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Abstract
Since its invention in the 19th century, photography has allowed to create durable images

of the world around us by capturing the intensity of light that flows through a scene, first

analogically by using light-sensitive material, and then, with the advent of electronic image

sensors, digitally. However, one main limitation of both analog and digital photography lays in

its inability to capture any information about the direction of light rays. Through traditional

photography, each Three-dimensional scene is projected onto a 2D plane; consequently, no

information about the position of the 3D objects in space is retained.

Light field photography aims at overcoming these limitations by recording the direction of

light along with its intensity. In the past, several acquisition technologies have been presented

to properly capture light field information, and portable devices have been commercialized to

the general public. However, a considerably larger volume of data is generated when compared

to traditional photography. Thus, new solutions must be designed to face the challenges light

field photography poses in terms of storage, representation and visualization of the acquired

data. In particular, new and efficient compression algorithms are needed to sensibly reduce

the amount of data that needs to be stored and transmitted, while maintaining an adequate

level of perceptual quality.

In designing new solutions to address the unique challenges posed by light field photography,

one cannot forgo the importance of having reliable, reproducible means of evaluating their

performance, especially in relation to the scenario in which they will be consumed. To that end,

subjective assessment of visual quality is of paramount importance to evaluate the impact of

compression, representation, and rendering models on user experience. Yet, the standardized

methodologies that are commonly used to evaluate the visual quality of traditional media

content, such as images and videos, are not equipped to tackle the challenges posed by light

field photography. New subjective methodologies must be tailored for the new possibilities

this new type of imaging offers in terms of rendering and visual experience.

In this work, we address the aforementioned problems by both designing new methodologies

for visual quality evaluation of light field contents, and outlining a new compression solution

to efficiently reduce the amount of data that needs to be transmitted and stored. We first

analyse how traditional methodologies for subjective evaluation of multimedia contents can

be adapted to suit light field data, and we propose new methodologies to reliably assess the

visual quality while maintaining user engagement. Furthermore, we study how user behavior is

affected by the visual quality of the data. We employ subjective quality assessment to compare

several state-of-the-art solutions in light field coding, in order to find the most promising

vii



Abstract

approaches to minimize the volume of data without compromising on the perceptual quality.

To that means, we define and inspect several coding approaches for light field compression,

and we investigate the impact of color subsampling on the final rendered content. Lastly,

we propose a new coding approach to perform light field compression, showing significant

improvement with respect to the state of the art.

Keywords: Light field photography, immersive media, subjective quality evaluation, objective

quality evaluation, interactive assessment, passive assessment, light field displays, light field

rendering, light field compression, graph-based compression
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Sommario
Fin dalla sua invenzione nel diciannovesimo secolo, la fotografia ha permesso di creare

immagini durature del mondo intorno a noi. Ciò è ottenuto catturando l’intensità della

luca che passa attraverso una scena, prima analogicamente usando materiali fotosensibili,

e poi, con l’avvento di sensori ottici elettronici, digitalmente. Tuttavia, una delle maggiori

limitazioni della fotografia analogica e digitale si riscontra nella sua incapacità di registrare

alcuna informazione sulla direzione dei raggi luminosi. Usando metodi fotografici tradizionali,

le scene tridimensionali sono proiettate su un piano bidimensionale; consequentemente, la

posizione degli oggetti 3D nello spazio non è catturata.

L’obiettivo della fotografia light field è di superare queste limitazioni, attraverso l’acquisizione

della direzione della luce, e non solo della sua intensità. In passato, diverse tecnologie per

l’acquisizione di light field sono state presentate, e dispositivi portatili sono stati commercia-

lizzati per il pubblico generale. Tuttavia, il volume di dati generato è notevolmente più grande,

se paragonato alla fotografia tradizionale.

Per questo motivo, nuove soluzioni devono essere progettate per affrontare le sfide poste dalla

fotografia light field in termini di archiviazione, rappresentazione e visualizzazione dei dati

acquisiti. In particolare, nuovi algoritmi di compressione più efficienti devono essere pensati

per ridurre notevolmente la quantità di informazione che dev’essere memorizzata e trasmessa,

al contempo mantenendo un livello adeguato di qualità percettiva.

Nel progettare nuove soluzioni per affrontare le sfide uniche che la fotografia light field pone,

non si può dimenticare l’importanza di avere dei metodi affidabili e riproducibili per valutare

le loro prestazioni, specialmente in relazione allo scenario in cui verranno fruiti. Per questo

scopo, la valutazione soggettiva della qualità visiva è importantissima per stimare l’impatto

dei modelli di compressione, rappresentazione e visualizzazione sull’esperienza dell’utente.

Ciò nonostante, le metodologie standardizzate comunemente usate per stimare la qualità

visiva dei contenuti multimediali tradizionali, come immagini e video, non sono adatte ad

affrontare le sfide poste dalla tecnologia light field. Nuove metodologie soggettive devono

essere progettate su misura per le nuove possibilità offerte da questo nuovo tipo di tecnologia

in termini di visualizzazione ed esperienza visiva.

In questo lavoro affrontiamo i problemi sopra citati in due modi: progettando nuove metodo-

logie per valutare la qualità visiva dei contenuti light field, e proponendo una nuova soluzione

per la compressione di light field che riduce il volume di dati necessario per la trasmissione e

memorizzazione. Per prima cosa, analizziamo come le metodologie tradizionali per la valuta-

zione soggettiva dei contenuti multimediali possono essere adattate per i contenuti light field,
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Sommario

e proponiamo nuove metodologie per stimare affidabilmente la qualità visiva mantenendo

il coinvolgimento degli utenti. In più, studiamo come il comportamento degli utenti può

essere influenzato dalla qualità visiva dei dati. Usiamo metodi per la valutazione della qualità

soggettiva per mettere a confronto diverse soluzioni all’avanguardia nella compressione di

light field, per trovare l’approccio più promettente per minimizzare il volume di dati senza

compromettere la qualità perceptita. Per aiutarci nel nostro intento, definiamo e analizziamo

diversi approcci per la compressione di light field, e indaghiamo sull’impatto del sottocam-

pionamento della crominanza sul prodotto finale visualizzato. Infine, proponiamo un nuovo

approccio per la compressione di light field, e mostriamo dei miglioramenti notevoli nei

confronti degli ultimi approcci all’avanguardia.

Parole chiave: Fotografia light field, contenuti multimediali immersivi, valutazione della

qualità soggettiva, valutazione della qualità oggettiva, valutazione interattiva, valutazione

passiva, display light field, rendering light field, compressione light field, compressione basata

su grafi
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1 Introduction

Since its invention in the 19th century, photography has allowed to capture and share durable

impressions of the world around us. The digitalization of photography and the widespread

availability of cheap devices has made it a staple of everyday life, and a central part of our

interaction with the world. According to 2016 Internet Trends report [Meeker, 2016], people

upload on average 3.2 billion digital images per day. In addition, recent trends in image

manipulation by consumers, such as Instagram filters and Snapchat lenses, show the growing

need for new ways of interacting and engaging with the scenes to be captured.

The static nature of traditional photography poses several obstacles in nowadays scenarios. In

particular, it limits the interaction with the captured scene, due to the capturing process itself.

A digital camera records the intensity of light, focused by a lens or a series of lenses, hitting

a photosensitive material (sensor); the 2D captured image retains no information about the

position of objects in space or their depth. Additionally, the amount of light that is recorded

by the sensor is heavily influenced by the lenses it has to pass through. This means that the

aperture and the focal plane which were chosen at the moment of the capture cannot be

modified after the acquisition.

Overcoming those limitations would impact two different market sections for cameras, albeit

in different ways:

1. Professional photographers and operators may benefit from a tool that allows for greater

flexibility when it comes to select the optimal parameters for shooting a scene. For

example, an erroneous choice of focal plane in a scene may lead to several retakes and

thus to greater expenses. Other features, such as change of point of view or zoom, may

impact dramatically the way scenes are shot.

2. Consumers may look for an enhanced experience when capturing a special moment.

Being able to change zoom, perspective and focus in a simple and intuitive way, without

the need for expensive post-processing software. This is in line with the interactivity

already seen in apps like Facebook or Snapchat, in which the users can modify the
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appereance of the scene they have acquired with filters and lenses.

Light field photography proposes a new approach for the acquisition of scenes. The idea is to

record all the information of light propagating through space, instead of just recording the

amount of incident light in a particular point of the scene. This allows to render different

views, with varying Depth Of Field (DOF) and focal planes, without the need of re-acquiring

the scene.

Several techniques already exist to create light fields, and commercial solutions are available

to consumers worldwide. However, the acquisition process creates more data when compared

to traditional photography. This generates new challenges, especially regarding storage and

trasmission of the light fields. Currently available handheld cameras, for example, use raw

image formats, which are far from optimal when it comes to memory handling. New compres-

sion solutions that take into account the peculiarities of the data have been proposed; yet, no

standard format has been adopted, which poses obstacles in interoperability, compatibility

and spreading of light field photography. Moreover, most of the solutions that have been

presented are hardly comparable with each other, due to differences in datasets and coding

conditions that are used to assess their performance.

To reliably compare and evaluate the performance of compression algorithms for efficient

encoding of light field data, adequate and reproducible subjective and objective quality

evaluation methodologies are required. However, currently standardized recommendations

for visual quality assessment, designed with traditional media in mind, are not equipped to

cater to the complex nature of light field data. This is especially true in the case of subjective

methodologies, which are designed for a passive fruition of the contents under test. Thus, by

using the currently defined subjective methodologies, one may incur in the risk of neglecting

the immersive and interactive nature of light field data.

In this work, we tackle the problem of visual quality evaluation, as well as compression,

of light field contents. In particular, we first analyze current subjective quality assessment

methodologies, and we design novel solutions to take into account the interactive nature

of the data. We then perform benchmarking of several state-of-the-art strategies for light

field compression, and we perform a thorough analysis on which approaches lead to the

best coding efficiency. Lastly, we propose our own encoding scheme, showing improved

performance with respect to the state of the art.

1.1 Contributions

Our contribution for this thesis can be classified in three main parts. The first part brings

useful additions to the state of the art in light field quality evaluation, analysing legacy method-

ologies and proposing new procedures for subjective quality assessment of light field contents.

The second part focuses on the comparison and evaluation of several coding solutions for
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light field compression, highlighting the importance of reliable assessment in estimating the

performance of different algorithms. Finally, the third part proposes a new encoding scheme

to efficiently compress light field contents.

1.1.1 Visual quality assessment for light field contents

We present several methodologies for visual quality assessment of light field contents using

image-based rendering. We first show that deploying single-image evaluation methodologies,

which considerably increases the number of stimuli to be assessed, does not lead to a diversifi-

cation in scores, and if not properly organised, can lead to biased ratings. Concluding that

combining several renderings in one stimulus would be preferable, we then proceed to com-

pare two methodologies for light field contents: one that allows interaction with the rendered

images to favor engagement with the contents, and another that uses a prerecorded animation

of the rendered views to ensure reproducibility and identical exposure of the contents to

human subjects. Results show that, although the two approaches are strongly correlated, they

are not statistically equivalent. In particular, the latter leads to smaller CIs and thus ensures

more discriminative power among the tested solutions.

We then proceed to analyze user interaction patterns in light field visual quality assessment.

We present several use cases in which analysis of user interaction can be beneficial and

apport substantial advantages. We then perform a subjective quality test using five light

field contents; during the test, user interaction is thoroughly tracked to provide data for the

analysis. We show the results of the subjective tests, and we carry extensive analysis on the user

interaction data. Moreover, we perform correlation between the two, to assess the predictive

power of average interaction time for subjective visual quality scores. Results show that clear

patterns can be seen in how users interact with the contents, and that strong correlation

can be observed between the average interaction time for one content and its corresponding

rating. In particular, we demonstrate that the average interaction time can be used to predict

the subjective score of light field contents.

Finally, we present a thorough comparison of different quality assessment scenarios for sub-

jective evaluation of light field contents on multi-layer tensor displays. We perform different

sets of experiments in two separate laboratory settings, using both a prototype multi-layer dis-

play and a simulator for 2D screens. We propose two variants for double-stimulus subjective

assessment, and we show that using one can be proven more beneficial when near-lossless

levels of distortions are employed in the test. We also verify that poor correlation is achieved

between sets of scores obtained with real multi-layer displays, when compared to a virtual

simulator. Finally, we demonstrate that when the multi-layer display is used, the method

employed to generate the layer patterns has a greater influence on the scores, with respect to

the compression ratio.

3



Chapter 1. Introduction

1.1.2 Comparison and evaluation of compression solutions for light field contents

We first report the results of objective and subjective quality assessment performed under

the framework of two grand challenges for compression of light field contents. We show that

there is much to be gained in using new compression schemes as opposed to legacy JPEG and

pseudo-temporal sequence-based video encoding. We also demonstrate that no proposed

representation model is statistically better than the one adopted as reference.

We then present two different coding approaches for light field image compression, based on

the information to be encoded. The approaches are evaluated using both objective quality

metrics and ground truth scores from subjective experiments. The results provide some

insights on the impact of compression algorithms and rate-reduction techniques, such as

chroma subsampling, on the perceived visual quality of light field contents.

We also analyse different coding strategies for light field contents that will be rendered on

multi-layer displays, through objective and subjective quality evaluations. For the latter,

we employ both a software simulating multi-layer rendering on regular 2D monitors, and a

prototype multi-layer display. We show that while one approach is significantly better than

the others, results vary considerably depending on the rendering technology. In particular, we

demonstrate that compression distortions are better perceived with the use of the simulator,

whereas the prototype display is more sensitive to the method used to generate the layer

patterns. Moreover, we verify that objective quality metrics are in alignment with the scores

obtained with the prototype display, exhibiting a strong correlation. However, the correlation

values between objective quality metrics and subjective quality scores drop when the simulator

is used.

1.1.3 Towards new compression solutions for light field contents

We present a new approach to compress light field images based on a graph learning technique.

While graph signal processing methods have been used in other works to improve the coding

efficiency for light field images, the construction of the graph is usually imposed on the data.

In our work, we focus on learning the graph in order to faithfully capture the similarities among

perspective views. By using each view as a node, we considerably reduce the size of the graph

while retaining its capability to capture variations among different views. We demonstrate its

theoretical soundness, as well as its application to image coding. Our validating experiment

shows that sensible gains can be achieved by using our solution against state-of-the-art

encoders.

1.2 Organization of the thesis

The remainder of the thesis is organized as follows.

First, Chapter 2 explores preliminary concepts in plenoptic imaging and quality evaluation,
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1.2. Organization of the thesis

which represent the basis of our work. In addition, an overview of the state of the art in light

field acquisition, rendering, compression and quality evaluation is given.

Part I focuses on the contributions to the field of subjective quality assessment for light

field contents. In particular, in Chapter 3 we study single-image, interactive and passive

methodologies for the subjective evaluation of light field contents, and we draw conclusions

based on extensive statistical analysis. In Chapter 4, we investigate how user behavior can

be influenced by the visual quality of the contents under assessment, and we show that a

strong correlation can be observed between the time of interaction and the subjective ratings.

Finally, in Chapter 5 we perform a comparison between different studies conducted on the

visual quality of multi-layer displays, showing that additional parameters, such as the method

for generating layer patterns, should be taken into consideration for rendering-dependent

subjective experimentation.

Part II is dedicated to benchmarking of existing solutions for light field compression. More

specifically, Chapter 6 presents the results of the evaluation campaigns conducted for two

major Grand Challenges in light field compression, detailing how the assessment was carried

out. Chapter 7 focuses on estimating the impact of using different coding approaches on the

visual quality of light field contents, showing that traditional techniques for bitrate reduction,

such as chroma subsampling, may lead to unwanted consequences on the perceptual quality

of rendered contents. Lastly, in Chapter 8 we detail the results of applying different rendering-

dependent compression strategies for light field contents visualized through a multi-layer

display. We show that commonly used objective quality metrics, while sufficient for assessing

the impact of the generation method for layer patterns on the visual quality, are not adequate

for estimating the visual quality of light field contents under compression artifacts, at least

when this type of rendering is involved.

Part III introduces new developments in light field compression. In particular, Chapter 9

presents a new compression solution for light field contents based on graph-learning tech-

niques. We demonstrate that, by using the proposed method, remarkable improvement can

be obtained with respect to state-of-the-art compression algorithms.

Chapter 10 summarises the contributions of the thesis, drawing some conclusions and recom-

mendations from our work.

In the Annexes, selected contributions to open-source research can be found. In particular,

Annex A describes a new dataset for quality assessment of light field images, providing both

compressed and uncompressed contents, along with objective and subjective scores. Annex B

presents a new framework for quality assessment of light field contents, which allows inter-

action with the contents while recording user behaviour. Annex C presents a software for

performing quality assessment for field contents rendered through a tensor display.
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2 Relevant work in light field imaging

2.1 Preliminary concepts

Although the idea of interpreting light as a field had been already proposed by Michael Faraday

in a lecture entitled “Thoughts on Ray Vibration” in 1846, it was Andreı̄ Gershun, in his book

about radiometric properties of light in Three-dimensional (3D) space, who coined the term

light field [Gershun, 1939]. Gershun defined the light field at each point as an infinite collection

of vectors describing the amount of light that flows in every direction through every point in

space.

The plenoptic function, first described in 1991 by Adelson and Bergen [Adelson and Bergen,

1991], defines a complete holographic representation of the visual world, describing the

information available to an observer in any point in space and time. The function records the

intensity of the light rays passing through every possible point in space (Vx ,Vy ,Vz ) at every

possible angle (θ,φ), for every wavelength λ at every time τ:

L = L(θ,φ,λ,τ,Vx ,Vy ,Vz ). (2.1)

If one considers the light field at a fixed time τ̄, as for the acquisition of still images, then the

plenoptic function can be represented as a 6D function. In the same way, considering the

color sampling in RGB channels, one can discard the wavelength component λ. What is left is

a function over a five-dimensional manifold of rays in free space:

L = L(θ,φ,Vx ,Vy ,Vz ). (2.2)

This is equivalent to the product of the 3D Euclidean space with a sphere. A representation of
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(a) (b)

Figure 2.1 – Representation of plenoptic function in five dimensions (a) and four dimensions
(b).

the 5D parametrization of the function can be seen in Figure 2.1 (a).

The 5D plenoptic function can be further simplified if one considers regions free of occluders

(free space). This is due to the fact that radiance remains constant from point to point unless

blocked. Exploiting the phenomenon, Levoy and Hanrahan proposed a new parametrization

of the rays by their intersection with two planes in arbitrary position [Levoy and Hanrahan,

1996]. The coordinate systems of the two planes are (u, v) and (s, t ), respectively. They restrict

u, v , s and t to lie between 0 and 1, and they define an oriented line by connecting a point on

the uv plane to a point on the st plane. The representation is called light slab (Figure 2.1 (b)):

L = L(u, v, s, t ). (2.3)

This parametrization allows to see the light field as a collection of perspective images of the st

plane, each taken from an observer position on the uv plane. A light field can then be created

from rendered images at fixed uv values, performing a sheared perspective projection so that

each sample in the plane of the rendered image corresponds exactly to the st sample. This

way, without any knowledge of the geometry of the scene, it is possible to render new views

from the same scene, by extracting st slices from the appropriate uv point.

2.2 Light field acquisition

A digital 4D light field, which is a collection of perspective images, can be obtained by sampling

the four-dimensional light field function defined in Equation 2.3. The density of the sampling

in each dimension depends on the acquisition technology used to capture the light field image.

In general, different acquisition techniques can be used to capture light field images, depend-

ing on the requirements for baseline (i.e., the physical space that will be covered by the uv

sampling), and for image resolution. More specifically, for a baseline in a range of meters, one
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2.2. Light field acquisition

way of acquiring light field images is by means of a moving camera, which will acquire the

different perspective views forming the 4D light field. In this case, the sampling in st plane

depends on the camera resolution, and sampling in uv plane depends on the position of the

capturing device and its shutter speed.

Examples of such acquisition devices are the Stanford Spherical Gantry, a motorized gantry

with four degrees of freedom that can be used to capture light fields [Laboratory, 2004], and

Apple’s setup to construct 360-degree cylindrical panoramic images [Chen, 1995]. A robotized

camera has been used to create the Fraunhofer Institute’s light field dataset [Fraunhofer In-

stitute, 2017]. Light fields can also be acquired by using hand-held cameras, as long as their

position on the uv plane can be precisely estimated [Gortler et al., 1996][Buehler et al., 2001].

Another approach is to construct an array of cameras with synchronized shutter speed captur-

ing the perspective views composing the light field all at once. In this case, the uv sampling

depends on the baseline parameter of the camera array grid. Using a camera array, a full 4D

light field is formed and new views corresponding to narrower baseline parameter must be

further synthesized if needed.

An example of such acquisition technology is the Stanford Multi-Camera Array [Wilburn et al.,

2005]. A distributed light field acquisition system, composed of 64 densely spaced video

camera, is proposed in [Yang et al., 2002].

Light field images can also be acquired from multi-view plus depth data [Ouazan et al., 2011].

In this case, the baseline can be wide or narrow, depending on how the data was created [Zilly

et al., 2012].

For light field image acquisition with narrow baseline, a hand-held plenoptic camera capturing

so called “single lens stereo” can be achieved, by adding optical elements in front of the sensor

plane in order to capture both angular and spatial information. In [Veeraraghavan et al., 2007],

an attenuating mask is placed in the optical path of the main lens, exploiting heterodyning

methods to map 4D rays into the 2D sensor. Liang et al. propose illumination multiplexing

through a programmable aperture to capture light fields from a single camera, using sequential

light field acquisiion [Liang et al., 2008]. Marwah et al. propose a new method to capture light

field data from a single image, using optically-coded light field projections [Marwah et al.,

2013]. Alam et al. propose a deconvolution approach to obtain narrow-aperture perspective

views from a single wide-aperture image capture with a common camera [Alam and Gunturk,

2018].

A viable alternative to masking is by employing an array of micro lenses (lenslet) in front of

the sensor plane. Two types of plenoptic cameras have been proposed in the literature. The

first, called “unfocused light field camera” or “plenoptic camera 1.0”, places the microlens

array at the focal plane of the main lens [Adelson and Wang, 1992]. The spatial resolution

(st plane) depends on the number of microlenses, whereas the angular resolution (uv plane)

depends on the number of pixels behind each micro lens. The raw image obtained with this

type of cameras closely resembles the honeycomb array of lenses that has been used for the
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Figure 2.2 – Lenslet image obtained with an unfocused plenoptic camera. In the zoomed detail
it is possible to observe the characteristic honeycomb structure, due to the microlens array.

acquisition, and will be from now on referred to as a lenslet image. Figure 2.2 depicts an

example of lenslet image. It is possible to convert the lenslet image to a 4D data structure

that effectively constitutes a sampling of Equation 2.3. The perspective views, in this case,

can be obtained by selecting from each microlens the pixel supporting a certain viewpoint.

Hand-held cameras implementing this model were presented in [Ng et al., 2005] and are

already widely available to consumers1. Additionally, a light field microscope following the

same principles has been proposed [Levoy et al., 2009, 2006].

In the second type of plenoptic camera, namely, “focused light field camera” or “plenoptic

camera 2.0”, the sensor array is placed either before or after the microlens array’s back focal

plane [Lumsdaine and Georgiev, 2009]. This allows for a larger spatial resolution when com-

pared to unfocused plenoptic cameras; however, the process of creating perspective views is

not straightforward, as it requires to perform depth estimation [Palmieri et al., 2018]. Focused

plenoptic cameras have been recently commercialized2.

2.3 Light field rendering

The acquisition of any multimedia content would be fruitless without devices on which they

can be enjoyed. In the case of light field photography, several displays have been proposed

to overcome the limitations posed by traditional and stereoscopic monitors, by offering a

more immersive experience of 3D contents with seamless transition among points of view

and natural focal accomodation.

In the past, several multi-view displays have been presented that allow to visualize the scene

from several points of view. Among other technologies, parallax barrier displays have been pro-

1https://www.lytro.com/
2https://www.raytrix.de/
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2.3. Light field rendering

(a) (b)

Figure 2.3 – Example of a 360° light field display (a) and of a multi-layer display (b). Courtesy
of USC Institute for Creative Technologies, and MIT Media Lab, Camera Culture Group.

posed as a glass-free alternative to stereoscopic displays [Jacobs et al., 2003]. To allow for multi-

view rendering, several technologies have been implemented, such as polarizer [Sakamoto and

Morii, 2006] or Liquid Crystal Display (LCD) dynamic barriers through viewer tracking [Peterka

et al., 2008]. Arrai et al. propose a 33-megapixel rendering system that uses a lens array to

provide full parallax [Arai et al., 2010]. Balogh et al. use a system of projectors in combination

with a holographic screen to fully render the 3D scene [Balogh, 2006]. Jones et al. offer a

360° light field rendering, using a highspeed video projector in combination with a spinning

mirror [Jones et al., 2007] (Figure 2.3 (a)). El-Ghoroury and Alpaslan propose a new spatial

light modulator, called Quantum Photonic Imager (QPI), for 3D rendering [El-Ghoroury and

Alpaslan, 2014], and they demonstrate its application to light field displays [Alpaslan and

El-Ghoroury, 2015].

A promising solution for light field rendering uses a stack of programmable light-attenuating

layers in front of a light-emitting source, to provide depth cues without the need of glasses

[Lanman et al., 2010] [Lanman et al., 2012] [Wetzstein et al., 2012]. The main advantage of this

rendering method is that only a few attenuating layers are required to render multiple points

of view; hence, the term “compressive display” has been used to define this type of devices.

Figure 2.3 (b) depicts the structure of one multi-layer display with 3 layers. Multi-layer displays

have been proposed for desktop applications [Kobayashi et al., 2017], and its technology has

been adapted for big-screen light field projection [Hirsch et al., 2014].

More recently, a new generation of near-eye light field displays have been proposed, to experi-

ence full parallax multiview and focal accomodation in Virtual Reality (VR) and Augmented

Reality (AR) scenarios. To do so, several technologies have been employed, including mi-

crolens arrays [Lanman and Luebke, 2013] [Wu et al., 2018], pinhole aperture arrays [Akşit

et al., 2015], pupil tracking [Jang et al., 2017] and multi-layer attenuators [Maimone et al.,

2013] [Huang et al., 2015].

Despite the rich literature on the topic, light field display technology is still not widely com-
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mercialized. Available solutions include the Holovizio systems for back-projection displays3,

FoVI3D for 360°holographic rendering4, and Avegant5 and Magic Leap6 for near-eye displays.

2.4 Light field compression

The increased capabilities that light field imaging provides come at the cost of the vast amount

of data which is generated during the acquisition. Thus, several works have been focused on

finding efficient compression algorithms to effectively store and transmit light field images.

The topic has attracted the attention of major standardization bodies. In 2014, the JPEG

standardization committee launched a new initiative called JPEG Pleno, whose goal is to create

a standard framework for efficient storage and delivery of plenoptic contents, including light

fields, point clouds, and holograms. In particular, JPEG Pleno aims at finding the minimum

number of representation models for these types of content, which, when necessary, can also

offer interoperability with existing standards, such as legacy JPEG and JPEG 2000 formats.

Since then, JPEG committee has been actively pursuing the definition of a new standard

representation and compression algorithm for light field images [Ebrahimi et al., 2016].

Depending on the acquisition process, several approaches have been proposed. To allow

random access while keeping the computational expenses low, Levoy and Hanrahan choose

a two-stage pipeline, comprised of vector quantization and Lempel-Ziv coding [Levoy and

Hanrahan, 1996]. Other works focuses on compressing synthetic 4D light fields using disparity

compensation [Magnor and Girod, 2000, Jagmohan et al., 2003, Girod et al., 2003] and geometry

estimation [Zhu et al., 2003].

More recently, the effort has been focused on compression of light field images acquired

through hand-held devices. Several compression algorithms have been proposed to directly

compress lenslet images through intra coding, exploiting redundancies in its structure (see

Figure 2.2). For instance, Perra proposes a lossless compression scheme based on adaptive

prediction [Perra, 2015]. Li et al. incorporates a full inter prediction scheme in HEVC intra

prediction mode, explicitly exploiting the redundancy in lenslet images [Li et al., 2014b],

as well as using the disparity compensation and impainting to efficiently code lenslet im-

ages [Li et al., 2016b]. Monteiro et al. introduce a modified version of HEVC Intra profile

which integrates Locally Linear Embedding (LLE) and Self Similarity (SS) to improve block

estimation [Monteiro et al., 2016]. More recently, Jin et al. propose a macropixel-based intra

prediction method which first applies image reshaping to align the macropixel structure to

the HEVC coding unit grid, and then defines three prediction modes to improve the coding

efficiency of the blocks [Jin et al., 2018]. Schiopu et al. use a CNN-based approach to predict

each macropixel from its neighbors and encode the residuals using context-based adaptive

3http://holografika.com/
4http://www.fovi3d.com/
5https://www.avegant.com/
6https://www.magicleap.com/
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lossless coding [Schiopu and Munteanu, 2018].

Other solutions aim at improving the performance of existing video codecs by further ex-

ploiting the redundacies among the perspective views forming the 4D light field structure. A

precursor of the approach is introduced by Olsson et al. [Olsson et al., 2006]. They propose the

creation of sub-images from integral images. Such sub-images are then encoded through a

pseudo-temporal sequence using AVC. Choudhury et al. adapt the method of coded snapshots

to light field image compression through random codes [Choudhury et al., 2015]. Dai et

al. code sub-aperture images using different scanning methods, including line and rotating

scanning [Dai et al., 2015]. Helin et al. propose predictive coding for perspective views to

achieve lossless compression [Helin et al., 2016, 2017]. Predictive coding is combined with

segmentation-based context modelling by Schiopu et al. for lossless compression of lenslet

images [Schiopu et al., 2017]. Ahmad et al. arrange the perspective views into a multiview

structure that can be exploited by the corresponding extension of HEVC, namely MV-HEVC,

and they propose a rate allocation scheme to optimize the performance by progressively assign

the Quantization Parameter (QP) [Ahmad et al., 2017]. Jia et al. propose a fully reversible trans-

formation to create the perspective views from the raw lenslet data [Jia et al., 2017]. The views

are then optimally re-arranged and compressed using enhanced illumination compensation

in an early version of the VVC software7. They also implement adaptive filtering to optimally

reconstruct the lenslet image.

Several solutions have been proposed to exploit view synthesis or estimation to improve the

coding efficiency. Jiang et al. use HEVC to encode a low-rank representation of the light field

data, obtained by using homography-based low-rank approximation. They then reconstruct

the entire light field by using weighting and homography parameters [Jiang et al., 2017]. Zhao

et al. propose a novel compression scheme that encodes and transmits only part of the

views using HEVC, while the non-encoded views are estimated as a linear combination of

the already transmitted views [Zhao and Chen, 2017]. Astola et al. propose a method that

combines warping at hierarchical levels with sparse prediction to reconstruct the 4D light

field from a predefined set of perspective views [Astola and Tabus, 2018b,a]. The solution

was recently adopted as the JPEG Pleno Verification Model [ISO/IEC JTC 1/SC29/WG1 JPEG,

2018b]. Rizkallah et al. and Su et al. use CNN-based view synthesis to reconstruct the entire

light field from 4 corner views, employing graph-based transforms [Rizkallah et al., 2018] or

4D-shape-adaptive Discrete Cosine Transform (DCT) [Su et al., 2018] to encode the residuals.

Bakir et al. combine view estimation and view synthesis to reconstruct the 4D light field from

a small set of reference views, which are encoded using the VVC software8 [Bakir et al., 2018].

They use the linear approximation already seen in [Zhao and Chen, 2017] to reconstruct a

subset of the views, and then employ a CNN-based approach to reconstruct the remaining

perspective views.

Other approaches exploit the redundancy of the light field data through novel representation.

7https://jvet.hhi.fraunhofer.de/
8https://jvet.hhi.fraunhofer.de/
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Verhack et al. use a multi-modal Gaussian Mixture Model to represent the light field data,

relying on perceptual similarity more than exact reconstruction [Verhack et al., 2017]. The

perspective views composing the light field data can be reconstructed at the decoder side using

only the parameters of the model. Su et al. propose a graph-based representation to perform

multi-view prediction from a single image, using HEVC to encode the residuals [Su et al., 2017].

De Carvalho et at. propose the adoption of 4D DCT to obtain a compact representation of

the light field structure [de Carvalho et al., 2018]. The DCT coefficients are grouped using

hexadeca-trees, for each bitplane, and encoded using an arithmetic encoder. Komatsu et al.

present a novel coding scheme based on weighted binary images [Komatsu et al., 2018]. The

4D light field structure is reconstructed from a set of binary images, which are predefined for

all the perspective views, along with a set of weights, which may vary from view to view.

2.5 Light field visual quality evaluation

Evaluation of visual quality as perceived by the end users is of paramount importance in deter-

mining the efficacy of the proposed solutions for rendering, compression and processing of

light field contents. In terms of the consequences of compression algorithms on visual quality,

most solutions listed in Section 2.4 provide a preliminary performance evaluation. However,

the evaluation procedures, not to mention the coding conditions, are usually divergent among

different publications. Thus, drawing a straightforward comparison between distinct solutions

can be proven challenging.

Generally, visual quality assessment can be carried out with either subjective evaluations

or objective quality metrics. In the first case, users are directly probed regarding the level

of perceived degradation or goodness of the content under assessment. Guidelines have

been drafted by standardization committees to ensure that the information gathered with

subjective tests would produce statistically relevant results, without unwanted bias. In partic-

ular, the International Telecommunication Union (ITU) agency provides recommendations

regarding subjective assessment of visual quality for television pictures [ITU-R BT.500-13,

2012], multimedia applications [ITU-T P.910, 2008], and video, audio and audiovisual quality

of internet video and distribution quality television in any environment [ITU-T P.913, 2016].

As a comprehensive overview of all recommendations for subjective evaluation would be out

of the scope of this thesis, we refer interested readers to [Perrin, 2019].

Subjective evaluation, while providing ground truth information regarding the perceived vi-

sual quality of the contents under assessment, is often burdensome and costly. Thus, objective

quality metrics have been designed to estimate the level of impairment of a given stimulus.

Objective quality metrics are mathematical models approximating perceptual responses. They

are commonly classified into three categories, depending on the degree of reference infor-

mation on which they depend on: Full Reference (FR) metrics, which perform an estimation

of the visual quality of an impaired content with respect to its source reference; Reduced

Reference (RR) metrics, which take advantage of some features of the source reference to
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perform an assessment of the visual quality of the impaired content; and No Reference (NR)

metrics, which determine a visual quality score based on the impaired content, without any

reference information. Among the three alternatives, FR metrics are the most commonly used

to assess the visual quality of image contents under compression distortions. In particular,

Peak Signal to Noise Ratio (PSNR), a widely used metric to measure the level of noise on a pixel

color basis, has been consistently employed to report on the performance of compression

solutions for image and video contents, and was promptly adopted to describe the coding

efficiency of novel methods for light field compression (see [Levoy and Hanrahan, 1996]).

The JPEG Pleno Common Test Conditions [ISO/IEC JTC 1/SC29/WG1 JPEG, 2018a], defined

in July 2018 by the JPEG standardization body, adopt PSNR as performance metric for the

core experiments, along with Structural Similarity Index (SSIM) [Wang et al., 2004], a metric

modeled on human visual perception of luminance, contrast and structure.

Subjective quality assessment of light field contents on light field displays has been promi-

nently featured in several publications. Spatial resolution of back-projected light field displays

has been investigated by Kovacs et al. [Kovács et al., 2014]. In particular, the authors examine

how viewing angle affects the perception of spatial resolution, along with the role played by

motion parallax. Darukumalli et al. inspect the relationship between zooming levels, region of

interest and subjective quality of light field contents, using Absolute Category Rating (ACR) and

Degradation Quality Rating (DQR) [Darukumalli et al., 2016]. Kara et al. analyse the correlation

between spatial and angular resolution, and how reducing spatial resolution can improve

parallax perception [Kara et al., 2017a]. They also study the impact of angular resolution on

the perception of light field content, first in a free movement scenario, and then with fixed

observer position, using ACR [Kara et al., 2016, 2017b]. Adhikarla et al. perform subjective

evaluation on a 3D monitor with head tracking to simulate parallax effect, using pairwise

comparison, to assess the performance of various objective quality metrics on distorted light

field contents [Adhikarla et al., 2017]. Selected distortions include compression, interpolation,

warping and rendering artifacts. Similarly, Shi et al. analyse the performance of objective qual-

ity metrics by comparing them with subjective scores obtained on a 3D monitor setup, using

a newly-defined windowed 5-degree-of-freedom light field image database [Shi et al., 2018].

Tamboli et al. investigate the Quality of Experience (QoE) associated with back-projected light

field displays, using ACR [Tamboli et al., 2018a].

As light field displays are scarcely available, image-based rendering has been used to perform

subjective assessment on 2D screens. Paudyal et al. investigate the impact of watermarking

on visual quality of light field contents, and especially the relationship between watermark

strength and visual quality, using ACR [Paudyal et al., 2015]. Filipe et al. [Filipe et al., 2018]

assessed the performance of several state-of-the-art focus metrics in the evaluation of ex-

tended DOF (all-in-focus) images acquired by a focused plenoptic camera. In particular, they

performed a subjective assessment in which they compared extended DOF images obtained

using optimal patch sizes, against images obtained with slightly larger patch sizes. Paudyal

et al. [Paudyal et al., 2017a] analysed the impact of different visualization techniques, includ-

ing image-based assessment of all-in-focus perspective views and refocused views, using
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ACR, concluding that there is high correlation between the scores obtained by image-based

evaluation when compared to the corresponding animation-based passive evaluation. Perra

et al. analyse how light field subsampling affects the perceived quality of refocused views,

which are presented in an animated fashion [Perra et al., 2018]. Battisti et al. compare several

visualization techniques, as well as different framerates, for light field quality assessment,

concluding that horizontal scan is to be preferred [Battisti et al., 2018]. Upenik et al. adapt

the image-based representation for omnidirectional visualization, using a head-mounted

display [Upenik et al., 2018].

A few publications have been devoted to assess the visual quality of light field contents using

conventional objective quality metrics. Vieira et al. compare five different HEVC-compatible

coding of lenslet images with different data formats, using PSNR-YUV [Vieira et al., 2015].

Rizkallah et al. report the impact of compression of light field images on refocusing and

extended focus images through objective quality metrics such as PSNR and SSIM, and they

propose a new metric to measure the amount of compression blur in focused regions [Rizkallah

et al., 2016]. Perra et al. analyze the effect of HEVC-based compression on light field refocusing,

using metrics and conditions defined in [ISO/IEC JTC 1/SC29/WG1 JPEG, 2018a] to report

the tradeoff between compression and objective quality [Perra and Giusto, 2018]. Alves et al.

detail the results of a performance assessment campaign for light field image compression on

several rendered images, using PSNR-Y as metric [Alves et al., 2016].

New objective quality metrics and evaluation frameworks have been proposed to better model

the peculiarities of light field imaging. Niemann et al. perform an evaluation on computing

light fields from a hand-held camera, without any further input [Niemann and Scholz, 2005].

They evaluate the accuracy of estimating parameters for light field using feature selection

and tracking, factorization of one initial sequence and depth map estimation. They also

introduce a new method for measuring the quality of a light field. Ramanathan et al. create

a framework for analysing the impact of various parameters on the rate-distorsion curve of

light field coding [Ramanathan and Girod, 2006]. The parameters include correlation within

an image and between images, geometry accuracy and prediction dependency structure.

Shidanshidi et al. also introduce a new objective quality metric to perform an evaluation

of light field rendering [Shidanshidi et al., 2011a] [Shidanshidi et al., 2011b]. They present

a geometric measurement, called Effective Sampling Density (ESD), and they perform a

comparison on existing techniques for interpolation of new views from light fields. Fu et

al. analyse the effects of light field photography in image quality [Fu et al., 2011]. They first

develop a simulation approach to test visual resolution and other image quality evaluation

metrics for light field photography. Then, they compare the results with conventional cameras

to discuss improvements and shortcomings of light field photography. Meng et al. evaluate the

performance of a multi-spectral plenoptic prototype camera by introducing new performance

metrics [Meng et al., 2013]. The metrics aim at assessing the spectral reconstruction quality.

Jarabo et al. uses a different approach, and evaluates different light field editing interfaces,

tools and workflows [Jarabo et al., 2014]. The experiment aims at evaluating the difficulty of

performing modification on light field images from a user perspective, and how reconstructed
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depth maps influence the task. Tamboli et al. propose a new 3D FR metric that combines a

spatial component and an angular component to measure the objective visual quality of 3D

contents on light field displays [Tamboli et al., 2016]. The metric is used in [Tamboli et al.,

2018b] to evaluate the quality of key-frames from light field video contents.

2.6 Summary and perspectives

In this section we have provided a concise overview of the ongoing work in rendering, com-

pression and quality evaluation for light field contents, after introducing some preliminary

concepts on acquisition and representation. Although the amount of work devoted to the

topic is remarkable, we believe there is still a number of issues that need to be addressed and

fixed. Our work in this thesis aims at covering some of the inadequacies, listed as follows:

1. Image-based rendering is a cost-effective solution to experience light field contents on

2D screens. Although both objective [Alves et al., 2016] and subjective [Paudyal et al.,

2017a] evaluations have been conducted in the past using selected rendered contents

from the light field data, no extensive study has been carried on the difference between

the perceptual quality of single rendered images on 2D displays. Moreover, the near

totality of the work on subjective evaluation using image-based rendering is displaying

light field contents as traditional media items, such as still images or prerecorded videos.

Interactivity with the content is almost completely disregarded ([Shi et al., 2018] being a

notable exception). We aim at bridging the gap between single-image and multi-view

assessment in Chapter 3, and we provide extensive analysis of interaction patterns in

Chapter 4.

2. While extensive work has been conducted on subjective assessment of back-projected

light field displays, the same cannot be said for other types of light field displays. Due

to their limited availability and their hardware limitations, multi-layer displays have

not been employed in subjective evaluation campaigns, and the QoE associated with

them is still largely an open problem. We propose a framework to simulate multi-layer

rendering on traditional 2D screens (Annex C), and we perform a comparison among

different test conditions for light field interactive assessment in Chapter 5. In Chapter 8

we assess the performance of compression solutions for multi-layer displays through

both subjective and objective means.

3. The selection of different coding conditions for performance evaluation of compres-

sion solutions for light field contents makes it hard, if not impossible, to perform a

comparison among them. The adoption of common test conditions, such as the ones

detailed in [ISO/IEC JTC 1/SC29/WG1 JPEG, 2018a], is an auspicable step in achieving

clear and straightforward benchmarking of distinct algorithms. We believe reporting

the evaluation results of two major grand challenges on light field compression, as we

do in Chapter 6, will help identifying the best performing approaches to foster research
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in the field.

4. Although video encoding was promptly adopted as a viable solution to efficiently com-

press light field data, as seen for example in [Olsson et al., 2006] and [Li et al., 2014b],

little work has been conducted in assessing whether common stream reduction tech-

niques, such as chroma subsampling, can be transmuted to light field coding. We

address the issue in Chapter 7, where we also compare intra and inter approaches for

lenslet image compression.

5. View estimation and synthesis seem to be among the most promising solutions for light

field compression. We contribute to the ongoing effort in finding the best representation

for disparity data in Chapter 9, where we propose a lightweight estimation of view

interdependency using graph learning techniques.
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3 Analysis of different methodologies
for image-based light field quality
assessment

Disclaimer: Some of the contents of this chapter were adapted from the following articles, with

permission from all co-authors and publishing entities:

Viola, Irene, Martin Řeřábek, Tim Bruylants, Peter Schelkens, Fernando Pereira, and Touradj Ebrahimi.

“Objective and subjective evaluation of light field image compression algorithms.” In Picture Coding

Symposium (PCS), 2016, pp. 1-5. ©2016 IEEE.

Viola, Irene, Martin Řeřábek, and Touradj Ebrahimi. “Impact of interactivity on the assessment of

quality of experience for light field content.” In Quality of Multimedia Experience (QoMEX), 2017 Ninth

International Conference on, pp. 1-6. ©2017 IEEE.

Personal contribution: The subjective quality assessment tests were designed with the help of my co-

authors. I performed the experiments and curated the analysis.

For any type of multimedia content, reliable quality assessment is of paramount importance

in the design and validation of new compression solutions that aim at reducing the size

of the original data without compromising its perceptual quality. While objective quality

metrics have been developed in the last decades to effectively predict the perceptual quality

of the contents under assessment, subjective quality evaluations remain the most reliable

means to measure the quality of media contents. However, quality assessment of light field

contents poses new questions and challenges, due to the enriched nature of the content and

the possibilities it offers for the rendering step.

One of the most natural and intuitive ways to consume light field contents would involve

light field displays or simulators to create a multi-view, 3D rendering of the contents [Balogh,

2006, Matsubara et al., 2015]. Using this approach, the full potential of light field imaging is

exploited to create a 3D representation of the scene in front of the user. However, such displays

are not widely available to consumers, due to their cost and their requirements.

Another possible approach to render light field contents relies on image-based rendering

to showcase the increased capabilities of light field contents [McMillan and Bishop, 1995].
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With this approach, the light field information can be sampled and combined to create 2D

images, which can be displayed on regular displays. For example, a perspective image can

be created by selecting a specific point in the (s, t ) plane, as defined in Equation 2.3. It is also

possible to combine different perspective views to change the focal plane in the scene (digital

refocusing). The range of possibilities is virtually endless, which poses the problem of what

rendered images should be used when performing visual quality assessment, as well as how to

properly present them to the user in a subjective quality evaluation scenario.

The simplest way to perform an evaluation of light field contents using image-based rendering

is by evaluating each rendered image separately, using common image visual quality eval-

uation techniques. A final score for the entire light field content under examination can be

obtained by computing the mean of all the scores obtained by the single rendered images, for

example. Although fairly simple and straightforward to implement, this evaluation methodol-

ogy creates an overwhelmingly large amount of stimuli to be processed and assessed, thus

adding to the strain of already costly evaluation campaigns. On the other hand, evaluating

each rendered image individually allows to account for possible quality variations among

different renderings, which could be proven useful for both encoding and rendering purposes.

The most natural way for the user to exploit these possibilities is by interacting with the

content. Indeed, being able to change the appearance of the scene that has been acquired

is a desirable feature, one that is already implemented in widespread applications such as

Instagram or Facebook. From this perspective, interactive methodologies for subjective quality

assessment should be actively deployed since they give a more accurate depiction of how the

user consumes and engages with the content. However, one significant shortcoming of the

interactive approach is the lack of control on what users are visualising and thus what is being

rated. Since each subject decides autonomously which rendered image to display and for how

long, there is little control over the number of rendered images that each subject is examining,

nor there is guarantee that different subjects are visualizing the same set of images.

An alternative way to evaluate visual quality of light field contents would be to use a passive

approach, where the subjects are presented with a pre-recorded animation displaying different

rendered images. Such an approach guarantees that each subject sees the identical set of

images, rendered with the same parameters, under the same conditions. However, to yield

reliable results, a number of parameters should be carefully selected, such as the optimal

framerate and the number of rendered images to be presented to the subject. Moreover, a

passive approach disregards the interactive nature of light field contents, and thus does not

always faithfully represent the average user experience in consuming light field contents.

In this chapter, three quality evaluation methodologies specifically designed for light field

using image-based rendering will be presented. The first one evaluates the rendered images

obtained from each light field content separately. We analyse the results of the subjective

quality evaluation campaign by means of statistical tools, to understand whether the advan-

tages of evaluating the rendered images separately compensate the additional strain. We then
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move on to compare the second evaluation methodology, which enforces interaction with the

content, with the third methodology , which employs a prerecorded animation of rendered

images, to ensure the same experience for all users. We finally draw conclusions from our

analysis and provide recommendations for future tests.

3.1 Single image evaluation for light field contents

Image-based rendering offers an impressive showcase of the rendering abilities made possible

by light field technology. Among other possibilities, the point of view of the scene can be

modified, digital refocusing can be applied to highlight a specific plane in the image, zooming

can be performed to exclude some planes in the scene, and so on. Due to the nearly endless

possibilities that are offered, the first challenge that is poised for any type of image-based

light field evaluation is to select which rendering to take into account when evaluating the

contents. Such challenge becomes particularly dire when the images obtained after the

rendering procedure are evaluated singularly, as the length and complexity of the test grows

accordingly. Equally challenging is obtaining a single score for each content under assessment,

since multiple rendering are presented and subsequently rated in a separate fashion.

Image-based assessment has been used in literature to subjectively evaluate the quality of

light field contents. Filipe et al. [Filipe et al., 2018] assessed the performance of several state-

of-the-art focus metrics in the evaluation of extended DOF (all-in-focus) images acquired by

a focused plenoptic camera. In particular, they performed a subjective quality assessment

in which they compared extended DOF images obtained using optimal patch sizes, against

images obtained with slightly larger patch sizes. Paudyal et al. [Paudyal et al., 2017a] analysed

the impact of different visualization techniques, including image-based assessment of all-

in-focus perspective views and refocused views, using ACR, concluding that there is high

correlation between the scores obtained by image-based evaluation when compared to the

corresponding animation-based passive evaluation. Image-based assessment was chosen as

the subjective quality evaluation methodology for the ICME 2016 Grand Challenge on Light

Field Coding [Viola et al., 2016a]. Five algorithms were received as response to the challenge,

and were evaluated against the anchor of choice, namely JPEG, using both objective and

subjective quality assessment. For the latter, six light field contents were chosen among the

dataset. For each content, five rendered images were created, comprising three all-in-focus

perspective views and two refocused views, to carry the subjective test. The number of possible

renderings was purposedly constrained to avoid an overly complex assessment scenario; even

so, a total number of 720 stimuli was generated for the evaluation campaign.

Hence, it is crucial to analyse the results of such a massive campaign, to assess whether

the added complexity of the test was justified by a diversification in ratings among different

rendering procedures. To this aim, in this chapter we use statistical tools such as Analysis of

variance (ANOVA) to examine the similarities among the ratings, and in particular to determine

whether there are statistically relevant differences among different rendered images. Results
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are decisive in selecting the best evaluation methodology for visual quality assessment of light

field contents.

This chapter focuses on analysing shortcomings and advantages of using image-based as-

sessment to evaluate light field contents, using as benchmark the results of the ICME 2016

Grand Challenge campaign. In the following subsections, we will describe the subjective

quality evaluation methodology in details, as well as the statistical tools used to perform the

analysis, and we will present the results of our inquiry. For a thorough presentation of the

grand challenge results, including comparisons among the codecs and guidelines on different

approaches, we refer interested readers to Chapter 6.

3.1.1 Data preparation and coding conditions

As input for the grand challenge, light field images created with a Lytro Illum plenoptic camera

were selected. In particular, proponents were asked to compress a lenslet image, which was

created from the raw 10-bit sensor data by applying devignetting, demosaicing, clipping to

8-bit and color space conversion from RGB444 to YUV420.

The performance of the proposed compression algorithms was evaluated at four fixed com-

pression ratios, namely R1 = 10 : 1 (1 bit per pixel (bpp)), R2 = 20 : 1 (0.5 bpp), R3 = 40 : 1 (0.25

bpp), R4 = 100 : 1 (0.1 bpp). The ratios were computed with respect to the size of the raw data

obtained from the camera.

For the objective and subjective quality evaluations, the decompressed lenslet image was

converted to a stack of all-in-focus perspective views (light field data structure) using the

Matlab implementation of the Light Field Toolbox v0.4 [Dansereau et al., 2013][Dansereau

et al., 2015]. Each perspective view was created by selecting and aligning samples from each

micro-lens element that supported a particular point of view. The resulting light field data

structure is a 5-D array with dimensions of 15×15×434×625×3, in which 15×15 is the

number of perspective views, 434×625 is the resolution of each view, and 3 corresponds to

the color channels. Color and gamma corrections were applied to each perspective view.

The same pipeline was employed to generate the reference light field data structure from the

uncompressed YUV420 lenslet image.

A total of six light field images were selected from a Lytro Illum lenslet database [Řeřábek and

Ebrahimi, 2016] for the subjective quality assessment. The central view of each content is

depicted in Figure 3.1.

For each content, three all-in-focus perspective views were directly extracted from the light

field data structure. In particular, from the 15×15 stack of perspective views, the ones at

indexes (8, i ), where i = 5,8,11, were selected to represent different perspectives of each scene.

Additionally, the MATLAB toolbox was used to create two refocused views for each light field
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(a) Bikes (b) Flowers (c)
Stone_Pillars_Outside

(d) Desktop (e) Foun-
tain_&_Vincent_2

(f) Friends_1

Figure 3.1 – Central all-in-focus perspective view from each content used in the experiments.
Refocused points marked in green (slope 1) and red (slope 2). ©2016 IEEE

Image ID Slope 1 Slope 2

Bikes -0.65 0.22
Flowers -0.3 0.3
Stone_Pillars_Outside -0.5 0.2
Desktop -0.5 0.5
Fountain_&_Vincent_2 -0.5 0.35
Friends_1 -0.15 0.2

Table 3.1 – Values of slope for refocused views. ©2016 IEEE

content, using a modified version of the function LFFiltShiftSum. The function shifts all the

perspective views according to a parameter, referred to as a slope, which determines the

focal plane. A sum of the shifted views is performed in order to obtain a single image that is

refocused on a specific plane, depending on the value of the slope. The number of views to be

shifted and consequently summed defines the DOF. Summing all 15×15 views creates the

smallest DOF, in which only one specific plane in the image is in focus. On the other side,

taking just the central perspective view, which is equivalent to summing just 1×1 views, brings

all the objects in focus (largest DOF). For the test, it has been chosen to sum perspective views

from index 5 to index 11 (7×7 views) in order to have a larger DOF that still showed the effects

of refocusing. Two slopes were selected in order to focus the image on two different planes

in the scene. Figure 3.1 illustrates the chosen points for refocusing (Slope 1 in green, Slope

2 in red). The values of the slope parameter used in the function are listed in Table 3.1. The

three all-in-focus perspective views, along with the two refocused views, form five views per

content.

In total, six algorithms (five proponents and one anchor) were evaluated in the subjective qual-

ity assessment tests. Five rendered views were created from six light field contents compressed

at 4 different bitrates. Thus, a total of 720 stimuli was evaluated in the test.

Subjective quality assessment methodology

The methodology selected to conduct the subjective quality tests is based on Double Stimulus

Continuous Quality Scale (DSCQS). Two images in native resolution (625×434 pixels) were

presented simultaneously in a side-by-side fashion. One of the two images was always the
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Table 3.2 – Test environments and specifications.

Approach Environment No. contents No. codecs No. bitrates No. subjects Methodology
No. persp.

views
No. refoc.

views

Single-stimulus
Semi-controlled
crowdsourcing

6 6 4 35 DSCQS 3 2

uncompressed reference, and its position on the screen was randomized. The other image

was compressed by one of the evaluated algorithms at one of the evaluated bitrates. The

same rendering parameters were used for both the reference and the test images. Subjects

were asked to rate the quality of both images on a discrete scale from 5 (Excellent) to 1 (Bad).

They were informed that one of the images was the reference, but they did not receive any

indication on its relative position on the screen. Before the experiments, a training session

was organized to help subjects to adjust to the peculiarities of light field rendering, and to

help them to detect various distortions and compression artifacts. Five training samples were

generated using an additional content from the light field database [Řeřábek and Ebrahimi,

2016]. To perform the tests, the QualityCrowd 2 framework [Keimel et al., 2012] was modified

to suit the DSCQS methodology.

The experiment was split into four sessions. In each session, 180 pairs of images were shown,

corresponding to approximately 45 minutes per session. The display order of the stimuli was

randomized, and the same content was never displayed twice in a row. Each subject took part

in two sessions. A break of ten minutes was enforced between the sessions to avoid fatigue. At

the beginning of first session, one dummy example was shown to ease the subject into the

task. The resulting scores from dummy stimuli were not included in the final results.

Overall, 35 naïve subjects (24 males and 11 females) participated in the subjective experiments,

each rating 360 stimuli over the course of two sessions. Subjects were between 18 and 33 years

old. The average and median age were 22.4 and 22 years old, respectively. All subjects were

screened for correct visual acuity with Snellen charts, and color vision using Ishihara charts. A

summary of the specifications of the test can be found in Table 3.2.

3.1.2 Data processing and statistical analysis

Outlier detection and removal was performed according to the ITU-R Recommendation

BT.500-13 [ITU-R BT.500-13, 2012]. One subject was found to be an outlier, and the corre-

sponding scores were discarded. This lead us to 17 scores per stimulus. After outlier removal,

the Mean Opinion Score (MOS) was computed for each coding condition j (i.e. for each

content, view, proponent and bitrate) as follows:

MOS j = 1

N

N∑
i=1

mi j (3.1)
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where N is the number of subjects and mi j is the score for stimulus j by subject i . The

corresponding 95% Confidence Intervals (CIs) were computed using Student’s t-distribution.

Analogously, for each reference stimulus a MOS score was computed:

MOS j̄ =
1

N

N∑
i=1

mi j̄ (3.2)

in which j̄ represents each reference condition (i.e. each content and rendered view).

In order to determine whether statistically significant differences are present among the

ratings given for differently rendered images, we performed a multiway ANOVA on the data.

In particular, we first performed a one-way ANOVA on the MOS scores associated with each

coding condition j , analysing whether there was any statistical difference associated with

different rendering parameters. We then performed the same analysis on the MOS scores

associated with each rendering condition j̄ , in order to further understand whether any

difference in performance is due to coding artifacts. Finally, we performed an n-way ANOVA on

the full set of scores to gain insights on the statistical differences within the coding conditions.

3.1.3 Results and discussion

Figure 3.2 compares the MOS scores given to each perspective and refocused view, for each

test content and respective reference. As further showed by the linear fitting for test contents,

the test scores are evenly distributed along the y = x line, proving that strong correlation can

be found between the scores assigned to perspective and refocused views, within their group.

To further demonstrate that different perspective and refocused views were scored similarly

within their group, we perform a one-way ANOVA on the test scores, using as discriminative

value the corresponding perspective (central, left or right) or refocused (front or back) view.

Figure 3.3 and Tables 3.3 and 3.4 show the results of the analysis. As made clear by the high

p-values (0.3071 and 0.341 for the perspective and refocused views, respectively), the scores

assigned to test contents rendered through different perspective and refocused views were

statistically equivalent at 1% significance level. Thus, only one representative of each group

could have been used in the test, sensibly reducing the complexity and length of the evaluation,

without causing any distruption in the collected scores. Results from one-way ANOVA applied

on the reference data show similar trends, reporting p-values well above the significance

threshold (p = 0.0166 and p = 0.772 for perspective and refocused views, respectively).

Once the correlation within the groups of views has been analysed, we investigate whether

there is any difference to be found between the two groups. Figure 3.4 shows the comparison
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(a) Central vs left perspective view (b) Central vs right perspective view

(c) Right vs left perspective view (d) Front vs back refocused view

Figure 3.2 – Comparison between MOS values for different perspective views and different
refocused views, for test contents (blue) and respective references (orange), with relative linear
fitting. The dashed black line represents the y = x function.

between the MOS values assigned to all the perspective views, with respect to the MOS

values associated with the refocused views. As showed in the plot, the vast majority of points

fall below the y = x line, signifying that the scores assigned to the perspective views were

steadily higher than their refocused counterpart. Interestingly enough, the same trend can be

observed not only for the test contents, but for the references as well. Despite being trained

on considering only the differences between test and reference images, subjects consistantly

gave lower ratings to both test and reference contents when presented with refocused views,

whereas for perspective views the ratings were usually higher. Results from the one-way

ANOVA, summarised in Tables 3.5 and 3.6, confirm that the two groups have statistically

significant differences (p = 1.78763e−25 and p = 3.06596e−121 for test and reference contents,

respectively).

In order to assess the relevance of each coding condition on the set of scores, we perform multi-
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(a) Perspective views (b) Refocused view

Figure 3.3 – Boxplot analysis of the raw scores assigned to each perspective and refocused
view.

Table 3.3 – One-way ANOVA on the raw scores given to test contents rendered through per-
spective views.

SumSq DF MeanSq F p-value

Perspective views 3.3 2 1.63249 1.18 0.3071

Error 10148.4 7341 1.38243

Table 3.4 – One-way ANOVA on the raw scores given to test contents rendered through refo-
cused views.

SumSq DF MeanSq F p-value

Refocused views 1.15 1 1.1489 0.91 0.341

Error 6199.85 4894 1.26683

way ANOVA on the test and reference scores, considering two-factor interactions. We first

consider the scores assigned to perspective and refocused views separately. Tables 3.7, 3.8, 3.9

and 3.10 show the results of the analysis. As seen before, the groups fall above the 1% sig-

nificance threshold (p = 0.1081 and p = 0.0156 for scores assigned to rendered perspective

views in test and reference contents, respectively, whereas for reference views the results are

p = 0.2273 and p = 0.7686 for test and reference contents, respectively). Among the first order

interactions, it is worth mentioning that the interaction between contents and refocused views

is significant for both test and reference contents, meaning that particular combinations of

the two influenced how the stimuli were scored.
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Figure 3.4 – MOS values for perspective views vs MOS values for refocused views, for test
contents (blue) and respective references (orange), with relative linear fitting. The dashed
black line represents the y = x function.

Table 3.5 – One-way ANOVA on the raw scores given to test contents, divided by type of view.

SumSq DF MeanSq F p-value

Perspective and refocused views 146 1 146.046 109.3 1.78763e−25

Error 16352.7 12238 1.336

Table 3.6 – One-way ANOVA on the raw scores given to reference contents, divided by type of
view.

SumSq DF MeanSq F p-value

Perspective and refocused views 373.88 1 373.878 560.71 3.06596e−121

Error 8160.21 12238 0.667

Finally, we perform multi-way ANOVA on the entire set of scores, considering both test and

reference contents simultaneously. Table 3.11 summarises our findings. As can be seen, the

scores assigned to different views are to be considered significantly different in a statistical

sense. Moreover, the interaction between contents and views and codecs and views is sta-

tistically significant. The latter is especially important, because it signals that the choice of

rendering parameters can influence how different codecs are assessed, indipendently of the
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Table 3.7 – Multi-way ANOVA (interaction model) on the raw scores given to test contents
(perspective views only).

SumSq DF MeanSq F p-value

Contents 658.3 5 131.651 179.48 0
Codecs 1935.1 5 387.015 527.63 0
Bitrates 1370.7 3 456.911 622.92 0
Perspective views 3.3 2 1.632 2.23 0.1081
Contents*Codecs 65.7 25 2.627 3.58 0
Contents*Bitrates 45.6 15 3.038 4.14 0
Contents*Perspective views 9.5 10 0.953 1.3 0.224
Codecs*Bitrates 738.4 15 49.225 67.11 0
Codecs*Perspective views 7.3 10 0.729 0.99 0.4459
Bitrates*Perspective views 2.2 6 0.372 0.51 0.8031

Error 5315.6 7247 0.733

Table 3.8 – Multi-way ANOVA (interaction model) on the raw scores given to reference contents
(perspective views only).

SumSq DF MeanSq F p-value

Contents 50.6 5 10.1204 22.23 0
Codecs 12.12 5 2.424 5.32 0.0001
Bitrates 0.98 3 0.3269 0.72 0.541
Perspective views 3.79 2 1.8956 4.16 0.0156
Contents*Codecs 14.21 25 0.5686 1.25 0.1822
Contents*Bitrates 2.02 15 0.1348 0.3 0.9959
Contents*Perspective views 5.95 10 0.5947 1.31 0.2203
Codecs*Bitrates 2.23 15 0.1486 0.33 0.9929
Codecs*Perspective views 4.65 10 0.4655 1.02 0.421
Bitrates*Perspective views 1.73 6 0.2888 0.63 0.7028

Error 3298.92 7247 0.4552
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Table 3.9 – Multi-way ANOVA (interaction model) on the raw scores given to test contents
(refocused views only).

SumSq DF MeanSq F p-value

Contents 325.74 5 65.149 82.7 0
Codecs 981.81 5 196.361 249.25 0
Bitrates 602.85 3 200.95 255.07 0
Refocused views 1.15 1 1.149 1.46 0.2273
Contents*Codecs 42.09 25 1.684 2.14 0.0008
Contents*Bitrates 30.82 15 2.055 2.61 0.0006
Contents*Refocused views 22.36 5 4.471 5.68 0
Codecs*Bitrates 393.11 15 26.207 33.27 0
Codecs*Refocused views 7.06 5 1.411 1.79 0.111
Bitrates*Refocused views 2.29 3 0.764 0.97 0.406

Error 3791.72 4813 0.788

Table 3.10 – Multi-way ANOVA (interaction model) on the raw scores given to reference
contents (refocused views only).

SumSq DF MeanSq F p-value

Contents 43.8 5 8.7598 9.28 0
Codecs 101.15 5 20.2309 21.43 0
Bitrates 2.11 3 0.7045 0.75 0.5244
Refocused views 0.08 1 0.0817 0.09 0.7686
Contents*Codecs 14.35 25 0.5739 0.61 0.9363
Contents*Bitrates 5.21 15 0.3472 0.37 0.9867
Contents*Refocused views 38.01 5 7.6018 8.05 0
Codecs*Bitrates 6.38 15 0.4254 0.45 0.9639
Codecs*Refocused views 7.1 5 1.4209 1.51 0.1846
Bitrates*Refocused views 1.16 3 0.3878 0.41 0.7453

Error 4543.63 4813 0.944
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Table 3.11 – Multi-way ANOVA (interaction model) on the raw scores given to test and reference
contents, for all rendered views.

SumSq DF MeanSq F p-value

Contents 544.6 5 108.922 89.47 0
Codecs 1151.1 5 230.23 189.12 0
Bitrates 917.8 3 305.921 251.3 0
Views 497.7 4 124.435 102.22 0
Contents*Codecs 71.9 25 2.876 2.36 0.0001
Contents*Bitrates 42.4 15 2.827 2.32 0.0026
Contents*Views 78.4 20 3.922 3.22 0
Codecs*Bitrates 591 15 39.398 32.36 0
Codecs*Views 50.2 20 2.511 2.06 0.0035
Bitrates*Views 15.5 12 1.288 1.06 0.3915

Error 29648.9 24355 1.217

bitrate (at p = 0.3915, the interaction between bitrates and views is not significant).

Results show that, within the same rendering group, different parameters do not lead to

significantly different scores, both in test and reference contents. Thus, it is unnecessary to

test different rendering parameters within the same group, as it increases the complexity of

the test without bringing any added value. On the other hand, different types of rendering,

such as perspective and refocused rendering, lead to statistically different results in both test

and reference contents. In particular, refocused contents were consistently rated lower than

their perspective counterpart. This could suggest that selecting only one of the two types of

rendering could lead to biases in the way scores are distributed.

One straightforward conclusion from the analysis reported in this section would be to select

the rendering parameters as to have only one view per type of rendering. However, using

only one rendering parameter per group could lead to unwanted effects. For example, using

only one perspective view to assess the quality of the entire light field content could be a

feasible solution if the compression artifacts are homogeneously distributed among the views

- that is, if the compression algorithm affects different views in equal measure. If that is

not the case, selecting which view should be used in the test may become a delicate task.

Indeed, a wrong selection of rendering parameters can favor or penalize certain algorithms

or solutions. Moreover, compression solutions might be engineered to offer the best quality

for the rendering parameters selected for the test, disregarding the quality of others. Finally,

results obtained by assessing only few rendering parameters might be hard to generalize.

In conclusion, although it is theoretically possible to use single-image methodologies to assess

light field contents, it is discouraged due to the number of contraindications associated with

it, which might lead to biased results. Increasing the number of rendering parameters is not

guaranteed to produce corresponding diversity in the scores; thus, its advantages are definitely
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outweighted by the increased length and cost it requires. On the other hand, using only a few

rendering parameters could be proven ill-advised for certain compression algorithms, and

could be susceptible to ad-hoc engineering to achieve the best results at the expenses of the

general quality of the content. It is preferable to combine several rendering parameters in

one single stimulus to be assessed, for example by employing a pre-recorded animation or by

using an interactive setup. We will explore both options in the next section.

3.2 Comparison of passive and interactive methodologies

One of the most exciting properties of light field imaging is the possibility either to visualize

the acquired image data directly, or to produce new visual effects (e.g. change of perspective,

refocus, change in DOF, etc.) of the captured scene prior to display. However, as we have

asserted before, the abundance of rendering modalities for this type of content poses several

challenges in assessing its visual quality. In our previous section, we have presented how

different variations of rendered views do not always correspond to significantly different

ratings. Moreover, we have showed that separate visual effects, such as change of perspective

and change of focal point, can lead to important discrepancies in the perceptual quality, even

in the absence of compression distorsions.

Considering that evaluating single rendered views implies that a large number of stimuli will

be tested, thus increasing the length of the test and causing fatigue on subjects, it is more

efficient to employ methodologies that enable global assessment of quality of experience. This

can be implemented either with an interactive setup, which would allow to engage with the

contents in a flexible and intuitive way, or with an automatic presentation of rendered views

in form of an animation, which would show different rendered views of the light field content

under test. Both approaches have the benefit of reducing the number of stimuli to be tested,

while allowing evaluation of the light field content as a whole.

The automatic presentation has been favored by several publications in literature, which

employ it to evaluate the quality of light field contents in the presence of various artifacts.

Paudyal et al. study the effect of watermarking on light field rendering, performing a test using

a circular animation of perspective views [Paudyal et al., 2015]. Perra et al. analyse how light

field subsampling affects the perceived quality of refocused views, which are presented in an

animated fashion [Perra et al., 2018]. Battisti et al. compare several visualization techniques,

as well as different framerates, for light field quality assessment, concluding that horizontal

scan is to be preferred [Battisti et al., 2018]. The interactive assessment, on the other hand,

is favoured by Shi et al., who implement an interactive framework to perform visual quality

assessment of light field images on 3D screens [Shi et al., 2018].

Advantages and drawbacks can be drawn for both approaches. As we have mentioned in the

introduction to this chapter, interactivity represents the most natural way for users to engage

with the content, whereas a passive approach such as the animated presentation reduces the

intriguing features of light field photography to a traditional video content. On the other hand,
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(a) Bikes (b) Stone_Pillars_Outside (c) Fountain_&_Vincent_2 (d) Friends_1

Figure 3.5 – Central perspective image from each content used in our experiment. ©2017 IEEE

Table 3.12 – Values of refocusing slopes for each content. ©2017 IEEE

Slopes

Content 1 2 3 4 5 6 7 8 9 10 11

Bikes -10 -8 -6 -4 -2 0 2 4 6 8 10
Stone_Pillars_Outside -10 -8 -6 -4 -2 0 2 4 6 8 10
Fountain_&_Vincent_2 -10 -8 -6 -4 -2 0 2 4 6 8 10
Friends_1 -5 -4 -3 -2 -1 0 1 2 3 4 5

Table 3.13 – Test environments and specifications. ©2017 IEEE

Approach Environment No. subjects Methodology
No. perspective

views
No. refocused

views
fps Median age

Interactive
Controlled
lab setting

24 DSIS 169 11 - 25

Passive
Semi-controlled
crowdsourcing

24 DSIS 97 11 30 22

with the former approach there is no guarantee that every user will experience the content in

the same, reproducible way; as every subject freely chooses what rendered image to visualize

and for how long, more variability is added in the test. Conversely, the passive approach

ensures that every subject undergoes the same procedure, leading to a uniform assessment.

In this section, we compare results of subjective assessments of visual quality obtained by using

two methodologies, one that enforces interaction with the content, and one that favors an

automated presentation. For the first methodology, a controlled lab environment was adopted,

while for the second methodology, due to time and costs constraints, a crowdsourcing tool

was deployed. In order to perform a meaningful comparison between the two methodologies,

five compression solutions were selected from the literature. For a comprehensive overview of

each solution and a thorough comparison through both objective and subjective means, we

refer the readers to Chapter 7.
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Table 3.14 – Summary of compression schemes. ©2017 IEEE

Proponent Description

P01 Lenslet image compressed using HEVC intra (software x265).

P02
Lenslet image compressed using HEVC intra
with LLE and SS (software HM-14.0) [Monteiro et al., 2016].

P03
Lenslet image compressed using intermediate transformation
to perspective views and HEVC (software JEM 2.0) [Liu et al., 2016].

P04
Chroma subsampling of the lenslet image and compression of perspective
views through pseudo-temporal sequence using HEVC (software x265).

P05
Compression of perspective views through pseudo-temporal sequence
using HEVC (software x265).

3.2.1 Experimental test design

This section describes how the subjective evaluations were designed. More specifically, the

creation of the stimuli for both tests is outlined. A description of the interactive subjective

methodology, along with the testing environment, is presented. Then, the passive subjective

methodology is described in details. A summary of the specifications for the two methodolo-

gies can be found in Table 3.13.

Data preparation

Four light field imageswere selected from the aforementioned EPFL light field image dataset,

namely contents Bikes, Stone_Pillars_Outside, Fountain_&_Vincent_2 and Friends_1 [Řeřábek

and Ebrahimi, 2016]. Thumbnails for each content are depicted in Figure 3.5. Following ITU-R

Recommendation BT.500-13 [ITU-R BT.500-13, 2012], the images were carefully selected in

order to provide a wide range of scenarios, including details that would prove critical for the

compression algorithms.

The lenslet images were processed using the Light Field MATLAB toolbox [Dansereau et al.,

2013, 2015] to obtain the collection of perspective views needed for the subjective tests.

Additionally, eleven refocused images were created for each content, using a modified version

of the toolbox function LFFiltShiftSum. For our tests, it was decided to sum images from index

3 to index 13 (11×11 images) to have a larger DOF than that obtained by shifting and summing

all of the perspective views. The values of the slopes used to shift the perspective views are

summarized in Table 3.12. The slopes were selected to assure gradual transition between

refocusing on the foreground and on the background with respect to semantically relevant

objects in each content.

The uncompressed reference was obtained by preprocessing the raw sensor data through

devignetting, demosaicing, clipping to 8 bits, transforming to a collection of perspective views
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and applying color and gamma corrections. The reference was obtained from the lenslet

image in RGB 444, without any chroma subsampling. This reference was selected to have

a proper comparison with acquisition data obtained with minimal pre-processing. For this

reason, chroma subsampling was not applied on the reference, since it alters the data.

Five compression algorithms were used to create the data to evaluate the two methodologies.

Three anchors were created by the authors using HEVC encoding (x265 implementation),

whereas two others were taken from literature [Monteiro et al., 2016, Liu et al., 2016]. Each

compression scheme was given a label for easier identification. A summary of the compression

schemes can be found in Table 3.14. The compression algorithms were evaluated on four

bitrates (corresponding to four compression ratios), namely R1 = 1 bpp (10 : 1), R2 = 0.5 bpp

(20 : 1), R3 = 0.25 bpp (40 : 1), R4 = 0.1 bpp (100 : 1). The compression ratios were computed as

ratios between the size of the uncompressed raw images in 10bit precision and the size of the

compressed bitstreams.

Interactive methodology

To perform the interactive visual assessment, a methodology for evaluation of plenoptic

content was selected [Viola et al., 2016b]. The methodology is based on DSIS [ITU-R BT.500-13,

2012].

Participants were asked to interact with the light field images and rate the level of impairments

of the test light field image with respect to the reference, on a scale from 1 (Very annoying)

to 5 (Imperceptible). Each light field image was presented together with the uncompressed

reference in a side-by-side fashion. The position of the reference was set to either left or right

for each experiment, and participants were informed about its location on the screen. For

each stimulus, the central perspective view image from the light field image was displayed.

By clicking inside the displayed image and dragging the mouse, the other perspective views

from the light field image were accessed and displayed. Each image was displayed in its

native resolution of 625×434 pixels. A total of 13×13 perspective views were accessible. The

refocused views were accessible through a slider shown at the bottom of each stimulus.

To avoid the involuntary influence of external factors and to ensure the reproducibility of

results, the laboratory for subjective video quality assessment was set up according to ITU-R

Recommendation BT.500-13 [ITU-R BT.500-13, 2012]. Professional Eizo ColorEdge CG301W

30-inch monitors with native resolution of 2560×1600 pixels were used for the tests. The

monitors were calibrated using an i1Display Pro color calibration device according to the

following profile: sRGB Gamut, D65 white point, 120 cd/m2 brightness, and minimum black

level of 0.2 cd/m2. The room was equipped with a controlled lighting system that consisted of

neon lamps with 6500 K color temperature, while the color of all the background walls and

curtains present in the test area was mid grey. The illumination level measured on the screens

was 15 lux. The distance of the subjects from the monitor was approximately equal to 7 times

the height of the displayed content, conforming to requirements in ITU-R Recommendation
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Table 3.15 – Selected settings for AVC coder for passive methodology. ©2017 IEEE

-r 30 -s <size> -f rawvideo -pix_fmt yuv420p -i <input> -c:v libx264 -profile:v high
-x264opts no-scenecut:no-deblock:pass=1 -b:v 8M tmp.mp4
-r 30 -s <size> -f rawvideo -pix_fmt yuv420p -i <input> -c:v libx264 -profile:v high
-x264opts no-scenecut:no-deblock:pass=2 -b:v 8M <output>

Figure 3.6 – Ordering of the views for animation for passive methodology. ©2017 IEEE

BT.2022 [ITU-R BT.2022, 2012].

Before the experiments, a training session was organized to allow participants to get familiar

with artefacts and distorsions in the test images. Five training samples were manually selected

by expert viewers. The training samples were created by compressing other content on various

bitrates. The content used for the training was selected from the same light field image

database used for the test images [Řeřábek and Ebrahimi, 2016]. The training samples were

presented along with the uncompressed reference, exactly as they were shown in the tests.

The experiment was split into two sessions. In each session, 40 stimuli were shown side by side

with the uncompressed reference, corresponding to approximately 20 minutes per session.

The display order of the stimuli was randomized, and the same content was never displayed

twice in a row. Each subject took part in all the sessions, thus evaluating the entire set of

stimuli. A break of ten minutes was enforced between the sessions to avoid fatigue. Before

the test, one dummy sample was inserted to ease the participants into the task. The resulting

scores from dummy stimuli were not included in the results.

A total of 24 subjects (19 males and 5 females) participated in the experiment, for a total of 24

scores per stimulus. Subjects were between 18 and 35 years old, with an average of 24.79 and

a median of 25 years of age. All subjects were screened for correct visual acuity with Snellen

charts, and color vision using Ishihara charts.
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Passive methodology

The passive visual assessment of quality was carried on using a methodology based on DSIS

[ITU-R BT.500-13, 2012]. To perform the tests, the QualityCrowd 2 framework [Keimel et al.,

2012] was used. However, it should be noted that all the participants performed the tests in the

same environment at the same time, with equal lighting conditions, using the same display

model and the same screen resolution. The participants were shown the light field content as

a video sequence navigating between the perspective and the refocused views. Each stimulus

was displayed alongside with the uncompressed reference, in a side by side fashion. The

subjects knew in advance on which side of the screen the reference was displayed.

Due to distortions caused by the lenslet structure, several perspective views presented artefacts

independent from the coding procedure, and thus had to be discarded. Only a subset of 97

out of 225 perspective views was chosen to be displayed, in order not to affect the rating. Ten

perspective views per second were displayed, to ensure a smooth transition of the different

views. The perspective views were accessed from top to bottom and from left to right and right

to left in alternate order (see Figure 3.6). At the end of the animation of the perspective views,

the eleven refocused views were displayed with a framerate of four refocused views per second,

going from foreground to background and from background to foreground. The animation

setup was chosen and validated by expert viewers in order to mimic the parallax effect, as well

as to mimic the refocusing effect that occurs when trying to change the focal point. The total

length of the animation for each stimulus was 14 seconds. Since there is no browser video

plugin capable of reliable real-time decoding and displaying for HEVC, the animations were

encoded with AVC. A two-pass encoding was used and the deblocking filter was disabled to

ensure transparency and to preserve the original blockiness artefacts when encoded at low bit

rates. Expert viewing session conducted prior to the main subjective assessment concluded

that the AVC video encoding was visually lossless, and thus would not influence in any way

the final scoring. Selected settings for AVC coder are summarised in Table 3.15.

Test subjects were asked to rate the level of impairment of the test stimuli when compared to

the uncompressed references. The rating was performed on a scale from 1 (Very annoying) to 5

(Imperceptible). Before the experiment, a training session was organized to allow participants

to get familiar with artefacts and distorsions in the test images. Five training samples among

the compressed stimuli were manually selected by expert viewers. To help subjects localize and

identify compression artefacts in the fast-paced video, the same content used in the test was

selected for the training. The training samples were presented along with the uncompressed

reference, exactly as they were shown in the test.

The experiment was split into two sessions. In each session, 40 stimuli were shown side by side

with the uncompressed reference, corresponding to approximately 20 minutes per session.

The display order of the stimuli was randomized, and the same content was never displayed

twice in a row. Each subject took part in all the sessions, thus evaluating the entire set of

stimuli. A break of ten minutes was enforced between the sessions to avoid fatigue.
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A total of 24 subjects (22 males and 2 females) participated in the experiment, for a total of 24

scores per stimulus. Subjects were between 18 and 35 years old, with an average of 22.79 and a

median of 22 years of age.

3.2.2 Statistical analysis

Outlier detection and removal was performed on the results, independently for each method-

ology, according to the ITU Recommendations [ITU-R BT.500-13, 2012]. One outlier was

detected in results obtained using the interactive methodology, whereas no outlier was found

in the results from the passive methodology. This led to 23 scores per stimulus for the first

method, and 24 scores per stimulus for the second. After outlier removal, the MOS was com-

puted for each stimulus, independently for each methodology. The corresponding 95% CIs

were computed assuming a Student’s t-distribution.

Following the ITU Recommendations [ITU-T P.1401, 2012], several fittings were applied to the

MOS values from the two different methodologies. In particular, first order and third order

fittings were used to compare the MOS values. Root Mean Square Error (RMSE), Pearson

Correlation Coefficient (PCC), Spearman’s Rank Correlation Coefficient (SRCC) and Outlier

Ratio (OR) were computed for accuracy, linearity, monotonicity and consistency, respectively.

A multiple comparison test was performed at a 5% significance level on the raw scores, to

determine, for each stimulus, whether the MOS values obtained with the two methodologies

were significantly different, and the percentage of correct estimation, underestimation and

overestimation were computed. Additionally, the classification errors were computed using the

same multiple comparison test to see if the results obtained with the two methodologies lead,

for each pair of stimuli, to the same conclusions [ITU-T J.149, 2004]. In this case, three types

of error can be distinguished: false ranking, false differentiation and false tie. False ranking is

the most offensive error, and occurs when the first methodology says that situation i is better

than situation j , whereas the second methodology says the opposite. False differentiation

occurs when the first methodology says that situation i and j are different, whereas the second

methodology says they are the same. False tie occurs when the first methodology says two

situations are the same, whereas the second methodology says they are different.

Finally, one-way and multi-way ANOVA tests were performed to assess the influence of the

methodology on the results, and in particular whether the two methodologies lead to signifi-

cantly different results.

3.2.3 Results and discussion

Figure 3.7 shows the scatter plots comparing the MOS values obtained with the two tested

methodologies. On the right, the horizontal and vertical bars represent the CIs corresponding

to results obtained with interactive and passive methodologies, here denominated I and P ,

respectively. To improve visualization, the points are colored based on compression ratio or
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Table 3.16 – Performance indexes. ©2017 IEEE

[àMOSP , MOSI ]

PCC SRCC RMSE OR Correct Estimation Correct Decision False Ranking False Differentiation False Tie

No fitting 0.8878 0.8876 0.3791 3.75% 100% 84.56% 0.00% 13.04% 2.41%
Linear fitting 0.8878 0.8876 0.2797 0.00% 100% 89.37% 0.00% 3.26% 7.37%
Cubic fitting 0.8957 0.8876 0.2708 0.00% 100% 88.80% 0.00% 0.82% 10.38%

[àMOSI , MOSP ]

PCC SRCC RMSE OR Correct Estimation Correct Decision False Ranking False Differentiation False Tie

No fitting 0.8878 0.8876 0.3791 3.75% 100% 84.56% 0.00% 2.41% 13.04%
Linear fitting 0.8878 0.8876 0.3468 0.00% 100% 86.84% 0.00% 3.26% 9.91%
Cubic fitting 0.8895 0.8876 0.3444 0.00% 100% 89.97% 0.00% 6.42% 3.61%
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(a) MOSI as function of MOSP . (b) MOSP as function of MOSI .

Figure 3.7 – Comparison of MOS values obtained with the different methodologies, along with
linear and cubic fittings. Points are differentiated by compression ratio (a) and by content (b).
©2017 IEEE

content. Linear and cubic regressions are shown for both comparisons. Table 3.16 shows the

performance indexes computed on the data. The indexes are computed on the data pairs

[àMOS A , MOSB ] where A,B = I ,P . àMOS A are the MOS scores obtained with methodology A

with no fitting, linear fitting and cubic fitting, and MOSB are the MOS scores obtained with

methodology B .

Ideally, a 45◦ line would indicate that the two methodologies give the same MOS values for the

same condition. However, as it is visible in Figure 3.7, the points are not aligned along the y = x

line. In particular, linear regression performed on MOSP has a slope of 0.716 and an intercept

of 0.832, which indicates that, on average, for the same stimulus subjects gave a higher rating

when presented with passive methodology as opposed to interactive methodology. This is

confirmed by the results of boxplot analysis on the two methodologies, which shows that, on

average, results obtained with the passive methodologies tend to have higher ratings. This

tendency can be explained considering that viewers are presented with a carefully selected

subset of perspective views in the passive experiments, which are less prone to lenslet-based

artefacts, as opposed to the wider number of perspective views subjects can access in the

interactive experiments.

Cubic regression has a sigmoid shape in both àMOSP and àMOSI , as confirmed by values

obtained performing PCC and SRCC, which indicate a strong but not perfect linear correla-

tion. Low values of RMSE and OR confirm the correlation between the two methodologies.
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Furthermore, there is no over- or under-estimation, as proven by correct estimation being

100%, which indicates that, for the same stimulus, there is no statistically significant difference

between the scores obtained with one or the other methodology.

One-way ANOVA performed on stimuli grouped only by methodology shows that results

obtained with the two methodologies, although highly correlated, are statistically significantly

different (p = 0.0005). To further investigate the influence of the coding parameters on the

scores, we performed multi-way ANOVA on the results, separately for different compression

ratios, contents and codecs, respectively. Results show that, for compression ratios R2 and

R4, the two methodologies are statistically equivalent at 5% significance level, whereas for the

remaining compression ratios they are statistically significantly different (p = 0.008 and p =
0.0046 for R1 and R3, respectively). Thus, the impact of the methodology on the resulting score

does not appear to be driven by the compression ratio. For content Bikes, the two methodology

are statistically equivalent, whereas for the remaining contents the two methodologies are

statistically different (p = 0, p = 0.044 and p = 0.0131 for contents Stone_Pillars_Outside,

Fountain_&_Vincent_2 and Friends_1, respectively), meaning that the choice of methodology

could have an impact on how the contents are rated. Finally, multi-way ANOVA analysis on

different codecs shows that P5 is the only codec for which the two methodologies provide

statistically different results (p = 0).

The classification errors show that there is no false ranking, the most offensive error. However,

results from false differentiation performed on [àMOSP , MOS I ] with no fitting show that, on

13.04% of cases, passive methodology considers two stimuli as being statistically significantly

different, whereas the interactive methodology does not differentiate them. The percentage

thus shows that the passive methodology has more discriminating power when compared

to the interactive methodology. This is confirmed by comparing the CIs obtained with the

two methodologies: on average, CIs obtained with passive methodology are 8.66% smaller. In

other words, the standard error obtained with interactive methodology on 23 subjects would

be equivalent to the standard error obtained with passive methodology on 20.13 subjects.

Conversely, when using the interactive methodology, 27.42 subjects would be needed to obtain

the same standard error provided by the passive methodology on 24 subjects.

It should be noted that, whereas the interactive evaluation has been conducted in a lab setting

compliant with the guidelines set by ITU-R Recommendation BT.500-13 [ITU-R BT.500-13,

2012], the passive evaluation has been carried out using crowdsourcing, which is usually

associated with less reliable scores. However, several studies have proven the efficacy of

crowdsourcing-based tests [Ribeiro et al., 2011, Saupe et al., 2016]. Moreover, while crowd-

sourcing is usually linked to larger standard errors, due to variability of conditions, the opposite

has been observed in our experiment. It shows that the passive approach contributed to lower

the variance of the scores, in spite of the impact crowdsourcing might have in increasing the

variance of the results.
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3.3 Conclusions

In this chapter we presented several methodologies for visual quality assessment of light

field contents using image-based rendering. We first showed that deploying single-image

evaluation methodologies, which considerably increases the number of stimuli to be assessed,

does not lead to a diversification in scores, and if not properly organised can lead to biased

ratings. Concluding that combining several renderings in one stimulus would be preferable,

we then proceeded to compare two methodologies for light field contents: one that allows

interaction with the rendered images to favor engagement with the contents, and another

that uses a pre-recorded animation of the rendered views to ensure reproducibility. Results

showed that, although the two approaches are strongly correlated, they are not statistically

equivalent. In particular, the latter leads to smaller CIs and thus ensures more discriminative

power among the tested solutions.

Our contributions in this chapter can be recapped as follows:

• We present three different subjective methodologies for visual quality assessment of

light field contents. We present advantages and drawback for each of them before

proceeding to analyse them in detail.

• We perform an in-depth analysis of single-image assessment for light field contents

using widely-used statistical tools. In particular, we test whether different types of ren-

dering (in our case, change of perspective and change of focal point) lead to statistically

different scores, and if testing a variety of rendering parameters is advisable. We prove

that, within each type of rendering, no statistical difference can be discerned. Thus, it is

sufficient to evaluate only one rendered view from each group, as the scores are statisti-

cally equivalent. However, between different types of rendering statistically significant

differences can be found. We underline that such differences are present in both test

and reference contents, thus they cannot be attributed to the effect of compression

artifacts.

• We conclude that single-image assessment is ill-suited for the evaluation of light field

contents, as certain types of rendering can affect the final ratings. As multiple renderings

of the same types were proven redundant, only one view from each category of rendering

should be selected to optimize the length of the test; however, choosing which view

should be evaluated can be delicate, as separate views could be affected differently by

coding artifacts. Thus, aggregating multiple renderings in the same stimulus seem to be

a more promising scenario.

• We present two methodologies for light field contents that combine several rendered

views in order to reduce the number of stimuli to be tested. The first allows the users to

interact with the light field content, changing the rendering parameters as they please.

The second presents them with an animated sequence of several rendered views, which

can be passively visualised and scored as a traditional video content. We perform a test
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to compare the two methodologies, showing that they are highly correlated, although

not statistically equivalent, and lead to similar ratings. However, we found that the

interactive approach leads to larger CIs in the corresponding scores, due to lack of

control over the number of views that each participant visualises. Conversely, the

passive approach, although conducted in a less controlled environment, showed a

significant reduction in CIs, and thus an increased discriminative power.

Our main recommendation would be to prefer a passive methodology when being able to

discriminate among several solutions is required. However, we want to remark that interac-

tion is a very desirable feature in light field quality assessment. Future design of evaluation

methodologies for light field contents should consider improving consistency for interactive

testings, for example by merging it with a passive approach, to ensure the same visualization

experience for all users, while still enabling interaction with light field contents.
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Image-based rendering of light field contents offers the possibility of changing the appereance

of the scene as it was captured from the acquisition device: the perspective can be changed,

the focal plane can be moved, shrinked or extended, and depth planes can be bypassed,

among other visual effects. Such a rich scene representation poses new challenges in assessing

the visual quality of the content.

Evaluation of visual quality and user experience plays a fundamental role in designing effective

and efficient compression solutions, as well as new rendering techniques. However, only few

publications are focused on discussion about subjective methodologies for light field content.

Some preliminary work has been performed on subjectively assess the quality of light field

contents on light field displays. Spatial resolution of back-projected displays has been investi-

gated by Kovacs et al. [Kovács et al., 2014]. In particular, the authors investigate how viewing

angle affects the perception of spatial resolution, along with the role played by motion parallax.

Darukumalli et al. investigate the relationship between zooming levels, region of interest and

subjective quality of light field contents, using ACR and DQR [Darukumalli et al., 2016]. Kara

et al. analyse the impact of angular resolution on the perception of light field content, first in a
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free movement scenario, and then with fixed observer position, using ACR [Kara et al., 2016,

2017b].

Light field displays, although commercially available, have not yet seen a widespread success,

mainly due to their cost and the requirements for room setup. On the other hand, image-based

rendering represents a way to engage with light field contents using legacy 2D displays, which

are widely available to consumers. However, few publications have been focusing on QoE for

image-based rendered light field contents.

The most natural way of experiencing the capabilities of light field image-based rendering is by

enabling interaction with the content in a real-time framework. The possibility of interaction

with the acquired content by changing the appearance of the scene has already been proven

as a desirable feature in mainstream social media, such as Instagram, Snapchat and Facebook.

However, as we showed in Chapter 3, the interactive methodology had less discriminative

power when compared to a passive approach, and leads in general to larger CIs.

In order to retain the discriminative power witnessed in passive approaches, while maintaining

the interactive features that define light field contents, a thorough analysis of user behaviour

when engaging with such content is needed. Although the subject has been investigated

in relation to stereoscopic or light field displays, no work has been presented on analysing

patterns in user interaction for image-based rendering.

Three main areas of impact can be identified regarding the analysis of user behaviour:

• Perceptual coding. Tracking user behaviour with light field contents leads to statistically

accurate knowledge on which rendered views composing the light field content are

perceptually meaningful and are more frequently accessed. This information can be

used when designing new compression algorithms based on perceptual features.

• Weighting of objective quality metrics. Currently available objective quality metrics

for light field contents, such as those used in ICIP 2017 Grand Challenge on Light Field

Coding [Viola and Ebrahimi, 2018a], give the same weight to all rendered views. A

weighted average based on relative frequency of access for every view could be more

effective in predicting subjective scores for new light field contents.

• Design of subjective methodologies. Interactive subjective methodologies have been

shown to be less discriminative than passive subjective methodologies, one of the main

reasons being that not all subjects are visualizing strictly the same content. Analysing

how users interact with the content will help designing new tests that incorporate user

behaviour, thus bridging the gap between interactive and passive subjective methodolo-

gies.

In this chapter, we present some preliminary results on analysis of user interaction for light

field visual quality assessment. To do so, we created a new open-source software for light field
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(a) Bikes (b) Danger_de_Mort (c)
Stone_Pillars_Outside

(d) Foun-
tain_&_Vincent_2

(e) Friends_1

Figure 4.1 – Central perspective view from each content used in the test.

quality assessment that allows users to freely engage with the content (see Annex B). The user

interaction data is recorded through a validating experiment, and it is subsequently analysed

in order to extract meaningful patterns in user behaviour.

4.1 Experiment design

4.1.1 Dataset preparation and description

For the experiment five light field contents, acquired with a Lytro Illum camera, were chosen

from EPFL light field image dataset [Řeřábek and Ebrahimi, 2016]. More specifically, contents

Bikes, Danger_de_Mort Stone_Pillars_Outside, Fountain_&_Vincent_2 and Friends_1 were

used in our experiments. Figure 4.1 depicts the thumbnail of the central perspective views

from each content.

Each 10bit raw lenslet image was devignetted, demosaiced, and transformed into an light field

data structure of perspective views using the Light Field toolbox v0.4 [Dansereau et al., 2013,

2015]. A total of 15×15 perspective views were created from the lenslet image, each having a

resolution of 625×434 pixels. The perspective views were subsequentially saved in ppm file

format, with 10 bits per color channel, to serve as reference.

Two codecs were adapted for compression of light field evaluated in the test. Both codecs

perform the compression on the perspective views, which were preemptively ordered in a

pseudo-temporal sequence. To be used as input for the compression algorithms, the perspec-

tive images were padded with black pixels, converted to YCbCr format and downsampled from

444 to 422, 10-bit depth. Then, they were arranged in a pseudo-temporal arrangement (see

Figure 4.2) and saved in yuv file format.

The first codec that was used to compress the pseudo-temporal sequence consisted in HEVC

Main10 profile. The software x265 was used to compress the sequence1. The full command

line used can be found in Table 4.1. The QPs were chosen to match the desired compression
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Figure 4.2 – Order of perspective views for pseudo-temporal sequence used for coding.

Table 4.1 – Selected settings for x265 Main10 coder.

--input < Input > --input-depth 10 --input-csp i422 --fps 30 --input-res < Width > × < Height >
--output < Output > --output-depth 10 --profile main422-10 --crf < QP >

Table 4.2 – QP chosen to encode all contents with HEVC.

Content R1 R2 R3 R4
Bikes 13 24 33 44
Danger_de_Mort 15 26 35 43
Stone_Pillars_Outside 14 23 30 40
Fountain_&_Vincent_2 14 24 32 43
Friends_1 12 21 29 40

Table 4.3 – Selected settings for VP9 coder.

--i422 --input-bit-depth=10 --profile=3 -w < Width > -h < Height > --target-bitrate=< bitrate>
--cq-level=0 --bit-depth=10 --codec=vp9 --fps=30000/1000 --best -o < Output > < Input >

ratios. Table 4.2 summarizes the values of different QP used in the test.

As a second codec, VP9 was used to compress the pseudo-temporal sequence2. The full

command line used can be found in Table 4.3. The target bitrate was chosen to match the

corresponding compression ratios defined below.

The test light field content was displayed together with the uncompressed reference in a

side-by-side fashion, using the proposed framework. Due to distorsions naturally occurring in

lenslet-based light field contents, some of the perspective views were deemed not suitable

1https://www.videolan.org/developers/x265.html
2https://www.webmproject.org/vp9/
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Table 4.4 – Values of refocusing slope for each content.

Slopes
Content 1 2 3 4 5 6 7 8 9 10 11
Bikes -10 -8 -6 -4 -2 0 2 4 6 8 10
Danger_de_Mort -10 -8 -6 -4 -2 0 2 4 6 8 10
Stone_Pillars_Outside -10 -8 -6 -4 -2 0 2 4 6 8 10
Fountain_&_Vincent_2 -10 -8 -6 -4 -2 0 2 4 6 8 10
Friends_1 -5 -4 -3 -2 -1 0 1 2 3 4 5

for visualization, since they would negatively bias subjects. Hence, only the central 9× 9

perspective views out of the 15×15 views were selected for the test. Both reference and test

contents were converted from ppm file format in 10 bits to png file format in 8 bits, due to

limitations of the display and the software.

For each stimulus, the central perspective view from the light field data structure was initially

displayed. By clicking inside either test or reference displayed image and dragging the mouse,

the other perspective views from the data structure were accessed and displayed. Each image

was displayed in its native resolution of 625×434 pixels. Additionally, eleven refocused images

of the central perspective view were created for each content, using a modified version of the

toolbox function LFFiltShiftSum that allows to change the DOF. For the test, it was chosen to

sum images from index 3 to index 13 (11×11 images) to have a DOF that is not too narrow,

while still showing the effects of refocusing. The values of the slopes are summarized in

Table 4.4. The refocused images were accessible through a slider shown between test and

reference. Additionally, users could access the refocused images by double clicking on the

point of the image they wished to see in focus. The slopes were selected so as to assure gradual

transition between refocusing on the foreground and on the background with respect to

semantically relevant objects in each content.

The codecs were evaluated on four bitrates, namely R1 = 0.75 bpp, R2 = 0.1 bpp, R3 = 0.02

bpp, R4 = 0.005 bpp. The compression ratios are computed as ratios between the size of the

uncompressed raw images in 10-bit precision (5368×7728×10 bits = 414839040 bits = 10 bpp)

and the size of the compressed bitstream.

4.1.2 Testing environment

To avoid the involuntary influence of external factors and to ensure the reproducibility of

results, the laboratory for subjective video quality assessment was set up according to ITU-R

Recommendation BT.500-13 [ITU-R BT.500-13, 2012]. A Samsung SyncMaster 2443 24-inch

monitor with native resolution of 1920×1200 pixels was used for the test. The monitor was

calibrated using an i1Display Pro color calibration device according to the following profile:

sRGB Gamut, D65 white point, 120cd/m2 brightness, and minimum black level of 0.2 cd/m2.
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Table 4.5 – Test environments and specifications.

Approach Environment No. contents No. codecs No. bitrates No. subjects Methodology
No. persp.

views
No. refoc.

views

Interactive
Controlled
lab setting

5 2 4 23 DSIS 81 11

The room was equipped with a controlled lighting system that consisted of neon lamps with

6500 K color temperature, while the color of all the background walls and curtains present in

the test area was mid grey. The illumination level measured on the screens was 15 lux. The

distance of the subjects from the monitor was approximately equal to 7 times the height of the

displayed content, conforming to requirements in ITU-R Recommendation BT.2022 [ITU-R

BT.2022, 2012].

4.1.3 Test methodology and planning

The selected methodology was based on DSIS [ITU-R BT.500-13, 2012]. The participants

were asked to interact with the light field contents and to rate the level of impairment of the

test light field content with respect to the reference, on a scale from 1 (Very annoying) to 5

(Imperceptible). Each content was presented together with the uncompressed reference in a

side-by-side fashion, in its native resolution of 625×434 pixels. The position of the reference

was fixed for each experiment, and the participants were made aware of its location on the

screen (either left or right).

Before the experiments, a training session was organized to allow participants to get familiar

with artifacts and distorsions in the test images. Four training samples were manually selected

by expert viewers. In order not to influence the results, the training samples were created by

compressing other contents on various bitrates. The content used for the training was chosen

from the same light field database used for the test images [Řeřábek and Ebrahimi, 2016]. The

training samples were presented along with the uncompressed reference, exactly as they were

shown in the test.

The test samples were randomly distributed among subjects. The same content was never

shown consecutively. Before the test, two dummy samples were inserted to ease the par-

ticipants into the task. The resulting scores from dummy stimuli were not included in the

results.

A total of 23 subjects (11 males and 12 females) participated in the experiment, for a total of 23

scores per stimulus. Subjects were between 18 and 35 years old, with an average of 22.27 and a

median of 22.05 years of age. All subjects were screened for correct visual acuity with Snellen

charts, and color vision using Ishihara charts. A summary of the specifications of the test can

be found in Table 4.5.
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4.2 Data processing and statistical analysis

This section describes how data was processed to obtained the results presented in next

section. Specifically, subsection 4.2.1 details how subjective scores were processed and ana-

lyzed, subsection 4.2.2 enlists the pre-processing and aggregation of user tracking data, while

subsection 4.2.3 presents the statistical analysis and cross-correlation of the results.

4.2.1 Subjective scores analysis

Outlier detection was performed according to the guidelines defined in ITU-R recommenda-

tion BT.500-13 [ITU-R BT.500-13, 2012]. One outlier was detected and the relative scores were

discarded, thus leading to 22 scores per stimulus. The MOS was computed for each coding

condition j (i.e., each content, codec and compression ratio) as follows:

MOS j = 1

N

N∑
i=1

mi , j , (4.1)

where N is the number of participants and mi j is the score for stimulus j by participant i .

The corresponding 95% CIs were computed. To determine whether the results yield statistical

significance, a one-sided Welch’s test at 5% significance level was performed on the scores,

with the following hypotheses:

H0 : MOS A ≤ MOSB

H1 : MOS A > MOSB ,

in which A and B are the codecs that are being compared. The test was performed for each

compression ratio and for each content. If the null hypothesis were to be rejected, then it

could be concluded that codec A performed better than codec B for the given content and

compression ratio at a 5% significance level.
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4.2.2 Tracking information analysis

The total number of seconds spent on each perspective and refocused view are aggregated for

each stimulus and for each subjects in matrices Pi , j and Ri , j , respectively:

Pi , j =



p1,1,i , j · · · p1,v,i , j · · · p1,V ,i , j
...

. . .
...

. . .
...

pu,1,i , j · · · pu,v,i , j · · · pu,V ,i , j
...

. . .
...

. . .
...

pU ,1,i , j · · · pU ,v,i , j · · · pU ,V ,i , j


,Ri , j =



r1,i , j
...

rs,i , j
...

rS,i , j


, (4.2)

where u = 1,2, . . . ,U and v = 1,2, . . . ,V are the indexes of each perspective view, s = 1,2, . . . ,S

is the index of each refocused view, i = 1,2, . . . , N indicates the subject and j = 1,2, . . . , M

indicates the stimulus.

The results were then aggregated to get the total number of seconds each subject spent on

each stimulus:

P̄i , j =
U∑

u=1

V∑
v=1

pu,v,i , j , (4.3)

R̄i , j =
S∑

s=1
rs,i , j , (4.4)

T̄i , j = P̄i , j + R̄i , j . (4.5)

To get the general trend for each stimulus, the mean was computed across all subjects:

P̂ j = 1

N

N∑
i=1

P̄i , j , (4.6)

R̂ j = 1

N

N∑
i=1

R̄i , j , (4.7)

54



4.3. Results and discussion

T̂ j = 1

N

N∑
i=1

T̄i , j . (4.8)

4.2.3 Correlation and validation analysis

Statistical analysis was performed on the subjective scores and the results obtained from the

tracking of user behaviour, to see whether the results obtained presented some correlation. In

particular, statistical analysis was performed between MOS j , which was used as ground truth,

and P̂ j , R̂ j and T̂ j , for a total of three comparisons. For simplicity, from now on we will refer

to P̂ j , R̂ j and T̂ j as tracking values.

Following the ITU-T Recommendation P.1401 [ITU-T P.1401, 2012], several fittings were applied

to the tracking values. In particular, first order and third order fittings were used to compare the

values. Absolute prediction error (RMSE), Pearson Correlation Coefficient (PCC), Spearman’s

Rank Correlation Coefficient (SRCC) and Outlier Ratio (OR) were computed for accuracy,

linearity, monotonicity and consistency, respectively.

In order to understand whether the tracking values could effectively be used as predictors

for MOS values, estimation and classification errors were computed. A multiple comparison

test was performed at a 5% significance level on the raw scores, to determine, for each stim-

ulus, whether the MOS values and the tracking values were significantly different, and the

percentage of correct estimation, underestimation and overestimation were computed. Un-

derestimation occurs when the MOS value predicted from the tracking values is significantly

lower than the true MOS value. Overestimation, on the other hand, occurs when the predicted

MOS value is significantly higher than the true value.

The classification errors were computed using the same multiple comparison test to see if

the results lead, for each pair of stimuli, to the same conclusions [ITU-T J.149, 2004]. In this

case, three types of errors can be distinguished: false ranking, false differentiation and false tie.

False ranking, the most offensive error, occurs when the ground truth says that situation j1 is

better than situation j2, whereas the predicted MOS obtained from tracking values say the

opposite. False differentiation occurs when the true MOS values say that situation j1 and j2

are the same, whereas the prediction from tracking results says they are different. False tie

occurs when the true MOS scores say two situations are different, whereas the predicted MOS

scores say they are the same.

4.3 Results and discussion

This section describes and discusses the results obtained in the evaluation campaign. More

specifically, subjective evaluation results are introduced in section 4.3.1. Section 4.3.2 presents

the insights provided by tracking of user behaviour, while section 4.3.3 details the correlation
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(a) Bikes (b) Danger_de_Mort (c) Stone_Pillars_Outside

(d) Fountain_&_Vincent_2 (e) Friends_1

Figure 4.3 – MOS vs bitrate for different contents, with respective CIs. The bitrate is shown in
logarithmic scale to improve readability.

and validation results.

4.3.1 Subjective evaluation results

Figure 4.3 shows the MOS against bitrate for all the contents under test, with respective CIs. It

can be observed that while the codecs have very similar performance on compression ratio

R1 and R2, some difference can be observed for compression ratios R3 and R4, where VP9

outperforms HEVC in some of the contents.

The observation is confirmed by the results obtained in Welch’s test, summarized in Table 4.6.

HEVC is never significantly better than VP9. For compression ratio R2, the two codecs are

statistically equivalent, whereas VP9 outperforms HEVC on one out of five contents for com-

pression ratio R1, two out of five contents for compression ratio R3, and three out of five

contents for compression ratio R4.
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Figure 4.4 – Total interaction time T̄i , j (in seconds) vs stimuli vs subjects.

Figure 4.5 – Total interaction time T̄i , j (in seconds) vs order of presentation of the stimuli for
each subject.

4.3.2 User tracking results

Figure 4.4 shows the total interaction time T̄i , j for each subject i and each stimulus j . It is

noticeable that some users engaged longer with the contents, while others spent on average

very little time interacting with the contents (see for example column 6 and 18).
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Table 4.6 – Number of contents for which the null hypothesis was rejected, for each compres-
sion ratio.

Codec R1 R2 R3 R4

HEVC 0 0 0 0
VP9 1 0 2 3

However, a clear trend can be observed among the stimuli. Users seem to spend less time with

contents compressed at compression ratio R4, as it is visible from the horizontal dark lines in

Figure 4.4. In particular, darker lines are present for contents compressed with HEVC at the

lowest compression ratio.

To see whether the order of presentation of the stimuli for each subject had any influence on

total interaction time T̄i , j , the total interaction time was displayed for every subject following

the presentation order (see Figure 4.5). Although progressive smaller values of interaction

time can be seen as the test progresses, no definite trend can be observed. Hence, it can be

concluded that the presentation order had little influence on the total time the users spent

interacting with the content. Subjects’ boredom and fatigue, along with repetitiveness of the

contents, did not have a definite impact on the total time they spent engaging with the stimuli.

Figures 4.6 and 4.7 show the average interaction time P̂ j , R̂ j and T̂ j , divided by content and by

compression ratio, for codec HEVC and VP9, respectively. The results show the trend already

observed in Figure 4.4: on average, users tend to interact more with higher bitrates (compres-

sion ratios R1 and R2), whereas for lower bitrates they tend to interact less (compression ratio

R4). The trend is visible for all type of interactions and for both codecs, although on average

people tend to spend more time on codec VP9 for compression ratio R4 than they do on codec

HEVC.

In general, results are more polarized for codec HEVC: users tend to interact more with content

compressed with HEVC at higher bitrates with respect to the VP9 counterpart, but they also

tend to interact less with content compressed with HEVC at lowest bitrate than they do with

the same content compressed with VP9. The average interaction time for codec VP9 is more

evenly distributed, although a bitrate-depended trend is still clearly visible (see Figure 4.7).

The average interaction time with perspective views and with refocused views, for both codecs,

follows an alternated trend: if users on average spent more time interacting with perspective

views for a certain content, they would consequentially spend less time interacting with

refocused views. The phenomenon is particularly evident for content Fountain_&_Vincent_2.

When compressed with codec HEVC at compression ratio R1, the content saw an increase

in interaction with refocused views, to the detriment of average time spent interacting with

perspective views. The opposite behaviour can be observed for codec VP9. However, the total
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(a) Interaction time for perspective
views.

(b) Interaction time for refocused
views.

(c) Interaction time for all views.

Figure 4.6 – Average interaction time or perspective views P̂ j (a), refocused views R̂ j (b), and
all views T̂ j (c), divided by content and by compression ratio, for codec HEVC.

(a) Interaction time for perspective
views.

(b) Interaction time for refocused
views.

(c) Interaction time for all views.

Figure 4.7 – Average interaction time or perspective views P̂ j (a), refocused views R̂ j (b), and
all views T̂ j (c), divided by content and by compression ratio, for codec VP9.

interaction time is quite similar between the two codecs (21.86 against 19.19 seconds).

A trend is also visible regarding the contents, at least when compressed using HEVC (see

Figure 4.6). The average interaction time with perspective views was generally higher for

contents Stone_Pillars_Outside and Friends_1, followed by Bikes. On the other hand, Foun-

tain_&_Vincent_2 and Danger_de_Mort were, on average, the contents for which the users

engaged the least when they needed to interact with perspective views. Interestingly enough,

when analysing interaction with refocused views, users engaged more with Fountain_&_Vincent_2

and Danger_de_Mort than they did with the other three contents. As a result, the total average

interaction time with all views shows that no visible trend is present for different contents.

4.3.3 Correlation and validation

Figure 4.8 shows the scatter plots comparing the MOS values to the average interaction time

for perspective views P̂ j , refocused views R̂ j , and all views T̂ j . To improve visualization, the

points were colored based on compression ratio. Figure 4.9 shows the same scatter plots

with respective CIs. In this case, points were colored based on the content. Linear and cubic
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(a) Interaction time for perspective
views vs MOS.

(b) Interaction time for refocused
views vs MOS.

(c) Interaction time for all views vs
MOS.

Figure 4.8 – Average interaction time for perspective views P̂ j (a), refocused views R̂ j (b), and
all views T̂ j (c), vs MOS. The points are differentiated by compression ratio.
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Table 4.7 – Performance indexes.

[P̂ , MOS]

PCC SRCC RMSE OR Correct Estimation Under Estimation Correct Decision False Differentiation False Tie

Linear fitting 0.9408 0.8704 0.4596 45.00% 100% 0.00% 87.69% 1.41% 10.90%
Cubic fitting 0.9613 0.8511 0.3736 30.00% 97.50% 2.50% 95.38% 4.62% 0.00%

[R̂, MOS]

PCC SRCC RMSE OR Correct Estimation Under Estimation Correct Decision False Differentiation False Tie

Linear fitting 0.8543 0.7677 0.7048 82.50% 100% 0.00% 89.74% 1.67% 8.59%
Cubic fitting 0.9161 0.7667 0.5436 57.50% 97.50% 2.50% 97.05% 2.95% 0.00%

[T̂ , MOS]

PCC SRCC RMSE OR Correct Estimation Under Estimation Correct Decision False Differentiation False Tie

Linear fitting 0.9462 0.8568 0.4387 45.00% 100% 0.00% 90.51% 2.82% 6.67%
Cubic fitting 0.9605 0.8255 0.3774 22.50% 97.50% 2.50% 96.15% 3.85% 0.00%
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(a) Interaction time for perspective
views vs MOS.

(b) Interaction time for refocused
views vs MOS.

(c) Interaction time for all views vs
MOS.

Figure 4.9 – Average interaction time for perspective views P̂ j (a), refocused views R̂ j (b), and
all views T̂ j (c), vs MOS, with respective CIs. The points are differentiated by content.

regressions are shown for all comparisons. Table 4.7 shows the performance indexes computed

on the data. The indexes are computed on data pairs [X̂ , MOS], in which MOS is the ground

truth, and X̂ = P̂ , R̂, T̂ are the average interaction time results after linear and cubic fitting.

Results from linear and cubic fitting confirm the trend already observed in the previous section.

In particular, lower MOS scores are associated with less interaction time on average, whereas

longer interaction time is associated with higher MOS scores, for P̂ j , R̂ j , and T̂ j . Results are

further confirmed by values obtained performing PCC and SRCC, which show a strong linear

correlation.

CIs associated with average interaction time also show that greater variations can be observed

for higher MOS scores (see Figure 4.9). As MOS scores decrease, the CIs tend to be smaller as

well. Larger CIs can be observed for R̂ j with respect to P̂ j and T̂ j .

Although R̂ displays linear correlation with MOS scores, accuracy and consistency are quite

low (OR = 82.50% and RMSE = 0.7048 for linear fitting). Indeed, the scatter plot presents a less

definite trend with respect to results obtained by P̂ , especially for compression ratios R1 and

R2 (see Figure 4.8 (a) and (b)). However, adding the results of the interaction with refocused

views to the results of the interaction with perspective views helps with both accuracy and

consistency (see Figure 4.8 (c) and Table 4.7).

Results from multiple comparison test show that correct estimation is achieved in 100% of

cases with linear fitting, and an under estimation of 2.50% is observable when using cubic

fitting. Moreover, false ranking, the most offensive error, is never present. Correct decision

is achieved on more than 95% of the cases when applying cubic fitting. In general, T̂ has

slightly better predictive power than P̂ (i.e., using only perspective views as opposed to using
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also refocused views). It also achieves better consistency and accurancy. It can be concluded

that, while the average time spent on refocused views alone cannot be used as a predictor for

MOS scores, adding it to the average time spent on perspective views improves the correlation

results.

Further validation is needed to confirm the predictive power of average interaction time for

subjective scores. However, using average interaction time as a predictor for MOS values lays

the basis for an implicit quality assessment methodology. One can envision such methodology

could be extremely useful in a near future, when plenoptic content will be available on social

media and tracking data can be collected anonymously from the natural interaction users

have with the content. The tracking data can then be used to predict the quality of the content

the users are engaging with, without asking for an explicit score.

4.4 Conclusion

In this chapter we analysed user interaction patterns in light field visual quality assessment.

Results showed that clear patterns can be seen in how users interact with the contents, and

that strong correlation can be observed between the average interaction time for one content

and its corresponding MOS rating. In particular, we showed that the average interaction time

can be used to predict the subjective score of light field contents.

The contributions of this chapter can be outlined as follows:

• We design a subjective test for visual quality assessment of light field contents, using

a framework to record user interaction, to analyse how user behaviour is affected by

compression distortions. More information about the framework can be found in

Annex B.

• We proposed a way to aggregate and analyse the recorded user interaction data (tracking

information). Specifically, we separated the total number of seconds each subject spent

on each perspective and refocused view, per stimulus, to favor analysis of different

rendering modalities. We then aggregated the data to get the total number of seconds

each subject spent on all the perspective and refocused views, separately for each

stimulus. Finally, we provided the average interaction time for perspective and refocused

views by computing the mean across the subjects.

• We showed that clear interaction patterns can be extracted from the data. In particular,

we showed that the order of presentation does not have a strong influence on the

interaction time, and that users chose to interact more with contents compressed at

high bitrates when compared to low bitrates.

• We analysed the correlation between MOS scores and average interaction time, sepa-

rately for perspective and refocused views. We also computed the average interaction
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Chapter 4. Analysis of interaction patterns in light field quality evaluation

time for each stimulus, regardless of the rendered view. We showed that the average

interaction time is strongly correlated with the subjective results, reaching PCC values

of 0.96 and SRCC values of 0.87.

This chapter lays the basis of an implicit quality assessment method for light field contents.

However, further analysis is needed to prove if the average interaction time can effectively be

used instead of explicit quality scores to assess the visual quality of light field contents. Future

work can extend the analysis presented in this chapter, incorporate user interaction data in

both subjective and objective quality metrics, and integrate visual attention in perceptual

compression solutions for light field data.
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5 Rendering-dependent quality evalua-
tion for light field contents

In the past chapters, we have presented image-based rendering as a viable method to ex-

perience, and thus evaluate, light field contents on traditional 2D screens. However, it is

undisputable that there is a need for light field displays on which the data can be natively

visualized, fueled by the recent innovations in the realm of acquisition and compression of

light field contents.

A promising solution for light field rendering uses a stack of programmable light-attenuating

layers in front of a light-emitting source to provide depth cues without the need of glasses

[Lanman et al., 2010] [Lanman et al., 2012] [Wetzstein et al., 2012]. As only a few attenuating

layers are required to render multiple points of view, the term “compressive display” has

been used to define this type of rendering devices. The pattern images to be displayed in

each light-attenuating layer can be obtained from the multi-view light field data through

Non-negative Tensor Factorization (NTF) [Wetzstein et al., 2012]. Recently, a new method

has been proposed to generate the layer patterns from a stack of focused images (focal stack),

which greatly reduces the number of images that are needed as input for the tensor displays

[Takahashi et al., 2018]. The method was tested in a prototype 3D display to prove its efficacy

[Kobayashi et al., 2017].

Testing the visual quality of compressed and uncompressed light field contents on native

light field display is of extreme importance in future development of both new rendering

methods, as well as new compression solutions. However, the limited availability of light field

displays hinders the assessment of their visual quality. Moreover, hardware limitations in

prototype models considerably lessen the perceptual QoE in consuming light field contents.

Being able to simulate light field multi-layer rendering in a virtual environment is thus helpful

in conducting evaluation of visual quality for light field displays in an ideal scenario.

We have recently proposed a framework to conduct quality assessment of light field contents

rendered through a tensor display simulator in 2D screens [Viola et al., 2019]. Through a

Graphical User Interface (GUI) the layer patterns composing the multi-layer tensor displays

are simulated in a 3D environment. By interacting with the mouse, users can experience the
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(a) Bikes (b) Danger de mort (c) Stone Pillars Out-
side

(d) Fountain & Vin-
cent

(e) Friends

Figure 5.1 – Central perspective view from each content used in the test.

light field from different points of view. A more detailed description of the framework can be

found in Annex C. The framework supports the use of different single- and double-stimulus

subjective methodologies; for the latter type, it can be chosen to display the stimuli in a

side-by-side fashion, or to visualize them intermittently in the same position on the screen

through the use of the keyboard. The second variant is particularly useful when the size of the

2D screen does not support the visualization of both stimuli in full resolution, thus avoiding

to resort to cropping. It also allows to assess the impairment of the stimuli for nearly-lossless

compression schemes, similarly to the evaluation procedures detailed in ISO/IEC 29170-2

(AIC Part-2) Draft Amendment 2 [ISO/IEC 29170-2, 2015]. However, for higher compression

ratios it may be preferable to use the side-by-side variant, as it allows to visualize both stimuli

at a glance, as well as granting a higher level of perceptual masking.

In this chapter we analyse the effect of using different double-stimulus variants to perform

subjective quality assessment of light field contents, rendered through a simulated compres-

sive display. We also perform the comparison between the results obtained with the simulator

and a prototype multi-layer display. To account for cross-cultural variance among different

testing groups, we perform the same experiment in two different laboratory settings, and we

analyse the correlation among the scores. For our test, we use three compression approaches

modeled on the unique opportunities given by multi-layer displays. An in-depth analysis of

the compression approaches and their coding efficiency will be given in Chapter 8.

5.1 Experiment design

In this section we will describe the subjective quality experiment we conducted to perform

the analysis on quality assessment for simulated multi-layer displays. In particular, we first list

the dataset and the coding conditions. We then describe the lab settings in which the tests

were conducted, as well as the employed methodologies. Finally, we give an overview of the

statistical analysis we conducted on the gathered data.
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5.1. Experiment design

5.1.1 Dataset and coding conditions

Five light field contents were selected from a publicly available database [Řeřábek and Ebrahimi,

2016]. The contents were acquired with a Lytro Illum camera and processed using the Light

Field Matlab Toolbox [Dansereau et al., 2013][Dansereau et al., 2015] to obtain a stack of 15×15

perspective image, each having a resolution of 625×434 pixels. Color and gamma corrections

were applied on each perspective image for the rendering. To avoid unwanted distortions

caused by the lenslet structure of the Lytro Illum camera, only the 9×9 central perspective

views were selected for the test. The central perspective view from each content is displayed

in Figure 5.1.

Considering the peculiarities of our rendering system, three viable alternatives for light field

compression were employed. The first arranges the 9× 9 perspective views in a pseudo-

temporal video sequence, which is subsequently encoded. The layer patterns needed for

rendering are then created at the receiver side, after decoding the compressed views. The

second method creates the layer patterns at the encoder side; such layer patterns are arranged

in a pseudo-temporal video sequence and compressed. At the receiver side, the decoded layer

patterns can be directly rendered without ulterior processing. Finally, the third solution creates

a focal stack of refocused images from the perspective views. The focal stack is then arranged

in a pseudo-temporal sequence, compressed and transmitted. At the receiver side, the layer

patterns are created from the focal stack. For all three solutions the state-of-the-art video

encoding standard HEVC was employed for the compression, to ensure a fair comparison.

More information can be found in Chapter 8.

The layer patterns were created using the software implementation presented in [Takahashi,

2018]. To create the focal stack, the Light Field Matlab Toolbox was employed [Dansereau

et al., 2013][Dansereau et al., 2015]. In our validating test, the number of layers was fixed to

L = 3.

The compression solutions were evaluated at four bit-rates, namely R1 = 537 kB, R2 = 134 kB,

R3 = 67 kB, and R4 = 27 kB, corresponding to 0.2, 0.05, 0.025 and 0.01 bpp, respectively. The

bpp are computed with respect to the original size of the 9×9 perspective views. The bit-rates

were carefully chosen to cover the visual quality space while providing reasonable and fair

comparison among the listed compression solutions.

5.1.2 Subjective methodologies

For our experiments, the DSIS with 5-point grading scale (5-Imperceptible, 4-Perceptible but

not annoying, 3-Slightly annoying, 2-Annoying, 1-Very annoying) was selected, according to

the ITU-R Recommendation BT.500-13 [ITU-R BT.500-13, 2012]. We tested two variants of

the same methodology. In Variant A, a side-by-side presentation of the stimulus under test

along with the uncompressed reference is employed. Subject can visualize both contents at a

glance and give their rating based on the perceived impairment. The assessment depends on
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observing the same region of interest through eye and head movement to be able to detect the

impairments of the test content with respect to the reference; thus, small artifacts, such as

different noise distributions, may be masked while using this variant. The variant is especially

useful when the solution under test does not rely on pixel-based accuracy, but on perceptual

models (see [Verhack et al., 2017]).

Variant B presents a user-driven intermittent presentation of the impaired and reference

stimuli. This variant allows to compare the same region of interest in both stimuli without head

or eye movements, by switching between the two contents; as such, it is particularly suitable

for immersive multimedia in which a split screen would create unnatural effects and head

movements could warrant unwanted consequences, such as omnidirectional imaging [Perrin

et al., 2017]. It is also to be preferred when testing just noticeable differences which would not

be captured by a side-by-side presentation.

For both variants, participants were asked to rate the quality of the test stimuli when compared

to the uncompressed reference. For Variant A, they were informed beforehand on which side

of the screen the reference would be displayed, and its position on the screen was fixed for the

duration of the test. For Variant B, participants could access the reference content by pressing

a specific key, and they could return to the test content by pressing another designated key.

Participants were only allowed to give a score when the test contents was being rendered on

the screen, and at least one full switch between test and reference stimulus was required to

perform the rating. In order to accustom the participants with what distortions to expect

in the test images, a training session was organized before the experiment. Three training

samples, created by compressing one additional content on the test bit-rates, were manually

selected by expert viewers.

All the compressed stimuli were shown in one session. Additionally, two types of hidden refer-

ence per content were added to the test: one consisted in the layer patterns generated from

the uncompressed stack of perspective views (which was also used as the explicit reference),

while the other was created from the uncompressed focal stack. The hidden references were

added to account for the artifacts derived from the chosen layer generation method. A total of

70 stimuli were evaluated in each session. The display order of the stimuli was randomized for

each participant, and the same content was never displayed twice in a row.

5.1.3 Test environments

Two laboratory settings were used for our tests, in the facilities of the École Polytechnique

Fédérale de Lausanne (EPFL) and Nagoya University (NU).

In EPFL, a laboratory for subjective video quality assessment, which was set up according to

ITU-R Recommendation BT.500-13 [ITU-R BT.500-13, 2012], was used for the test. A 27-inch

Apple Display with native resolution of 2560×1440 pixels was used. The monitor settings

were adjusted according to the following profile: sRGB Gamut, D65 white point, 120 cd/m2
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Table 5.1 – Test environments and specifications.

Environment University Display No. contents No. codecs No. bitrates No. subjects Methodology Approach

Controlled
lab setting

EPFL Apple display 5 3 4 20 DSIS Side by side

Controlled
lab setting

EPFL Prototype 5 3 4 11 DSIS Intermittent

Semi-controlled
lab setting

NU Apple display 5 3 4 17 DSIS Side by side

Semi-controlled
lab setting

NU Prototype 5 3 4 11 DSIS Intermittent

brightness, and minimum black level of 0.2 cd/m2. The controlled lighting system in the

room consisted of adjustable neon lamps with 6500 K color temperature against mid-grey

background walls. The illumination level measured on the screens was 18 lux. Conforming

to requirements in ITU-R Recommendation BT.2022 [ITU-R BT.2022, 2012], the distance of

the subjects from the monitor was approximately equal to 7 times the height of the displayed

content. However, subjects were allowed to move further or get closer to the screen. Both

Variants A and B were tested in the EPFL facilities, in two separate tests. The order of the test

was randomized for each participants, to minimize the influence of employing one variant

before the other on the assigned scores. A total of 20 subjects (10 males and 10 females)

participated in the tests, amounting to 20 scores per stimulus per variant. Subjects were

between 18 and 35, with a mean age of 23.29 years old. Before starting the test, all subjects

were examined for visual acuity and color vision using Snellen and Isihara charts, respectively.

In NU, a controlled environment was selected to perform the experiment. However, no

calibration on the lighting system for the room was conducted. Two displays were used for the

tests. First, a 27-inch Apple Display, with the same characteristics of the one employed in EPFL,

was used to test DSIS Variant A. A total of 17 subjects (16 males and 1 female) took part in the

test. Subjects were between 18 and 35, with a mean age of 24 years old. A prototype multi-layer

display was used to perform a pilot evaluation [Kobayashi et al., 2017]. As the resolution of the

display did not allow to perform a side-by-side comparison, DSIS Variant B was used for the

test. A total of 11 subjects (all males) took part in the test. Subjects were between 18 and 35,

with a mean age of 23.28 years old. In both tests, all subjects were examined for visual acuity

and color vision using Snellen and Isihara charts, respectively. A summary of the specifications

for the tests can be found in Table 5.1.

5.2 Statistical analysis

Outlier detection and removal was performed on the results, independently for each test,

according to the ITU-R Recommendation BT.500-13 [ITU-R BT.500-13, 2012]. No outlier was

detected in either batch of scores. After outlier removal, the MOS was computed for each

stimulus, independently for each methodology. The corresponding 95% CIs were computed

assuming a Student’s t-distribution.
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In order to draw a comparison among the different variants, test settings and displays, several

fittings were applied to the MOS values, following the ITU-T Recommendation P.1401 [ITU-T

P.1401, 2012]. In particular, first order and third order fittings were used to compare the MOS

values. RMSE, PCC, SRCC and OR were computed for accuracy, linearity, monotonicity and

consistency, respectively.

Multiple comparison tests were performed at a 5% significance level on the raw scores, to

determine, for each stimulus, whether the MOS values obtained in different test settings,

using different variants or different displays, were significantly different. Furthermore, the

percentage of correct estimation, underestimation and overestimation were computed. Ad-

ditionally, the classification errors were computed using the same multiple comparison test

to see if the results obtained with the tested conditions lead, for each pair of stimuli, to the

same conclusions [ITU-T J.149, 2004]. In this case, three types of error can be distinguished:

false ranking, false differentiation and false tie. False ranking is the most offensive error, and

occurs when in the first condition, situation i is better than situation j , whereas in the second

condition the opposite is true. False differentiation occurs when in the first condition situation

i and j are different, whereas in the second condition they are the same. False tie occurs when

with the first condition the two situations are the same, whereas the second condition says

they are different.

5.3 Results

In this section, results of the comparison between different test conditions are discussed. First,

in Section 5.3.1 we compare the Variant A results obtained in two different laboratory settings,

to see whether any statistical difference can be caused by different environment settings and

cultural backgrounds. Then, the Variant A and B, tested in the same laboratory conditions in

EPFL, are compared in Section 5.3.2. Analogously, in Section 5.3.3 we perform a comparison

between the results obtained using Variant B in different displays and laboratory settings.

5.3.1 Comparison of different laboratory settings

Figure 5.2 depicts the scatter plot showing the results of the comparison between the MOS

scores obtained in the two test settings using DSIS Variant A. In Figure 5.2 (b), the horizontal

and vertical bars represent the CIs corresponding to results obtained in NU and EPFL, respec-

tively. To improve visualization, the points are colored based on compression ratio or content.

Linear and cubic fittings are shown for both comparisons.

Table 5.2 reports the results of the performance indexes computed on the data. In particular,

the performance indexes are computed for every pair of �MOSX , MOSY , in which X and Y

denote the different test settings, and �MOS represents the MOS scores obtained after linear

and cubic fitting.
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5.3. Results

(a) MOSNU as function of MOSEPF L . (b) MOSEPF L as function of MOSNU .

Figure 5.2 – Comparison of MOS values obtained in different laboratory settings, along with
linear and cubic fittings. Points are differentiated by compression ratio (a) and by content (b).
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Table 5.2 – Performance indexes for the comparison among different laboratory settings.

[�MOSEPF L , MOSNU ]

PCC SRCC RMSE OR Correct Est. Under Est. Over Est. Correct Decision False Ranking False Diff. False Tie

No fitting 0.9542 0.9221 0.4230 4.29% 100% 0.00% 0.00% 88.20% 0.00% 8.41% 3.40%
Linear fitting 0.9542 0.9221 0.2904 1.43% 100% 0.00% 0.00% 88.86% 0.00% 6.25% 4.89%
Cubic fitting 0.9558 0.9221 0.2856 1.43% 100% 0.00% 0.00% 89.15% 0.00% 6.46% 4.39%

[�MOSNU , MOSEPF L]

PCC SRCC RMSE OR Correct Est. Under Est. Over Est. Correct Decision False Ranking False Diff. False Tie

No fitting 0.9542 0.9221 0.4230 4.29% 100% 0.00% 0.00% 88.20% 0.00% 3.40% 8.41%
Linear fitting 0.9542 0.9221 0.3035 1.43% 100% 0.00% 0.00% 88.20% 0.00% 3.40% 8.41%
Cubic fitting 0.9551 0.9221 0.3008 1.43% 100% 0.00% 0.00% 87.83% 0.00% 2.36% 9.81%
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Table 5.3 – Performance indexes for the comparison among different DSIS variants.

[�MOSEPF L−V ar i ant A , MOSEPF L−V ar i antB ]

PCC SRCC RMSE OR Correct Est. Under Est. Over Est. Correct Decision False Ranking False Diff. False Tie

No fitting 0.9578 0.9366 0.3416 10.00% 98.57% 1.43% 0.00% 84.35% 0.00% 4.35% 11.30%
Linear fitting 0.9578 0.9366 0.3268 4.29% 98.57% 1.43% 0.00% 84.35% 0.00% 4.35% 11.30%
Cubic fitting 0.9590 0.9366 0.3220 2.86% 98.57% 1.43% 0.00% 85.34% 0.00% 4.31% 10.35%

[�MOSEPF L−V ar i antB , MOSEPF L−V ar i ant A]

PCC SRCC RMSE OR Correct Est. Under Est. Over Est. Correct Decision False Ranking False Diff. False Tie

No fitting 0.9578 0.9366 0.3416 10.00% 98.57% 0.00% 1.43% 83.11% 0.00% 14.41% 2.48%
Linear fitting 0.9578 0.9366 0.2918 5.71% 100.00% 0.00% 0.00% 84.89% 0.00% 9.73% 5.38%
Cubic fitting 0.9680 0.9366 0.2545 4.29% 100.00% 0.00% 0.00% 89.19% 0.00% 3.27% 7.54%

Table 5.4 – Performance indexes for the comparison among the multi-layer display and the simulator.

[�MOSSi mul ator , MOSMul ti−l ayer di spl ay ]

PCC SRCC RMSE OR Correct Est. Under Est. Over Est. Correct Decision False Ranking False Diff. False Tie

No fitting 0.5244 0.5817 1.1277 44.29% 72.86% 20.00% 7.14% 52.46% 3.73% 27.25% 16.56%
Linear fitting 0.5244 0.5817 0.9734 48.57% 61.43% 15.71% 22.86% 47.08% 3.11% 17.27% 32.55%
Cubic fitting 0.6008 0.5906 0.9139 42.86% 68.57% 15.71% 15.71% 55.78% 0.62% 18.47% 25.13%

[�MOSMul ti−l ayer di spl ay , MOSSi mul ator ]

PCC SRCC RMSE OR Correct Est. Under Est. Over Est. Correct Decision False Ranking False Diff. False Tie

No fitting 0.5244 0.5817 1.1277 44.29% 72.86% 7.14% 20.00% 52.46% 3.73% 16.56% 27.25%
Linear fitting 0.5244 0.5817 0.9679 50.00% 74.29% 4.29% 21.23% 46.71% 1.12% 4.60% 47.58%
Cubic fitting 0.6270 0.6023 0.8855 42.86% 77.14% 4.29% 18.57% 56.60% 1.53% 11.59% 30.27%
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(a) MOSEPF L−V ar i ant A as function of
MOSEPF L−V ar i antB .

(b) MOSEPF L−V ar i antB as function of
MOSEPF L−V ar i ant A .

Figure 5.3 – Comparison of MOS values obtained with different methodologies, along with
linear and cubic fittings. Points are differentiated by compression ratio (a) and by content (b).

As clearly shown in Figure 5.2, the scores obtained in the two test settings are strongly cor-

related. In particular, linear regression performed on the [�MOSNU , MOSEPF L] pair reports a

slope of 0.9974 and an intercept of −0.2830, which indicates that while a strong correlation

can be seen between the scores obtained in the two test settings, ratings obtained in EPFL are

consistently lower than their NU counterpart. Results of the performance indexes computed

on the MOS pairs confirm the strong correlation between the scores obtained in the two test

settings. In particular, cubic regression seems to give the best results among the fittings ap-

plied to the MOS pairs, with a PCC index of 0.9558 and 0.9551 for the [�MOSEPF L , MOSNU ] and

[�MOSNU , MOSEPF L] pair, respectively. The high values of SRCC show a strong monotonicity

trend between the two sets of ratings, which confirms the strong correlation proven by the low

RMSE and OR values. Finally, the multiple comparison tests show that, although in the two

lab settings statistically equivalent scores are given for the same stimulus, as proven by the

Correct Estimation index being always at 100%, scores given in the EPFL lab setting tend to be

more descriminative, leading to reporting a false tie (i.e., they were considered statistically

different in the EPFL case) for 8.41% of stimuli that were deemed statistically equivalent in the

NU laboratory setting. However, the effect can be explained by the fact that in the first case, a

larger number of people was used to perform the test. Thus, larger CIs are obtained.

The strong correlation among the scores obtained using the same variant across two different

laboratory settings shows that the difference in test environment does not strongly determin-

ing the distribution of the scores. However, the presence of a certain bias among the scores

indicates that further tests are needed to assess the impact of cross-cultural differences, as

well as different test environments, in the subjective assessment of light field contents.
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5.3.2 Comparison of different DSIS variants

Figure 5.3 shows the results of the comparison between Variant A and B of the DSIS test

performed in the EPFL laboratory setting, with linear and cubic fittings. A strong linear

correlation can be observed for the scores obtained with the two variants. In particular, for

low values of MOS the points are laying on the y = x line, proving that very similar scores are

given for heavily compressed contents. However, it can be clearly observed that for lower

compression ratios, several contents which were scored on a range from 3 to 5 in the DSIS

Variant A, had the same score in Variant B (see Figure 5.3 (a), for MOS values of 5 in the x-axis).

This indicates that some artifacts were perceived while the contents were shown side by side,

perhaps mistakenly, as switching between reference and test content showed no difference

among the two. The CIs among larger scores also seem to be sensibly smaller for Variant B

with respect to Variant A (see Figure 5.3 (b), for MOS values of 5 in the y-axis).

Table 5.3 shows the results of the performance indexes for the sets of scores obtained with

both variants. Results of PCC and SRCC confirm the strong correlation among the two

sets of scores. However, it is interesting to see that the two variants are not always in per-

fect agreement, as shown by the value of Correct Estimation = 98.57% for all fittings ap-

plied to the pair [�MOSEPF L−V ar i ant A , MOSEPF L−V ar i antB ]. In particular, Variant A seems

to lead to significantly lower scores than Variant B for a small percentage of cases, in ac-

cordance to what has been seen in Figure 5.3. Results from the multiple comparison show

that, while the sets of scores show a significant amount of agreement (more than 84% of

time), Variant B leads in general to more differentiation among pairs of scores (10% dif-

ferentiation over Variant A, versus a 4.3% differentiation of Variant A over Variant B for

[�MOSEPF L−V ar i ant A , MOSEPF L−V ar i antB ]). The trend is only overturnt when considering

the cubic fitting for pairs [�MOSEPF L−V ar i antB , MOSEPF L−V ar i ant A], for which Variant A is

more discriminative than Variant B (7.54% differentiation over Variant B, versus 3.27% dif-

ferentiation of Variant B over Variant A). False ranking, the most offensive error, is never

encountered.

Results show that, while the two variants are strongly correlated and give agreeable scores for

the majority of cases, they do lead to slightly different variations of scores. In particular, Variant

A leads to underestimation in a small percentage of cases, and is in general less discriminative.

This is very likely to be associated with high MOS scores: for contents that are compressed at

nearly transparent quality levels, Variant A leads to more confusion in the assignment of the

scores, as shown in Figure 5.3; for those compression ratios, employing Variant B may be the

preferrable choice.

5.3.3 Comparison of different displays

Figure 5.4 shows the results of the comparison between the DSIS Variant B tests, as performed

in the EPFL laboratory setting using the simulator, and in the NU laboratory using a prototype
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(a) MOSSi mul ator as function of
MOSMul ti−l ayer di spl ay .

(b) MOSMul ti−l ayer di spl ay as func-
tion of MOSSi mul ator .

(c) MOSMul ti−l ayer di spl ay as func-
tion of MOSSi mul ator .

Figure 5.4 – Comparison of MOS values obtained with different displays, along with linear
and cubic fittings. Points are differentiated by compression ratio (a), by content (b), and by
compression solution (c).

multi-layer display. Points are divided by compression ratio, content and compression solu-

tion, with linear and cubic fittings. Table 5.4 shows the results of the performance indexes for

the sets of scores obtained with both displays.

Results of the comparison show that poor correlation is achieved between the results obtained

using the simulator and the results associated to the multi-layer display, with PCC values as

low as 0.5244. By observing Figure 5.4 (a) and (b), no visible trend can be observed regarding

the compression ratios or contents employed in the tests; rather, it is easy to notice a clear

pattern regarding the way scores are distributed in relation to the compression solution that

was employed. In particular, when the multi-layer display was employed for the test, no

difference seems to be perceived in the quality of compressed layer patterns, regardless of

their compression ratio (Figure 5.4 (c), yellow points); in fact, the large majority of the points

lay between MOS values of 4 and 5, whereas they span the entire axis when the simulator is

used. A similar trend can be observed for part of the contents that employed traditional light

field compression, although in some cases, values of MOS close to 2 were given, when the

contents were compressed at the highest compression ratio (compare with Figure 5.4 (a)). It is

interesting to see that, when the focal stack method was employed to compress the contents,

the MOS scores seldom reached values higher than 3 when the multi-layer display was used.

However, the method did not reach transparent quality either when the simulator was selected

for the test: indeed, the MOS values always stop short of 4. These results will be commented

in more detail in Chapter 8.

Multiple comparison results show that the scores obtained in the two tests were statistically

equivalent in 60−75% of the cases, depending on what fitting has been applied to the scores.

More importantly, the two tests seem to agree on the ranking to be given to the various stimuli

on around 50% of the cases. The results are most likely caused by the hardware limitations of

the prototype display, which do not allow to differentiate among compression artifacts when

the layer patterns are directly compressed. In general, it appears that when the multi-layer
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display is used, the choice of generating layer patterns from either the light field data or the

focal stack has a greater impact on the visual quality, than the compression ratio chosen to

encode the data. Using the simulator, on the other hand, allows to more easily differentiate

among different levels of compression. This is likely due to the fact that the simulator offers

an ideal scenario for multi-layer rendering; the same cannot be said for the prototype display,

whose LCD panels did not achieve the same level of transparency, thus affecting the quality of

the rendered contents.

5.4 Conclusions

In this chapter we presented a thorough comparison of different quality assessment scenarios

for subjective evaluation of light field contents on multi-layer tensor displays. We performed

different sets of experiments in two separate laboratory settings, using both a prototype tensor

display and a simulator for 2D screens.

Our contributions are the following:

• We propose two variants for the DSIS subjective test methodology. One, called Variant

A, presents the two stimuli side-by-side, whereas the other, called Variant B, offers to

alternatively see the two stimuli by switching between them.

• We perform multiple tests in two different laboratory settings to assess different test con-

ditions. We start by analyzing if cross-cultural differences, as well as different light and

environment conditions, can affect the results, using Variant A of the DSIS methodology.

We show that the two sets of scores are highly correlated, although scores collected in

one facility are more positively biased with respect to the other laboratory setting.

• We then study the correlation among the two DSIS variants, performing two separate

tests in the same laboratory setting. Results show that, while the scores associated to the

two tests are strongly correlated, more uncertainty is associated with near-transparent

quality when using Variant A with respect to Variant B.

• We finally perform a comparison between scores obtained using a simulator and the

ones obtained through the use of a prototype multi-layer displays. Due to hardware

limitations, only Variant B is assessed. It is shown that poor correlation is achieved

between the two sets of scores. In-depth analysis of the results indicates that, when

using the prototype display, subjects are less sensitive to compression artifacts, when

compared to the use of a simulator. In particular, it appears that when the multi-layer

display is used, the method employed to generate the layer patterns has a greater impact

on the scores, with respect to the compression ratio.

Further work is needed to confirm whether a different DSIS variant could lead to different

results in the comparison between displays. Moreover, it is worth analysing how the visual
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quality of light field rendering is affected by the hardware limitations of the available multi-

layer displays, for example, by doing a benchmarking of existing displays. Regarding the

topic of which variant of the DSIS methodology should be used to perform subjective quality

assessment of light field contents, the choice should be informed by the type of artifact under

assessment. For near-lossless levels of distortion, Variant B seems to be the preferrable choice,

whereas for more evident levels of distortion both variants can be successfully employed.
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6 Evaluation of state-of-the-art com-
pression solutions for light field cod-
ing

Disclaimer: Some of the contents of this chapter were adapted from the following articles, with

permission from all co-authors and publishing entities:

Viola, Irene, Martin Řeřábek, Tim Bruylants, Peter Schelkens, Fernando Pereira, and Touradj Ebrahimi.

“Objective and subjective evaluation of light field image compression algorithms.” In Picture Coding

Symposium (PCS), 2016, pp. 1-5. ©2016 IEEE.

Viola, Irene, and Touradj Ebrahimi. “Quality assessment of compression solutions for light field image

coding.” In 2018 IEEE International Conference on Multimedia Expo Workshops (ICMEW). ©2018 IEEE.

Personal contribution: The subjective assessment tests were designed with the help of my co-authors

and the experts in the JPEG community. I performed the experiments and curated the analysis.

Finding new solutions to tackle the problem of perceptually efficient light field compression

has been an ongoing effort for numerous years. Countless algorithms have been proposed to

reduce the amount of data required to store and transmit light field contents, while holding

under consideration the importance of maintaing a good visual quality. Such algorithms are

usually tested through subjective or, more often, objective means, in order to document the

improvement with respect to the state of the art. We have given a general overview of related

works in light field compression in Chapter 2; for how exhaustive our inquiry was, we are sure

many other solutions were not mentioned, and many others will continue to be proposed.

Frequently, comparing encoding approaches is made arduous by the variety of coding condi-

tions (not to mention raw data) on which each of them is tested. Benchmarking upcoming

compression algorithms against the state of the art thus becomes a nearly impossible feat.

Even more so is discerning which solution works best under an assortment of conditions that

spans the perceptual space, on contents that faithfully represent the challenges the encoding

algorithms need to face.

In recent years, two call for proposals have been issued to collect compression solutions for
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light field contents under the framework of grand challenges. The goal of grand challenges is

to collect the best solutions available at the time of the declaration and compare them in a fair,

reliable and reproducible way to determine the most efficient approach to solve a predefined

problem, according to predefined criteria. In the case of the ICME 2016 Grand Challenge on

Light Field Compression and the ICIP 2017 Grand Challenge on Light Field Coding, the most

important criterion was deemed to be perceptual quality, as assessed by both objective quality

metrics and subjective evaluations. A set of conditions were defined for the participants to

ensure a fair comparison on equal grounds. All the proposed solutions were assessed under

rigid conditions of anonymity to avoid biases and partisanship.

In this chapter, we present the outcomes of the aforementioned grand challenges for com-

pression of light field contents. Results are useful as both a snapshot of the state of the art at a

given moment, and as a survey on how various solutions may perform differently based on

the coding conditions.

6.1 ICME 2016 Grand Challenge

The ICME 2016 Grand Challenge was issued in January 2016 to collect new compression

solutions for lenslet-based light field images, and to evaluate them using both objective and

subjective quality assessment methodologies [ISO/IEC JTC 1/SC29/WG1 JPEG, 2016]. The

grand challenge was focused on compression schemes for raw light field images acquired

with a lenslet-based plenoptic camera, specifically, a Lytro Illum plenoptic camera. Data

preparation and coding conditions were briefly introduced in Chapter 3.1.1; we report it again

here for completeness.

6.1.1 Dataset and coding conditions

As input for the grand challenge, light field images created with a Lytro Illum plenoptic camera

were selected. In particular, proponents were asked to compress a lenslet image, which was

created from the raw 10-bit sensor data by applying devignetting, demosaicing, clipping to

8-bit and color space conversion from RGB444 to YUV420. The challenge required submission

of compression and decompression algorithm capable of processing the given image data

according to the end-to-end chain depicted in Fig. 6.2. Specifically, the proponents were asked

to implement steps from A to A’.

Twelve lenslet light field images from a publicly available dataset [Řeřábek and Ebrahimi, 2016]

were selected for the grand challenge. The central perspective view of each content is depicted

in Figure 6.1.

For the objective and subjective evaluations, the decompressed lenslet image was converted

to a stack of all-in-focus perspective views (light field data structure) using the Matlab imple-

mentation of the Light Field Toolbox v0.4 [Dansereau et al., 2013][Dansereau et al., 2015]. Each
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(a) I01 (b) I03 (c) I04 (d) I07 (e) I09 (f) I10

(g) I02 (h) I05 (i) I06 (j) I08 (k) I11 (l) I12

Figure 6.1 – Central all-in-focus view from each content used in the experiments. Refocused
points marked in green (slope 1) and red (slope 2). ©2016 IEEE

perspective view was created by selecting and aligning samples from each micro-lens element

that supported a particular point of view. The resulting light field data structure is a 5-D array

with dimensions of 15×15×434×625×3, in which 15×15 is the number of perspective views,

434×625 is the resolution of each view, and 3 corresponds to the color channels. Color and

gamma corrections were applied to each perspective view. The same pipeline was employed

to generate the reference light field data structure from the uncompressed YUV420 lenslet

image.

The performance of the proposed compression algorithms was evaluated at four fixed com-

pression ratios, namely R1 = 10 : 1 (1 bpp), R2 = 20 : 1 (0.5 bpp), R3 = 40 : 1 (0.25 bpp),

R4 = 100 : 1 (0.1 bpp). The ratios were computed with respect to the size of the raw data

obtained from the camera.

Overall, seven submissions were received as responses to the call for proposals in the frame-

work of the grand challenge. Only five of them were accepted in the reviewing process for

further evaluation. Proponents were assigned a random number (P1 to P5) to anonymize

their identity. In general, two main coding approaches were proposed. The first approach

uses a modified version of HEVC Intra encoder to compress the lenslet image by exploiting

existent redundancies. The second approach creates the light field data structure prior to

coding and then rearranges the sub-aperture images in a pseudo-temporal sequence to be

coded with HEVC. In the following paragraphs, we present the submitted algorithms in details.

The presentation order does not correspond to the label assigned to each codec.

In [Conti et al., 2016] authors suggested to use HEVC Intra Profile to code the lenslet structure,

and to improve its performance by integrating SS compensated prediction and estimation.

The proposed solution exploits the correlation between neighbooring micro-images in the

lenslet image. The image is partitioned in blocks using HEVC partition patterns. Then, two

blocks are selected for predicting the current block, one given by best block matching in the

search window and the other selected by searching for best linear combination between the

first selected block and a second block in the same window. The best among the two is selected
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Figure 6.2 – End-to-end chain for compression and decompression of light field lenslet image.

for SS estimation.

The same approach is used in [Monteiro et al., 2016], which integrates SS compensated

prediction in HEVC Intra coding, and additionally implements LLE to further improve the

compression performance. LLE estimates the current block by solving a least-squares opti-

mization problem to find the best linear combination of k nearest neighbors in a casual search

window.

The authors in [Li et al., 2016a] use HEVC Intra profile to encode the lenslet image; however,

the conventional intra prediction from reconstructed information is improved by allowing the

predictor to use only blocks from its reconstructed neighbors. In addition to that, advanced

motion vector prediction is used.

In [Perra and Assuncao, 2016] the chosen approach is to partition the lenslet image into tiles of

equal sizes, which are then ordered in a pseudo-temporal sequence using a properly selected

scan order. Then the sequence is encoded using HEVC.

Authors in [Liu et al., 2016] use a different approach, and propose a compression of light

field images based on pseudo-sequences of sub-aperture images. The lenslet image is first

converted from YUV420 to RGB444 color space. Then the lenslet is processed to obtain the

multiple views that compose the light field data structure. The views are color and gamma

corrected and then converted back to YUV420. A subset of them is then rearranged in a specific

coding order that accounts for similarities between adjacent views and coded using the JEM

encoder1.

The proponents were compared to an anchor generated using legacy JPEG, referred to as P0 in

the rest of the paper.

1https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/tags/HM-16.6-JEM-2.0rc1/
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6.1.2 Visual quality assessment

The performance of each proposal was evaluated through both objective and subjective

quality assessment. To measure distortions introduced by the compression algorithms, the

light field data structure, obtained after compressing and decompressing the lenslet image, is

compared to the uncompressed reference, obtained by omitting steps A to A′ in Figure 6.2.

Both objective and subjective assessments are conducted on reference and test contents after

the transformation to light field data structure (output in Figure 6.2).

Objective quality metrics

The metrics chosen to perform the evaluation are PSNR and SSIM, applied separately to

individual color channels. The PSNR is computed on the Y channel as follows:

PSN RY (k, l ) = 10log10
2552

MSE(k, l )
, (6.1)

in which k and l are the indexes of the sub-aperture images. The MSE(k, l ) for each image is

computed as follows:

MSE(k, l ) = 1

mn

m∑
i=1

n∑
j=1

[I (i , j )−R(i , j )]2, (6.2)

where m and n are the dimensions of one sub-aperture image (i.e., n = 625, m = 434). I (i , j )

is the Y value for the selected sub-aperture image in the evaluated light field data structure,

whereas R(i , j ) is the corresponding value in the reference data structure. In the same way, we

can compute the PSNR for the other two channels U and V , obtained after upsampling the

color space as depicted in Fig. 6.2. A weighted average [Ohm et al., 2012] is then computed as

follows:

PSN RY UV (k, l ) =
6PSN RY (k, l )+PSN RU (k, l )+PSN RV (k, l )

8

(6.3)

The mean of sub-aperture images is subsequentially computed to have an average value for

PSNR for Y channel and for Y UV :

àPSN RY = 1

(K −2)(L−2)

K−1∑
k=2

L−1∑
l=2

PSN RY (k, l ), (6.4)
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àPSN RY UV = 1

(K −2)(L−2)

K−1∑
k=2

L−1∑
l=2

PSN RY UV (k, l ) (6.5)

In a similar fashion, the SSIM is computed on the Y channel of each sub-aperture image as

follows:

SSI M Y (k, l ) = (2µIµR + c1)(2σI R + c2)

(µ2
I +µ2

R + c1)(σ2
I +σ2

R + c2)
, (6.6)

in which µI and µR are the average of the Y channel of the two sup-aperture images at index

k and l , σ2
I and σ2

R is the variance, and σI R is the covariance of the two sub-aperture images

in channel Y . c1 = (p1D)2 and c2 = (p2D)2 are two variables to stabilize the division; D is the

dynamic range of the pixel values, while p1 = 0.01 and p2 = 0.03 by default.

The SSIM value for the three channels and the mean value is computed following what has

already been said for PSNR (equation 6.3, 6.4 and 6.5).

Subjective methodology

For the subjective evaluation, only six contents were chosen, namely, I01, I03, I04, I07, I09 and

I10. A thumbnail of the contents is depicted in Figures (a) to (f). The contents were selected by

experts among the twelve contents that were used for objective evaluation.

The subjective methodology has been extensively discussed in Chapter 3. A summary of the

specifications for the test can be found in Table 3.2.

Subjective Data Processing and Statistical Analysis

Outlier detection and removal was performed on raw scores of naïve subjects according to the

ITU-R Recommendation BT.500-13 [ITU-R BT.500-13, 2012]. One subject was found to be an

outlier and the corresponding scores were discarded. This led to 17 scores per stimulus. After

outlier removal, the MOS was computed for each coding condition j (i.e. for each content,

view, proponent and bitrate) as follows:

MOS j = 1

N

N∑
i=1

mi j , (6.7)

where N is the number of subjects and mi j is the score for stimulus j by subject i .
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In order to determine whether the differences between proponents were statistically signifi-

cant, all the codecs were compared by means of a two-sided Welch’s test at 5% significance

level, with following hypotheses:

H0 : MOSP A = MOSPB

H1 : MOSP A 6= MOSPB ,

in which P A and PB are the proponents that are being compared. If the hypothesis H0 were to

be accepted, it would mean that the difference between means is zero, and that the distribution

of difference between mean values follows a t-distribution. On the other hand, if the hypothesis

were to be rejected, the conclusion would be that the two values are significantly different. In

the test, if the null hypothesis was rejected at 5% significance level, then the two MOS were

compared in order to identify which codec performed significantly better. For each content

and view, if the hypothesis were to be rejected, the matrix M would be updated as such:

M(i , j ) = M(i , j )+1 if MOSi > MOS j

M( j , i ) = M( j , i )+1 if MOSi < MOS j

6.1.3 Results

Figures 6.3, 6.4 and 6.5 show the results of the objective evaluation for all contents. The

graph has been cropped in order to allow a better analysis of the results. Generally, it can

be noticed that for compression ratio R1, the difference between the proponents and the

anchor is significantly small (around 2 dB for àPSN RY ), whereas among the proponents no

clear winner can be appointed. It is worth noting that for most contents, P1 largely performs

worse at this compression ratio when compared to other proponents, according to metricsàPSN RY and àPSN RY UV , with notable exceptions of contents I05 and I09. When using �SSI M Y

as a metric, all proponents and the anchor have similar performance for compression ratio R1

for most contents, with notable exceptions for proponent P1. For higher compression ratios

the difference among the proponents and the anchor becomes stark. Results clearly show that

while for high bitrates JPEG can be considered as a valid alternative to the proposed solutions,

for low bitrates it is inadequate for light field compression. For compression ratios R3 and

R4, P1 outperforms the other codecs, gaining around 3 dB for the same bitrate with respect

to P4 for metrics àPSN RY and àPSN RY UV . Curves for �SSI M Y show similar results, with P1

outperforming all other proponents for lower bitrates.
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(a) I01, àPSN RY (b) I01, àPSN RY UV (c) I01, �SSI MY

(d) I02, àPSN RY (e) I02, àPSN RY UV (f) I02, �SSI MY

(g) I03, àPSN RY (h) I03, àPSN RY UV (i) I03, �SSI MY

(j) I04, àPSN RY (k) I04, àPSN RY UV (l) I04, �SSI MY

Figure 6.3 – Results of the objective evaluations for contents I01-I04 (rows). àPSN RY ,àPSN RY UV and �SSI M Y are used as metric in the first, second and third column, respectively.
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(a) I05, àPSN RY (b) I05, àPSN RY UV (c) I05, �SSI MY

(d) I06, àPSN RY (e) I06, àPSN RY UV (f) I06, �SSI MY

(g) I07, àPSN RY (h) I07, àPSN RY UV (i) I07, �SSI MY

(j) I08, àPSN RY (k) I08, àPSN RY UV (l) I08, �SSI MY

Figure 6.4 – Results of the objective evaluations for contents I05-I08 (rows). àPSN RY ,àPSN RY UV and �SSI M Y are used as metric in the first, second and third column, respectively.
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(a) I09, àPSN RY (b) I09, àPSN RY UV (c) I09, �SSI MY

(d) I10, àPSN RY (e) I10, àPSN RY UV (f) I10, �SSI MY

(g) I11, àPSN RY (h) I11, àPSN RY UV (i) I11, �SSI MY

(j) I12, àPSN RY (k) I12, àPSN RY UV (l) I12, �SSI MY

Figure 6.5 – Results of the objective evaluations for contents I09-I12 (rows). àPSN RY ,àPSN RY UV and �SSI M Y are used as metric in the first, second and third column, respectively.

Figures 6.7 and 6.8 depict the results of the subjective evaluation campaign for all views and

all contents. The proponents and the anchor are plotted with a full line with respective CIs,

whereas the MOS for the uncompressed reference, with corresponding CIs, is shown through
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(a) R1 (b) R2 (c) R3 (d) R4

Figure 6.6 – Pairwise comparison of codecs for different bitrates. ©2016 IEEE

a yellow stripe. Figure 6.6 shows for how many contents and views the proponent on the y-axis

performs significantly better than the proponent on the x-axis. The minimum value is 0 and

the maximum value is 30, corresponding to all possible views and contents.

Confirming what was shown by the objective quality metrics, all proponents perform similarly

to the anchor for compression ratio R1, whereas for lower bitrates they significantly outper-

form the anchor. Moreover, for high bitrates there is no proponent that performs significantly

better than the others (Figures 6.6 (a) and (b)). However, for lower bitrates, similarly to what

has been seen for objective results, P1 performs better than other proponents, outperforming

them for compression rate R4 in more than half of the contents (Figure 6.6 (d)).

As can be seen in Figures 6.7 and 6.8, a significant drop in MOS values can be observed when

taking into account perspective views, as opposed to refocused views. The decrease is visible

for both, compressed images as well as for uncompressed references. However, the difference

of scores between reference and proponents remains constant.

These observations suggest that the viewers found that refocusing the content negatively

affects its visual image quality. The topic has been extensively examined in Chapter 3.1.
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(a) I01, left perspective view (b) I03, left perspective view (c) I04, left perspective view

(d) I01, central perspective view (e) I03, central perspective view (f) I04, central perspective view

(g) I01, right perspective view (h) I03, right perspective view (i) I04, right perspective view

(j) I01, front refocused view (k) I03, front refocused view (l) I04, front refocused view

(m) I01, back refocused view (n) I03, back refocused view (o) I04, back refocused view

Figure 6.7 – Results of the subjective evaluations for contents I01, I03 and I04 (first, second
and third column, respectively). Each row represents the results related to a certain view.
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(a) I07, left perspective view (b) I09, left perspective view (c) I10, left perspective view

(d) I07, central perspective view (e) I09, central perspective view (f) I10, central perspective view

(g) I07, right perspective view (h) I09, right perspective view (i) I10, right perspective view

(j) I07, front refocused view (k) I09, front refocused view (l) I10, front refocused view

(m) I07, back refocused view (n) I09, back refocused view (o) I10, back refocused view

Figure 6.8 – Results of the subjective evaluations for contents I07, I09 and I10 (first, second
and third column, respectively). Each row represents the results related to a certain view.
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Figure 6.9 – Encoding workflow for lenslet images. ©2018 IEEE

Figure 6.10 – Encoding workflow for perspective views. ©2018 IEEE

6.2 ICIP 2017 Grand Challenge

The JPEG Pleno Call for Proposals in association with ICIP Grand Challenge on Light Field

Image Coding was issued in January 2017 to collect new compressing solutions for light field

images, and to evaluate them using both objective and subjective quality assessment method-

ologies. The grand challenge was divided into two main tasks, devoted on compressing light

field images acquired with two different technologies, namely a plenoptic (lenslet) camera and

a Ultra High Definition (UHD) High Density Camera Array (HDCA) setup. Further information

about the requirements for the challenge can be found in [ISO/IEC JTC 1/SC29/WG1 JPEG,

2017].

6.2.1 Dataset and coding conditions

Lenslet camera

For the lenslet-based challenge, proponents were asked to compress light field images ac-

quired with a Lytro Illum plenoptic camera1, which uses an array of micro-lenses in front of

the main sensor. The data obtained from the camera, usually referred to as lenslet image,

needs to be processed to be properly rendered, via transformation to a 4D light field struc-

ture of perspective views [Levoy, 2006]. For the challenge, the proponents could follow two

workflows: one focused on compressing the lenslet image (Figure 6.9), and the other focused

on compressing the stack of perspective views obtained after transformation to 4D light field

structure (Figure 6.10). Additionally, proponents were asked to provide a renderer, either

proprietary or belonging to a third party, that could make the decoded bitstream ready for

visualization, supporting their adopted representation model. This step was implemented to

collect and assess different representation models for light field rendering.

Five contents were selected from a light field image dataset to be compressed for the grand

1https://www.lytro.com/
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Table 6.1 – Summary of compression schemes for the lenslet test. ©2018 IEEE

Proponents Description

HEVC Anchor: Compression of perspective views using HEVC Main10 (x265 software implementation).
VP9 Anchor: Compression of perspective views using VP9 (reference software).
P01 Compression of perspective views using HEVC and linear approximation prior [Zhao and Chen, 2017].
P02 Compression of perspective views using MV-HEVC [Ahmad et al., 2017].
P03 Compression of lenslet image using JPEG 2000 and depth, disparity and sparse prediction [Tabus et al., 2017].
P04 Compression of perspective views modeled as Gaussian Mixture Model [Verhack et al., 2017].
P05 Compression of lenslet image using optimal arrangement and enhanced illumination model [Jia et al., 2017].

(a) I01 (b) I02 (c) I04 (d) I09 (e) I10

Figure 6.11 – Central perspective view from each content used in the lenslet test. ©2018 IEEE

challenge, namely I01 = Bikes, I02 = Danger_de_Mort, I04 = Stone_Pillars_Outside, I09 =

Fountain_&_Vincent_2 and I10 = Friends_1 [Řeřábek and Ebrahimi, 2016]. The central view of

each content is depicted in Figure 6.11.

Demosaicing and devignetting was applied on the raw camera data to create the 10-bit lenslet

images (point A in Figures 6.9 and 6.10). Each lenslet image was then processed using the Light

Field MATLAB Toolbox v0.4 [Dansereau et al., 2013, 2015] to create 15×15 10-bit perspective

views, which were also color and gamma corrected. Both the lenslet image and the perspective

views were given as possible input for the grand challenge. The Light Field MATLAB Toolbox

was selected as reference renderer, and the input perspective views constituted the reference

BRe f . The performance of the proposed coding algorithms was evaluated on four fixed com-

pression ratios, namely R1 = 0.75 bpp, R2 = 0.1 bpp, R3 = 0.02 bpp, and R4 = 0.005 bpp. The

ratios were computed with respect to the raw lenslet image size (7728×5368 pixels).

To assess the performance of the proposals, two anchors were created using state-of-the-art

video codecs, namely HEVC Main10 and VP9. Following the workflow depicted in Figure 6.10,

both codecs perform the compression on the perspective views, which were previously rear-

ranged according to a serpentine order, converted to YCbCr format and downsampled from

4:4:4 to 4:2:2, 10-bit depth. For the first anchor, the HEVC implementation x265 was used2,

while for the second anchor, the VP9 reference software was used to compress the pseudo-

temporal sequence3. Full description of the command line used to create the anchors can be

found in the JPEG Pleno Lenslet Dataset website4.

2https://www.videolan.org/developers/x265.html
3https://www.webmproject.org/vp9/
4http://grebjpeg.epfl.ch/jpeg_pleno/index_lenslet.html
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Overall, a total of six submissions were received as responses for the JPEG Pleno Call for

Proposals and the ICIP Grand Challenge. Two of the proposals follow the workflow described

in Figure 6.9, whereas four of them adopt the workflow described in Figure 6.10. Additionally,

two state-of-the-art video codecs were used as anchors to compare and validate the results.

Authors of the first algorithm P01 exploit the redundacies in the 4D light field structure of

perspective views by estimating a part of them as a weighted sum of other perspective views,

adopting a linear approximation prior [Zhao and Chen, 2017]. They use HEVC to encode and

transmit part of the views, while non-encoded views are estimated by solving an optimization

problem. For algorithm P02, authors arrange the perspective views into a multiview structure

that can be exploited by the corresponding extension of HEVC, namely MV-HEVC [Ahmad

et al., 2017]. They also propose a rate allocation scheme to progressively assign the QPs

in order to optimize the performance. Authors of P03 design a lenslet-based compression

scheme that uses depth, disparity and sparse prediction information to reconstruct the final

set of views [Tabus et al., 2017]. The bitrate allocation can be configured to improve the

reconstruction by encoding the lenslet image using JPEG 2000, or to allow random access by

encoding a subset of views. Authors of P04 propose a novel representation of the 4D light field

as a multi-modal Gaussian Mixture Model, which can be used to reconstruct the perspective

views using only the parameters of the model [Verhack et al., 2017]. For algorithm P05, authors

propose a lenslet-based encoding scheme that uses a fully reversible transformation to 4D light

field to create sub-aperture views, which are then optimally re-arranged and compressed using

enhanced illumination compensation in JEM software5. Adaptive filtering is then applied to

reconstruct the lenslet image [Jia et al., 2017].

The anchors were not evaluated at their maximum reconstruction power, as the reference

renderer was used in the workflow (BM ax = BRe f ). Moreover, due to the limitations of their

representation model, the authors of P04 chose not to submit any results for compression ratio

R1. Hence, a total of 185 stimuli were used for the evaluation. A summary of the proposals

and the anchors can be found in Table 6.1.

High density camera array

In this part of the challenge, proponents were asked to compress a high density array of

images acquired by a single camera. Along with providing a compression algorithm that could

handle the large image array, proponents were asked to provide a renderer, either proprietary

or belonging to a third party, similarly to what was asked in the lenslet part. This step was

implemented to collect and assess different representation models for light field rendering.

Four light field contents with high angular density were provided by the Fraunhofer Insti-

tute [Fraunhofer Institute, 2017], namely S02 = TableTop I, S06 = TableTop II, S09 = Lightfield

Production, and S10 = Workshop. Each content was acquired with a Sony Alpha 7 RII robotized

5https://jvet.hhi.fraunhofer.de/
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Table 6.2 – Summary of compression schemes for the HDCA test.

Proponents Description

HEVC Anchor: Compression of perspective views using HEVC Main10 (x265 software implementation).
VP9 Anchor: Compression of perspective views using VP9 (reference software).
P06 Compressed rendering with MR-DIBR [Graziosi et al., 2014].

(a) S02 (b) S06 (c) S09 (d) S10

Figure 6.12 – Example view from each content used in the HDCA test.

camera equipped with a 50mm1.4 lens, moving with a horizontal step of 4mm and a vertical

step of 6mm, covering a plane of 400×120mm. The precision of each step was 80µm. Each

content was comprised of 101×21 perspective views, which were pre-processed to ensure

the same lighting conditions and white balance, and aligned to match the acquisition array

disposition. One depictive view from each content is shown in Figure 6.12.

Each perspective view was cropped to UHD resolution (3840×2160 pixels), and constituted

the reference BRe f . The performance of the proposed coding algorithms was evaluated on

four fixed compression ratios, namely R1 = 0.01 bpp, R2 = 0.005 bpp, R3 = 0.0025 bpp, and

R4 = 0.00125 bpp. The ratios were computed with respect to the size of the entire light field

content (3840×2160×101×21 pixels).

To assess the performance of the proposals, the same anchors as in the lenslet challenge

were selected. Each perspective view forming the light field contents was converted to YCbCr

format and downsampled from 4:4:4 to 4:2:2, 10-bit depth. For the first anchor, the HEVC

implementation x265 was used6, while for the second anchor, the VP9 reference software was

used to compress the pseudo-temporal sequence7. Full description of the command line used

to create the anchors can be found in the JPEG Pleno High Density Camera Array Dataset

website8.

Only one full proposal was received as a response for the HDCA part of the JPEG Pleno Call

for Proposals. Algorithm P06 combines compression and rendering in a unique stage, aptly

called Compressed Rendering [Graziosi et al., 2014]. The algorithm takes into account scene

geometry and optical properties of the acquiring system to separate the light field data into

a texture-plus-depth representation, after performing a visibility test to exclude parts of the

6https://www.videolan.org/developers/x265.html
7https://www.webmproject.org/vp9/
8http://grebjpeg.epfl.ch/jpeg_pleno/index_HDCA.html

97



Chapter 6. Evaluation of state-of-the-art compression solutions for light field coding

image which will not be rendered. The depth map is converted to a disparity map and encoded

along with the texture data. On the decoder side, they propose a Multi Reference Depth Image-

Based Rendering (MR-DIBR) algorithm to synthetize the perspective views. A summary of the

proposal and the anchors can be found in Table 6.2.

6.2.2 Visual quality assessment

All the proposals were assessed through full reference objective quality metrics and subjective

evaluations after the rendering stage (point B in Figures 6.9 and 6.10). The reference BRe f

was obtained by omitting the encoding and decoding stage in the workflow (shown in green

and blue, respectively). Codecs were also evaluated at their maximum reconstruction power

BM ax , obtained similarly by performing an as low as possible compression in the workflow.

The evaluation was carried out in three separate steps, to better assess the impact of the

compression and the rendering in the final result:

1. B against BRe f : Evaluation of the combined impact of encoder, decoder and renderer

of the proposed algorithm against the uncompressed rendered content, on four fixed

compression ratios.

2. B against BM ax : Evaluation of the impact of encoder and decoder of the proposed

algorithm, using as reference the results of running the encoder at its maximum recon-

struction quality BM ax . This step was implemented to isolate the impact of the proposed

renderer on the overall quality.

3. BM ax against BRe f : Evaluation of the proposed renderer with respect to the reference

renderer. This step was implemented to assess the proposed rendering model without

the influence of compression artefacts.

All three evaluation steps were implemented for the objective assessment, whereas for the

subjective assessment the second step was discarded, as changing the reference from BRe f to

BM ax in the tests would have biased the results.

Objective quality metrics

To evaluate the impact of the distorsions caused by the proposed algorithms, PSNR and SSIM

were selected from the literature to objectively assess the visual quality of the contents. The

metrics were applied separately to the luma channel Y and for each viewpoint image, as

follows:

PSN RY (k, l ) = 10log10
10232

MSE(k, l )
, (6.8)
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Figure 6.13 – Ordering of the views for the subjective tests for the lenslet case. ©2018 IEEE

SSI M Y (k, l ) = (2µIµR + c1)(2σI R + c2)

(µ2
I +µ2

R + c1)(σ2
I +σ2

R + c2)
, (6.9)

in which k and l are the indexes of the perspective views, MSE(k, l ) is the mean square error,

µI and µR are the mean values, σ2
I and σ2

R are the variances, and σI R is the covariance of the

two perspective views in channel Y . Please note that, unlike in the previous section, we are

now computing the PSNR and SSIM on 10-bit data. PSNR was computed for chrominance

channels U ,V following Equation 6.8, and a weighted average [Ohm et al., 2012] was calculated

as follows:

PSN RY UV (k, l ) =
6PSN RY (k, l )+PSN RU (k, l )+PSN RV (k, l )

8

(6.10)

The average PSNR value for Y channel was then computed across the viewpoint images:

àPSN RY = 1

K L

K∑
k=1

L∑
l=1

PSN RY (k, l ), (6.11)

in which K and L represent the number of perspective views. For the lenslet case, K = L = 13,

as the outermost perspective viewswere deemed too distorted to be used in the evaluation,

whereas for the HDCA case, K = 101 and L = 21. àPSN RY UV and �SSI M Y were analogously

computed following Equation 6.11.

Subjective Methodology

Following the ITU-R Recommendation BT.500-13 [ITU-R BT.500-13, 2012], a comparison-

based adjectival categorical judgement methodology with a 7-point grading scale was selected

to perform the subjective visual quality assessment, from -3 (much worse) to +3 (much better),
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with 0 indicating no preference.

A passive assessment was considered in order to ensure the same experience for all partici-

pants, following what has been said in Chapter 3. For the lenslet case, participants were shown

the light field contents as pre-recorded animations navigating between the perspective views

in a serpentine order, to mimic the parallax effect (Figure 6.13). To avoid negative bias in the

subjects, only a subset of 97 out of 225 perspective views was presented in the animation,

as we did in Chapter 3.2, since the rest of the views already presents high visual distorsion

before compression that can negatively affect the results. The views were displayed at a rate of

10 frames per second (fps), to ensure a smooth transition. The total length of the animation

was 9.7 seconds. Each stimulus was displayed alongside the uncompressed reference in a

side-by-side arrangement. The position of the reference was fixed for the duration of the test,

and participants were informed beforehand on which side of the screen the reference would

be displayed.

For the HDCA case, a subset of views was selected for the visualization, as rendering the entire

set would have led to an excessive length per stimulus. Both horizontal, vertical and diagonal

movements were included in the passive representation to aid in recognizing compression

artifacts through motion disparity. In order to properly show the contents side by side with

the reference, each perspective view was cropped to half the size of the screen. The views

were displayed at a rate of 30 frames per second (fps), as a lower framerate would have led to

jerkiness in visualization. The total length of the animation was 12 seconds. Each stimulus

was displayed alongside the uncompressed reference in a side-by-side arrangement. The

position of the reference was fixed for the duration of the test, and participants were informed

beforehand on which side of the screen the reference would be displayed.

Participants were asked to rate the quality of the test stimuli when compared to the uncom-

pressed reference. A training session was organized before the experiment to familiarize

participants with artefacts and distorsions in the test images. Four training samples, created

by compressing one additional content from the dataset on various bitrates, were manually

selected by expert viewers. In the lenslet case, the experiment was split in four sessions. In

each session, 46 stimuli (47 in the last session) were shown along with the uncompressed

reference, corresponding to approximately 8 minutes per session. The display order of the

stimuli was randomized, and the same content was never displayed twice in a row. Each

subject took part in all sessions, hence evaluating all 185 stimuli. A break of ten minutes was

enforced between sessions. In the HDCA case, only one session displaying the 60 stimuli was

employed.

The test was conducted in a laboratory for subjective video quality assessment, which was

set up according to ITU-R Recommendation BT.500-13 [ITU-R BT.500-13, 2012]. A profes-

sional Eizo ColorEdge CG318-4K 31.1-inch monitor with 10-bit depth and native resolution of

4096×2160 pixels was used for the tests. The monitor settings were adjusted according to the

following profile: sRGB Gamut, D65 white point, 120 cd/m2 brightness, and minimum black
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level of 0.2 cd/m2. The controlled lighting system in the room consisted of adjustable neon

lamps with 6500 K color temperature, while the color of the background walls was mid grey.

The illumination level measured on the screens was 15 lux. The distance of the subjects from

the monitor was approximately equal to 7 times the height of the displayed content, conform-

ing to requirements in ITU-R Recommendation BT.2022 [ITU-R BT.2022, 2012]. Subjects were

allowed to move further or get closer to the screen.

For the lenslet case, a total of 28 subjects (19 males and 9 females) participated in the test,

whereas for the HDCA case, 20 subjects (6 males and 14 females) took part in the test, for a

total of 28 and 20 scores per stimulus, respectively. Subjects were between 18 and 35, with a

mean age of 23.14 years old for the lenslet case and 23.11 for the HDCA case. Before starting

the test, all subjects were examined for visual acuity and color vision using Snellen and Isihara

charts, respectively.

Subjective Data Processing and Statistical Analysis

Outlier detection and removal was conducted on the collected scores, according to ITU-R

Recommendation BT.500-13 [ITU-R BT.500-13, 2012]. No outlier was detected, leading to 28

scores per stimulus. The MOS was computed for each stimulus, and the corresponding 95%

CIs were calculated assuming a Student’s t-distribution.

To determine whether the differences in MOS between the proponents were statistically

different, a one-sided Welch’s test at 5% significance level was conducted on the results, with

the following hypotheses:

H0 : MOS A ≤ MOSB

H1 : MOS A > MOSB ,

in which A and B are the proposed algorithms under comparison. The test was conducted

for each compression ratio and for each content. If the null hypothesis were to be rejected,

then it could be concluded that codec A performed better than codec B for the given content

and compression ratio, at a 5% significance level. Additionally, a one-way ANOVA test was

performed on the results to determine the overall difference between codecs.
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6.2.3 Results

Lenslet camera

Figures 6.14, 6.15 and 6.16 show the results of the objective evaluation campaign for the

lenslet case. Results of àPSN RY , àPSN RY UV and �SSI M Y computed using BRe f as reference

(Figure 6.14) show that all codecs have similar performance for compression ratio R1, with the

exception of P05 and P06, which were considerably worse. For compression ratios R2 and

R3, codecs P04 and P05 perform worse than the other codecs, while P01 and P02 achieve

the best results. In particular, P01 and VP9 have similar performance, whereas HEVC has a

slightly poorer behaviour. For the lowest bitrate, P02 clearly outperforms the anchors and

other codecs.

The comparison of the results obtained using BM ax as reference (Figure 6.15) exhibit similar

trends, although P02 shows a significant gain in performance when using àPSN RY as metric.

It is worth mentioning that, in the àPSN RY case, proposal P03 seems to perform consistently

worse when the reference is set to BM ax when compared to reference BRe f (Figure 6.15), at

least for higher bitrates. This is likely due to color space conversions negatively affecting the

performance of JPEG 2000, used in the codec. The comparison of BM ax against BRe f (Figure

6.16) shows that all proposed renderers achieve favorable results, with the exception of P04.

This is mainly due to the fact that the codec uses a mixture of Gaussians to represent the light

field structure, leading to poor results when using full-reference objective quality metrics.

Figures 6.17 and 6.18 present the outcome of the subjective evaluation campaign for the lenslet

case. Results show similar performance for all codecs in highest bitrate, with the exception

of P05 and P06 (Figure 6.17 (a - e) and Figure 6.18 (d)). Among all proponents, P01 has the

best performance, P02 being a close second. For compression ratio R2, proponents P01 and

P02 perform similar to anchor VP9 and they surpass the other codecs on more than three

out of five contents (Figure 6.18 (c)). The same trend can be observed for compression ratio

R3, where P01 is never outplayed and always performs better than the other codecs, with the

exception of P02, which has worse results for only one out of five contents (Figure 6.18 (b)).

For the lowest bitrate, P02 has the best performance, ranking better than the other codecs on

at least three out of five contents, followed by P03 and P01 (Figure 6.18 (a)).

Subjective results show that BM ax is never perceived as better than BRe f , and in certain cases

it is considered as significantly worse than the reference (Figure 6.17 (f)). In particular, while

some proposed renderers were sometimes rated as slighly better than the reference, they fail

to be significantly better, as the CIs are always seen to be crossing the zero. Moreover, in case

of content I 05, only P01 and P02 are considered equivalent to the reference, while all other

codecs significantly underperform when compared to the reference renderer. Additionally,

the renderer proposed in P04 is always perceived as worse than the reference, mainly due to

the blur caused by the Gaussian model.

One-way ANOVA performed on the results of the subjective tests confirms that the codecs
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(a) I01, àPSN RY , B against BRe f (b) I01, àPSN RY UV , B against BRe f (c) I01, �SSI MY , B against BRe f

(d) I02, àPSN RY , B against BRe f (e) I02, àPSN RY UV , B against BRe f (f) I02, �SSI MY , B against BRe f

(g) I04, àPSN RY , B against BRe f (h) I04, àPSN RY UV , B against BRe f (i) I04, �SSI MY , B against BRe f

(j) I09, àPSN RY , B against BRe f (k) I09, àPSN RY UV , B against BRe f (l) I09, �SSI MY , B against BRe f

(m) I10, àPSN RY , B against BRe f (n) I10, àPSN RY UV , B against BRe f (o) I10, �SSI MY , B against BRe f

Figure 6.14 – Results of the objective evaluations comparing B against BRe f , for all lenslet

contents (rows). àPSN RY , àPSN RY UV and �SSI M Y are used as metric in the first, second and
third column, respectively.
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(a) I01, àPSN RY , B against BM ax (b) I01, àPSN RY UV , B against BM ax (c) I01, �SSI MY , B against BM ax

(d) I02, àPSN RY , B against BM ax (e) I02, àPSN RY UV , B against BM ax (f) I02, �SSI MY , B against BM ax

(g) I04, àPSN RY , B against BM ax (h) I04, àPSN RY UV , B against BM ax (i) I04, �SSI MY , B against BM ax

(j) I09, àPSN RY , B against BM ax (k) I09, àPSN RY UV , B against BM ax (l) I09, �SSI MY , B against BM ax

(m) I10, àPSN RY , B against BM ax (n) I10, àPSN RY UV , B against BM ax (o) I10, �SSI MY , B against BM ax

Figure 6.15 – Results of the objective evaluations comparing B against BM ax , for all lenslet
contents (rows). àPSN RY , àPSN RY UV and �SSI M Y are used as metric in the first, second and
third column, respectively.
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(a) àPSN RY , BM ax against BRe f (b) àPSN RY UV , BM ax against BRe f (c) �SSI MY , BM ax against BRe f

Figure 6.16 – Results of the objective evaluation, comparing BM ax with respect to BRe f for all

lenslet contents. àPSN RY , àPSN RY UV and �SSI M Y are used as metric in the first, second and
third column, respectively.

(a) I01, B against BRe f (b) I02, B against BRe f (c) I04, B against BRe f

(d) I09, B against BRe f (e) I10, B against BRe f (f) BM ax against BRe f

Figure 6.17 – Results of the subjective evaluation. MOS vs bitrate, with respective CIs (a - e),
and comparison of BM ax with respect to BRe f (f), for all lenslet contents.

(a) R4 (b) R3 (c) R2 (d) R1

Figure 6.18 – Pairwise comparison results for subjective tests in the lenslet case. Each cell con-
tains the number of contents for which the null hypothesis was rejected, for each compression
ratio. The null hypothesis is defined as MOSi ≤ MOS j , in which i indicates the row and j the
column of the matrix.
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are significantly different (p = 2.1376×10−111). In particular, proponent P03 has comparable

performance with respect to the anchors. Proponents P01 and P02 have statistically equivalent

behaviour, whereas they are statistically better than the anchors. On the other hand, P04, P05

and P06 perform statistically worse than the anchors.

High density camera array

Figure 6.19 shows the results of the objective quality evaluation for HDCA contents. Results

from the comparison between B and BM ax are omitted as exhibiting very similar behavior

with respect to the comparison between B and BRe f . It can immediately be observed that for

low bitrates proponent P06 is performing consistently better than the anchors, according to

all the metrics. However, when it comes to high bitrates, the results are strongly dependent

on the content. In particular, for content S06 gains can be observed for all the metrics, but

most notably for �SSI M Y ; on the other hand, the anchors perform remarkably better than P06

on at least 2 out ot four contents when using àPSN RY and àPSN RY UV (see Figure 6.19 (g-h)

and (j-k)).

Figures 6.20 and 6.21 show the results of subjective quality evaluation. Results confirm that, for

low bitrates, proponent P06 performs significantly better than the anchors (see Figure 6.21(a-

b), in which P06 outperforms the anchors on at least 3 out of 4 contents). However, for high

bitrates, the proposed solution is either equivalent or worse than the anchors, failing to be

significantly better (see Figure 6.21(c-d)). Moreover, for the highest bitrate P06 is outperformed

by HEVC on half the contents.

Results from the comparison between the reference renderer BRe f and the proposed MR-DIBR

show that, in 3 out of 4 cases, the two are statistically equivalent (see Figure 6.20(a-c)). It

is worth noting that for one content it appears to be statistically better than the reference

renderer. The results show that MR-DIBR is a valuable alternative to synthetize the perspective

views at the receiver side, since no loss in quality can be perceived in absence of compression

artifacts.

6.3 Conclusions

In this chapter we have reported the results of objective and subjective quality assessment

performed under the framework of two grand challenges for compression of light field contents.

Our contributions are the following:

• We first conducted the evaluation campaign for the ICME 2016 Grand Challenge on

Light Field Compression. We applied state-of-the-art objective quality metrics and

designed the subjective evaluation methodology to properly assess the performance

of the five proposed solutions for compression of lenslet-based light field images. We
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(a) S02, àPSN RY , B against BRe f (b) S02, àPSN RY UV , B against BRe f (c) S02, �SSI MY , B against BRe f

(d) S06, àPSN RY , B against BRe f (e) S06, àPSN RY UV , B against BRe f (f) S06, �SSI MY , B against BRe f

(g) S09, àPSN RY , B against BRe f (h) S09, àPSN RY UV , B against BRe f (i) S09, �SSI MY , B against BRe f

(j) S10, àPSN RY , B against BRe f (k) S10, àPSN RY UV , B against BRe f (l) S10, �SSI MY , B against BRe f

Figure 6.19 – Results of the objective evaluations comparing B against BRe f , for all HDCA

contents (rows). àPSN RY , àPSN RY UV and �SSI M Y are used as metric in the first, second and
third column, respectively.
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(a) S02 (b) S06 (c) S09 (d) S10

Figure 6.20 – Results of the subjective evaluation. MOS vs bitrate, with respective CIs, and
comparison of BM ax with respect to BRe f (shaded) for all HDCA contents.

(a) R4 (b) R3 (c) R2 (d) R1

Figure 6.21 – Pairwise comparison results for subjective tests in the HDCA case. Each cell con-
tains the number of contents for which the null hypothesis was rejected, for each compression
ratio. The null hypothesis is defined as MOSi ≤ MOS j , in which i indicates the row and j the
column of the matrix.

showed that there is much to be gained in using new compression schemes as opposed

to legacy JPEG.

• We then designed the evaluation procedure for the ICIP 2017 Grand Challenge on Light

Field Coding, held concurrently with the JPEG Call for Proposals on Light Field Coding.

In particular, we performed the objective and subjective quality assessment on various

steps, to analyze the performance of both encoders and renderers that were proposed

as a response. Two light field acquisition techniques were considered as input. Results

showed that direct application of state-of-the-art video codecs to compress light field

images can be improved using new codec designs. In particular, two codecs were found

to outperform others in both objective and subjective terms. We also demonstrated that

no proposed representation model is statistically better than that adopted as reference.

It should be remarked that the assessment conducted in this chapter only takes into consider-

ation perceptual quality when proclaiming a winner. In addition to compression efficiency

and visual quality, other criteria such as complexity, delay and random access should be also

considered when adopting a preferred solution.
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7 Impact of coding approaches on com-
pression efficiency for light field im-
ages

Disclaimer: Some of the contents of this chapter were adapted from the following article, with permission

from all co-authors and publishing entities:

Viola, Irene, Martin Řeřábek, and Touradj Ebrahimi. “Comparison and evaluation of light field image cod-

ing approaches” in IEEE Journal of selected topics in signal processing 11.7 (2017): 1092-1106. ©2017 IEEE.

Personal contribution: I was the main curator of the experiments, from the selction of the codecs to the

design of the quality evaluation. I performed the tests and conducted the analysis of the results.

As large volumes of data are generated in the acquisition of light field contents, efficient

compression solutions are needed to reduce the burden on both transmission and storage

systems. Still, finding a suitable compression algorithm for light field contents is largely an

open problem. Several publications have been devoted in the literature to propose new coding

techniques aimed at exploiting the intrinsic redundancy of light field information. However,

based on the acquisition technology employed to capture the light field data, different solu-

tions may be needed to effectively reduce the amount of data while preserving an acceptable

quality level.

Currently available techniques to capture and visualize light field images determine two

general approaches for light field image compression. A general diagram of workflow for light

field image acquisition and visualization is depicted in Figure 7.1. The first coding approach

assumes that the raw sensor data obtained during the acquisition step is compressed directly

with basic signal pre-processing such as demosaicing or devignetting (point A in Figure 7.1).

The actual format of raw data strongly depends on the exact acquisition device, e.g. a lenslet

based hand-held camera, a multi-camera array, or a multi-view plus depth acquisition device.

Often, extensive post-processing of the decompressed light field image is necessary prior to

its visualization. Furthermore, additional metadata about the captured scene and acquisition

device, e.g. camera and color calibration data, is needed to properly process and visualize the

109



Chapter 7. Impact of coding approaches on compression efficiency for light field images

Figure 7.1 – General acquisition and display pipeline for light field images. ©2017 IEEE

light field image.

The second coding approach considers creating a 4D data structure from the light field image

prior to compression (point B in Figure 7.1). The 4D light field is composed by a collection of

perspective images, which can be visualized without a need for acquisition related metadata

or post-processing. The process of creating the 4D light field from the raw sensor data strongly

depends on the exact acquisition device.

In the context of general light field image manipulation, one can think of two specific use

cases related to either of the two coding approaches defined above. On the one hand, profes-

sional photographers, operators, and artists may benefit from light field image acquisition

technologies, since they allow for greater flexibility in terms of optimal parameters selection

after capture. For example, an erroneous selection of focal plane in a scene may lead to

several retakes and thus to greater costs. Other features, such as change of point of view or

zoom, may dramatically impact the way scenes are captured. In this case, it is of paramount

importance that key factors in the acquisition, such as white balance, color, and exposition,

are not altered in the compression step, and that acquisition metadata is stored to be used

during post-processing.

Consumers, on the other hand, may turn to light field imaging when looking for an enhanced

experience to capture a special moment. Ability to change zoom, perspective, and focus in a

simple and intuitive way without the need for expensive post-processing software, is in line

with the interactivity already seen in applications like Instagram, in which users can modify

the appearance of the captured scenes with predefined filters. In this case, the fidelity to the

acquisition parameters is less important. However, the resulting image should not be too large

and ready to be visualized and shared in devices with limited resources.

In this chapter, we compare two coding approaches to compress light field images. The first

performs the compression on the minimally pre-processed raw data (point A in Figure 7.1).

As such, it is strongly acquisition dependent, since the compression solution will be tailored

on the way the data is captured and arranged. Moreover, perceptualy-based solutions will be

harder to employ, since the data needs to be heavily processed (often with the aid of metadata

information) to be rendered. The second approach enforces the transformation to a 4D data

structure of perspective views (4D light field) prior to the compression. As the coding is to

be considered mostly independent from the acquisition step, any additional information

carried by the raw data should be either discarded or separately accounted for. To aid in our

evaluation, five different compression algorithms, which employ either of the two approaches
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Figure 7.2 – Processing chain for lenslet image compression used for two compression algorithms (anchor P01, proponent P02). ©2017 IEEE

Figure 7.3 – Processing chain for 4D light field compression used for two compression algorithms (anchors P04 and P05). ©2017 IEEE

Figure 7.4 – Processing chain for hybrid compression of lenslet using intermediate 4D light field transformation (proponent P03). The green
and blue blocks highlight how the compression step involves intermediate transformation to 4D light field, and the decompression step
involves the inverse transformation to lenslet image. ©2017 IEEE
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and are suitable for the predefined use cases mentioned before, are described, investigated,

and evaluated through a set of objective and subjective quality evaluations. For the objective

quality assessment, the PSNR metric is used, while for the subjective evaluation, the two

methodologies described in Chapter 3.2 have been selected. The first methodology allows

for interaction with the displayed content, whereas the second passively shows the different

perspective views composing the light field content, in order to ensure that all users see and

rate the exact same content. We present and compare the results of the different coding

approaches, drawing conclusions and recommendations for the design of future compression

solutions.

7.1 Light field coding strategies

This section describes in details the coding approaches investigated in the evaluation process,

including a thorough description of five selected algorithms to compress light field images.

Two main coding approaches can be considered for compression of light field images. Re-

ferring to the general diagram of workflow presented in Figure 7.1, we can compress the

data at two different stages. Compression can be performed on the raw sensor data that has

been captured with the selected acquisition technology, after minimal processing, such as

demosaicing and devignetting (point A in Figure 7.1). The 4D light field can be recovered from

the decompressed bitstream through extensive post-processing, involving camera and color

calibration metadata which needs to be sent along with the bitstream. The second coding

approach performs compression on the 4D light field obtained from the raw data (point B in

Figure 7.1). The 4D light field is a collection of perspective views which can be visualized as

they are, or combined to create new interpolated views, synthetic aperture, refocusing, and ex-

tended focus. Since the transformation of raw sensor image data to 4D light field is performed

before the compression step, no metadata is required for visualization. The compression

solutions used to code the raw sensor data, as well as the transformation to 4D light field from

the raw sensor data, strongly depend on the acquisition technology used to capture light field

images. If compression is applied at point A, the selected scheme will profoundly differ based

on the acquisition technology. On the other hand, a compression scheme operating at point B

can compress 4D light field image information captured with any acquisition technology.

In order to compare the two coding approaches on a common ground, we decided to focus

our attention on evaluating coding strategies for lenslet-based acquisition. Lenslet-based

acquisition allows to compare the two approaches on the same image content captured within

the same conditions. In this case, the raw sensor data is minimally pre-processed to obtain a

lenslet image. From the lenslet image, the 4D light field can be recovered through rectification,

calibration and extraction of perspective images, using camera and color calibration data. The

extraction of perspective images from the lenslet image generates N ×M views, depending

on the uv resolution. However, the most external views contain too many distortions to be
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Table 7.1 – Summary of compression schemes. ©2017 IEEE

Proponent Description

P01 Lenslet image compressed using HEVC intra (software x265).

P02
Lenslet image compressed using HEVC intra
with LLE and SS (software HM-14.0) [Monteiro et al., 2016].

P03
Lenslet image compressed using intermediate transformation
to perspective views and HEVC (software JEM 2.0) [Liu et al., 2016].

P04
Chroma subsampling of the lenslet image and compression of perspective
views through pseudo-temporal sequence using HEVC (software x265).

P05
Compression of perspective views through pseudo-temporal sequence
using HEVC (software x265).

properly visualized. The 4D light field coding approach can take advantage of this fact by not

coding the most distorted views, which will likely not be used in the visualization process,

thus further reducing the size of the bitstream.

The rest of the section is organized as follows. The first coding approach, which deals with

compression of lenslet images, is described. Then, the second coding approach, which focuses

on compression of 4D light field obtained from lenslet images, is presented. Finally, one hybrid

approach to compress lenslet images through transformation to 4D light field, introduced in

ICME 2016 Grand Challenge, is detailed. Authors are aware of practical drawbacks and flaws

in this solution. However, it was decided to include it in the evaluation process because of its

optimal performance within the Grand Challenge, and because it represents a transition point

between the two coding approaches. A summary of the compression schemes can be found in

Table 7.1.

7.1.1 Lenslet image compression

The lenslet coding approach performs compression on the lenslet image, obtained from the

raw sensor data after demosaicing and devignetting. Figure 7.2 depicts the workflow for

the coding approach. The workflow was adopted following the definition of the ICME 2016

Grand Challenge, which required to perform compression on YUV 420 lenslet images in 8-bit

precision.

The raw sensor data is first demosaiced, devignetted and clipped to 8 bits to obtain a lenslet

image. The lenslet image is subsequently converted to YUV 420 format, and compressed and

decompressed using the selected compression scheme. The output of the decompression step

is then upsampled and converted to RGB 444. Conversion to RGB 444 format is required to

perform the transformation from lenslet image to 4D light field. The 4D light field is created

from the decompressed lenslet image using camera metadata. Color and gamma corrections

are applied separately on each view. The perspective views forming the 4D light field can
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subsequentially be visualized on commercially available displays, or combined to create new

interpolated views, synthetic aperture or refocusing effect.

Two compression algorithms (P01 and P02) compliant with the workflow depicted in Figure

7.2 were evaluated. One compression scheme was selected among the best performing

submitted to ICME 2016 Grand Challenge, and it was compared to an HEVC anchor. The

anchor P01 exploits HEVC intra profile with default settings to compress the YUV 420 lenslet

image. To perform the compression, the software x265 was used1. The second algorithm

P02 uses a modified version of HEVC intra profile, which integrates LLE and SS to exploit the

redundancies in the lenslet structure [Monteiro et al., 2016]. The image is partitioned into

blocks using HEVC intra prediction scheme. LLE estimates the current block by selecting the

best linear combination of k nearest neighbors through a least-square optimization problem.

SS predicts the current block using the best among two blocks, one given by best block

matching in the search window, the other chosen by searching for best linear combination

between the first selected block and another block in the search window. The codec performs

both LLE and SS, and then choses the prediction method that gives the smallest rate distortion

cost.

7.1.2 4D light field compression

The 4D light field coding approach performs the compression on the 4D light field, obtained

from the lenslet image, after color and gamma corrections. Figure 7.3 depicts the workflow

for this coding approach. Two anchors were created to assess the visual quality of this coding

approach. The first anchor P04 assumes the same input as the compression schemes using

the lenslet coding approach (YUV 420 lenslet images). The color space is then upsampled and

converted again to RGB 444, to be used in the transformation process. To assess the effect of

chroma subsampling of the lenslet image on the resulting quality of the final 4D light field,

the second anchor P05 performs the compression on the 4D light field, obtained from lenslet

in RGB 444 format, after color and gamma corrections (Figure 7.3). In this case, the lenslet

image is not transformed to YUV from RGB, and the color space is not subsampled before the

transformation.

For both anchors, the 4D light field is created from the uncompressed lenslet image using

camera metadata, and color and gamma corrections are applied separately on each view, prior

to compression. Each view is converted from RGB 444 to YUV 420. The views are arranged in a

pseudo-temporal sequence in spiral order, as depicted in Figure 7.6. Due to the geometrical

distortions present in the most external views, only a subset of the views is coded. Specifically,

only the 13×13 internal views out of 15×15 views are encoded. The pseudo-temporal sequence

is coded with HEVC software x265. In the decompression step, the views which have not been

coded are replaced with copies of neighboring views, to reconstruct the 15×15 images that

compose the 4D light field. After decompression, the views are upsampled and converted

1https://www.videolan.org/developers/x265.html
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(a) Bikes (b) Stone_Pillars_Outside (c) Fountain_&_Vincent_2 (d) Friends_1

Figure 7.5 – Central perspective view from each content used in our experiment. ©2017 IEEE

to RGB 444 and rearranged in the 4D light field. The perspective images composing the 4D

light field can then be visualized on commercially available displays, or combined to create

synthetic aperture, refocusing and new interpolated views.

7.1.3 Hybrid compression of lenslet images

Among the participants to the ICME 2016 Grand Challenge, which required to have YUV 420

lenslet image as input and output of the compression and decompression step, one algorithm

performed compression on lenslet images using intermediate transformation to 4D light field

[Liu et al., 2016]. Figure 7.4 depicts the workflow for this algorithm.

The algorithm P03 proposes a compression of 4D light field images based on pseudo-sequences

of perspective views. Due to the constraints of the Grand Challenge, the YUV 420 lenslet image

is first converted to RGB 444 color space, to be used in the transformation step. Then the

lenslet is processed to obtain the perspective views that compose the 4D light field. The views

are color and gamma corrected and then converted back to YUV 420. A subset of them is then

rearranged in a specific coding order, that accounts for similarities between adjacent views,

and coded using the JEM encoder2. In the decompression step, the views are rearranged in

the 4D light field. Inverse color and gamma corrections are applied and the lenslet image is

formed following the inverse process of the transformation to 4D light field.

The conversion from lenslet to 4D light field and back was needed to be compliant with

the requirements of the grand challenge. However, it can be clearly seen that the proposed

approach is hybrid, in the sense that it compresses lenslet images through transformation to

4D light field. The tranformation from lenslet images to 4D light field and back is lossless, as it

is defined in [Liu et al., 2016].

7.2 Experiment design

This section describes the evaluation process in details. First, the data preparation process is

presented, along with the coding conditions. Methodologies and metrics for objective and

2https://jvet.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/tags/HM-16.6-JEM-2.0rc1/
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Figure 7.6 – Ordering of the views for coding. ©2017 IEEE

subjective evaluation are then presented in details.

7.2.1 Dataset preparation and coding conditions

Four light field images, acquired by a Lytro Illum camera, were selected from the publicly

available EPFL light field image dataset [Řeřábek and Ebrahimi, 2016]. More specifically, Bikes,

Stone_Pillars_Outside, Fountain_&_Vincent_2 and Friends_1 contents were selected for our

experiments. The central view of each content used is depicted in Figure 7.5. The images were

carefully selected from those used in the ICME 2016 Grand Challenge [Viola et al., 2016a] in

order to provide a wide range of scenarios, containing details that would prove challenging for

the compression algorithms. To obtain the 4D light field, the lenslet images were processed

using the light field MATLAB toolbox [Dansereau et al., 2013][Dansereau et al., 2015].

The compression algorithms were evaluated on four bitrates (corresponding to four compres-

sion ratios), namely R1 = 1 bpp (10 : 1), R2 = 0.5 bpp (20 : 1), R3 = 0.25 bpp (40 : 1), R4 = 0.1

bpp (100 : 1). The compression ratios are computed as ratios between the size of the uncom-

pressed raw images in 10bit precision (5368×7728×10 bits = 414839040 bits) and the size of

the compressed bitstreams.

The uncompressed reference was obtained by demosaicing, devignetting and clipping to 8 bits

the raw sensor data, transforming it to 4D light field and applying color and gamma corrections.

Unlike the reference used in ICME 2016 Grand Challenge, which used as a reference the 4D

light field obtained from YUV 420 lenslet image, we obtain our reference from the lenslet

image in RGB 444, without any chroma subsampling. This reference was selected to have

a proper comparison with acquisition data obtained with minimal pre-processing. For this

reason, chroma subsampling was not applied on the reference, since it alters the data.

A total of five compression schemes were evaluated. Each compression scheme was given

a label, as stated before, for easier identification. A summary of the compression schemes

can be found in Table 7.1. It should be noted that the QPs were selected to match the bitrates

described above.
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7.2.2 Objective quality evaluation

To analyze the performance of evaluated coding schemes, PSNR was selected as a full refer-

ence metric. PSNR values were computed with respect to the uncompressed reference. The

computation is thus performed on the 4D light field after color and gamma corrections (point

B in Figure 7.1).

The PSNR metric was adapted to better suit properties of light field images, and was computed

analogously to what has been described in Chapter 6.1. We report it here for completeness.

The PSNR value is computed on the Y channel as follows:

PSN RY (k, l ) = 10log10
2552

MSE(k, l )
, (7.1)

in which k and l are the indexes of the acquired views. The MSE(k, l ) for each image is

computed as follows:

MSE(k, l ) = 1

mn

m∑
i=1

n∑
j=1

[I (i , j )−R(i , j )]2, (7.2)

where m and n are the dimensions of one viewpoint image (i.e., n = 625, m = 434). I (i , j ) is

the Y value for the selected acquired view in the evaluated 4D light field, whereas R(i , j ) is the

corresponding value in the reference 4D light field. In the same way, the PSNR for the other

two channels U and V is obtained. A weighted average [Ohm et al., 2012] is then computed as

follows:

PSN RY UV (k, l ) =
6PSN RY (k, l )+PSN RU (k, l )+PSN RV (k, l )

8

(7.3)

The mean of all viewpoint images is subsequentially computed to have an average value for

PSNR for Y channel and for Y UV :

PSN R Xmean =
1

(K −2)(L−2)

K−1∑
k=2

L−1∑
l=2

PSN RX (k, l ), (7.4)

in which K = 15 and L = 15 represent the number of perspective views, and X = Y and

X = Y UV for Y channel and for Y UV channels, respectively.
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7.2.3 Subjective assessment

The interactive and passive methodologies employed in this test were extensively described

and compared in Chapter 3, to which we refer interested readers for more information on the

test environment and planning.

Data analysis

Outlier detection was performed according to the guidelines defined in ITU-R Recommen-

dation BT.500-13 [ITU-R BT.500-13, 2012]. One outlier was detected in both interactive and

passive tests, and the relative scores were discarded, thus leading to 23 and 28 scores per

stimulus, respectively. The MOS was computed, separately for each methodology, for each

coding condition j (i.e., each content, codec and compression ratio) as follows:

MOS j = 1

N

N∑
i=1

mi j , (7.5)

where N is the number of participants and mi j is the score for stimulus j by participant i .

The corresponding 95% CIs were computed. To determine whether the results yield statistical

significance, a one-sided Welch’s test at 5% significance level was performed on the scores,

with the following hypotheses:

H0 : MOS A ≤ MOSB

H1 : MOS A > MOSB ,

in which A and B are the codecs that are being compared. The test was performed for

each compression ratio and for each content, separately for each methodology. If the null

hypothesis were to be rejected, then it could be concluded that codec A performed better than

codec B for the given content and compression ratio at a 5% significance level.

7.3 Results and discussion

In this section, results of the objective and subjective quality assessments are presented.

Results on the coding approaches presented in Section 7.1 will be discussed separately. First,

the lenslet image compression is analyzed. Then, the 4D light field compression is discussed.

The hybrid approach is compared to the other approaches. Finally, a comprehensive review of

all the codecs is performed.
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(a) Bikes (b) Stone_Pillars_Outside

(c) Fountain_&_Vincent_2 (d) Friends_1

Figure 7.7 – Rate distortion plots for Y channel (solid line) and for YUV channels (dashed line).
PSNR was computed on the 4D light field after color and gamma correction. ©2017 IEEE

7.3.1 Compression of lenslet images

For PSNR computed on Y channel (Fig. 7.7, solid lines), the performance of the two codecs

examined here (P01 and P02) strongly depends on the content, as it is common when com-

puting PSNR. In general, P01 outperforms codec P02 for high bitrates. For low bitrates, P02

outperforms P01 for contents Bikes and Fountain_&_Vincent_2, and is outperformed in the

remaining cases. PSNR computed on YUV channels (Fig. 7.7, dashed lines) shows similar

trends.

Codec P02 has a particularly poor performance with content Friends_1, and in general per-

forms worse than codec P01 for high bitrates. Results are particularly surprising since the

codec proposed in P02 is supposed to improve the performance of HEVC Intra (anchor P01)

with new prediction schemes. To better investigate the reasons behind this behaviour, we
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(a) Bikes (b) Stone_Pillars_Outside

(c) Fountain_&_Vincent_2 (d) Friends_1

Figure 7.8 – Rate distorsion plots for Y channel. PSNR was computed at various stage of the
pipeline (See Fig. 7.2). ©2017 IEEE

computed PSNR at different stages of the pipeline. Results from PSNR computation are shown

in Figure 7.8. In particular, we computed PSNR on the 4D light field without any color or

gamma correction, on the color-corrected 4D light field, on the gamma-corrected 4D light

field and when both corrections were applied on the 4D light field. Additionally, we compute

PSNR on the lenslet image prior to the transformation, to better assess the performance of

the two codecs on 2D images. The PSNR was computed with respect to the uncompressed

reference at the same stage of the pipeline.

Results show that, on the lenslet image and on the 4D light field without any correction, P02

always outperforms P01. On the gamma-corrected 4D light field, P02 performs better than

P01 on half of the contents. When color correction is applied on the 4D light field, however, we
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(a) Bikes (b) Stone_Pillars_Outside

(c) Fountain_&_Vincent_2 (d) Friends_1

Figure 7.9 – Results of interactive subjective tests. MOS vs bitrate for all contents, with respec-
tive CIs. ©2017 IEEE

see a degradation in performance, with P01 outperforming P02 for high bitrates. This suggests

that the prediction method, while working efficiently on compression of regular images, as

proven by the results obtained on the lenslet image prior to transformation, adapts rather

poorly to the peculiarities of light field images, and is more susceptible to errors after color

correction is applied. Results from PSNR computed on YUV channels follow the same trend.

Results from both interactive and passive subjective evaluations show that P01 is performing

significantly better than P02 for the highest bitrate. In particular, in the interactive test P01

is significantly better than P02 for all contents, whereas in the passive test it is significantly

better for 3 out of 4 contents. For bitrate = 0.5 bpp, interactive tests show that P01 performs

better than P02 for only 1 out of 4 contents, whereas passive tests indicate that it outperforms

P02 on half of the contents. For lower bitrates (0.2 and 0.1 bpp) the difference between the

two codecs is negligible.
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(a) Bikes (b) Stone_Pillars_Outside

(c) Fountain_&_Vincent_2 (d) Friends_1

Figure 7.10 – Results of passive subjective tests. MOS vs bitrate for all contents, with respective
CIs. ©2017 IEEE

7.3.2 Compression of 4D light field

As discussed in section 7.1, we want to analyse the effect of downsampling the lenslet image

prior to transformation to 4D light field. For this reason, we compare the performance of P04,

which uses a chroma subsampled version of the lenslet image, with P05, which creates the 4D

light field from the lenslet image which has not been subsampled (see Fig. 7.3).

For PSNR computed on Y channel (Fig. 7.7, solid lines), the two codecs have similar perfor-

mance for all bitrates for contents Bikes and Stones_Pillars_Outside, whereas for contents

Fountain_&_Vincent_2, P05 performs better than P04 for all bitrates. Although downsam-

pling of chroma channels should not affect the Y channel, color correction is applied on RGB

channels of the single views, which are then converted to YUV to compute the PSNR. The

downsampling thus affects the Y channel as well.
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Results are similar for PSNR computed on YUV channels (Fig. 7.7, dashed lines), although for

content Fountain_&_Vincent_2, the difference between P04 and P05 is now negligible.

Results from subjective evaluations and pairwise comparison (Fig. 7.9, 7.10, 7.11 and 7.12)

show a stronger preference for codec P05 when compared to codec P04. In particular, results

from the interactive tests show that, for the highest bitrate, P05 performs significantly better

than P04 for two out of four contents. For bitrate = 0.25 bpp, P05 performs better on three out

of four contents, whereas for the remaining two bitrates (0.5 bpp, 0.1 bpp) it always performs

significantly better than P04.On the other hand, results from the passive tests show that P05

always performs significantly better than P04, for all bitrates.

7.3.3 Hybrid compression of lenslet images

As seen in section 7.1, the third compression scheme P03 is compressing 4D light field and then

converting them back to lenslet images. It is thus worthy of note to compare the performances

of P01, P02 and P03, since they have the same input and output in the compression and

decompression steps, although they use different approaches.

From the objective quality metric point of view, P01 and P03 outperform codec P02 for high

bitrates. For low bitrates, P03 always outperforms P01 and P02, although in case of content

Stone_Pillars_Outside, the difference between the codecs is negligible. For PSNR computed

on YUV channels (Fig. 7.7, dashed lines), codec P03 outperforms the others for all contents.

Interestingly enough, for codec P03 PSNR computed on YUV channels always has higher

values than PSNR computed on the Y channel, while for all the other codecs the opposite is

true. One possible explanation for this peculiar behavior is that the inverse color and gamma

transformation applied before transforming the 4D light field back to lenslet has an effect on

the final color performance, leading to better results in the YUV channels.

The subjective evaluation results do not show the same trends as the objective results (Fig. 7.9,

7.10, 7.11 and 7.12). In particular, results from the interactive tests show that for the lowest

bitrate (0.1 bpp) P03 outperforms P01 on two out of four contents and never outperforms P02,

whereas the passive tests show that P03 performs better than P01 on only 1 out of 4 contents,

and performs better than P02 on 2 out of 4 (Fig. 7.12 (a)). For intermediate bitrates (0.5 bpp

and 0.25 bpp), interactive tests show that P01 and P03 both perform significantly better than

P02 on one out of four contents, whereas passive tests additionally show that P01 performs

significantly better than P03 on half of the contents for both bitrates. For the highest bitrate,

P01 performs significantly better than P03 on at least half of the contents (3 out of 4 in case of

passive tests, 2 out of 4 in case of interactive tests), and outperforms P02 in the majority of

cases (3 out of 4 in case of passive tests, 4 out of 4 in case of interactive tests).

For the objective quality evaluation, the hybrid scheme P03 performs better than the other

lenslet compression schemes. However, results from the subjective evaluation suggest that

the difference in performance with respect to P01 (simple HEVC Intra) is negligible for low
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bitrates, and leads to poorer results for the highest bitrates.

Since P03 compresses lenslet images through transformation to 4D light field, it is useful to

compare its performance to the performance of P04. For PSNR computed on Y channel (Fig.

7.7, solid lines), the performance of codecs P03 and P04 strongly depends on the content,

as expected. For high bitrates, P04 performs better than P03, with the notable exception of

content Stones_Pillars_Outside, in which codec P03 performs slightly better for all bitrates. For

low bitrates, however, P04 performs slightly worse than P03 for all contents except Friends_1,

for which P04 performs better than P03. PSNR computed on YUV channels (Fig. 7.7, dashed

lines) show similar trends.

Results from subjective evaluation and pairwise comparison (Fig. 7.9, 7.10, 7.11 and 7.12),

however, show that codec P03 never performs significantly better than codec P04. In particu-

lar, for the lowest bitrate, results from the interactive tests indicate that no codec performs

significantly better than the other, whereas results from passive tests suggest that P04 performs

better than P03 on 1 out of 4 contents. For bitrate = 0.25 bpp and 0.5 both interactive and

passive tests agree that P04 outperforms P03 for 2 out of 4 contents and 1 out of 4 contents,

respectively. For the highest bitrate, interactive tests indicate that P04 performs significantly

better than P03 on 1 out of 4 contents, whereas for the passive tests they are statistically

equivalent for all contents.

7.3.4 General discussion

In general, both objective and subjective results show that coding 4D light field (point B in

Figure 7.1) leads to better performance when compared to coding lenslet images directly. In

particular, pseudo-temporal ordering of 4D light field, obtained from RGB 444 lenslet image,

performs significantly better than the other proposals for at least half of the contents for all

bitrates examined in the subjective assessment of quality, showing that chroma subsampling

of lenslet images can lead to a considerable reduction in visual quality. It is worth noting,

however, that results from passive tests show that P01 performs statistically better than P04

on 2 out of 4 contents for the highest bitrate (Fig. 7.12 (d)).

Comparison of different lenslet image compression algorithms shows that improvements in

performance for 2D image coding do not necessarily result in better visual quality of light

field image. In particular, whereas HEVC intra with LLE and SS has better performance in

objective quality evaluation carried out on lenslet images and 4D light field without color

correction, it performs significantly worse when color correction is applied. Further work on

lenslet image compression should address the effect of color correction on the final 4D light

field, and propose new strategies to appropriately cope with this issue.

Coding 4D light field has the benefit of not requiring any metadata to be correctly displayed.

Moreover, it can be used for compression of contents acquired with different acquisition

technologies. Since the most distorted views in the 4D light field can be discarded in the
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(a) R4 (b) R3 (c) R2 (d) R1

Figure 7.11 – Pairwise comparison results for interactive subjective tests. Each cell contains
the number of contents for which the null hypothesis was rejected, for each compression
ratio. The null hypothesis is defined as MOSi ≤ MOS j , in which i indicates the row and j the
column of the matrix. ©2017 IEEE

(a) R4 (b) R3 (c) R2 (d) R1

Figure 7.12 – Pairwise comparison results for passive subjective tests. Each cell contains
the number of contents for which the null hypothesis was rejected, for each compression
ratio. The null hypothesis is defined as MOSi ≤ MOS j , in which i indicates the row and j the
column of the matrix. ©2017 IEEE

compression process, it also allows for bitrate saving. As we previously mentioned, the

transformation to 4D light field on the decoder side is an additional step that would be not

suitable for low-memory devices. Thus, if consumers’ market is the desired target, a solution

that does not require any transformation would be preferrable. In this case, coding 4D light

fields seems the most suitable choice.

The additional step of converting to 4D light field on the decoder side is not an issue if the

target is the professional market. However, fidelity to acquisition parameters has higher

importance. As seen before, chroma subsampling leads to poorer performances, especially

after color correction has been applied. On the other hand, coding the 4D light field data

structure could lead to discarding metadata, which could be used in post-processing softwares,

as well as potentially rejecting some heavily distorted views. In this case, both approaches

presented in this chapter do not seem suitable. A new approach should be designed, aimed at

high fidelity to acquisition parameters.
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7.4 Conclusion

In this chapter, we presented two different coding approaches for light field image compres-

sion, based on the information to be encoded. The approaches were evaluated using both

objective quality metrics and subjective experiments. Considering different predefined use

cases, experimental results provide some insights on the impact of compression algorithms on

the perceived quality. This reveals the necessity for further investigations and improvements

of compression algorithms especially in terms of processing of the metadata related to light

field rendering.

Our contributions can be outlined as such:

• We define two coding approaches for light field image compression, according to a

generic pipeline for acquisition, transmission and rendering of light field contents. One

approach takes as input the raw data after basic pre-processing, whereas the other

requires the transformation to acquisition-independent 4D light field data structure

prior to coding.

• We selected five different compression algorithms that adhere to either one of the

aforementioned coding approaches. Specifically, two of the algorithms perform the

compression on the raw data acquired by lenslet cameras, other two use video-based

procedures to encode the perspective views composing the 4D data structure, and

another employs an internal transformation to 4D light field to efficiently encode the

raw data.

• We evaluated the compression algorithms on four bitrates, using 4 lenslet-based light

field contents. The evaluation was performed using both objective quality metrics and

subjective methodologies.

• By analysing the results, we showed that traditional perceptual-based encoding strate-

gies, such as chroma subsampling, are not suitable for the compression of raw data, as

they can lead to some non-intended effects on the final visual quality after the transfor-

mation to 4D light field.

• We also show that one coding approach, namely, compressing 4D light field data, yields

significantly better results in terms of visual quality for all bitrates when compared to

compressing lenslet images.

Regarding the use cases we defined at the beginning of the chapter, the 4D light field coding

approach is particularly suitable for a general consumer scenario, since it does not involve

additional computations at the decoder side to be properly rendered. Moreover, the coding

approach does not require metadata to be successfully decoded and displayed, thus reducing

the bitrate. Finding a successfull approach for the professional audience, however, is still an

open issue. A new method for compressing lenslet images while taking into account color
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fidelity must be designed for this type of market. Further research should focus on how to

modify the proposed compression algorithm for light field images to further improve the

performance and to meet the needs of all use cases.
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8 Rendering-dependent encoding for
light field tensor displays

In the previous chapters, we have observed and analyzed several approaches for light field

compression that aim at improving coding efficiency. One of the main goals in designing a

new compression solution, is to be able to reduce the amount of data that needs to be stored

and trasmitted, while retaining an acceptable perceptual quality. Thus, taking into account

the visualization scenario for the contents under compression is of extreme importance when

deciding on which tools to use to perform the encoding.

Considering the possibilities that light field imaging offers in terms of rendering, optimizing a

compression architecture in terms of visual quality can be proven challenging. The problem

of assessing the effect of compression distortions on the rendered quality has been tackled in

the past for image-based rendering. For example, Rizkallah et al. investigate the impact of

compression of light field contents on extended focus and refocusing applications [Rizkallah

et al., 2016]. Similarly, Perra et al. report the results of applying HEVC-based compression on

light field refocusing [Perra and Giusto, 2018]. Adhikarla et al. analyse the effect of various

distortions, including compression artifacts, on the visual quality of light field on 3D displays

with motion parallax [Adhikarla et al., 2017].

Most of the compression solutions we have presented in previous chapters were designed and

optimized for image-based rendering; in fact, the visual quality was conventionally assessed

by measuring the level of distortion of the perspective views composing the 4D light field

structure (see Chapter 6 and 7), even when different rendering procedures were evaluated

(e.g., [Graziosi et al., 2014] for depth-based rendering). Nevertheless, the visual quality of light

field contents under compression distortions may considerably vary under different types of

rendering technologies. Moreover, rendering-agnostic solutions for light field compression

may not be the most efficient solutions when specific displays are adopted. For example, multi-

layer displays offer a multi-viewing experience while only rendering a few light-attenuating

layers. Consequently, a large number of viewing angles can be experienced through the use

of few, carefully created layer patterns. It is thus worth exploring whether new compression

strategies can be specifically designed for multi-layer rendering, and how different approaches

can affect the visual quality of the final rendered content.
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(a) Back layer (b) Middle layer (c) Front layer

Figure 8.1 – Depiction of layer patterns generated from the light field perspective views.

In Chapter 5 we have presented a comparison among different methodologies and display

solutions for visual quality assessment of light field contents on multi-layer displays. For this

purpose, we introduced three coding strategies that could take advantage of the compressive

capabilities of this type of display. However, as our analysis was mainly devoted to correlate

the results obtained with different test conditions, we did not analyze which coding strategy

could lead to the most efficient results. With this chapter, we aim at filling the gap by providing

a thorough study of the effects of employing different approaches on the visual quality of light

field contents in a multi-layer renderer.

8.1 Rendering-dependent coding strategies

Considering the peculiarities of multi-layer rendering, three viable alternatives for light field

compression are envisioned and defined:

• Compression of light field perspective views. The first, rendering-agnostic solution

performs the compression on the perspective views, which will then be transmitted

through the communication channel. The layer patterns are created at the receiver

side, after the compressed views have been decoded. This solution has the advantage of

being adaptable to any rendering system, as no assumption on how the views will be

rendered is made on the compression stage. However, as pointed out in [Takahashi et al.,

2018], a large number of perspective views is needed to create a few light-attenuating

layers. Thus, it might not be the most efficient solution when multi-layer displays are

involved.

• Compression of layer patterns. The second solution performs the compression on the

layer patterns directly, which can then be transmitted and rendered at the receiver side.

This approach has the obvious advantage of compressing and transmitting only a few

light-attenuating layers, thus gaining in compression efficiency. However, apart from

being a rendering-dependent solution, which would require multiple transmissions for

different devices, this approach might require ad-hoc algorithms to operate efficiently

on the synthetic layer patterns, which are remarkably different from natural scenes (see

Figure 8.1). Traditional image and video compression standards such as JPEG or HEVC
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are optimized for natural scenes; thus, compressing the light-attenuating layer patterns

may result in a sub-par performance.

• Compression of focal stack. It was shown in [Takahashi et al., 2018] that, in order to

reconstruct the layer pattern from the focal stack, we only need a number of focused

images equal to the number of layer patterns which need to be rendered. The focal stack

can be easily compressed using conventional image and video standards, unlike layer

patterns, and its limited amount of images should guarantee a better coding efficiency

with respect to the first approach. However, the construction of layer patterns from

focal stacks is riddled with additional errors, due to the approximation in the tensor

factorization.

8.2 Experiment design

8.2.1 Dataset and coding conditions

Five light field contents were selected from a publicly available database [Řeřábek and Ebrahimi,

2016]. The contents were acquired with a Lytro Illum camera and processed using the Light

Field Matlab Toolbox [Dansereau et al., 2013][Dansereau et al., 2015] to obtain a stack of 15×15

perspective image, each having a resolution of 625×434 pixels. Color and gamma corrections

were applied on each perspective image for the rendering. To avoid unwanted distortions

caused by the lenslet structure of the Lytro Illum camera, only the 9×9 central perspective

views were selected for the test. The central perspective view from each content is displayed

in Figure 5.1.

The three coding strategies described in Section 8.1 are employed for the test. For all three

solutions, the state-of-the-art video encoding standard HEVC was employed for the compres-

sion, to ensure a fair comparison. To perform the encoding, the reference software HM was

used [ITU-T Q.6/SG 16 and ISO/IEC JTC 1/SC 29/WG 11].

The layer patterns were created using the software implementation in [Takahashi, 2018].

To create the focal stack, the Light Field Matlab Toolbox was employed [Dansereau et al.,

2013][Dansereau et al., 2015]. In our validating test, the number of layers was fixed to L = 3.

The compression solutions were evaluated at four bit-rates, namely R1 = 537 kB, R2 = 134 kB,

R3 = 67 kB, and R4 = 27 kB, corresponding to 0.2, 0.05, 0.025 and 0.01 bpp, respectively. The

bpp are computed with respect to the original size of the 9×9 perspective views. The bit-rates

were carefully chosen to cover the visual quality space while providing reasonable and fair

comparison among the listed compression solutions.
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8.2.2 Objective quality evaluation

To evaluate the impact of the distorsions caused by the proposed algorithms, PSNR and SSIM

were selected from the literature to objectively assess the visual quality of the contents. The

layer patterns obtained from the uncompressed light field were used as reference for each

content.

The metrics were applied separately to the luma channel Y and for each layer pattern image,

as follows:

PSN RY (l ) = 10log10
2552

MSE(l )
, (8.1)

SSI M Y (l ) = (2µIµR + c1)(2σI R + c2)

(µ2
I +µ2

R + c1)(σ2
I +σ2

R + c2)
, (8.2)

in which l is the index of each layer pattern used in the rendering, MSE (l ) is the mean square

error, µI and µR are the mean values, σ2
I and σ2

R are the variances, and σI R is the covariance of

the two perspective views in channel Y . Please note that unlike previous chapters, we are now

computing the metrics on the layer patterns. PSNR was computed for chrominance channels

U ,V following Equation 8.1, and a weighted average [Ohm et al., 2012] was calculated as

follows:

PSN RY UV (l ) =
6PSN RY (l )+PSN RU (l )+PSN RV (l )

8

(8.3)

The average PSNR value for Y channel was then computed across the viewpoint images:

àPSN RY = 1

L

L∑
l=1

PSN RY (l ), (8.4)

in which L = 3 represent the number of layer patterns. àPSN RY UV and �SSI M Y were analo-

gously computed following Equation 8.4.
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8.2.3 Subjective quality assessment

For our experiments, the DSIS with 5-point grading scale (5-Imperceptible, 4-Perceptible but

not annoying, 3-Slightly annoying, 2-Annoying, 1-Very annoying) was selected, according to

the ITU-R Recommendation BT.500-13 [ITU-R BT.500-13, 2012]. For this test, we will analyse

the results obtained with Variant B (see Chapter 5), which presents a user-driven intermittent

presentation of the impaired and reference stimuli.

Participants were asked to rate the quality of the test stimuli when compared to the uncom-

pressed reference. They could access the reference content by pressing a specific key, and they

could return to the test content by pressing another designated key. Participants were only

allowed to give a score when the test contents was being rendered on the screen, and after at

least one full switch between test and reference stimulus. In order to accustom the participants

with what distortions to expect in the test images, a training session was organized before the

experiment. Three training samples, created by compressing one additional content on the

test bit-rates, were manually selected by expert viewers.

All the compressed stimuli were shown in one session. Additionally, two hidden references

per content were added to the test: one consisted in the layer patterns generated from the

uncompressed stack of perspective views, while the other was created from the uncompressed

focal stack. Thus, a total of 70 stimuli were evaluated. The display order of the stimuli was

randomized for each participant, and the same content was never displayed twice in a row.

Two laboratory settings were used for our tests, in the facilities of the École Polytechnique

Fédérale de Lausanne (EPFL) and Nagoya University (NU).

In EPFL, a laboratory for subjective video quality assessment, which was set up according to

ITU-R Recommendation BT.500-13 [ITU-R BT.500-13, 2012], was used for the test. A 27-inch

Apple Display with native resolution of 2560×1440 pixels was used. The monitor settings

were adjusted according to the following profile: sRGB Gamut, D65 white point, 120 cd/m2

brightness, and minimum black level of 0.2 cd/m2. The controlled lighting system in the

room consisted of adjustable neon lamps with 6500 K color temperature against mid-grey

background walls. The illumination level measured on the screens was 18 lux. Conforming

to requirements in ITU-R Recommendation BT.2022 [ITU-R BT.2022, 2012], the distance of

the subjects from the monitor was approximately equal to 7 times the height of the displayed

content. However, subjects were allowed to move further or get closer to the screen. A total of

20 subjects (10 males and 10 females) participated in the tests, amounting to 20 scores per

stimulus per variant. Subjects were between 18 and 35, with a mean age of 23.29 years old.

Before starting the test, all subjects were examined for visual acuity and color vision using

Snellen and Isihara charts, respectively.

In NU, a controlled environment was selected to perform the experiment. However, no

calibration on the lighting system for the room was conducted. A prototype multi-layer display

was used to perform a pilot evaluation [Kobayashi et al., 2017]. A total of 11 subjects (all males)
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took part in the test. Subjects were between 18 and 35, with a mean age of 23.28 years old.

Before starting the test, all subjects were examined for visual acuity and color vision using

Snellen and Isihara charts, respectively.

8.3 Statistical analysis

Outlier detection and removal was performed on the results, independently for each test,

according to the ITU-R Recommendation BT.500-13 [ITU-R BT.500-13, 2012]. No outlier was

detected in either batch of scores. After outlier removal, the MOS was computed for each

stimulus, independently for each methodology. The corresponding 95% CIs were computed

assuming a Student’s t-distribution.

In order to perform a benchmark of the objective quality metrics in predicting the subjective

quality of light field contents rendered through the simulator, or the multi-layer display, several

fittings were applied to the PSNR and SSIM values, following the ITU-T Recommendation

P.1401 [ITU-T P.1401, 2012]. In particular, first order and third order fittings were used to

compare the objective quality metrics to the MOS values. RMSE, PCC, SRCC and OR were

computed for accuracy, linearity, monotonicity and consistency, respectively.

8.4 Results and discussion

In this section, results of objective and subjective evaluations are discussed, and a benchmark

of objective quality metrics for visual quality prediction is given. First, in Section 8.4.1 we

show the results of the objective evaluation, and we present and compare the results of the

subjective assessment obtained with the two displays. Then, in Section 8.4.2 we carry out a

benchmarking of the objective quality metrics using both subjective assessment tests as the

ground truth.

8.4.1 Objective and subjective results

Figures 8.2 and 8.3 show the results of the objective quality metrics, for all bitrates. Plots show

that compressing the focal stack leads to a sharp decrease in performance when àPSN RY andàPSN RY UV are used as metric, with a drop of ∼ 30dB for high bitrates, and of ∼ 15dB for low

bitrates. Results for �SSI M Y also indicate that the focal stack approach leads to reduced quality

in the layer pattern data.

Figure 8.4 depicts the MOS scores obtained with the use of a simulator, whereas Figure 8.5

illustrates the MOS scores collected using a prototype multi-layer display. It has already been

observed in Chapter 5 that the scores collected with different displays do not exhibit very good
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(a) Bikes (b) Danger_de_Mort (c) Stone_Pillars_Outside

(d) Fountain_&_Vincent_2 (e) Friends_1

Figure 8.2 – Results of àPSN RY (solid line) and àPSN RY UV (dashed line) vs bitrate for different
contents.

(a) Bikes (b) Danger_de_Mort (c) Stone_Pillars_Outside

(d) Fountain_&_Vincent_2 (e) Friends_1

Figure 8.3 – Results of �SSI M Y vs bitrate for different contents.
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(a) Bikes (b) Danger_de_Mort (c) Stone_Pillars_Outside

(d) Fountain_&_Vincent_2 (e) Friends_1

Figure 8.4 – MOS vs bitrate for different contents, with respective CIs. Results obtained using
the simulator (see Annex C).

correlation (see Section 5.3.3). It is evident by considering how the first two approaches (com-

pression of light field and layer patterns, respectively) consistently achieve near-transparent

quality, regardless of the bitrate, when the multi-layer display is employed in the evaluation

(Figure 8.5). On the other hand, compression of focal stack data leads to strongly perceived

distortions, as the scores associated with the uncompressed reference are consistently under

the MOS score of 4. Although the compression of focal stack data never reaches transparent

quality when using the simulator (Figure 8.4), it performs comparably to a direct compression

of light field data for high bitrates, and in some cases outperforms the latter.

It is interesting to notice the difference in the CIs associated with the reference layer patters

between the scores assigned using either display. When the simulator is adopted, the CIs

are consistently small. This is to be expected, considering that the DSIS variant that is being

used highlights subtle differences - or, in the case of the reference, the lack thereof. However,

it is notable to see that the same does not happen when the multi-layer display is used. In

this case, the large CIs would suggest that alterations and artifacts were perceived even when

no difference between test and reference content was materially present. It would be worth

exploring whether the uncertainty associated with the scores is a reflection of the hardware

limitations of the prototype multi-layer display, which may interfere with the perception of

distortions in subjective tests.
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(a) Bikes (b) Danger_de_Mort (c) Stone_Pillars_Outside

(d) Fountain_&_Vincent_2 (e) Friends_1

Figure 8.5 – MOS vs bitrate for different contents, with respective CIs. Results obtained using
the prototype display.

(a) R1 (b) R2 (c) R3 (d) R4

Figure 8.6 – Pairwise comparison of codecs for different bitrates, for results obtained using the
simulator.

(a) R1 (b) R2 (c) R3 (d) R4

Figure 8.7 – Pairwise comparison of codecs for different bitrates, for results obtained using the
prototype display.
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Table 8.1 – Performance indexes for the comparison among different objective quality metrics,
fitted to the MOS scores obtained with the simulator.

[àPSN RY , MOS] [àPSN RY UV , MOS] [ �SSI M Y , MOS]

PCC SRCC RMSE OR PCC SRCC RMSE OR PCC SRCC RMSE OR

Linear fitting 0.4563 0.5899 1.0164 86.67% 0.4809 0.5912 1.0014 88.33% 0.5982 0.6833 0.9153 80.00%
Cubic fitting 0.6502 0.5899 0.8678 83.33% 0.6490 0.5912 0.8690 85.00% 0.6823 0.6833 0.8351 85.00%

Table 8.2 – Performance indexes for the comparison among different objective quality metrics,
fitted to the MOS scores obtained with the multi-layer display.

[àPSN RY , MOS] [àPSN RY UV , MOS] [ �SSI M Y , MOS]

PCC SRCC RMSE OR PCC SRCC RMSE OR PCC SRCC RMSE OR

Linear fitting 0.8999 0.9110 0.5075 40.00% 0.9031 0.9135 0.4998 40.00% 0.9101 0.8904 0.4821 31.67%
Cubic fitting 0.9191 0.9110 0.4584 33.33% 0.9285 0.9135 0.4322 26.67% 0.9348 0.8904 0.4134 23.33%

The graphs show that operating the compression on the layer patterns seems to be the prefer-

able solution, as its performance is either statistically equivalent or better than the other

solutions at all bitrates, for both displays. However, no definite answer can be given whether

compressing the focal stack would be a preferrable solution with respect to encoding the

entire light field, as contradicting results are obtained in the two tests. This is particularly

evident when analyzing the results of the pairwise comparison among the scores, depicted in

Figure 8.6 for the simulator test, and in Figure 8.7 for the prototype one. The boxes represent

the number of contents for which the compression approach in each row is significantly better

than the approach in each column. In the first case, encoding the layer patterns is the clear

winning solution, as it outperforms the other two approaches in at least 4 out 5 contents;

encoding the focal stack is the second preferred solution, as it fares better than encoding the

light field data on more than half the contents for all bitrates, except the highest. The results,

however, are overturned when considering the prototype multi-layer display (Figure 8.7): in

this case, compression applied on the focal stack is never significantly better than the other

two approaches, and it is nearly always outperformed. Layer pattern and light field encoding

are statistically equivalent for high bitrates, but for lower bitrates the first approach leads to

significantly better results.

8.4.2 Benchmarking of objective quality metrics

Figures 8.8 and 8.9 depict the scatter plots between the objective quality metric results and the

corresponding MOS scores, obtained using the simulator and the prototype multi-layer display,

respectively. Tables 8.1 and 8.2 report the performance indexes for each metric, using linear

and monotonic cubic fitting. Low values of PCC and SRCC confirm that the objective quality
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(a) MOS as function of àPSN RY . (b) MOS as function of àPSN RY UV . (c) MOS as function of �SSI MY .

Figure 8.8 – Comparison of performance of different objective quality metrics in predicting
the MOS scores obtained with the simulator, along with linear and cubic fittings. Points are
differentiated by compression ratio (a), by content (b), and by compression solution (c).

(a) MOS as function of àPSN RY . (b) MOS as function of àPSN RY UV . (c) MOS as function of �SSI MY .

Figure 8.9 – Comparison of performance of different objective quality metrics in predicting the
MOS scores obtained with the multi-layer display, along with linear and cubic fittings. Points
are differentiated by compression ratio (a), by content (b), and by compression solution (c).

metrics are very poorly correlated with the subjective scores collected using the simulator.

Among the three metrics, �SSI M Y seems to perform slightly better (PCC = 0.6823 and SRCC

= 0.6833 when cubic fitting is applied), although high levels of RMSE and OR indicate that

accuracy and consistency are still lacking.

When considering the MOS scores collected using the multi-layer display, however, results

show a strong correlation with all the objective quality metrics; again, �SSI M Y is the best

performing one, achieving PCC = 0.9348 and SRCC = 0.8904 with cubic fitting.

Results show that all objective quality metrics are good predictors for visual quality of light

field contents when visualized through a prototype display. However, considering the level

of uncertainty associated with the scores, as proven by the large CIs for the uncompressed

reference stimuli, we are hesintant in recommending the use of said objective quality metrics

as quality predictors for compression artifacts. As shown also in Chapter 5, the method

employed to generate the layer patterns seems to have a higher impact on the final subjective

scores, at least when the prototype display is used. Thus, it is safe to assume that objective
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quality metrics would give a reliable estimation on which method for layer pattern generation

would lead to the best visual quality. However, when compression artifacts need to be assessed

and compared, new objective quality metrics should be developed. Moreover, particular care

should be given in assessing whether the hardware limitations of the display in use restrict the

perception of compression distortions; in that case, the use of an error-free, ideal rendering

scenario should be preferred.

8.5 Conclusion

In this chapter, we presented objective and subjective quality assessment results of different

coding strategies for multi-layer-rendered light field contents. For the subjective assessment,

we performed the tests on both a multi-layer simulator and a prototype display, showing that

the scoring distribution varies considerably between the two. Finally, we benchmarked the

performance of objective quality metrics in predicting the visual quality of light field contents

on both displays.

A summary of our contributions:

• We define three coding strategies for multi-layer-based rendering. The first strategy

performs the compression on the perspective views forming the 4D light field structure,

delegating the conversion to a multi-layer-appropriate format to the decoder side.

The second strategy directly encodes the layer patterns that will be visualized in the

multi-layer display. Finally, in the third strategy a stack of refocused images is encoded

and transmitted, and the layer patterns are generated at the decoder side before the

rendering. Possible advantages and drawbacks of all approaches are presented.

• We design an objective and subjective quality evaluation campaign to assess the per-

formance of the aforementioned coding approaches. For the objective evaluation,

common image metrics are applied on the layer patterns obtained from the encoded

streams, whereas for the subjective evaluation, both a prototype multi-layer display and

a simulator were employed.

• We perform a comparison of the coding strategies using the outcomes of the objective

and subjective tests. Results show that applying the compression on the layer patterns

leads to a superior performance with respect to the other two approaches.

• We show that the method employed for generating the layer patterns has great impact

on the visual quality of the rendered contents. In particular, we observe that, by using

the focal stack to create the layer patterns, transparent quality is never achieved, even in

the absence of compression distortions.

• We observe that compression artifacts are not quite perceivable when the prototype

display is used to render the contents. In particular, results of the subjective evaluation
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performed on the prototype display show that a near-constant level of quality is often

maintained across all bitrates, when the first or second strategy is adopted. Conversely,

generating the layer patterns from focal stack leads to strongly perceived artifacts, even

at high bitrates.

• We benchmark existing objective quality metrics with the subjective experiments we

performed on the two visualization settings. Results show that poor correlation is

achieved between the fitted objective measurements and the subjective scores obtained

with the simulator. On the other hand, the objective quality metrics are in agreement

with the results obtained with the multi-layer display, where the compression artifacts

were not strongly perceived.

It appears that compression artifacts were not perceived when the prototype display was

employed, as showed by the fact that no difference in quality was perceived across the bitrates

for the first two strategies, on the near majority of the contents. It is yet to be determined

whether these results are a consequence of the hardware limitations, which hinder the QoE

associated with the display. Thus, our recommendation would be that it is not advisable to

employ objective quality metrics to predict the visual quality of encoded light field contents in

an ideal rendering scenario, as the simulator is reproducing. However, they may be suitable

for predicting the quality associated with the method employed to generate the layer patterns,

as they showed to be aligned with the results obtained with the prototype multi-layer display.

New objective quality metrics should be designed to successfully estimate the impact of coding

solutions on the visual quality of light field contents. Moreover, great care should be employed

in designing subjective tests to assess the visual quality associated with multi-layer displays.

In particular, the hardware limitations linked to prototype displays may lead to a poor QoE,

which can be reflected on the distribution of the collected subjective scores.
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9 Encoding disparity information for
lenslet-based light field images using
graph learning

Disclaimer: This chapter was adapted from the following article, with permission from all co-authors and

publishing entities:

Irene Viola, Hermina Petric Maretic, Pascal Frossard, Touradj Ebrahimi, “A graph learning approach for

light field image compression,” Proc. SPIE 10752, Applications of Digital Image Processing XLI, 107520E

(17 September 2018). DOI: https://doi.org/10.1117/12.2322827

©2018 Society of Photo Optical Instrumentation Engineers (SPIE). One print or electronic copy may be

made for personal use only. Systematic reproduction and distribution, duplication of any material in this

publication for a fee or for commercial purposes, or modification of the contents of the publication are

prohibited.

Personal contribution: I formulated the problem and designed the compression algorithm, while the

graph learning part was curated by the other main author. I performed the validating test and carried out

the analysis of the results.

In the previous chapters we have stressed the importance of reducing the size of the acquired

light field data to acceptable dimensions for transmission and storage. Notable gains can be

obtained by exploiting the naturally occurring redundancies in the light field representation,

in order to minimize the size of the data without compromising the perceptual visual quality.

The initiative launched by the JPEG standardization committee, JPEG Pleno, is indicative of

the interest on finding a standard framework for efficient storage and delivery of plenoptic

contents, including light fields, point clouds, and holograms. In particular, JPEG Pleno aims at

finding the minimum number of representation models for these types of content, while offer-

ing, when necessary, interoperability with existing standards, such as legacy JPEG and JPEG

2000 formats. For the past years, the JPEG committee has been actively pursuing the definition

of a new standard representation and compression algorithm for light field images. In 2017, a

CFP for light field coding solutions was issued jointly with ICIP 2017 Grand Challenge on light

field image coding (see Chapter 6). The majority of the collected solutions were optimized for
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compressing light field images with narrow baselines and dense angular sampling, such as

lenslet-based light field images. An overview of recent compression solutions for lenslet-based

light field images is provided in Chapter 2.

Among others, graph-based methods have been recetly proposed to efficiently compress light

field data. Graph based methods for light field compression include the work of Maugey et

al. [Maugey et al., 2013] where graph based representations are used to describe multiview

geometry, and the work of Su et al. [Su et al., 2017], which adopts graph based representations

to model colour and geometry. In their approach, the vertices of the graph correspond to each

pixel in sub-aperture images, while the edges built from disparity information connect pairs

of pixels across two images. In the work of Chao et al. [Chao et al., 2017], a graph between

pixels is constructed through a Gaussian kernel, and use a graph lifting transform to compress

light field images before demosaicking. However, the graph construction step can be proven

to be delicate. Recently, graph learning methods have been attracting increasing interest

for their capability to automatically infer the relationship among nodes. Among the first

approaches, Dong et al. [Dong et al., 2016] consider a smooth signal model to infer the graph

structure. Kalofolias [Kalofolias, 2016] explores a similar model, adding an option to promote

graph connectivity, and offering a computationally more efficient solution. Fracastoro et

al. [Fracastoro et al., 2016] propose a graph learning method for image coding, formulating a

rate-distortion optimization problem that takes into account the cost of sending the graph.

In this work, we use the recent advances in graph learning to devise a new compression scheme

for light field images that exploits the redundancy in the light field structure to reconstruct the

entire 4D light field from an arbitrarily chosen subset of perspective views. Graph learning

techniques are used to estimate the similarities among neighboring views. To reduce the

impact of the graph on the overall data volume, in this approach the graph is constructed

considering each view as a vertex. Edge weights relative to each pair of perspective images

are learned from the data. The graph is then losslessly compressed and transmitted along

with the selected perspective views. At the decoder side, an optimization problem is solved

to optimally reconstruct the 4D light field. Results show the superiority of our method with

respect to state-of-the-art solutions in light field compression.

9.1 Graph signal processing preliminaries

In this section, some basic notions in graph signal processing are introduced. A more detailed

description can be found in [Shuman et al., 2013]. Let G = (V ,E ,W ) be an undirected,

weighted graph with a set of m vertices V , edges E and a weighted adjacency matrix W . Value

Wi j equals 0 if no edge is present between i and j ; otherwise, it designates the weight of that

edge. The graph signal is defined as a function y : V →R, where y(v) denotes the signal value

on a vertex v . The graph Laplacian is defined as

L = D −W, (9.1)
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(a) (b) (c) (d)

Figure 9.1 – First 4 components of a PCA decomposition for the luminance component of
Bikes. Each point represents one view.

where D is a diagonal matrix containing node degrees. As a real symmetric matrix, the

graph Laplacian has a complete set of orthonormal eigenvectors χ= {χ0,χ1, ...,χm−1} with a

corresponding set of non-negative eigenvalues. Zero appears as an eigenvalue with multiplicity

equal to the number of connected components of the graph, while the spectrum of the

Laplacian matrix satisfies

σ(L) = {0 =λ0 ≤λ1 ≤ ... ≤λm−1}. (9.2)

We can then define the graph Fourier transform ŷ of a signal y at frequencyλl as the expansion:

ŷ(λl ) = 〈
y,χl

〉= m∑
i=1

y(i )χ∗
l (i ), (9.3)

and the inverse graph Fourier transform as

y(i ) =
m−1∑
l=0

ŷ(λl )χl (i ). (9.4)

Here, the graph Laplacian eigenvectors form a Fourier basis; it straightforward to see that the

corresponding eigenvalues carry a notion of frequency.

9.2 Proposed approach

In this work, we propose a novel approach for light field image coding using graph learning.

We exploit the extensive similarities between the views by capturing them in a graph that

models their relationship. We then select a subset of views to be compressed and transmitted

along with the graph, which will be used to recover the remaining views. This approach allows

for better compression quality in sampled views, as more bits can be allocated to encode

them.

The intuition behind our approach stems from observing the presence of smoothness among
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Figure 9.2 – Overview of the compression scheme.

neighboring images in a 4D light field structure. The idea is confirmed by simple PCA analysis

of the signal, which shows a smooth, slowly transitioning behavior, further strengthening

the suggestion of smoothness among neighboring views. Figure 9.1 shows this phenomena

for Bikes, with each of the points in a PCA component representing one view. Graph signal

processing is traditionally used to properly capture this smoothness on an irregular structure,

defining notions equivalent to those seen in regular signal processing [Shuman et al., 2013].

In order to maximally exploit signal smoothness, we use a graph learning algorithm to obtain

a structure our signal is most smooth on. We construct a graph with each vertex representing

one view, and learn edges modelling relationships between corresponding views. This adap-

tive graph structure, as opposed to a simple fixed grid graph, ensures a much better signal

representation at an acceptable cost. Graphs are convenient structures for compression, as

they encode a large amount of information through their Fourier domain, while retaining

sparsity in the vertex domain. In fact, since a graph Fourier domain is obtained through

eigendecomposition of the graph Laplacian matrix, the vectors representing the Fourier basis

are different for every graph. Even more, if the graph has been constructed in a way that

ensures signal smoothness, the Fourier basis vectors will be representative of this specific set

of signals, and the signal will be smooth in this basis.

9.2.1 Overview of the compression scheme

The general structure of our proposed compression scheme is depicted in Figure 9.2. The

encoder first estimates the graph between all the views of our image, which is then losslessly

encoded. At the same time, the encoder will also select a subset of views that are to be

compressed directly, as opposed to the rest, which will be estimated from them. It then

performs a lossy compression of the selected subset. The decoder receives an encoded graph

and a subset of views. After decoding both, it solves an optimization problem to estimate the

remaining views, and, in low bitrates, to improve the existing ones. A MATLAB implementation

of the proposed solution can be found at the following link: https://github.com/mmspg/

light-field-graph-codec.
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9.2.2 Encoder

Graph estimation represents the most crucial step in our encoding scheme, as it models

the dependencies among perspective views and allows for a faithful reconstruction of the

non-encoded views. To obtain a graph that will best describe relationships among the 4D

light field, while emphasizing signal smoothness on its structure, we resort to a graph learning

technique. We consider each view as a vertex, to minimize the number of weights that need to

be encoded, thus reducing the overhead created by sending them. As described in [Kalofolias,

2016], the following optimization problem yields a graph representing smooth signals, while

promoting connectedness and providing a mean to control graph sparsity. The problem reads

as follows:

argminW ∈Wm tr (Y T LY )−α1T log (W 1)+β‖W ‖2
F (9.5)

L = D −W (9.6)

Wm = {W ∈Rm×m
+ : W =W T ,di ag (W ) = 0}, (9.7)

in which W is a weight matrix uniquely describing a graph (and a graph Laplacian matrix L).

The signal Y ∈Rm×p is a light field image, vectorized in such a way that each row represents

one entire view, where m = K ×N is the total number of views, and p the total number of

pixels in one view. Increasing the parameter α enforces stronger connectivity in the graph,

while decreasing β promotes sparsity.

In terms of our problem, ensuring a graph is connected is important, as it provides full

flexibility in view selection. Indeed, if there were several separate connected components

in the graph, view selection would need to provide samples from each of these components

to ensure the reconstruction of the entire light field. While clearly a surpassable drawback,

this would force the view selection to be dependent on the graph structure, complicating the

procedure and making the problem no longer easily distributed. On the other hand, graph

sparsity also represents an important parameter, as it reduces the overhead of transmitting

the graph weights. As shown by Kalofolias et al. [Kalofolias, 2016], the problem in 9.5 is convex

and has an efficient solution. The code is publicly available in the GSP toolbox [Perraudin

et al., 2014].

Once the graph is encoded, an appropriate subset of views is selected. It is worth emphasizing

that the graph learning step is carried out independently from the selection of the views and its

compression, which brings several advantages. The first advantage is that different encoding

solutions can be selected to efficiently compress the subset of views. Moreover, as the graph is

always encoded losslessly and thus represents a fixed overhead, it can easily be included in

any rate allocation problem. Another advantage is that several strategies can be implemented

for the selection of the views to be encoded, depending on the use case. For a fixed bitrate,

spatial resolution can be favored over angular resolution by selecting a smaller subset of views,
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which will be compressed with a better quality. Conversely, sending a larger set of views will

ensure a better angular resolution, while decreasing the overall quality of all the views. For

instance, a progressive stream which would offer an increasingly superior angular resolution

is straightforward to implement. Lastly, the learned graph structure can be used to select

the subset of views in order to maximize the overall quality of the reconstructed light field,

or to provide a trade-off between angular and spatial resolutions, depending on the desired

application. As the dashed line in Figure 9.2 implies, one possibility is to exploit the knowledge

of the estimated graph structure to select the views to be encoded, giving priority to more

influential views to ensure a more faithful reconstruction.

The computational cost of learning the graph is O (m2p) for computing the distance between

all views, and O (m2) per iteration of the optimization problem. Taking into account the fact

that the number of iterations i is limited [Kalofolias, 2016] and considering that in the majority

of cases p À i , the overall complexity of learning the graph can be written as O (m2p). The

cost of encoding the subset of views depends on the compression method of choice. Thus, it

might be dominant in the overall compression scheme. For instance, the cost of learning the

graph would be negligible with respect to the cost introduced by state of the art video codecs

commonly used to encode the perspective images.

9.2.3 Decoder

After recovering the lossless graph and a lossy subset of views, the decoder exploits the graph

to estimate the full light field. In order to recover the missing views, the decoder solves an

optimization problem which enforces smoothness on the representative graph among the

views. Namely, for a view selection matrix M , we want to solve:

argminX tr (X T LX ) (9.8)

s.t . Ŷ = M X , (9.9)

where Ŷ ∈ Rm×p is a matrix containing decoded views in rows corresponding to one of the

selected views, and zeros everywhere else. The view selection matrix M projects X to the

space of selected view only, keeping only the values in corresponding rows. Specifically, it is an

identity matrix with zeros on the diagonal for all indices corresponding to not selected views.

This problem can equivalently be written as:

argminX tr (X T LX )+γ‖Ŷ −M X ‖2
F (9.10)

with a tunable parameter γ that, if very small, allows changes also among the received views.

It is worth noting here that received views went through a lossy compression. Therefore, it can

be beneficial to allow small changes promoting smoothness on the graph, especially when the

selected views are compressed with low bitrates.
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Given the parameter γ, it is not difficult to see that the solution to problem 9.10 is given in

closed form with:

X̂ = (M +γL)−1Ŷ , (9.11)

which concludes the work of the decoder and gives the final estimation for the original light

field image.

The view reconstruction step has a closed form solution, with the computational cost of O (m3)

for matrix inversion and O (m2p) for multiplication. As p À m in most cases, the overall

complexity can be written as O (m2p). However, depending on the choice of compression

method for the subset of views, the cost of decoding the subset of views might be dominant in

the overall compression scheme.

9.3 Validating experiment

In this section we give an overview of the validating experiment to test the performance of our

solution. Specifically, we present the coding conditions and outline the codec configuration.

We then introduce a brief description of the anchors and, lastly, delineate how the objective

quality metrics are computed.

9.3.1 Coding conditions

In order to facilitate the comparison between the proposed approach and the state of the art

in light field coding, the same coding conditions as defined in the ICIP 2017 Grand Challenge

were adopted for this experiment [Viola and Ebrahimi, 2018a]. In particular, the following four

light field contents were selected from the proposed lenslet dataset [Řeřábek and Ebrahimi,

2016]: Bikes, Danger_de_Mort, Stone_Pillars_Outside and Fountain_&_Vincent_2 (see Figure

9.3).

The Light Field toolbox v0.4 was employed to obtain the 4D light field structure of perspective

views [Dansereau et al., 2013, 2015]. Prior to the transformation, each 10-bit lenslet image

was devignetted and demosaicked. A total of 15×15 perspective views were obtained from

the lenslet image, each with a resolution of 625×434 pixels; however, only the central 13×13

views were selected to be encoded and evaluated, following the JPEG Pleno Common Test

Conditions [ISO/IEC JTC 1/SC29/WG1 JPEG, 2018a]. Color and gamma correction was applied

to each perspective view prior to the encoding.

The same compression ratios defined for the Grand Challenge were selected for the evalu-

ation of the proposals, namely R1 = 0.75 bpp, R2 = 0.1 bpp, R3 = 0.02 bpp, R4 = 0.005 bpp.

However, conforming to the JPEG Pleno Common Test Conditions [ISO/IEC JTC 1/SC29/WG1

JPEG, 2018a], the bpp were computed as the ratio between the total number of bits used to

151



Chapter 9. Encoding disparity information for lenslet-based light field images using
graph learning

(a) Bikes (b) Danger_de_Mort (c) Stone_Pillars_Outside (d) Fountain_&_Vincent_2

Figure 9.3 – Central perspective view from each content used in the validating experiment.

encode the content, and the total number of pixels in the entire light field, which in our case

corresponds to 13×13×434×625 pixels.

9.3.2 Codec configuration

The graph was computed on the luminance values of the 4D light field structure. To reduce the

overhead, only the luminance graph was transmitted, and it was used for the reconstruction

of all YUV channels. Parameters α= 105 and β= 10 were empirically chosen for the encoder,

whereas for the decoder the parameter γ was set to 10−8 and 3·10−4 for the luminance and

for the chrominance channels, respectively. The weight matrix of the graph is symmetric and

highly diagonally sparse. Therefore, the upper triangle of our weight matrix was rearranged

using MATLAB function spdiags and losslessly compressed as a mat file. Information about

the size of each graph can be found in Table 9.1.

For the experiment, the views composing the 4D light field structure were divided in two

sets A and B, forming the views that would be compressed and transmitted alongside the

graph, and the views that would be entirely reconstructed on the decoder side, respectively.

A total of 85 out of 169 views were assigned to set A, whereas 84 views composed set B, as

shown in Figure 9.4. The views in set A were subsequently converted to YUV color space,

downsampled from 444 to 420, 10-bit depth, and compressed using the HEVC/H.265 reference

software HM [ITU-T Q.6/SG 16 and ISO/IEC JTC 1/SC 29/WG 11], using profile Main10 and

low delay configuration. The QPs were chosen to closely match the targeted compression ratio.

A summary of the chosen QP and relative file size can be found in Table 9.1.
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Figure 9.4 – Composition of set A and set B.

Table 9.1 – Size of the compressed bitstreams, and relative QPs for every content and compres-
sion ratio.

Content Graph size QP Set A size Total size Compression ratio Target size

Bikes 2489 B

12 3956.07 kB 3958.50 kB 0.707 bpp 4196.89 kB
23 500.05kB 502.48 kB 0.090 bpp 559.59 kB
31 110.28 kB 112.71 kB 0.020 bpp 111.92 kB
41 23.72 kB 26.15 kB 0.005 bpp 27.98 kB

Danger_de_Mort 2646 B

14 4024.55 kB 4027.14 kB 0.720 bpp 4196.89 kB
25 518.73 kB 521.32 kB 0.093 bpp 559.59 kB
33 114.30 kB 116.89 kB 0.021 bpp 111.92 kB
42 24.78 kB 27.36 kB 0.005 bpp 27.98 kB

Stone_Pillars_Outside 3306 B

12 3965.9 kB 3969.2 kB 0.709 bpp 4196.89 kB
22 504.52 kB 507.74 kB 0.091 bpp 559.59 kB
28 103.25 kB 106.47 kB 0.019 bpp 111.92 kB
35 24.25 kB 27.48 kB 0.005 bpp 27.98 kB

Fountain_&_Vincent_2 1884 B

12 4225.2 kB 4227 kB 0.755 bpp 4196.89 kB
24 493.56 kB 495.4 kB 0.089 bpp 559.59 kB
31 114.03 kB 115.87 kB 0.021 bpp 111.92 kB
40 26.25 kB 28.09 kB 0.005 bpp 27.98 kB

9.3.3 Anchor selection

The results of our coding approach were compared to the results obtained from HEVC/H.265

anchor used in the ICIP 2017 Grand Challenge [Viola and Ebrahimi, 2018a]. In the HEVC/H.265

anchor, the software implementation x2651 is used to encode the perspective views, which

were previously arranged in a serpentine order.

In addition, our results were compared to the best performing algorithm of the ICIP 2017

Grand Challenge2, which defines a linear dependency among different views in the angular

domain, called Linear Approximation Prior (LAP) [Zhao and Chen, 2017]. In their work, a

1https://www.videolan.org/developers/x265.html
2http://2017.ieeeicip.org/ChallengeAward.asp
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subset of views is encoded using x265 and transmitted to the encoder along with the quantized

linear coefficients. The rest of the views is then estimated using the LAP assumption.

Finally, the JPEG Pleno VM was used as third anchor [ISO/IEC JTC 1/SC29/WG1 JPEG, 2018b,

Astola and Tabus, 2018b]. The provided configuration for the four contents is used for the

comparison. However, it should be noted that the configuration files are optimized for random

access, which could negatively affect the performance of the codec in terms of objective quality.

9.3.4 Objective quality evaluation

To evaluate the performance of the proposed coding algorithm with respect to the anchors,

PSNR and SSIM were selected from the literature as objective quality metrics, following the

JPEG Pleno Common Test Conditions [ISO/IEC JTC 1/SC29/WG1 JPEG, 2018a]. In particular,

every perspective view at indices (k, l ) was converted to YUV color space, 10-bit depth, using

the conversion matrix defined in Recommendation ITU-R BT.709.6 [ITU-R BT.709-6, 2015].

The metrics were then applied separately to the luma channel Y and for each viewpoint image,

as follows:

PSN RY (k,n) = 10log10
(210 −1)2

MSE(k,n)
, (9.12)

SSI M Y (k,n) = (2µIµR + c1)(2σI R + c2)

(µ2
I +µ2

R + c1)(σ2
I +σ2

R + c2)
, (9.13)

in which MSE(k,n) is the mean square error between the reference and the reconstructed

view at indices (k,n), µI and µR are the mean values, σ2
I and σ2

R are the variances, and σI R is

the covariance of the two perspective views in channel Y . PSNR was computed for channels

U ,V according to Equation 9.12, and a weighted average [Ohm et al., 2012] was obtained as

follows:

PSN RY UV (k,n) = 6PSN RY (k,n)+PSN RU (k,n)+PSN RV (k,n)

8
. (9.14)

The average PSNR value for Y channel was then computed across the viewpoint images:

àPSN RY = 1

(K −2)(N −2)

K−1∑
k=2

N−1∑
n=2

PSN RY (k,n). (9.15)
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Similarly, the average àPSN RY UV and �SSI M Y values were computed. Additionally, Bjonte-

gaard rate savings percentages and PSNR gains [Bjontegaard, Gisle, 2001] were computed with

respect to all the anchors for àPSN RY and àPSN RY UV values.

9.4 Results and discussion

Figure 9.5 shows the values of àPSN RY against the bitrate, separately for each content under

examination. It can be seen how our proposal outperforms the anchors pretty consistently

across different bitrates for contents Bikes, Danger_de_Mort and Stone_Pillars_Outside. For

content Fountain_&_Vincent_2 a notable gain can be observed for lower bitrates, whereas for

high bitrates the performance is equivalent to codec LAP.

(a) Bikes (b) Danger_de_Mort (c) Stone_Pillars_Outside (d) Fountain_&_Vincent_2

Figure 9.5 – àPSN RY vs bitrate for every content. The bitrate is shown in logarithmic scale to
improve readability.

(a) Bikes (b) Danger_de_Mort (c) Stone_Pillars_Outside (d) Fountain_&_Vincent_2

Figure 9.6 – àPSN RY UV vs bitrate for different contents. The bitrate is shown in logarithmic
scale to improve readability.

A similar trend can be observed for values of àPSN RY UV (Figure 9.6). In particular, it is worth

noting that, although the performance of our proposal remains consistently better than or

equivalent to the anchors, a smaller gain in dB can be observed. This may be due to the fact

that anchors HEVC/H.265 and LAP apply a chroma subsampling factor of 422, which leads to
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(a) Bikes (b) Danger_de_Mort (c) Stone_Pillars_Outside (d) Fountain_&_Vincent_2

Figure 9.7 – �SSI M Y vs bitrate for different contents. The bitrate is shown in logarithmic scale
to improve readability.

Table 9.2 – Bjontegaard rate savings with respect to the three anchors HEVC, JPEG Pleno VM
and LAP, for all four contents, and on average.

HEVC/H.265 JPEG PLENO VM LAPàPSN RY àPSN RY UV àPSN RY àPSN RY UV àPSN RY àPSN RY UV

Bikes -46.22% -43.10% -57.65% -55.31% -36.52% -31.89%
Danger_de_Mort -47.53% -45.37% -50.97% -47.64% -30.14% -26.14%
Stone_Pillars_Outside -53.46% -50.02% -52.28% -48.93% -35.19% -29.68%
Fountain_&_Vincent_2 -39.74% -33.45% -51.24% -49.04% -23.06% -15.36%

Average -46.74% -42.99% -53.04% -50.23% -31.23% -25.77%

Table 9.3 – Bjontegaard PSNR difference with respect to the three anchors HEVC, JPEG Pleno
VM and LAP, for all four contents, and on average.

HEVC/H.265 JPEG Pleno VM LAPàPSN RY àPSN RY UV àPSN RY àPSN RY UV àPSN RY àPSN RY UV

Bikes 1.93 dB 1.53 dB 2.41 dB 1.86 dB 1.33 dB 0.98 dB
Danger_de_Mort 1.89 dB 1.51 dB 2.08 dB 1.56 dB 1.06 dB 0.76 dB
Stone_Pillars_Outside 1.96 dB 1.47 dB 1.97 dB 1.44 dB 1.13 dB 0.75 dB
Fountain_&_Vincent_2 1.40 dB 1.01 dB 1.94 dB 1.51 dB 0.72 dB 0.39 dB

Average 1.80 dB 1.38 dB 2.10 dB 1.59 dB 1.06 dB 0.72 dB

improved color fidelity. Moreover, the choice of using the luminance graph to reconstruct the

chroma values may lead to a loss in performance in the proposed codec.

Values of �SSI M Y why show that our proposal has similar performance with respect to the

anchors for high bitrates (Figure 9.7). However, a significant gain can be observed for low

bitrates with respect to the other codecs.
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Bjontegaard rate savings results (Tables 9.2 and 9.3) show that our proposal achieves on

average a 46.74% rate reduction and a PSNR gain of 1.80 dB for àPSN RY (42.99% and 1.38 dB

for àPSN RY UV , respectively) when compared to HEVC/H.265. The maximum rate reduction is

achieved for content Stone_Pillars_Outside (53.46% and 50.02% for àPSN RY and àPSN RY UV ,

respectively), while the minimum gain is achieved for content Fountain_&_Vincent_2 (39.74%

and 33.45% for àPSN RY and àPSN RY UV , respectively). Slightly higher rate reductions can

be achieved in comparison to the JPEG PLENO VM (53.04% and 50.23% for àPSN RY andàPSN RY UV , respectively), for which bigger PSNR gains can also be observed (2.1 and 1.59 dB foràPSN RY and àPSN RY UV , respectively). When analysing the difference in performance between

the JPEG Pleno VM and our solution, it should be noted that configuring the codec for random

access may result in a sub-par performance, objective quality metric-wise. Moreover, more

recent versions of the verification software, which implement different coding strategies such

as 4D-DCT, might achieve a better performance on the dataset. Smaller, but still significant

gains can be seen by using our solution with respect to LAP codec, with a rate reduction of

31.23% and 25.77% on average for àPSN RY and àPSN RY UV , respectively, and a PSNR gain of

1.06 and 0.72 dB.

Results show that light field compression efficiency can benefit from sending only a subset

of the perspective views and reconstructing the entire 4D light field at the receiver side, as

shown by the superior performance of both the proposed solution and the LAP codec with

respect to the HEVC/H.265 anchor. In particular, both LAP and our proposed solution rely on

sparsely capturing the similarities among the perspective images to aid in the reconstruction

process at the decoder side. However, in the LAP algorithm the reconstructed images are seen

as a linear combination of only the views that have been encoded and sent, thus disregarding

the correlation among the views that need to be reconstructed. On the other hand, our

approach encodes all the dependencies in the 4D light field, regardless of the set they belong

to. Moreover, whereas the coefficients of the linear dependency among views are quantized

in the LAP scheme, the graph weights are losslessly compressed in our solution to improve

reconstruction quality. Results show that this approach achieves a superior performance in

reconstructing the 4D light field.

9.5 Conclusions

In this work we presented a new approach to compress light field images based on a graph

learning technique. We demonstrate its theoretical soundness, as well as its application to

image coding. Our validating experiment shows that sensible gains can be achieved by using

our solution against state-of-the-art encoders.

While graph signal processing techniques have been used in other works to improve the coding

efficiency for light field images, the construction of the graph is usually imposed on the data.

In our work we focus on learning the graph in order to faithfully capture the similarities among

perspective views. Although the graph learning technique used on this paper is lifted from
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the literature, the way it is employed to estimate the dependencies among views has not been

used in the past. Moreover, other work in literature considers each pixel as a vertex in the

graph, resulting in the construction of very large graphs that weight heavily on the final bitrate.

By using each view as a node, we considerably reduce the size of the graph while retaining its

capability to capture variations among different views.

The main contributions of this chapter can be summarized as follows:

• We designed a lightweight predictive scheme to capture the similarities and redundan-

cies in the light field data. The predictive scheme uses known graph learning techniques

to infer the similarities among the views that compose the light field structure. Unlike

previous work in graph signal processing for light field compression, each view is se-

lected as a node in the graph, which allows to keep the overhead small while ensuring

good predictive power. The graph is constructed so to promote smoothness among the

views, while enforcing connectedness and sparsity.

• We constructed a compression algorithm that uses the aforementioned predictive

scheme to recover the entire light field from an arbitrarily chosen subset of views. The

compression algorithm generates the graph from the entire light field and compresses

it in a lossless fashion. A subset of views is selected and subsequently encoded. At the

decoder side, the graph and the encoded views are used to reconstruct the original light

field data. As graph connectivity is enforced, the views to be encoded can be selected

with full flexibility. Moreover, as the graph construction is independent from the selec-

tion and encoding of the subset of views, any state-of-the-art compression algorithm

can be used in the encoding.

• We tested our solution on a widely used light field dataset and we compared our results

with state-of-the-art light field compression algorithms, using well-know image quality

metrics. We showed that sensible gains can be achieved by using our solution with

respect to the other algorithms.

Possible extensions of this work include improving coding efficiency by implementing a

more efficient selection of encoded views based on graph structure, and improving color

performance by incorporating chroma information in the graph weights. Moreover, the

selection of nodes for the construction of the graph can be modified to further capture the

variation across different views, for example, by segmenting each view and assigning a node

to each segment.
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10 Conclusions

10.1 Outcomes and accomplishments

This dissertation presented the results of investigating several aspects of compression and

visual quality assessment for light field contents. Our work was divided into three parts,

corresponding to three main areas of interest:

1. Methodologies and scenarios for visual quality assessment of light field contents.

The part focuses on the theoretical aspects of visual quality assessment, such as the va-

lidity of single-image, interactive and passive evaluation for light field contents, analysis

of user behaviour, and cross-display differences. The concepts demonstrated in this

part, while deeply rooted in quality assessment of compression efficiency, can easily be

generalized for the assessment of light field contents under any type of distortions, and

offer useful guidelines for future design of subjective quality methodologies.

2. Analysis and comparison of compression solutions for light field contents through

visual quality assessment. This part focuses on the performance of several algorithms

for light field compression, and how the adoption of both established video-encoding

solutions and state-of-the-art compression architectures can impact the visual quality,

based on different types of representation. The results presented in this part offer an

impartial, reliable benchmarking of the state of the art in light field encoding, and

demonstrate how the choice of representation models and rendering technology can

sensibly affect the performance of the selected compression solution.

3. Towards new compression solutions for light field contents. The last part is directed

at exploiting graph learning techniques to lift useful interdependency information from

the light field data, which can be used to reduce the amount of information that needs to

be encoded and transmitted. Results show that view estimation is a viable and promising

solution to reduce the volume of data without compromising the visual quality.

In the following sections, we outline the contributions that have been presented in the three
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main areas of interest.

10.1.1 Methodologies and scenarios for visual quality assessment of light field
contents

• We consider the merits of single-image assessment in estimating the visual quality of

light field contents through image-based rendering. In particular, we employ perspective

and refocused views in our subjective evaluations, and we inspect the similarities in

score distributions both within and across rendering groups. Our results suggest that

selecting more than one view in each rendering group does not lead to significantly

different results. Thus, we conclude that the additional strain, imposed by increasing

the number of stimuli under test, is not justified by the corresponding scores. We also

note that the differences in score distribution between perspective and refocused views

are statistically relevant; in particular, refocused views generally receive harsher scores

than their perspective counterpart, and fail to reach transparent quality, even when no

compression is applied.

The main takeaway from our study would be to employ only one view per rendering

group, considering that multiple views belonging to the same rendering group received

similarly distributed scores in our test. However, the fact that the scores assigned to

different rendering groups were statistically different should be carefully considered

when deciding how to perform the test. As the visual quality of refocused views struggled

to reach transparent quality even in the absence of compression artifacts, we are prone to

suggest perspective views should be preferred when designing a subjective test. However,

given that the visual quality of each perspective view may considerably vary, depending

on which compression algorithm is applied, we are reluctant to recommend the use

of single-image assessment as a one-size-fits-all solution for subjective evaluation.

Combining several perspective views in one single stimulus to be assessed, whether

it would be with interactive or passive tests, could be beneficial for the evaluation of

compression solutions for which the quality of perspective views is not homogeneous.

• We perform a comparison between subjective methodologies for light field quality as-

sessment. The first methodology allows the users to interact with the content by chang-

ing rendering parameters, while the other favors a passive animation which ensures the

same experience will be given to all the users. Results demonstrate that, while the two

methodologies are strongly correlated, they are not statistically equivalent. Moreover,

smaller CIs are associated with the scores collected through the passive methodology,

despite the fact that a semi-controlled crowdsourcing platform (which normally leads

to higher variance) is used. Thus, the passive approach has more discriminative power

when compared to the interactive one.

Our main recommendation would be to adopt the passive methodology in subjec-

tive tests when it is crucial to be able to distingush among different tested solutions,

since providing a uniform visualization experience through the use of a pre-recorded
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animation leads to smaller CIs and more differentiation among the scores. However,

interactive assessment should not be brushed off, as it offers a more realistic scenario for

the consumption of light field contents. More analysis is needed to assess how strengths

of both approaches can be combined to offer an immersive scenario for experiencing

light field contents, while providing a consistent experience for all users.

• We analyze how user behavior is affected by different compression distorsions, by

performing an interactive subjective test where users’ actions are recorded. We define

new procedures to aggregate the user behavior data into time of interaction, and we

perform correlation between the subjective scores and the time of interaction to extract

patterns and trends. Results show that the total time of interaction is strongly correlated

with the subjective scores; in particular, subjects are prone to spending more time on

good-quality contents, as opposed to very distorted ones, regardless of the presentation

order.

Our work lays the basis for implicit assessment of light field contents, using time of

interaction as indicator for visual quality. However, further tests are needed to confirm

whether time of interaction remains a good predictor for quality scores when different

tasks, or free viewing, are employed. To help foster research in the field, we provide the

open-souce framework in Annex B, and the data we used and collected for our research,

including the compressed contents, the MOS scores and the user behavior information,

in Annex A.

• We test different scenarios for visual quality assessment of light field contents, rendered

using multi-layer technology. We define two variants for the DSIS methodology, and we

test both variants on different laboratory settings and using both a prototype display and

a simulator for 2D screens. In particular, we first compare two sets of scores obtained

using the same methodology on the simulator software, in different laboratory settings,

to account for cross-cultural difference. Our findings show that the two are highly

correlated, although the scores obtained in one laboratory setting are consistently

higher with respect to the other. Secondly, we perform a comparison between the two

DSIS variants we defined, proving that one of the variants leads to less uncertainty for

high MOS scores with respect to the other. Finally, we examine the correlation between

the scores collected using the prototype display and the simulator, respectively. Results

demonstrate that statistically different, uncorrelated results are obtained with the two

visualization setups. Notably, the score distribution among the two sets shows that, for

the case of the multi-layer display, the method employed for generating the images to

be used for the rendering has a bigger impact on the final MOS scores.

Several outcomes can be sorted from our test. The first and most obvious, is that cultural

biases should be taken into account when evaluating the visual quality of light field

contents. Secondly, the performance of side-by-side evaluations in discerning among

competing solutions can be improved, especially at near-transparent levels of quality,

by considering other variants that exploit the perception of temporally-variant features,

like our proposed variant for the DSIS methodology. Lastly, the impact of hardware
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limitations and diminished QoE on the distribution of the collected scores should be

taken into consideration when designing a subjective evaluation campaign. The poor

correlation between the scores obtained with the simulator and the prototype display

show that an ideal rendering setting, where no distortions are added to the final rendered

content, may misrepresent the way contents are perceived in noisy scenarios.

10.1.2 Analysis and comparison of compression solutions for light field contents
through visual quality assessment

• We provide the results of the objective and subjective quaity assessments conducted

during two preeminent grand challenges on light field compression. The outcomes

of the evaluation campaign are thoroughly analyzed, so that the best-performing ap-

proaches can be identified for future design of compression solutions.

Although a preliminary performance evaluation is usually given along with any new

compression solution, the coding conditions are seldom uniform among different works.

Thus, judging the efficiency of any given compression algorithm with respect to the

state of the art becomes a delicate task, as it becomes near-impossible to perform a

benchmarking in a variety of conditions that would comprehensively test the perfor-

mance under various levels of stress. Our main contribution, in this case, is providing

an exhaustive examination of state-of-the-art solutions in light field coding using an

expert-selected range of coding conditions, to facilitate the assessment of new proposals

for efficient light field coding. To further help research in light field compression, we

provide a dataset containing the objective and subjective results relative to the anchor

data, along with selected submissions to the latest grand challenge. More information

can be found in Annex A.

• We define and examine two coding approaches for lenslet-based light field compression:

one which encodes the raw data after minimal pre-processing, and the other operating

on the 4D light field structure level. Moreover, we investigate the impact of applying

chroma subsampling on the raw data. We select five algorithms for light field compres-

sion that comply to either of the approaches, and we carry out a comparison through

both objective and subjective means. Our results show that a superior performance

is achieved when the 4D light field structure, which allows to exploit the redundan-

cies among neighboring views, is encoded. Furthermore, we demonstrate that one

post-processing procedure, which is applied during the transformation to 4D light field

structure, is able to propagate errors from the raw data, such as chroma subsampling,

leading to undesired results and affecting the quality of the final rendered product.

One of the main accomplishments of our work is to determine how commonly used

rate-reduction methods, such as chroma subsampling, cannot be applied on the raw

lenslet data, if we want to preserve the visual quality of the final result. Moreover, if

rate-optimization is carried out on the raw data level, as commonly done in intra lenslet

compression solution, unwelcome effects, such as a sharp loss in performance, could
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be observed on the post-processed 4D light field. Thus, if an intra approach is pursued,

we recommend incorporating information about the post-processing procedures in the

coding architecture, so that the process is optimized according to the final rendered

quality.

• We outline three compression strategies for light field contents that will be rendered

using multi-layer displays. While one solution is renderer-agnostic and simply performs

the compression on the 4D light field, the other two take advantage of two methods to

generate the layer patterns that will be used in the multi-layer display for the rendering,

thus reducing the amount of data that needs to be encoded. We perform objective and

subjective quality assessment; for the latter, both a prototype multi-layer display and a

simulator software are used. Results show that, while one approach is superior to all

others in all the scenarios, contradicting outcomes can be found when the simulator or

the multi-layer display are employed for the test. In particular, scores obtained with the

simulator offer more differentiation among different compression ratios, with respect to

both objective quality metrics and scores from the test conducted using the multi-layer

display.

Our work demonstrates how different methods for the generation of layer patterns

for multi-layer rendering have a strong impact on the final rendered quality of both

compressed and uncompressed contents. Considering how transparent levels of quality

are never achieved for one of the methods, we recommend incorporating subjective and

objective quality assessment information to optimize the generation of layer patterns, to

improve the final rendered quality. Moreover, when multi-layer rendering is considered,

we disfavor the use of objective quality metrics for predicting the visual quality of light

field contents under compression artifacts, as they were shown to discriminate more on

the basis of the method for generating the layer patterns. The same applies for prototype

display, whose hardware limitations strongly affect the subjective score distributions.

10.1.3 Towards new compression solutions for light field contents

• We propose a new graph-based compression algorithm for light field contents. Our algo-

rithm uses graph learning to collect information about the dependencies among views;

the information is losslessly transmitted, and is used to reconstruct the 4D light field

from a subset of encoded views. In order to evaluate the compression efficiency of our

proposed solution, we adopt common test conditions from the JPEG standardization

body, and we compare our results with state-of-the-art algorithms. Results show that

notable gains can be achieved by adopting our encoding scheme.

As the main outcome of this work, we propose an efficient method to generate lightweight

disparity data from the light field structure. Sparsity and connectivity are enforced when

generating the disparity information, and the resulting graph is efficiently stored ex-

ploiting the diagonal structure of its weights. To promote further inquiries on the topic,

the code used to generate the graph is made publicly available.
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10.2 Limitations and future prospects

The work presented in this dissertations could be extended and improved in several aspects.

We summarize here how we envision it to be continued:

• In Chapter 3, our analysis of single-image assessment was conducted on only one

methodology, namely DSCQS. It could be interesting to measure whether the same

effects can be found when other single- or double-stimulus methods are employed, and

in presence of alternative compression solutions and coding condition.

• In multiple instances, we have adopted interactive assessment for evaluating the visual

quality of light field contents (see for example Chapter 3, 4 and 7). However, it should

be noted that the parameters for the rendering were chosen and applied offline, as the

delay induced by the real-time rendering operations would severely compromise the

user experience. Moreover, the current interactive rendering setup is suitable for light

field images whose angular and spatial resolution falls within a modest range, such as

contents acquired with plenoptic cameras. Higher spatial and angular resolution could

potentially not be supported by the rendering system, because of delay and memory

constraints. In this case, lossless compression schemes to reduce the strain on memory

consuption should be designed and employed. Furthermore, ad-hoc rendering systems

could be envisioned to sustain the interactive methodology for any type of light field

content.

• Our evaluation of compression solutions and subjective quality assessment method-

ologies for multi-layer rendering, which we conducted in Chapters 5 and 8, can be

extended in several directions. First, a multi-layer setup with a different number of

layers could be considered. Secondly, the work can be broadened by considering video

contents, instead of still images, as they are supported by both the prototype multi-layer

display and by the simulator software. Furthermore, a comparison between the QoE

associated with different visualization approaches, as image-based rendering, MR-DIBR

and multi-layer rendering, could be conceived to assess which rendering technology

leads to the best results.

• As specified in the previous section, in Chapter 4 we lay the basis for implicit assessment

of light field contents. The research can be extended by comparing it with the interaction

patterns obtained with other types of task-dependent evaluations, in order to measure

whether the same correlation with visual quality can be found. Moreover, different

types of distortions besides compression artifacts could be considered, to evaluate

whether the phenomenon is circumscribed to encoding alterations alone. Alternative

methodologies can be tested to see if the results can be generalized for other types of

comparison.

• Our work on the impact of different coding approaches and rate-reduction techniques

on the visual quality of light field contents, which we conducted in Chapter 7, was
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focused solely on lenslet-based light field contents, and specifically on images acquired

with an unfocused plenoptic camera. Thus, the work can be extended by considering

different acquisition technologies, in particular focused plenoptic cameras and coded

aperture solutions. The testing conditions could be broadened by considering a wider

range of compression ratios, not to mention alternative compression algorithms. More-

over, single-stimulus subjective quality assessment methodologies could be employed

to measure the effect of chromatic distortions on the perceived quality in an absolute

scale.

• Our new compression solution for encoding disparity information, presented in Chap-

ter 9, was only tested on lenslet-based light field contents, and in fact works best when

the angular sampling is quite dense. Future research should focus on extending the

graph learning technique to be suitable for a sparser or irregular sampling grids, for

example by constructing more than one graph, to capture both fast and slow transitions

among perspective views. Moreover, the performance on chroma channels can be im-

proved by incorporating color information in the graph learning process. Furthermore,

in our work a smoothness prior was selected because of the characteristics of the data;

more complex prior information could be included in the graph construction.

The main objectives of this dissertation were to provide an analysis of various methodologies

for quality assessment of light field contents, to evaluate the compression capabilities of

various encoding solutions, and to propose a new method to improve the coding efficiency

for light field contents. Further research is needed to improve the quality of experience for

the users, to achieve a widespread adoption of light field imaging for the visualization and

consuption of 3D scenes in immersive scenarios.
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A A dataset for visual quality assess-
ment of light field images

Disclaimer: This chapter was adapted from the following article, with permission from all co-authors and

publishing entities:

Viola, Irene, and Touradj Ebrahimi.“VALID: Visual quality Assessment for Light field Images Dataset” in

10th International Conference on Quality of Multimedia Experience (QoMEX). ©2018 IEEE.

Light field imaging offers new ways of interaction with real-life scenarios in an immersive

environment. However, the large volume of data generated in the acquisition process rep-

resents a challenge in terms of storage and transmission. The design of new compression

solutions relies on subjective and objective visual quality assessment to efficiently reduce the

amount of data while preserving both perceptual and immersive features. However, subjective

assessment is costly and time consuming. Thus, comprehensive datasets for visual assessment

of light field contents under compression artifacts are indispensable.

Several light field image datasets have been proposed in the past, comprised of both synthetic

and natural scenes [Wetzstein, 2010, Laboratory, 2004, Řeřábek and Ebrahimi, 2016], and for

object recognition and saliency map estimation [Ghasemi et al., 2014, Li et al., 2014a]. However,

none of the datasets includes objective and subjective quality scores for compression-like

artifacts. Paudyal et al. [Paudyal et al., 2017b] propose a so-called SMART dataset including

several light field images compressed at various bitrates, along with the annotated subjective

scores. However, the proposed compression solutions only consider intra-based approaches

to encode light field images, which were proven to be subpar with respect to pseudo-sequence

based approaches [Viola et al., 2017a]. Moreover, the subjective methodology that is used to

collect the scores presents light field contents as conventional 2D images, which admittedly

disregards any problem that may arise in the encoding of the depth information. Additionally,

no data about the participants is provided, and the results are already processed in BT scores

with respective CIs, so it is not possible to perform outlier detection or use a subset of the

rates.

171



Annex A. A dataset for visual quality assessment of light field images

(a) I01 (b) I02 (c) I03 (d) I04 (e) I05

Figure A.1 – Central perspective view of each content from the proposed VALID dataset. ©2018
IEEE

In this annex we present a new dataset for visual quality assessment of light field images

(VALID). The dataset is composed of uncompressed and compressed contents on various

bitrates using four compression solutions. Objective quality results based on PSNR and SSIM

metrics are provided, along with subjective quality assessment scores obtained using three

different methodologies. Two visualization arrangements with different color bit depth are

used. A summary of the contents of the dataset can be found in Table A.1.

A.1 Dataset description

A.1.1 Content and bitrate selection

Five lenslet-based light field images were chosen from a publicly available light field im-

age dataset, namely I01 = Bikes, I02 = Danger_de_Mort, I04 = Stone_Pillars_Outside, I09 =
Fountain_&_Vincent_2 and I10 = Friends_1 [Řeřábek and Ebrahimi, 2016]. The images were

carefully selected from those commonly used in literature [Viola et al., 2017a, Ahmad et al.,

2017, Tabus et al., 2017], to provide a variety of scenarios, containing a wide range of details

that would be challenging for the compression algorithms in terms of texture and disparity

encoding. From each lenslet image, 15×15 perspective views of 625×434 pixels and depth

of 10 bits per color channel were obtained, using the Light Field toolbox v0.4 [Dansereau

et al., 2013, 2015]. The central perspective view from the contents is depicted in Figure A.1.

In order to provide compression distorsions at different levels of visual quality, four bitrates

were selected: 0.75 bpp, 0.1 bpp, 0.02 bpp, 0.005 bpp. The values are obtained by dividing the

size of the compressed bitstream over the size of the uncompressed raw images (5368×7728

pixels).

A.1.2 Encoding solutions and data preparation

A total of five solutions were adopted to compress the light field contents. Two popular video

encoders, HEVC and VP9, were selected to encode the perspective views from the light field

contents as pseudo-temporal sequences. For HEVC, the software implementation x2651 was

1https://www.videolan.org/developers/x265.html
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Table A.1 – Summary of contents for the VALID dataset. ©2018 IEEE

Content Bitrate (bpp) Objective quality metrics Bit depth Display Size Resolution NP NR Methodologies Codecs

I01
I02
I04
I09
I10

0.75
0.1

0.02
0.005

PSN RY

PSN RY UV

SSI MY

SSI MY UV

Samsung
SyncMaster2443

Passive
HEVC

VP9
8 bit 24in 1920×1200 81 11 Interactive

Passive and interactive

10 bit
Eizo ColorEdge

CG318-4K
31.1in 4096×2160 97 - Passive

HEVC
VP9

[Zhao and Chen, 2017]
[Ahmad et al., 2017]
[Tabus et al., 2017]
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used, with the Main10 profile. For VP9, the official implementation was employed2. The QP

and the target bitrates were selected to match the desired compression ratios for HEVC and

VP9, respectively. To be used for the encoding, the perspective views were padded with black

pixels, converted to YCbCr format and downsampled from 444 to 422, 10-bit depth. They

were then arranged in a pseudo-temporal arrangement following a serpentine order. Only the

central 13×13 perspective views were encoded.

Additionally, three state-of-the-art algorithms were selected from the literature to provide

up-to-date results on light field compression. In [Zhao and Chen, 2017] authors encode a

subset of the perspective views using HEVC, adopting a linear approximation prior to estimate

the non-encoded views. In [Ahmad et al., 2017] authors arrange the perspective views into a

multiview structure that can be exploited by the corresponding extension of HEVC, namely

MV-HEVC. They also propose a rate allocation scheme to progressively assign the QPs in order

to optimize the performance. In [Tabus et al., 2017], a lenslet-based compression solution that

uses depth, disparity and sparse prediction information to reconstruct the final set of views

is designed. The scheme can be configured to improve the reconstruction by allocating a

fraction of the bitrate to the encoding of the lenslet image using JPEG 2000, or to allow random

access by encoding a subset of views.

A.1.3 Output bit depth

Two output bit depths were considered for the objective and subjective assessments. Initially,

10 bits per color channel (the original bit depth of the images) were used to test the encoding

solutions. All codecs were considered for the assessments. Additionally, the output of the

encoding algorithms was converted to 8 bits per color channel, to ensure compatibility with

the majority of consumers’ devices and rendering softwares. Multiple methodologies were

assessed to give an overview of different visualization and interaction approaches. For the 8

bit depth case, only HEVC and VP9 were used.

A.1.4 Objective quality metrics

PSNR and SSIM were selected from the literature to provide objective assessments of the

visual quality of the contents. The metrics were applied separately to each luminance and

chrominance channels Y ,U ,V and to each perspective view (k, l ), where k = 1, ...,K , l = 1, ...,L

and K = L = 15 represent the total number of perspective views, as generated from the toolbox.

PSN RY UV and SSI MY UV were computed by means of a weighted average, assigning factor

6 to the luma channel, and factor 1 to each chrominance channel, as defined in [Ohm et al.,

2012].

The mean across the viewpoint images was also computed to have the average PSNR values

2https://www.webmproject.org/vp9/
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for Y channel:

àPSN RY = 1

(K −2)(L−2)

K−1∑
k=2

L−1∑
l=2

PSN RY (k, l ), (A.1)

Similarly, �SSI M Y , àPSN RY UV and �SSI M Y UV were computed.

For the sake of completeness, the objective quality metrics were calculated on both the 10-bit

and 8-bit outputs.

A.1.5 Subjective methodologies and test conditions

The subjective quality evaluations were conducted in a laboratory for subjective quality

assessment, which was set up according to ITU-R Recommendation BT.500-13 [ITU-R BT.500-

13, 2012], and equipped with adjustable neon lamps of 6500 K color temperature. The color

of the background walls was mid grey, and the illumination level measured on the screens

was 15 lux. The distance of the subjects from the monitor was approximately equal to 7 times

the height of the displayed content, conforming to requirements in ITU-R Recommendation

BT.2022 [ITU-R BT.2022, 2012]. Subjects were allowed to move further or closer to the screen.

Specification about the display size and resolution can be found in Table A.1. All monitors

were calibrated according to the following profile: sRGB Gamut, D65 white point, 120 cd/m2

brightness, and minimum black level of 0.2 cd/m2.

Different subjective methodologies were considered based on the output bit depth. For

the 10-bit output depth, the encoding solutions were tested using a “passive” methodology,

using NP = 97 perspective views at a rate of 10 frames per second, as recommended in [Viola

et al., 2017b]. However, no refocusing was applied on the views (NR = 0), to exclusively

compare the outcome of the encoding algorithms. The total length of the animation was 9.7

seconds. A comparison-based adjectival categorical judgement methodology with a 7-point

grading scale was selected, according to ITU-R Recommendation BT.500-13 [ITU-R BT.500-13,

2012]. Each stimulus was displayed alongside the uncompressed reference in a side-by-side

arrangement. Participants were asked to compare the quality of the test stimuli with respect to

the uncompressed reference and rate it on a scale from -3 (much worse) to +3 (much better), 0

indicating no preference.

For the 8-bit output depth, three methodologies were adopted, to test the impact of different

visualization and interaction approaches on the collected subjective scores. Namely, “in-

teractive” and “passive” approaches were implemented to collect the scores, and they were

subsequently combined (“passive and interactive” approach) to offer interaction while im-

proving the consistency of the results, as suggested in [Viola et al., 2017b]. In particular, for the

“passive and interactive” approach, the participants were shown an animation of the images
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under test, and could not interact or score before the animation was concluded. To ensure a

smooth interaction experience without unwanted distorsions, only the central 9×9 views were

used for the tests (NP = 81). Additionally, NR = 11 refocused views were created following [Vi-

ola et al., 2017b]. A DSIS methodology with side-by-side visualization and 5-point grading

scale, from 5 (imperceptible) to 1 (very annoying), was selected for all three methodologies.

For the “passive” and “passive and interactive” methodologies, the perspective views were

shown as an animation, at a rate of 10 frames per second, followed by the refocused views,

going from foreground to background and from background to foreground at a rate of 4 frames

per second, as suggested in [Viola et al., 2017b]. The total length of the animation was 13.6

seconds. The “interactive” and “passive and interactive” methodologies were implemented

using the framework proposed in [Viola and Ebrahimi, 2017], to allow subjects to engage with

the perspective and refocused views.

In all the experiments, the position of the reference was fixed for the duration of the test,

and participants were informed of its position on the screen. A training session with four

training samples was established before the experiment, composed of one additional content

compressed at various bitrates. The order of the stimuli was randomized for each participant,

and the same content was never shown twice in a row. All subjects were examined for visual

acuity and color vision using Snellen and Isihara charts, respectively. Information about the

age and gender of the participants is provided separately for each test. For all the evaluations,

subjective scores are provided for each stimulus and for each participant. Additionally, for

the “interactive” and “passive and interactive” methodologies, the tracking values from the

animation are additionally provided for each subject and for each stimulus, to help analyse

user behavior.

The dataset can be found in: https://mmspg.epfl.ch/VALID. Terms and conditions are given

with the dataset. In case of use of the contents of the dataset for any purpose, as well as when

presenting and publishing results based on the dataset or any of its parts, a reference to [Viola

and Ebrahimi, 2018b] should be provided.
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B A new framework for interactive qual-
ity assessment with application to
light field coding

Disclaimer: This chapter was adapted from the following article, with permission from all publishing

entities:

Irene Viola, Touradj Ebrahimi, “A new framework for interactive quality assessment with application to

light field coding,” Proc. SPIE 10396, Applications of Digital Image Processing XL, 10397F (19 September

2017). DOI: https://doi.org/10.1117/12.2275136

©2017 Society of Photo Optical Instrumentation Engineers (SPIE). One print or electronic copy may be

made for personal use only. Systematic reproduction and distribution, duplication of any material in this

publication for a fee or for commercial purposes, or modification of the contents of the publication are

prohibited.

A wide range of possibilities are present in image-based rendering of light field contents. For

example, it is possible to combine different perspective views to change the focal plane, in an

interactive way. These peculiarities have to be mirrored in the methodology used for subjective

quality evaluation.

Assessing the way users engage with light field contents plays a major role on how those

methodologies are designed and used. However, user behaviour when engaging with light

field content has not yet been studied in details.

In this chapter, we propose a new framework for visual quality assessment of light field

contents, which allows for interaction with the content and assessment of user experience by

tracking user behaviour information. Such information can be subsequently used to further

analyze patterns in user interaction. Applications of user interaction information can be found

in development of new objective quality metrics, new subjective methodologies and new

perceptual coding algorithms.
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field coding

Figure B.1 – Example of evaluation interface screen.

B.1 Proposed framework

The framework proposed in this paper provides a tool to further understand the impact of

user behaviour in quality assessment of image-based light field rendering. It consists of a

software application for quality assessment of light field contents that enables interaction

with the content while keeping track of what the user chooses to visualize. In its current

version, the stimuli-comparison method DSIS is implemented, although the implementation

of other methodologies through the framework is straightforward. A graphical interface allows

interaction with light field contents in a real-time scenario, by enabling the change of point

of view (pespective) and the choice of different focal points (refocus) from a predefined set.

Figure B.1 shows an example from the framework.

The software takes as input two collections of perspective views in png file format, one serving

as test and the other serving as reference. The perspective views are then assembled to form

the light field content, composed of U ×V images of resolution W × H . Additionally, the

software can receive as input a set of S images rendered from the light field content at different

focal points, which we will refer to as refocused views, and a depth map D that can be used

to access the refocused views. Both refocused views and depth map are saved in png file

format. Test and reference materials must have the same resolution; moreover, they need to

be rendered with the same parameters.

The central perspective view from the light field content taken as input is displayed as default
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for both reference and test materials. By click-and-drag inside the rendered images, the user

can change the perspective view, which is rendered in real time. A slider between the two

rendered images allows access to the refocused views. Labels on each side of the slider indicate

if the content will be refocused on the foreground or on the background. Additionally, the

refocused views can be accessed by double clicking on any point of the image. In this case, the

depth map is used to map the refocused views to each region in the scene. By clicking and

dragging in any point of the rendered image, the user can return to visualize the perspective

views. The two contents are rendered simultaneously and they are perfectly synchronized,

so the displayed views are rendered with the same parameters. A panel on the bottom of the

screen shows the possible scores for the test material. As soon as the user selects one option,

the screen updates with the new test material.

The results of the evaluation are saved in one text file. Another text file provided as output

records every perspective and refocused view that was accessed by the user, in access order.

The start and end times of visualization of each view are recorded, along with the total display

time.

A python implementation of the proposed framework can be found at the following link: https:

//github.com/mmspg/light-field-tracking. It is free to use, modify or redistribute, according

to the GNU license. In case of use of the software for any purpose, publishing or use of any

updates and variations based on it, as well as when presenting and publishing results based

on the software, a reference to [Viola and Ebrahimi, 2017] should be provided.
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C A comprehensive framework for vi-
sual quality assessment of multi-layer
light field displays

Disclaimer: This chapter was adapted from the following article, with permission from all publishing

entities:

Irene Viola, Keita Takahashi, Toshiaki Fujii and Touradj Ebrahimi, “A comprehensive framework for visual

quality assessment of light field tensor displays,” in Electronic Imaging 2019, Society for Imaging Science

and Technology (IS&T), 2019.

In this chapter, we present a framework to conduct quality assessment of light field contents

rendered through a tensor display simulator using 2D screens. Through a GUI, the layer

patterns composing the multi-layer tensor displays are simulated in a 3D environment. By

interacting with the mouse, users can experience the light field from different points of views.

C.1 Proposed framework

The framework proposed in this paper provides a tool to assess the quality of light field contents

rendered through the use of multi-layer tensor displays. It consists of a software application

for quality assessment of light field contents that enables visualization from different points of

views, while keeping track of both the given ratings and the total time of interaction.

A graphical interface based on the software proposed in [Takahashi, 2018], simulates the multi-

layer structure of light field tensor displays. The layer patterns are given as input to be directly

visualized using the interface, along with a file specifying the parameters for the rendering,

such as the horizontal and vertical angular resolution (i.e., the number of perspective views)

of the input light field, and the number of layers composing the simulated display. The layer

patterns are always displayed in their original resolution. By clicking and dragging, users can

physically alter the visualization angle of the simulated display on the screen, thus accessing
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field displays

Figure C.1 – Example rendering of the input stimuli with the proposed GUI, using double
stimulus methodology with side-by-side display.

different points of views. The viewing angles are limited by the number of layers and the

angular resolutions of the input light field, to ensure only properly rendered points of view are

accessible. In particular, denoting Vx and Vy as the number of perspective views of the input

light field in the horizontal and vertical dimension, respectively, and L as the number of layers

in the simulated display, the maximum viewing angle θx and θy in the horizontal and vertical

direction, respectively, can be defined as such:

θx = arctan
α

⌊
Vx
2

⌋
L

, (C.1)

θy = arctan
α

⌊
Vy

2

⌋
L

. (C.2)

Parameter α depends entirely on the specifications of the 2D monitor used to display the

simulation:

α=
p

W 2 +H 2

p
w2 +h2

, (C.3)
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in which W and H represent the screen size in meters, while w and h represent the screen

resolution in pixels.

The graphical interface has been adapted to be used for subjective quality assessment. In

accordance with the ITU-R recommendations [ITU-R BT.500-13, 2012], both single and double

stimulus methodologies can be used for the subjective evaluation. For the double stimulus

methodology, both side-by-side and consecutive presentations are available. In the former

case, the two stimuli are presented simultaneously on the screen, and any change in viewing

angle is rendered in a synchronized way, to allow users to visualize both contents from the

same point of view. Conversely, in the consecutive presentation only one stimulus is presented

at a time. By using the arrow keys on the keyboard, users can switch between two stimuli. The

switching can happen at any viewing angle the user has chosen, thus allowing to compare

the two stimuli at any point of view. A mid-grey color has been selected for the environment

surrounding the simulated display, in accordance with the ITU-R recommendations [ITU-R

BT.500-13, 2012]. An example rendering from the graphical interface is presented in Figure C.1.

Once users are satisfied with their viewing experience of the content, they can score the stimuli

using the keyboard. All the scores are saved in an output file. The total time each stimulus was

visualized is recorded in a separate file, to be used in analyzing interaction patterns and user

behavior [Viola and Ebrahimi, 2017].

The software application can be found at the following link: https://github.com/mmspg/

LFDisplaySimulator. It is free to use, modify or redistribute, according to the MIT license. In

case of use of the software for any purpose, publishing or use of any updates and variations

based on it, as well as when presenting and publishing results based on the software, a

reference to [Viola et al., 2019] should be provided.
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