM+ i + 1] < min)
min = Z[(j — DM+ i + 1];

if (Z[(j — )M + i] < min)
min = Z[(j - )M + i];

if (Z[(j — DM+ i — 1] < min)
min = Z[(j — DM+ i — 1];

if (Z[(j — 0)sM + i — 1] < min)
min = Z[(j — )M + i — 1];

if (Z[(j + DsM + i — 1] < min)
min = Z[(j + DM+ i - 1];

if (Z[(j + DM + i — 0] < min)
min = Z[(j + )M+ i — 0];

if (Z[(j + DM + i + 1] < min)
min = Z[(j + DM+ i + 1];

if (Z[j*M + i] > min + epsilon)
Zstar[j-M + i] = Z[j-M + i];

else if (Zstar[j*M + i] > min + epsilon )
{

Zstar[j*M + i] = min + epsilon ;
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385

395

405

331

}

void functionSet:: direction (double =Z, double xZstar, double

{

count++;

}
}
for (j=0; j<N; j++)
for(i=0; idM; i++)
Z[j*M + i] = Zstar[j=M + i]
for(j=0; j<N; j++)
for(i=0; iM; i++)
Zstar[jsM + i] = 0;
return 0;

int i,j;

double max;

for (j=0; j<N; j++)

for (i=0; idM; i++)
drainTo [j*M + i] = —-1;

for(j=1; j<N-1; j++)

{

DIR[j*M + 0] = 1;
drainTo[j*M + 0] = j+M + 1
DIR[j*M + M — 1] = 16;

B

*

drainTo[jsM + M - 1] = jsM + M - 2;

}

for(i=1; i<dV1; i++)

{

DIR[0=M + i] = 64;
drainTo [0+M + i] = 1M + i

DIR[(N-1)M + i] = 4;

drainTo [(N-1)=M + i] = (N-2):M + i;

i =M/2;

DIR[0+M + i] = —1;

drainTo [0sM + i] = —1;
DIR[1+M + i] = 4;

drainTo [1sM + i] = 0sM + i;

double count = 10, countl =

while (count>0)

{

int maxIndex;

for(j=1; j<N-1; j++)
for(i=1; i<M-1; i++)

{

slopeLocal [0] = (Z[jM +
slopeLocal [1] = (Z[jM +
slopeLocal [2] = (Z[jM +
slopeLocal [3] = (Z[jM +
slopeLocal [4] = (Z[j*M +
slopeLocal [5] = (Z[jM +
slopeLocal [6] = (Z[j=M +
slopeLocal [7] = (Z[jM +
maxIndex = 0;

max = slopeLocal [0] ;
int k;

for (k = 1; k < 8; k++)
if (slopeLocal[k] > max)
{
max = slopeLocal [k];
maxIndex = k;

}

DIR[j*M + i] = —-1;
drainTo [j*M + i] = —-1;
if (maxIndex == 0 )

{

0;

il
i]
i]
il
i]
i]
i]
i]

ZIiM + 1+ 11);

ZI(j - DM+ i + 1])/1.4142;
ZI(j - DM+ i]);

ZI(GG - DM+ i — 1])/1.4142;
ZIiM + i - 11);

ZI(j + DM+ i — 1])/1.4142;
ZIGG + DM+ i]);

ZI(GG + )M+ i + 1])/1.4142;

drainTo[j*M + i] = jM + i + 1;

Y)
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DIR[jM + i] = 1;
}
if (maxIndex == 1 )
{
435 drainTo[j*M + i] = (j — DM+ i + 1;
DIR[j*M + i] = 2;
}
if (maxIndex == 2 )
{
drainTo[j*M + i] = (j — )M + i;
DIR[jM + i] = 4;
}
if (maxIndex == 3 )
{
445 drainTo[j*M + i] = (j — DM+ i — 1;
DIR[jM + i] = 8;
}
if (maxIndex == 4 )
{
drainTo[j-M + i] = jsM+ i — 1;
DIR[j-M + i] = 16;
}
if (maxIndex == 5)
{
drainTo[jM + i] = (j + DM + i — 1;
DIR[j*M + i] = 32;
}
if (maxIndex == 6)
{
drainTo[j-M + i] = (j + DM + i;
DIR[j+M + i] = 64;
}
if (maxIndex == 7)
{
465 drainTo[j-M + i] = (j + )M + i + 1;
DIR[j+M + i] = 128;
}
}

countl = 0;

[
o

for(j=1; j<N-1; j++)
for(i=1; i<M=1; i++)
if (drainTo[drainTo[j*M + i]] == j*M + i || drainTo[drainTo[drainTo[j+*M + i]]] == j*M + i
|| drainTo [drainTo [drainTo [drainTo[j*M + i]]]] == j*M + i || drainTo[j*M + i] == -1)
countl++;

if (countl > 0)
filling (Z, Zstar, Y);
//cout << "PIT POIT: " << countl << endl;
count = countl;
}
//cout << "direction () is finished" << endl;

}

void functionSet::drainageQ (double *Q)
485 {
int i,j;
for (j=0; j<N; j++)
{
Qlj*M + 0] = R[j-M + 0] ;
INPUT[j+M + 0] = 0;

Qlj*M +M - 1] = R[j-M + M- 1];
INPUT[j*M + M- 1] = 0;
}

495 for(i=0; idM; i++)
{
Q[0=M + i] = R[0=M + i] ;
INPUT[0+M + i] = 0;

QIIN-1)sM + i] = R[(N-1)M + i];
INPUT[(N-1)M + i] = 0;
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}
for (j=N-2; j>0; j—)
for(i=1; i<M-1; i++)

505 {
Q[j-M + i] = R[j-M + i];
INPUT[j-M + i] = 0;
if (DIR[j*M + i + 1] == 16)
INPUT[j-M + i] += 1;
if (DIR[(j + )M + i + 1] == 8)
INPUT[j+M + i] += 1;

515 if (DIR[(j + 1)sM + i] == 4)

INPUT[j-M + i] += 1;

if (DIR[(j + )sM + i — 1] == 2)
INPUT[jM + i] += 1;

if (DIR[j*M + i — 1] == 1)
INPUT[j-M + i] += 1;

if (DIR[(j — 1)AM + i — 1] == 128)
525  INPUT[j:M + i] += 1;

if (DIR[(j — 1):M + i] == 64)
INPUT[jM + i] += 1;

if (DIR[(j — DM+ i + 1] == 32)
INPUT[j+M + i] += 1;

}

int count = 10;

int countl;

15
ot}
a

while (count > 0)

{

countl=0;

for (j=N-1; j>-1; j—-)
for(i=0; idM; i++)

{
if ANPUT[j=M + i] == 0)
{
countl++;
QldrainTo[j*M + i]] += Q[j*M + i];
545 INPUT [drainTo [j*M + i]] —= 1;
INPUT[j+M + i] = 1000;
}
}
count = countl;
}
countl=0;

for (j=N-2; j>0; j—-)
for(i=1; i<dM-1; i++)
555 {
if INPUT[j+M + i] != 1000)
countl ++;
}
for (j=0; j<N; j++)
for(i=0; i<dM; i++)
Q[jM + i] *=dxxdy;

void functionSet::slopeCalc(double *Z, double *SLOPE)
565 {

double s[4];

int i,j;

for(i = 1; iQVE-1; i++)

for(j = 1; j<N-1; j++)

{

s[0] = (Z[j*M+ i + 1] — Z[j*M + i — 1])/(2xdx);
s[1] = (Z[(j + DM + i] = Z[(j — 1):M + i])/(2xdy);
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s[2] = (Z[(j — DM+ i + 1] = Z[(j + )M+ i — 1])/(2+sqrt (dx=dx + dy=dy));
s3] = (Z[(j + DM+ i + 1] — Z[(j — DM+ i — 1])/(2=sqrt(dx=dx + dy=xdy));

SLOPE[j*M + i] = (sqrt(s[0]*s[0]+ s[1]*s[1]) + sqrt(s[2]*s[2]+ s[3]xs[3]))/2.0;
}

for (j=0; j<N; j++)

{

SLOPE[j*M + 0] =SLOPE[j*M + 1];SLOPE[j*M + M — 1] =SLOPE[j+M + M — 2];
}

for (i=0; idM; i++)

{

SLOPE[(N-1)+M + i] =SLOPE[(N-2):M + i];SLOPE[0+M + i] =SLOPE[1+M + i];
}
}

void functionSet:: curveCalc(double #Z, double *CURVE)
{
int i,j;
for(i = 1; i<M=1; i++)
for(j = 1; j<N-1; j++)
CURVE[jsM + i] = (Z[j*M + i + 1] + Z[j-M + i — 1] + Z[(j + DM+ i] + Z[(j — )M + i] — 4Z[j=M + i]) /(dx=*dx);

for (j=0; j<N; j++)

{

CURVE[jM + 0] =CURVE[j=M + 1];CURVE[jM + M — 1] =CURVE[j+M + M — 2];
}

for (i=0; idM; i++)

{

CURVE[(N-1)*M + i] =CURVE[(N-2)+M + i];CURVE[0+M + i] =CURVE[1:M + i];
}

}

Listing C.4 — ‘numeric.cpp’: Matrix Operation and writing data

#include "header.h"
int functionSet::temporalBCset(double *X, double *Y, double *Z,string+ filename)

{

int i,j;
scanTime[0] = 0.25;
scanTime[1] = 0.50;
scanTime[2] = 1.0;
scanTime[3] = 2.0;
scanTime[4] = 4.0;
scanTime[5] = 8.0;
scanTime[6] = 16.0;

double temp;
int mml, nnl, 11 = 0;
int nn;
remove ("gradients.ods") ;
output2.open("gradients.ods");
double aver, avel;
for (nn = 0; nn < 7; nn++)
{
aver = 0;
avel = 0;
readLand (X, Y, Z,filename[nn]);///
replaceError (param, Z);
/I filter (param, param, 1);
int mml, nnl, 11 = 0;
double temp;
for(i = 0; i <M ; i++4)
{
down[nnsM + i] = (param[2+M + i]—param[4+M + i]) /(2xdy);
up[nn:M + i] = (param[(N — 2)*M + i] —param[(N — 4):M + i]) /(2+dy);
}
for(j = 0; j <N ; j++)
{
left [nn+N + j] = (param[j+M + 2] — param[j+M + 4])/(2xdx) ;
right [nn*N + j] = (param[j*M + M — 3] — param[j+M + M — 5]) /(2#dx) ;
output2 << nn <<" "<<j <<"  "<<left[nmnsN + jl<< " "<< right[nn«N + jl<<endl;
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37}
while (11 <10)

{
for(i =1; i < M1 ; i++)
{
down[nn:M + i] = (down[nnsM + i] + down[nnsM + i + 1] + down[nnsM + i — 1])/3.0;
up[nn+sM + i] = (up[nnsM + i] + up[nnsM + i + 1] + up[nn=M + i — 1])/3.0;
}
for(j =1; j < N -1 ; j++)
{

47 right [nn«N + j] = (right[nnsN + j] + right[nnsN + j + 1] + right[nn«N + j — 1])/3.0;

left [nn=N + j] = (left[nn«N + j] + left[nn«N + j + 1] + left[nnsN + j — 1])/3.0;
}

11++;

}

}

return 1;

}

int functionSet:: dtCalc(double *Q, double *SLOPE)

57 {

6

~
N}

87

97

107

7

int i,j;

int k;

double max = 0, AS;
double s[4];

for(i = 1; i<M=1; i++)
for(j = 1; j<N-1; j++)
{

AS = pow(Q[j+*M + i], m)*pow(SLOPE[j*M + i], n—1.0)+K[j+M + i]%1.4142/dx

+(pow(abs(D[j*M + i + 1] — D[j*M + i — 1])/(2+dx) + le—5, 0.6666666667)

if (AS > max)
max = AS;
}
dt = CFL/max;
return 1;

}

{

int i,j;

TELELLELELEE LT LT L il iiirrirr1 1/ attention
for(i = 0; idM; i++)

for(j = 0; j<N; j++)

{

+pow(abs(D[(j + 1)sM + i] = D[(j — D)sM + i ])/(2«dy) + le-5, 0.6666666667))/pow(dx, 0.6666666667);

int functionSet::PHICalc (double *Q, double *SLOPE, double #PHI)//the covection term + noise trem (deposition) + tectonic

PHI[j*M + i] = E — delta/dx*K[j*M + i]*(pow(Q[j*M + i], m)*pow(SLOPE[j*M + i], n) — Omegal[jM + i]);

//Note: Omega is calculated in the run loop

if (E— PHI[j*M + i] < 0 [| Q[j*M + i] ==0 || SLOPE[jsM + i] ==0 )
PHI[j*M + i] = E;

}

return 0;

}

int functionSet::RungeKutta(double *Z, double *Zstar, double *Q, double *SLOPE,
{

int i,j;
slopeCalc (Z,SLOPE) ;
PHICalc (Q, SLOPE, PHI);
for(i = 0; idM; i++)
for(j = 0; j<N; j++)
{
dZstar[jsM + i] = dt«PHI[j*M + i];
Zstar[j*M + i] = Z[j*M + i] + dZstar[j+M + i];
}
slopeCalc (Zstar ,SLOPE) ;
direction (Zstar, PHI, Y);
drainageQ (Q) ;
PHICalc (Q, SLOPE, PHI);
for(i = 0; idM; i++)
for(j = 0; j<N; j++)
Zstar[j*M + i] = Z[j*M + i] + dZstar[jsM + i]/2.0 + dt=PHI[j*M + i]/2.0;

double =dZstar, double *PHI, double *Y)
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boundarySet(Zstar, Y);
return 0;

}

int functionSet::crankNicholson(double xZstar, double *Y)
{

int i,j;

double f = 1.0;

for(j = 0; j<N; j++)
for(i = 0; idM; i++)

alpha[j*M + i] = 0.5+dt«D[jM + i]/(dx+dx);

for(j = 0; j<N; j++)
{

i = I

alpha[jM + i]+=f;
i=M- 2;
alpha[jM + i]*=f;
}

for(i = 0; idM; i++)
{

j=1

alpha[jM + i]*=f;
j = N-2;
alpha[jM + i]*=f;
}

for(j = 1; j<N-1; j++)
{
i = 1
alj-M + 1] = 0;
b[(j*M + 1] = 1 + alpha[j=M + i]/2.0 + alpha[j=M + i + 1]/2.0; /11111/BC:z = 0 (1 + 2 alpha), BC:dz = 0 (1 + alpha)
c[j*M + 1] = — alpha[jM + i]/2 — alpha[jM + i + 1]/2.0;
d[j*M + 1] = (alpha[j*M + i]1/2.0 + alpha[(j — 1)*M + i]/2.0)«Zstar[(j — 1)sM + i] + (1 — alpha[j*M + i]
— alpha[(j — 1)sM + i]/2.0— alpha[(j + 1)*M + i]/2.0)«Zstar[j+M + i]
+ (alpha[jM + i]/2.0 + alpha[(j + 1)sM + i]/2.0)=Zstar[(j + 1):M + i] —
(— alpha[jsM + i]/2 — alpha[jsM + i — 1]/2.0)=leftBC[j] ;
i=M- 2;
a[j*M + M — 2] =— alpha[jM + i]/2 — alpha[jsM + i — 1]/2.0;
b[j*M +M - 2] =1 + alpha[j*M + i]/2.0 + alpha[jM + i — 11/2.0;///////BC:z = 0 (1 + 2=alpha), BC:dz = 0 (1 + alpha)
c[jsM+ M- 2] = 0;
d[(j*M + M - 2] = (alpha[j+M + i]/2.0 + alpha[(j — 1)*M + i]/2.0)*Zstar[(j — 1)sM + i] +
(1 — alpha[jM + i] — alpha[(j — 1)*M + i]/2.0— alpha[(j + 1)sM + i]/2.0) *Zstar[j=M + i]
+ (alpha[j*M + i]/2.0 + alpha[(j + 1)sM + i]/2.0)=Zstar[(j + 1)sM + i] —
(— alpha[jsM + i]/2 — alpha[jsM + i + 1]/2.0)+rightBC[j] ;

}

for(j = 1; j<N-1; j++)

for(i = 2; i<dM=2; i++4)

{
al[j*M + i] = — alpha[jsM + i]/2 — alpha[jM + i — 1]/2.0;
b(j*M + i] =1 + alpha[jM + i] + alpha[jM + i — 1]/2.0 + alpha[jsM + i + 1]/2.0 ; //1
c[j*M + i] = — alpha[j*M + i]/2 — alpha[jM + i + 1]/2.0;

d[(jsM + i] = (alpha[j*M + i]/2.0 + alpha[(j — 1)sM + i]/2.0)*Zstar[(j — 1)«M + i] +
(1 — alpha[jM + i] — alpha[(j — 1)*M + i]/2.0— alpha[(j + 1)sM + i]/2.0) *Zstar[j=M + i]
+ (alpha[jsM + i]/2.0 + alpha[(j + 1)sM + i]/2.0)«Zstar[(j + 1)-M + i];

Thomas(a,b,c,d, Zstar,0) ;
boundarySet (Zstar, Y);
1; i<dVE1; i++)

for (i
{
=1

a[lsM + i] = 0;

b[1sM + i] = 1 + alpha[j*M + i]/2.0 + alpha[(j + 1)*M + i1/2.0 ;///////BC:z = 0 (1 + 2xalpha), BC:dz = ¢ (1 + alpha)
//the value of c is epsilon or alphas(mainSlopexdy (it is mentioned in d(i,j)

c[1sM + i] = — alpha[jM + i]/2.0 — alpha[(j + 1):M + i]/2.0;

d[1+M + i] = (alpha[jsM + i]/2.0 + alpha[j*M + i — 1]/2.0)*Zstar[j-M + i—-1] +

(1 — alpha(j*M + i] — alpha[jM + i — 1]/2.0 — alpha[j*M + i + 1]/2.0)=Zstar[j*M + i] +
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(alpha[j-M + i1/2.0 + alpha[jM + i + 1]/2.0)=Zstar[j=M + i+1] —
(— alpha[jsM + i]/2.0 — alpha[(j — 1)*M + i]/2.0) *downBC[i];

j = N-2;
a[(N-2)>M + i] = — alpha[j*M + i]/2.0 — alpha[(j — 1)sM + i]/2.0;
b[(N-2)sM + i] = 1 + alpha[j*M + i]/2.0 + alpha([(j — )M + i]/2.0 ; ///////BC:z = 0 (1 + 2+alpha), BC:dz = 0 (1 + alpha)
c[(N-2)sM + i] = 0;
d[(N-2)sM + i] = (alpha[jsM + i]/2.0 + alpha[jsM + i — 1]/2.0)*Zstar[j+M + i-1] +
(1 — alpha[j*M + i] — alpha[j*M + i — 1]/2.0 — alpha[jM + i + 1]/2.0)*Zstar[j+M + i] +

187 (alpha[j*M + i]/2.0 + alpha[j*M + i + 1]/2.0)=Zstar[j=M + i+1] —
(- alpha[jsM + i]/2.0 — alpha[(j + 1)*M + i]/2.0)*upBC[i];
}
i=M/255 =1;
{

al[jM + i] = 0;

b(j*M + i] = 1 + alpha[j*M + i] + alpha((j — 1)*M + i]/2.0 + alpha[(j + 1)sM + i]/2.0;
//BC:z = 0 (1 + 2+alpha), BC:dz = 0 (1 + alpha)

c[j*M + i] = — alpha[j-M + i]/2.0 — alpha[(j + 1)sM + i]1/2.0;;
d[j-M + i] = (alpha[j+M + i]/2.0 + alpha[jsM + i — 1]/2.0)«Zstar[j*M + i—1] + (1 — alpha[jM + i] —
197 alpha[jsM + i — 1]/2.0 — alpha[jsM + i + 1]/2.0)+Zstar[jsM + i] +

(alpha[j+M + i]/2.0 + alpha[jsM + i + 1]/2.0)+Zstar[j+M + i+1];

}
for(i = 1; i<M-1; i++)
for(j = 2; j<N-2; j++)

{

a[jsM + i] = — alpha[jsM + i]/2.0 — alpha[(j — 1)sM + i]/2.0;

b[j*M + i] = 1 + alpha[j*M + i] + alpha[(j — 1)*M + i1]/2.0 + alpha([(j + 1):M + i]/2.0;
c[j*M + i] = — alpha[j*M + i]/2.0 — alpha[(j + 1):M + i]/2.0;

207 d[j*M + i] = (alpha[j*M + i]/2.0 + alpha[jsM + i — 1]/2.0)+Zstar[j+M + i-1] +
(1 — alpha(j*M + i] — alpha[j*M + i — 1]/2.0 — alpha[j*M + i + 1]/2.0)*Zstar[j*M + i] +

(alpha[j*M + i]/2.0 + alpha[jsM + i + 1]/2.0)*Zstar[j*M + i+1];
}
Thomas(a,b,c,d, Zstar,1) ;
boundarySet(Zstar, Y);
return 0;

int functionSet::Thomas(double *a,double =b,double =c,double *d,double =Z, int rowCol)

217 {
int i,j;
if (rowCol==0)
{
for(j = 1; j<N-1; j++)
{

cljM+ 1] = c[j*M + 1]1/b[j-M + 1];
d[j-M + 1] = d[jsM + 1]/b[j-M + 1];
b[jsM + 1] = 1.0;
for(i = 2; i <= M=2; i+4)
227 {
cl[jsM+ i] = c[jsM+ i]l/(b[j-M + i] — a[jM + i]l*c[j-M + i — 1]);

dijsM + i] = (d[j=M + i] — a[jM + il+d[jM + i — 11)/(b[j*M + i] — a[j*M + il*c[j-M + i — 1]);
b[jM + i] = 1.0;

}

Z[j™M + M- 2] = d[j"M + M- 2];

for(i =M- 3; i >= 1; i—)

ZjM + i] = d[jsM + i] — c[j-M+ i]*Z[j-M + i + 1];

}
}
237 if (rowCol==1)
{
for(i = 1; i<M-1; i++)
{

c[1sM + i] = c[1sM + i]/b[1:M + i];

d(1-M + i] = d[1-M + i]/b[1:M + i];

b[1sM + i] = 1.0;

for(j = 2; j <= N-2; j++)

{

cljM+ i] = c[j-M+ il/(b[j*M + i] — a[jM + il=c[(j — D)=M + i]);

247 dlj M+ i] = (A[jM+ i] — aljM+ i]*d[(j — DM+ i) /(b[jM+ i] — aljM+ il=c[(j - DM+ i]);
b[jM+ i] = 1.0;

}
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ZIIN- 2)M+ i] =d[(N- 2)sM + i];

for(j =N - 3; j >=1; j—)

Z[jM + i] = d[j*M + i] — c[j*M + i]*Z[(j + )M + i];
}
}
return 0;

}

int functionSet::addNoise(double *Z,double dt)
{
double random, randl;
double noise;
int i,j;
std :: random_device rd;
std :: default_random_engine generator(rd());
std :: cauchy_distribution<double> cauchy(0,0.11757900431008157) ;
for(i = 1; i<M-1; i++)
267 for(j = 1; j<N-1; j++)
{
random = 10;

//adding the noise into the field

while (random>1)

random = abs(cauchy(generator));
noise

noiseAverandom=dt;
randl = (double) rand() / (RAND_MAX);
if (rand1>0.5)
Z[j*M + i] = Z[j*M + i] + noise;
else if(rand1<0.5)
277 Z[jsM + i] = Z[j*M + i] — noise;
}
return 0;

}

int functionSet::boundarySet(double *Z, double =Y)

{

int i,j;

double timeGap = scanTime[BCstep + 1] — scanTime[BCstep];
double temp;

for(i = 1; i <M~— 1; i++)

{

28

N

temp = down[BCstep*M + i]+ (down[(BCstep + 1)*M + i] — down[BCstep+M + i])/timeGap+(t — scanTime[BCstep]) ;
if (temp > 0 )

downBC[i] = temp=dy; //attention downBC = o
else

downBC[i] = 0;

temp = Z[1-M + i] + downBC[i];

if (temp <= Z[0+M + i])

Z[0:M + i] = temp;

297 else if (Z[0M + i] >Z[1-M + i])

downBC[i] = Z[0=M + i] — Z[1-M + i];

else

downBC[i] = 0;

temp = up[BCstep+M + i] + (up[(BCstep + 1)*M + i] — up[BCstepsM + i]) /timeGap+*(t — scanTime[BCstep]) ;
if (temp > 0 )

upBC[i] = temp=xdy;

else

upBC[i] = 0;
temp = Z[(N — 2)sM + i] + upBC[i];

307

if (temp <= Z[(N - 1)sM + i])

Z[(N- 1)sM + i] = temp;
else if (ZI(N—- 1)sM + i] >Z[(N - 2)-M + i])
upBC[i] = Z[(N - 1)sM + i] — Z[(N - 2)sM + i];
else

upBC[i] = 0;

for(i = M/2—int(200/dx); i /2+int(200/dx); i++)
317 {

downBC[i] = 0.0;

Z[0sM + i] = Z[1sM + i] + downBC[i];
}
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for(j = 1; j <N=1; j++)
{

temp = left [BCstep*N + j] + (left [(BCstep + 1)*N + j] — left [BCstep=N + j])/timeGap+(t — scanTime[BCstep]) ;

if (temp > 0 )

leftBC[j] = tempxdx;

else

leftBC[j] = 0;

temp = Z[j*M + 1] + leftBC[j];

if (temp <= Z[jsM + 0])

Z[j*M + 0] = temp;

else if (Z[j*M + 0] >Z[j=M + 1])
leftBC[i] = Z[j*M + 0] — Z[j-M + 1];
else

leftBC[i] = 0;

temp = right [BCstep*N + j] + (right [(BCstep + 1)*N + j] — right[BCstep*N + j])/timeGap=(t — scanTime[BCstep]) ;

if (temp > 0 )
rightBC[j] = temp=dx;
else

rightBC[j] = 0;

temp = Z[j*M + M — 2] + rightBC[j];

if (temp <= Z[j*M + M — 1])
Z[j*M + M — 1] = temp;
else if (Z[j*M + M- 1] >Z[j*M + M - 2])
1eftBC[i] = Z[j*M + M- 1] — Z[j*M + M - 2];
else
leftBC[i] = 0;
}
Z[0:M + 0] = (Z[1:M + 0] + Z[0:M + 1])/2;

ZIOM + M- 1] = (Z[1sM+ M- 1] + Z[0-M + M - 2]) /2;
ZIIN- 1)sM + 0] = (Z[(N- 1)-M + 1] + Z[(N - 2)-M + 0]) /2;
ZIN- DsM+M~- 1] = (Z[N- 2)sM+ M- 1] + Z[N- 1)sM+ M- 2])/2;

for(i = 0; idM; i++)
for(j = 0; j<N; j++)

if (Z[j*M + i] < mainSlope=Y[j*M + i]—25/cos(atan(mainSlope)))

Z[j*M + i] = mainSlope*Y[j+M + i]-25/cos (atan(mainSlope)) ;

Z[0:M + M/2] = 0;
return 0;

}

int functionSet::replaceError(double *Z, double *Zstar)//Z+ to Z

{
int i,j;
error = 0;
for(i = 0; i i++)
for(j = 0; j<N; j++)
{
Z[j™M + i] = Zstar[jM + il;
}
return 0;

}

int functionSet ::writeDATA (double *X, double =Y,

377 double #X5,double *X6,double *X7, string folder,

387

{

int i,j;

char ch[5];

double L = 3;
d2s(double(step) ,ch,L);
string strl, str2, str3;
strl = folder;

strl += "/DATA";

strl += ch;

strl += ".csv";
remove(strl.c_str());
outputl.open(strl.c_str(),ios::app);
double energy = 0;

cout <<"

double #Z, double *X1, double *X2, double *X3, double *X4,
int step)

WRITING TO: " <<folder<<" "<<endl;
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outputl<<" X, Y, Z, H, slope,Q, AREA, L, curve,power, downL" <<endl;

for(i = 0; idM; i++)
for(j = 0; j<N; j++)

{

397  outputl << X[jM + i] << ", "< Y[ M+ 0] <<", "< ZIjM + ] <<", " <XI[jM + 0] <<", "
<<X2[jM + i]<<", " <<X3[jM + il<<", " <<X4[jM + 1] <<", " <X5[j M + 1] <<", " <<X6[jM + i]
<<", " <<X2[jM + i]xX3[jM + i] <<", "<<X7[j*M + i] << endl;

}
for(i = 0; idM; i++)
for(j = 0; j<N; j++)
{
if (DIR[j*M + i] == 1 || DIR[j*M + i] == 4 || DIR[j*M + i] == 16 || DIR[jsM + i] == 32)
{
energy += sqrt(X3[jsM + i])*dx;

407 '}
else
{
energy += sqrt(X3[j+M + i]#2.0) *dx;

}

}

cout << "energy (Q) = "<<energy<<endl;
energy = 0;

for(i = 0; idM; i++)

for(j = 0; j<N; j++)

417 |
if (DIR[j*M + i] == 1 || DIR[jM + i] == 4 || DIR[j*M + i] == 16 || DIR[j=M + i] == 32)
{
energy += sqrt(X4[j=M + i])=dx;

}
else
{
energy += sqrt(X4[j=M + i]%2.0) =dx;
}
}

427 cout << "energy (A) = "<<energy<<endl;

outputl.close () ;
return 0;
}

437

447

457

int functionSet::writeXYZ (double #X, double *Y, double *Z, string folder, int step)
{
int i,j;
char ch[5];
double L = 3;
d2s(double (step) ,ch,L);
string strl, str2, str3;
strl = folder;
strl += "/XYZ";
strl += ch;
strl += ".dat";
remove (strl.c_str());
outputl.open(strl.c_str(),ios::app);
for(j = 0; j<N; j++)
for(i = 0; idM; i++)

{
outputl << X[jM + i] << " "< Y[jM + i] <<" " << Z[j*M + i] <<endl;
}
outputl.close () ;
}

int functionSet:: analytic (double *X, double *Y, double *Z)
{

double numb = 200;

int k, i,j;

remove ("analytics.csv");

outputl .open("analytics.csv",ios::app);

outputl<<" X, Y, 2 H" <<endl;

for(i = 0; idM; i++)

for(j = 0; j<N; j++)

{
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Z[jM + i] = A-X[jM + i]+X[jM + i]) /2.0;
for(k = 1; k<numb; k = k+2)

Z[jM + i] += —16/(PI«PI+PI) *( sin (k«PI=(1+X[j*M + i])/2)/(kxk+k+sinh (k#PI))*(sinh (k+#PI+(1+Y[j+M + i])/2) +

sinh (k=PI+(1-Y[j=M + i])/2)));
467  outputl << X[jM + i] << ", "< Y[jM + i] <<",
}

outputl.close () ;

<< Z[jM + i] <<", " <<Z[jM + i] <<

return 0;

}

void functionSet::d2s(double num, char s[], unsigned int width)
{
int i,j;
//—width; // allow room for \0.
477 double decimal = abs(num) — abs(int (num));
int integer = abs(int(num));
deque<char> result;
if (integer == 0)
{result.push_front('0");}
while (integer != 0)
{
result.push_front(integer % 10 + '0");
integer /= 10;
}
487 if (num < 0) // check for negative value
result.push_front('-");
result.push_back(’.’);

while (decimal != 0.00 && result.size () < width)
{

decimal *= 10.0;

result.push_back(int(decimal) % 10 + '0’);
decimal = decimal — int(decimal);
497 }

while (result.size () < width)
result.push_front(’0’); // pad with spaces.

for (int i=0; i<width; ++i) // results into array s
s[i] = result[i];

s[width] = "\0’;

}

Listing C.5 — ‘RUN.cpp’: Numerical modeling

#include "header.h"

3 int functionSet::RUN(double *X, double *Y, double *Z, double *Zstar, double *Q, double *Qx, double *Qy,
double =SLOPE, double =CURVE, double *PHI, double =dZstar, double *AREA, double =LL, double xdownL,
string addressRUN, double initialTime, double finalTime, string initialTimeZ, string finalTimeZ)

double =order;

double random, randl;

double noise;

default_random_engine generator;

normal_distribution<double> distribution (0,0.503702461771);//The noise distribution

std :: cauchy_distribution<double> cauchy(0,0.11757900431008157) ;
13 int i,j;

order = (doublex) calloc M=N , sizeof(double));

//check the writedata function, it has been changed probably

string makefolder = "mkdir " + addressRUN;

system (makefolder. c_str ());

//mow it is constant rainfall , when you change the setting delete this sentence
double epsilon0 = 0.1;
epsilon = epsilon0;
t = initialTime;
23 double step = (finalTime — initialTime)/10.0;
double captureTime = t %2.0;
int nn;

for (nn = 0; nn < 7; nn++)

<< endl;
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if ( initialTime == scanTime[nn])
BCstep = nn;

double BCtime = scanTime[BCstep + 1] ;
defineD (varD) ;
defineK (0) ;

33 defineOmega(1) ;
readLand (X, Y, Z,initialTimeZ);///
/1filter33(Z, Z, 1);
/IwriteDATA(X, Y, Z, R, D, addressRUN, 1000);
replaceError (Zstar, Z);
boundarySet (Zstar, Y);
boundarySet(Z, Y);
direction (Zstar, PHI, Y);
drainageQ (Q) ;
slopeCalc (Z,SLOPE) ;

43 //we use the original data to calculate slope (without filling)
double ERROR = 5;
int num = 0;
//drainageAREAandLL (AREA, LL);
curveCalc (Z,CURVE) ;
drainageAREAandLL (AREA, LL,order);
writeDATA (X, Y,Z,Z,SLOPE,Q,AREA,LL, CURVE,downL, addressRUN, num) ;
writeXYZ (X, Y, Z, addressRUN, num) ;

while (t < finalTime )
53 {
boundarySet(Z, Y);

dtCalc (Q, SLOPE);
epsilon = epsilon0—(epsilon0 — epsilon0/10.0) /(finalTime — initialTime)=t;//pow(10,rndCoef) /2.0;
//epsilon0 —(epsilon0 — epsilon0/10.0) /(finalTime — initialTime)=t;//is used in filling processes
if (t + dt > captureTime)
dt = captureTime — t;
if(t + dt > BCtime)
{
63 BCstep++; BCtime = scanTime[BCstep + 1];
}
RungeKutta(Z, Zstar, Q, SLOPE, dZstar, PHI, Y);
crankNicholson (Zstar, Y);
replaceError (Z, Zstar);
//addNoise (Z, dt) ;
defineOmega (1) ;
boundarySet(Z, Y);
boundarySet(Zstar, Y);

t+=dt;
73  //ERROR = error;
//cout <<"CHANGE MV) =" << ERROR << " " << "t =" << t << endl;
cout << "t =" << t << endl;
if (t == captureTime)
{
direction (Zstar, PHI, Y);//these two function are also in numeric PHIcalc
drainageQ (Q) ;

slopeCalc (Z,SLOPE) ;
curveCalc (Z,CURVE) ; Qcomponents (X, Y, Q, Qx, Qy);
drainageAREAandLL (AREA, LL,order);
83 writeDATA (X, Y,Z,Z,SLOPE,Q,AREA,LL, CURVE, downL,addressRUN, ++num) ;
writeXYZ (X, Y, Z, addressRUN, num);
captureTime*=2.0;

direction (Zstar, PHI, Y);//these two function are also in numeric PHIcalc
drainageQ (Q) ;

slopeCalc (Z,SLOPE) ;

}

readLand (X, Y, Zstar, finalTimeZ);

93 ERROR = 0;

cout <<"I AM HERE" << endl;

ERROR = correlation (Zstar, Z, M:N);

cout << "———-] FRROR = " << ERROR <<endl<<endl ;

std::string command = "python PlotScript.py";
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28

48

I

system (command. c_str () ) ;

return 1;

}

Listing C.6 — ‘optimization.cpp’: Different objective functions and optimisation

#include "header.h"

double functionSet::stepRun(double *X, double *Y, double *Z, double xZstar, double *Q, double *SLOPE,
double *PHI, double *dZstar, double initialT, double finalT, string finalZ) //Z is the initial Z

{

}

objectives functionSet:: multiObjective_Zerror_discharge (double *X, double %Y, double *Z, double *Zstar, double =Q,
double *SLOPE, double *PHI, double *dZstar, string initialTime, string finalTime,string+ filename)

{

epsilon = 1.0;

double random, randl;

double noise;

int i,j;
defineRandom_Noise_D_K_Omega(Z,0,0,0,0) ;
replaceError (Zstar, Z7);

direction (Zstar, PHI, Y);

drainageQ (Q) ;

slopeCalc(Z,SLOPE) ; //we use the original data to calculate slope (without filling)

t = initialT;
int nn;
for (nn = 0; nn < 7; nn++)
if ( initialT == scanTime[nn])
BCstep = nn;
double BCtime = scanTime[BCstep + 1] ;
while (t < finalT)
{
dtCalc(Q, SLOPE);
epsilon = 0.05-(0.05 — le-2)/finalT+t; //rndCoef+pow(10,0.5)=dt
if (dt < 0.5e-3)
return 1/dt;
if (dt + t > finalT)
dt = finalT - t;

if (t + dt > BCtime)

{

BCstep++; BCtime = scanTime[BCstep + 1];
}

RungeKutta(Z, Zstar, Q, SLOPE, dZstar, PHI, Y);
crankNicholson (Zstar, Y);

replaceError (Z, Zstar);

//defineOmega (1) ;

//addNoise (Z, dt) ;
defineRandom_Noise_D_K_Omega(Z,1,0,0,0) ;
boundarySet(Z, Y);

boundarySet (Zstar, Y);

t+=dt;

//cout << " " << "t =" << t << endl;
if (Kave == 0.0)

continue;

direction (Zstar, PHI, Y);
drainageQ (Q) ;

slopeCalc (Z,SLOPE) ;

readLand (X, Y, Zstar,finalZ);
return meanSquareError(Z, Zstar, M:N);

int i,j,k;
double *Qs,*Ls;

double rmsZ, rmsQ, rmsL;
objectives ERROR;
ERROR.a = 0;
ERROR.b =
ERROR.c =
ERROR.d =

© o o o
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readLand (X, Y, Z,initialTime);

/ IMCH. smoothZ(Z) ;

//cout<<"ok"<<endl;

68 double time[] = {0.25,0.5,1.0,2.0,4.0,8.0};

Qs = new double [6:M=N];

Ls = new double [6=M=N];

for (k = 1; k<6; k++)

{

rmsZ = stepRun(X, Y, Z, Zstar, Q, SLOPE,PHI, dZstar,time[k-1], time(k], filename([k]); //0:uniform D
drainageAREAandLL (SLOPE, PHI, dZstar);
//because we don’t need SLOPE and PHI at this step, they are used to save AREA and LL. AREA:SLOPE, LL:PHI, order:dZstar
for(j = 0; j<N; j++)

for(i = 0; idM; i++4)

78 {

Qs [kAVN+j=M + i] = Q[j=M + i];
Ls[k«MsN+jsM + i] = PHI[jsM + i];

}

}

ERROR.a = rmsZ;

outputl.close () ;

outputl .open("Q_model.csv",ios::trunc);

for(j = 0; j<N; j++)
88 for(i = 0; idM; i++)
{
for (k = 1; k<6; k++)
outputl << Qs[kaVEN+j=M + i] <<',’;
outputl << endl;

}

/lcalculating Q rms
outputl.close () ;
//Running the python script to calculate rms of discharges
98 sleep_for (seconds(4));
std::string command = "python QRMS.py";
system (command. c_str () ) ;
sleep_for (seconds(4));
inputl.open("QRMS. dat");//
inputl>>rmsQ;
ERROR.b = mmsQ;
inputl.close () ;
remove ("Q RMS. dat") ;
remove ("Q_model. csv") ;
108 //calculating L rms
outputl.close () ;
outputl .open("L_model.csv",ios::trunc);
for(j = 0; j<N; j++)
for(i = 0; idM; i++)
{
for (k = 1; k<6; k++)
outputl << Ls[kaVEN+j+M + i] <<’,’;
outputl << endl;
}
118 outputl.close () ;
//Running the python script to calculate rms of discharges
sleep_for (seconds(4));
command = "python L RMS.py";
system (command. c_str () ) ;
sleep_for (seconds(4));
inputl.open ("L RMS. dat");//
inputl>>rmsL;
ERROR.c = rmsL;
inputl.close () ;
128 remove("L_RMS. dat");
remove ("L_model.csv");

ERROR.d = 0;//rmsL+rmsQ+rmsZ;

return ERROR;
}
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//Objective function is based on the exceedance probability of discharge at 8h
double functionSet::objective_discharge (double *X, double *Y, double *Z, double *Zstar, double *Q, double *SLOPE,

138 double *PHI, double xdZstar, string initialTime, string finalTime,string= filename)

148

168

178

188

198

{

int i,j;

readLand (X, Y, Z,initialTime);
//MCH. smoothZ(Z) ;

double ERROR = 0;

double errorl;

/lerrorl = stepRun(X, Y, Z, Zstar, Q, SLOPE,PHI, dZstar,0.25, 8.0, filename([5]);

//Writing the model Q data in the file
outputl.close () ;
outputl.open("model_discharge.csv",ios::trunc);
for(j = 0; j<N; j++)

for(i = 0; idM; i++)

{

outputl << Q[j*M + i] <<endl;

}

outputl.close () ;

//Running the python script to calculate rms of discharges

sleep_for (seconds(4));

std::string command = "python QRMS.py";
system (command. c_str () ) ;

sleep_for (seconds(4));

inputl.open("Discharge_RMS.dat");//

inputl>>ERROR;

inputl.close () ;

remove ("Discharge_ RMS.dat") ;

remove ("model_discharge.csv");

return ERROR;

double functionSet::objectivel (double *X, double *Y, double *Z, double #Zstar, double *Q, double *SLOPE, double *PHI,

double *dZstar, string initialTime, string finalTime,string+ filename)

{

readLand (X, Y, Z,initialTime);
//MCH. smoothZ(Z) ;

double ERROR = 0;

double errorl = 0;

/10:uniform D

errorl = stepRun(X, Y, Z, Zstar, Q, SLOPE,PHI, dZstar,0.25, 0.5, filename([1l]); //0:uniform D

outputl << "<< errorl;
//ERROR += errorl ;

errorl= stepRun(X, Y, Z, Zstar, Q, SLOPE,PHI, dZstar,0.5,

outputl << << errorl;
//ERROR += errorl ;

errorl= stepRun(X, Y, Z, Zstar, Q, SLOPE,PHI, dZstar,1.0,

outputl << << errorl;
//ERROR += errorl ;

errorl= stepRun(X, Y, Z, Zstar, Q, SLOPE,PHI, dZstar,2.0,

outputl << << errorl;
//ERROR += errorl;

errorl= stepRun(X, Y, Z, Zstar, Q, SLOPE,PHI, dZstar,4.0,

outputl << << errorl;
ERROR += errorl;

/lerrorl = stepRun(X, Y, Z, Zstar, Q, SLOPE,PHI, dZstar,8.

//outputl << "<< errorl;

//ERROR += errorl;

0

1.0, filename|[2]);

2.0, filename|[3]);

4.0, filename|[4]);

8.0, filename[5]);

//ERROR += stepRun(X, Y, Z, Zstar, Q, SLOPE,PHI, dZstar,0.25, 16.0,

/1 "/home/mohsen/LandScapeCode/input/exp8/16h00min 8mm. dat");//number "1" is for var D and "0" for fixed D

return ERROR;

double functionSet::objective2 (double *X, double Y, double *Z, double #Zstar, double *Q, double *SLOPE,

double *PHI, double xdZstar)

int i,j;
epsilon = 0.05;
defineD (varD) ;

readLand (X, Y, Z,"/home/mohsen/LandScapeCode/input/exp8/16h00min 8mm. dat") ;

//M(H. smoothZ(Z) ;

16.0, filename[6]);
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boundarySet(Z, Y);
208 //It will be changed during the filling process, it is just the initial value
replaceError (Zstar, Z);
direction (Zstar, PHI, Y);
drainageQ (Q) ;
slopeCalc (Zstar ,SLOPE) ;
error = 0;
double errorl = 0;
for(i = 1; i<M=1; i+4)
for(j = 1; j<N-1; j++)
{
218  errorl = 0;
errorl += D[j*M + i]=(Z[jM + i + 1] + Z[j"M + i — 1] + Z[(j + )sM + i] + Z[(j — )sM + i] —
4+Z[jM + i]) /(dx*dx) + (D[j*M + i+1] = D[j=M + i])* (Z[j*M + i + 1] — Z[j*M + i]) /(dx=*dx)
+ DI(j + DM + i] =D[j-M + i])* (Z[(j + 1)>M + i] = Z[jM + i]) /(dy=dy);

if (pow(Q[j*M + i], m)*pow(SLOPE[j*M + i], n) > OmegaAve)
errorl += E — delta/dx+K[j*M + i]+(pow(SLOPE[j*M + i], n)*pow(Q[j*M + i], m) — Omega[j M + i]);
error += errorlxerrorl;
}
return sqrt(error/(MsN));
228 }
int functionSet:: calibratePSO (double *X, double =Y, double =Z, double xZstar, double *Q, double *SLOPE, double =PHI,
double *dZstar, string addressOPT, string initialTime, string finalTime,string+ filename)
{
int i,j;
remove (addressOPT. c_str () ) ;
outputl .open(addressOPT. c_str () ,ios ::app);
objectives objFun;
int nvar = 7;
double min[nvar];
238 min[0] = 16000 ;//D,
min[1] = 0.17;//K,
min[2] = 10;//Tc
min[3] = 0;//gamma,
min[4] = 0.5;//m,
min[5] = 1.0;//n,
min[6] = 0.0;//n,
double minOLD[nvar];
double maxOLD[nvar];
double max[nvar];
248 max[0] = 21000;//D,
max[1] = 0.23;//K,
max[2] =10;//Tc
max[3] = 0;//gamma,
max[4] = 0.5;//m,
max[5] = 1.0;//n,
max[6] = 100.0;//randCoef,

E=0; //E
int pop = 50;
double #Point, +obj, sselfOptPlace, xvel, xselfOpt;

258 Point = (doublex)calloc (pop*nvar , sizeof(double));
selfOptPlace = (doublex)calloc (pop*nvar , sizeof(double));
vel = (double =) calloc (pop*nvar , sizeof(double));
obj = (double=) calloc (pop , sizeof(double));

selfOpt = (double*) calloc(pop , sizeof(double));
double optGeneral = 1e6;
double optGeneralPlace[] ={1000,1000,0, 0, 0.5, 1.0,100};
int mm nn;
double random;
for @mm = 0; nmmxpop; nmH+)
268 {
//random = (double)rand () / (double)RAND _MAX;
for(nn = 0; nn < nvar; nn++)
{
random = (double)rand () / (double)RAND_MAX;
Point fm¥nvar + nn] = min[nn] + random*(max[nn] — min[nn]) ; //D
vel mmxnvar + nn] = 0;
selfOptPlace mm#nvar + nn] = Pointm:nvar + nn];
selfOptmm] = lel5;
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278  vel mmenvar + 1] = 0;
selfOptPlace m»nvar + 1] = Point[m»nvar + 1];
}
for(nn = 0; nn < nvar; nn++)
outputl << min[nn] <<" "<<max[nn]<< endl;
int iter = 0;
while ( iter < 100)
{
for @m = 0; nxpop; mm++)
{
288 cout << iter <<" "<y
for(nn = 0; nn < nvar; nn++)

cout << << Point [mm#nvar + nnj;

outputl <amm << " ";
for(nn = 0; nn < nvar; nn++)

outputl << << Point [mm«nvar + nn]j;
Dave = Point pmxnvar + 0];
Kave = Point[mm+nvar + 1];
OmegaAve = Point[nmsnvar + 2];
gamma = Point [mmxnvar + 3];
298  m = Point[mmnvar + 4];
n = Point [mm=nvar + 5];
noiseAve = Point [mm=nvar + 6];
E = 0;
//objmm] = objective_discharge (X, Y, Z, Zstar, Q, SLOPE,PHI, dZstar, initialTime,finalTime, filename
//objmm] = objective2 (X, Y, Z, Zstar, Q, SLOPE,PHI, dZstar);
objFun = multiObjective_Zerror_discharge (X, Y, Z, Zstar, Q, SLOPE,PHI, dZstar,
initialTime , finalTime , filename ); objm| = objFun.axobjFun.b;
if (obj mm] <optGeneral)
{
308 optGeneral = obj [mm];

for(nn = 0; nn < nvar; nn++)
optGeneralPlace [nn] = Point fmm+nvar + nn];
}
if (obj mm] <selfOpt fm])
{
selfOpt[mm] = obj[mm];
for (nn = 0; nn < nvar; nn++)
selfOptPlace m»nvar + nn] = Pointfmxnvar + nn];
}
318 cout <<

<<objFun.a<<

<<objFun.b<<" "<<obj [mm<<endl;
outputl << v
}

for(nn = 0; nn < nvar; nn++)

{

for @mm = 0; nxpop; nm++)

{

vel mmnvar + nn] = vel [mms=nvar + nn] +

<<objFun.a<< <<objFun.b<<" "<<obj mm<<endl;

2x(double)rand () / (double)RAND_MAX+1+(selfOptPlace mnvar + nn] — Point[mmnvar + nn]) +
2x(double)rand () / (double)RAND_MAX+*1+(optGeneralPlace [nn] — Point mm+nvar + nn]) ;

328 Point m+nvar + nn] += vel [mmsnvar + nn];
if (Pointfmmenvar + nn] > max[nn])
{
Point mmnvar + nn] = min[nn] + (double)rand () /(double)RAND MAX= (max[nn] — min[nn]) ;
//min[nn] + (double)rand () /(double)RAND MAXx(max[nn] — min[nn]) ;

//vel x5 + nn]= 0;
}
if (Point[mmenvar + nn] < min[nn])
{
338 Point [mmxnvar + nn] = min[nn] + (double)rand () /(double)RAND_MAX*(max[nn] — min[nn]) ;
//min[nn] + (double)rand () /(double)RAND MAX+* (max[nn] — min[nn]) ;

//vel x5 + nn]= 0;
}

}

}

cout <<endl<<endl<<endl<<iter <<

"<< optGeneral << endl;

outputl << iter<< " "<< optGeneral << endl;
iter++;

348  for(nn = 0; nn < nvar; nn++)
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{
outputl << optGeneralPlace [nn] << endl;
cout << optGeneralPlace[nn] << endl;

}

return 1;

}

void functionSet::SetCursorPos(int XPos, int YPos)
{

358 printf("\033[%d;%dH", YPos+1l, XPos+1);
}

int functionSet:: confidencelnterval (double q[], double percentage[], double *X, double *Y, double *Z,
double =Zstar, double *Q, double *SLOPE, double #PHI, double xdZstar,double T1, double T2,
string initialTime, string finalTime) //This function uses the value of z in the model to
calculate the confidence interval using the method described in the uncertainty book
{
int i,j;
double =Z1, =72, =xsens, =sensT;
368 double a, sigma;
Z1 = new double [M«N];
Z2 = new double [M=N];
sens = new double [M«N=3];

sensT = new double [MsN*3];
Dave = q[0];

Kave = q[1];

OmegaAve = q[2];

m= 0.5;

n=1.0;

37¢

readLand (X, Y, Z,initialTime);

a = stepRun(X, Y, Z, Zstar, Q, SLOPE, PHI, dZstar, T1, T2, finalTime);
replaceError (Z1, Z);

readLand (X, Y, Z,finalTime);

sigma = meanSquareError(Z1,Z M:N/2) «sqrt (M«N/2) /sqrt M«N/2 — 3);

int nn, mm;

cout << "D = " << q[0]<<" "<<" sigma = " << sigma << " t = 1.9695 (95%)" <<endl;
cout << "K = " << g[l]<<" "<<" sigma = " << sigma << " t = 1.9695 (95%)" <<endl;
cout << "Tc = " << q[2]<<" "<<" sigma = " << sigma << " t = 1.9695 (95%)" <<endl;
cout <<"dql %"<<" dq2 %"<<" dg3 %"<<" sigmaD"<<" sigmaK "<< " sigmaTc " << endl;

388
double range = 0.05;
double dq ;
for(i = 0; i < 125; i++)
{
dq = —range+(double)rand () / (double)RAND_MAX=2+range ;
cout << dgx100;
Dave = q[0]+(1 + dq);
Kave = q[1];
OmegaAve = q[2];
398 readLand (X, Y, Z,initialTime);
a = stepRun(X, Y, Z, Zstar, Q, SLOPE, PHI, dZstar, Tl, T2, finalTime);
replaceError (22, Z);

for @mm = 0; mm < M«N/2; mm++)
{
sens [0*MsN + mm] = (Z2[mm] — ZI1[mm]) /(q[0]+dq) ;

}
dq = -range+(double)rand () / (double)RAND_MAX=2+range ;
cout << " "<< dq#100;

408 Dave = q[0];
Kave = q[1]=(1 +dq);
OmegaAve = q[2];
readLand (X, Y, Z,initialTime);
a = stepRun(X, Y, Z, Zstar, Q, SLOPE, PHI, dZstar, T1, T2, finalTime);
replaceError (22, Z);
for @mm = 0; nm < M:N/2; mm++)
{
sens[1+M«N + nm|] = (Z2[mm] — Z1[mm]) /(q[1]*dq);
}
418 dq = -range+(double)rand () / (double)RAND MAXx*2+range ;

cout << "<< dq=x100;
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428

438

448

458

468

488

Dave = q[0];
Kave = q[1];
OmegaAve = q[2]=(1 +dq);
readLand (X, Y, Z,initialTime);
a = stepRun(X, Y, Z, Zstar, Q, SLOPE, PHI, dZstar, T1, T2, finalTime);
replaceError (22, Z7);
for @mm = 0; mm < M«N/2; mm++)
{
sens [24VEN + mm] = (Z2[m] — Z1[mm]) /(q[2]+dq) ;
}
transpose (sens, sensT, M«N/2, 3);
multiple (sensT, sens, Z, 3, M«N/2, M:N/2, 3);
//for (int i = 0; i<3;i++)
I/ cout << "matrix:"<< Z[0*3 + i] <<" "<<Z[1#3 + i] <<" "<<Z[2%3 + i] <<endl;
matrixInversion (Z, 3, SLOPE);
cout <<" "<<1.9695s*sigmaxsqrt(SLOPE[0%3 + 0]) <<" "<<1.9695xsigma*sqrt(SLOPE[1%3 + 1])
<<" << 1.9695+sigma=sqrt (SLOPE[2#3 + 2]) << endl;
}
outputl.close () ;
delete [] Z1;
delete [] Z2;
delete [] sens;
delete [] sensT;
return (0);

int functionSet::confidencelntervall (double q0[], double percentage[], double *X, double *Y, double *Z, double *Zstar,

double *Q, double *SLOPE, double *PHI, double xdZstar,double T1, double T2, string initialTime, string finalTime)
//This function uses the objective function and second order term to calculate the confidence interval
// (the method described by Prof.Davison)

{

int Samp_Pop = 200;

int i,j;

double *Z1, #Z2, =sens, #sensT, #q,*sigma;
double a, sigma0, sigmaBAR;

Z1 = new double [MxN];

Z2 = new double [M=N];

q = new double [3*Samp_Pop];

sigma = new double [Samp_Pop];

sens = new double[Samp_Pop#6];

sensT = new double [Samp_Pop+6];

string strl = "ConfidenceDATA_confid6épercent.csv";
outputl.open(strl.c_str(),ios::app);

Dave = q0[0];

Kave = qO[1];

OmegaAve = q0([2];

m= 0.5;

m = 1.0

readLand (X, Y, Z,initialTime);

a = stepRun(X, Y, Z, Zstar, Q, SLOPE, PHI, dZstar, T1, T2, finalTime);
replaceError (Z1, Z);

readLand (X, Y, Z,finalTime);

sigma0 = meanSquareError(Z1,Z,M«N) «sqrt (M=N) / sqrt (M«N — 3);

int nn, mm;

cout << "D = " << @0[0]<<" "<<" sigma = " << sigma0 << " t = 1.9695 (95%)" <<endl;
cout << "K = " << q0[1]<<" "<<" sigma = " << sigma0 << " t = 1.9695 (95%)" <<endl;
cout << "Tc = " << g0[2]<<" "<<" sigma = " << sigma0 << " t = 1.9695 (95%)" <<endl;
double range = 0.06;

double dq[3] ;
for(i = 0; i < Samp_Pop; i++)

{

dq[0] = -range+(double)rand () /(double)RAND MAXs2+range ;
dq[1] = -range+(double)rand () /(double)RAND_MAX=2+range;
dq[2] = —range+(double)rand () /(double)RAND_MAX=2xrange;

for (j = 0;j<3;j++)

if (dqlj] ==0)

{

dq[j] = le-6;

}
q[0*Samp_Pop+i] = q0[0]*(1 + dq[0]);
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q[1+Samp_Pop+i] = qO[1]#(1 + dq[1]);
q[2+Samp_Pop+i] = q0[2]=(1 + dq[2]);

Dave = q[0+*Samp_Pop+i] ;
Kave = q[1+Samp_Pop+i] ;
OmegaAve = q[2+Samp_Pop+i] ;
readLand (X, Y, Z,initialTime);
498 a = stepRun(X, Y, Z, Zstar, Q, SLOPE, PHI, dZstar, Tl, T2, finalTime);
replaceError (21, 7);
readLand (X, Y, Z,finalTime);
sigma[i] = meanSquareError(Z1,Z ,M«N)*sqrt (M=N)/sqrt (M«N — 3);
outputl <<q[0*Samp_Pop+i]<<" "<<q[1*Samp_Pop+i]<<" "<<q[2*Samp_Pop+i]<<" "<<sigmali]<<endl;
cout <<q[0+*Samp_Pop+i]<<" "<<q[l+*Samp_Pop+i]<<" "<<q[2+Samp_Pop+i]<<" "<<sigmal[i]<<endl;
}
sigmaBAR = 0;
for(i = 0; i < Samp_Pop; i++)
{
508  sigmaBAR += (sigma|i]-sigma0) =(sigma|[i]-sigma0);

}

sigmaBAR = sqrt (sigmaBAR) /sqrt(Samp_Pop — 1);

cout << "sigmaBAR="<<sigmaBAR<<endl;

for(i = 0; i < Samp_Pop—1; i++)

{

sens [0+Samp_Pop+ i] =0.5%( (sigmal[i]—sigma0) /(q[0*Samp_Pop+i]—q0[0]) —
(sigma[i+1]-sigma0) / (q[0+Samp_Pop+i+1]-q0[0])) / (q[0+Samp_Pop+i]—q[0*Samp_Pop+i+1]) ;

sens [1+Samp_Pop+ i] =0.5%( (sigmal[i]—sigma0)/(q[1+Samp_Pop+i]—-q0[1]) —

518 (sigma[i+1]-sigma0) / (q[1+Samp_Pop+i+1]—q0[1])) /(q[1*Samp_Pop+i]—q[1+Samp_Pop+i+1]);

sens [2+Samp_Pop+ i] =0.5+( (sigmal[i]-sigma0) /(q[2+Samp_Pop+i]-q0[2]) —

(sigma[i+1]-sigma0) / (q[2+Samp_Pop+i+1]-q0[2])) / (q[2*Samp_Pop+i]—q[2*Samp_Pop+i+1]) ;

sens[3+Samp_Pop+ i] =( (sigmal[i]—sigma0)/(q[0+Samp_Pop+i]l-q0[0]) —
(sigma[i+1]-sigma0) / (q[0+Samp_Pop+i+1]-q0([0])) /(q[1+Samp_Pop+i]—q[1+Samp_Pop+i+1]) ;
sens [4+Samp_Pop+ i] =( (sigmal[i]—sigma0)/(q[0*Samp_Pop+i]-q0([0]) —
(sigma[i+1]-sigma0) / (q[0*Samp_Pop+i+1]1-q0[0])) / (q[2+Samp_Pop+i]—q[2+Samp_Pop+i+1]) ;
sens [5+Samp_Pop+ i] =( (sigmal[i]-sigma0)/(q[1*Samp_Pop+il-q0[1]) —
(sigma|[i+1]-sigma0) / (q[1+Samp_Pop+i+1]-q0[1])) /(q[2+Samp_Pop+i]—q[2+Samp_Pop+i+1]) ;
528 cout <<i;
for(j = 0;j<6;j++)
cout<<" "<<sens|[j*Samp_Pop+ i];
cout <<endl;
}
i = Samp_Pop — 1;
sens [0+Samp_Pop+ i] =0.5#( (sigmal[i]—sigma0) /(q[0*Samp_Pop+i]—q0[0]) —
(sigma[i—1]-sigma0) / (q[0+Samp_Pop+i—1]-q0[0])) / (q[0+Samp_Pop+i]—q[0+Samp_Pop+i —1]) ;
sens[1+Samp_Pop+ i] =0.5#( (sigmali]—sigma0)/(q[1*Samp_Pop+i]—-q0[1]) —
(sigma[i—1]-sigma0) / (q[1+Samp_Pop+i—1]-q0[1])) /(q[1*Samp_Pop+i]—q[1+Samp_Pop+i—1]);
538 sens[2+Samp_Pop+ i] =0.5+( (sigma[i]-sigma0) /(q[2+Samp_Pop+i]—-q0[2]) —
(sigma[i—1]-sigma0) / (q[2+Samp_Pop+i—1]-q0(2])) / (q[2+Samp_Pop+i]—q[2+Samp_Pop+i —1]) ;
sens [3+Samp_Pop+ i] =( (sigmal[i]—sigma0)/(q[0+*Samp_Pop+i]—-q0[0]) —
(sigma[i-1]-sigma0) / (q[0+Samp_Pop+i—1]-q0[0])) / (q[1+Samp_Pop+i]—q[1+Samp_Pop+i —1]);
sens [4+Samp_Pop+ i] =( (sigmali]—sigma0)/(q[0*Samp_Pop+i]—-q0([0]) —
(sigma[i-1]-sigma0) / (q[0+Samp_Pop+i—1]-q0[0])) / (q[2+Samp_Pop+i]—q[2+Samp_Pop+i —1]) ;
sens [5+Samp_Pop+ i] =( (sigmal[i]-sigma0)/(q[1+Samp_Pop+i]-q0[1]) —
(sigma [i—1]-sigma0) / (q[1*Samp_Pop+i—1]-q0[1])) / (q[2*Samp_Pop+i]—q[2*Samp_Pop+i —1]) ;
transpose (sens, sensT, Samp_Pop, 6);
multiple (sensT, sens, Z, 6, Samp_Pop, Samp_Pop, 6);
548 //for (int i = 0; i<3;i++)
Il cout << "matrix:"<< Z[0*3 + i] <<" "<<Z[1x3 + i] <<" "<<Z[2x3 + i] <<endl;
matrixInversion (Z, 6, SLOPE);
cout <<" "<<1.9695+sigmaBAR*sqrt (SLOPE[0%6 + 0]) <<" "<<1.9695+sigmaBAR+sqrt(SLOPE[1+6 + 1]) <<
"<< 1.9695+sigmaBAR+sqrt (SLOPE[2+6 + 2]) << endl;
outputl <<" "<<1.9695+sigmaBAR+sqrt (SLOPE[0%6 + 0]) <<" "<<1.9695+sigmaBAR+sqrt(SLOPE[1%6 + 1]) <<
" "<< 1.9695xsigmaBAR+sqrt (SLOPE[2+6 + 2]) << endl;

delete [] Z1;
delete [] Z2;
delete [] sens;
558 delete [] sensT;
delete [] g;

return (0);
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38

48

68

Listing C.7 — ‘analysis.cpp’: Network analysis and data extraction

#include "header.h"

void functionSet::drainageAREAandLL (double *AREA, double *LL, double *order)
//the drainage area without considering the rainfall
{
int i,j;
//cout << "drainageQ() is running" << endl;
for(j=0; j<N; j++)
{
AREA[j-M + 0] = 1 ;
LL[j*M + 0] = dx;
INPUT[j-M + 0] = 0;

AREA[j*sM + M - 1] = 1;
LL[jsM + M - 1] = dx;
INPUT[j+M + M - 1] = 0;
}

for(i=0; idM; i++)

{

AREA[0:M + i] =
LL[O:M + i] = dy ;
INPUT[0+M + i] = 0;

3

AREA[(N-1)sM + i] = 1;

LL(N-1)M + i] = dy;

INPUT[(N-1)+M + i] = 0;

}

for (j=N-2; j>0; j—)

for(i=1; i<M-1; i++)

{

AREA[j*M + i] = 1; // the initial area of each single cell
INPUT[j-M + i] = 0;

if (drainTo[jsM + i] == jsM+ i + 1 || drainTo[jM + i] == jM + i — 1)

/Il the initial lenght of each single cell

LL[jM + i] = dx;

else if (drainTo[j*M + i] == (j — 1)*M + i || drainTo[j*M + i] == (j — 1)sM + i)
LL[jM + i] = dy;

else

LL[j*M + i] = sqrt(dx=dx + dyxdy);

if (DIR[j*M + i + 1] == 16)
INPUT[j-M + i] += 1;

if (DIR[(j + 1)*M + i + 1] == 8)
INPUT[j-M + i] += 1;

if (DIR[(j + 1)*M + i] == 4)
INPUT[jsM + i] += 1;

if (DIR[(j + DM+ i — 1] == 2)
INPUT[j+M + i] += 1;

if (DIR[j*M + i — 1] == 1)
INPUT[j+M + i] += 1;

if (DIR[(j — 1)sM + i — 1] == 128)
INPUT[j+M + i] += 1;

if (DIR[(j — 1):M + i] == 64)
INPUT[j+M + i] += 1;

if (DIR[(j — DM + i + 1] == 32)
INPUT[j+M + i] += 1;

}

int count = 10;
int countl;

int mm nn;
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88

98

108 int functionSet::Qcomponents(double *X, double =Y, double *Q,

118

128

int ord = 0;
while (count > 0)
{

countl=0;

for (j=N-1; j>-1; j—-)
for (i=0; idV;
{

i++)

if INPUT[j=M + i] == 0)
{
INPUT[jM + i]
countl ++;
AREA[drainTo [j*M + i]] += AREA[j+M + i];
if INPUT[drainTo [j*M + i]] == 1)
LL[drainTo[j*M + i]] += LL[jM + i];
INPUT[drainTo [j*M + i]] —= 1;
INPUT[j+M + i] 1000;
}
}

ord;

count
}
countl=0;
for (j=N-2; j>0; j—)
for(i=1; i<dM-1; i++)
{

if INPUT[j+M + i] != 1000)
{

countl ++;

}

countl;

}
for (j=0; j<N; j++)

for (i=0; idV;

}

i++)
AREA[j+M + i] *=dx=dy;

{
double d;
int i, j;
for(j = 1; j <N -1 ; j++)
for(i = 1; i <M- 1; i++)
{

d = sqrt((X[drainTo[j-M + i]] —
X[j*M + i]) + (Y[drainTo[j-M + i]] —
Qx[j*M + i] = Q[j*M + i]*(X[drainTo[j+M + i]] —
Qylj™M + il = Q[jM + i]=(Y[drainTo[j-M + i]] —

}
for(j = 1; j <N -1 ; j++)
{
i=0;
Qx[j*M + i] = Q[j*M + i];
Qylj*M + i] = 0;
i=M-1;
Qx[j*M + i] = Q[j-M + i];
Qylj-M + i] = 0;
}
for(i = 1; i <M=1 ; i++)
{
j =0;
Qx[j*M + i] = 0;
Qylj-M + i] =Q[j-M+ il;
j=N-1;
Qx[jM + i] = 0;
QyljsM + i] = Q[j-M + i];
}

176

double *Qx, double =*Qy)

X[j*M + i]) =(X[drainTo [j-M + i]] —
Y[j*M + i]) *(Y[drainTo[j*M + i]] —

Y(j-M+ i]));
X[jM + i])/d;
Y[jM + i])/d;



i=M2;j=0;

Qx[jM + il = 0;

Qylj=M+ il = Q[jM+ il;

Qx[0+M + 0] = (Qx[1:M + 0] + Qx[0:M + 1])/2;

Qx[0M + M — 1] = (Qx[1:M + M — 1] + Qx[0sM + M — 2]) /2;

Qx[(N - 1)sM + 0] = (Qx[(N—- D)sM + 1] + Qx[(N — 2):M + 0]) /2;

QxX[(N- D)sM+M- 1] = (Qx[(N-2)sM+ M- 1] + Qx[(N- 1)sM+ M- 2])/2;
148 Qy[0+M + 0] = (Qy[1+M + 0] + Qy[0=M + 1])/2;

Qy[0sM + M — 1] = (Qy[1+M + M - 1] + Qy[0:M + M — 2]) /2;

Qy[(N- 1)sM+ 0] = (Qy[(N—- 1)sM + 1] + Qy[(N - 2):M + 0]) /2;

Qy[(N- 1)M+M- 1] = (Qy[(N- 2)sM+ M- 1] + Qy[(N- 1):-M+ M- 2])/2;

return 1;
}

int functionSet::calcDrainFrom (double =BV)

/1 instead of Q, the other parameters can be used (For example
158 //to find the maximum lenghts, the LL parameter can be used.

{

int i,j;

/1 The grid should be filled and the directions be set (filling(),

/ldirection () ) before using this function

double max = 0;

int maxPlace = 0;

int mm nn;
for (j=0; j<N; j++)
{

168  drainFrom[j+M + 0] = j+=M + 0;
drainFrom[j*M + M- 1] = jsM + M - 1;
}

for (i=0; iM; i++)

{

drainFrom [0=M + i] = 0:M + i ;
drainFrom [(N-1)-M + i] = (N-1):M + i;
}

for(j = 1; j<N-1; j++)

178 for(i = 1; i<M-1; i++)

{

max = 0;

formm = —1; mnx2 ; mms++)

for(nn = —1; nn<2 ; nn++)

{

if (drainTo[(j + nn)*M + i +mm] == j+M + i)

{

if (BV[(j + nmm)*M + i + nm| > max)

{

188 max = BV[(j + nn)+M + i + nm];
maxPlace = (j + nn)sM + i + nmy;

}

}

}

drainFrom[j+M + i] = maxPlace ;
}

}

int functionSet:: mainRiver (double *X, double *Y, double *Z, double %L, double
198 *BV, double BVmin, double *SLOPE, double =Q, double *CURVE,double *LL, double
*PHI, string folder, string fileName) //the main path is determined base on the based value (BV)

{

int i,j;

and its minimum value (BVmin)

double max = 0;
int maxPlace;
int mm nn;

prepareFile (folder, fileName); //in prepares the output 1 for writing
max = 0;
208 for(i = 1; iV-1; i++)
if (BV[2+M + i] > max)
{
max = BV[2:M + i];
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maxPlace = 2:M + i;

}

outputl << "X" << " " << "YV" << " "< "Z" << " <L <" Ve
<<" "<< "BaseValue" << " " << "SLOPE" << " "<< "DISCHARGE" <<" "
<<"CURVE" <<" " "filteredCurvel" <<" ‘"<< "filteredCurvel0" <<" "

<< "filteredSlopel" <<" "<< "filteredSlopel0" << endl;
218 filter33 (CURVE, a, 1); // a, b, ¢ and d are used in the numerical process
filter33 (CURVE, b, 10);
filter33 (SLOPE, c, 1);
filter33 (SLOPE, d, 10);
while (BV[maxPlace]>= BVmin)
{

outputl << X[maxPlace] <<

<< Y[maxPlace] << << Z[maxPlace]

<< "<<L[maxPlace] << " "<<LL[maxPlace] <<

<< BV[maxPlace]
<< " " << SLOPE[maxPlace] <<' "<<Q[maxPlace] << " "<<CURVE[maxPlace]
" "<<a[maxPlace] <<

<< <<b[maxPlace] << <<c[maxPlace] <<" "<<d[maxPlace] << endl;
228 maxPlace = drainFrom[maxPlace];
//drainfrom defines the input point with the maximum dischaerge

}

return 0;

}

void functionSet::UpLenght(double L)
/1 the length of the points are calculated based on the flow rate
{
238 int i,j;
for (j=0; j<N; j++)
{
L[jsM + 0] = dx ;
INPUT[j+M + 0] = 0;

L[jsM+M - 1] = dx;
INPUT[j+*M + M - 1] = 0;
}
for(i=0; idM; i++)

248 {
L[0sM + i] = dy ;
INPUT[0+M + i] = 0;

LI(N-1):M + i] = dy;
INPUT[(N-1)=M + i] = 0;
}

for (j=N-2; j>0; j——)
for(i=1; i<dM-1; i++)

{
258 if (drainTo[j+M + i] == j=M+ i + 1 || drainTo[jsM + i] == jsM + i — 1)
L{jsM + i] = dx;
else if (drainTo[jsM + i] == (j — )sM + i || drainTo[jsM + i] == (j — 1)sM + i)
L[jsM + i] = dy;
else

L[j*M + i] = sqrt(dx+dx + dy=dy);
INPUT[j+M + i] = 0;

if (DIR[j*M + i + 1] == 16)
INPUT[jM + i] += 1;

268
if (DIR[(j + )M + i + 1] == 8)
INPUT[jM + i] += 1;

if (DIR[(j + 1)M + i] == 4)
INPUT[jM + i] += 1;

if (DIR[(j + )M + i — 1] == 2)
INPUT[jM + i] += 1;

278 if (DIR[j*M + i — 1] == 1)
INPUT([jM + i] += 1;

if (DIR[(j — 1)sM + i — 1] == 128)
INPUT[jM + i] += 1;
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288

298

308

318

328

338

348

if (DIR[(j — 1):M + i] == 64)
INPUT[j-M + i] += 1;

if (DIR[(j — )M + i + 1] == 32)
INPUT[jsM + i] += 1;

}

int count = 10;

int countl;

while (count > 0)

{

countl=0;

for (j=N-2; j>0; j—)

for(i=1; i<dM-1; i++)

{
if (INPUT [drainFrom [j+M + i]] == 0)
{
countl++;

L[j*M + i] += L[drainFrom[jM + i]];

INPUT[jsM + i] = 0;
INPUT [drainFrom [jM + i]] = 1000;
}

}

count = countl;
}
}

int functionSet:: statistics (double =X, double Y, double =Z, double *Q, double
*AREA, double *SLOPE, double *CURVE, double *PHI, double =L, double =LL,
double percentage, string folder)

//percentage(0—1) defines the ratio of points to be written

{

int i,j;

prepareFile (folder, "/QLAREASlope.dat");

outputl << "L@m) "<<", << "LL@m) "<<", <<"Slope(_)" << ",

<< "QmmB3/h)" <<", "<< "AREA(mm2) " <<", "<< "power(sqrt(Q)=slope)" << endl;
for(i = 0; i<percentage«VEN; i++) /1 it writes a percentage of points: x(%)+MN
{
j = int((double)rand () / (double)RAND_MAX#M=N) ;
outputl << L[jl<<", "<< LL[jl<<", " <<SLOPE[j] << ", " << Qlj]

<<, "<< AREA[j] <<", "<<sqrt(Q[j1) *SLOPE[jl<< endl;
}

writeExceedance (Q, PHI, 101, folder, "/ExceedanceQ.dat");

//it writes the exceedance probabilities of a specific parameter
writeExceedance (L, PHI, 101, folder, "/ExceedanceL.dat");
writeExceedance (CURVE, PHI, 101, folder, "/ExceedanceCURVE.dat");
writeExceedance (SLOPE, PHI, 101, folder, "/ExceedanceSLOPE.dat");
writeExceedance (AREA, PHI, 101, folder, "/ExceedanceAREA.dat");

void functionSet :: writeExceedance (double *paramMain, double :paramTemp, int NumPoints,
string folderName, string fileName)

/it writes the exceedance probabilities of a specific parameter

{

int i,j;

double max, min;

int counter, k;

prepareFile ( folderName, fileName);

for(j = 0; j<N; j++)
for(i = 0; idM; i++)
{
if (paramMain[j*M + i] > max)
max = paramMain[jM + i];
else if (paramMain[j+M + i] < min)
min = paramMain[j+M + i];
}
paramTemp[0] = min;
outputl << min <<" "<< 1.0 << "\n";
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for(k = 1; k<NumPoints; k++)
{

counter = 0;

paramTemp[k] = min + (double)rand () /(double)RAND MAXx (max-min) ;

358

for(j = 0; j<N; j++)

for(i = 0; idM; i++4)

{

if (paramMain[j+M + i] >= paramTemp[k])

counter++;

}

outputl << paramTemp(k] <<" "<< counter/double(MN) << endl;
}
}

368 void functionSet:: prepareFile (string folderName, string fileName)
/it prepares the output 1 for writing
{
outputl.close () ;
folderName += fileName;
remove (folderName. c_str () ) ;

outputl .open (folderName. c_str () ,ios ::app);

void functionSet:: filter33 (double *param, double =filtered, int filtTime)
378 //it filters the data by a 3 by 3 cells

{

int i,j;

int mmlnnl, 11;

double temp;

for(j = 0; j<N; j++)

for(i = 0; iM; i++)

filtered [j*M + i] = param[jM + i];

11=0;
388 while (11 <filtTime)
{
for(j = 1; j<N-1; j++)
for(i = 1; i<dM-1; i++4)
{
temp = 0;
for (mml = —1; mmk2 ; mml++)
for(nnl = —1; nnl<2 ; nnl++)

{
temp += filtered [(j + nnl)*M + i + mml];
398
}
filtered [j*M + i] = temp/9.0;
}
11 ++;
}
}
double functionSet:: filterCELL (double *param, int i, int j, int n)
/it filters param[i,j] by an n by n cells
{
408 int mml,nnl;
double temp = 0;
for (mml = —n/2; mmkn/2+1 ; mml++)
for(nnl = —n/2; nnl<n/2+1 ; nnl++)

{
temp += param[(j + nnl)*M + i + mml];

}
return temp/double (n+n);
}
418
double functionSet:: filternn (double #param,
//it filters param by an n by n cells
{
int i,j;
int mml,nnl, 11;
double temp;

double =filtered , int n)

180



428

438

448

458

468

488

for(j = 0; j<N; j++)
for(i = 0; idM; i++)
filtered [j*M + i] = param[j=M + i];

for(j = 1; j<N-1; j++)
{
if (j<n/2)
for(i = 1; i<dV-1; i++)
filtered [j*M + i] = filterCELL (filtered, i,j, 2*j + 1);

else if (j>N-n/2 - 1)
for(i = 1; i<M=1; i++)
filtered [j*M + i] = filterCELL (filtered, i,j, 2+(=j + N — 1)+1);
else
{
for(i = 1; i<M-1; i++4)
{
if (i<n/2)
filtered [j*M + i] = filterCELL (filtered , i,j, 2+i+1);
else if(i>Mm/2 - 1)
filtered [jsM + i] = filterCELL (filtered, i,j, 2+(=i + M- 1)+1);
else
filtered [j*M + i] = filterCELL (filtered, i,j, n);
}
}
}
for (j=0; j<N; j++)
{

filtered [j-M + 0] =filtered [j+M + 1];filtered [j*M + M — 1] =filtered [jsM + M - 2];

}

for (i=0; iM; i++)
{

filtered [(N-1)sM + i] =filtered [(N-2)sM + i]; filtered [0+M + i] =filtered [1sM + i];

}
}

void functionSet:: filterNetwork (double *Z1, double #Z2, double #Y, double *Qopt)
/1it filters the value of Z2(experiment) according to the Zl(model) to have
//the most match between the model and experiment

{

int i,j;

int optFilter;

double minSQR, optMinSQR;

double =Zstarl,=PHIL,*Ql, *Q2;

Zstarl = new double [M«N];

PHI1 = new double [M«N];

Ql = new double [M#N];

Q2 = new double [M#N];

for(i = 1; i < M=N; i++)

{
Zstarl[i] = 0;
PHI1[i] = 0;
QL[i] = 0;
Q2[i] = 0;
}

replaceError (Zstarl, Z1);
filling (Zstarl, PHI1, Y);
direction (Zstarl, PHI1, Y);
drainageQ (Q1) ;

replaceError (Zstarl, 72);
filling (Zstarl, PHI1, Y);
direction (Zstarl, PHIL, Y);
drainageQ (Q2) ;

minSQR = 0;

for(i = 0; i < M=N; i++)

{

minSQR += (logl0(Q1[i]) — logl0(Q2[i]))=(logl0(Ql[i]) — logl0(Q2[i]));
}

optFilter = 0;

optMinSQR = minSQR;
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replaceError (Qopt, Q2);

for(i = 1; i < 200; i++)
{

filter33 (Z2, Zstarl, i);

filling (Zstarl, PHI1, Y);

direction (Zstarl, PHI1, Y);

drainageQ (Q2) ;

minSQR = 0;

for(j = 0; j <MsN; j++)

{

508 minSQR += (logl0(QL[jl+ 1) — logl0(Q2[j]l+1))*(logl0(QL[j]+1) — loglO(Q2[j]+1));

}

cout <<i <<" <<minSQR <<endl;

if (minSQR < optMinSQR)

{

optFilter = i;

optMinSQR = minSQR;

replaceError (Qopt, Q2);

}
}

518 cout << "optimum filter = "<< optFilter <<endl;

}

void functionSet::findMinMax(double *param, double *min, double *max)
{

int i,j;

«min = lel5;

*max = —lel5;

for(j = 0; j<N; j++)

for(i = 0; idM; i++)

if (param[j+M + i] > *max)
*max = param/[j*M + i];
else if (param[jM + i] < =min)

*min = param|[j+M + i];

void functionSet::normalize (double *X)
{
538 int i,j;
double ave = average (X);
for(j = 0; j<N; j++)
for(i = 0; idM; i++)
X[j*M + i] = X[j*M + i]/ave;

double functionSet::average (double #X)
{
int i,j;
548 double ave = 0;
for(j = 0; j<N; j++)
for(i = 0; idM; i++)
ave += X[jsM + i];
return (ave/double (M=N) ) ;
}

double functionSet::RMS(double *X, int size)
//https://brenocon.com/blog/2012/03/cosine—similarity —
/I pearson—correlation—and-ols—coefficients/
558 {
int i,j;
double aveX, RMS;
aveX = average (X);
RMS = 0;

for(j = 0; j<size; j++)

{
RMS += (X[j] — aveX)*(X[j] — aveX);
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568
return sqrt (RMS) ;
}

double functionSet:: meanSquareError(double =X, double =Y, int size)
//https://brenocon.com/blog/2012/03/
//cosine—similarity —pearson—correlation-and-ols—coefficients/
{
int i,j;
double RMS;
578 RMS = 0;

for(j = 0; j<size; j++)

{

RMS += (X[j] = Y[jD=(X[j] = Y[jD;
}

return sqrt (RMS/size);
}

588 double functionSet:: correlation (double *X, double =Y,
//https://brenocon.com/blog/2012/03/cosine—similarity
//—pearson—correlation—and-ols—coefficients/

{

int i,j;

int size)

double aveX, aveY, RMSx, RMSy, corr ;
aveX = average (X);
aveY = average (Y);
RMSx = RMS(X, size);
RMSy = RMS(Y, size);
598 corr = 0;
for(j = 0; j<size; j++)
{
corr += (X[j] — aveX)*(Y[j] — aveY);
}

return corr/(RMSx * RMSy) ;
}

608 void functionSet::L _down(double xdownL)
{
int i,j,newPlace;
for(j=1; j<N-1; j++)
for(i=1; i<dM-1; i++)
{
downL[j-M + i] = 0;
newPlace = drainTo[j+M + i];
while (newPlace != -1)
{
618
if (newPlace == j*M + i + 1 || newPlace == jsM + i — 1)
/1 the initial lenght of each single cell
downL[j+M + i] += dx;
else if (newPlace == (j — 1)*M + i || newPlace == (j — 1)sM + i)
downL[j+M + i] += dy;
else
downL[j*M + i] += sqrt(dx+dx + dy+dy);
cout<<jM + i<<" "<<newPlace<<endl;
newPlace = drainTo [newPlace];
628 }
}
cout<<drainTo [newPlace]<<endl;

}

Listing C.8 — ‘matrixOperation.cpp’: Basic matrix operations
#include "header.h"

int matrixOperations:: transpose (double #A, double #B, int row, int col)
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int i,j;
double temp;

temp = new double [row=col];

; i<row; i++)
9 for(j=0; j<col; j++)
{
temp[ixcol + j] = A[j*row + i];
}
for (i=0; i<row; i++)
for (j=0; j<col; j++)
{
Blixcol + j] = temp[ixcol + j];
}
delete [] temp;
19 return 0;

}

int matrixOperations:: multiple (double *A, double *B, double *C, int Ar, int Ac, int Br, int Bc)
{
int i,j,k;
/+ If colum of first matrix in not equal to row of second matrix, asking user to enter the size of matrix again. =/
while (Ac!=Br)
{
cout << "Error! column of first matrix not equal to row of second.";
29 return 1;

}

/+ Initializing elements of matrix mult to 0.x/
for (i=0; i<Ar; ++i)
for(j=0; j<Bc; ++j)
{
C[j*Ar + i] = 0;
}

39 /+ Multiplying matrix a and b and storing in array mult. =/
for (i=0; i<Ar; ++i)
for (j=0; j<Bc; ++j)
for (k=0; k<Ac; ++k)
{

Clj*Ar + i] += A[k=Ar + i]=B[j=*Br + kJ;
}
return 0;
}
49 /1] calculate the cofactor of element (row,col)
int matrixOperations :: getMinor (double **src, double +dest, int row, int col, int order)

{
/1 indicate which col and row is being copied to dest
int colCount=0,rowCount=0;
for(int i = 0; i < order; i++ )
{
if (i != row )
{
59 colCount = 0;
for(int j = 0; j < order; j++ )
{
/! when j is not the element
if ( j != col)
{
dest [rowCount] [colCount] = src[i][j];
colCount++;
}
}
69 rowCount++;
}
}
return 1;
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// Calculate the determinant recursively.
double matrixOperations :: calcDeterminant( double x*mat, int order)
{

/1 order must be >= 0

~
©

stop the recursion when matrix is a single element
if ( order == 1 )
return mat[0][0];

/1 the determinant value
double det = 0;

/I allocate the cofactor matrix
double #+minor;
89 minor = new double=[order—1];
for(int i=0;i<order—1;i++)
minor[i] = new double[order-1];

for(int i = 0; i < order; i++ )
{
/1 get minor of element (0,i)
getMinor ( mat, minor, 0, i , order);
// the recusion is here!
det += pow( —1.0, i ) * mat[0][i] * calcDeterminant( minor,order—1 );
99 }

/1 release memory

for(int i=0;i<order—1;i++)
delete [] minor[i];

delete [] minor;

return det;

109 // matrix inversioon

/1 the result is put in Y
void matrixOperations :: matrixInversion (double *A, int order, double *Y)
{
// memory allocation

double *templ = new double[order+order];

double **AA = new doublex*[order];

for(int i=0;i<order;i++)

AA[i] = templ+(ix*(order));

119 for(int j=0;j<order;j++)
for(int i=0;i<order;i++)
AA[i][j] = Al[j+order + il;

/1 get the determinant of a
//cout<<calcDeterminant (AA, order)<<endl;
double det = 1.0/calcDeterminant (AA, order) ;

/! memory allocation
double xtemp = new double [(order—1)+(order—1)];
129 double **minor = new doublex[order—1];
for(int i=0;i<order—1;i++)
minor[i] = temp+(i*(order—1));

for (int j=0;j<order;j++)

{

for(int i=0;i<order;i++)

{
/1 get the co—factor (matrix) of A(j,i)
getMinor (AA, minor, i, j , order) ;

139 Y[j+order + i] = detxcalcDeterminant(minor, order—1);
if ((i+j)%2 == 1)
Y([j+order + i] = —Y[j*order + il;
}
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/!l release memory
delete [] minor[0];

delete [] minor;

Listing C.9 — ‘K_means.cpp’: 1D and 2D K-means algorithm

-

#include "header.h"
void functionSet::Ktest(double *X, double *Y, double xcenter, int maxK,

string folderName, string fileName)

{
int i, j, k, myK, n, m;
int =group, =groupPop;
group = new int [MsN];
groupPop = new int [maxK];
double error, min, distance, aa;
double =bb;

11 bb = new double [maxK];
output2.close () ;
folderName += fileName;
remove (folderName. c_str ());
output2.open (folderName. c_str () ,ios ::app) ;
for (myK=2; myK<maxK; myK+=1)
{
error = 0;

Kmean(X, Y, center M:N, myK, folderName, "/test.txt");

31

);
for(k = 0; k < myK; k++)
21 {
groupPop [k] = 0;
}
for(j = 0; j<N; j++)
for(i = 0; idM; i++)
{
min = lel5;
for(k = 0; k < myK; k++)
{
//distance = sqrt( (X[j*M + i] — center [0+myK + k]) =(X[jM + i]
/1= center [0+myK + k]) + (Y[j*M + i] — center[1*myK + k])
/1*(Y[j*M + 1] — center[1+myK + k]) );
distance = sqrt( (X[j*M + i] — center [0*myK + k])
#*(X[j*M + i] — center[0+myK + k]) )/lel5;
if (distance < min)
{
group[j*M + i] = k;
min = distance;
}
41 }

for(k = 0; k < myK; k++)

{

if (group[j*M + i] == k)
groupPop [k]+=1;

}
//cout << group[j*M + i] << endl;

}

for(j = 0; j<N; j++4)

for(i = 0; idM; i++)

{

for(k = 0; k < myK; k++)

if (group[j*M + i] == k)

error += sqrt( (X[j*M + i] — center[0xmyK + k]) *(X[j*M + i] — center [0+myK + k]) );
/lerror += sqrt( (X[j*M + i] — center [0xmyK + k]) *(X[j-M + i] —

//center [0xmyK + k]) + (Y[j*M + i] — center[1*myK + k]) *(Y[j*M + i] — center[1+myK + k])

);
}

output2 << myK <<" "<< error/(MN) <<" "
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91

101

111

12

131

}

void functionSet::Kmean(double *XX, double =YY,

i

error = 0; //to save the summation of S’s
for(j = 0; j<N; j++)
for(i = 0; idM; i++)
{
a=0;
for(k = 0; k < myK; k++)
bb[k] = 0;

for(n = 0; n<N; n++) // the distance from each point is added to b[k]’s

for@m = 0; mdV; mi++)
{

//bb[group [n*M + m]] += sqrt( (X[j*M + i] — X[nsM + m]) *(X[j+M + i]
//— X[nM +m]) + (Y[jsM+ i] — Y[n:M + m]) =(Y[jM + i] — Y[n:M + m]) );

bb[group [nM + m]] += sqrt( (X[j*M + i] — X[n:M + m]) *(X[j*M + i] — X[nsM + m]) );

}
for(k = 0; k < myK; k++)
bb(k] /= groupPop[k];

aa = bb[group[jM + i]];

min = 1e20;
for(k = 0; k < myK && k != group[j=M + i]; k++)
if (bb[k] < min)
{
min = bb[k];
}

if (aa < min)
error += l— aa/min;
else if ( aa > min)

error += min/aa — 1;

output2 << myK <<" "<< error/(M=N) <<endl;
}
delete [] group;

delete [] bb;
delete [] groupPop;

nt myK, string folderName, string fileName)

double *center,

int NumPoint,

//Attention:the distance can be changed in X, Y or both directions, also be

/lcareful abou the calculation of variance (just variance of y value has been

{

int i,j;

double distance, =groupVar, =centerOLD, #X,*Y, min,max;
int xgroup, #groupPop,k;

group = new int [NumPoint];

X = new double [NumPoint];

Y = new double [NumPoint];

centerOLD = new double [2+*myK];

groupPop = new int [myK];

groupVar = new double [myK];

for(j = 0; j<NumPoint; j++)

{

X[j] = log(XX[j])/1og(10.0);//log(XX[j])/log(10.0);
Y(j] = log(YY[j])/log(10.0);//log(YY[j])/log(10.0);
}

min = lel5;

max = —lel5;

for(j = 0; j<NumPoint; j++)
{

if (X[j] > max)

max = X[j];

else if (X[j] < min)

min = X[j];

[+ for(j = 0; j<N; j++)
for(i = 0; idM; i++)
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{

if (Y[jM + i] <= le-15)
Y(jsM + i] = le-15;

if (X[j™M + i] <= le-15)
X[jsM + i] = le—15;

X[j*M + i] = log(X[jM + i])/log(10.0);
141 Y[j:M+ i] = log(Y[jM + i])/log(10.0);

cout << X[jM + i] << " "<<Y[j*M + i] << endl;

}x/

for (k=0; k<myK; k++)// initial group centers

{

center [0*xmyK + k] = min + (max-min) /myK«k; //uniform distribution along X
i = int((double)rand () / (double)RAND MAX*NumPoint) ;
center [1+myK + k] = Y[i];
}
double ok = 0;
151 while (ok < myK — 1)
{
ok = 0;
for(j = 0; j<NumPoint; j++)
{
min = lel5;
for(k = 0; k < myK; k++)
{
//distance = abs( (X[j*M + i] — center [0*myK + k]) *(X[j*M + i]
/1— center [0+myK + k]) + (Y[j*M + i] — center[1xmyK + k]) *(Y[j*M + i] — center[1+myK + k]) )/lel5;
161 distance = sqrt( (X[j] — center[0+myK + k]) *(X[j] — center[0+myK + k]) )/lel5;

if (distance < min)
{
group(j] = k;
min = distance;
}
}
//cout << group[j*M + i] << endl;
}
171 for(k = 0; k < myK; k++)
{
centerOLD [0*myK + k] = center [0+myK + k];
centerOLD [1*myK + k] = center [1*myK + k];
center [0myK + k] = 0;
center [1+myK + k] = 0;
groupPop (k] = 0;
for(j = 0; j<NumPoint; j++)
{
if (group[j] == k)
181 {
center [0xmyK + k] += X[j];
center [1xmyK + k] += Y[j];
groupPop [k]+=1;
}
}

if (groupPop [k] >= 1)
{
center [0*myK + k]/= double (groupPop(k]) ;
191 center [1+myK + k]/= double (groupPop [k]) ;
}
else
{
i = int((double)rand () / (double)RAND_MAXsMxN) ;
center [0myK + k] = X[i];
center [1+myK + k] = Y[i];
}

201 //cout << groupPop<<" "<<center [0+myK + k] <<" " << center [1*xmyK + k] << endl;

}

for(k = 0; k < myK; k++)
if (centerOLD[1xk] == center [0*myK + k] || centerOLD[2xk] == center[1+*myK + k])
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ok++;

cout << ok <<endl;

211 for(k = 0; k < myK; k++)

{

groupVar[k] = 0;

for(j = 0; j<NumPoint; j++)

{
if (group[j] == k)
groupVar (k] += (center[1+myK + k] — Y[j])*
(center [1*myK + k] — Y[j])/double(groupPop[k]) ;

}
221 }
prepareFile (folderName, fileName);

outputl << "Xmin" <<", " << "Ymin" <<", "<< "groupPop"<<", "<< "Variance'"<< endl;
for(int k = 0; k < myK; k++)

outputl << pow(10, center[0+myK + k]) <<", " <<pow(10.0, center [1+myK + k])

<<", " << groupPop[kl<< ", " << groupVar[k] << endl;

delete [] group;

delete [] groupPop;

delete [] centerOLD;

delete [] groupVar;
231}

Listing C.10 — ‘LANDserial.cpp’: Coupling the model with multi-objective Borg

optimization code

/+ Copyright 2012-2014 The Pennsylvania State University
+ This software was written by David Hadka and others.
*
= The use, modification and distribution of this software is governed by the
+ The Pennsylvania State University Research and Educational Use License.
* You should have received a copy of this license along with this program.
= If not, contact <dmh309@psu.edu>.
*/
10 #include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "borg.h"
#include "header.h"

int nvars = 4;
int nobjs = 2;

/1 All optimization problems must define a function similar to the one below.
20 // This function is responsible for reading the decision variables and

/1 evaluating the problem. The resulting objectives and constraints (if any)

/| are saved to the objs and consts arguments, respectively. Note that

/1 all objectives MUST be minimized. For constraints, set the constraint to

// 0 if the constraint is satisfied; any non-zero constraint value is

/| considered a constraint violation.

void IAND(double* vars, doublex objs, doublex consts) {

int i,j;

//cout <<" injal" <<endl;

double *X,*Y,*Z,*Q,*SLOPE, * dZstar , = Zstar , = PHI;
30 X = new double [M=N];

Y = new double [MsN];

Z = new double [M=N];

Q = new double [M=N];

SLOPE = new double [M«N];

dZstar = new double [M=N];

Zstar = new double [M=N];

PHI = new double [M«N];

functionSet MH;
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40 M = new functionSet [1];

MH[0].Dave = vars[0];
MH[0].Kave = vars[1];
MJ[0].m = 0.5;
MAH[0].n = 1.0;
MCH[0].OmegaAve = vars|[2];
MO[0].noiseAve = vars[3];
MAH[0].E = 0;

50 MAI[0].allocate (X,Y,Z,Q,dZstar, Zstar,PHI);
string addressOPT = "results.dat";
ofstream output;
objectives objFun;
output.open (addressOPT. c_str () ,ios ::app) ;

char path1[1024];
string path;
size_t size;
if (getcwd(pathl, sizeof(pathl)) != NULL)
60  path = pathl;
else
perror ("getcwd () error");

//cout<<"\n current Path"<<path;
//path = path.substr(0,path.size () -6); /1 take the "/model" part

string ZinitialTime = path+"/input/00hl5min_8mm.dat"; //the input file
string ZfinalTime = path+"/input/08h00min_8mm.dat"; //the input file
MA[0]. defineRain (path+"/input/Rain8mm. dat",1); ///0:uniform, 1:variable

MH[O0].varD = 0;

string filename[] = {path+"/input/00hl15min_8mm.dat", path+"/input/00h30min_8mm.dat",
path+"/input/01h00min_8mm. dat", path+"/input/02h00min_8mm. dat",
path+"/input/04h00min 8mm. dat", path+"/input/08h00min 8mm.dat",
path+"/input/16h00min_8mm.dat"};

MH[0]. temporalBCset (X, Y, Z,filename);// captures the BCs from the scans
//0bjs[0] = abs(vars[0] — 8000)=abs(vars[1] — 0.15)+abs(vars[2] — 50);

80 //objs[1l] = MH[O0].objectivel (X, Y, Z, Zstar, Q, SLOPE,PHI, dZstar, ZinitialTime ,ZfinalTime, filename
objFun = MCH[0]. multiObjective_Zerror_discharge (X, Y, Z, Zstar, Q, SLOPE,PHI,
dZstar, ZinitialTime ,ZfinalTime, filename );
objs[0] = objFun.a;
objs[1] = objFun.b;
/10objs[2] = objFun.c;

int nn;

for(nn = 0; nn < nvars; nn++)

cout << << vars[nn];

90 for(nn = 0; nn < nobjs; nn++)

cout << <<objs [nn];

cout << <<endl;

for(nn = 0; nn < nvars; nn++)

output << << vars[nn];

for(nn = 0; nn < nobjs; nn++)

output << <<objs[nn];
100
output << " "<<endl;
//MCH[0].unAllocate (X,Y,Z,Q,SLOPE, dZstar, Zstar ,PHI);
//cout <<" inja2" <<endl;
delete [] MH;
110 /=
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120

130

140

160

170

objs[0]
int nn;

(vars[0] — 3500)+(vars[0] — 3500);

for(nn = 0; nn < nvars; nn++)

cout <<" "<< vars[nn];
cout << " "<<objs[0]<<endl;
*/

}
int main(int argc, charx argv([]) {

remove("results.dat");
double min([3];

min[0] = 10000.0 ;//D,
min(1] = 0.25;//K,
min(2] = 10;//Omega
min[3] = 0;//rndCoef

double max[3];

max[0] = 21000+1e-6;//D
max[1] = 0.5+1e-6;//K,
max[2] = 100.0 +le-6;
max[3] = 600.0;//rndCoef

double epsilon [8];
epsilon[0] = 0.01;
epsilon[1] = 0.01;
epsilon[2] = 0.01;
epsilon[3] = 0.01;
epsilon[4] = 0.01;
epsilon[5] = 0.01;
epsilon[6] = 0.01;

int ii;

/|l Create the DTLZ2 problem, defining the number of decision variables,
/1 objectives and constraints. The last argument, dtlz2, references
// the function that evaluates the DTLZ2 problem.

BORG_Problem problem = BORG_Problem_create (nvars, nobjs, 0, IAND);

/1 Set the lower and upper bounds for each decision variable.

for (ii=0; ii<nvars; ii++) {
BORG_Problem_set_bounds (problem, ii, min[ii], max[ii]);

}

/1 Set the epsilon values used by the Borg MOFA. Epsilons define the
/] problem resolution, which controls how many Pareto optimal solutions
/1 are generated and how far apart they are spaced.

for (ii=0; ii<nobjs; ii++) {

BORG_Problem_set_epsilon (problem, ii, epsilon[ii]);

}

// Run the Borg MOFA on the DTLZ2 problem for 1 million function
/1 evaluations.
BORG_Archive result = BORG_Algorithm_run (problem, 200);

/1 Print the Pareto optimal solutions.
BORG_Archive_print(result, stdout);

!/ Free any allocated memory.
BORG_Archive_destroy(result) ;
BORG_Problem_destroy (problem) ;
return EXIT_SUCCESS;

}
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Selected Python scripts: Data analysis

and visualization

The files with a User’s Guide are available at:

https://github.com/mcheraghi/Landscape-Evolution-Model.git.

Listing D.1 — Exceedance probability of lenght

import matplotlib
import numpy as np

3 from numpy import sqrt, sin, cos, pi
from numpy import genfromtxt

import matplotlib.cm as cm
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt

import csv

from mpl_toolkits.axes_gridl import ImageGrid

from mpl_toolkits.axes_gridl.inset_locator import inset_axes
13 from numpy.random import uniform, seed

from mpl_toolkits.axes_gridl import make_axes_locatable

from matplotlib. colors import BoundaryNorm

from matplotlib. ticker import MaxNLocator

from mpl_toolkits.mplot3d import Axes3D

from matplotlib import cbook

from matplotlib. colors import LightSource

from math import logl0

matplotlib .rcParams|[ ’'axes.unicode_minus’] = False

import os
23 import matplotlib.gridspec as gridspec

from matplotlib import colors, ticker, cm

from matplotlib. colors import LogNorm

from sklearn.neighbors import KernelDensity

from scipy import signal

from scipy.fftpack import fft, ifft

import pylab as py

import scipy. fftpack

import timeit

33 #title_font = {’fontname ’:’Times’, ’size’:’10’, ’color ':’black’, ’weight’: normal’,
#’verticalalignment ’: "bottom '} # Bottom vertical alignment for more space
axis_font = {’fontname’:’'Times’, ’'size’:’12’
#M = 121 #exp8: 241(4mm), 121(8mm) exp
#N = 239 #exp8: 477(4mm), 239(8mm) exp

(8 nm) //244 (4 mm)
(8 mm)//464 (4 mm)

matplotlib .rcParams.update ({ 'font.size ":
M= 121 #241 #121
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N = 239 #477  #239

fileGroupl = [’'L_exp.csv’, ’L_model.csv’]
43
# Exceedance Probability function——m

def Exceedancel (q):
qlog = np.logl0(q)
minqg = min(qlog)
maxq = max(qlog)
dgbin = (3 - logl0(8))/100.0
#NOTE: we put 143 as the max to be consistent for all model data

53 qselect = [minq + dgbin+il for il in range(0,101)]
ExProbq = np.ones(101)

for k in range(0, 101):

for j in range(0, len(qlog)):
if qlog[j] >= qgselect[k]:
ExProbq[k] = ExProbq[k] + 1

qselect = [pow(10.0,nn) for nn in gselect]
return gselect,ExProbq/len(q)
63

Exceedance for the model

def Exceedance2(qselect,q):
qlog = np.logl0(q )

gselect = np.logl0(gselect )

ExProbq = np.ones(101)

for k in range(0, 101):
for j in range(0, len(qlog)):
73 if qlog[j] >= gselect[k]:
ExProbq[k] = ExProbq[k] + 1
return ExProbq/len(q)
# Exceedance probability of all experiments——

def Exceed_exp():

expl=np.empty((101,6))

error = 0

exp = genfromtxt('L_exp.csv’, delimiter=",")
for k in range(1l, 6):

expl[:,0],expl[:,k] = Exceedancel (exp[1:,k-1])

83
mat = np.matrix (expl)
with open(’Lexceed_exp.dat’, 'wb’) as f:
for line in mat:
np.savetxt(f, line,delimiter=",")

def rms() :

modell=np.empty((101,6))

expl = genfromtxt(’Lexceed_exp.dat’, delimiter=",")

#the first column is the selected q and the rest are the exceedance probabilities
93 model = genfromtxt(’'L_model.csv’, delimiter=",")

error = 0

for k in range(0, 5):

modell [:,k] = Exceedance2 (expl|[:,0],model[:,k])

error = error+np.sqrt (((modell [:,k] — expl[:,k+1]) ** 2.0).mean())

target = open('L_RMS.dat’, 'w’) #put the desitination address
target.write (str(10*+error))

Listing D.2 — Data analysis and visualization

import matplotlib

import numpy as np

import matplotlib.cm as cm
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
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from scipy.fftpack import fft, ifft
7 import pandas as pd
import scipy.stats as st
import statsmodels as sm
import csv
import math
import pylab as py
import scipy. fftpack
import warnings
import operator
from numpy import genfromtxt
17 from mpl_toolkits.axes_gridl import ImageGrid
from mpl_toolkits.axes_gridl.inset_locator import inset_axes
from numpy.random import uniform, seed
from mpl_toolkits.axes_gridl import make_axes_locatable
from matplotlib. colors import BoundaryNorm
from matplotlib. ticker import MaxNLocator
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cbook
from matplotlib. colors import LightSource
from math import logl0
27 matplotlib .rcParams|[ 'axes.unicode_minus’] = False
import os
import matplotlib.gridspec as gridspec
from matplotlib import colors, ticker, cm
from matplotlib. colors import LogNorm

#title_font = {’fontname’:’Times’, 'size’:’10’, 'color ’:’black’, ’'weight’: normal’,
#'verticalalignment ’: "bottom '} # Bottom vertical alignment for more space

plt.rcParams["font.family"] = ’serif’

axis_font = {’fontname’: 'Times’, ’'size’:’12’}

#M = 121 #exp8: 241(4nm), 121(8mm) exp 7:123 (8 mm)//244 (4 mm)
37 #N = 239 #exp8: 477(4mm), 239(8mm) exp 7:233 (8 mm)//464 (4 nm)

matplotlib . rcParams.update ({ 'font.size’: 12})

M = 121

N = 239

my_data=np.empty ((10 M«N+1,11))

my_datal=np.empty ((10 ,M:N+1,11))

my_data2=np.empty ((10 ,M:N+1,11))

my_data3=np.empty ((10 M:N+1,11))

inFile = os.path.dirname (os.path.realpath(__file__))
47 inFile= inFile

inFile = "".join(inFile.rsplit(’/script’))

outFile= inFile

outFile = "".join (outFile.rsplit(’/script’))
outFile = outFile +'/plots/chap4_’

f_er =7

fileName0 = [outFile+"/outputData/XYZ_EXP/XYZ00",
outFile+"/outputData/XYZ EXP/XYZ01",
outFile+"/outputData/XYZ_EXP/XYZ02",
outFile+"/outputData/XYZ EXP/XYZ03",
outFile+"/outputData/XYZ EXP/XYZ04",
outFile+"/outputData/XYZ_EXP/XYZ05",
outFile+"/outputData/XYZ EXP/XYZ06" ]

wn
N}

fileNamel = [outFile+"/outputData/XYZ_modell/XYZ00",
outFile+"/outputData/XYZ_modell/XYZ01",
outFile+"/outputData/XYZ_modell /XYZ02",
outFile+"/outputData/XYZ_modell/XYZ03" ,

67 outFile+"/outputData/XYZ_modell/XYZ04" ,
outFile+"/outputData/XYZ_modell /XYZ05",
outFile+"/outputData/XYZ_modell/XYZ06" ]

fileName2 = [outFile+"/outputData/XYZ_model2/XYZ00",
outFile+"/outputData/XYZ_model2/XYZ01",
outFile+"/outputData/XYZ_model2/XYZ02",
outFile+"/outputData/XYZ_model2/XYZ03" ,
outFile+"/outputData/XYZ_model2/XYZ04" ,
outFile+"/outputData/XYZ_model2/XYZ05",
outFile+"/outputData/XYZ_model2/XYZ06" ]
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77

87 my_datal[1,:,

117

127

N

147

Appendix D. Selected Python scripts: Data analysis and visualization

my_dat:
my_dat:
my_dat
my_dat:
my_dat:
my_dat:
my_dat:

my_dat:

my_dat:
my_dat:
my_dat:
my_dat:
my_dat:

def Exceedance(q):

alo,:
all,:
af2,:,:
all8h ks

al5,:,:
a[6,:,:

al[0,:,:

al[2,:,:]
al[3,:,:]
al[4,:,:]
1
1

al[5,:,:
al[6,:,:

genfromtxt(inFile+’/data/model/smooth/RUNS/optimum/uniformD/ results /DATA00. .
genfromtxt (inFile+'/data/model/smooth/RUNS/optimum/uniformD/results /DATAOL..
genfromtxt (inFile+’/data/model/smooth/RUNS/optimum/uniformD/results /DATA02. .
genfromtxt (inFile+’/data/model/smooth/RUNS/optimum/uniformD/results /DATA03. .
genfromtxt (inFile+'/data/model/smooth/RUNS/optimum/uniformD/results /DATA04. .
genfromtxt (inFile+’/data/model/smooth/RUNS/optimum/uniformD/results /DATA05. .
genfromtxt (inFile+’/data/model/smooth/RUNS/optimum/uniformD/ results /DATA06. .

qlog = np.logl0(q + 1)
minq = min(qlog)

maxq = max(qlog)

dgbin

gsele

= (max(glog) — min(qlog))/100.0

ct = [ming + dgbin«il for il in range(0,101)]

ExProbq = np.ones(101)

for k in range(0, 101):
for j in range(0, len(qlog)):

if qlogl[j] >= gselect[k]:
ExProbq (k] = ExProbq[k] + 1

gsele

ct = [pow(10.0,nn) for nn in gselect]

return qselect,ExProbq/len(q)

def linearPartFit (qselect,ExProbq, Min, Max) :

for k in range(0, len(gselect)):

if gselect[k] > Min:
iMin = k

bre

ak

for k in range(0, len(gselect)):

if qselect[k] > Max:
iMax = k

bre

ak

q = [np.logl0(il) for il in gselect]
ExPr = [np.logl0(il) for il in ExProbq]
m, n = np.polyfit(q[iMin:iMax], ExPr[iMin:iMax], 1)

return m, n

y

calculating the avsegae fft magnitude ————————— —

def processing(my_data,i,fileName,axl,ax2, color,legText, markerType, markevery) :

N < X N < XN < X
1l

w_l =

196

= X.transpose ()
= Y.transpose ()
= Z.transpose ()
= V4

= Z7Zp — 0.05+Y

my_data[i,1:,0]
my_data[i,1:,1]
abs(my_data[i,1:,2])
np.reshape (x, (M\N))
np.reshape (y, (M,N))
np.reshape(z, (M,N))

np . hamming (M)
w_2 = np.hamming(N)
W1,W2 = np.meshgrid (w_1,w_2)
W = WI=W2

] = genfromtxt(inFile+'/data/experiment/statistical_Analysis/original/results/DATA00..

genfromtxt (inFile+’/data/experiment/statistical_Analysis/original/results/DATAOIL..
= genfromtxt(inFile+’/data/experiment/statistical_Analysis/original/results/DATA02..
= genfromtxt(inFile+’/data/experiment/statistical_Analysis/original/results/DATA03..

1
1

a[4,:,:] = genfromtxt(inFile+'/data/experiment/statistical_Analysis/original/results/DATA04..
] = genfromtxt(inFile+’/data/experiment/statistical_Analysis/original/results/DATA05..
1

= genfromtxt(inFile+’/data/experiment/statistical_Analysis/original/results/DATA06..

csv’,
csv’,
csv’,
csv’,

csv’,

csv’, delimiter=",
csv’', delimiter=",
csv’, delimiter=",
csv’, delimiter=",
csv’', delimiter=",
csv’, delimiter=",
csv’, delimiter=",
delimiter=","
delimiter=","
delimiter=","

delimiter=",
delimiter=",
delimiter=",

)
)
)
delimiter=",")
)
)
)
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~
N}

207

217

fft = scipy.fftpack. fft2 (Zp)

fftshift = scipy.fftpack. fftshift (fft)
S1 = abs(fftshift)«x2

S1 = np.logl0(S1)

Freq = range(-M/2 M/2)

FreqX = [k/float(0.008+M) for k in Freq]

Freq = range(-N/2,N/2)

FreqY = [k/float(0.008+N) for k in Freq]

xf, yf = np.meshgrid (FregX, FreqY)

r = xf

for k in range(0,M):

for j in range(0,N):
r(j,k] = FreqX[k]+*FreqX[k] + FreqY[j]+FreqY[j]
r(j,kl = np.sqre(r(j,k])

S1.1 = S1

r 1l =r

YS = np.reshape(S1_1, (M=N,1))
XR = np.reshape(r_1,(MN,1))

index = []

for count in range (0 ,MsN) :
if XR[count] < le—6:
if XR[count] == 0:
fO0 = YS[count]
index.append (count)
print XR[count]
XR = np.delete (XR, index)
YS = np.delete (YS, index)
YS =YS
print XR.min()
XR = np.logl0 (XR)

nBIN =15

n, _ = np.histogram (XR, bins=nBIN)

sy, _ = np.histogram (XR, bins=nBIN, weights=YS)
sy2, _ = np.histogram (XR, bins=nBIN, weights=YS*YS)

mean = sy / n
std = np.sqrt(sy2/n — mean+mean)

print std

mean = 10#*(mean)

std = 10x*(std)

std = (std+std+*mean —mean) /(1+std*std)
fmean = 10=x((_[1:] + _[:=1])/2)

axl.set_xscale("log", nonposx="clip’)
axl.set_yscale("log", nonposy="clip )
if legText == ’Experiment’:
axl.errorbar (fmean, mean, yerr=std, fmt=color,label=legText)
else:
axl.plot (fmean, mean, marker = markerType, markevery=markevery[i],
markeredgewidth= "0’ ,color = color,label=legText,lw=0.5)
axl.set_xlim ([0.5, le2])
axl.set_ylim ([10, lel2])
axl.yaxis.set_ticks ([10,1e4,1e8,1el12])
axl.spines[’'right'].set_visible (False)
axl.spines[’'top’].set_visible (False)
axl.yaxis.set_ticks_position (’'left”)
axl.xaxis.set_ticks_position ('bottom”)
axl.get_yaxis () . set_tick_params (which="minor’, size=0)
axl.get_yaxis () . set_tick_params (which="minor’, width=0)

i il =

legend = axl.legend (loc="upper right’, prop={’size’:8})
legend. get_frame () . set_linewidth (0.0)
axl.axes.get_xaxis () .set_ticks ([])

plt.ylabel (r'PSD ($\mathregular{m?{4}}$)’,fontsize=12)
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i =
axl.axes.get_xaxis () .set_ticks ([])
axl.axes.get_yaxis () .set_ticks ([])
elif i == 3:
axl.axes.get_xaxis () .set_ticks ([])
plt.ylabel (r 'PSD ($\mathregular{m”{4}}$)’,fontsize=12)
elif i == 4:
axl.axes.get_xaxis () .set_ticks ([])
227  axl.axes.get_yaxis () .set_ticks ([])
clii 1 == &8
plt.ylabel (r'PSD ($\mathregular{m~{4}}$)’,fontsize=12)
plt.xlabel (r 'Wave number$\,$($\mathregular {mr{-1}}$) ', fontsize=12)
elif i ==
plt.xlabel (r 'Wave number$\,$($\mathregular {mr{-1}}$) ', fontsize=12)
axl.axes.get_yaxis () .set_ticks ([])
r[119,60] =0
for k in range(0,M):
for j in range(0,N):
237 if r(j,kl> f_cr:
fftshift[j,k] = 0

S2 = abs(fftshift)=x2
f_ishift = np. fft.ifftshift (fftshift) #inverse shift
img_back = np. fft.ifft2 (f_ishift) #inverse fourier transform
img_back = np.abs (img_back)
img_back = img back + 0.05+Y
target = open(’test.dat’, 'w’)
247 for j in range(0,N):
for k in range(0,M):
target.write (str (X[j,k]))
target.write(’ ')
target.write (str (Y[j,k]))
target.write (' ')
target.write (str (abs (img_back[j,k])))
target.write ("\n")
return

def processing_Phase (my_data,i,fileName,axl,ax2, color,legText, markerType, markevery) :
#calculating the avsegae fft magnitude

my_data[i,1:,0]

= my_data[i,1:,1]
abs(my_data[i,1:,2])
np.reshape (x, (M,N))
np.reshape (y, (M,\N))
np.reshape (z, (M\N))
= X.transpose ()

267

= Y.transpose ()

N < X N < X N < %
[

= Z.transpose ()
=%

7p = 7Zp — 0.05:Y
w_1l = np.hamming (M)

S

w_2 = np.hamming(N)
WILW2 = np.meshgrid (w_1,w_2)
W = WI-W2

277 fft = scipy.fftpack. fft2 (Zp)
fftshift = scipy.fftpack. fftshift (fft)
S1 = np.angle (fftshift)
Freq = range(-M/2 M/2)
FregX = [k/float(0.008+M) for k in Freq]
Freq = range(-N/2,N/2)
FreqY = [k/float (0.008+N) for k in Freq]
xf, yf = np.meshgrid(FregX, FreqY)
r = xf
for k in range(0,M):
287 for j in range(O,N):
r[j,k] = FreqX[k]«FreqX[k] + FreqY[j]+FreqY[;j]
r(j,k] = np.sqrt(r[j,k])
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29

30

w

3

337

34

7

7

7

7

N

S1_1 = S1

r_l=r

YS = np.reshape(S1_1, (M=N,1))
XR = np.reshape(r_1,(M=N,1))

index = []

for count in range (0 ,M=N) :
if XR[count] < le—6:
if XR[count] == 0:
f0 = YS[count]
index.append (count)
print XR[count]
XR = np.delete (XR, index)
YS = np.delete (YS, index)
YS =YS
print XR.min ()
XR = np.logl0 (XR)

nBIN =15

n, _ = np.histogram (XR, bins=nBIN)

sy, _ = np.histogram (XR, bins=nBIN, weights=YS)
sy2, _ = np.histogram (XR, bins=nBIN, weights=YS*YS)

mean = sy / n
std = np.sqrt(sy2/n — meanmean)
fmean = 10=x((_[1:] + _[:=1])/2)
axl.set_xscale("log", nonposx="clip ")
if legText == ’'Experiment’:
axl.errorbar (fmean, mean, yerr=std, fmt=color,label=legText)
else:
axl.plot(fmean, mean, marker = markerType, markevery=markevery[i],
markeredgewidth= '0’,color = color,label=legText,lw=0.5)
axl.set_xlim ([0.5, le2])
axl.set_ylim ([-math.pi, math.pi])
axl.yaxis.set_ticks ([-math.pi,0,math.pi])
axl.spines[’'right'].set_visible (False)
axl.spines('top’].set_visible (False)
axl.yaxis.set_ticks_position('left’)
axl.xaxis.set_ticks_position ('bottom”)
axl.get_yaxis () .set_tick_params (which="minor’, size=0)
axl.get_yaxis () .set_tick_params (which="minor’, width=0)

if i == 1:

legend = axl.legend(loc="upper right', prop={’size’:8})

legend. get_frame () . set_linewidth (0.0)

ax1.axes.get_xaxis () .set_ticks ([])

plt.ylabel (r 'PSD ($\mathregular{m”{4}}$)’,fontsize=12)
i il =

ax1.axes.get_xaxis () .set_ticks ([])

axl.axes.get_yaxis () .set_ticks ([])
elifi i = &8

axl.axes.get_xaxis () .set_ticks ([])

plt.ylabel (r'PSD ($\mathregular{mA{4}}$)’,fontsize=12)
elif i == 4:

axl.axes.get_xaxis () .set_ticks ([])

axl.axes.get_yaxis () .set_ticks ([])
elifi i = &g

plt.ylabel (r'PSD ($\mathregular{m”{4}}$)’,fontsize=12)
plt.xlabel (r 'Wave number$\,$ ($\mathregular {mr {—1}}$) ', fontsize=12)
elif i ==

plt.xlabel (r 'Wave number$\,$ ($\mathregular fmr {-1}}$) ', fontsize=12)
ax

=

.axes. get_yaxis () .set_ticks ([])

#np. savetxt (fileName+'.dat’,my_data[1,1:,0:3], delimiter=" ")
return

Model Z
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def z_model_exp (my_data, my_datal):

title = [r"0.25 h",r"0.5 h", r"1 h", r"2 h", r"4 h", r"8 h", r"16 h"]
f3 = plt.figure (figsize= (12, 6))
for i in range(l, 7):
x = my_data[i,1:,0]/1000.0
367 'y = my_data[i,1:,1]/1000.0
z = abs(my_data[i,1:,2])

X = np.reshape(x, (M\N))
Y = np.reshape(y, (M\N))
7 = np.reshape(z, (MN))

levels = np.arange(0,170,5)
X = X.transpose ()
Y = Y.transpose ()

377 Z = Z.transpose ()

extent = (min(x), max(x),min(y), max(y))

levels = np.arange(0,180,10)
axl =plt.subplot(2,6,i,aspect="equal’)
ax1.tick_params (axis="both’, which="major’, labelsize=8)
CS1 = axl.contourf(X,Y,Z, levels, vmax=180, vmin=0, cmap="rainbow’)
axl.axis ([x.min(), x.max(), y.min(), y.max()])
387  plt. title (title [i])
if i ==1:
axl.axes.get_xaxis () .set_ticks ([])
plt.ylabel ("$y$ (m)")
axl.text(—1.1, 1.0, 'Experiment’,horizontalalignment="center’,
verticalalignment="center’, rotation = 90, fontsize=12)
if i ==2:
axl.axes.get_xaxis () .set_ticks ([])
axl.axes.get_yaxis () .set_ticks ([])
if i ==3:
397 axl.axes.get_xaxis () .set_ticks ([])
axl.axes.get_yaxis () .set_ticks ([])
if i ==4:
axl.axes.get_xaxis () .set_ticks ([])
axl.axes.get_yaxis () .set_ticks ([])
if i ==5:
axl.axes.get_xaxis () .set_ticks ([])
axl.axes.get_yaxis () .set_ticks ([])
if i ==6:
axl.axes.get_xaxis () .set_ticks ([])
407 axl.axes.get_yaxis () .set_ticks ([])
f3.subplots_adjust (right=0.85)
cbar_ax = f3.add_axes([0.86, 0.55, 0.01, 0.3])
cbarl = plt.colorbar(CS1,cbar_ax ,ticks=np.arange(0,180,20),extend="neither’,
spacing=0.0002, orientation="vertical’)
cbarl.set_label ("$z$ (mm)")
for i in range(l, 7):
x = my_datal[i,1:,0]/1000.0
my_datal[i,1:,1]/1000.0
abs (my_datal[i,1:,2])
np.reshape (x, (M\N))
np.reshape (y, (M,N))
np.reshape (z, (MN))
= X.transpose ()

417

= Y.transpose ()

N < X N < X N <
I

= Z.transpose ()

extent = (min(x), max(x),min(y), max(y))
levels = np.arange(0,180,10)
ax2 =plt.subplot(2,6,i+6,aspect="equal’)
427  ax2.tick_params (axis=’both’, which="major’, labelsize=8)
CS2 = ax2.contourf(X,Y,Z, levels, vmax=180, vmin=0,cmap="rainbow ")
ax2.axis ([x.min() , x.max(), y.min(), y.max()])
if i ==1:
plt.xlabel ("$x$ (m)")
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437

447

plt.ylabel ("$y$ (m)")

ax2.text(—1.1, 1.0, 'Model’, horizontalalignment="center’,
verticalalignment="center’, rotation = 90, fontsize=12)

if i

plt.xlabel ("$x$ @m)")

axl.

if i

plt.
axl.

xlabel ("$x$ (m)")
axes.get_yaxis () .set_ticks ([])

.xlabel ("$x$ (m)")
.axes.get_yaxis () .set_ticks ([])

.xlabel ("$x$ (m)")
.axes.get_yaxis () .set_ticks ([])

.xlabel ("$x$ (m)")
.axes.get_yaxis () .set_ticks ([])

axes.get_yaxis () .set_ticks ([])

f3.savefig (outFile+’Zmodelexp '+’ .png’,papertype

def contour_PSD_model () :

457

467

487

title

_lc\lN><><N»<><N‘<
n

fft
ffts

= [r"0.25 h",r"0.5 h",
f2 = plt.figure (figsize= (10, 4))
Freq = range(-M/2+1M/2+1)

FregX = [k/float(0.008:M) for k in Freq]
Freq = range(-N/2+1,N/2+1)
FreqY = [k/float(0.008+N) for k in Freq]

for i in range(1, 7):

my_data[i,1:,0]

my_data[i,1:,1]
abs (my_data[i,1:,2])
np.reshape (x, (M,N))

np.reshape (y, (M,N))
np.reshape(z, (MN))
X. transpose ()

Y. transpose ()

Z.transpose ()

=7

= scipy. fftpack. fft2 (Zp)

hift

scipy. fftpack. fftshift (fft)

S1 = abs(fftshift)s+2+1
= np.logl0(S1)
xf, yf = np.meshgrid (FregX, FreqY)

#S1

{2k

ax
axl.

CS =plt.pcolor (xf, yf, S1, norm=LogNorm(vmin = 1, vmax=1e7))

=plt.subplot(2,6,i,aspect="equal ")
tick_params (axis="both’, which="major’, labelsize=8)

plt.title (title[i])

if i
ax1

plt
ax

oA

if i

axl.axes.

if i

axl.
ax1.

if i

==llg

.axes.get_xaxis () .set_ticks ([])

.ylabel (r"$w_{y}\,$($\mathregular fm{—1}}$)")
o i (=150, @,

verticalalignment="center’,color

==2:

.axes.

. axes

.axes.

axes

axes

.axes.

get_xaxis () .
get_yaxis () .

.get_xaxis () .

get_yaxis () .

.get_xaxis () .
.get_yaxis () .

get_xaxis ()

"Experiment’ ,horizontalalignment="center’,

set_ticks ([])
set_ticks ([])

set_ticks ([])
set_ticks ([])

set_ticks ([])
set_ticks ([])

.set_ticks ([])

’a4’, bbox_inches="tight’, dpi
PSD contours models

r"l1 h", r"2 h", r"4 h", r"8 h",

fontsize=12,rotation=90)
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=

axl.axes.get_yaxis () .set_ticks ([])

if i ==6:
ax

=

.axes.get_xaxis () .set_ticks ([])

=

507 axl.axes.get_yaxis () .set_ticks ([])

f2 .subplots_adjust(right=0.92)

plt.axis ([xf.min() , xf.max(), yf.min(), yf.max()])

cbar_ax = f2.add_axes([0.93, 0.2, 0.02, 0.5])

cbarl = plt.colorbar(CS, cbar_ax, extend="neither’, spacing=0.0002,
orientation="vertical ", ticks=[1, 10, 100,1e3,1e4,1e5,1e6,1e7])
cbarl.set_label ("PSD$\,$ ($\mathregular fmm/ {4}}$)")

cbarl.ax. minorticks_off ()

517 ## model:

for i in range(l, 7):
my_datal[i,1:,0]
my_datal [i,1:,1]
abs (my_datal[i,1:,2])
np.reshape (x, (M,\N))

X

np.reshape (y, (M,N))
np.reshape (z, (MN))

X. transpose ()

Y. transpose ()

N < XN < XN<
I

= Z.transpose ()

Zp = Z

fft = scipy.fftpack. fft2 (Zp)

fftshift = scipy.fftpack. fftshift (fft)

S1 = abs(fftshift)*+2 + 1

#S1 = np.logl0(S1)

xf, yf = np.meshgrid (FregX, FreqY)

axl =plt.subplot(2,6,i+6,aspect="equal’)

ax1.tick_params (axis="both’, which="major’, labelsize=8)
#plt.title (title [i])

CS =plt.pcolor(xf, yf, S1, norm=LogNorm(vmin = 1, vmax=1e7))

o
@
N

plt.axis ([xf.min() , xf.max(), yf.min(), yf.max()])

if i ==1:

plt.xlabel (r"$w_{x}\,$($\mathregular A {-1}}$)")

plt.ylabel (r"$w_{y}\,$($\mathregular fmm {-1}}$)")

axl.text(—150, 0, 'Model’, horizontalalignment="center’,
verticalalignment="center’,color = 'r’, fontsize=12,rotation=90)
if i ==2:

plt.xlabel (r"$w_{x}\,$($\mathregular fmm {-1}}$)")
axl.axes.get_yaxis () .set_ticks ([])

53
b
=

i i ==k
plt.xlabel (r"$w_{x}\,$($\mathregular fmm{-1}}$)")
axl.axes.get_yaxis () .set_ticks ([])

if i ==4:
plt.xlabel (r"$w_{x}\,$($\mathregular A {-1}}$)")
ax1.axes.get_yaxis () .set_ticks ([])
if i ==5:
plt.xlabel (r"$w_{x}\,$($\mathregular fm {-1}}$)")
.axes.get_yaxis () .set_ticks ([])
if i ==6:
plt.xlabel (r"$w_{x}\,$($\mathregular fm {-1}}$)")
axl.axes.get_yaxis () .set_ticks ([])

5
51
N
)
¥
=

f2 . savefig (outFile+’SpectralContours_Model _Exp'+’.png’, bbox_inches="tight’, dpi = 500)

i PSD avergae in each bin
def ave_PSD() :
left, width = le—5, 1e2
bottom, height = lel, lel2
567 right = left + width
top = bottom + height

legText = ["Experiment", "Model"]
color = ['k’,’g’,’b’]
markerType = ['0’,’0’, 'v', 'A’, '<’, '>7, s8]

title = ["(a) 0.25$\,$h", "(b) 0.5$\,$h", "(c) 1$\,$h", "(d) 2$\,$h", "(e) 4$\,$h", "(f) 8%\,$h", "(g) 16$\,$h"]
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markevery = [1,1,1,1,1,1,1]
fl = plt.figure (figsize= (8, 7))
ax2 = 1

for i in range(1,7):
ax1l =plt.subplot(3,2,i,aspect=0.11)
axl.text(le—1+right, 0.95«top, title[i],horizontalalignment="right’, verticalalignment="top’,fontsize=12)
axl.tick_params (axis="both’, which="major’, labelsize=10)
processing (my_data, i, fileNameO[i],ax1,ax2, color[0], legText[0],markerType[l],markevery)
processing (my_datal,i,fileNamel[i],axl,ax2,color[1], legText[1],markerType[2], markevery)
fl.savefig (outFile+ E_K’+’.png’,papertype = 'a4’, bbox_inches="tight’, dpi = 500)

587 # Model Q

607

617

627

637

def discharge_model_exp (my_data, my_datal) :

#print (my_data)

title = ["(a) 0.25$\,$h", "(b) 0.5%\,$h", "(c) 1$\,$h", "(d) 2$\,$h", "(e) 4$\,$h", "(f) 8%\,$h", "(g) 16$\,$h"]
f2 = plt.figure (figsize= (10, 5))

for i in range(l, 7):

X = my_data[i,1:,0]/1000.0

y = my_data[i,1:,1]/1000.0

= my_data[i,1:,5]

= np.reshape(x,(MN))

np.reshape (y, (M\N))
np.reshape(q, (M,N))
= X.transpose ()

<X O KXo
n

= Y.transpose ()
Q = Q.transpose ()
Q=Q+1
extent = (min(x), max(x),min(y), max(y))
ax1l =plt.subplot(2,6,i,aspect="equal ")
axl.tick_params (axis='both’, which="major’, labelsize=8)
plt. title (title[i])
levels = np.arange(l, 8, 0.1)
cmap = plt.get_cmap (’'rainbow’)#rainbow coolwarm Blues
norm = BoundaryNorm(levels, ncolors=cmap.N, clip=False)
CS1 =plt.pcolor (X, Y, Q, norm=LogNorm(vmin = 10, vmax=Q.max()), cmap='rainbow ")
axl.axis ([x.min(), x.max(), y.min(), y.max()])
if i ==1:
axl.axes.get_xaxis () .set_ticks ([])
plt.ylabel ("$y$ (m)")
axl.text(-1.2, 1.0, 'Experiment’, horizontalalignment='center’, verticalalignment="center’, rotation = 90, fontsize=12)
if i ==2:
axl.axes.get_xaxis () .set_ticks ([])
axl.axes.get_yaxis () .set_ticks ([])
if i ==3:
axl.axes.get_xaxis () .set_ticks ([])
axl.axes.get_yaxis () .set_ticks ([])
if i ==4:
axl.axes.get_xaxis () .set_ticks ([])
axl.axes.get_yaxis () .set_ticks ([])
if i ==5:
axl.axes.get_xaxis () .set_ticks ([])
axl.axes.get_yaxis () .set_ticks ([])
if i ==6:
axl.axes.get_xaxis () .set_ticks ([])
axl.axes.get_yaxis () .set_ticks ([])
f2 . subplots_adjust (right=0.85)

cbar_ax = f2.add_axes([0.86, 0.55, 0.01, 0.3])

cbarl = plt.colorbar(CSI, cbar_ax, extend="neither’, spacing=0.0002,
orientation="vertical ’, ticks=[1, 10, 100,1e3,1e4,1e5,1e6,1e7,1e8])
cbarl.set_label ("$Q\,$($\mathregular {mm" {3}\ ,hA{-1}}$)")
for i in range(l, 7):

my_datal [i,1:,0]/1000.0

my_datal [i,1:,1]/1000.0

my_datal[i,1:,5]
np.reshape (x, (M,N))
np.reshape (y, (M,N))

I =T
1]
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Q
X =
Y

Q=

exte

=)
I

np.reshape (q, (M,N))
X. transpose ()

Y. transpose ()

Q. transpose ()

Q+1

nt = (min(x), max(x) ,min(y), max(y))

axl =plt.subplot(2,6,i+6,aspect="equal’)

axl.tick_params (axis='both’, which="major’, labelsize=8)

levels = np.arange(1, 8, 0.1)

cmap = plt.get_cmap(’'rainbow’)#rainbow coolwarm Blues

norm = BoundaryNorm(levels, ncolors=cmap.N, clip=False)

CS1 =plt.pcolor(X, Y, Q, norm=LogNorm(vmin = 10, vmax=Q.max()), cmap='rainbow’)

axl.axis ([x.min() , x.max(), y.min(), y.max()])

if i
plt
plt
ax1

==1:
.xlabel ("$x$ (m)")
.ylabel ("$y$ m)")

.text(-1.2, 1.0, 'Model’,horizontalalignment="center’,

verticalalignment="center’, rotation =

plt.

if i
pl
ax

2 =

plt.

if i

if i

plt.

=

ax

pl

=

xticks ([-0.4,0,0.4])
==2:

.xlabel ("$x$ (m)")
.axes.get_yaxis () .set
xticks ([-0.4,0,0.4])

.xlabel ("$x$ (m)")
.axes.get_yaxis () .set
.xticks ([-0.4,0,0.4])
.xlabel ("$x$ (m)")
.axes.get_yaxis () . set
.xticks ([-0.4,0,0.4])
.xlabel ("$x$ (m)")
.axes.get_yaxis () . set
.xticks ([-0.4,0,0.4])
xlabel ("$x$ (m)")
.axes.get_yaxis () .set
.xticks ([-0.4,0,0.4])

_ticks ([1)

_ticks ([1)

_ticks ([])

_ticks ([1)

_ticks ([1)

90, fontsize=12)

f2 . savefig (outFile+’Qmodellexp’+’ .png’,papertype = 'a4’, bbox_inches="tight’, dpi =

def exceedance_Q (my_data, my_datal, my_data2) :

title

= ["(a) 0.25$\,$h",

"(b) 0.5$\,$h",

f8 = plt.figure(figsize= (6, 6))

for i
ax1
q =

in range(1, 7):
=plt.subplot(3,2,i)
my_data[i,1:,5]

gselect ,ExProbq = Exceedance(q)

"(c)

Exceedance Probability of Discharge

1$\,$h",

"(d) 2$\,$h",

"(e) 4$\,$h",

axl.loglog(qselect,ExProbq,linewidth=1.5, color="black’,label="Experiment’)

left

, width = 1e0, 1e9

bottom, height = le-5, 5e0+le-5

righ
top
q=

t = left + width
= bottom + height
my_datal [i,1:,5]

gselect ,ExProbq = Exceedance(q)
markers_on = [20, 40, 60,
axl.loglog(gselect ,ExProbq, linestyle="—", color="red’,marker="0", linewidth=1.5,
markevery=10, markeredgewidth=0, label="Exp. (filtered)’)

markers_on = [25, 45, 65,

q =

my_data2[i,1:,5]

80]

85]

gselect ,ExProbq = Exceedance(q)

axl.loglog(gselect,ExProbq, linestyle="—", marker="v’',color="green’,linewidth=1.5,
markevery=15, markeredgewidth=0,label="Model ")

axl.

set_ylim ([1e-5, 2e0])

start, end = axl.get_ylim ()
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"(f) 8%\,$h",

"(g) 16%\,$h"]
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axl.yaxis.set_ticks ([le-4, le-2, 1le0])

)
»®
=

.text (0.95+right, 0.95«top, title[i],horizontalalignment="right’, verticalalignment="top’,fontsize=12)
axl.spines[’'right'].set_visible (False)

axl.spines[’top’'].set_visible (False)

axl.yaxis.set_ticks_position (’'left”)

axl.xaxis.set_ticks_position ('bottom ")

i il = 1z

plt.ylabel ("P$\,$($Q$>$q$) ", fontsize=12)

legend = axl.legend(loc="lower left’, prop={’size’:8})
legend. get_frame () . set_linewidth (0.0)
axl.axes.get_xaxis () .set_ticks ([])
if i ==

axl.axes.get_xaxis () .set_ticks ([])

jah

axl.axes.get_yaxis () .set_ticks ([])
i il = &
plt.ylabel ("P$\,$($Q$>$q$) ", fontsize=12)

ax

jah

.axes. get_xaxis () .set_ticks ([])
if i ==
axl.axes.get_xaxis () .set_ticks ([])

axl.axes.get_yaxis () .set_ticks ([])
i il = &g
plt.ylabel ("P$\,$($Q$>$q$) ", fontsize=12)

plt.xlabel ("$q\,$($\mathregular fmm" {3}\ ,hA{-1}}$)", fontsize=12)
ax1.xaxis.set_ticks ([1e0, 1le2, le4, le6, le8])

if i ==
plt.xlabel ("$q\,$($\mathregular fmm" {3}\ ,hA{-1}}$)",fontsize=12)
axl.axes.get_yaxis () .set_ticks ([])
axl.xaxis.set_ticks([1e0, 1le2, le4, le6, le8])

axl.set_xlim ([1e0, 1e9])

start, end = axl.get_xlim ()

f8 . savefig (outFile+ PDF_QmodelExp '+’ .png’,papertype = 'a4’, bbox_inches="tight’, dpi = 500)

# Hack’s low

def Hacks() :
title = ["(a) 0.25$%\,$h", "(b) 0.5$\,$h", "(c) 1$\,$h", "(d) 2$\,$h", "(e) 4$\,$h", "(f) 8$\,$h", "(g) 16$\,$h"]

titlesize=14

axistitle = 12

ticksize = 10

left, width = 20, 2x1e6
bottom, height = 5, le4

right = left + width

top = bottom + height

f1 = plt.figure (figsize= (6,6))
for i in range(l, 7):

x = my_data[i,1:,6]

y = my_data[i,1:,7]

xlog = np.logl0(x)

ylog = np.logl0(y)

axl =plt.subplot(3,2,i)
axl.text (0.4xright, 0.95+top, title[i],horizontalalignment="right’, verticalalignment="top’,fontsize=12)

axl.tick_params (axis='both’, which="major’, labelsize=ticksize)

nBIN =20
n, _ = np.histogram(xlog, bins=nBIN)
sy, _ = np.histogram (xlog, bins=nBIN, weights=ylog)

meanl = sy / n

xmeanlog = (_[1:] + _[:=1])/2

xmean = 10=xxmeanlog

axl.scatter (xmean,10x*meanl, marker = 's’,color="k’,facecolors="none’,label="Experiment’)
a = [0,0,0,0]

x1 = np.linspace (np.min(xmeanlog) , np.max(xmeanlog), 6)
a[0], b = linearPartFit (xmean,10+*meanl,200,1e4)

yl = b+a[0]*x1

axl.plot(10#xx1,10#+yl, color="k’")

for i in range(l, 7):

x = my_datal[i,1:,6]

y = my_datal[i,1:,7]

xlog = np.logl0(x)
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787  ylog = np.loglO0(y)
axl =plt.subplot(3,2,i)
axl.tick_params(axis='both’, which="major’, labelsize=ticksize)
nBIN =20
n, _ = np.histogram(xlog, bins=nBIN)
sy, _ = np.histogram (xlog, bins=nBIN, weights=ylog)
meanl = sy / n
xmeanlog = (_[1:] + _[:-1])/2
xmean = 10xxxmeanlog
axl.scatter (xmean,10++*meanl, marker = 'o’,color="r’,facecolors="none’,label="Exp. (filtered)’)
797
for i in range(1, 7):
x = my_data2[i,1:,6]
y = my_data2[i,1:,7]
xlog = np.logl0(x)
ylog = np.logl0(y)
axl =plt.subplot(3,2,i)
axl.tick_params (axis='both’, which="major’, labelsize=ticksize)
nBIN =20
n, _ = np.histogram(xlog, bins=nBIN)
807 sy, _ = np.histogram (xlog, bins=nBIN, weights=ylog)

meanl = sy / n

xmeanlog = (_[1:] + _[:-1])/2

xmean = 10xxxmeanlog

axl.scatter (xmean,10++*meanl, marker = 'v’,color="g’,facecolors="none’,label="Model")

axl.set_yscale('log’)

axl.set_xscale('log")

axl.axis ([x.min() , x.max(), y.min(), 10#x1])

axl.spines[’'right’].set_visible (False)

axl.spines[’top’].set_visible (False)

817 axl.yaxis.set_ticks_position('left")

axl.xaxis.set_ticks_position ('bottom”)

axl.set_ylim ([5, le4])

axl.yaxis.labelpad = 20

i i ==
plt.ylabel (r"$I\,$@m)",rotation = 'horizontal’,fontsize = axistitle)
legend = axl.legend (loc="lower right’, prop={’size’':8})
legend . get_frame () .set_linewidth (0.0)
axl.axes.get_xaxis () .set_ticks ([])

if i =

827 axl.axes.get_xaxis () .set_ticks ([])

axl.axes.get_yaxis () .set_ticks ([])

i i = 8
plt.ylabel(r"$1\,$@m)",rotation = 'horizontal’,fontsize = axistitle)
axl.axes.get_xaxis () .set_ticks ([])

i =
axl.axes.get_xaxis () .set_ticks ([])
axl.axes.get_yaxis () .set_ticks ([])

if i ==

plt.ylabel (r"$I\,$@m) ", rotation = 'horizontal’,fontsize = axistitle)
837 plt.xlabel ("$A\,\ mathregular { mm"{2})}$" ,fontsize = axistitle)

if i ==

plt.xlabel ("$A\,\ mathregular { mm"{2}) }$" ,fontsize = axistitle)

axl.axes.get_yaxis () .set_ticks ([])
plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.35, wspace=0.35)
f1.savefig(outFile+ HACK exp_Binn’+’.png’,papertype = 'a4’, bbox_inches="tight’, dpi = 500)

z_model_exp (my_data, my_datal)
discharge_model_exp (my_data, my_datal)
contour_PSD_model ()

847 ave_PSD ()
Hacks ()
exceedance_Q (my_data, my_datal , my_data2)
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