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Abstract

Dislocation emission from a crack tip is a necessary mechanism for crack tip blunting and
toughening. A material is intrinsically ductile under Mode I loading when the critical stress
intensity K. for dislocation emission is lower than the critical stress intensity K. for cleavage.
In intrinsically ductile fcc metals, a first partial dislocation is emitted, followed either by a trailing
partial dislocation (“ductile” behavior) or a twinning partial dislocation (“quasi-brittle”).

K }Z”t for the first partial dislocation emission is usually evaluated using the approximate
Rice theory, which predicts a dependence on the elastic constants and the unstable stacking
fault energy v,,y. Here, atomistic simulations across a wide range of fcc metals show that
K }th is systematically larger (10-30%) than predicted. However, the critical crack-tip shear
displacement is up to 40% smaller than predicted. The discrepancy arises because Mode I
emission is accompanied by the formation of a surface step that is not considered in the Rice
theory. A new theory for Mode I emission is presented based on the ideas that (i) the stress
resisting step formation at the crack tip creates “lattice trapping” against dislocation emission
such that (ii) emission is due to a mechanical instability at the crack tip. The new theory naturally
includes the energy to form the step, and reduces to the Rice theory (no trapping) when the step
energy is small. The new theory predicts a higher K }th at a smaller critical shear displacement,
rationalizing deviations of simulations from the Rice theory.

The twinning tendency is estimated using the Tadmor and Hai extension of the Rice theory.
Atomistic simulations reveal that the predictions of the critical stress intensity factor K ?e”m for
crack tip twinning are also systematically lower (20-35%) than observed. Energy change during
nucleation reveal that twining partial emission is not accompanied by creation of a surface step
while emission of the trailing partial creates a step. The absence of the step during twinning
motivates a model for twinning nucleation that accounts for the fact that nucleation does not
occur directly at the crack tip. New predictions are in excellent agreement with all simulations
that show twinning. A second mode of twinning is found wherein the crack first advances by
cleavage and then emits the twinning partial at the new crack tip.

The stacking fault stress dependence is analyzed through (i) the generalized stacking fault
potential energy (GSFE) and (ii) the generalized stacking fault enthalpy (GSFH). At an imposed
shear displacement, there is also an associated inelastic normal displacement A,, around the fault.
Atomistic simulations with interatomic potentials and/or first principle calculations reveal that
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Abstract

GSFE and A,, both increase with tensile stress. An increasing GSFE contradicts long-standing
wisdom and previous studies. Positive A,, coupled to the applied normal stress decreases the
GSFH, but GSFH is not useful for general mechanics problems. "Opening softening” effects
are not universal, and so the analysis of any particular nanomechanics problem requires precise
implementation of the combination of GSFE and A,, rather than the GSFH.

Key words: Fracture mechanics, Dislocation nucleation and emission, Ductile to brittle transition,
Molecular statics, First principle calculations
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Zusammenfassung

Die Versetzungsemission von einer Rissspitze ist ein notwendiger Mechanismus fiir das Abstump-
fen der Rissspitze und die Bruchzihigkeit. Man bezeichnet ein Material als intrinsisch duktil
beziiglich der Rissoffnungsart I, wenn der kritische Spannungsintensititsfaktor K, fiir Verset-
zungsemission niedriger ist als der kritische Spannungsintensititsfaktor K, fiir Trennbruch. Bei
intrinsisch duktilen kfz Metallen wird zuerst eine Partialversetzung emittiert, gefolgt von einer
nachlaufenden Partialversetzung ("duktiles" Verhalten) oder einer Zwillingspartialversetzung
("quasi sprode").

K fémt fiir die erste Emission einer Partialversetzung wird normalerweise nidherungsweise an-
hand der Theorie von Rice bewertet, die von den elastischen Konstanten und der instabilen
Stapelfehlerenergie v, abhiingt. Atomistische Simulationen fiir ein breites Spektrum an kfz
Metallen zeigen allerdings, dass K femt systematisch grofer ist (10-30%) als vorhergesagt. Die
kritische Scherverschiebung der Rissspitze ist jedoch um bis zu 40% kleiner als vorhergesagt.
Die Diskrepanz entsteht, weil die Emission beziiglich der Rissoffnungsart I mit der Bildung einer
Oberflachenstufe einhergeht, die in der Theorie von Rice nicht beriicksichtigt wird. Es wird eine
neue Theorie fiir die Emission beziiglich der Rissoffnungsart I vorgestellt, die darauf basiert,
dass (i) die spannungsresistente Stufenbildung an der Rissspitze "Gitterfallenérzeugt, die der
Versetzungsemission entgegenwirkt, so dass (ii) die Emission durch eine mechanische Instabilitét
an der Rissspitze hervorgerufen wird. Die neue Theorie beinhaltet die Stufenbildungsenergie und
reproduziert die Theorie von Rice (keine Gitterfallen), wenn die Stufenenergie klein ist. Die neue
Theorie sagt einen hoheren Spannungsintensititsfaktor K femt bei einer geringeren kritischen
Scherverschiebung voraus, was die Abweichungen zwischen den Simulationen und der Theorie
von Rice erklart.

Die Zwillingsbildung wird mithilfe der Erweiterung der Theorie von Rice durch Tadmor und Hai
abgeschitzt. Atomistische Simulationen zeigen, dass die Vorhersagen des kritischen Spannungs-
intensititsfaktors K ?e”m fiir Zwillingsbildung an der Rissspitze ebenfalls systematisch niedriger
sind (20-35%) als vorhergesagt. Die Anderungsenergie aufgrund der Versetzungsbildung zeigt,
dass die Emission der Zwillingspartialversetzung nicht mit der Erzeugung einer Oberflichenstufe
einhergeht, wihrend die Emission einer nachlaufenden Versetzung eine solche erzeugt. Das
Fehlen der Oberflachenstufe wihrend der Zwillingsbildung motiviert ein neues Modell, das be-
riicksichtigt, dass Zwillingsbildung nicht direkt an der Rissspitze auftritt. Die Vorhersagen anhand
dieses Modells stimmen hervorragend mit allen Simulationen {iberein in denen Zwillingsbildung
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Zusammenfassung

beobachtet wird. Dariiber hinaus wurde eine zweite Form der Zwillingsbildung gefunden, bei der
sich der Riss zunachst ausbreitet und erst danach die Zwillingspartialversetzung an der neuen
Rissspitze emittiert.

Die Abhingigkeit des Stapelfehlers von der Spannung wird mithilfe (i) der generalisierten Sta-
pelfehlernergie (GSFE) und (ii) der generalisierten Stapelfehlerenthalpie (GSFH) analysiert.
Bei einer angelegten Schubverschiebung entsteht zusétzlich eine nicht elastische Normalver-
schiebung A,, um den Stapelfehler. Atomistische Simulationen mit interatomaren Potentialen
und/oder ab initio Verfahren zeigen, dass sowohl die GSFE als auch A,, unter einer angelegten
Zugspannung zunehmen. Eine zunehmende GSFE widerspricht allen fritheren Untersuchungen.
Ein positives A,,, gekoppelt mit einer angelegten Normalspannung, verringert die GSFH, die aber
fiir allgemeine Mechanikprobleme nicht niitzlich ist. "Offnungs-ErweichungsEffekte sind nicht
universell und erfordern daher fiir die Analyse eines bestimmten Problems in der Nanomechanik
die Beriicksichtigung der Kombination aus GSFE und A,,, anstelle der GSFH.

Schlagworter: Bruchmechanik, Versetzungsbildung und -emission, Sprod-duktil Ubergang,
Molekular-Statik, Ab initio Verfahren
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|§ Introduction

1.1 Fracture toughness as the main concern of fracture mechanics

Fracture Mechanics is an absolutely necessary tool in a design process of various structures
(airplanes, cars, bridges, ...) that require high reliability during their lifetime performance. A
constant demand for lower cost, lower weight, and improved energy efficiency across different
industries requires much faster development of new materials. The science of fracture mechanics
is therefore intended to illuminate materials and structural fracture toughness, and their resistance
to fatigue and embrittlement (e.g. stress corrosion cracking or hydrogen embrittlement), as key
properties for preventing fracture of structures and catastrophic failure.

In spite of the engineering appearance to be systematic in using available design methods, the
lack of physics-based understanding of phenomena that control fracture and fatigue has led to
numerous (catastrophic) failures (see Figure 1.1). It was noted in the mid 19th century that steel
structures are very sensitive to fracture and fatigue [1]. The Versailles train crash in 1842 (see
Figure 1.1a), caused by fatigue fracture of a leading locomotive axle, raised an awareness about
the connection between stress concentration sites and crack growth [2]. The pioneering works
from the late 19th century provided momentum for further development of fracture mechanics. It
was Griffith with his seminal paper [3] who made established foundations of modern fracture
mechanics [4]. Using the concept of total energy variation, he showed that a certain amount
of work (surface energy) is necessary to drive the crack growth in linearly elastic and brittle
materials. Griffith was the first one who realized the size effects in fracture problems. However,
Griffith’s work was not properly recognized until the mid 20th century, when the works of
Orowan [5] and Irwin [6, 7] appeared; they provided a more complete analysis in understanding
fracture, and Linear Elastic Fracture Mechanics (LEFM) was born. The methods of LEFM were
used for understanding the brittle fracture of large welded structures, as illustrated in Figure 1.1b
by a photography of the Schenectady ship that broke in two. LEFM was/is used on a daily basis
for estimating reliability assessment of various structures. However, problems associated with
fracture of structures were/are reappearing. Two Comet airplanes, presented in Figure 1.1c, were
lost due to a fast fatigue crack nucleated from a rectangular window in 1953 and 1954. The next
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picture in Figure 1.1d is the Japan Air Lines Boeing 747 that has been lost in 1984 due to an
ejection of the aircraft’s vertical stabilizer caused by a fracture of the rear pressure bulkhead. The
final picture in Figure 1.1e, but definitely not the last example, is the Morandi Bridge that has
collapsed in Italy in 2018. Systematic analysis of different structural failures can be found in
papers such as Ref. [8, 9] published in Engineering Failure Analysis. It is materials failure, due
to crack growth, that has led to the catastrophic result in every case listed. Therefore, fracture of

structures is mostly a material problem.

e)

[1840 [1880 11920 [1960 [2000 [ .7
I

Figure 1.1 — Historical overview of catastrophic failure of structures: a) Versailles train crash in
1842 caused by fatigue fracture of a locomotive axle, b) Schenectady ship that broke into two in
1943, c) The Comet airplane lost in 1953 due to fracture from a rectangular window, d) Japan Air
Lines Boeing 747 lost due to fatigue fracture in 1984, and e) Morandi Bridge collapsed in 2018.

Systematic design of materials that posses high fracture toughness is essential for structural
performance and reliability. A widely accepted definition for fracture toughness is the material
resistance to growth of a pre-existing crack. Therefore, fracture toughness can be closely
related to the energy that is dissipated in the crack-tip vicinity [fracture process zone (FPZ)]. As
illustrated in Figure 1.2, the dissipated energy depends on the material under consideration, and
it is governed by various processes across different length scales. Figure 1.2a shows the fiber
bridging between crack surfaces, as a macroscale process at the mm scale, that contributes to
the fracture toughness in fiber-reinforced composites [10]. A similar process, but at the micron
scale, that costs energy for crack growth in polymers is crazing (see Figure 1.2b) [11]. Crazes
consist of parallel fibrils and voids, that spans the entire deformed region in front of a crack-tip,
and are responsible for the large fracture toughness [12]. In extremely brittle materials, e.g. in
silicon, fracture toughness is controlled only by nanoscale processes associated with cutting of

2
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interatomic forces (see Figure 1.2¢). Fracture energy that is dissipated in metals and their alloys
is mainly controlled by the pronounced plasticity around the crack-tip. Plastic deformations,
described in Figure 1.2d by discrete dislocations [13], dissipate the energy and provide extremely
high fracture toughness. A successful design of materials that possess high fracture toughness is
fulfilled only if processes that contribute to the fracture toughness are completely understood.
Therefore, as will be discussed later in this manuscript, the methods of Fracture Mechanics are
primarily used in finding the fracture energy.
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Figure 1.2 — Schematic representation showing various processes that contribute to materials
fracture toughness across different length scales: a) fiber bridging in composites [10], b) crazing
in polymers [11], c) interatomic forces across crack surfaces in extremely brittle materials, and d)
plastic deformation, characterized by discrete dislocations, around the crack-tip in metals [14]. A
particular length scale is identified by length units in parentheses.

1.2 Motivation: Intrinsic ductility as a precursor to ductile fracture

Metals and their alloys are the most widely used structural materials across many applications.
They are integral constituents of many components that are used in failure-critical applications
(e.g. aerospace and automotive industry, civil engineering, medicine, ...). Due to their practical
importance, it is essential to understand processes that enable their high fracture toughness. The
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previous section shortly discussed that the plastic deformations around a crack-tip are responsible
for high fracture toughness in metals.

i asaraTe
_)} - A

Figure 1.3 — Evolution of an atomically sharp crack in a dislocation-free fcc single crystal: a)
Initial configuration at the applied load prior to dislocation emission or cleavage. b) the crack
geometry after dislocation emission for which Ky, < K. requirement is satisfied; c) the crack
geometry after cleavage for which K, < K. requirement is not satisfied. Note that the crack
geometry stays self-similar in cleavage. Atoms are visualized using OVITO [15].

In this work, a fundamental requirement for achieving extensive plasticity around the crack tip
(high fracture toughness) is addressed. A fundamental requirement for achieving high fracture
toughness in crystalline metals is that a material be intrinsically ductile, which is opposite from
an intrinsically brittle material. A crystalline metal is intrinsically ductile if an atomically sharp
crack in a loaded material emits dislocation(s) and blunts rather than cleaving and remaining
sharp (see Figure 1.3). Specifically, if the critical stress intensity factor for emission K. is
smaller than the critical stress intensity factor for Griffith cleavage K. [3], then the material will
emit dislocations, blunt, and eventually fail by mechanisms that absorb considerable energy (see
Figure 1.3b and ¢). A schematic representation of how intrinsic ductility enables, or intrinsic
brittleness inhibits, pronounced plasticity around the crack-tip is shown in Figure 1.4 [16].
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Figure 1.4a shows an initial configuration of a single crystal with a pre-existing atomically sharp
crack. In an intrinsically brittle material, the crack is unable to emit dislocations. With increasing
of the applied load, the crack remains sharp and eventually starts growing in a cleavage-like
manner leading to a very low fracture toughness (see Figure 1.4b). In an intrinsically ductile
material, as illustrated in Figure 1.4c, the crack naturally emits dislocations and blunts, therefore
changes the singularity at the tip and enables pronounced plasticity to develop. Eventually, a large
hydrostatic pressure develops in front the tip, leading to void nucleation, growth and coalescence,
and eventually to a large energy dissipation; this process is known as ductile fracture in metals.
In both examples shown, the usual far-field plasticity is present and contributes to the measured
fracture toughness. However, the overall fracture behavior and toughness is completely different
in the two cases.

Dislocation emission from the crack tip is thus a necessary precursor to crack tip blunting and
toughening. It also represents one of the fundamental problems in mechanics of materials. In
light of its practical importance, the present manuscript provides a theoretical physics-based
framework for computing the critical stress intensity factor for crack tip dislocation emission and
twinning.

b) Intrinsically
brittle material <

A

A

v

. . y
a) Initial A Y Y
crack

¢) Intrinsically
A ductile material

Figure 1.4 — Schematic representation of how intrinsic ductility enables, or intrinsic brittleness
inhibits, pronounced plasticity around the crack-tip: a) Initial configuration with an atomically
sharp crack; b) Fracture in an intrinsically brittle material where the crack remains sharp during
the loading; c) Fracture in an intrinsically ductile material where the crack is blunted by emission
of dislocations. In both examples, there is some far-field plasticity that can contribute to the
materials fracture toughness.



Chapter 1. Introduction

1.3 Outline of the thesis

The reminder of this thesis is organized as follows:

Chapter 2 discuss methods for modeling fracture across different length scale. The basic equations
of Linear Elastic Fracture Mechanics are introduced in Section 2.1, with a focus on the asymptotic
stress and displacement fields around a crack-tip, the scale of the K-dominant zone, and energetic
perspectives associated with the crack-tip processes. Section 2.2 presents the Cohesive zone
model for describing the non-linear behavior in front the tip. Section 2.3 discuss available
methods for modeling energy dissipation due to plastic deformations in metals using either
Continuum Plasticity-Cohesive Zone (CP-CZ) or Discrete Dislocation-Cohesive Zone (DD-CZ)
modeling of fracture. Finally, Section 2.4 critically analyze methods used for atomistic modeling
of fracture.

In Chapter 3, we give a brief presentation of the continuum theories for predicting the critical
stress intensity factors for various crack-tip dislocation emission processes. Section 3.2 gives a
more detailed exposition of the Rice theory and its predictions for critical stress intensity factors
for the first partial emission K }ZT“, trailing partial emission K fza” and the critical slip A, for
elastically isotropic and anisotropic materials. Section 3.3 provides an overview of the Tadmor-
Hai theory for predicting the critical stress intensity for crack-tip twinning K }Z’m Finally, in
Section 3.4 we discuss the shielding effect of the first partial dislocation on further nucleation

processes.

In Chapter 4, we present a new theory for Mode I crack-tip dislocation emission. In Section 4.2,
we first introduce 17 fcc materials that are studied here, after which we carefully validate the
Rice model for Mode II loading for these materials, and finally we present results for Mode I
loading, with a slip plane inclined at an angle 6 = 70.53° with respect to the crack plane, and
show clear deviations from the Rice theory. In Section 4.3, we show that the energy change at the
crack tip during the emission/slip process has contributions from the surface step energy as well
as the stacking fault energy. In section 4.4, we developed the new theory for crack tip dislocation
emission based on a mechanical instability at the crack tip. In Section 4.5, we compare the new
theoretical model for dislocation emission to simulations across a wide range of fcc materials. In
section 4.6, we introduce an analytic criteria and show it to be in good agreement with the full
model results. Implications of the new model are then discussed and our main results reiterated
in Section 4.7.

In Chapter 5, we present a new theory for crack-tip twinning in fcc metals. In Section 5.2,
we evaluate the accuracy of the Tadmor-Hai twinning theory against atomistic simulations for
17 fcc metals introduced in Section 4.2, and show the quantitative failures of the theory. To
better understand the controlling crack-tip phenomena, in Section 5.3 we investigate the energy
changes at the crack tip during the emission processes and show that twinning partial emission
is not accompanied by step creation while trailing partial emission does involve step creation.
In Section 5.4, we introduce a modified Tadmor-Hai theory for predicting crack-tip twinning
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and show excellent agreement with the simulations. Then, in Section 5.5, we apply the theory
presented in Chapter 4 to predict K f’é‘”'l and resolve the discrepancy between the Tadmor-Hai
trends and simulations. In Section 5.6 we introduce and analyze “forward” twinning as a new
twinning mode. Finally, in Section 5.7, we present concluding remarks.

In Chapter 6, we analyze stress dependence of generalized stacking fault energies (GSFE). In
Section 6.2, we introduce methods for computing the GSFE V¥, ((A,, T},) and inelastic normal
displacement A, (As, T,) under an applied normal tensile stress T,,. Section 6.3 presents
our results for the GSFE and inelastic normal displacement, as computed using interatomic
potentials and first-principles methods, and the subsequent determinations of W ,,¢(Ag, Ay,)
and generalized stacking fault enthalpy (GSFH) \IJSZ}h(A s, Tn). In Section 6.4, we show the
errors that arise in the computation of the GSFE and GSFH when computed using displacement
boundary condition; these rationalize previous literature results. Section 6.5 discuss which

thermodynamics quantity is most appropriate to use for describing different mechanics problems.

The main results of the thesis are then reiterated in Section 7. The main implications of the work
are analyzed and directions for further research are discussed.






Modeling fracture across different
length scales

This chapter is partly extracted from the following publication:

(1) Andric P, Curtin WA. Atomistic modeling of fracture. Modelling and Simulation in
Materials Science and Engineering. 2018 Nov 16;27(1):013001.

The contemporary design process of materials is intimately coupled to modeling of fracture
across different length scales, from macro- and continuum scale, down to meso- and atomic
scale. Neglecting fracture behavior associated with one of the length scales can lead to poor
understanding of the different phenomena that contribute to the overall fracture toughness of a
material. Comprehensive understanding of the phenomena that control fracture is necessary to
prevent catastrophic failure. The process of understanding first begins with describing the state
of the cracked body using Linear Elastic Fracture Mechanics.

2.1 Linear Elastic Fracture Mechanics

Linear Elastic Fracture Mechanics (LEFM), as one of the most successful sub-fields of Solid
Mechanics, is used for describing and predicting different fracture phenomena, such as: (i) Brittle
fracture under (quasi)-static and dynamic loading, (ii) Stress-corrosion cracking, (iii) Fatigue
crack growth, or (iv) Atomic scale fracture. Understanding of LEFM is a crucial requirement
for modeling fracture, from continuum scale, down to atomic scale. In LEFM, the entire body
behaves according to linear elasticity, and then the local crack tip phenomena at distances from
the crack tip r < a are occurring within the asymptotic field very near to the crack tip. When
the non-linear/non-convex behavior is confined to a region r << a (to be more carefully specified
below), conditions known as "small scale yielding" (SSY), the loading is entirely controlled by
the magnitude of the asymptotic fields predicted by LEFM [17, 18]. This framework is captured
schematically in Figure 2.1, which indicates the full domain of interest containing a crack, the
region near the crack tip where the asymptotic fields dominate (the so-called K-dominant zone
r < ri), and the domain of non-linear/non-convex behavior (the so-called Fracture Process

9



Chapter 2. Modeling fracture across different length scales

Zone (FPZ), occurring over a scale rppz << rx). When small scale yielding is satisfied, i.e.
rrpyz < rg < a, the crack tip behavior depends only on the asymptotic crack tip fields and not
on the macroscopic loading conditions. This confers a huge generality to studies focused on the
crack tip region. When SSY conditions are satisfied, phenomena observed and quantified in the
FPZ as a function of the magnitude of the asymptotic field are relevant to all macroscopic fracture
problems independent of loading and geometry. Before launching into details, one can already
conclude that all the beauty and simplicity of LEFM is in its one-parameter dependence. LEFM
is well-established in a vast literature [19, 20, 21, 22] but we revisit the key results here since
they form the fundamental theoretical basis for modeling fracture across different length scales.

b) K dominant
zone

Fracture

Zone controlled process

<~ byB.C.and zone (FPZ)
. geometry

3
I IO A
L

Se -

P

o“PP

Figure 2.1 — a) Centrally positioned finite crack in an infinite plate under biaxial stress o “P.
Stresses in the outer zone (sufficiently far from the crack) are strongly influenced by the boundary
conditions (B.C.) and sample geometry. b) Stress zones in a cracked body with the fracture
process zone (FPZ) in the vicinity of the crack-tip, surrounded by the K-dominance zone where
the asymptotic fields given by Eq. 2.8 are accurate. The size of the K-dominant zone is much
smaller that the crack size.

2.1.1 Crack stress fields in Plane Strain

We consider a large plate of lateral dimensions —L/2 < z1 < L/2, -L/2 < 9 < L/2 made of
a linear isotropic material and subject to plane strain loading so that results are independent
of the out-of-plane x3 dimension. The plate contains a finite crack of a size 2a in the center
-a < 1 < a, x2 = 0 with a <« L. The crack is defined by the imposition of traction-free
boundary conditions on both the upper and lower crack surfaces. Here, we analyze the plate
subjected to a biaxial stress 0P applied on the outer boundaries with L — oo (see Fig. 2.1a).

This loading scenario corresponds to the so-called Mode I fracture mode, where the crack is

10



2.1. Linear Elastic Fracture Mechanics

opened by a perpendicular tensile load. Mode II (in-plane shear) and Mode III (anti-plane strain)
are the other two independent modes of loading, but the general conclusions from the theory
for Mode I apply equally to Mode II and Mode III loading, and so these are not discussed here.
Although the Mode I biaxial loading may appear to be a special case even for Mode 1, it will be
shown below that the asymptotic singular stresses in the crack-tip vicinity do not depend on the
geometry or the far-field loading. The outer boundary conditions for the problem are then

o192 =099 =0 at ]:cl\éaand:cgzO 2.1

app

011 =092 =0 atm?—>oo.

In linear elasticity, components of the small strain tensor are related to components of the
displacement field u; as €;; = (u; j + uj;)/2, where (-) ; denotes partial differentiation with
respect to x;. The stress tensor is related to the strain tensor via Hooke’s law o; = Cj;p € Where
Cjjk s the material stiffness tensor. We will start with isotropic elasticity and later generalize
to anisotropic elasticity, since nearly all single crystal materials are anisotropic to some degree.
The two independent elastic constants in isotropic elasticity are then taken as the shear modulus
1 and Poisson ratio v. The solution to the equilibrium equation in linear elasticity and the
given boundary conditions can be obtained using different methods such as complex potential
method [23] or Eshelby inclusion method [24]. In this work, the solutions for a cracked plane are
obtained using the complex potential method following the Kolosov-Muskhelishvili formulation
[23]. The stress and displacement fields are given in terms of complex potentials as

011 + 022 = 4Re{¢(z),1}
o2 — 011 + 2i012 = 2{ZY(2) 2 + x(2) 2} 22
2u(ur +iug) = (3 - 4v)(z) - 29(2) 1 - x(2) 1

where z = 1 + ix2, and 1/(z) and x(z) are analytical complex functions to be determined. Since
the crack fields will be singular at the crack tips, the complex functions must have the appropriate
singularities. Note that (-) ; and (-) 2 in Eq. 2.2 are the first and second derivative with respect to
z, respectively. The solution of the unknown complex function ) (z) for the crack problem was
introduced by Westergaard [25] as

1
b= Loom /T2 A
2
o, (23)
br=———+ A
’ 2 _ g2
where A is a real valued constant. Since the far-field loading is symmetric with respect to the x;
axis, the shear stress 012 = 0 along 9 = 0. This leads to the unique relation between (z) and

x(2) as

X(2)2+2Y(2) 2+ A=0. 2.4)

11



Chapter 2. Modeling fracture across different length scales

For the present case of biaxial tension A = 0 while for uniaxial tension A = c%PP /2. The stress
field associated with A does not contribute to the crack-tip singularity. Substituting Eqs. 2.3
and 2.4 into Eq. 2.2 yields a solution for the unknown stress field that is most conveniently

expressed in terms of the polar coordinates (see Fig. 2.1a) with

z=re?
2z—a=reh
2 +a=re?,

With this notation, the stress field is

app,. [ 1 1 2
o= 2L COS(Q—591——92)—a—sinﬁsin;(91+eg)

2 T172

Vrire |

app 1 1 2
099 = o T cos(@—591——92)+a—sin@sing(01+92)

T 2 172

o®Pr [ g2 3 ]

3

——sinf cos = (61 + 62)

VTr2 | T1T2 2

012 =

2.1.2 Asymptotic near-tip stress fields

(2.5)

|

] (2.6)

The stress fields close to the crack tip are of fundamental importance in fracture mechanics. These
asymptotic fields are obtained by taking the limits o;; — oo as r; — 0, with various terms above

reducing to

1
— <1, 0=~0, 650
a

rsa, ro~2a

. o,
sinf ~ — sin 64
a

sin; (61 + 02) ~ sin 201
1 1 1
cos(0 - 591 - 592) ~ COS 591

cosg (61 + 02) ~ cos ;91

and thus leading to the asymptotic near-tip stress state

o%Pq 19 (1 . 19 . 39)
011 = cos — —sin =604 sin —
1 V2ary 2! 9! 9t

app 1 1 3

099 = u COS —91 (1 + sin—91 sin—91)
2ary 2 2
app 1 1 3

012 = g 4 sin =64 cos =60 cos =01.
2ar, 2 2 2
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2.1. Linear Elastic Fracture Mechanics

Shifting the coordinate system to be centered on the crack tip (r, 61 = ), the near-tip can be
expressed in terms of the Mode I stress intensity factor Ky as

K
011 = L cos 10(1—sinlﬁsin §0)
2r 2 2 2
K 1 1 3
099 = \/2I?cos 50(1 + sin 59 sin 5(9) 2.9
Ky 1 3
= in —6 —6 cos =60
012 NorT sin 5 cos 5 cos 5

with Ky for this problem defined as [6]
K;=0"\/ma . (2.10)

The asymptotic stress field is thus independent of the particular applied stress, or crack length,
and only depends on the combination through the Mode I stress intensity factor K.

Eq. 2.9 reveals the well-known inverse square root singularity at the crack-tip, with the magnitude
of the singularity controlled by the stress intensity factor K;. Although Eq. 2.9 has been derived
for a very specific loading case (see Fig. 2.1a), the asymptotic near-tip stress fields are independent
of the geometry and boundary conditions. K7 uniquely characterizes the singular stress field near
the crack tip, and does not depend on the material properties. The value of K is determined
by the entire problem geometry and crack shape, but the crack tip behavior can be entirely
characterized in terms of phenomena occurring as a function of the single loading parameter K.
For complex geometries and loadings, the crack tip field depends on the three loading parameters
K, Ky, and Kjr; we focus on K for simplicity and because it is usually more important than
the other loading modes.

The asymptotic displacement fields around the crack tip can be derived in a similar manner,
leading to

U1=&\/LCOSQ<1—2V+SHIQQ)

7 2T 2 2
Kr / 0 0\

u2=—1 LSin—(Q—QI/—COSQ—)
7 2 2 2

Note that Eq. 2.11 is only valid for the plane-strain approximation.

2.11)

The isotropic results of Eqgs. 2.9 and 2.11 can be generalized to full anisotropic elasticity [26].
Atomistic simulations often deal with crystalline materials that are elastically anisotropic. Macro-
scopic isotropy only emerges in aggregates of polycrystals. Thus, detailed simulation and
interpretation of atomistic simulation results requires the application of anisotropic elasticity
and/or a quantitative understanding of the differences created by using isotropic models to under-
stand anisotropic materials. A very detailed and complete description of the general formalism
developed by Stroh [27] and its application to fracture problems can be found in Chapters 5 and
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Chapter 2. Modeling fracture across different length scales

11, respectively, of "Anisotropic elasticity: Theory and Application”, T. C. T. Ting [26], and
hence we only summarize the major results here. The anisotropic stress fields are

[o11, 021, 031]T = —iRe B Yo : B!
27r \Vecosl + v, sin b 2.12)
T K] 1 -1 )
, , =- Re< B B
[o12, 022, 032] \V2rr ¢ \Vcosb + v, sinf

for the near tip stress state. The angle bracket notation in Eq. 2.12 and subsequently below is used
to represent elements of an diagonal matrix. The corresponding near tip displacement fields are

u:KI\/%TzRe {A(\/cos9+va sin9>B—1} (2.13)

where v, A and B satisfy the following eigenvalue equation

YHER!

In Eq. 2.14 v = (v,) = diag[v,] are the eigenvalues defined in the Stroh formalism, A =
[a1, ag, az] and B = [by, bg, bs] are complex matrices composed of eigenvectors a and b,
and N is the fundamental elasticity matrix [28] defined as

N; Ny
N = 2.15
[ N; Nf ] 219
with
N,=-T'RT N,=T! N3=RT'RT-Q (2.16)
and
Cn Cis Cis Cis Ci2 Cua Ces Co6 Clup
Q= Cis Cs6 Cs6 |, R=| Cos Co Cus |, T=| Co6 Con Coy |. (2.17)
Ci5 Cse Css Cs6 Cos Cus Cis Cos Cyg

Cj in Bq.2.17 are the components of the material stiffness tensor written in the contracted (Voigt)
notation. A closed form analytical solution can be derived when the material properties are
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2.1. Linear Elastic Fracture Mechanics

symmetric about the crack line [20], leading to

K] R a1ag a9 aq
o011 = e -
H V2rr | a1 —az2 \\Vcosf +azsinf  /cosf+ajsinf /|
K] [ 1 aj as ]
099 = Re - 2.18
> V2rr | a1 —az2 \\/cosf+azsinf  /cosf+ajsinf /| (2.18)
Ky R [ aias 1 1 ]
o129 = e _
2 V2rr | a1 —az2 \\Vcosf+aisinf  /cosf+agsinf /|
for the near-tip stress state and
2r 1 : ;
u1 = Kjv/ —Re [ (alpgx/cos 0 + a9 sin @ — aspr\/cos b + aq sin 9)]
™ ap —ag (2 19)

/2 1
uy = Kj %Re[ (a1q2\/0080 + agsinf — asqi\/cosf + aq sin 9)]

a1 — a2

for the near tip displacement fields, where p;, p2, ¢1 and g2 depend on the material elastic
properties. These constants can be found from

2
p1=S7a1 + ST, - Sfeal

_qQp 2 P P
p2 = 51105 + 51y — 51602

» » » (2.20)
Q1 = 51501 + Sp/a1 = S
Ga = 57,02 + S5,/ az - Sy
where a; and ay are roots of the following characteristic equation
SPa* - 28Pa® + (257, + SB)a? — 2Sh.a+ S, = 0 (2.21)

and Sfj = Sij — Si353;/S33, where S = C ~1 are components of the material compliance tensor
for the plane strain approximation, when expressed in the Voigt notation. The above equations are
slightly unwieldy, but easily computed. Thus, there is little impediment to the application of full
anisotropic elasticity in simulations and their interpretation when using the K -test methodology
(see below). For the center-crack tensions (CCT) specimen, which involves only traction boundary
conditions, the simulation method is independent of the anisotropy. However, the crack tip fields
follow the anisotropic results since the material is anisotropic; interpretation thus still requires
knowledge of the anisotropic fields.

In addition to Eq. 2.19, we also introduce the final solution for Mode II displacement field as

/2 1
uy = Ky %Re[ (pg\/cosﬁ+a2 sinﬁ—pl\/cose+a1 sin&)]

ay —az

2 1
ur = K/ %Re[ (qg\/cose + agsinf — ql\/cose +aq sin@)] .

ay —az

(2.22)
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Chapter 2. Modeling fracture across different length scales

Eq. 2.22 is used later in the manuscript for setting displacement boundary conditions in simula-
tions of a crack-tip dislocation emission in Mode II (see Chapter 4).

2.1.3 K-dominance zone

The asymptotic crack tip fields are controlled by the stress intensity factor K ;. However, the
domain over which the asymptotic fields dominate the non-asymptotic fields depends on the
crack size. Since we have the entire stress field for the center-crack problem (Eq. 2.6) and the
asymptotic fields (Eq. 2.9), we can examine the relative contributions of the asymptotic and
non-asymptotic fields.

The degree of K-dominance is usually assessed using the opening stress o22 along the x; line
ahead of the crack. The degree of K-dominance A is then defined as [20]

O_singular
A=— 22 . (2.23)
singular nonsingular
O99 +t 099
where agéng“lar = K1/\/27x1, (1 >0, 0 =0), is the singular opening stress ahead of the crack
tip and
; ; x1 +a)oP
o_smgular n O_nonszngular _ ( 1 ) , (xl N 07 g = 0) (224)

2 22 Vri(zy +2a)

is the total stress ahead of the crack-tip derived from Eq. 2.6, and rewritten for the coordinate
system positioned at the right tip. Recalling that K; = 0%?P\/ma, Eq. 2.23 can be rewritten as

V1+x1/2a

A=Y — — ~1-32;/4a. 2.25
(1+x1/a) z1/4a (223)
A typical estimate of the radius 7 within which the asymptotic field dominates is obtained by
setting A > 0.90, leading to rx = xx ~ 0.15a for A = 0.90. Other choices for A yield different
estimates but the major outcome is that the domain of K'-dominance is always much smaller than
the half-crack size a.

2.1.4 Crack tip processes: the fracture process zone

The diverging stresses at the crack tip that are predicted by linear elastic fracture mechanics
are, of course, resolved to finite values due to non-linear response of the real material at very
high stresses. The local failure of linear elastic fracture mechanics does not, however, negate
the role of K7 as the relevant loading parameter. The deviations from linear behavior can be
thought of as perturbations that are self-equilibrating locally. The deviations do not generate
additional long-range fields but are only dipolar (1/r2 in 2d). Therefore, all of the energetic
changes in the system are also localized around the region of non-linear behavior, and this domain
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2.1. Linear Elastic Fracture Mechanics

is termed the "fracture process zone (FPZ)" with characteristic scale rrpz around the tip. As
long as the non-linear behavior is well-confined within the K -dominant domain, rppz << 7,
the asymptotic fields at r ~ rx are unchanged, and the fields beyond 7 are also unchanged. The
present qualitative discussion is formally proven by Rice [29] and Willis [18].

The major quantity of interest in modeling of fracture across different scales is the effective
fracture toughness, i.e. the resistance of the material to crack growth including all of the near-tip
energy-dissipating processes that may occur in the FPZ. Since loading is determined entirely by
K7, the fracture toughness is equal to the critical stress intensity K. at which the crack extends.
The critical stress intensity Kj. may evolve as the crack grows, due to an evolving size of the
FPZ and associated increase in energy dissipation by FPZ processes. This is captured through the
notion of a crack-resistance curve, or R-curve, K. = K1.(Aa) where Aa is the extent of crack
growth. During crack growth, it remains necessary that the entire evolving FPZ stays within the
K-dominant regime.

2.1.5 Crack tip processes: stress intensity and energetic perspectives

Since the fracture toughness is determined by energy-dissipating processes in the FPZ, it is
also convenient to formulate the fracture problem in an energetic framework. To this end, one
can define the mechanical energy release rate G [6, 7, 5] that is equal to the change in total
mechanical energy of the body that would occur if the crack were to extend by an increment da.
The mechanical energy release rate thus represents the amount of mechanical energy available
in the entire body for paying the energetic cost of the dissipative processes. In other words, G
provides the energy to drive the crack. The energy release rate G per unit da of crack extension
is defined as

dIl
G=-—— (2.26)
da
where II is the total mechanical free energy
1
M- -~ f oijedV f TudsS . (2.27)
2Jv S

The first term in Eq. 2.27 is the elastic energy stored in the loaded body while the second term is
the work done by external tractions acting on the boundaries of the body.

There is then a unique relation between the energy release rate G and the stress intensity factor
K7, as shown by Irwin [6, 7], and by Rice [17, 19] using the path independence of the so-called
J-integral since the stress and displacement fields depend only on the applied K7 (see Egs. 2.9
and 2.11). Based on the results presented here, a unique relationship between G and K7 is not
immediately obvious. However, for the special case of the center-crack specimen in the isotropic
material, with all the fields given in Eqs. 2.9 and 2.11, we can explicitly show this relationship.
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Chapter 2. Modeling fracture across different length scales

The energy release rate under plane-strain Mode I loading is

G= MK% . (2.28)
21
The fracture criterion K = K. thus also corresponds to the energetic fracture criterion G = G,
where G, is the energetic cost of the inelastic energy-dissipating processes per increment of
crack growth. The fracture toughness K. can then be computed from knowledge of the energy
cost G 1. due to dissipative processes as

2p

1-v

Kie = Ge . (2.29)

The isotropic results of Eq. 2.28 can be generalized to full anisotropic elasticity as [26, 27]
G=K'AK (2.30)

where A is the Stroh energy tensor [27] and K = [K;;, K, Kp; I]T is the stress intensity factor
for a mixed mode of loading. We compute the Stroh energy tensor as

1
A= 5Re(z'AB—l) (2.31)
with A and B computed using Eq. 2.14.

In a purely brittle material, the energy-dissipating process under quasi-static loading (no dynam-
ics) is solely the creation of new surfaces upon extension of the crack. The critical energy release
rate is thus G = 25 where -, is the surface energy of the cleavage plane and the Mode I fracture
toughness is then

Kre = /27152 (2.32)

Any inelastic process can be characterized by the value of K or G at which the process occurs.
The subscript c is reserved for the critical process of crack growth.

2.1.6 Modeling crack growth: Implementation and issues

Modeling fracture using the concept of continuum mechanics is a challenging process. Recall that
the standard formulation of continuum mechanics is based on the solution of Navier’s 2nd order
partial differential equation (PDE) in which the displacement of all points in space is uniquely
defined by material properties and applied boundary conditions. The reader is redirected to
Ref. [30] for further detail about the fundamental elasticity equations. In fracture, creation of new
surfaces caused by crack growth requires one point in space to divide into two. This then leads to
a severe situation where the relation between points in space is lost and an unique solution does
not exist. Therefore, modeling fracture at the continuum scale requires the explicit introduction
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2.2. Cohesive zone model

of a crack with traction free crack surfaces.

The Finite Element Method is commonly used for simulating crack growth at the continuum
scale. More details on FEM can be found in Ref. [31, 32]. Here, we only point out the most
important steps in modeling fracture using FEM, and to issues that can arise. As discussed above,
a pre-existing crack is defined with traction free crack surfaces within the computational domain.
As well, appropriate elements that are used for a more accurate description of the singular crack
tip fields (~ r~1/2) are defined. Next, the crack-tip stress intensity factor K7 is computed with
either stress or displacement fields in front of the tip, using appropriate methods based on the
superposition principle [19, 20]. The condition for crack growth is satisfied if K > K., where
K7, is the material fracture toughness calibrated to experiments. Similarly, the problem can be
addressed energetically by computing the J-integral and comparing it with an experimental value
J.. If the crack propagates, the crack-tip is moved by some distance Aa. However, despite its
simplicity, the FEM is not used since: (i) it is based on crack growth Aa which is not specified,
(ii) the crack-growth criterion depends on the experimental values of either K. or Jj. (valid
only for one material), and (iii) it is computationally very inefficient since a new mesh is required
after each increment of crack growth by Aa. These issues can be circumvented using additional
information from smaller scales such as meso- or atomic scale. Meso- and atomic scale modeling
of fracture is discussed in detail in the following sections.

2.2 Cohesive zone model

2.2.1 The Barenblatt model

Section 2.1 provides a detailed overview of LEFM solutions for the stress field around a stationary
crack as

Uij ~ %f(C”kl,G) (233)
which is singular at the crack-tip (x — 0) (see Fig. 2.2a). The paradox associated with the crack-
tip stresses being infinite arises from the linear elastic continuum representation of a material
and the assumption of a perfectly sharp crack. In reality, stresses around the crack tip have some
finite values which can be visualized as the red line in Fig 2.2a. The exact shape of the actual
opening stress is not known a priori since it depends on fracture processes, and materials used.
Several mechanics based methods have been proposed to remove the crack-tip singularity which,
at least conceptually, might lead to a better physical description of the crack-tip stresses.

An independent criterion was proposed by Barenblatt [33] in which the cohesive forces between
the crack surfaces were analyzed. Conceptually, Barenblatt divided the crack length into the two
regions, the cohesive zone region u. over which the cohesive forces are strong, and the reminder
of the crack with length a — u, over which the cohesive forces are negligible (see Fig. 2.2b).
Furthermore, the theory is based on the following two hypotheses:
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Chapter 2. Modeling fracture across different length scales

(i) The length of the section of the crack on which cohesive forces act can be assumed
negligibly small in comparison with the total length of the crack or u. < a, and

(i1) The crack shape, and consequently the local distribution of cohesive forces, in vicinity
of the points on the contour of the crack at which cohesive forces are at the maximum
intensity does not depend on the applied far-field load.

The two hypothesis are naturally satisfied if the cohesive forces are large and decay rapidly to
zero as the separation between crack surfaces increases.

K dominant

zone

N\
l—mcturc/

process i
zone (FPZ) - E C)

5 0

max

Figure 2.2 — a) Asymptotic singular opening stress 022 () (blue line) computed using Eq. 2.9
along with more realistic non-linear stress profile in the crack tip vicinity (red line) which depends
on a material considered and fracture processes. b) Cohesive zone with tractions 7'(x) over the
length wu., u. << a. Note that the crack surfaces change their shape to satisfy the condition of
the zero stress intensity at the tip. ¢) The nonlinear cohesive tractions 7' as a function of the
crack-tip opening displacement §. The maximum stress . corresponds to the crack-tip opening
displacement 6* with §* << u,. The area under the curve is the fracture energy G..

The cohesive forces eliminate the crack-tip singularity by generating an additional inelastic
opening displacement; this then leads to a shape change of the crack surfaces. The additional
crack-tip displacement, beyond that predicted by elasticity, leads to a finite stress at the tip since
the crack-tip stress intensity K ;ip is reduced to zero, or

K?P - K{f““ _B=0 (2.34)

where K { " is the far-field applied stress intensity, and B is the Barenblatt’s stress intensity factor
computed using the following expression [20]

a o T(x)dx
B- 2\/j f D)o 2.35
™ Ja—uc \/@2—[52 ( )
The preceding equation is derived using the superposition principle and the distribution of Green’s
functions in half-space. Note that in LEFM K }[ " = K" if there are no other stress-sources (e.g.
far
I

dislocations, cohesive forces, ...) in the crack-tip vicinity. Eventually, sufficiently high K4™ will

lead to the condition in which the cohesive forces T'(x) are not any more capable to balance
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K { “". This leads to the Barenblatt’s criterion for the crack growth defined as:
K" > B. (2.36)

If the above assumptions are satisfied, the Barenblatt’s theory agrees with the predictions based
on LEFM. The formal details regarding agreement between LEFM and Barenblatt’s theory are
discussed and proved by Willis [18].

2.2.2 Cohesive zone modeling of fracture

Barenblatt’s theory attracted the significant attention in the continuum mechanics community
since it provides a physics-based approach for modeling the crack growth. However, aside from
the general description that the cohesive tractions are related to separation of atomic layers, the
specific definition of them has not been given. The present author agrees with the Barenblatt’s
approach since there is no need to provide such descriptions in the general theory. Beauty of
the Barenblatt’s model is in its generality associated with description of the crack-tip dissipating
processes.

The cohesive law is supposed to describe the nonlinear traction separation of a material across
the crack surfaces. A fracture problem can then be solved by collapsing the cohesive law onto a
surface which is then embedded in an elastic material. There is no uniform form for the cohesive
law, since it is material and scale dependent. An example for the nonlinear cohesive tractions T’
as a function of the crack opening ¢ is presented in Fig 2.2c. As the crack opens (6 increases),
the tractions will reach the maximum stress o, after which they enter in the softening regime
up to the point where the tractions go to zero leading to the traction free crack surfaces. The
SSY applies (crack-tip fields governed by K7) if the lateral length of the cohesive zone . is
much smaller than the crack size, u. < a, and crack growth is uniquely controlled by the fracture
energy G, which is computed as

6777/0,:6
G, - fo T(5)ds. 2.37)

The above integral is simply the area under the traction versus separation curve. The maximum
stress o is essentially irrelevant if u. << a; crack growth only depends on G.. However, if the
crack size is on the order of the cohesive length, u,. ~ a, than the maximum stress o, is important,
and the problem becomes geometrically dependent. Eventually, once the crack is sufficiently
short, the concept of fracture mechanics stop being useful.

Due to obvious practical importance, a number of cohesive laws were introduced for modeling
fracture across different length scale. Dugdale cohesive zone model [34] is usually employed for
simulating fracture process zone in polymers where crazing dissipates the energy. The cohesive
zone model can be employed for simulating fiber pullout in composites, as previously done by
Xia et al. [35]. The cohesive law for atomic separation in brittle fracture is usually described by
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the so-called "Universal Binding Energy" which can be fitted to

L e (2.38)

T(9) = €5

where fodm” T()dé = ~ys. Universal Binding Energy of a material can be computed directly
from atomistic simulations using either interatomic potentials or first principle calculations [36].

Finally, the cohesive zone model can be implemented in the finite element method using the
cohesive elements. The model implementation is rather straight forward from the conceptual
point of view. An additional component, due to work of the cohesive tractions over the crack
surfaces Sc,p,, is simply added to the Principle of Virtual Work, leading to

fv oi;0ei;dV — fs T6u;dS - [S TS = 0. (2.39)
coh

However, actual implementation of the model requires a special care. First, the mesh size needs
to resolve the cohesive behavior properly over the length u.. Therefore, the minimum mesh size
d in the cohesive zone needs to be at lest three times smaller than the cohesive zone length, or
d < u./3. Second, using the cohesive elements in a whole computational domain can lead to the
artificial loss of a material stiffness. This problem is resolved either by (i) inserting the cohesive
elements in a zone where the crack is expected to grow, or (ii) inserting the cohesive elements
dynamically [37, 38]. Overall, the cohesive zone modeling of fracture is a powerful tool for
simulating the crack growth naturally. The main advantage of the model is in introduction of the
length scale through the cohesive length u.. Finally, the model provides a connection between
different scales since the cohesive model is usually derived from the smaller scale.

(Continuum scale) (Mesoscale (Nanoscale)

A
- PR A

Figure 2.3 — Modeling the crack-tip plasticity from the continuum scale where plastic deforma-
tions are governed by the power-law plasticity, over the dislocation scale plasticity where discrete
dislocations interact with the crack-tip, down to atomic scale where a single dislocation is emitted
from the crack-tip. The left figure is taken from [39], while the middle figure is taken from [40].
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2.3 Modeling fracture in metals

Two mechanisms that control the fracture toughness of metals, especially in early stages of crack
growth, are: (i) atomic decohesion in front of the tip, and (ii) plastic deformation around the crack-
tip. Even though the both processes are fundamentally important to achieve the high toughness,
it is the energy dissipation due to plasticity that dominates. The method that is commonly used
for modeling atomic decohesion in front of the tip is introduced in the previous section (Cohesive
zone model). We now discuss available methods for simulating plasticity around the quasi-static
growing crack in metals.

Plasticity in metals is scale-dependent. Therefore, the methods used for modeling plasticity
can be grouped into: (i) the continuum scale and power-law plasticity, (ii) the mesoscale and
discrete dislocation plasticity, and (iii) the atomic scale and motion of individual dislocations.
Same methods apply for simulating plastic deformation around growing cracks in metals (see
Figure 2.3).

2.3.1 Continuum Plasticity-Cohesive Zone (CP-CZ) modeling of fracture

Continuum Plasticity-Cohesive Zone (CPCZ) modeling of fracture was introduced by Tvergaard
and Hutchinson [41] for studying crack growth resistance in an elastic-plastic solid. The cohesive
law used to model decohesion in front of the tip has a trapezoidal shape with the fracture energy
G, defined as:

6771(111/'
G, = fo Tds = %ac[(smm 6 - 81 (2.40)

The parameters ; and J5 are "shape" parameters since the separation law is completely defined by
Ge, 0c, 01/0maz and 02/pqz. Generally, the separation law can be of any shape if the cohesive
zone size is much smaller than the crack size; it is the fracture energy GG, which controls the
crack growth. The trapezoidal cohesive model is commonly used since it is very convenient for
numerical implementation.

A material constitutive model under uniaxial tension is described using

| o/E, oc<oy

6_{ (UY/E)(U/O’y)l/N, O';Uy (2.41)

where oy is the material yield strength, F is Young’s modulus, and N corresponds to the strain
hardening coefficient. A material behaves as elastic-perfectly plastic when N=0. The problem is
then solved using the FEM with the cohesive elements used in the zone where crack growth is
expected.

Figure 2.3a shows the stress field around the crack-tip in the elastic-plastic material. The stress
zones in Figure 2.3a appear due to the accumulated plastic deformations along directions with
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Chapter 2. Modeling fracture across different length scales

the highest resolved shear stress. Crack growth initiation is found to be in a complete agreement
with Barenblatt’s theory; steady-state crack growth occurs at the point where the crack opening
reaches &,,q. The critical stress intensity factor for the steady-state crack growth Kgg as a
function of o./oy and N is shown in Figure 2.4. Overall, the CP-CZ model provides reasonable
qualitative trends since the simulated fracture toughness tends to be bigger if (i) there is less
hardening (smaller V), and (ii) o./oy is sufficiently high. However, the model predicts an
unrealistically high toughness (infinite) in materials with o./oy > 5 and/or N — 0. Note that
in metallic materials we find o./oy > 10 when the cohesive law is supposed to describe actual
atomic separation ("Universal Binding Energy").

6
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Figure 2.4 — Steady-state toughness as a function of o../oy for three different strain hardening
exponents. Overall, fracture toughness goes towards infinity when plastic deformation around the
crack tip starts being dominant. Figure is taken from [41].

The above model fails for 0. /oy > 5 and N — 0 since the continuum plasticity is the homogenized
representation of plastic deformations caused by movement of individual dislocations. As a
consequence, complex phenomena associated with the actual interactions between the crack-tip
and dislocations is lost. The above model can be improved using the strain gradient plasticity [42],
or by actual description of dislocations and their interactions with the crack-tip stress field. The
following section shortly describes the later approach for simulating the crack-tip plasticity within
the discrete dislocation formulation [13].

2.3.2 Discrete Dislocation-Cohesive Zone (DD-CZ) modeling of fracture

It is now well-known that dislocations are the main carriers of plasticity in metals and other crys-
talline materials [43]. Plastic strain is controlled by collective motion of dislocations since their
movement generates an additional slip in materials. Overall, plastic deformations are governed
by nucleation and movement of dislocations, their various interactions and their annihilation.

The Discrete Dislocation-Cohesive Zone (DD-CZ) modeling of fracture was introduced by Van
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2.3. Modeling fracture in metals

der Giessen et al. [40]. The method is then extensively used for studying the fracture properties
of short cracks [44], fatigue crack growth [45, 46], and the origin of plasticity length scales in
fracture [14, 47, 48]. As in CP-CZ modeling of fracture, the atomic decohesion is modeled
using the cohesive law. Further, the energy dissipated around the crack tip is modeled using the
discrete dislocation formulation [13] (see Fig. 2.3). Examination of Figures 2.3a and b shows
that DD-CZ has characteristics of the continuum-like plasticity over a representative volume.
However, DD enables us to model actual dislocation response in highly stressed regions such as
the crack-tip; this feature is, by definition, absent in the continuum crystal plasticity. The slip
generated by dislocation movements close to the tip is different than predicted by the power-law
plasticity. Actual modeling of discrete dislocations in the crack-tip vicinity allows us to simulate
the evolution of plasticity (dislocation density) around the crack-tip (see Figure 2.5a). More
importantly, Figure 2.5b shows that DD-CZ method enables for evaluating the fracture toughness
in cases for which o./oy > 5.
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Figure 2.5 — a) Contours of local average plastic strain, along with the crack tip opening
displacement (x10) obtained from DD-CZ modeling of fracture at the far-field energy release rate
G = 5.25G... Position of actual dislocations are shown as symbols and the dislocation density
in the region is 2 x 104 / m?. b) Fracture toughness G/G.. versus o./oy. Both figures are taken
from [14]

DD-CZ modeling of fracture is shown to be a very powerful method for simulating the evolution
of plasticity around the crack-tip. However, there are challenges that still need to be addressed.
First, the method is computational inefficiency once a high number of dislocations is generated
around the crack-tip; simulating crack growth in materials with a very low yield strength oy
quickly becomes infeasible. Second, interaction between dislocations and the cohesive tractions
can introduce an additional uncertainty. It is noted that the crack opening due to the dislocation
stress field can be significantly affected by the shape of the cohesive law [47]. Finally, the crack
remains sharp as it grows through a material, while in reality the crack-tip usually blunts by
dislocations emitted from the tip. The crack-tip dislocation emission is an atomistic process.
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Chapter 2. Modeling fracture across different length scales

Therefore, atomistic modeling of fracture needs to be employed for simulating crack-tip blunting
due to dislocation emission. More details on atomistic modeling of fracture is presented in the
following section.

2.4 Atomistic modeling of fracture

A number of important phenomena in fracture are connected with atomistic/nanoscale behavior
around a crack. The intrinsic nature of a material - is it brittle or ductile? - is dictated by
whether an initial sharp crack will cleave (intrinsically brittle) or blunt by dislocation emission
(intrinsically ductile) [3, 49, 50]. The attack of embrittling species at the crack tip, as in hydrogen
embrittlement [51], involves detailed chemical interactions at the atomic scale. The behavior
of cracks along, parallel to, or approaching grain boundaries, and the influence of chemical
segregation to grain boundaries on fracture toughness are similarly intrinsically atomic-scale
issues. The interactions of cracks with nanoscale microstructure and defects (solutes, precipitates,
dislocations, voids,...) also plays a role in establishing macroscopic fracture behavior.

Given the range of important nanoscale fracture phenomena that might be of interest in different
situations, it is then natural to analyze problems using atomistic simulations so as to gain mech-
anistic, qualitative, and/or quantitative understanding. Such simulations encompass molecular
statics or dynamics using either semi-empirical classical interatomic potentials or first-principles
methods. The latter require advanced multiscale techniques and so will only be addressed at the
end of this section. Pioneering work on atomistic modeling of fracture started almost five decades
ago with studies on the influence of crystallographic orientation on crack propagation [52], and
the effects of lattice trapping of cracks [53]. Due to the limited computational power, these
early simulations were limited to a very small number of atoms, although work of Thomson and
coworkers [53] using Greens function methods presaged modern multiscale modeling. Increasing
computer power has led to a concomitant increase in atomistic studies of fracture covering many
of the topics mentioned above. We point to a few representative references for intrinsic brittle/duc-
tile behavior [54, 55, 56, 57, 58], grain boundary fracture [59, 60, 61, 62], H and other chemical
embrittlement [62, 63, 64, 65, 66, 67], and crack/defect interactions [36, 68, 69, 70, 71]. In this
large literature, various simulation methods have been used to probe phenomena qualitatively or
quantitatively.

Not all simulation methods are equally useful for obtaining an accurate understanding of the
phenomena. The broad focus of this section addresses the advantages and disadvantages of
different methodologies, in terms of their ability to extract quantitatively accurate results that
are faithful to the principles of fracture mechanics. Unfortunately, many publications (specific
citations are omitted) use methods that strongly influence the outcomes of the simulations, and
thus leading to inaccurate, if not incorrect, conclusions about fracture phenomena. The main point
is that certain simulation methods for nanoscale cracks are often not directly relevant to the real
behavior of larger cracks. Specifically, as we will show, the simulation of a nanoscale center-crack
tension specimen often precludes satisfying the conditions for the application of linear elastic
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fracture mechanics; other finite crack geometries have the same problem. We advocate, and
show directly the advantages of, the use of simulations specifically designed to correctly capture
the nanoscale crack tip region of, essentially, semi-infinite cracks, where the loading variable
is precisely the stress intensity factor K that controls the crack-tip deformation. Such "K-test"
simulations avoid many artifacts that arise in finite-crack simulations, and enable quantitative
computation of the critical stress intensities for various phenomena, the overall material fracture
toughness, and, equally importantly, detailed quantitative comparison with theories.

To be a bit more precise, but before launching into detailed analysis, the atomistic study of cracks
is usually intended to reveal the complex response of atoms in the very high stress region just
ahead of a sharp crack. Except in explicit problems of nanoscale materials or structures, the
crack sizes (characteristic crack length a) of interest are usually envisioned to be quite large on
an atomic scale (1 micron or larger). Thus, the nanoscale crack tip region is only a very small
portion of the entire crack. Under a macroscopic load, phenomena at the crack tip are driven by
the local stresses around the crack tip. Due to the high enhancement of the stress near the crack
tip, non-linear and non-convex behavior can occur near the crack tip even though the far-field
load levels are quite low. Thus, the default analysis of atomic scale fracture mechanics is Linear
Elastic Fracture Mechanics (LEFM). That LEFM indeed describes fracture at atomic scale has
also been demonstrated experimentally using nanoscale fracture tests in Silicon [72, 73].

As already discussed in Section 2.1, the concept of LEFM applies only if the "small scale
yielding" condition is satisfied, i.e. rrppz << rx < a. One can now immediately comprehend
that problems wherein the typical crack size a itself is on the nanoscale cannot easily satisfy the
SSY condition, or only satisfy the SSY condition at the scale of the atomic spacing, where the
material response is intrinsically discrete. This introductory discussion presages our analyses
below: failure to satisfy SSY conditions in nanoscale simulation studies invalidates the generality
of the observed/measured results, making them non-transferable to the true problems of interest.
Thus, atomistic simulation methods must be designed to satisfy SSY, and the applicability of SSY
must be continually assessed as complex non-linear/non-convex crack tip phenomena evolve
under increasing load.

2.4.1 Size of the K-dominant zone in atomistic modeling of fracture

A size of the K-dominant zone in atomistic modeling of fracture can be estimated directly from
simulations by examining the virial atomic opening stresses in front the crack tip. As an explicit
example, Fig. 2.6 shows the stress field o92(x1, 22 = 0) obtained from an atomistic simulation
of a center crack specimen in Ni, for various crack sizes a and loads having the same K;
details of such simulation are explained in Sec. 2.4.4.1. When presented in double-log form,
the asymptotic square root singularity appears nicely and the deviations from the asymptotic
field with increasing distance from the crack tip (whose location is itself not exact) are easily
identified. For a crack of size ami, ~ 18A, notable deviations appear at distances ~ 3A. For the
largest crack, a = 140A, requiring a simulation domain of L ~ 300nm containing ~7.7 million
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atoms at 7' = 0K, deviations from the asymptotic field are evident at a distance of ~ 40A. The
simulation results are thus fully consistent with the analytic estimate for rx = %(1 - A)a, and
hence this estimate can be used to design relevant simulation sizes.
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Figure 2.6 — Atomic opening stress o22(x1 > 0, x2 = 0) versus distance from the crack tip, for
crack sizes considered here as observed in simulations within the "brittle" crystal orientation.
The asymptotic singular stress given by Eq. 2.18 is also shown (black line). The use of a log-log
reveals the K -field singularity of (—% .

2.4.2 Atomistic crack-tip processes: cleavage versus dislocation emission

In Section 2.1.5 we have derived the expression for computing the critical stress intensity factor
for Griffith cleave in anisotropic materials as

Kre = /27752 (2.42)

where the crack-tip dissipating process is associated with creation of two new surfaces, and it
is quantified by the value of a material surface energy ~s. Another atomistic process that leads
to energy dissipation is the crack-tip dislocation emission. The critical stress intensity factor
for crack-tip dislocation emission in Mode I K. can be computed, as well. Various details on
existing and new methods for computing the K are discussed in Chapter 4. Briefly, for emission
of a dislocation with Burgers vector at an angle ¢ with respect to the crack front direction and
occuring along a slip plane at angle 6 to the crack plane, the critical Mode I stress intensity for
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emission is [50, 74]

Kre =\/G1eo(0,¢)/F12(0) cos ¢ (2.43)

where G, is a critical energy release rate for dislocation emission, F2(#) is a geometrical factor

Ky
2T

with 0;; defined by Eq. 2.18, and o(, ¢) is an elasticity coefficient given by

Fi2(0) = (092 — 011) sinf cos 6 + 012(0052 0 — sin® 0) (2.44)

0(6,0) = si( )N 5;() (2.45)
with

s(6) = (cos 6, 0, sin ) (2.46)
and

AD = QA1 (2.47)

In the last equation {2 is the rotation matrix given by

cosf sinf 0
Q=|-sinf cosf 0f. (2.48)
0 0 1

The value of GG, for emission is not known a priori, and must be estimated based on theoretical
analyses of the emission process. The critical energy release rate for the crack-tip dislocation
emission G, can be computed using, for example, the following expression [75]:

.145~¢ + 0. ¢ 4
GIe _ { 0 573 +0 5’7usf7 Vs > 3 5’Yusf (249)

Yusfs ’Vs < 3'457usf

where 7, is the unstable stacking fault energy for slip along the slip plane and 5 is the surface
energy for the emission plane. Derivation of Eq. 2.49 is discussed in Chapter 4 of this manuscript.

The two cases above, brittle failure and dislocation emission, are important because they establish
the intrinsic ductility of a crystalline material. A material is intrinsically ductile if K. < Ky,
(dislocation emission precedes fracture) and is intrinsically brittle if K;. < K. (brittle cleavage
precedes dislocation emission). In Sec. 2.4.4 we analyze the competition between Griffith
cleavage and crack-tip dislocation emission to elucidate important issues in the atomistic modeling
of fracture.
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2.4.3 Simulation methods and issues
2.4.3.1 Creating cracks in atomistic systems

The LEFM-envisioned crack, as a slit of zero elastic modulus consisting of upper and lower
traction free crack surfaces, often cannot be created naturally in atomistic simulations. A traction
free condition cannot be simply imposed on atoms due to atomic interactions across the crack
surfaces. As a consequence, an atomically sharp crack is unstable to closure at loads below the
Griffith K., or it is unstable to propagation at loads above the K;.. However, in extremely
brittle materials (no crack-tip dislocation emission prior to cleavage), it is possible to simulate an
atomically sharp and stable crack at K.+ AK with AK being very small but having some finite
value [58, 76, 77, 78]. Stability of the crack at loads ~ K. is due to effect known as "lattice
trapping" [53, 79]. This effect arises because of the discrete nature of an atomic system in which
precise force law, that characterizes atomic interactions, can restrain crack opening until the crack
tip bond is mechanically unstable. At this point, the applied stress intensity factor exceeds the
thermodynamic Griffith value Kj.. Similarly, in the case of unloading, the applied load for crack
to close falls behind the Griffith K7.. The lattice trapping is usually very small in metals, where
the critical stress intensity for crack to grow is only few percents above K ;.. However, it can be
considerably larger in fracture along grain boundaries [62], or in materials such as silicon [77, 80].
The crack stability as a function of the applied K; has been examined explicitly using atomistic
simulations and the K-test geometry in fcc Ni [81] (see Fig. 2.7).

Figure 2.7 — Closing and opening of a) an atomistically sharp crack when the applied K7 is b)
below, and c) above the Griffith value, respectively. Atoms are visualized using OVITO [15].

For describing the intrinsic nature (intrinsic ductility/brittleness) of a material we usually explore
some competitive crack-tip processes that occur at loads below Griffith K;.. Therefore, to prevent
the crack from closure we have to use one of the following approximate methods for creating a
traction free crack:
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(i) "Screening", where we artificially delete interactions between atoms on either side of
the initial crack surfaces. However, since interatomic potentials are typically multibody
(long-range), the screening can slightly change the behavior of all the atoms at/near the
crack tip;

(i) "Blunting”, where we delete a few layers of atoms to create crack surfaces. The finite
distance between the crack surfaces prevents atomistic interactions across the crack faces
and leads to the desired traction free condition. However, a slightly blunted crack is
created and so deviations from the ideally sharp crack can arise (the crack-tip singularity is
removed).

The quantitative difference between a truly sharp crack, "screening”, and "blunting" will be
explored in Sec. 2.4.4.1.

2.4.3.2 Center-crack and other finite-crack geometries

Simulations using finite-size cracks appear convenient - they are easy to construct, the loading
is simple, and the geometries are similar to macroscopic test specimens. Thus, the results
from fracture mechanics are often used for interpretation without detailed investigation of the
applicability of LEFM. Here, we highlight a few of the general issues that make these finite-size
crack tests undesirable for atomistic simulations.

We emphasis the conditions for a valid transferable measure of crack tip fracture processes:
rrpz < ri < a. The size of rppy for a sharp crack can be estimated using the non-linear/non-
convex energy versus separation curve obtained from the separation of two rigid blocks of material
starting from the zero-stress equilibrium configuration [82]. This traction separation curve often
follows the so-called Universal Binding Energy curve [83]. Approximating the actual curve
by the Dudgale model of a constant cohesive stress o, acting over a maximum crack opening
of Opnqz yields the fundamental cohesive length u. ~ 3E 8,4, /80, [34, 84], and u. ~ rppy.
With the typical ratio o./E = 1/10 and maximum opening d,,4, ~ ao/5, the cohesive length is
e ~ ag. Thus, the minimum crack size to satisfy rppz < rg < awithrppz = ag, 7 = 2rrppz,
and ri = 0.15a, is 2a = 26ag ~ 100A. A total system size should usually be 10x larger to
avoid boundary effects. Plane-strain simulations at this scale (1000Ax1000Axag) involve
approximately 360,000 atoms and are computationally quite feasible. However, this scale is at
the absolute minimum level and only satisfies one general requirement of LEFM.

For more complex problems, much larger cracks are necessary to ensure K-dominance. For
instance, a crack along a grain boundary has an intrinsic scale associated with the periodic length
of the grain boundary structure /4. Even for relatively simple grain boundaries, this structure
has a length of multiple lattice constants. Study of fracture along or near a grain boundary then
requires that at least a length [y, exist within the K-dominant region, so /4, < 7 sets an absolute
minimum on 7 and hence the allowable crack size a and, consequently a minimum total system
size. Again, cracks at this scale can be simulated, but the problems become computationally more
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demanding and with many atoms in the non-asymptotic domain.

A more serious problem is that the applied stress levels needed to drive crack tip phenomena are
very high in finite-crack specimens. The applied stress necessary to generate a stress intensity
K is 0P = K/\/ma. Taking a typical stress intensity factor at which crack-tip phenomena
arise as K = 1MPa,/m, the applied stress versus crack length is shown in Fig. 2.8. These stress
levels are on the order of 1-15GPa for cracks up to a ~ 320nm. At this magnitude of the far-field
stresses, the stresses in the non-asymptotic region are at this level or larger, and this creates two
severe problems.
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Figure 2.8 — Far field applied stress at the cleavage point with K. = 1MPa/m, as a function of
the half crack size a.

The first problem is that the entire material is no longer linearly elastic, violating the basic
premise of LEFM. Fig. 2.9 shows the tangent elastic moduli for single crystal Ni using the
well-established Mishin EAM potential for Ni [81]. Computational details are presented in
Appendix A. The elastic constants vary notably at high stresses, so that predictions based on
LEFM become invalid. Often, simulations are performed with applied displacements rather than
stresses, with the stresses computed from linear elasticity and then used in LEFM to determine
the operative K in the simulation. Such simulations can be partially corrected by using the
measured stress obtained from simulations, but the entire material is still behaving non-linearly
and so care must be taken in subsequent application of LEFM (although some aspects of LEFM
are preserved for non-linear (hyper-) elastic materials).

The second problem is that the high stresses well ahead of the crack drive non-linear/inelastic/damage
phenomena that are outside the intended FPZ. Conversely, these high stresses create an FPZ that
has rppz > rk, violating LEFM. This can be especially problematic for the study of crack/defect
interactions, because the defects can respond to the high non-asymptotic stress fields while still
far ahead of the crack, initiating processes that would not occur until much higher load levels or
for defects only much closer to the crack tip. Study of grain boundaries is particularly prone to
this problem, since grain boundaries can emit dislocations at stresses well below the cohesive
strength of the material. Thus, in finite-crack specimens, grain boundary emission may occur
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Figure 2.9 — Tangent elastic moduli as a function of the applied normal stress in fcc Nickel.

unrealistically far ahead of the crack. The study of dislocation/crack interactions is another case
where the high stresses are problematic. The Peierls stress for a dislocation is often rather low
(1-100 MPa, especially in fcc metals and alloys, and some hcp slip systems). Thus, dislocations
near the crack tip can move very far from the crack - outside of rx due to the high far-field
stresses. Dislocations can also be driven toward the crack by the same high stresses. In both
cases, the dislocations are moving in response to fields generated by the specimen geometry, and
not solely by the crack tip field. We will show this explicitly below.

2.4.3.3 K-controlled simulation framework

We have highlighted the importance of maintaining the length scale hierarchy rppy; < rx < a
and some of the challenges in doing so within the center-crack specimen, which extends to
any other finite-crack test specimens. These challenges can be entirely circumvented by using
a different test geometry corresponding to a semi-infinite crack. The K-controlled geometry
forgoes modeling of an entire finite specimen and instead explicitly studies only the asymptotic
crack tip region. Specifically, a simulation cell is created in which an edge crack (traction-free
surface) extends in toward the middle of the specimen. The boundary conditions on all outer cell
boundaries are the displacement fields of the asymptotic near-crack fields of Eqgs. 2.11, 2.13 or
2.19 (depending on materials anisotropy and symmetry) with respect to the crack tip position. By
construction, the entire simulation domain is then within the asymptotic K field. The loading
parameter is then precisely K (and can be extended to include K;; and K;;r). The response
of the material is then also precisely the intrinsic crack tip response under the stress intensity
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loading.

In this K -test geometry, there is no crack size; a is essentially infinite. The entire specimen
is within the K -dominant zone by construction. The only requirement for a valid fracture test
is then that rppy << rg;m Where rg;, is a characteristic simulation cell radius (although the
cell can be of any shape). For the same total number of atoms in a simulation cell, the K-test
geometry ensures that all the atoms are within the K -dominant zone and maximizes the number
of atoms in the FPZ. Furthermore, the simulation cell size needed is determined entirely by the
FPZ of the process under study, and can be quite small for phenomena that are highly localized
to the crack tip. These assumptions have been verified explicitly via simulations; other specific
details are presented in Sec. 2.4.4.1. Fig. 2.10 shows the absolute displacement difference
Aug = |ug — ugelaxed| computed in fcc Ni [81] at the applied K = 0.85MPa+/m, where us is the
elastic solution given by Eq. 2.19, while ugela’wd are atomic positions after energy minimization is
performed. The non-linear atomic displacements, generated during the energy minimization, are
present only in the zone close to the tip (FPZ). We find Au > 0.005A within the radius of ~2nm,
and Au > 0.001A within the radius of ~10nm, around the crack tip. The maximum displacement
difference is at the tip with the magnitude Awu = 0.012A. Atoms outside the FPZ thus preserve
their elastic positions as given by Eq. 2.19 (K -dominance zone) although they are allowed to
move freely. Thus, the " K -test" completely satisfies the concept of LEFM. Unlike the finite-crack
specimens, the stress fields are the correct asymptotic fields and there are no artificially high
stresses far ahead of the crack tip. All defects inside the simulation domain thus also experience
the correct stress fields.
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Figure 2.10 — Absolute difference in x5 atomic positions between the elastic solution given by
Eq. 2.19 (K-field) and relaxed structure for the same applied K; within the box size of 21 x 21 x
Inm?. Atoms are colored according to x5 absolute displacement difference shown by the scale.
Displacement difference in the red zone is off-scale with the maximum displacement of 0.012 A.

There are very few disadvantages to the K -test geometry. One disadvantage is the need for
the correct asymptotic displacement fields in complex problems. For instance, for a sample
with a grain boundary where the crystalline material is elastically anisotropic, the single-crystal
anisotropic fields are not appropriate. Anisotropic solutions can be created for some geometries,

34



2.4. Atomistic modeling of fracture

especially with reflection symmetry across the crack plane, but there are no general solutions. In
contrast, a CCT specimen does not require imposition of any displacement boundary conditions
and so the consequences of the change in crystalline orientation across the grain boundary are
automatically incorporated. However, the CCT specimen remains problematic for other reasons.
Another apparent disadvantage of the K -test is that the boundary conditions are specific to the
position of the crack tip so that the boundary conditions become inaccurate as the crack extends.
This issue is, however, easily rectified by updating the crack tip position as the simulation proceeds
so that the boundary conditions always correspond to the actual crack tip position [85, 86].

The K-test geometry has been used for decades in continuum-level finite element simulations of
fracture problems. It has been employed precisely to maintain SSY conditions at all times. Its
adoption in atomistic simulations has, unfortunately, been more sporadic.

2.4.4 Illustrative examples

In the following subsections, we analyze several basic fracture problems using molecular statics to
highlight the general points made above. For each of the first few problems, we use single-crystal
Ni as the test material and examine both the K-test and CCT test geometries, examine conver-
gence, and compare them against one another and against theoretical predictions. Simulations are
executed using the Large-scale Atomistic/Molecular Massively Parallel Simulator (LAMMPS)
[87]. Key material properties computed with the Ni EAM interatomic potential [81] are shown in
Table 2.1. The fcc elastic properties reveal a Zener anisotropy of A = 2Cy4/(Cy1 — C12) = 2.5
(A =1 for isotropy) and so we use anisotropic analyses to set boundary conditions in the K -test
and also use Eqn. 2.32 to compute K. for Griffith cleavage and Eqn. 2.43 to compute K. for
crack-tip dislocation emission (see Table 2.1). Similar analysis can be applied to examine the
fracture processes and crack-growth in amorphous materials such as Li-Si system. For more
details on atomistic modeling fracture in amorphous systems, the reader is redirected to [85, 86].

2.4.4.1 Brittle fracture

Brittle fracture: Simulation set-up. As the first illustrative example we analyze brittle fracture
in fcc Ni single crystal under plane strain loading conditions. A minimum requirement for
simulating Griffith cleavage, as already discussed in Sec. 2.1.5, is Kj. < Kj.. To achieve
this condition, we use a single crystal oriented with X; = [1 0 0], X2 = [0 1 0] and X3 =
[0 0 1] for which, by using material properties presented in Table 2.1 and Eq. 2.32, we compute
Kj. = 0.91MPay/m. The crack front then intersects an oblique (1 1 1) slip plane making
dislocation emission to difficult (K. < Kj.); therefore, we do not show Kj.. We further
present specific simulation details that have not been discussed in Sections 2.4.3.2 and 2.4.3.3. In
both test geometries, the crack is lying in the x; — x3 plane with crack front along x3. Periodic
boundary conditions are applied along x3 while traction free boundaries are imposed in x; and
x9 directions. Since the simulations are performed in a homogeneous material at 7" = 0K, results
are independent of cell thickness in x3 direction; therefore, for both test geometries we set the
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a  Cn Ci2  Cy VYusf Yutf Q,WES q.m:: Ki. Ki. Kre
(010)[001] (111)[110] (111)[110]
(A) (GPa) (GPa) (GPa) (J/m?) (J/m?) (J/m?®) (J/m?) (MPay/m) (MPay/m) (MPay/m)

352 2479 1478 1248 0.367 0.428 1.882 1.631 0.91 0.92 0.80

Table 2.1 — Material properties of fcc Ni used to compute its critical stress intensity factors for Griffith cleavage K. (Eq. 2.32) and dislocation
emission K. (Eq. 2.43). Model orientations are defined by the crack plane normal (n), and the crack front direction [Z].
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2.4. Atomistic modeling of fracture

simulation cell thickness to be ~ 1nm.

In the K-test geometry (see Fig 2.11a), the simulated crack tip of a semi-infinite crack is at
1 =0 and z5 = 0, and the cell size has dimensions of approximately 120 x 120nm? in 21 — z9
plane. We perform three different simulations using cracks created by the three possible methods:
truly sharp crack, screening, and blunting (see Sec. 2.4.3.1). Since the [001] is one of the mirror
planes in fcc metals, we load the crack corresponding to the applied K; by imposing atomic
displacements using Eq. 2.19. After each loading increment of AK = 0.01MPa,/m, atoms
within 2r. (r. = cut-off distance of the interatomic potential) of the simulation outer boundary
are held fixed (see Fig. 2.11), while all other atoms are relaxed to minimize the total energy of
the system using the "fire" method [88] with the force tolerance of 1075 eV/A on every atom.
However, within the material studied here we find no difference in the simulated results with
the force tolerance of 10 eV/A and 107 eV/A on every atom. This is not a surprising since
the crack-tip stresses are on the order of several GPa before any interesting event occurs. The
simulation is terminated once the crack starts to propagate.

b)

[112]4 <] stP
\/, plane
b I
1111,
i :e%!

[001]A%2 [111]4%2

X; X1
*3 [010] Y5 [112]
[100] [110]

Figure 2.11 — K-test geometry used to simulate a) brittle fracture and b) dislocation emission
from the crack-tip. Blue color indicate domain of atoms where boundary conditions are applied.

In the CCT test geometry (see Fig. 2.12), we simulate a centrally positioned crack having a finite
size 2a with two tips at 1 = +a and x2 = 0. The simulation box has size of 22a x 20a in the
1 — 2 plane. To investigate the effects of size and non-linearity we vary the half crack size
a approximately between 2nm and 15nm. We analyze both uniaxial and biaxial loading using
displacement boundary conditions. After each loading increment of Ae®”? = 0.001, the boundary
atoms within 27, of the simulation cell outer boundary are held fixed at the imposed displacement
corresponding to the applied strain PP while all other atoms are relaxed to minimize the total
energy of the system using the fire method [88]. Since we need to simulate several million atoms
for a > 5nm we use a force tolerance of 10~°eV/A in biaxial tension and 10~%eV/A in uniaxial
tension. We terminate the simulation when cleavage begins. We compute K. for the slit crack
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using K. = 055+/ma, where the critical applied stress 055 corresponds to the critical applied
strain €, and is computed either (i) directly from simulations o5} = 055", or (ii) from Hooke’s

law 055 = Cag;5€(7. A traction free crack is formed using "screening.”

aPp

Figure 2.12 — CCT test geometry used to simulate centrally positioned finite crack under uniaxial
(only black arrows) or biaxial (black and gray arows) applied strain €*”P. Blue color indicates
domain of atoms where boundary conditions are applied.

Brittle fracture: Simulation results. The observed crack tip behavior in both the K-test
and the CCT test geometries is cleavage, as planned. We now focus on quantitative results
observed using the K -test geometry. The simulated critical stress intensity factor for Griffith
cleavage is Kj. = 0.93MPa,/m when the truly sharp crack configuration is used, and Kj. =
0.92MPa,/m when "screening" is used. A slightly lower K. in "screening" arises due to
deletion of atomic interactions across the crack surfaces that affects the response of the crack-tip
atoms. However, both simulated K7, values are only slightly higher than the K7, predicted by
LEFM (see Table 2.1). This is expected due to small lattice trapping, as discussed in Sec. 2.4.3.1.
We further examine the simulated behavior when the crack is formed by deletion of two, three
and four atomic layers, respectively (see Fig. 2.13). In every case we find a considerable increase
in K7, since the "blunting" changes the singularity at the tip [55]. The lowest K. is obtained
for a crack formed by deletion of three atomic layers because this configuration preserves the
morphology that most closely resembles the sharp crack (see Fig. 2.13b). Note that the distinct
steps and the void in Fig. 2.13¢(2) and c(3) are generated by the non-linear atomic rearrangements
and not due to dislocation activity. Using "blunting" for crack formation is useful since the
crack tip can be blunted by different real physical processes that may occur at the atomic scale.
However, soon after the crack starts to propagate, its growth is mainly controlled by the condition
for a truly sharp crack. Thus, the sharp crack should always be considered as a fundamental
starting point in evaluation of intrinsic brittleness/ductility.

We next investigate the influence of the simulation cell size on fracture toughness using the

38



2.4. Atomistic modeling of fracture

s
+
e
¢ e
o
+
03
¢ e

.
e e,

a® e e
PR RY.
NS
2 e e e Y
ot e e
2F et e L Y
2% e e Lo

2’ e
2t ot
nt ¢
53

Y
)
Y
e
Y
e
‘l
"

RIS S S s e

ot e
=2

R0

RIS G4

S S s
RIS

<3

IR X s

o
=gt
Gy
25
<
R 2
s
o e
2
o e

.

R gk
o e

o’

3
e
+

=3

.
3
Rt
23
-

K,=K,, K,=131K,, K,=1.32K,.

REL I Sl e
RS e
RIS S SR N
2t at e .,
=
0 e e

2t ot e e T, S, L,
Sl Sl R

o e e

-
o e e e

»
L S S S S S s S

.,oa.‘.b&.oﬂ.\,,‘
SR g S i e S

o
OIS S S e e

o e e
R R g
.

G g ek g g

s

O RS AN
4
""""‘,‘.‘,0,0,0,000.
/ ,‘,‘,‘,‘,‘,‘,0,’,0,4 <

AT S
OO SR RSIES

’hﬁgqqqu
,0,0,;;‘."'@0,0,’,’,’,
FOSNOINAIEZERAR I AR

&
+
5
S
e 2
2
XSRS
NN RTINS

L/

+a'0'0'
RN IIIUIILEL KR R
ANOK ZSR S S R S -

K,=K,, K,=1.38K,, K,=1.43K,,

Figure 2.13 — K-test geometry for blunted cracks created by deletion of a) two, b) three and c)
four atomic layers. In each case, the left figure shows the crack tip morphology at the applied
K1 = K1, = 0.91MPay/m, the middle figure shows the crack-tip at the applied K; immediately
before the cleavage, while the right figure shows the crack after brittle fracture started. Atoms in
this figure are colored based on Common Neighbor Analysis [15]; green for fcc and white for
surface.
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Chapter 2. Modeling fracture across different length scales

truly sharp crack configuration. For the material considered here we find that a cell size of
21 x 21 x Inm?, with the crack tip ~ 10nm far from the boundary, is sufficiently big for converged
results (see Fig. 2.14). Decreasing the simulation cell size leads to only a modest increase in
simulated K7.. This is expected because the non-linear/non-convex atomic behavior (the FPZ)
exists only in the crack tip vicinity, as discussed above (see Fig. 2.10). Overall, the K -test
geometry is shown to be, quantitatively and qualitatively, a very well controlled model for
simulating brittle fracture at atomic scale.

Cell size d(A)

100 171 316 562 1000
0.98 T —, T T T
1
1
0.96 | : J
2 + Independence
T 09Ar ! of cell size 1
& 0
=
, 092 ! ]
M I
ool | — Griffith K,
: —4- Simulation K,
0.88 L 1 : : :

2 2.25 2.5 2.75 3
Cell size log | O(d/A)

Figure 2.14 — Critical stress intensity factor for cleavage K. as observed in the K-test simulations
for different simulation cell sizes (red diamonds), along with the predictions of LEFM based
theoretical prediction (Eq. 2.32) (blue line). The black dashed line represents minimum cell size
for converged results.

We now explore results obtained using the CCT test geometry under uniaxial and biaxial tension.
Fig. 2.15 shows the critical stress intensity factor for cleavage computed as K. = 055/ma. The
055 is obtained from the measured critical applied strain €7} in two ways. First, we use Hooke’s
Law 095 = Cagije;; with the small-strain elastic constants. Second, we use the measured stress in
the simulation, 0§} = o'55*"™ computed from the average virial stress of the entire atomic system
in 3 direction; this method is commonly used in the vast literature publish to date. However, this
method for evaluating o'55*"™ can introduce some uncontrolled errors which mainly arise due to
nonlinear behavior and elastic relaxations. A more precise method for estimating o55*"™ is to
use the same simulation cell without a crack but loaded at the same critical applied strain €. In
addition, for comparison, Fig. 2.15 shows the converged K -test simulation results obtained using
the truly sharp crack. Note that we do not compare the simulated results with the Griffith value
for K. since the nanoscale CCT test geometry violates the basic concept of LEFM (see below).
Several crucial features emerge from Fig. 2.15. First, the deduced K. varies with crack size a.

This result should immediately preclude any further application of the nanoscale CCT test since
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Figure 2.15 — Computed critical stress intensity factor for cleavage K. = 055+/Ta versus crack
size a in the CCT test simulations (cf. Fig. 2.12) under uniaxial (purple solid lines) and biaxial
(orange dashed lines) loading. Squares corresponds to results computed using 055 directly from
simulations while diamonds corresponds to results computed using 055 = Cag;;€;; . Solid red line:
K-test result.

K. is a material property independent of the crack size. Second, the estimated K7, is either
far above or far below the K-test result, with no tendency toward convergnece with increasing
a. Third, since the elastic moduli increase with applied stress (see Fig. 2.9), the computed K7,
is higher when o5}, is used directly from simulations. Finally, the simulated K. depends on
whether we apply biaxial or uniaxial tension, even though o{7” does not contribute to the crack-tip
singularity. All these differences arise due to (i) material nonlinearity associated with extremely
high applied stresses, and (ii) violation of the length scale hierarchy rrpz << 1 < a (see
Sec. 2.1.3). The above results clearly confirm our previous conclusions that atomistic simulation
of a finite size crack are not a reliable approach for obtaining quantitative insights into material
fracture characteristics at nanoscale.

2.4.4.2 Crack-tip dislocation emission

First partial dislocation emission. As the second illustrative example we analyze dislocation
emission from the crack-tip using both the K -test and CCT test geometries again. A fundamental
requirement for observing the emission is K. < Kj.. To achieve this, we orient the crystal with
X;=[112],Xo=[111]and X5 =[110], forming a crack with a single (111) slip plane
inclined at the angle 6 = 70.53° to the crack. Using this orientation, material properties presented
in Table 2.1, and Egs. 2.32 and 2.43, we compute K. = 0.80MPa,/m and K. = 0.92MPa./m,
satisfying the condition for intrinsic ductility. One of the approximate methods for creating
traction free crack surfaces must now be used since emission should occur at a load below the
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Griffith K. (see Sec. 2.4.3.1) where the sharp crack would be closing from the start of the
simulation [16]. In the K -test geometry we use both "screening” and "blunting" by deletion of
three atomic layers while in the CCT test geometry we only use "screening”. All other simulation
details are as presented in Sec. 2.4.4.1.

The observed crack tip event in both geometries studied here is the emission of a partial dislocation
prior to Griffith cleavage. We again first discuss results observed in the K -test simulations. The
simulated critical stress intensity factor for crack tip dislocation emission, for both "screening"
and "blunting", is K. = 0.77MPa,/m. While for the material studied here we find no difference
between "screening” and "blunting", in the majority of other materials studied we find "screening"
better represents the truly sharp crack. The reader is redirected to Chapter 4 for more details on
how crack formation affects dislocation emission. In this section, we only use "screening"” for all
subsequent studies. The theoretical predictions computed using Eqs. 2.43 and 2.49 are slightly
higher than the simulations (see Table 2.1) but the agreement remains very good. The difference
arises because the theory assumes existence of non-linear slip only along a single slip plane while
in reality there is some other non-linear behavior around the crack tip. Similarly to the brittle
fracture, a simulation cell size of 18 x 18nm? is sufficient for converged results (see Fig. 2.16).
Overall, the K-test geometry is again shown to be an accurate and computationally-efficient
method for simulating the crack-tip dislocation emission.
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Figure 2.16 — Critical stress intensity factor for crack-tip dislocation emission K. as observed
in the K-test simulations for different simulation cell sizes (red diamonds), along with the
predictions of LEFM based theoretical prediction (Eq. 2.49) (blue line). The black dashed line
represents minimum cell size for converged results.

We now show results on crack tip dislocation emission observed using the CCT test geometry.
Fig. 2.17 shows K., computed using both K. = 05,°""\/ma and Kj, = Cazijei/ma, in
uniaxial and biaxial tension tests. The converged K -test result is also shown. Once again we
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find a dependence of K. on the crack size, loading scenario, and method used to evaluate 055.
However, the quantitative difference between the K-test and CCT test geometries, especially
in biaxial tension, is smaller for dislocation emission than in brittle fracture. The fairly good
agreement between the two test geometries is due to the smaller nonlinear behavior of the crystal
oriented with (111)[110] (see Fig. 2.9d) and the lower applied stresses. However, the material
response versus applied stress in not known a priori unless specifically measured in advance.

085 r

~ K-test K K,_=osim V(ma)
= le S~ L
~ /\/ N
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— Uniaxial test
0.65 ! ! '
0 50 100 150

Half-crack size a (A)

Figure 2.17 — Computed critical stress intensity factor for crack-tip dislocation emission K, =
o55\/ma versus crack size a in the CCT test simulations under uniaxial (purple solid lines) and
biaxial (orange dashed lines) loading. Squares correspond to result computed using o5, directly
from simulations while diamonds correspond to results computed using 095 = Ca;j€;;7 . Solid red
line: K-test results.

Dislocation/crack interaction: Equilibrium position of the first partial dislocation. After
nucleation, the first partial dislocation moves to an equilibrium distance r along the slip plane
ahead of the crack, at which point the total Peach-Koehler (P-K) force is zero [50]. For a partial
dislocation emitted from a semi-infinite crack, the total P-K force has the following form

K1Fi2(0)b, b2o(6,¢) _0

~ Yssf —

2.50
2y 8mr (2-50)

where by, is the partial dislocation Burgers vector, and s is the stable stacking fault energy. The
three terms in this equation are (i) the force due to the applied K7, resolved for a particular slip
plane inclination angle, that moves the dislocation away from the crack tip, (ii) the stacking fault
that drives dislocation back toward the tip, and (iii) the image force due to crack free surface,
which also attracts the dislocation back toward the crack tip. We neglect the intrinsic Peierls stress
of the partial dislocation moving through the lattice because it is small. A simple manipulation
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yields the equilibrium distance r as a function of the applied K given by

2

’Yssfo(a (b)

 (K1F12(0))%0? |
AT 1+\J1-W 2.51)

877735 f

where the exact solution is the largest root. The preceding equation is valid in an infinite medium.
In a finite size cell there is an additional contribution to the P-K force due to the fixed boundary
that repels the dislocation from the boundary back toward the tip. The boundary effect on r
has been evaluated explicitly using atomistic simulations in the K-test geometry. Fig. 2.18a
shows the equilibrium position of the first partial dislocation immediately after nucleation using
different simulation cell sizes. While the difference between Eq. 2.51 and simulated r is rather
small in the largest simulation cell, a considerable difference emerges with decreasing cell size.
The importance of this distance between the dislocation(s) (far-field plasticity) and the crack-tip
is discussed in the following section.
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Figure 2.18 — Equilibrium position r of the first partial dislocation after nucleation using a) the
K-test geometry and b) the CCT-test geometry under uniaxial and biaxial tension. The distance
between the crack-tip and the outer CCT boundary along the slip plane (green circles) is shown
for reference.

We next examine the equilibrium position of the first partial dislocation simulated in the CCT-test
geometry. The problematic contribution of the high far-field stress to the equilibrium distance
can be easily assessed by comparing results in uniaxial and biaxial tension. Neglecting the
contribution of the asymptotic crack-tip field, and recalling that the resolved shear stress along the
slip plane inclined at an angle 6 is 7,-(0) = (055" — o'{7") sinf cos @ + 057 (cos® § — sin? ), we
expect that the equilibrium distance 7 of the first partial dislocation to be much larger in uniaxial
tension. This is shown clearly in Fig. 2.18b. Due to the very low Peierls stress for dislocations
in fcc metals, the first partial dislocation under uniaxial loading always moves nearly to the
simulation cell boundary. The asymptotic crack tip stress field does not contribute to the final
position r in the CCT test under uniaxial tension. Instead, the dislocation position is controlled by

the non-asymptotic stress field. In biaxial tension the far-field resolved shear stress along the slip
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plane is effectively zero. The equilibrium position of the first partial dislocation is then controlled
only by the K-dominance zone, which itself depends on the crack size a. Therefore, the first
partial dislocation is much closer to the crack tip (smaller ) ahead of short cracks, converging
toward Eq. 2.51 for the largest crack size a. The huge difference in the partial position r between
uniaxial and biaxial loading conditions shows clearly how the far-field (non-asymptotic) stresses
lead to significant differences in behavior. For uniaxial tension, the partial dislocation has moved
far outside the K -dominance domain, thus obviously violating the application of LEFM for any
subsequent crack tip behavior, as discussed further below.

Dislocation/crack interaction: Shielding effect. The stress field of the first partial dislocation
at distance r on a slip plane inclined at angle 6 creates additional crack-tip stress intensity factors
k:;l (j =1,11,11I). Crack-tip shielding corresponds to k:;l < 0 and anti-shielding to /c;l > 0. In
other words, the dislocation within the asymptotic crack-tip field generates an additional stress
intensity factor at the crack tip that subtracts/adds to the far-field applied stress intensity. For the
coordinate system centered at the crack tip, and when the first partial is an edge dislocation, the
shielding of a semi-infinite crack can be computed using LEFM [49, 89, 90] as

ki = kg = ZA2 D}, (0)by

J_
(2.52)

kfp=k{=- D}, (0)by,

rZAl

with b being the dislocation Burgers vector, A the Stroh tensor, and D’ (6) related to the angular
distribution of stresses near the crack tip for the particular 7 mode of loading given in polar
coordinates by

ow(r, 0) = Z\/_K D},(6). (2.53)

Note that Eq. 2.52 is expressed with respect to the coordinate system positioned at the tip where
j = 1 corresponds to Mode II, and j = 2 corresponds to Mode 1, or [k¢ k¢]T = [k¢, k4]T.
The author is taking an opportunity to point out to this uncertainty that has appeared in the
original papers (see Ref. [86, 91]). In addition, note that an edge dislocation does not generate
any k:? 17 Although the dislocation is an additional stress source that acts over the crack surfaces,
the length scale requirement rppz << 7 < a is preserved. The FPZ for subsequent crack-tip
events is again only the atomistic region around the tip, aside from the residual stacking fault
that is ignored due to elasticity purposes. Thus, the K-test geometry is again suitable model for
obtaining insights into dislocation shielding effects. Since we deal with linear elasticity, the same
model applies in the presence of multiple dislocations around the tip, as well. Therefore, the
well-posed K -test enables investigation of the effects of far-field plasticity on overall fracture
toughness [92].
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The k? and k? 1> computed using Eq. 2.52, are exact solutions for semi-infinite cracks; therefore,
we cannot use Eq. 2.52 for evaluating dislocation shielding of finite size cracks. Shielding of
cracks having size of few nm is generally small, often negligible, as compared to semi-infinite
cracks [93]. Thus, the nanoscale CCT test is not a quantitatively reliable approach for evaluating
the shielding of cracks due to preexisting dislocations. Furthermore, under unaxial loading where
the first partial dislocation has moved far from the entire crack, any remaining shielding is sample
size and geometry dependent.

Second partial dislocation emission. In fcc metals, such as Ni, further increase of the far-field
applied stress intensity factor generates emission of a second partial dislocation. Details about
possible processes for the emission of a second partial dislocation are discussed in Chapter 5.
Within the (111)[110] crystal orientation and at 7' = 0K, the only possible process is the emission
of the twinning partial dislocation, which has the same character as the first partial but gliding on
an immediately adjacent slip plane [94]. Simulated values of K ﬁf’m for crack-tip twinning are
compared with the theoretical predictions based on the theory derived and analyzed in Chapter 5
of this manuscript. The remote critical stress intensity factor for crack-tip twinning K }”jm in the

presence of the first partial dislocation is

A 0
Kpm = fD(Ciw) (\/(’Yutf ~Yss1)0(0,0) [ Fi2(0) + ki + ?jzgai k:?]) (2.54)

where v, s is the unstable twinning fault energy, f 1) (Cijrt) is a material constant that correlates
the far-field applied K'; and the stress intensity along the twinning slip plane, and Fb2(6) corrects
for the resolved shear stress along the slip plane due to k?l. Twinning partial dislocation emission
can be examined without the shielding by effectively moving the first partial dislocation to
infinity; in this special case Eq. 2.54 does not quite reduce to Eq. 2.43 since the stacking fault
remains in the crack tip vicinity. The reader is redirected to Chapter 5 for more details on this
specific problem. Here, we examine the crack-tip twinning in the presence of the first partial
dislocation.

We thus investigate crack-tip twinning using both the K -test and CCT test geometries. Fig. 2.19
shows the Kﬁ”m for different cell sizes as measured in K -test atomistic simulations and as
predicted by Eq. 2.54 in the presence of the first partial dislocation. As input in Eq. 2.52
we use the simulated position of the first partial dislocation r» immediately before twinning
occurs. Fig. 2.19 shows Kﬁf’m increases as the simulation cell size decreases, which is due
to (i) boundary effects as discussed above and, more importantly, (ii) the change in shielding
since the equilibrium separation r is strongly affected by the sample boundary (see Fig. 2.18a).
Note that fully converged results on crack-tip twinning require considerably larger simulation
sizes. Decreasing the simulation cell size, we further observe a change of the twinning plane
from behind the crack tip to ahead of the crack tip. More details on different twinning modes
can be found in Chapter 5. Overall, the K -test is shown to be a well-controlled, quantitatively
and qualitatively precise approach to simulating atomic scale crack-tip events in the presence
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of far-field plasticity. However, when all dislocations are fully retained in the simulation, it is
necessary that the simulation size be such that all dislocations are in their true (infinite material,
infinite crack) positions so that their shielding/anit-shielding contributions are accurate. This size
can be computationally infeasible, motivating the development of multiscale methods to capture
the dislocation plasticity away from the immediate crack tip (see Sec. 2.4.5).
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Figure 2.19 — K-test results for the critical stress intensity factor for crack-tip twinning versus
simulation cell size (red diamonds) along with the predictions of the LEFM based theory (blue
squares).

Fig. 2.20 shows the CCT test results for the critical stress intensity factor for crack tip twinning
computed using (i) uniaxial and (ii) biaxial tension tests along with the K -test results obtained
using the largest simulation cell (however not fully converged due to reasons discussed above).
Note, once again, that we do not compare simulation results with the LEFM based theoretical
predictions due to reasons that are discussed several times so far. We find K ?e“m depends on
crack size, loading scenario, and calculation of o“", as in every other case studied above. We
notice K ﬁf’" to be much higher in biaxial than uniaxial tension; in other words twinning partial
emission is much easier under uniaxial tension. The difference between two cases is due to (i)
nonlinear response of the system and (ii) different shielding, since the first partial is much farther
from the crack tip in uniaxial tension (see Fig. 2.18 and Sec. 2.4.4.2). Finally, good agreement

twin _ _cr,sim twin _ . ._cr : ool : : :
between K" = 0,," v/ma and K" = Cag;j €;\Vma in uniaxial tension is essentially a

simulation artifact associated with agg’sm and the overall stress reduction due to emission of
the first partial dislocation. As already discussed in Sec. 2.4.4.1, the more precise method for
estimating the o55*"™ is to use the simulation cell without a crack and loaded at the critical
applied strain €“". All these results suggests that the nanoscale CCT test is not a suitable method
for assessing fundamental material fracture properties, although the correct phenomena may be

reproduced. What seems to be more important is that plasticity in front of a finite size crack is
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Figure 2.20 — Computed critical stress intensity factor for crack-tip twinning K ?E’”" = 055\/Ta
versus crack size a in the CCT test simulations under uniaxial (purple solid lines) and biaxial
(orange dashed lines) loading. Squares correspond to results computed using o5, directly from
simulations, while diamonds correspond to results computed using 055 = Cag;j€;7 . Solid red line:
K-test results obtained using the largest simulation cell.

more easily triggered by phenomena outside of the FPZ, and therefore outside the domain of
LEFM.

2.4.5 Discussion and concluding remarks

Atomistic modeling of fracture is now frequently being used to explore the behavior of crack-tip
atoms in crystalline metals, alloys, ceramics, amorphous materials, and including the presence
of different nanoscale defects. Here, we have critically analyzed several common simulation
methods based on linear elastic fracture mechanics LEFM based methods. We have demonstrated
that the atomic-scale center-crack geometry often violates the basic concepts of Small Scale
Yielding that is at the heart of the application of LEFM. These tests violate the length scale
hierarchy rppz << 7 << a and often introduce far field (non-crack tip) non-linear response and
damage/plasticity due to the very high far-field applied stress needed to drive the desired crack-tip
events. As a consequence, results obtained in the CCT test are not quantitative or general, and
usually do not agree well with theoretical predictions. The problems that arise with the CCT test
geometry are circumvented by the " K -test" which uses a semi-infinite crack geometry controlled
by an applied stress intensity K. By construction, the " K -test" satisfies the concept of SSY, and
provides results that are well-converged even at fairly small cell sizes, and results that generally
agree well with the theoretical predictions. The advantages of the K -test have been demonstrated
for both crystalline and amorphous materials.

We now discuss more advanced K -test simulation methods for investigating different processes
associated with the atomically sharp crack tip. In the illustrative example shown in Sec. 2.4.4.2
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we investigated the emission of the first and second (twinning) partial dislocation from a crack tip,
respectively, but not further emission. The first emission is a vital process for crack blunting and
toughening, but the overall fracture toughness is also governed (i) by the interaction between the
crack tip and far-field plasticity (dislocations created by sources away from the crack tip itself)
and (ii) continued (multiple) emission from the crack. The K -test atomistic model becomes
computationally infeasible because the size of the real plastic zone would contain too many
atoms. However, dislocations sufficiently far from the crack tip interact with the crack through
elastic interactions only and, as we saw in the simple case of shielding of the crack by the first
emitted partial dislocation, the elastic shielding/anti-shielding of cracks by dislocations can
be computed analytically using elasticity theory, for plane-strain problems, and need not be
directly simulated [36]. This then leads to the application of multiscale methods such as the
coupled atomistic discrete dislocation (CADD) method [95, 96]. In CADD, the zone around
the crack-tip is modeled with full resolution and so dislocation emission and fracture processes
occurs naturally. Away from the crack tip, the material is described by the discrete dislocation
(DD) plasticity model [13] in which continuum dislocations glide and interact with each other
and with the crack via their elastic fields. The direct coupling of atomistics to continuum in
CADD also enables the motion of dislocations into and out of the atomistic region in a seamless
manner, such that the only approximation is, in principle, the elimination of the dislocation core
structure for dislocations sufficiently far from the crack tip region. With such an approach, the
K -test geometry is used in an identical manner, but effectively with two process zones, F'PZpp
and F'PZ 4, with FPZpp spanning the domain of the continuum dislocation plasticity and the
much smaller F'PZ 4, contained within F'PZpp ensuring proper atomistic response around the
very high stress crack tip region.

Using interatomic potentials for simulating the atomistic region around the crack-tip is convenient
if the potentials are sufficiently accurate. However, most of available interatomic potentials are
not suitable for accurate description of real chemical effects on either brittle fracture or dislocation
nucleation. These problems can again be circumvented by using a multiscale strategy in which
the crack tip region is fully described by quantum mechanics while elasticity is used at further
distances. The K-test method is applied with the K boundary conditions applied on the outer
elasticity domain, enabling the use of a small quantum domain, and thus making the problem
computationally tractable. Such a quantum-mechanical coupled atomistic discrete dislocation
(QM-CADD) framework within the K-test geometry was developed to study the effects of
hydrogen and oxygen on dislocation emission in aluminum [97, 98]. The K-test geometry has
also been used in quantum mechanical/ molecular mechanical (QM/MM) multiscale coupling
method in silicon [99] and in aluminum [100]. In QM/MM, the region around the crack tip is
again simulated with quantum accuracy but coupled to a surrounding material domain simulated
using classical interatomic potentials.

The present section provides the theoretical analysis followed by atomistic simulations of a
semi-infinite cracks with periodic boundary conditions applied along the crack front under plane
strain loading. Plane strain is not identical to 2d, however, and so the K -test can be applied
to study some fully 3-dimensional effects. Specificially, by using simulation cells having a
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sufficient length along the crack line direction it is possible to analyze problems such as (i)
crack-tip dislocation emission on oblique slip planes, (ii) crack interactions with preexisting 3D
dislocation loops [101], (iii) crack-tip dislocation emission in alloys and multicomponent solid
solutions, and (iv) cleavage/dislocation emission from a crack-tip by kinks. Furthermore, the
fracture simulations presented in this work were performed at 7' = 0K. However, dislocation
emission and other processes are thermally-activated with some K -dependent 3d nucleation (or
transition) state. Nonetheless, the K -test geometry enables study of such 3d nucleation problems,
eg. [102, 103, 104].

Recent attention has also been given to the investigation of fully-embedded nanosize cracks (3d
cracks), and the effects of crack front curvature on crack motion [105, 106]. It has been found that
such embedded cracks are more prone to develop plastic zones ahead of the crack tip as compared
to cracks with straight fronts under plane strain loading. However, special care must be taken in
dealing with 3D cracks because they are finite sized and must be modeled in the 3D equivalent of
CCT (a penny-crack geometry). 3D simulations thus suffer from the same challenges as 2D CCT
tests. First, as in semi-infinite cracks, the fundamental length scale hierarchy rppy; < rx < a
must be preserved, and the K-dominant zone remains comparable to that of 2D plain strain cracks.
Embedded cracks of several nm diameter will quickly violate SSY after the first dislocation
emission event. Secondly, as in the CCT case, the far-field applied stresses necessary to induce
crack tip events are again extremely high, which introduces nonlinearities as noted also in
Ref. [106]. Third, a high applied uniaxial stress generates high resolved shear stresses along
different slip planes which act to drive dislocations far from the crack and generally to assist in
creating plastic activity around the crack over sizes that may exceed the crack size itself. The
pronounced plastic zone is thus not necessarily due to the nanocrack itself. Finally, nanoscale
3D cracks have high crack curvature that is not realistic for larger-scale cracks and which can
introduce additional artificial effects. Therefore, the atomistic-scale simulation of fully 3D cracks
must be approached with considerable care, and the present authors do not recommend such
studies. The emergence of new fully-3D multiscale methods, specifically the generalization of
CADD to 3D [107, 108, 109, 110] may alleviate some of the above issues and expand our ability
to study realistic 3D cracks both qualitatively and quantitatively.

As noted above, in many fracture problems the FPZ is immensely larger than the atomic scale so
that direct MD simulations in the presence of a semi-infinite crack remain infeasible. In such
cases, the variations in the stress field are then slow over atomistic scales, and local regions of
material ahead of the crack can be envisioned as under some homogeneous loading state (uniaxial
tension, triaxial stress, etc.). In such cases, atomistic simulations can be used to study the FPZ
response itself without the explicit crack tip. These studies are carried out on "representative”
volumes of material under a suitable stress state for the problem of interest. The work of Robbins
et al. [12, 111] on polymers, mentioned earlier, is one such example. Falk et al. [112] and
Khosrownejad et al. [85] have carried out studies of the FPZ in amorphous metals and amorphous
Li-Si, respectively. Tensile separation studies of crystalline materials and grain boundaries, with
and without chemical segregation, have also been studied [82]. A full discussion and analysis of
such methods is beyond the scope of the present manuscript. However, as with explicit-crack
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fracture tests, care must be taken to obtain quantitative results. For instance, the size of the
"representative” volume is often unknown a priori, and the energy dissipation in a 3D simulation
cell must be appropriately related to the expected dissipated energy in the actual fracture specimen.
Size effects and boundary conditions also enter in subtle ways. Nonetheless, such studies are less
problematic than explicit crack studies although less quantitative for relating to the true fracture
problem.

To conclude, the examples presented in this section demonstrate that accurate atomistic modeling
of fracture should be based on the K-test geometry if possible. As a consequence, the K-test
simulations are used in Chapters 4 and 5 for more detailed studies of crack-tip dislocation
emission and twinning in metals. The use of finite-size embedded cracks, such as the center-
crack tension test, should be examined carefully in advance to ensure that none of the various
issues/problems/artifacts identified here would strongly influence the results. In general, we
do not recommend tests such as the CCT due to the difficulties in remaining within the limits
of small scale yielding and LEFM, but recognize that the K-test may not be useful for all
problems of interest. Overall, use of the K -test demonstrates that a range of atomic-scale fracture
phenomena can be studied both qualitatively and quantitatively, providing valuable insight into
the fundamental fracture of materials.
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R] Continuum theories of crack-tip
dislocation emission

3.1 Introduction

Fundamental importance of the crack-tip dislocation emission has been conceptually discussed
in the introductory section of the manuscript. Due to its practical importance, a number of
continuum mechanics models have been introduced to predict various critical stress intensity
factors for crack tip dislocation emission [49, 113, 114, 115, 116]. However, the most widely-
used model is that given by Rice, which is based on a cohesive model for slip displacement
ahead of the crack [50]. Under Mode II (in-plane shear) loading, Rice showed that emission is
controlled by an energy criterion involving the unstable stacking fault (USF) energy 7,s7. The
USF is a saddle point on the generalized stacking fault energy surface associated with relative
shear displacements of two rigid blocks of material. Under Mode I loading, the Mode II analysis
does not apply directly, but Rice postulated that, at the point of emission, the slip profile along
the slip plane is the same as that in Mode II. This yields a dependence of K. on vy, and on the
orientation of the slip plane relative to the crack front.

The Rice analysis is equally applicable for predicting the critical stress intensity factors for the
emission of the first partial K ﬁmt and trailing partial K}Z‘”l dislocations in fcc metals [50].
However, many molecular statics (MS) simulations revealed that fcc metals usually show crack-
tip twinning at 7" = 0K [117]. This observation inspired Tadmor and Hai to propose an extension
of the Rice theory for predicting the critical stress intensity factor for crack-tip twinning [94],
showing that K}g’m depends on the unstable twinning fault energy 7,;r. By comparing the
critical stress intensity factor for the emission of the trailing partial K }Qa” and the emission of
the twinning partial dislocation K}g’i”, twinning is preferred if Kﬁ”m <K }2‘1“.

3.2 Rice theory for dislocation emission

Rice formulated a criterion for crack tip dislocation emission based on the Peierls concept [43].
This concept assumes the existence of a periodic energy functional ¥(A) that is a function of
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the relative slip A between two rigid crystal blocks. The energy is the so-called generalized
stacking fault energy (GSF energy) evaluated at relative slip A, with 0 < A < b where b is the
Burgers vector of the emitted dislocation. For fcc materials, the focus of the work here, the
emitted dislocation is composed of partial dislocations with Burgers vector b,. A typical GSF
energy function W, ¢(A) for an fcc material is shown in Fig. 3.1, obtained from an atomistic
simulation at 7' = 0K in Ni described with EAM potential [81]. The GSF curve is a material
property, independent of any crack geometry or mode of loading in a crack problem. The reader
is referred to Chapter 6 for more details about the GSF energy.
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Figure 3.1 — Generalized stacking fault (GSF) energy along the direction of the first partial
dislocation (the solid line), GSF energy along the direction of the trailing partial dislocation (the
dashed line), and generalized twinning fault (GTF) energy along the direction of the twinning
partial dislocation (dotted line) computed in fcc Ni [81].

Once nucleated, the first partial moves to an equilibrium distance from the crack tip and leaves
the stacking fault behind it. Since the first partial dislocation stays relatively close to the tip, it
imposes an additional shielding mixed-mode stress intensity acting at the crack tip. The crack tip
responds to the total stress intensity at the crack tip, independent of how that stress intensity is
established. Thus, the important physics of the problem remains at the crack tip, independent of
the shielding due to the first partial. Therefore, in our restatements of the Rice and Tadmor-Hai
theories here and in Section 3.3, we first neglect the effects of the first partial. Then in Section 3.4
we show that the shielding effect is the same for both processes and so does not influence which
process is more favorable.

Rice solved the problem of dislocation emission ahead of a semi-infinite crack under pure Mode
II loading as a Mode II cohesive zone problem where the GSF energy defines the (continuum) co-

hesive response ahead of the crack tip via the material shear resistance as 74, = d\IfZ; ?}St(A) JdA.
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The cohesive model eliminates the elastic stress singularity at the crack tip in analogy to a
cohesive/bridging/Dugdale zone in the Mode I fracture problem. Since the GSF curve includes
the elastic response of the material that is already contained in the elastic field, Rice introduced
the displacement discontinuity §, which is the inelastic slip, i.e. the additional slip beyond
that predicted by elasticity. He then showed that 6 = A — h7ysr(A)/p, where h is the atomic
inter-planar spacing and p is the shear modulus (along the plane of sliding). Rice then introduced
the inelastic potential ®(J) for the energy associated with the inelastic slip, given by

®(8) = WIS~ hr? f2p. (3.1)

which differs from ‘lii; 29St(A) but has the same maximum value at the unstable stacking fault

energy, max(\IlginSt(A)) = max(@ﬁi?St((S)) = Yusf-

Within the framework of the cohesive model, the path-independent J-integral can be applied [17].
In isotropic elasticity, the J-integral along a contour far from the crack is Jfq, = (1 -v)K ? /21 =
G where G is the macroscopic energy release rate. The J-integral along a crack face contour
around the cohesive zone is given by

o0 ) Otip

Path independence of the J-integral leads to the result
G=(1-v)K7[21=3(5p). (3.3)

An incipient dislocation (partial slip distribution along the slip plane) loses stability when the
slip discontinuity at the crack tip reaches the critical unstable stacking fault position, st = Ayst
at which point 6 and A are equal, S = AP = A, - At this point, the inelastic slip energy
is a maximum and equal to 7, f, and so G is also a maximum and corresponds to the point of
dislocation emission. Within isotropic elasticity, the corresponding critical stress intensity factor
for dislocation emission is then

Krre = \/2M/Yusf/(1_y)' (3.4)

For Mode I loading, where the slip plane is inclined at some angle 6 to the crack plane, there
is no exact solution. The crack tip geometry is not self-similar and the J-integral concept does
not apply. Rice proposed that, at the point of emission, the distribution of shear slip along the
slip plane is the same in Modes I and II. This allows the result for Mode II to be used to estimate
emission for Mode I by computing the effective Mode II loading along the slip plane, leading to

Kre =\/21vus/ (1 - v)/ cos?(0/2)sin(0/2) (3.5)

with emission again occurring when AP = Ay - The isotropic results of Egs. 3.4 and 3.5 were
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generalized to full anisotropic elasticity[74] with the result

Kire = \/ ’7usf0(97¢) 3 6)
Kie = \/ 7usf0(07 ¢)/F12(0)

where 0(6, ¢) is a function of the slip plane angle ¢ and the angle ¢ between the dislocation
Burgers vector and the crack front direction in the slip plane and Fi2(0) is related to the angular
distribution of shear stress at the crack tip. Details regarding the computation of o(f, ¢) and
F12(0) are presented in Sec. 2.1.5.

With increasing far-field loading, the first partial dislocation can be followed either by (i) the
trailing partial dislocation emission or (ii) the twinning partial dislocation emission. A model
for the critical stress intensity factor for the trailing partial emission K }Z‘m was also introduced
by Rice [50]. While similar to the analysis for the leading partial, additional important aspects
enter. As the first partial dislocation moves away from the crack tip, it leaves behind a stacking
fault. This causes the energy at the crack tip to be shifted to the intrinsic stacking fault v, (see
Figure3.1). The trailing partial nucleates on the same slip plane as the leading partial, and so
the energy barrier for its emission is 7,sf — Vssf (dashed line in Figure 3.1). The emission of
the trailing partial dislocation is also associated with a change in the angle between the partial
dislocation Burgers vector and the crack front direction, ¢ f;rst = ®trqir- In fec metals, the
difference is always |psqi — @ fmt| = 60°. By using the constrained path approximation and the
same assumption regarding slip profiles in Mode II and Mode I, Rice derived the critical stress
intensity factor at the tip for the emission of the trailing partial dislocation in Mode I as

Kf:sflzlp = \/(’Yusf - 7ssf)0(07 ¢trail)/F12(9) COS(¢trail)- (3.7)

3.3 Tadmor-Hai theory for crack-tip twinning

The first partial dislocation can also be followed by the emission of the twinning partial dislocation.
An analytical model for predicting K ?e”m was proposed by Tadmor and Hai [94] as an extension
of the Rice theory with two main differences: (i) the angle between the twinning partial Burgers
vector and the crack front direction is same as for the first partial dislocation ¢ f;,st = Gguwin, and
(ii) the twinning partial forms the micro-twin boundary by nucleation on the adjacent slip plane
and, therefore, the energy functional describing the shear displacement along the twinning plane
is the generalized twinning fault (GTF) energy (the dotted line in Figure 3.1). The energy barrier
for the twinning partial emission is then 7, s — 7,5 . Following Rice, Tadmor and Hai derived
the critical stress intensity factor at the tip for the emission of the twinning partial dislocation as

K2 =\ (ruts = Yss1)0(0, G girst)|Fi2(6). (3.8)

At temperature 7' = 0K a material is predicted to emit the twinning partial dislocation when

twin trail
Kle,tip < Kle,tip'
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3.4 Shielding effect on second partial dislocation emission

Once emitted, the first partial dislocation moves to some distance 7 at which the total Peach-
Koehler force is equal to zero [50]. Analytical solutions for the equilibrium position 7 of the first
partial dislocation, along with the additional stress intensity factors kfl, (i=1, 11, III), that
are generated due to its stress field has been shown and discussed in Section 2.4 (see Eq. 2.52).
These additional stress intensity factors then shift the far-field stress intensity factor K for the
emission of the trailing or twinning partial to

F(0)

]{Jd
F12(9) II

K}Z(nl = \/(Vusf - 'Yssf)o(ea ¢trail)/Fl2(0) COS((btrail) + k? +

Fy(6)
Fi2(6)

3.9

K}t@uzn = \/(Vutf - 735f)0(07 ¢first)/F12(9) + k? + k?]

with Fy(0) correcting for the resolved shear stress along the slip plane due to k?l. Eq. 3.9
suggests that the emission of the second partial dislocation is only controlled by the processes in
the vicinity of the crack-tip. As noted above, the shielding affects both processes equally through
a net stress intensity acting at the crack tip. Shielding is thus not intrinsic to either of the two
possible crack-tip processes, and does not affect which process is more favorable.
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This chapter is extracted from the following publication:

(1) Andric P, Curtin WA. New theory for Mode I crack-tip dislocation emission. Journal
of the Mechanics and Physics of Solids. 2017 Sep 1;106:315-37.

4.1 Introduction

Chapter 3 provided a brief overview of the continuum based Rice theory for predicting the
critical stress intensity factor for crack-tip dislocation emission. Molecular statics and dynamics
simulations provided a means by which to validate the Rice model. Early simulations [118, 119]
showed that the Rice criterion gives accurate predictions for K. under Mode II loading, where
the crack plane is coplanar with the slip plane. However, results for Mode I loading showed
varying levels of agreement from material to material. It was recognized that deviations from the
Rice criterion could be due to the creation of a surface step (surface ledge) during the Mode I
nucleation process. Several authors thus tried to incorporate the additional energy of the surface
step [54, 120, 121, 122] into a Rice-type analysis, but usually for one particular material with
some approximations, and without achieving significantly better results. In all of these models,
the key Rice concept was maintained: the unstable stacking fault energy controls the dislocation
nucleation with emission occurring when the slip displacement reaches the displacement corre-
sponding to the unstable stacking fault displacement. Schoeck (2003) [123] considered a related
continuum model, but with creation of a step introduced through an additional constant force
acting at the crack tip. The resulting energy functional was then solved approximately using a
variational method to obtain the slip distribution along the slip plane, and results were shown for
simplified slip energy models. One conclusion of the Schoeck analysis is that, for low step energy,
dislocation emission could occur below the Rice prediction, which is not generally supported
by simulations in Mode II or Mode I for atomically sharp cracks and is difficult to rationalize
physically. Schoeck was pursuing a valuable path that is echoed here, but with an approximate
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model. Zamora et al. [97] proposed a continuum approach that included extra energy for step
formation near the crack tip and proposed a method for computing the step energy contribution,
but they presented limited results for a specific system where the role of surface step creation was
not clearly identified.

Here, we approach the Mode I emission problem as a mechanical instability governed by a critical
crack tip displacement. We show that, in contradiction to a key assumption in the Rice theory,
the energy change at the crack tip due to relative slip is monotonically increasing with crack tip
displacement, due to the energy cost of creating the step. Thus, the Rice theory simply cannot
apply: there is no saddle point in the energy versus slip. We then develop a model that assumes all
non-linear response to occur at the crack tip to demonstrate that, in the presence of the step, there
exists a critical crack tip displacement at which mechanical instability occurs, i.e. the driving
stress at the crack tip due to the applied field can no longer be balanced by the restoring stresses
that resist step formation. The simple model rationalizes simulation trends and provides analytic
results. We apply the model to 17 different fcc materials where, due to material non-linearities,
we use the measured critical crack tip displacement in the theory and then predict K7, in very
good agreement with the simulated values. The new theory captures all key aspects of the Mode
I dislocation nucleation process, resolving the discrepancies of the Rice theory. A simplified
analytic model is then presented that involves only easily-computable material properties yet
shows excellent agreement with the simulations. The simplified model is also used to rectify
previous discrepancies between Rice theory and atomistic simulations in other materials.

4.2 Rice theory versus atomistic simulations

4.2.1 Materials studied

The crack tip dislocation emission is analyzed for 17 different fcc materials. To describe
Aluminum interatomic interactions we use two different EAM potentials developed by Mishin
et al. [81] and Ercolessi and Adams [124]. Mishin EAM potentials were also used to describe
Ni [81] and Copper [125] while the Adams et al. [126] EAM potentials were used to describe
Gold, Silver and Palladium. A set of effective alloy potentials, labeled Cr10-Cr100, were derived
using a homogenization procedure [127] based on an Fe-Ni-Cr EAM ternary system developed
by Bonny et al. [128]. The homogenization procedure enables the creation of a set of single-
atom materials with continuous property variations by continuous change of the underlying
alloy composition. The Cr10-Cr100 materials are a discrete set of materials of compositions
CrxFe(1_x)/2Ni(1_x)/2 that have a smooth variations in material properties over some range. It so
happens that these materials have nearly constant (111) surface energies while the stacking fault
energies, GSF curves, slip A, at the unstable stacking fault, and anisotropic elastic properties
vary significantly. The relevant properties for each material computed using standard methods
and molecular statics simulations [103, 129] are presented in Table 4.1.
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Chapter 4. New theory for Mode I crack-tip dislocation emission

4.2.2 Mode II loading

To validate the Rice criterion for crack tip dislocation emission in Mode II, we perform molecular
statics simulations using the molecular dynamics code LAMMPS [87]. We simulate a semi-
infinite crack under plane strain loading conditions using the "K-test" described above (see
Section 2.4.4). The crack is loaded incrementally by applying the atomic displacements using
Eq. 2.22. To create a crack coplanar with the slip plane, an fcc crystal is oriented with X7 = [112],
X5 =[111], X3 = [110] (see Figure 4.1). The simulation cell has dimensions of approximately
120x120x1nm?. A traction free crack surfaces are created using both "screening", and "blunting"
by removal of one atomic row of atoms plus “screening” of the remaining atoms across the crack
surfaces. Even though "blunting" can be modeled by deletion of several atomic layers, simulations
show that these two cases give quite similar results for Mode II and also bracket the predictions
of the Rice theory. The load is incrementally increased in steps of AK;; = 0.001MPa/m. The
simulation is terminated when the first partial dislocation is emitted from the crack tip. All other
simulation details are identical to those presented in Section 2.4.4.

Figure 4.2 shows the results for the critical stress intensity factor Ky, and crack tip relative slip
at the point of emission, as simulated for 17 different EAM potentials [81, 124, 125, 126] and as
predicted by the Rice theory [50] (see Section 3.2). Figure 4.2a shows that the Rice prediction
for the critical stress intensity K. for emission is in a very good quantitative agreement with
the simulation values, although there are larger deviations for the “screening” case for the Cr60
- Cr100 potentials, which have rather asymmetric GSF curves (see below). Overall, the Rice
prediction for K. is generally between the two simulation results, which is the best possible
agreement we could expect given the uncertainty in setting the atomistic crack tip conditions.

Furthermore, we measure shear displacements along the slip plane as the shear deformation
of the atomic triangular structural units indicated in Figure 4.1. The shear displacement A
of a structural unit ¢ = 1,2,.. along the slip plane can be evaluated as A} = Wl —wl ™t or
A; = ul™t — ul, where uJ is the displacement of an atom j along [112] slip direction (see
Figure 4.2). Note that uZH and uf; are atomic displacements measured on the opposite sides
of the slip plane; same holds for u‘g“ and ug_l. Under pure shear, two values for the shear
displacement are identical, A; = A;, and we find only very small differences between A; and A
in the simulated Mode II loading, as expected. Figure 4.2b shows the crack tip shear displacement
just before emission, as measured in the simulations and as predicted by the Rice theory. The
shear displacement shown in Figure 4.2b is A1. In the screening case (Figure 4.1a), the atomic
unit immediately behind the crack tip does not fully satisfies the condition of a traction free crack
surface and so we also show the shear deformation A immediately behind the crack tip, and
expect Ag and A; to bracket the true value. Overall, the Rice prediction is slightly higher than
simulation results, but in broad agreement. There are few cases (the Cr70-Cr100 potentials) where
the Rice prediction is notably higher than the simulations results, and for the same potentials
we find a larger discrepancy in the prediction of the critical K;7.. A possible reason for this

discrepancy is mentioned in Section 4.4.
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4.2. Rice theory versus atomistic simulations

ui:f(KIIaCijkl) (Eq. 2.22)

X,[111]
<y | |Crack| ) Slip
Xy[110] plane| | plane
a)screening b) blunting

Figure 4.1 — Crack geometry in Mode II loading formed by a) deleting the interatomic interactions
between the crack surfaces (yellow and blue atoms, respectively) and denoted as “screening’
and b) removing one layer of atoms and then screening the remaining atoms (yellow and blue,
respectively) and denoted as “blunting”. For both (a) and (b), the crack geometry is shown (i)
at zero load, (ii) at the critical load for dislocation emission, and (iii) after dislocation emission.
The triangles are the basic structural units through which the shear displacement along the plane
of emission are analysed, as indicated. Atoms are visualized using OVITO [15].

B
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Chapter 4. New theory for Mode I crack-tip dislocation emission
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Figure 4.2 — Results of simulations under Mode II loading for both “screening” and “blunting”
models: a) Critical stress intensity factor Ky, for crack-tip dislocation emission; b) Relative
shear displacement of the structural units at the crack tip and, for “screening” only, immediately
behind the crack tip. In both (a) and (b), light blue symbols show the predictions of the Rice
model.

We conclude that, within the limitations of the ability to simulate an ideal Mode II crack, the Rice
model is accurate, qualitatively and quantitatively, in its prediction of dislocation emission under
Mode II. Since the Rice theory is intended for Mode 11, and since no step is formed during the
emission, the agreement is not surprising. However, it is important to demonstrate this level of
agreement between simulation and theory in Mode II because it highlights the clear differences
that will arise in Mode I.

4.2.3 Mode I loading

We now examine the Rice criterion for crack tip dislocation emission in Mode I loading perform-
ing an additional set of molecular statics simulations. An fcc crystal is oriented with X7 = [112],
X5 =[111], X3 = [110], forming a crack with a slip plane inclined at an angle 6 = 70.53° to the
crack plane (see Figure 4.3); this is usually the orientation for easiest dislocation emission. The
crack is, once again, loaded by applying the increments of atomic displacement using Eq. 2.19
and AK; = 0.001MPay/m. A traction free crack surfaces are created using both " (i) “screening”
between the yellow and blue atoms (Figure 4.3a), or (ii) “blunting” by deletion of three layers of
atoms (Figure 4.3b). All other simulation details are identical to those presented in Section 2.4.4.

The critical stress intensity factor K. for emission under Mode I loading is shown in Figure 4.4a.
The Rice theory gives fair quantitative predictions for K., but is almost always lower than
simulations for both “screening” and “blunting”. Some differences are large, up to 20 — 50%
(see also Table 4.2). Results here are consistent with other results on specific systems scattered
through the literature. The second observation is that, as in Mode II, the simulated K. is usually
slightly larger for “screening” as compared to “blunting”. There is no clear interpretation of this
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4.2. Rice theory versus atomistic simulations

ui:f(KDCijkl) (Eq. 2.19)

X,[111]
g [112] Sllp
X,[110] plane
a)screening b) blunting

Figure 4.3 — Crack geometry in Mode I loading formed by a) deleting the interatomic interactions
between the crack surfaces (yellow and blue atoms, respectively) and denoted as “screening’
and b) removing three layer of atoms and denoted as “blunting”. For both (a) and (b), the crack
geometry is shown (i) at zero load, (ii) at the critical load for dislocation emission, and (iii)
after dislocation emission. The triangles are the basic structural units through which the shear
displacement along the plane of emission are analyzed, as indicated. 6
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Chapter 4. New theory for Mode I crack-tip dislocation emission

difference in Rice theory. Sun et al. [130] noted that the Rice theory for Mode I does not account
for the opening displacement normal to the slip plane, which is expected to reduce the slip energy
and thus reduce K. below the Rice theory; such effects would increase the discrepancy between
the theory and simulations.
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Figure 4.4 — Results of simulations in Mode I for both “screening” and “blunting” models: a)
Critical stress intensity factor K. for crack-tip dislocation emission; b) Relative shear displace-
ment of the structural units at the crack tip. In both (a) and (b), light blue symbols show the
predictions of the Rice theory.

Screening Blunting
Material Ausf/bp Ksim/KRice Al/bp AZ/bp Ksim/KRice A1/bzo A2/bp All/bp AIQ/bP
Al [81] 0.70 0.92 0.395 0.279 0.87 0.348 0.241 0.461 0.323
Al [124] 0.68 1.18 0.368 0.258 1.12 0.368 0.280 0.484 0.356
Au [126] 0.50 1.45 0.509 0.366 1.07 0.340 0.248 0.398 0.291
Ag[126] 0.50 1.20 0.459 0.334 1.07 0.365 0.268 0.447 0.334
Cu [125] 0.53 1.28 0.450 0.330 1.15 0.380 0.287 0.497 0.349
Pd [126] 0.51 1.45 0.497 0.365 1.19 0.406 0.311 0.483 0.366
Ni [81] 0.52 1.03 0.430 0.302 1.03 0.318 0.226 0.385 0.272
Crl0 [127] 0.51 0.97 0.392 0.267 1.00 0.234 0.165 0.335 0.234
Cr20 [127] 0.51 1.03 0.386 0.269 1.07 0.252 0.182 0.353 0.249
Cr33 [127] 0.50 1.12 0.384 0.277 1.16 0.281 0.209 0.380 0.273
Cr40 [127] 0.51 1.16 0.366 0.266 1.19 0.279 0.211 0.375 0.271
Cr50 [127] 0.53 1.20 0.361 0.266 1.21 0.299 0.232 0.393 0.288
Cr60 [127] 0.55 1.22 0.349 0.259 1.21 0.301 0.237 0.395 0.291
Cr70 [127] 0.59 1.21 0.349 0.261 1.19 0.319 0.255 0.406 0.301
Cr80 [127] 0.64 1.13 0.341 0.257 1.12 0.320 0.256 0.410 0.302
Cr90 [127] 0.68 1.05 0.351 0.267 1.05 0.326 0.258 0.417 0.307
Cr100 [127] 0.70 0.96 0.322 0.243 0.98 0.315 0.249 0.409 0.296

Table 4.2 — Positions of the ~, s, along with the simulation results in Mode I for screening and
blunting given as the ratios of simulation K. and Rice prediction for K., and measured shear
displacements of the first and second structural units at the point of emission (see Figure 4.3).

More importantly, Figure 4.4b and Table 1 show the simulated and predicted results for the critical

crack tip shear displacement under Mode I loading. Here, we measure the shear deformation
of the crack tip unit as A; = u? — ul (see the initial crack in Figure 4.3).Due to very high

normal stresses in the slip direction in Mode I, there can be some difference between A; and

! 2

1 = u? - u? for some materials; physical aspects of this difference are explained in Appen

dix A.2. In Mode I loading, the difference between the Rice theory and simulation is notable: the
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4.3. Energy due to surface step creation during dislocation emission

simulated instability point is often far below the value postulated by Rice, with differences of
typically up to 40%. From an energetic point of view, the energy release rate at displacements
below ~ b,,/2 is simply far too low to provide the unstable stacking fault energy necessary to
nucleate a dislocation according to the Rice mechanism. Examining the results in Figure 4.4
further, we see that the screening case shows a critical slip at emission that is closer to the Rice
prediction, but these cases also have a critical K7, that is much larger than the Rice prediction.
For instance, in Au, Pd, and Ag, the critical slip at the crack tip in the “screening” case is almost
equal to the slip at the unstable stacking fault energy (the Rice prediction), but the K7, is ~ 50%
higher than the Rice prediction. Since the energy and the crack tip displacement are intimately
coupled in the Rice theory, there is a fundamental problem with the Rice theory for Mode I
loading. As we show in the next section, the problem lies in the fact that the Rice theory does not
account for the creation of the surface step that accompanies dislocation emission in Mode 1.

4.3 Energy due to surface step creation during dislocation emission

When a dislocation nucleates under Mode I loading, a surface step is created, as indicated
in Figure 4.3. Figures 4.3 a(ii),b(ii) are at the point of nucleation and, while the final state
(Figures 4.3 a(iii), b(iii)) clearly shows the creation of a surface step, there is a nascent surface
step and an associated partial step energy at the point of emission. The energy to create the
emerging surface step is an additional energy cost for dislocation emission. However, as seen
previously in Figure 4.4b, the critical displacement at the point of dislocation emission is usually
well below the Rice prediction. The energy of the inelastic slip along the stacking fault is
therefore much lower than v, r. The total energy at the critical displacement in Mode 1 is thus
some fraction of vy, plus some fraction of the step energy. The critical displacement at the

emission point is also not at the instability point predicted by the Rice theory and so a simple
incorporation of a step energy into the Rice model, as done in early attempts to include the
step [54, 120, 121, 122], is not accurate. The dislocation nucleation differs significantly from the
mechanism envisioned in the Rice theory, requiring an entirely new theory.

Figure 4.5 — Computation of the nucleation energy a) for “blunting” crack geometry; b) for
“screening” crack geometry; and c) atom-by-atom energy change in the blunting case after full
slip (one partial Burgers vector) for Nickel.
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Chapter 4. New theory for Mode I crack-tip dislocation emission

The first step toward a new theory involves investigation of the energy versus slip displacement
as the actual nucleation process takes place, including the energy associated with the emerging
surface. We proceed in direct analogy to the usual computation of the GSF curve, using a
method similar to that presented by Zamora et al. [97]. First, we create a non-orthogonal
simulation cell, oriented with X = [112], Y = [111], Z = [110]. The simulation cell size is
6v/6ao x 8v/3ag x 2v/2apA3. We apply periodic boundary conditions in [112] direction, while
in [111] we apply free boundary conditions (see Figure 4.5a, b). Two identical crystal parts
are defined and depicted as blue and red atoms, respectively. The interface between the blue
and red atoms represents the slip plane. The initial crack tip geometry (blunting or screening)
is created by (i) increasing of the simulation box size in [112] direction and (ii) deleting extra
atoms, as depicted in Figure 4.5a, b. We then rigidly slide the left crystal domain (blue atoms)
relatively to the right crystal domain (red atoms). As in a standard GSF computation, relaxation
is permitted only in the direction normal to the slip plane. We then compute energy change over
a domain which includes three atoms on either side of the slip plane plus the crack tip atoms.
The domain size in the [112] direction is sufficiently long so that atoms far from the crack tip are
essentially bulk atoms. Figure 4.5¢ shows atom-by-atom energy change after slip of one partial
Burgers vector (the final state after emission); the energy changes of the atoms just at the crack
tip dominate the overall energy change. Along the slip plane away from the crack tip atoms, the
energy is intrinsic stacking fault v, but this energy is not visible in Figure 4.5¢ because it is
overwhelmed by the energy of the crack tip atoms. At any slip displacement A, we measure the
energy change local to the crack tip atoms by subtracting the energy associated with the bulk
GSF over all atoms in the domain except those at the crack tip, as outlined by the green line in
Figures 4.5a,b. The remaining energy is the total energy, due to both the stacking fault and the
step, associated with the slip of the atoms that define the crack tip structural unit. We divide
this energy by the atomic spacing \/6a¢/4 along the [112] direction, and by 21/2a to along the
[110] direction, to obtain the crack tip slip energy (per unit area), which we call the nucleation
energy, defined as

Uoue(A) = Uggep(A) + Wy (A) 4.1

where W, (A) is the energy associated with step creation at the crack tip and W, (A) is the
bulk GSF energy contribution in the crack tip unit. Note that the two contributions in Eq. 4.1
are not independently separable in the simulations but we write Eq. 4.1 to indicate that, in the
absence of any step, the nucleation energy should still include the GSF energy. Figure 4.6b shows
U,uc(A) along with the standard GSF curve for the case of fcc Ni. Figure 4.5 exhibits several
crucial features. First and foremost, unlike the GSF curve, there is no maximum in ¥,,,.(A) at
any slip A < by,. The absence of a maximum immediately precludes application of the Rice theory,
which is based on a maximum energy (Vyusf) at which point the material offers no resistance
to further slip. Second, the total crack tip energy is significantly larger than the GSF energy.
This is not surprising because the free surface energy is typically much larger than the unstable
stacking fault energy. Third, the final value of the nucleation energy ¥,,.(A = b,), which we
call the surface step energy ~s¢ep, is slightly lower than the flat surface energy ~y, of the exposed
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4.3. Energy due to surface step creation during dislocation emission

crystalline facet. This difference is due to the local atomic structure of the crack tip. For all 17
potentials studied here, this ratio is Ys¢ep/vs ~ 0.7 + 0.05.

_ y X7
L6 Structural unit 1 = U we®) S
Structural unit 2
1.2} — Structural uniti>2= ¥ (A)
N/-\
£
208
=
0.4
Vssf
0

0.5 1
Relative slip A/bp

Figure 4.6 — Slip energy change versus slip displacement, for successive atomic structural units
along the slip plane computed for fcc Ni [81]; only the energy for the structural unit at the crack
tip deviates significantly from the bulk GSF energy.

We can further verify that the surface step creation has no influence further along the slip plane
away from the crack tip by analyzing the energy changes of each triangular structural unit along
the slip plane as a function of the relative slip A (see Figure 4.6a). Figure 4.6b shows that, even
in unit 2 adjacent to the crack tip unit, the energy is nearly identical to the GSF energy. Therefore,
the step energy is localized to the structural unit at the crack tip. This conclusion holds for every
material studied here and will be used to develop a new theory for dislocation emission in the
next section. The nucleation energy ¥,,,.(A) and GSF energy ¥, ¢(A) are computed for all
materials studied here as shown in Figures 4.7a,b for both “screening” and “blunting” crack
geometry; the conceptual points observed for Ni are valid in all cases. The small differences
between “screening” and “blunting”, not visible in Figures 4.7a and b, give rise to differences in
the simulated K., as we will see below.
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Chapter 4. New theory for Mode I crack-tip dislocation emission
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Figure 4.7 — GSF energy (red lines) and nucleation energy (blue lines) versus relative slip for all
fcc materials studied here: a) screening; b) blunting. GSF energies are identical in both figures.

4.4 New theory for crack tip dislocation emission

Since the nucleation energy does not have a maximum, we deduce that emission must correspond
to a local mechanical instability at the crack tip. Due to the high energy cost of shearing associated
with step formation, the dislocation is “trapped” at the crack tip in a manner reminiscent of
“lattice trapping” of a cleavage crack [79]. In “lattice trapping” for the cleavage crack problem,
the precise force-displacement behavior of the crack-tip bond can restrain crack opening until
the crack tip bond is mechanically unstable. At this point, the applied load K| exceeds the
thermodynamic Griffith value K7.. In the dislocation emission problem here, the shear stress
needed to shear the crack tip unit up to the unstable point of dislocation emission is higher than
that corresponding to the GSF energy. Once the shear of the crack tip unit reaches a critical level
at which the crack tip unit becomes unstable, the dislocation then move away unstably along the
slip plane. The weaker restoring stresses further along the slip plane, due only to the GSF energy,
are unable to impede the dislocation nucleation.

While the new theory will be fundamentally different from the Rice theory, we retain key
assumptions consistent with the Rice analysis (see Figure 4.8). Most importantly, we assume that
(i) only the shear resistance along the slip plane controls the nucleation process, (ii) all non-linear
behavior is confined to the slip plane, and (iii) that the shear displacement distribution A1, Ao, ...
along the slip plane is the same in Modes I and II. This last assumption has been explicitly verified
as shown in Appendix A.3, where we demonstrate that, for a specified displacement A; at the
crack tip, the remaining displacements Ao, Aj, ... along the slip plane are essentially the same
in Mode I and Mode II loadings. The main difference between the new theory and the Rice theory
will be in the crack tip constitutive behavior, i.e. the resistance of the crack tip structural unit
to shearing due to the emergence of the step in Mode I but not in Mode II, as shown already in
Figure 4.6b. The other difference with Rice analysis will be that we deal only with the total shear
displacements A; we find no need to introduce the inelastic slip measure § and in this aspect we
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4.4. New theory for crack tip dislocation emission

are consistent with the analysis of Schoeck [123].

Cracktip |
structural unit

Linear elastic body

i l i

Figure 4.8 — a) Linear elastic body with semi-infinite crack under pure Mode I loading surround-
ing the dislocation emission plane that is characterized by atomic structural units along the slip
plane; b) Local stresses acting on the crack tip structural unit: an applied stress due to the remote
applied K load and a restoring stress due to the shear resistance of the crack tip structural unit,
which together determine the local equilibrium shear deformation (dashed lines).

We start by analyzing the case with zero step energy; this analysis thus also applies to Mode
II and will reveal the Rice solution from a different perspective. For zero step energy, the
energy versus slip is only the GSF energy. The corresponding GSF "restoring" shear stress 7y¢s
across the slip plane is the derivative of the energy. We use a sinusoidal Peierls model so that
Tres = Tgsf = (1bp/2mh) sin (2w A /by,), as shown in Figure 4.9a. We now focus on the crack tip
structural unit and assume that all non-linear behavior is confined to this crack tip structural unit,
i.e. shear deformations further along the slip plane remain in the (nearly) linear domain of the
Peierls curve. Then, a remote applied K| generates a shear stress Tqppo on the crack-tip unit
that is linear in K. As the shear displacement A of the crack tip unit increases, the applied shear
decreases linearly as 7oy, = Tapp,0 — pA/h(5 — 1), as indicated in Figure 4.9a. Here, the constant
B is the crack-tip Green’s function for shear in the lattice; 3 = 2 for a linear isotropic continuum
and varies between 1.4 and 2.3 for the anisotropic fcc materials studied here (see Appendix A.4).
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Chapter 4. New theory for Mode I crack-tip dislocation emission
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Figure 4.9 — Graphical construction for the equilibrium shear displacement A; of the crack tip
unit in Mode II loading or in Mode I loading when no step is present, for several different far-field
loadings. Solid blue line: crack tip restoring stress versus crack tip shear displacement due to
GSF energy only; Red lines: crack tip applied shearing stress versus shear displacement. b)
Critical shear displacements Ay, Ag, ... along the slip plane at the point of dislocation emission,
with critical energy release rate corresponding to the shaded area.

At any given applied K, and thus any given 7., 0, the equilibrium crack tip displacement
Ay is given by the condition 7,,, = Tres, as shown graphically in Figure 4.9a for several
o000 Tappos ) the
corresponding equilibrium shear displacements (A}, AY, ...) are stable equilibrium points
because drapp/dA < d7pes/dA for all 0 < A < by/2. There is no mechanical instability until
Ay = A{ = b,/2. The stress Tapp,o &t this instability is then proportional to K. The assumption
of linearity for all units ahead of the crack tip unit is not really true: in the more general case, the
crack tip units deform stably along the GSF curve until the crack tip unit becomes unstable. The
instability could then occur prior to A; < by,/2; in other words, some lattice trapping can occur

values of 7,,,0 with 5 = 2. For the sequence of applied stresses (7,

in Mode II even without the step, and this can account for the deviation in predicting Ky, in
the Cr60-Cr100 potentials. However, the spatial range of the GSF stress versus displacement
corresponds, in the language of the “lattice trapping” cleavage problem [79], to a relative long-
range force law with very small lattice trapping. The instability thus usually occurs very near, or
at, Ay = A = b,/2, with A§, A§, ... as shown in Figure 4.9b, and hence trapping is generally
small in Mode II. At the instability point, all atoms move forward to the next stable position, such
that A§ — A§, A5 - AS, ... The total energy required to reach the instability point is then equal
to the energy required to take the crack tip unit from A; = 0 to Ay = b,/2. This energy is equal
to the area under the 74, curve, which in turn is precisely 7, as indicated in Figure 4.9b. This
construction is the discrete analog to the continuous cohesive zone model that is implicit in the
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4.4. New theory for crack tip dislocation emission

Rice theory, but using the total shear displacement A and GSF energy W, ¢(A) rather than the
displacement discontinuity ¢ and energy ®(4).

We now use the same general analysis to consider the case of dislocation emission when a
surface step is created. Again, we assume that only the crack tip deforms non-linearly. Due to
the step creation, the energy of the crack tip unit is Wp,c(A) = Ugyep(A) + Wyer(A) and the
restoring stress is Tyes = AWy /dA. Figure 11 shows the restoring stress for a Peierls model of
the nucleation energy, V,,,c(A) and 7,5 = g (ubp/27h) sin (21 A/by), where g = Tres/Tgsy is
the factor by which the restoring stress with the step exceeds the restoring stress when there is no
step creation. However, the surrounding material remains elastic. Therefore, the applied stress
remains exactly the same as before, Ty, = Tapp o — LA[h(B — 1). With increasing applied stress
Tapp,0, the stable equilibrium shear displacement A; of the crack tip unit evolves stably as shown
in Figure 11. A mechanical instability, corresponding to dislocation nucleation, then occurs at the
applied stress chg’%p where the equilibrium shear displacement becomes metastable, i.e. when
Tapp = Tres ANd dTypp/dA = dTyes/dA, as indicated in Figure 11. When g > 1.5, and for 3 = 2,
the instability occurs at A{ < b,/2 and the shear displacements A§, A§, ... ahead of the crack
tip remain (nearly) in the linear range of the GSF stress curve, as indicated in Figure 12a. The
ratio of the remote applied stress intensity at the instability point for the step case (Mode I) to
that of the no-step case (the Rice model) is equal to the ratio of the critical stresses,

ngzp/ﬁpp,o = Kle,step/KIe,Rice 4.2)
As seen graphically in Figure 4.10, the fractional increase in the remote stress intensity factor is
larger than, but not significantly larger than, the Rice value. The “trapping” of the nucleating
dislocation at the crack tip due to the extra energy of the step thus leads to a critical shear
displacement instability that is lower than the Rice value but at a K. that is larger than the Rice
value.

The graphical analysis using the Peierls representation, as shown in Figure 4.10, can be executed
numerically for any desired values of the two relevant material parameters $ and g. Table 4.3
shows computed results for a range of typical values in real materials. At fixed 3, increasing
the step energy (increasing g) leads to increasing critical stress intensity for emission and
decreasing critical crack tip shear displacement. These results are broadly consistent with the
Mode I simulation results. Three important aspects merit comment. First, the theory predicts a
continuous transition from emission controlled by -, (Rice theory) to emission controlled by
the step energy. Second, as seen for the case of g = 1.5, the increase in K. above the Rice value
is quite small even when the step energy is an appreciable fraction of v, ;. Third, the analysis
is independent of the slip plane inclination angle § because the same nominal step is created at
any 0 # 0 and rotation of the stress field accounts for all differences in the “applied” stresses (see
Appendix A.5).
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Chapter 4. New theory for Mode I crack-tip dislocation emission

r;f;eg —Tres - Crack tip restoring stress
' -- 7gst - Bulk restoring stress

—Tapp - Applied stress, (5=2)

7—app,O .

Af=b/2
Displacement A

Figure 4.10 — Graphical construction for the equilibrium shear displacement A; of the crack
tip unit when a step is created during emission in Mode I loading and all other displacements
As, As, ... remain in the linear regime, for several different far-field loadings. Solid blue line:
crack tip restoring stress versus shear displacement including the step energy; Red lines: crack
tip applied shearing stress versus shear displacement; for reference, dashed blue line shows the
crack tip restoring stress versus shear displacement due only to the stacking fault energy.

g B=15 B=1.75 B=20

K[e,step/K]e,Rice Ac K]e,step/KIe,Rice Ac Kle,step/KIe,Rice Ac

1.5 1 0.5 1.01 0.42 1.09 0.36
2 1 0.5 1.09 0.36 1.22 0.33
25 1.03 0.4 1.18 0.33 1.36 0.31
3 1.09 0.36 1.29 0.32 1.5 0.3

Table 4.3 — Ratio of critical stress intensity factors with (K s,y and without (K, pice) the
surface step, for various values of the g = 7,¢s/74s ¢ and crack tip Green’s function parameter (3,
as computed using the Peierls model of Figure 4.10.

In realistic cases, the slip displacements away from the crack tip can again become (slightly) non-
linear. In this case, the system softens and the simple graphical analysis based on non-linearity
only at the crack tip is insufficient. However, at the instability point, the shear displacements
again simply shift as A§ — A{, A5 — A§, etc. So, even when non-linearity extends beyond the
crack tip structural unit, the energy that must be provided by the applied field to reach the point
of instability is computed as the area under the curve shown in Figure 4.11a. The critical energy
for emission can thus be computed in terms of the critical displacements A, and AS. There are
two contributions, one from the crack tip unit that follows ¥, and another from all other units
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4.4. New theory for crack tip dislocation emission

that follow the W, ¢ energy function, so that

Af A
T= [ st [Ty 4.3)
A 0
which yields
J = Upue(AT) = Wrue(AS) + U g (AS) (4.4)

as shown graphically in Figure 4.11. The critical stress intensity factor is then computed using
the standard relationship between K and G,

K[e =\ G[eo(e, ¢)/F12(9) (45)

The analysis thus resembles the Rice theory, but emission is controlled by reaching a critical
crack tip displacement associated with a mechanical instability due to the step formation.

—Tres - Crack tip restoring stress —Tres - Crack tip restoring stress
--Tgsf - Bulk restoring stress --Tgsf - Bulk restoring stress
(2] (2]
175] ‘ 175]
g s SR
1 : A N O P :
A B | B
- 1C 1C 1C 1C 1C 1C 1C 1C
AOO A, Ay A, A AOC- A, A .Az A
Displacement A Displacement A

Figure 4.11 — a) Critical shear displacements Ay, Ao, ... along the slip plane at the point of
dislocation emission, for the realistic case corresponding to some non-linearity in Ag, Ag, ...
beyond the crack-tip structural unit. b) Critical shear displacements A1, Ao, ... along the slip
plane at the point of dislocation emission, when the crack tip restoring stress is skewed toward
higher displacement. In both figures the associated critical energy release rate corresponds to the
shaded area.

Furthermore, if the maximum crack tip restoring stress is skewed toward higher displacements
(see Figure 4.11b), which arises in some of the atomistic systems (derivatives of curves shown
in Figure 4.7), then the instability can be shifted toward larger displacements, even reaching
A{ ~ bp/2, but then with a much greater energy and hence a much greater Kr.. Such a situation
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Chapter 4. New theory for Mode I crack-tip dislocation emission

prevails in materials such as Au and Pd (see Figure 4.4). So, a measurement of emission at ~ by, [2
does not at all imply that the Rice model is applicable.

4.5 Validation of the new theory

The previous section presented an analytical model that highlights the controlling physics/me-
chanics of the crack tip dislocation emission, and clearly rationalizes the origins of the deviations
from the Rice theory. The analysis predicts the critical crack tip shear displacement A{ but
assumes non-linearity to exist only in the crack tip unit. Even with some non-linearity away from
the crack tip unit, the new model can predict the critical shear displacement A{ and the critical
energy release rate Gy, (as shown in Figure 4.11) for some simulated materials (Ni, Cu and
Cr10-Cr40) in very good agreement with simulation results. However, in most of the simulated
materials, the non-linear shear displacements further along the slip plane do not allow for direct
application of the analytic theory. While non-linear behavior in the second structural unit could be
included [79], such a complication is beyond the scope of this paper. Instead, we validate the new
theory for K. by using the simulated values of the critical shear displacement (see Table 4.2) as
input to compute G, as shown in Figure 4.11. While not a fully independent prediction of both
A{ and K., this approach nonetheless quantitatively demonstrates key aspects of the theory.

First, we assess the accuracy of the new theory for cracks formed by “screening”. Figure 4.12a
shows the critical stress intensity factor K. as predicted using the new theory (Egs. 4.3-4.5);
also shown are the simulation results and the Rice predictions. The predictions of the new theory
are in excellent agreement with simulations, and generally better than, or comparable to, the Rice
predictions. The new theory always predicts slightly higher results than found in the simulations,
which likely reflects the limits of all models that use elasticity plus a non-linear slip model only
along the slip plane. The overestimation found for Cr10 and Cr20 are cases with high normal
stresses at the crack tip, where effects associated with stretching of the crack-tip unit along and
normal to the slip plane may be more important (see below).

Next, we examine the accuracy of the new theory for cracks formed by blunting. Note that the
Rice theory does not distinguish between these two cases, aside from approximate attempts to
deal with elliptical crack tips [131]. Figure 4.12b shows that the predicted K. value is very
close to the Rice value, with overall comparable agreement (sometimes slightly better, sometimes
slightly worse) than the Rice prediction. Only Cr10 and Cr20 are notably off from the simulations.
Recall, however, that the critical crack tip shear for blunting is much smaller than the Rice
prediction, so that the physical model associated with the new theory is much more accurate
overall than the Rice model. The present model thus also accounts for the differences in both
K. and A{ between “screening” and “blunting”. As shown in Figure 4.13 for the specific cases
of Ni and Cu (and also for both Al, Au, Ag, Pd, Cr100 and Cr90 potentials in Figure 4.7), the
restoring stress for “blunting” is shifted to slightly lower shear displacements as compared to
“screening”, leading to smaller predicted K, and Af.
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Figure 4.12 — a) Critical stress intensity factor for dislocation emission (Theory: orange;
Simulation: red; Rice: blue line) for a) cracks formed by ‘“screening”; b) cracks formed by
“blunting”. Orange dashed line computed with Afl crack tip displacement.
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Figure 4.13 — Crack tip restoring stress for crack formed by screening (solid lines) and for crack
formed by blunting (dashed lines) in Ni, Cr50 and Cu.

The deviation of the new theory from the simulations for the Cr10-Cr80 potentials lies in the fact
that the crack tip shearing energy is strongly affected by the normal stress parallel to the slip plane.
The measured critical A for these potentials is actually below the displacement at the maximum
restoring stress, and so there cannot be an instability based on A{ alone. In these cases, the
normal stress acting at the crack tip stretches the crack tip unit (see Appendix A.2) so that Ay is
not an accurate measure of the average crack tip shear. Instead, the shear displacement A better
reflects the shearing of the crack tip unit. In addition, the restoring stress for these potentials
(shown in Figure 4.13 for the specific case of Cr50) is not affected by the crack geometry and
so crack geometry does not influence the simulated K. (see Figure 4.4a), and thus A; in the
screening case is very close to A} in the blunting case (see Table 4.2). As shown in Figure 4.12b
by the dashed line, predictions of the theory using the measured A/ and the same ¥,,,,.(A) are
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Chapter 4. New theory for Mode I crack-tip dislocation emission

in very good agreement with the simulations. This difference shows that the precise deformation
at the crack tip structural unit affects the critical stress intensity for emission by modest amounts,
but these amounts can explain the differences between sharp “screened” cracks and “blunted”
cracks, a feature absent in the Rice theory.

4.6 Approximate model for prediction of the crack-tip dislocation
emission

The analysis in the previous section demonstrates the quantitative success of the conceptually new
model. However, the predictions in Figures 4.12a,b use the simulation values for the critical shear
displacement. Unlike the simple Peierls model (Figures 4.9 and 4.10), the instability point has
not been predicted; the effects of non-linearities and the precise shear vs. displacement behavior
beyond the maximum shear resistance preclude analytic analysis. Furthermore, we seek an
analytic model that does not require direct atomistic simulations of the crack problem since there
is no need for a model if one only needs to execute a standard molecular statics crack simulation.
Thus, we aim for simplified models that predict K. in terms of only the easily-computable (i)
GSF curve ¥, ¢ and nucleation energy curve Wy, or (ii) unstable stacking fault energy 7y
and surface energy ;.
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Figure 4.14 — Critical stress intensity factor for dislocation emission for all materials studied
here; Simulations (red), full theory (orange); approximate model (purple) for a) screening and b)
blunting.

For the simplified model which involves only W, and W, it is necessary to determine the
critical crack tip shear displacements A{, A§. The analytical model of Section 4.4, along with the
results given in Table 4.3, shows that the critical value A{ is weakly dependent on the step energy
once the step energy is somewhat larger than the GSF energy. These results are also consistent
with the simulations. Based on these observations we deduce that single value of A{ is sufficient
for any material and can be used in the approximate model. Analyzing the critical crack tip shear
displacements shown in Table 4.2, we can estimate A ~ 0.39b,, for “screening” and A ~ 0.33b,
for “blunting”, which are the averages across the entire set of simulation results for “screening”
and “blunting”, respectively. For both crack configurations we find A§/A{ ~ 0.7; this is not
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4.6. Approximate model for prediction of the crack-tip dislocation emission

surprising because the ratio A5/A{ is determined mainly by elasticity and so is not strongly
dependent on Af nor crack geometry. Using these pairs of values for all materials, and ¥, ¢ and
W ... for each specific material, we compute K. via Eqs. 4.4-4.5 and obtain the results shown in
Figures 4.14a,b. This approximate solution is again in very good agreement with the simulations
across the entire range of materials. This estimate works well even when the A{ deviates from
the above estimated value because (i) there is some cancellation of errors, (ii) AS/A{ ~ 0.7 is
retained, and (iii) K. scales only with the square root of the critical energy.

The above approximation still requires computation of ¥,,,,.(A) for the specific crack tip ge-
ometry. A simpler model that depends only on the unstable stacking fault energy ~,,; and
surface energy s is very valuable since these quantities are easily computed via first-principles
methods using simple periodic-cell geometries. We first recall that e, ~ 0.77,. Then, the values
A =0.36by, A5/A] =0.7b, (and so A§ = 0.25b,) capture both “screening” and “blunting” well,
for most of the studied materials. From Eq. 4.4 and a simple Peierls model, the contribution from
the GSF energy is then W ,£(0.25b,) = 0.57,5f. Again using a simple Peierls model, the con-
tribution from the crack tip unit is W, (0.36b,) = Wp0c(0.25b)) = 0.7step — 0.57step = 0.1475.
Therefore, a good analytic estimate of the critical energy release rate at the point of dislocation
emission is Gy, = 0.147, + 0.57,s¢. A small correction to this estimate precisely captures the
average (31 across the entire set of simulations,

Gre = 0.14575 + 0.57,57 (4.6)

Eq. 4.6 applies to systems with high step energies (the dominant case in real materials). The full
model reduces to the Rice model as the step energy decreases, K. — K Rice @S Vstep = Vusf
with 5 ~ 7,47/0.7 (see Peierls analysis and Table 4.3). Eq. 4.6 does not capture this limit,
and should not be used when the surface energy/step energy are small. An analytic model that
captures the correct limit is thus

0.145+¢ + 0.5 €>3.45
GIe _ { Vs t Yusfs Vs > Yusf (4‘7)

Yusf> ’Y: < 3457u5f

Figure 4.15 shows the predictions of Eq. 4.7 for Gj. along with the simulation results (screening
and blunting). Also included are additional simulations and predictions for a family of pair-
potentials having fixed 75 and varying 7y, ¢ [132], using full anisotropy not included in Ref. [132].
The agreement is very good across the entire spectrum of materials. The single analytical formula
of Eq. 4.7, with K. following from Eq. 4.5, is thus a suitable analytic replacement for the Rice
model that incorporates the effect of the step energy and is based on a deeper understanding of
the crack tip processes controlling dislocation nucleation.
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Figure 4.15 — Critical energy release rate Gy, as a function of the materials surface energy
s normalized by ~,, ¢ for all materials studied here; Simulations - screening (red diamonds),
Simulations - blunting (orange squares), Simulation results from [132] (open red diamonds),
Analytical model Eq. 4.7 (purple line); Rice theory (black dashed line).

4.7 Discussion and concluding remarks

The Rice theory is an elegant, long-standing, and well-accepted model for the approximate
analysis of dislocation emission at a crack tip under Mode I loading. However, we have shown
that a new model is necessary for three important reasons. First, the Rice theory predictions for
K. and A{ are inconsistent with detailed molecular simulations: the predicted K. is too low
while the predicted A is too high, and these two deviations cannot be reconciled within the
context of the Rice theory. Second, the Rice theory neglects entirely the energy associated with
formation of the surface step upon emission, and simulations demonstrate clearly that such a
step exists and that the energy cost is high compared to the unstable stacking fault energy. Third,
explicit computation of the energy versus shear displacement at the crack tip shows no energy
maximum, yet a maximum is required in the Rice analysis since the maximum sets the point of
emission.

The new theory is based on the recognition that the crack tip structural unit is impeded from
shearing by the energy cost of the step. The nascent dislocation is thus “trapped” by the lattice
and can only be emitted when the crack tip structural unit reaches a point of mechanical instability.
This instability is fundamentally different from the Rice concept, which envisions a continuous
cohesive zone behavior with no “trapping”. We have demonstrated the physical behavior, and
rationalized the simulation results, using a Peierls model for the nucleation energy at the crack tip
and for the generalized stacking fault energy along the remainder of the slip plane. We can then
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4.7. Discussion and concluding remarks

compute the critical energy release rate at the emission instability, from which we can find Kj..
The simple Peierls model produces the trends seen in simulations and reduces to the Rice model
when the step energy is zero. We have shown that the new theory, a simplified approximation,
and an analytic model (Eq. 4.7), are in very good agreement with simulation results across 17
different fcc materials (interatomic potentials).

The present analysis fundamentally changes the dependence of the ductile-to-brittle transi-
tion on underlying material properties. A material is brittle when Kj;. < Kj.. The stan-
dard analyses use the Griffith model Kj. = \/2751\521, where A§21 is a material property for
Griffith cleavage computed from Stroh energy tensor under Mode I, and use the Rice model
Kre =\/usfo(0, ¢)/Fi2(0). The new analysis here shows that ~, . (surface energy along the
emission plane) also enters into the emission criterion. Using our simple analytic model (Eq. 4.7),
the analysis predicts Kje = 1/(0.14575 + 0.5v,s7)0(0, ¢)/F12(0) for vs/vusy > 3.45. Thus,
decreasing the surface energies of a material decreases both K. and K., making embrittlement

less likely.

The new model recently resolves a discrepancy found between molecular simulations and predic-
tions of the standard brittle/ductile analysis in Mg [58]. In the standard analysis, cases involving
slip along the basal plane of hcp Mg are predicted to emit dislocations (K. > Kj.) but which
are observed to cleave in simulations. Although Mg has an hcp crystal structure, with a different
elastic anisotropy, and although the fracture planes and slip planes differ, the present model
remains applicable. Here, we apply the analytic model of Eq. 4.7 to compute K. including the
surface energy cost along the slip plane. The necessary energies are reproduced in Table 4.4.
Predictions of K. using the Rice analysis (see Ref. [58]) and the present model (Eq. 4.7) are also
shown in Table 4.4, along with the simulation results for sharp cracks. In contrast to the standard
analysis, the new model now correctly predicts all the observed cleavage cases (K. < KJ.), and
retains the previous prediction of emission for the case where K7, is only slightly larger than
Ki.. Eq. 4.7 remains imperfect, and the competition between cleavage and emission in Mg is
rather subtle, but nonetheless the incorporation of the surface/step energy into the analysis leads
to predictions that are consistent with simulations. This demonstrates that the model is valuable
for better assessment of brittle vs. ductile behavior.

In summary, a new model for emission based on a local crack tip mechanical instability has been
shown to explain, conceptually and quantitatively, the crack tip emission process including the
role of step formation at the crack tip. The model has been painstakingly validated across a wide
range of fcc materials. Of great practical importance, we have provided an accurate analytic
model (Eq. 4.7) that requires only easily-computable material parameters as input. In addition to
its new insights into the physical origin of dislocation emission, this model provides a path for (i)
designing new materials that exhibit the desired ductile behavior (dislocation emission), which is
a necessary precursor to ductile fracture, and (ii) better understanding of chemical embrittlement
due to a change in crack tip behavior from emission (ductile) to cleavage (brittle) behavior.
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Crack plane Orientation Ys Slip plane Vs,e Yusf K. Kre Rice Kre New Rice New theory MD results
(n)[1] (mJ/m?) (mJ/m?)  (mJ/m?) (MPam'?) (MPam'?) (MPam'?) prediction prediction
Prism I (1010)[1210] 582 Basal 568 125 0.252 0.236 0.254 Emission ~ Cleavage Cleavage
Prism IT (1210)[1010] 651 Basal 568 125 0.267 0.262 0.282 Emission  Cleavage  Cleavage
Pyramidal I ~ (1010)[1210] 619 Basal 568 125 0.262 0.222 0.239 Emission ~ Emission Emission
Pyramidal I1  (1122)[1010] 647 Basal 568 125 0.269 0.250 0.269 Emission  Cleavage  Cleavage

Table 4.4 — Crack tip cleavage/emission competition in magnesium as predicted from (i) Rice theory, (ii) The new theory for dislocation emission,
and (iii) as observed in atomistic simulations. The values of material properties and simulations results are taken from [58].
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5] New theory for crack-tip twinning in
fcc metals

This chapter is extracted from the following publication:

(1) Andric P, Curtin WA. New theory for crack-tip twinning in fcc metals. Journal of

the Mechanics and Physics of Solids. 2018 Apr 1;113:144-61.

5.1

Introduction

Metals and alloys having an fcc structure (e.g. Al, Cu, Ni, Ag, Au, Pd, Pt, Ir) are widely used

structural materials in different industrial applications. When an fcc metal is intrinsically ductile,

a first (leading) partial dislocation nucleates, moves to an equilibrium distance, and leaves a

stacking fault extending back to the crack tip (See Figure 5.1a). Ductile or quasi-brittle behavior

is then determined by the subsequent crack tip event. The three possible processes are:

®

(i)

(iii)

Emission of the trailing partial dislocation, nucleated on the same slip plane as the leading
partial. The first and trailing partial dislocations combine to create a full dislocation having
no trailing stacking fault, allowing the full dislocation to move far from the now-blunted
crack tip (see Figure 5.1b); this behavior is deemed “ductile”.

Emission of the twinning partial dislocation having the same character as the first one but
occurring on an immediately adjacent plane. This creates a two-layer twin embryo, with
both partial dislocations remaining in the vicinity of the crack tip (see Figure 5.1c); this
behavior is deemed “quasi-brittle” since the process does not create far-field plasticity.

Emission of a partial dislocation having the same character as the first partial dislocation
but occurring on a nonadjacent slip plane (see Figure 5.1d). Again, the emitted partial
dislocation stays in vicinity of the crack tip, creating a region of two stable stacking faults
separated by at least one plane of fcc atoms. This case is rare, and further increase of the
applied load leads to another emission event that creates a three-layer twin embryo similar
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Chapter 5. New theory for crack-tip twinning in fcc metals

to what follows from process (ii); this behavior is thus also deemed “quasi-brittle”.

Understanding the fundamental competition between the processes of twinning and trailing partial
emission thus provides insights into the controlling material parameters, which then contributes
to ensuring ductile behavior when designing new alloys [57].
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Figure 5.1 — Partial dislocations emitted from a crack tip in a fcc metal: a) First partial dislocation
at some equilibrium distance with the stacking fault behind it; b) First and trailing partial
dislocation forming the full dislocation with the stacking fault between them; ¢) Twinning fault
formed by the emission of the twinning partial dislocation; c¢) Region of two stacking faults
formed by the second dislocation emission on the nonadjacent slip plane. Only non-fcc atoms are
presented and colored according to Common Neighbour Analysis [15]; red for hcp and white for
other.

Chapter 3 provides an overview of (i) Rice and (ii) Tadmor-Hai continuum theories for predicting
critical stress intensity factors for the emission of the first K femt and trailing partial dislocation
K f’;‘”l [50], and twinning partial dislocation K ?e“" [94], respectively. Molecular statics and
dynamics simulations have shown that these models are reasonable, but not highly accurate,
for predicting the various K7.. Chapter 4 has demonstrated that the creation of a surface step
during the first partial emission was a missing factor in the Rice theory; therefore, we proposed
a new theory for computing K {emt. The Tadmor-Hai model, based on the Rice approach,
is quantitatively even less accurate for twinning tendencies. Also, the Tadmor-Hai twinning
tendency predicts the emission of the trailing partial prior to twinning in some of materials
while molecular statics simulations always show twinning [103]. With the new insights into a
completely different mechanism for the first emission process (see Chapter 4), the processes
of twinning and trailing emission of the second partial can now be revisited from a different
perspective.

Here, we show that there is no creation of a surface step during the emission of the twinning
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5.2. Tadmor-Hai theory versus atomistic simulations

partial. This suggests that the basic framework of Tadmor-Hai model for twinning is viable. We
then show, however, that because the twinning slip plane does not intersect the crack front, the
resolved shear stress along that plane at the location of the twin nucleation is lower than the
shear stress along the trailing slip plane. Correcting for this difference by relating the far-field
applied K7 to the local shear displacement along the twinning plane leads to predictions in
excellent agreement with the simulations, rectifying the previous deviations of 20-35%. Using
the same local analysis, we show that emission of the trailing partial dislocation is always
accompanied by the creation of the surface step. Applying the new theory presented in Chapter 4
to the case of trailing emission, we predict K% > K%n for all simulations, resolving the
discrepancy between previous theory and simulation. Finally, we reveal an alternative mechanism
of twinning wherein the crack first advances by cleavage and then emits the twinning partial,
such that twinning is controlled by the Griffith cleavage fracture stress intensity K., where
K }th < Kp. < Kﬁf’m, in agreement with simulations where this process controls twinning.
Furthermore, for subsequent emission of twinning partials after the first event, the twinning is
often controlled by this alternative mechanism, thus connecting the process of extensive twinning
directly to the process of cleavage fracture.

5.2 Tadmor-Hai theory versus atomistic simulations

The accuracy of Tadmor-Hai theory versus molecular statics simulations is examined using the
standard "K-test". An fcc crystal is oriented with X7 = [112], X5 = [111], X3 = [110] forming a
crack with a slip plane inclined to the angle 6 = 70.53° to the crack and with the Burgers vector
angle ¢ ;. = 0°. Same crystal orientation is used in Section 4.2.3 since it provides the easiest
emission of an edge dislocation along a single slip plane. A traction free crack surfaces is created
using "screening"; here we do not use "blunting" since we have shown that "screening" better
represents an atomically sharp crack for the emission in Mode I (see Chapter 4). To capture only
the crack tip effects without the shielding due to the first partial dislocation we first displace the
part of the non-loaded perfect crystal, marked with the red line (see Figure 5.2), along the leading
partial slip direction by the partial Burgers vector b, = ag/ /6, where aq is a lattice parameter.
This method is equivalent to actually nucleating the partial, moving it to infinity by adding a
dipole of infinite spacing, and then unloading the crystal to zero load. Since the crack surfaces are
already formed by screening of interactions, the crystal is stable in this new initial configuration.
We will consider results including the shielding effects later. The crack is loaded in a standard
manner by imposing atomic displacement using Eq. 2.19. All other simulation details are as
presented in Section 2.4.4.2. We analyze 17 different fcc materials described by EAM interatomic
interaction (see Subsection 4.2.1). We terminate the simulation after second partial emission
occurs.
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Figure 5.2 — a) Geometry used to simulate second partial dislocation emission using a semi-
infinite crack with the first partial dislocation removed to infinity, achieved by displacing the
region marked by the red line by the first partial Burgers vector. Blue color indicates boundary
atoms. b) Atomic scale crack-tip geometry at zero loading. Atoms are colored based on Common
Neighbour Analysis [15]; green for fcc, red for hep and white for surface.

In every material studied, we observe twinning. In contradiction with the simulations, the
Tadmor-Hai theory predicts emission of the trailing partial prior to emission of the twinning
partial for Al M, Cr100 and Cr90, both with and without the shielding effect. Since the shielding
effect only changes the stress intensity acting on the crack tip, and not the critical values for
the two processes, this is not a surprising result. The discrepancy for Al [81] (Al M) was noted
by Yamakov et al. [103], as well. Furthermore, the simulations show two different twinning
mechanisms. As shown in Figure 5.3b, one mechanism is twinning partial emission by sliding
along the adjacent slip plane behind the leading partial slip plane (denoted “back” twinning). As
shown in Figure 5.3c, a second mechanism forms the micro-twin by crack advancement of one
lattice spacing in direction followed by sliding along the adjacent plane in front of the leading
partial (denoted “forward” twinning). The “forward” twinning occurs in Ag, and Cr10-Cr33,
while all other materials tested show “back” twinning. These two different twinning modes were
first observed in atomistic simulations of Hai and Tadmor [117]. However, the later Tadmor-Hai
theory [94] does not distinguish between these two physically different events. Because “forward”
twinning resemble Griffith cleavage followed by dislocation emission, the Tadmor-Hai model is
essentially a model for “back” twinning.
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5.2. Tadmor-Hai theory versus atomistic simulations

Figure 5.3 — a) Crack geometry in Mode I at the critical load for the emission of the twinning
partial dislocation. b) Crack geometry after “back” twinning emission. c¢) Crack geometry after
“forward” twinning emission. The same atom at the original crack tip is indicated in all figures to

show the two different mechanisms.
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Figure 5.4 — Critical stress intensity factor for emission as observed in the simulations (red
diamonds), along with the predictions of continuum theories based on the Peierls model (blue

circles) for the “back” twinning partial dislocation .

Figure 5.4 shows the simulated critical stress intensity factor along with the Tadmor-Hai pre-
dictions (Eq. 3.8) for all “back” twinning cases. Figure 5.4 shows that the predictions are
systematically lower than the simulations by 20-35%. However, the theoretical predictions do
follow the trend observed in the simulations, unlike the situation for the first partial dislocation
emission (Figure 4.4a). The systematic and significant deviation of the Tadmor-Hai theory re-
quires the development of a new theory. Following our recent discrete analysis of the first partial
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emission, below we examine the detailed local processes and location of the actual nucleation
event. The analysis reveals both the source of the discrepancy with previous models and motivates
a new model that quantitatively captures the observed behavior.

5.3 Energy changes near the crack-tip during second partial dislo-
cation emission

We start by investigating the energy changes during slip in the structural units near the crack tip
that are relevant for the emission of twinning and trailing partial dislocation. A schematic of the
discrete analysis is shown in Figure 5.5a, showing two adjacent discrete slip planes surrounded by
an elastic material containing a crack. The two slip planes are further envisioned to be composed
of individual structural units defined by specific triads of atoms, as indicated. Figure 5.5b shows
a close-up atomistic view of the crack tip region, and specifically identifies the three structural
units that are crucial to our subsequent analysis: one unit directly at the crack tip relevant for
trailing partial emission and two units along the nascent twinning plane.

KIT ! )

Twinning

Trailing

Structural
units

Crack plane

Linear elastic body

Figure 5.5 — a) Linear elastic body with semi-infinite crack under Mode I loading with embedded
slip planes for analysis of the emission of the trailing and twinning partial dislocations. The
slip planes are characterized by atomic structural units. b) The three structural units that control
emission of the second partial dislocation.

Atom-by-atom energy changes are measured along the two possible slip planes in a manner
similar to that introduced in Section 4.3. Identifying such atomic energies are only possible when
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5.3. Energy changes near the crack-tip during second partial dislocation emission

using interatomic potentials where the total energy is represented as a sum of atomic energies.
More complex approaches would be needed to localize the measured total energy changes
when computed using quantum mechanical methods; Zamora et al. [97] have headed in such a
direction for the specific problem of step energies. The cell size, orientation, boundary conditions
and the minimization procedure are identical to those used in Section 4.3 for computing the
nucleation energy for the emission of the first partial W ¢;,..;. The difference is in the initial
configuration for which we use the completely relaxed crystal containing a stacking fault (see
Figure 9a). We then rigidly slide a portion of the left part of the crystal in the desired slip
direction. When the sliding plane is the twin plane, sliding is continued until the full two-layer
twinning fault is formed. When the sliding plane is the original stacking fault plane, sliding is
continued until the stacking fault is eliminated, which represents the emission of the trailing
partial dislocation. During sliding, we compute the energy change of each individual atom in the
domain as § B0 = Batom(A) — B (A = 0), where E2°™(A) is the atomic energy at slip
displacement magnitude A in the slip direction.

g [L11] .
12 3
— 0.005
Twinning
. = 0.00
slip plane
-0.005
[112] I
b -0.01
[111] (eV)

Twinning units Trailing units

Figure 5.6 — a) Initial configuration of the computational domain used to compute atom-by-atom
energy changes due to relative shear displacement along the trailing or twinning slip plane.
Energy change per atom after subtraction of the energy changes per atom corresponding to the
bulk GSF and GTF energies per atom, showing the energy changes due to surface effects near the
crack tip for b) the twinning partial and c) the trailing partial, at relative slip . Atoms in (a) are
colored by Common Neighbour Analysis [15] (green for fcc, red for hcp and white for surface);
Atoms in (b) and (c) are colored according to energy change shown by the scale. Energies of
atoms near the crack tip are off scale, and indicated in each figure.

The crack-tip dislocation emission influences the energies only near the crack tip, for both
twinning and trailing partial emission. This is demonstrated by subtracting the atom-by-atom
energy changes for the GSF and GTF sliding from the measured E%°™(A), as shown in
Figure 5.6b and c, at shear displacement A = b,,/2. For both twinning partial and the trailing
partial emission, (i) the energy change of the crack-tip/surface atoms differs significantly from
the response away from the crack-tip/surface and (ii) the energy changes relative to bulk response
are almost negligible immediately away from the crack-tip/ surface. The per-atom energy change
is crucial, but not sufficient to provide insights into the emission process. Therefore, we examine
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Chapter 5. New theory for crack-tip twinning in fcc metals

the energy change of the basic structural units along the slip plane as indicated in Figure 5.6.
We compute the energy change of structural unit i as § E}™* = 32, §ES*™ | where § E{*™ is
the contribution of atom j belonging to unit ¢, with the total energy change of atom j shared
equally between units to which it belongs. The energy due to one surface atom adjacent to the
first crack-tip trailing unit must also be added to the energy of that first unit (see Figure 5.6c).
The slip energy per unit sliding area is then obtained as by dividing by the area per structural
unit in the [112] x [110] slip plane, § E¥™!/(\/3a2/4). The author is taking an opportunity to
point out to a minor typo that has appeared in the original paper where lattice parameter ag to the
power of two was accidentally omitted.

The energies to shear each structural unit along the twinning and trailing slip planes, denoted
as Wi and Wired (j = 1, 2, ...n), are shown in Figure 5.7. Both T{"(A) and Wirei(A)
are notably different than all other units, ¥/ (A) and W74 (A). Furthermore, all other units
exhibit essentially the bulk response W™ (A) ~ \IIZQUJ%”(A), and UIT4(A) ~ \Ilg’;‘?l(A). The

Wt (A) is slightly different than the !4 (A) presented in Figure 3.1 because there are small

additional contributions to \IIZ’;‘}” (A) from the next two planes of atoms just above/below the two
planes of atoms immediately adjacent to the slip plane. Thus, the energy change along the slip
trail
- \IIQSf
change U4l (A) of the atoms in the as-defined second structural unit; this difference has no

plane is in fact nearly (A) but this is slightly underestimated by only considering the energy
effect on our main results. Several important features emerge from Figure 5.7. First, the energy of
the first structural unit for the twinning process is much smaller than for the bulk twinning process,
Plvin(A) « \Il?f]%"(A) Thus, during twin partial emission, there is no creation of the step and
in fact a decrease in the local surface energy due to atomic rearrangements. The first twinning
unit is therefore very easily sheared. Emission of the twin partial requires, however, continued
shearing further along the twin plane, and this shearing is controlled by W!%"(A) ~ \Iltgﬁ"}"(A)
Second, the energy for slip of the first trailing unit is always accompanied by additional step
energy and so, as for the first partial, is far above the bulk GSF energy, ¥} 4 (A) > \I/Zg‘;fl (A).
The step energy for the trailing partial is smaller than that for the first partial (see Figure 4.6)
because the trailing partial has a screw component along the crack front that does not contribute to
step formation (see also Schoeck [123]), but it remains significant and cannot be neglected. Note
that zero energy for these cases corresponds to the crystal with the stacking fault (after emission
of the first partial dislocation) and so, since the trailing dislocation annihilates the stacking fault,
the final energies are lowered and W;@‘?I(A =bp) = —7ssf. Due to the smaller step energy and
\Iltg’;‘}“ < 0 for A < 3b,/4, \I’tlmil does have a maximum value but well above the v,,7. Third,
the final value of W{"*"(A = b,), denoted as /2%, is 41744 = (0.35 = 0.03), for all materials
tested; this value is one-half the step energy for first partial emission fygtier;t ~ 0.77,. All the
above properties are shown for the particular case of Ni in Figure 5.7 but are observed in all other

materials studied here.

90



5.4. New theory for crack-tip twinning

750 T

600

450

300

U (mJ/m?)

150

0 0.5 1
Relative slip A/bp

Figure 5.7 — Slip energy change (per unit area) vs. shear displacement of the first trailing unit
(solid line), first twinning unit (dashed-dotted line), second twinning unit (dashed line), and
second trailing unit (dotted line), computed for fcc Ni [81]. The second twinning unit and second
trailing unit are negligibly different from the bulk GSF and GTF energies.

The above observations reveal the mechanisms for the second partial emission, as follows.
Emission of the twinning partial dislocation is controlled not by the very soft first twin unit but
by the second twinning unit, which responds like the bulk \I’Zf}”(A) with no step energy. Thus,
the Tadmor-Hai theory can be applied for predicting K fg’m but with a modification because the
second crack tip unit is not at the crack tip. Second, emission of the trailing partial dislocation
is similar to emission of the first partial, being controlled by the mechanical instability at high
step energies and reducing to the Rice criterion for low step energies. These mechanisms then
motivate a new theory for twin emission and use of the theory presented in Chapter 4 for trailing

emission, as discussed below.

5.4 New theory for crack-tip twinning

The energy analysis in the previous section shows that it is the second twinning unit that controls
the emission of the twinning partial dislocation. However, this key unit is not at the crack tip,
and so the Tadmor-Hai theory cannot be applied directly. The Tadmor-Hai theory assumes that
the driving force for emission is K7, just as for the first partial and trailing partial, and neglects
the fact that the twinning plane does not intersect the crack tip. In fact, the stresses acting on the
twinning plane differ from those acting on the stacking fault plane, and this difference must be
incorporated into the theory.

Specifically, to use the Tadmor and Hai model to predict K" we must relate the far-field

Ie,tip
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Chapter 5. New theory for crack-tip twinning in fcc metals

applied K7 to the local stress acting on the second twinning unit. Assuming linear elasticity, at
any applied K7 the ratio of the shear displacement on the trailing unit (at the crack tip) to the
shear displacement on the second twinning unit is some constant that depends only on the elastic

constants Cj g,

trail
Al

— = D (Cy). 5.1)
At j

For all the fcc materials studied here, and 0 = 70.5°, we find f(!) (Cijir) = 1.3 — 1.42 where the
superscript “1” denotes the first twinning emission (see below). For other crystal orientations
we find that the parameter f(1) (Ciji) varies only slightly, as shown for Ni in Appendix A.6.
Therefore, to achieve the necessary critical displacement At“”” for twinning at the second
structural unit requires an applied stress intensity that is a factor f ( )(C,J %) larger than the stress
intensity required to attain the same displacement at the crack tip. The critical stress intensity for
twinning at the second structural unit is thus larger than that predicted by Tadmor and Hai by the
factor f(1) (Cijkt)- The new criterion for the applied stress intensity for twinning is then simply

ﬁuft?p f( \/(’Yutf 'Yssf)o(e ¢fzrst)/F12(0) (5.2)

Figure 5.8 shows the predictions of Eq. 5.2 for all materials exhibiting “back” twinning, and
excellent quantitative agreement is found. The accuracy of the new theory for different slip plane
inclination angles is further examined in Appendix A.6; very good agreement is again obtained.
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Figure 5.8 — Critical stress intensity factor for emission as observed in the simulations (red
diamonds), along with the predictions of continuum theories based on the Peierls model (blue
circles), and the Andric-Curtin theory (orange squares) for the “back” twinning partial dislocation.

The above analysis neglects the shielding effect due to the first partial dislocation emission. The
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shielding by the first partial negative contribution (shielding) adds to the applied stress intensity to
give the total crack tip stress intensity. The above crack tip analysis remains valid for controlling
the emission process. Therefore, in the presence of the first partial, the remote applied stress
intensity factor for “back” twinning is

K= f (\/(’Yutf ~Yass)0(0, D pirat) [ F12(0) + kf + k?z) : (5.3)
We have simulated the emission of the second partial dislocation in the presence of the first partial
dislocation. The position of the first partial as a function of the applied stress intensity is an
outcome of the simulation. Figure 5.9 shows the predictions of Eq. 5.3 against the simulation
results for all materials showing “back” twinning, and excellent agreement is again obtained. Note
that there is no result for Al E [124], because this potential switches from “back” to “forward”
twinning in the presence of the first partial dislocation. A possible reason for this change is
discussed in Section 5.6. The results in Figure 5.9 reaffirm the accuracy of the detailed local
crack-tip analysis of the twinning process.
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Figure 5.9 — Critical stress intensity factor for the emission of the “back” twinning partial
dislocation including the effect of shielding due to the first partial dislocation, as observed in the
simulations (red diamonds) and as computed by the new twinning theory (orange squares).

5.5 Trailing partial emission: why twinning is observed in all simu-
lations

We now address why simulations show that twinning is always preferred when ¢z;.¢ = 0.

Twinning occurs when K% < K!rail Above we predicted K™ accurately, and therefore we
ratl

must nOw assess Kfe

. The energy analysis in Figure 5.7 shows that the step energy during
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trailing emission is significant, and this necessitates the application of the new theory for crack-tip
dislocation emission (see Chapter 4) for predicting K }2“”.

Material Twinning partial Trailing partial Ratio
Ko, (MPavin) Kl (MPayim) 9/ (usy = Yesr)

Al [81] 0.274 0.358 39.06
Al [124] 0.264 0.377 39.06
Au [126] 0.355 0.406 8.66
Ag*[126] 0.382 0.474 5.29
Cu [125] 0.485 0.608 10.54
Pd [126] 0.508 0.615 10.05
Ni* [81] 0.881 1.035 6.73
Cr10* [127] 1.142 1.443 3.86
Cr20* [127] 1.002 1.240 4.69
Cr33* [127] 0.842 0.997 6.22
Crd0 [127] 0.772 0.896 7.26
Cr50 [127] 0.684 0.789 9.42
Cr60 [127] 0.628 0.722 12.42
Cr70 [127] 0.598 0.677 16.74
Cr80 [127] 0.598 0.660 21.73
Cr90 [127] 0.630 0.671 25.03
Cr100 [127] 0.692 0.705 25.22

Table 5.1 — Predicted critical stress intensities for twinning (Eq. 5.2) and trailing (Eq. 5.5) partial
dislocation emission, for 17 fcc materials. The ratio of surface energy to unstable minus stable
stacking fault energy is shown, and the Rice theory is applicable when this value is below 6.9, as
indicated for those materials marked by an asterisk.

We first recall the analytical expression for Gﬁmt (Eq. 4.7). Furthermore, the step energy

trail

is sufﬁcieqtly high, vgey < (Yusf — Vssy) (see Table 5.1), in most materials studied and
fyzg]ﬁl = vggng ! /2. We thus substitute this latter expression into Eq. 4.7 and also replace 7, by
Yusf — Vssf in Eq. 4.7, leading to

GtImil _ { 0.07255 + 0-5(’Yusf _’YSSf)7 Vs > 6-9('7u3f - 'Vsz) (5.4)
c (')/usf - stsf)7 7: < 69(’7usf - 'Yssf)

The critical stress intensity factor for the emission of the trailing partial dislocation K }Zail is then

easily computed as

K};f;@lp =\/GYlo(0, ¢)/Fi2(6) cos drrai (5.5)

Using Eq. 5.5 to predict K", we find K75 < (K}.%! )pnew for all materials showing “back”
twinning, in a perfect agreement with simulations (see Table 5.1). Note that Eq. 5.4 also captures
the correct limit with respect to the ratio vs/(Yuss — ¥ssf), Where the Rice theory for K@il

is applicable for materials with a low step energy. Since emission of the trailing partial never
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happens at T=0K, we cannot prove the quantitative accuracy of Eq. 5.5 but it is consistent with
all simulations. As for the analysis of twinning, careful attention to the local crack-tip energetics
provides crucial insights for understanding of the mechanics of the crack-tip dislocation emission.

5.6 Forward twinning and twin thickening in fcc metals

Both the Tadmor-Hai theory and the new theory for crack-tip twinning are appropriate for
predicting Kﬁ”m when “back” twinning occurs. As noted earlier, the process of “forward”
twinning can occur by crack advancement by one lattice spacing followed by sliding along the
twin plane at the new crack tip (see Figure 5.3c). AtT' = 0K, the crack growth process requires
attainment of the Griffith critical stress intensity K. for cleavage. “Forward” twinning thus
occurs for materials where K. < K}g’m, with Kﬁf’m computed via Eq. 5.2. That is, before
“back” twinning can occur, the crack cleaves and the stress intensity is sufficient to nucleate the
twinning dislocation at the new crack tip ahead of the original stacking fault plane. Figure 5.10a
shows that Ag, Cr10 and Cr20 satisfy the criteria for “forward” twinning and these are indeed all
cases where forward twinning is observed. The Cr33 material also shows “forward” twinning in
simulations even though K. > K ?e”m, but the difference is quite small and discrepancies may
arise due to non-linear effects that are absent from our models. The standard Tadmor-Hai is
unable to distinguish between “back” and “forward” twinning, and predictions using Eq. 3.8 yield
Ki.> K ?e‘”" for all materials, indicating that “back” twinning would be expected in all cases.
The ability to distinguish between two different twinning modes provides additional support for
the qualitative and quantitative accuracy of the analysis and models (Egs. 5.2 and 5.3) presented

in this chapter.

The recognition of the different processes of “back” and “forward” twinning now changes our
understanding of further crack-tip twinning, after the first twin partial emission, as follows.
“Back” twinning for the second twin partial, thickening the twin by one additional layer, would
occur by nucleation even further from the crack tip than for the first “back” twin nucleation.
Being further from the crack tip necessitates a higher applied K to reach nucleation even though
the underlying process remains the same. In other words, the scaling factor f (2)(Cijk:l) for
second “back” twin partial emission is larger than the value f ) (Cijir) = 1.3 — 1.42 for the first
“back” twin partial. Each subsequent “back” twinning partial thus requires further increases in
applied K;. At some point, the applied K reaches K., after which the twin process changes
to thickening by the “forward” twinning mechanism. Assuming that the sharp crack cleavage
value of K. applies independent of the evolving shape of the crack tip as the twin thickens,
and ignoring for the moment the shielding effects of the twinning dislocations, the “forward”
twinning occurs at the n'" twin emission for which

f(")(Cijkl)\/(%tf —Yssf)0(0, Orirst)[F12(0) > Kpe (5.6)

Since the f(™ grow rapidly (f() ~ 1.4; f® ~ 1.7, f®) ~ 2.0;), the onset of “forward”
twinning is expected after only a few “back” twinning events. Figure 5.10b shows the Griffith
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Figure 5.10 — a) Critical stress intensity factor for Griffith cleavage K. (purple diamonds)
and predicted “back” twinning partial emission K }%’Zp (orange squares); forward emission is

predicted when K. < K ﬁ”;”i?p and the cases where forward twining is observed in simulations

are indicated. b) Critical stress intensity factor for Griffith cleavage K. (purple diamonds) and
simulated value of the critical stress intensity at the onset of “forward” twinning (red circles),
showing that forward twinning starts at Kj.. The number of “back” twinning events prior to
“forward” twinning is indicated for each material, as observed in simulation and, in parentheses,
as predicted by Eq. 5.6

value for cleavage along with the simulation stress intensity factor at which “forward” twinning
occurs, without shielding effects due to previously-emitted partial dislocations. The onset of
“forward” twinning occurs at an applied K very close to the Griffith cleavage K;.. The only
exception is the Cr10 material where “forward” twinning occurs high above K7j.; this is due
to some rearrangement of crack-tip atoms that delays “forward” twinning emission although
the cleavage process starts developing at K very close to K;.. Figure 5.10b also indicates the
number of “back” twinning partial dislocations prior to “forward” twinning as observed in the
simulations and as estimated by Eq. 5.6 (given in parentheses). The predictions are in a very good
agreement with the simulations for most of the materials studied here. The number of “back”
twinning partials observed in the Cr70-Cr100 materials is larger than estimated via Eq. 5.6; this
discrepancy may arise because of changes to the crack tip geometry being more important for
these materials. These results confirm that our analysis captures the change from “back” to
“forward” twinning with good accuracy.

As noted earlier, previously-emitted partial dislocations act to shield the crack tip. This shielding
occurs for both emission and cleavage processes. Ignoring mix-mode cleavage, the onset of
“forward” twinning can be estimated to occur at the n*® twinning event, where n satisfies

n Fs(6)
=l (k? ’ F12(9)k?1)]

v

f(n)(cukl) |:\/(’Yutf - 755f)0(07 gbfirst)/FlZ(e) +

>K]c+2k‘§l
i=1
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(5.7)

for any twin dislocation array, k}ll o< k? while f(™ > 1. Therefore, the onset of “forward”
twinning should occur sooner (smaller n) in the presence of the shielding that exists in the real
situation.

After the cleavage event, the “forward” twinning process is similar to the first emission process,
involving step creation. The “forward” twinning should be slightly easier, K {eomard < K., since
the process eliminates the stacking fault in favour of the twinning faults rather than creating a
stacking fault. Therefore, since the first partial emission necessarily satisfies K f(jmt < Kpe, the
entire twinning process is ultimately controlled by the conditions established for first partial
emission. The brittle/quasi-brittle transition is then truly determined by the conditions for the
first partial emission, even though increasing applied stress intensity factors are required to drive
subsequent twinning! And, the quasi-brittle domain actually intimately involves the cleavage
process — the crack begins to cleave but then is able to immediately emit another twinning partial
dislocation, leading to additional shielding.

Finally, crack tip cleavage may require local crack tip stress intensities that differ slightly from
Kj.. Cleavage above K. at T' = 0K can occur due to lattice trapping [79]. Probably of more
importance is that, as twinning (or trailing partial) emission evolve, the shape of the crack tip
changes and this changes the stresses acting around the crack tip. The influence of the crack shape
on at the atomic scale was first analysed by Gumbsch [55]. The twinning process leads to the
development of a wedge shape, which then involves stress concentrations at the two corners and
a differently-oriented crystal in the twinned region. If the cleavage process requires local stresses
different than those for the sharp crack, then this factor must be embedded into an effective value
of K. to be used in the analyses discussed here.

5.7 Concluding remarks

A new theory for predicting the critical stress intensity factor for crack-tip twinning in fcc metals
has been presented. The discrete analysis of energetic changes where the actual nucleation
takes place is again shown to be the key to the development of a predictive theory. It has been
shown that the emission of the twinning partial dislocation is not accompanied by the surface
step creation, but rather with energetic decrease near the crack-tip. The following conclusion is
that the Tadmor-Hai theory applies but additional modifications need to be introduced. The new
theory is based on a recognition that the twinning partial emission is controlled by the second
twinning unit along the twinning plane. The shearing energy change of the second twinning
unit is controlled by the bulk GTF energy. However, the stress acting at the second twinning
unit is lower than that at the crack tip. The lower stress is accounted through a new parameter
f(Cijrr) which is then incorporated in the new analytical formulation. Predictions for the K }Z’m
are shown to be in excellent agreement with simulations. The analytical model for predicting the
critical stress intensity factor for a trailing partial dislocation emission K }Z‘”l, which involves
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step creation, is based on the theory presented in Chapter 4. Comparison between K }’e‘”” and
K }2““ across wide range of fcc metals show why twinning is always preferred at 7' = 0K . Finally,
we find a new mode of “forward” twinning, which starts after only a few (0-4) “back” emission
events and is responsible for further twin thickening. “Forward” twinning is closely connected to
Griffith cleavage, and our analysis demonstrates that the twinning versus cleavage competition is
then fully determined by the competition for the very first partial dislocation emission.
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Stress-dependence of generalized
stacking fault energies

This chapter is extracted from the following publication:

(1) Andric P, Yin B, Curtin WA. Stress-dependence of generalized stacking fault
energies. Journal of the Mechanics and Physics of Solids. 2019 Jan 1;122:262-79.

6.1 Introduction

The Generalized Stacking Fault Energy (GSFE) W, is one of the most important properties
for understanding dislocation phenomena in crystalline materials [133]. The GSFE governs the
dissociation distance of fcc partial dislocations, the distribution of Burgers vector across the
core of a dislocation, and is used in the classic Peierls-Nabarro model to compute these physical
features [43]. The GSFE is also recognized as a crucial material property for describing nanoscale
plasticity, especially dislocation nucleation processes such as dislocation emission (i) from a
crack tip [50, 75], (ii) from a grain boundary [134, 135], (iii) during nanoindentation [136], and
(iv) to create crack-tip twinning [94, 91].

For a given slip plane and slip direction in a crystal, the GSFE is the energy associated with
an imposed shear displacement A between two non-sheared crystalline blocks. The standard
measurement is performed allowing displacements of all atoms normal to the slip plane, and thus
full relaxation of the normal stress (or traction) 7}, throughout the cell, leading to W 4 f(A sy Ay =
0). The normal relaxation gives rise to changes in the inter-planar spacings around the fault;
we denote the total inelastic normal displacement as A,,'. The changes in planar spacings are
often neglected. In some early mechanics works, computations held the two blocks rigidly at the
unstrained lattice constant of the crystal and then minimized the energy by relaxing the normal
displacement across only the two planes of atoms on either side of the fault plane [130]. In this
case, A, is slightly different than in the more-general case and is localized to the fault plane, but

"A used in Chapters 4 and 5 corresponds to A, used in this chapter. Opening displacement A,, is not considered
in the new theories presented in Chapters 4 and 5.
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again this is often neglected.

In fce metals, the focus here, favorable sliding occurs along the [112] crystallographic direction.
The GSFE has a local minimum at A, = b, where b, = ag/ V/6 is the magnitude of the partial
dislocation Burgers vector for fcc lattice parameter ag. The GSFE at this point is the stable
stacking fault energy vy, s. Prior to reaching the stable stacking fault, the GSFE has maximum
corresponding to the unstable stacking fault energy with energy -, . The quantities ~y,57 and
Yusf are primary fault energies used to understand various dislocation phenomena in metals.
Typical GSFE curves for Al [81], with full normal relaxation and relaxation only across the slip
plane, both at T, = 0, are shown in Figure 6.1. The difference between the two methods is indeed
small in this case, largely justifying the prior neglect of the differences between the two methods.

200
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£ 100}
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0 0.25 0.5 0.75 1
Relative slip Ag/bp

Figure 6.1 — Generalized stacking fault energy with full normal relaxation (blue squares) and
relaxation only across the slip plane (red diamonds) computed in Aluminum [81] at 7" = 0K.

The high stresses often associated with nanoscale phenomena suggest that the normal stress
dependence of the GSFE, and in particular of v, s and/or 7, f, are important. Rice and collabora-
tors postulated that 7,y decreases under a high tensile stress T;,, facilitating crack tip dislocation
emission [50, 130]. Such “opening softening” was estimated to decrease the critical energy
release rate for crack-tip dislocation emission by up to 30% in fcc metals [130]. Subsequently,
the notion of “opening softening” was invoked in different contexts but without a quantitative
analysis of its effects in each particular problem [119, 120]. The need for quantification motivated
several computational studies of the stress effects on the GSFE using molecular statics simula-
tions [129, 137] and first principle calculations [138, 139]. All of these studies reported “opening
softening”. The prior computational studies were performed under displacement boundary con-
ditions, which we show below can be problematic. In addition, the Rice theory for dislocation
emission is typically somewhat lower than detailed simulation studies (see Chapter 4) and so
“opening softening” would lead to further deviations between theory and simulation. In addition,

100



6.1. Introduction

our analysis for a crack-tip dislocation emission and twinning, presented in Chapters 4 and 5,
agrees very well with simulations of the critical stress intensity factor without including any
“opening softening” effect. These factors motivate us to revisit the measurement/computation of
the stress dependence of the GSFE more thoroughly than in earlier works.

GSF calculations under an applied stress can be envisioned in principle through two thermo-
dynamic interface quantities, (i) a generalized stacking fault (potential) energy GSFE, and
(ii) a generalized stacking fault enthalpy (GSFH, consistent with the standard thermodynamic
notation for the enthalpy as H = E + PV). The GSFE V¥, f(AS, A,,) is a local surface
constitutive law associated with shearing A and normal displacement A,. However, the to-
tal inelastic normal displacement observed under applied normal stress A, (Ag, T,,) extends
over several atomic planes around the stacking fault and so is non-local. A A,, cannot easily
be imposed since there are actually individual internal variables A,(f ) for successive planar
spacings ¢ = 0, £1, £2, .... By changing variables from normal displacement to normal trac-
tion, we can define W ¢ (Ag, Ay (T5)) = Vysr(As, T),) also as the GSFE (potential energy).
Under normal traction, not all interatomic planar spacings Aq(f) are accessible; only those cor-
responding to the imposed traction 7, can be measured. As noted above, the standard GSFE
is precisely W5t (Ag, Ap (T = 0)) = ¥ysr(As, T, = 0) and the value of A, (A, T,) is not
usually reported. Here, we apply a normal traction 75, and directly measure W (A, T),) and
An(As, Ty,). The GSFE W, ¢ (Ag, T,) generally increases, or remains nearly constant, over a
wide range of tractions approaching normal decohesion levels; there is no “opening softening”.

Under an applied traction normal to the fault plane, the relevant thermodynamic quantity for the
entire system is the enthalpy. Subtracting the enthalpy of the reference perfect crystal yields the
GSFH, \I/;’;}h(As, T,) = Vs (Ag, T) =T An(Ag, T,). When the normal opening is positive,
this quantity can decrease under increasing normal stress. Previously reported “opening softening”
results are essentially calculations of \I/Z’;}h [129, 137, 138, 139] (aside from detrimental finite
size effects). However, the term “enthalpy” was never used, and the quantity was often reported as
the GSFE (potential energy) under stress. The distinction between GSFE and GSFH is important.
While \IJZZ}}‘ is the proper thermodynamic quantity for the entire system under a traction normal
to an infinite fault plane, this quantity cannot easily be used in general mechanics problems and,

if used improperly can lead to spurious conclusions.

The importance of defining and distinguishing the various thermodynamic quantitates in mechan-
ics problems is thus highlighted here in two applications: (i) fcc partial dissociation under applied
normal stress, and (ii) crack-tip dislocation emission under mixed Mode II/I loading. We show
that a precise use and/or understanding of W, (A, T;,) and A, (A, T,) enables quantitative
understanding of explicit molecular statics simulations of these two problems. In particular, for
crack-tip dislocation emission, we demonstrate that there is no “opening softening” as previously
reported and the simulations are entirely consistent with the underlying ¥, ¢(A, T},) and
Ap(Ag, Th).
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Chapter 6. Stress-dependence of generalized stacking fault energies

6.2 GSFE under normal stress: simulation methods

We compute the GSFE under applied normal stress using interatomic potentials (and the
LAMMPS code [87]) and first principles density-functional theory (DFT) calculations (VASP
code [140, 141]) in molecular statics. The GSFE for relative sliding of two crystalline blocks of
material is computed in the standard manner (see Figure 6.2). At relative shear displacement Ag,
the GSFE is computed as

Uosr(Ag, Ty) = [E(As, Tn) - E(As=0, T;,)] /A (6.1)

where E(A; =0, T,) is the potential energy of a perfect crystal under stress 7,,, E(Ag, T,) is
the potential energy of the simulation cell at relative slip displacement A, and A is the area of
the simulated fault. Note that in the above, the work done by the applied stress is not included, so
that Eq. 6.1 is the desired potential energy.

hy(As T,)
h()(Asa Tn)

h_ (A To)

n(AsaTn) [h (AsaTn)
hi(AszoaTn)]

[110] [112]
X1

X3

Figure 6.2 — a) Typical simulation cell for computing the GSFE under applied normal stress, with
the lower and upper domains indicated by red and blue, and atoms on which forces are applied
indicated in green. b) Stacking fault region for describing the local constitutive behavior for rigid
block sliding under applied tractions 7;,. c¢) Inter-planar spacing around the stacking fault for a
given shear displacement A; and applied tractions 7;,. Atoms are visualized using OVITO [15].

In the interatomic potential computations, we first define a rectangular simulation cell oriented
with X = [112], X3 = [111] and X3 = [110], and dimensions 6v/6ag x 20v/3ag x 2v/2ag. We
set periodic boundary conditions along the X; and X3 direction in the plane of the fault, and
traction boundary conditions in the X5 direction normal to the fault. The simulation cell length
in the X5 direction is sufficient to prevent any interaction between the upper and lower surfaces
and the stacking fault. The desired stress along the X5 = [111] direction is created by applying
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6.2. GSFE under normal stress: simulation methods

forces to atoms within (7. = cut-off distance of the interatomic potential) of the top and bottom
X boundaries (see Figure 6.2a). At a given applied normal stress o995 = T,, we compute initial
atomic positions and the initial energy F(Ag = 0, T,,) by minimizing the total energy using the
“fire” method [88]. Under an applied load 7;,, the cell sizes along X; and X3 are held fixed;
thus lateral loads o1 and o33 develop as 7}, is increased. However, in finite-length simulation
cells, allowing relaxation of the total lateral stresses includes a compensation for lateral stresses
due to the fault itself; this leads to erroneous stresses away from the fault, and changes in stored
elastic energy that are then attributed to the fault only. Thus, it is best to use fixed cell sizes
along X7 and X3 with periodic boundary conditions; the GSFE under uniaxial stress is shown in
Appendix A.7 for comparison and differences are negligible. After the initial minimization, the
upper half of the crystal in the [112] slip direction is displaced relative to the (fixed) lower half
by the displacement Ag. The applied normal stress is held fixed for all shear displacement values.
As with standard GSF computations, atomic relaxation is allowed only in the X5 direction normal
to the slip plane and the minimum energy computed. We perform calculations in fcc Nickel,
Copper and Aluminum using the Mishin et al. EAM interatomic interactions [81, 125].

First principle DFT calculations of the GSFE in Cooper, Aluminum and Magnesium are performed
as follows. The exchange-correlation functional is treated within the generalized gradient
approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) parametrization [142]. Core
electrons are replaced by the projector augmented wave (PAW) pseudopotentials [143]. The
cutoff energy of the plane wave basis set is 800eV for Cu, 500 eV for Al, and 400 eV for Mg,
respectively. Simulation of the GSFE is accomplished using the tilted-cell method [144]. We start
with a simulation cell in the fully-periodic bulk crystal structure with the X; — X3 plane parallel
to the desired stacking fault plane. The (non-orthogonal) cell has lattice vectors (aj, az, as).
A new periodic simulation cell with lattice vectors (a1, a2 + Agt, ag) is then defined where ¢
is a unit vector lying in the X; — X3 slip plane and in the direction of the slip. The change in
periodicity thus introduces an initial atomistic fault across the X; — X3 periodic boundary of
the cell. All atoms are then permitted to relax in the Xo direction normal to the fault and the
length of the cell normal to the fault plane is also allowed to relax such that the normal stress is
the desired applied stress, 022 = T},. This procedure is appropriate for computing the GSFE when
atoms undergo no in-plane relaxations, which is true by symmetry for the fcc stable stacking
fault position and is generally valid for fcc and hcp basal fault planes (see [145] for notable
exceptions for other hcp slip planes). We use 12 atomic layers normal to the fault, which is just
about sufficient to avoid SF-SF interactions of the periodic images for the close-packed planes in
Cu, Al, and Mg. Our results for the stable stacking fault energies are then close to those reported
in other work [145] using different methods and different cell sizes. Other details of the DFT
parameters and geometry setup can be found in Ref. [145].

We now introduce few technical points that are crucial for achieving accurate DFT results. First,
the force convergence criterion must be selected carefully. In some cases, it must be smaller
than the value of 1073eV/A typically used in DFT studies. The smaller value is necessary
due to energy contributions arising from the corresponding uncertainty in the stress state when
stress boundary conditions are used. For an uncertainty in stress of do, the uncertainty in the
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energy is dF = %(ala2 + 20do) assuming linear elasticity, where C' is the plane-strain elastic
modulus for loading along the x5 direction. Taking Mg as an example (C33 = 63.6GPa, atomic
volume 22.9A% | 12 atoms in the supercell), in the stress-free state (7}, = 0) force convergence at
103eV/A corresponds to do ~ 7-1073GPa and dE ~ 7-10~"eV, which is negligible. However,
at a stress 1,, = HGPa, the error is dE ~ 0.9meV. Since the GSFE energy is calculated by
subtracting two supercell energies, this uncertainty in the supercell total energy can cause a large
uncertainty in the computed GSFE, with uncertainty of ~ 3mJ/m? for Mg. Here, we choose
10_4eV//°%(~ 0.7-1073GPa) for Al and Mg, reducing the total error in energy to ~ 0.09meV and
thus good accuracy in the computation of the GSFE. For Cu, the effective elastic constant C
is approximately four times larger than that of Mg so that a force tolerance of 10 3eV/A leads
to an error of 0.3meV at 5GPa, and hence only an error of 1.3m.J/m? in the GSFE. Difficulty
in converging of ionic relaxations in Cu limits the force tolerance to 10~3eV/A and so it is not
possible to reduce the error further. This discussion also shows that a smaller number of layers
introduces less error. But too few layers lead to spurious interactions among the periodic images
of the SF. We find that 12 layers of atoms is satisfactory for avoiding both problems.

6.3 GSFE under normal stress: results

Figure 6.3(i) shows the GSFE ¥, ¢ (A, T},) as computed for Ni, Cu, and Al using interatomic
potentials for a range of applied normal tensile stresses up to 7;, = 15GPa. In Ni and Cu, the
entire GSFE curve increases with applied normal tensile stress; the increases in W, ¢ up to 10GPa
are fairly small, however. Similar trends are generally found in Al but the GSFE does decrease
for the highest stress and large shear displacements, W (A > 0.7b,, T, = 7.5GPa), where the
normal stress is approaching the material cohesive stress (maximum sustainable normal stress
in the material). Focusing on the most important points of the GSFE, the unstable and stable
stacking fault energies 7,55 and 7,5 s, Figure 6.4 shows 7, and 7,y normalized by their values
at T;, = 0GPa. In Ni and Cu, 7,y is fairly insensitive to stress up to ~ 10GPa, while 7,
increases more rapidly in Al. In contrast, 7,5y varies more rapidly with stress, especially in
Al and Cu. Al does show “opening softening” (normalized values below unity) at 7;, > 6GPa.
Overall, the trend for all materials is “opening hardening”.

Studies using EAM potentials enable us to analyze atom-by-atom energy changes around the
fault. For all shear displacements, the energy contributions to the GSFE are localized to two (Ni
and Cu) or three (Al) atomic planes on each side of the slip plane. Figure 6.5 shows examples at
the unstable and the stable stacking fault displacements for Ni. This is fully expected since the
GSFE is the energy change of the atoms due to the presence of the planar fault, and deviations
from perfect crystal behavior are well-known to extend only a few layers of atoms from the defect
plane even for much more drastic planar defects such as free surfaces and grain boundaries.
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Figure 6.3 — (i) The GSFE W, and ii) total inelastic normal displacement A,, across the slip
plane for different applied normal stresses T5,; (iii) The GSFE W, ; for different applied inelastic
displacements A,,; (iv) GSFH versus shear displacement A for different applied normal stresses
T,. All values are computed with interatomic potentials at 7' = 0K in a) nickel, b) copper and c)
aluminum.

Figure 6.6(i) shows the GSFE versus applied normal stress as computed via first-principles for Al,

Cu, and the basal plane in Mg (which is very similar to fcc). In all three materials, the qualitative

trends are similar to those obtained using interatomic potentials. There is no “opening softening”.
For the stresses considered here, the DFT-computed GSFE is nearly constant in Cu and Mg and
increases in Al. Quantitative differences between DFT and interatomic potentials are expected,
with the DFT being the reference, but the differences are not significant relative to our main
points. These results also show that the GSFE typically increases with applied stress. There is no
“opening softening”, in contrast to prior concepts and results in this literature. This is the first

main result of this paper.
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Figure 6.4 — Normalized stable s, s and unstable stacking fault -, s energies in Ni (blue color),
Cu (red color) and Al (green color) versus applied normal tensile stress.

0GPa b)T,= 10GPa

. 0.011

— 0.00825

. 0.017

— 0.00127

— 0.0085

— 0.00275 — 0.00425

o0 ! Qoo eoe !

Figure 6.5 — Atom-by-atom energy change during rigid block shear displacement at the point of
the unstable stacking energy v, and stable stacking fault energy 7,5y in fcc Ni under a) zero
applied stress, and b) at the applied stress 7}, = 10GPa. Note that contributions to the energy are
confined to a few layers of atoms around the fault. Energies of atoms exceeding the energy scale
are indicated.

We further examine the inelastic normal displacement under applied normal stress. The A,,(Ag, T},)
represents a total change in atomic planar spacings, over several atomic layers around the stacking
fault, due to the change in local atomic environment away from the perfect strained crystal. Defin-
ing h; as the atomic inter-planar spacing perpendicular to the slip plane between the (i — 1)th
and i*" planes (see Figure 6.2¢), A, (A, T},) is computed as

+00

An(Ag, T) = Z [hi(As, Th) —hi(As =0, Tp,)] (6.2)

1=—00

Non-zero inelastic displacements are always found over the three atomic plane spacings (central
plane and one on either side of the fault -1 < ¢ < 1) (Figure 6.2c) but can extend up to five plane
spacings —2 < ¢ < 2 in some cases as computed by first principles methods. We note that in DFT
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Figure 6.6 — (i) The GSFE W, (ii) total inelastic normal displacement A,, across the slip plane,
and (iii) GSFH versus shear displacement A for different applied normal stresses as computed
in DFT in a) copper, b) aluminum and c) magnesium {0001 }.

computations there are very small variations in interplanar spacing throughout the entire cell
due to non-zero forces below the DFT tolerance level; these are numerical noise and arise even
in simulations of the stressed perfect crystal. Figure 6.3(ii) shows the total inelastic normal
displacement A, (As, T},) computed via interatomic potentials for Ni, Cu, and Al at the various
normal stresses T),. A,, generally increases with increasing applied stress. Only in Al at high
shear displacement and high normal stress does the opening decrease. Figure 6.6(ii) shows similar
trends in A,, obtained from the first principle calculations, with no decreases in A,, observed in
any materials. Overall, the inelastic normal displacements follow the same trends with stress as
the GSFE.

From the results in Figures 6.3(i,ii), we can computed the GSFE VU (A, A,) for different
magnitudes of the inelastic normal displacement A,, over certain ranges of displacement as shown
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in Figures 6.3(iii). Only those inelastic normal displacements corresponding to equilibrium
conditions at the imposed normal stresses are accessible but the trends are clear. Figure 6.3(iii)
clearly demonstrates an “opening hardening” trend: the GSFE increases with increasing A,,.
The physical origin of the “opening hardening” is not clear. At high stresses where the effect is
largest, the entire material is deforming non-linearly and the inelastic normal displacements also
vary with applied load. Hence, we have not been able to attribute the small total energy changes
(that ultimately lead to increases in the fault energy) to a single specific mechanism.

The GSFE and the total inelastic normal displacement then allow for the computation of the
generalized stacking fault enthalpy (GSFH) as

qj;?;h(ASv Tn) = \Ilgsf(ASv Tn) - TnAn(ASa Tn) (63)

Figures6.3(iv) and 6.6(iii) show the GSFH versus shear displacement A, and normal stress 7},
for all cases studied here. The GSFH always decreases when 7}, > 0, although A, is not always
positive, and the decreases can be a significant fraction of the zero-stress energy. Incorporating
this apparent “opening softening” directly into mechanics problems as a replacement for the
GSEFE is, however, not quite accurate. The GSFH is measured only when the planar fault extends
entirely across the area of the system. Geometry effects in mechanics problems differ, and
thus the use of GSFH is not appropriate in all cases. The combination of W4, ¢(A,, T5,) and
An (A, Ty), or the use of Wy r(Ag, Ay) is more general, as we will show below.

6.4 GSFE under normal applied loading: boundary conditions and
size effects

Direct use of stress boundary conditions leads to clear results and insights about the GSFE and the
inelastic normal displacement A, (Ag, T),), from which the GSFH can be computed. Previous
computations reporting “opening softening” used displacement boundary conditions [129, 137,
138, 139]. The enthalpy change associated with a localized planar defect in a material can
be computed using either stress or displacement boundary conditions at infinity, and so in
principle boundary conditions should not matter. However, only the enthalpy is obtained and
simulations, especially DFT studies, are not performed on infinite systems, leading to size-
dependent differences. For the stacking fault problem under an imposed normal displacement, the
inelastic normal displacements lead to relaxation of the stresses throughout the entire simulation
cell so as to maintain the imposed displacements on the cell. The relaxed stresses lead to relaxed
elastic energies far from the stacking fault that are included into the calculation of the fault energy.
The result is not the GSFE nor the GSFH, but asymptotically approaches the GSFH for large
sizes.

The analysis of finite-sized cells under displacement control is simple because the planar fault
problem is essentially one-dimensional in the X5 dimension only. In a cell of length Ly with
imposed total displacement ws, the strain in the reference calculation at zero shear displacement
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is €99 = ug/Lo. The total stored elastic energy in the cell of volume V is then
L, 9
Eelastic = 50622‘/ (6.4)

and the normal traction is T;, = Ceso, where C is the plane-strain elastic modulus for loading
in the Xy = [111] direction. At shear displacement Ay, with inelastic normal displacement
A, (As, T,,) across the cross-section of the cell, the total displacement is unchanged but now
given by ug = Ay, + €22 Lo. The elastic strain is thus decreased to €22 — A, (Ag, T},)/Lo. The
stored elastic energy in the system is then

1
Eelastic = 50[622 - An(ASa Tn)/L2]2V (6.5)

The elastic energy released upon introduction of the shear displacement is the difference between
Eqgs. 6.4 and 6.5. Dividing by the area A, with V' = ALs, leads to

. 2
Eelastzc(A) __ CGQQAn(As, Tn) + chn(A& Tn) _
A 2 Lo 6.6)
5 .
= T An(As, Ty) + lgw
2 Lo

The change in total energy, including the actual change in potential energy ¥, ¢(Ag, T5,) of the
fault, is then

\Ildisp(Asa T?’L) :‘I/gsf(As, Tn) =+ —EEIaSZC(A) =
1 AZ2(A,, Ty)

gsf

6.7)

=V r(As, Tp) = TnAp(Ag, Tyy) + C—
2 Lo

This result is neither the GSFE nor the GSFH, although it approaches the GSFH as Ly — oo. The
rate of approach to the GSFH depends on A, (Ag, 7)), which is unknown in advance and is
both traction-dependent and material dependent. Computations using a single simulation cell
size for different tractions and/or different materials thus introduce uncontrolled errors in spite of
appearing to be systematic.

We demonstrate the convergence issue explicitly using interatomic potentials under displacement
boundary conditions as follows. We use same rectangular simulation cell (X; = [112], X» =
[111], X3 = [110]) and later cell dimensions (L1 = 6+/6ag, L3 = 2v/2ag) with periodic
boundary conditions in X; and X3. We consider X5 lengths between 10 and 240 [111] atomic
planes. For a desired applied normal stress 77,, the corresponding applied normal strain ez9 is
computed from Hooke’s Law. The atomic positions are initialized by linearly displacing all atoms
at 9 by x2€99 in the [111] direction. The initial total energy E'(As = 0, €22) is computed by
relaxing all the non-boundary atoms using the “fire” method [88], while the boundary atoms
(atoms within 7. of the X5 boundaries at 2 = 0 and x2 = L2) are held fixed at the imposed
displacements corresponding to the applied strain es2 (see Figure 6.2a). We then rigidly slide the
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upper half of the crystal in [112] slip direction, holding the X5 positions of the boundary atoms
fixed and allowing all other atoms to relax in the X5 direction normal to the slip plane. The total
energy of the simulation cell E(Ag, €92) versus slip displacement is then computed for all three
studied materials. The apparent energy change is then calculated using Eq. 6.1.

Figure 6.7 shows the normalized values of v,y and 7,7 at the applied strain of €22 = 0.045 as a
function of the X5 dimension (number N of [111] atomic layers). This applied strain corresponds
to an applied stress of ~15.8GPa in Ni, ~9.8GPa in Cu, and ~5.1GPa in Al. Since all other points
on the GSFE curve follow a similar evolution we do not present them. Figure 6.7 shows that at
least 100 [111] atomic layers are needed for reasonable converged results \Ifcglisfp ~ \Ilgf;}h at this
applied strain. In addition, since we do not control either the normal traction nor the inelastic
normal displacements, and since the material might be nonlinearly elastic at high strains, the
simulation results in Figure 6.7 may not be corrected simply by using Eq. 6.7.
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Figure 6.7 — The size dependence of a) fyZisfp and b) wfijf’ using displacement boundary conditions
along with 'yZZ}h and 'ygf:}h computed using Eq. 6.3 and shown on the right axis, at the applied
strain of ez2 = 0.045 in nickel (blue diamonds), copper (red squares) and aluminum (green

circles).

The use of displacement boundary conditions in DFT has further been studied in Cu for the
stable stacking fault energy ~,,¢. The displacement boundary conditions are as described above,
but using the tilted cell method and a cell length of 12 atomic layers. Table 1 shows v, and

A,, computed using stress boundary conditions along with yggjfh, computed using Eq. 6.3, and

disp computed using displacement boundary conditions for different applied normal stresses.

Vss f
With increasing applied stress, there is a difference between vg;jcp and vggjfh, with vggfh < vg;‘;p

as expected. The difference here is not large because A,,(Ag, T},) in Cu is particularly small
(see Figure 6.6(ii))) but the trend is clear. Larger errors would be found in the other materials
using the same cell size. Thus, obtaining converged results in DFT using displacement boundary
conditions is not attractive since (i) the inelastic normal displacement A,,(Ag, T;,) is not known
a priori, (ii) the size needed for convergence is not clearly established a priori, and (iii) the direct
application of stress on much smaller cells, as done here, provides all the necessary information
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with far less computational effort.

T ey An 0 (Eq.63) A%
(GPa) (mJ/m?)  (A) (mJ/m?)  (mJ/m?)
0 40.9 0.011 40.9 41.0
5 40.6 0.014 33.6 34.6
10 40.7 0.016 24.7 27.7

Table 6.1 — Stable stacking fault energy ~y,, ¢ and inelastic normal displacement A,, computed in

copper via DFT using stress boundary conditions along with the stable stacking fault enthalpy

7§g}h computed using Eq. 6.3, and wgsijcp computed using displacement boundary conditions.

6.5 Applications of the GSFE

Section 6.3 has clearly highlighted that the GSFE and GSFH are the two thermodynamic quantities
that arise during GSF calculations under an applied normal stress. In addition, the crucial feature
above is the inelastic normal displacement A,, across the stacking fault plane that enters in both
Vs and \Ifgg‘}h. Here, we examine which thermodynamic quantity is most appropriate to use for

describing different mechanics problems.

6.5.1 GSFE: An analysis based on the Eshelby method

The stacking fault induces normal inelastic displacements A,, of the atomic planes just around the
fault plane (Figure 6.2b and 6.2(ii)). The local nature of A,, suggests that stress dependence of
the stacking fault can be derived using an Eshelby-type analysis [24] where the inelastic normal

T associated with an “inclusion” confined to the

displacement is treated as an “‘eigenstrain” €
stacking fault region. Any finite length stacking fault must be bounded by partial dislocations
but here we first outline the general Eshelby analysis and then in Sec. 6.5.2 we apply it to the

prediction of the fcc Shockley partial dissociation distance under applied normal stress.

Following standard analysis, consider a body with no inclusion that is subjected to external
surface tractions T applied over the boundary S. The total free energy of the body, which is the
generalized enthalpy, is

1
== f o edy - [ TAutds (6.8)
2Jv S

where o}, € and u” are the stress, strain, and displacement due to the applied load T4. The
first term is the elastic energy stored in the volume V' and the second term is the work done by
the applied tractions T on S. Now consider the insertion of an inclusion of area A having the

same elastic moduli as the body but having a chemical energy change ¥, ;A and undergoing
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some eigenstrain €’ . The enthalpy of the system is then
1
Fy= fv(aA f o) (ehte)dV - fs TA(u + w)dS (6.9)

where o, € — €/ and w are additional and unknown stress, elastic strain, and displacement fields,
respectively, generated by the inclusion that undergoes some eigenstrain €’ . Using integration by
parts, Gauss law, and some simple algebraic manipulations (for more details see [24, 146]) the
enthalpy can be written as

1 1
B3 [ otietav— [ Thutas - [ oiefav - [ Thuds+ UyA. (610)
2Jv s 2Jv s

The third and fourth terms are elastic energy stored in the body only due to the inclusion
eigenstrain and an interaction energy corresponding to the external work done by the deformations
caused by the inclusion, respectively. The change in enthalpy is then

1
AF=-= [ og:ePdV - | TAudS + U 4 A. 6.11)
2 Jv S 9sf

Our computational results above shows that the W, itself is stress-dependent, but this can be
folded into Eq. 6.11 by self-consistently computing the actual stress inside the inclusion. This
does not change the main features of our analysis.

The analysis presented above is rather general and does not depend on the inclusion shape. Now,
consider a plate-like inclusion that extends across the entire crystal. This corresponds to the
stacking fault configuration used to compute the GSFH (see Sec. 6.2 and Figure 6.2). The first
term in Eq. 6.11 then disappears since the inclusion is not constrained by the surrounding elastic
material and therefore generates no additional stress (o0 — 0). Thus, the change in crystal
enthalpy becomes

AF = T, ApA+ U, A (6.12)

where 2u = 2ug = A,, on the body’s outer boundary (u2/2 displacements on the top and bottom
surfaces normal to the fault). Dividing Eq. 6.12 by the stacking fault area leads to

AF
7 = —TnAn + \Ilgsf (613)

which is precisely the GSFH. Note that Eq. 6.13 is only valid when the stacking fault region
exists across the entire crystal. When the stacking fault region is confined, e.g. surrounded by
elastic material (Shockley partial dislocations in fcc metals, dislocation emerging from a grain
boundary, etc.), the change in crystal enthalpy is given by Eq. 6.11.

Further integration of Eq. 6.11 using Gauss law leads to the alternative expression

AF 1
— = o:eldv

A T
1 : eTdV + 0, 6.14
A 24y, g e av T Bsf 6.14)

Ay
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T exists

The two volume integrals are non-zero only within the inclusion volume V; because €
only inside the inclusion, regardless of the inclusion shape. Often, the first term is small because
the additional stress caused by the inclusion eigenstrain is proportional to €’ and so this term is
second order in €. The second term is similar to the contribution —7},A,, but is not exactly the
same. From Eq. 6.14, it is clear that, even for an infinite elastic space subject to traction boundary
conditions, the GSFH emerges only as a special case for a specific geometry (the infinite fault),
although the overall free energy change has an “enthalpy-like” nature to it (due to the second

term in Eq. 6.14).

6.5.2 Shockley partial dislocation dissociation under applied normal stress

The analysis presented in the previous section can be applied to analyze the stress dependence of
fcc partial dislocation spacing. In fcc metals, it is energetically favorable for a perfect dislocation
of Burgers vector %(1 10) to dissociate into two Shockley partial dislocations with Burgers vectors
of the é(l 12) type [43]. The slip in between the two partial dislocations, along the (112) direction
between closed-packed {111} atomic planes, generates a stacking fault with energy cost (per
unit area) yssf = Wgsr(A = by, T), = 0). The elastic interactions between the two partials are
repulsive and so the partial dislocations have an equilibrium separation that balances the elastic
and stacking fault energies.

At zero applied normal stress, the analysis is standard; we use isotropic elasticity to enable clear
analytic expressions. We consider an infinitely long edge dislocation lying along the £ = & and
dissociated into two parallel partials with a stacking fault between them (Figure 6.8). The partial
Burgers vectors by and bs lie at angles 6 = 60° and 6 = 120° with respect to the dislocation line
£. At partial separation d, the crystal energy (per unit length) is

F=Wi+Ws+ Wi +s5d (6.15)

where W7 and W5 are the elastic self-energies of the partial dislocations, and W4 is the elastic
interaction energy between the two partial dislocations [43]
_pby-€)(b2-8), 4 p d

2m Mol T 2e(1-v) [(b1>£)- (b2 x£)] lnﬂ (6.16)

Wi =

with 1 and v the shear modulus for sliding along (110) direction and Poisson’s ratio, respectively.
The self-energies of each partial dislocation do not depend on the partial separation and so do not
influence the equilibrium separation. Therefore the equilibrium distance minimizes W12 + s rd,
leading to the well-known result

,ublz, v+2

= . 6.17
8T Yssf 1 =V ( )

Using material properties for fcc Ni and Al as described by the EAM potential [81] (see Appendix
B), the dissociation distances are and dy = 16.3A, dg = 10.1A, respectively. A full anisotropic
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analysis for Ni yields 19.1A, but anisotropy does not affect the major findings below.

X=[111]

X 15[121]

X3 =[101]
Figure 6.8 — Geometry used to simulate the equilibrium separation d between Shockley partial
dislocations under normal stress applied that is perpendicular to the slip plane (along xo axis).
Red color indicates partial dislocations and dislocation lines along x; axis, while the grey color

represents the stacking fault. Orange color indicates the elliptic cylinder that undergoes some
eigenstrain €’ = €1, = A,,(A;, T,). Blue color indicates boundary atoms.

We now examine the partial dislocation dissociation distance with increasing applied stress per-
pendicular to the slip plane TA =Ty =T,. Eq. 6.17 suggests that applied normal stress nominally
affects the stable stacking fault energy. Because the stacking fault defect is completely surrounded
by linearly elastic material, we treat the stacking fault as a defect with an eigenstrain using the
analysis of the previous section (Eq. 6.14), as follows. The inelastic normal displacements exist
over several atomic planes around the fault plane. We thus consider the stacking fault as an
elliptic cylindrical inclusion having major axis length d (the stacking fault length) and minor axis
length a = 3h where h is the {111} atomic plane spacing (Figure 6.8). The choice of a = 3h
is based on the measured inelastic normal displacements in each plane, as shown in Figure 6.9.
The total inelastic displacement A,,(Ag, 7T5,) is the sum over the planes. DFT calculations show
inelastic displacements over one additional pair of layers, suggesting a = 5h, but this does not
influence the main result (see below). The inclusion has the same elastic properties as the matrix

T = el, = Ap(As = by, T),)/a. The eigenstrain itself depends on the applied

and an eigenstrain €
normal stress and so is a non-linear eigenstrain (see Figure 6.9); again, this does not influence the

general analysis.
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Figure 6.9 — Inelastic vertical displacement at the stable stacking fault position (A, = b,) in

a) Ni and b) Al between atomic planes immediately across the slip plane (A,(lo)) (red color), and
between atomic planes just above and below the slip plane (A%l)) (blue color). The inelastic
vertical displacement is zero everywhere else, as shown here for(Ag)) (orange color).

Due to the inclusion with eigenstrain but with no applied stress, there is an additional elastic
strain energy contribution per unit length of dislocation of
1 T
Wp=-- o:e dA (6.18)
2 JA;
where A; = adr/4 is area of the inclusion in the 25 — x3 plane. The stress inside the elliptical
inclusion is constant [24], and given by

o=C(S-I)e" (6.19)

where C' is the stiffness tensor, S the dimensionless Eshelby tensor for an elliptic cylinder [24,
146] and I the identity tensor. Within isotropic elasticity, C11 = 2u(1 - v)/(1 - 2v), Ci2 =
2uv/(1 - 2v) and Cyy = p. The elastic energy (per dislocation length) due to € is then simply

1
W = —§C(S—I)6T:6TA1 (6.20)

This contribution is, however, generally negligible. Note also that the interaction energy between
the partial dislocations and the inclusion stress field is zero, in isotropic elasticity, because the
eigenstrain €’ has only one non-zero component along x5 direction and the dislocation stress
field is antisymmetric with respect to the 1 — x3 plane. So, at zero applied traction, the energy
remains essentially that of Eq. 6.15 and the dissociation distance that of Eq. 6.15.

When a stress is applied normal to the stacking fault plane, the second energy contribution
in Eq. 6.14 must be added to the total energy. For the (elliptical) inclusion with the €, this
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interaction energy is

W, =-o: el A; (6.21)
The equilibrium dissociation distance d then minimizes the energy

Wiotat = Wiz + Vs r (A = by, Tp)d+ Wi+ W (6.22)

Since o4 = 02“2 =T, €f = ek, = Ay (A = bp, Tn)/a, Ar = adrm/4, and W7 s negligible, the
energy functional reduces to the simple form

Wiopal = Wi + d [\Ifgsf(As = by, T,) - %TnAn(As = by, Tn)] . (6.23)

The stress dependence of the GSFE thus appears to reduce the relevant stacking fault energy. The
partial separation is then predicted to be

ubf, v+2
87 [Wgsr(As = by, Tp) =TT A (Ag = by, Tp)| 1 -0

d(T,) = (6.24)

There are four contributions to the stress dependence of d(7T},): (i) the interaction energy between
two partials, (ii) the change of ¥, f(A s = by, T,) with the applied stress (Figure 6.4), (iii) the
coupling of applied stress and inelastic displacement A,,, and (iv) the geometrical parameter
7 /4 arising because the inelastic displacement is spread over several planes and localized to the
dislocation volume, represented by the elliptical geometry. The net result is an increase in the
partial dislocation separation with increasing applied normal stress — that is, there is an “opening
softening”. However, the direct application of the GSFH as a replacement for the GSFE would
not have the factor of /4, and thus would predict a larger partial spacing.

1.6 3
a) Ni b) Al
—Eq.617 with xpgg;h(As=bp,Tn) —Egq.617 with xpgg;h(As=bp,Tn)
—Eq.6.24 U 25 | —Eq. 624
14 Simulation A Simulation
7 /
<3 <2
o S
1.2
1.5
1 =
[ . . . . 1 . . . .
0 3 6 9 12 15 0 1 2 3 4 5

T_ (GPa) T, (GPa)

Figure 6.10 — Equilibrium separation between partial dislocations in a) Ni and b) Al at different
applied stress that is perpendicular to the slip plane, normalized with its value at zero applied
load, as predicted by Eq. 6.17 with ’yﬁ?}h (black line), or by Eq. 6.24 (blue color), and as observed
in atomistic simulations (orange squares).
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As seen in Figure 6.9, the inelastic normal displacements at small 7}, for Ni are negative and are
zero at just above T}, = 3GPa. Thus, the theory predicts that the dissociation distance will actually
decrease for T, < 3GPa. In Al, A, is positive for all T,, and much larger than in Ni, and so the
dissociation distance is predicted to increase, and more rapidly than in Ni. A subtlety in applying
the elasticity analysis at high 7, is that the underlying material becomes nonlinearly elastic. To
account for this, we use the tangent modulus p = p(7},) and Poisson ratio at the far-field applied
stress T}, (see Appendix A.1). This approximation is valid because the problem can be envisioned
as first homogeneously deforming the entire material (non-linearly) and then adding a dissociated
dislocation into this material. Linearizing around the homogeneously-deformed state enables
application of superposition upon addition of the dislocation, similar to the usual introduction
of a dislocation into an unstrained (but still non-linear) atomistic material. Figure 6.10 shows
the partial spacing versus applied normal stress as predicted using (i) Eq. 6.24, and (ii) Eq. 6.17
with \IIZZ}}L(AS = by, T5,). In both cases we use ;o = ;(T5,). There are significant quantitative
differences between two cases, especially at higher applied loads. Both cases (i) and (ii) do show
an “opening softening” effect, although it is almost zero in Ni for 7;, < 3GPa due to the small
negative inelastic eigenstrains.

To evaluate the above predictions, we execute simulations using interatomic potentials for Ni
and Al. We use the standard methods [147], as follows. The simulation cell is oriented with
X, = [121], X = [111] and X3 = [101] (Figure 6.8) with dimensions of ~ 25 x 250 x 600A®
(345,400 atoms) that we have verified to be sufficient for converged results. Note that there was
a minor typo in the original paper with dimensions along particular directions being ordered
incorrectly. We insert a {111}(110) edge dislocation by adding a periodic {110} plane in the
upper half of the crystal that is spread over predicted equilibrium separation distance at 7;, = 0.
Periodic boundary conditions are applied along X; and X3 directions with free surface in X5.
The system energy is then minimized by the “fire” method with force tolerance 10-%¢V/A on
every atom. The equilibrium distances are then measured as dg = 21.8A in Ni, and dy = 13.6A in
Al these are slightly higher than predicted by Eq. 6.17 but typical for fcc metals due to the neglect
of non-linear effects, spreading of the partial Burgers vector, and the assumption of isotropic
elasticity. A normal traction 7, is then applied on the system via vertical forces applied on the
boundary atoms within 7. of the X9 surface boundaries (Figure 6.8). The system energy is again
minimized and the equilibrium partial separation measured. The simulated partial spacing d versus
applied stress T;, is shown in Figure 6.10 along with the previous predictions. The simulations
agree very well with the predictions of Eq. 6.24, which is the complete theory including the
multi-plane distribution of inelastic normal displacements represented as an elliptical inclusion.
The prediction using simply the enthalpy \P;’;}h shows the same trend, but is much larger than
observed in both Ni and Al. The simulation results thus confirm the full theory. There is an
“opening softening” effect due to the coupling of the inelastic normal displacement to the applied
stress, but it is smaller than predicted simply by using the GSFH.
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6.5.3 Crack-tip dislocation emission under mixed Mode II/I loading

The previous section has shown a softening effect with applied normal stress for an existing
dislocation with existing stacking fault in an infinite elastic medium. Many problems of interest
involve dislocation nucleation in which the fault is emerging from some stress concentration
and the relevant quantity is the unstable stacking fault energy. Here, we examine the effects of
normal stress on one standard problem: emission of a (partial) dislocation from the crack tip of
an fcc metal. We use Mode II loading, with an additional Mode I loading to create the normal
stress acting on the plane of the dislocation nucleation. This problem cannot be treated using the
Eshelby analysis of Sec. 6.5.1 since the partial stacking fault emerges from a crack and so is not
surrounded by an infinite elastic medium.

A theory for dislocation emission from a crack tip under Mode II loading, developed by Rice [50],
is summarized in Section 3.2 of this manuscript. For a slip plane coplanar with a crack plane,
critical Mode II stress intensity factor for dislocation emission K;;. depends on the unstable
stacking fault energy vys = Wqqr(As » bp/2) and the material elastic properties. Molecular stat-
ics simulations showed the Rice theory to be accurate for this crack geometry (see Chapter 4.2.2).
For the same crack geometry under mixed Mode II/I loading, there is no exact solution. However,
a numerical solution can be obtain by introducing the coupled opening-shear constitutive law
U,.7(As, Ay) along the slip plane and solving coupled integral equations for the slip displace-
ment of an incipient dislocation emerging from the crack tip [130]. Within this framework, Rice
and co-workers showed that K. decreases with increasing applied Mode I stress intensity factor
K. However, the inelastic potential used in that work, which is derived from W, (Ag, Ay),
had explicit “opening softening” of ~y,s; the predicted softening was thus not due directly to the
enthalpy \I/Z?;ih. The full mechanics analysis introduces the coupling of crack-tip stresses and slip
along the slip plane through the potential energy W, ¢(As, A, ). In contrast to the law developed
by Rice, the detailed results here show that 55 = W4, (Ag =~ b,/2) is nearly independent of the
normal opening (see Figure 6.3(iii)), indicating that Kj. should be nearly independent of an
applied K.

To resolve the discrepancy between results in [130] and results in Figure 6.3(iii), and their
presumed consequences on dislocation emission, we perform standard “K-test” simulations using
the interatomic potentials for Ni, Cu and Al as described on several places in this document
(See Section 2.4). The main difference is that the cracked specimen is simultaneously loaded
using both Mode II and Mode I anisotropic displacement field (Eqgs. 2.22 and 2.19 ) in the
so-called mixed Mode II/T loading (K7 + K loading conditions). In each simulation we hold the
applied K7 fixed at the desired value and incrementally increase the applied K7y until dislocation
emission occurs. To create traction free crack surfaces we remove one layer of atoms and
artificially delete the atomic interactions across the newly created crack surfaces (see Figure 6.11).
Within this crack geometry, emission remains controlled only by the shear response along the slip
plane, and no fictitious effects arise near the crack tip that would unduly influence the emission
under mixed Mode II/I loading.
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Figure 6.11 — a) Crack geometry in mixed Mode II/I loading formed by removing one layer of
atoms and then by artificially canceling the interaction between the atoms marked with black
circles. b) Crack geometry after dislocation emission. Opening stress just before the emission is
measured between atoms marked with stars. Atoms are colored based on Common Neighbor
Analysis [15]; green for fcc, red for hep and white for surface atoms.

Figure 6.12 shows the simulated K. as a function of the applied K in Ni, Cu and Al, respec-
tively. There is no “opening softening” observed: the value of K7y, is essential independent
of K. If there is any effect at all, it is a tendency toward increasing Kr.. The near-crack-tip
opening stresses (normal stresses across the slip plane), computed using the average virial stresses
on the atoms marked by stars in Figure 6.11a, are shown in Figure 6.12. Due to surface effects, the
atomic virial stresses on the crack tip atoms are not reliable; the stresses shown in Figure 6.12 are
thus a lower bound. At K; = 0MPay/m, the near-tip atoms are in normal compression. This is
entirely expected because the inelastic normal displacement A,, is positive at A, » by,/2. At zero
normal stress, the stacking fault cannot expand by A,, because of the constraint of the surrounding
elastic material. The crack-tip inelastic displacement is then smaller than A,, and the normal
stress is naturally compressive. With increasing K, the near-tip atoms do experience tensile
opening stresses (Figure 6.12), as expected, and these stresses can reach levels of 5 — 10GPa.
Yet, K. remains unaffected by these high normal stresses. This is not surprising since (i) the
local unstable stacking fault energy W, ¢(Ag ~ by/2) is constant or increasing (see Figure 6.4a),
and (ii) the work done by 7}, over the actual crack-tip inelastic displacement is small/negligible
because the crack-tip inelastic displacement is much smaller than A,,. Use of the GSFH at the
tip would be incorrect because it would include work done by T3, over the A,. We conclude
that proper analysis requires the use of W,,¢(As, A,,) that is derived from V. r(A,, T),) and
A (As, Ty).
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Figure 6.12 — Molecular statics results of the critical stress intensity factor K. as a function of
the applied K; in mixed Mode II/I loading in nickel (blue diamonds), copper (red squares) and
aluminum (green circles). Crack-tip opening stresses just before the emission are indicated for
every applied K7. Solid symbols correspond to the emission along the upper (initial) slip plane,
while the open symbols correspond to the emission along the lower slip plane.

To summarize, no “opening softening” effect is observed in the very well controlled mixed-mode
K;;/K7 loading test. This is entirely consistent with the absence of “opening softening” in
the GSFE measured for these same materials. While the GSFH is the relevant thermodynamic
quantity for specific GSF calculations under an applied stress, it is not directly relevant to the
crack tip problem. Based on our examinations, reasons for the reported decrease in K. with
increased K in simulations reported in [130] is not due to GSFH but rather due to (i) poorly
controlled crack-tip conditions in the simulations leading to spurious effects on emission, (ii)
use of a Uy, ¢(Ag, Ay) computed without accounting for the non-linear response of the atomic
system, and (iii) subtraction of tension elastic effects assuming only linear response of the system.
This test case and the analysis in Sections 6.5.1 and 6.5.2 indicated that mechanics problems are
best analyzed using the combination of W, ¢(Ag, T5,) and A, (A, T),) orusing Wy r(Ag, Ay),
if computable.

6.6 Concluding remarks

Using both interatomic potentials and first principle calculations, we have demonstrated that the
generalized stacking fault energy (GSFE) in various metals (Ni, Cu, Al, Mg) generally increases
with increasing far-field applied tensile stress normal to the slip plane. There is almost no evidence
of “opening softening” that has been envisioned and reported in the literature. An important
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additional outcome is that the stacking fault is not a pure-shear defect: shear sliding gives rise to
stress-dependent inelastic normal displacements between the atomic planes around the slip plane,
leading to a net displacement A,,. This net inelastic displacement is typically positive, and does
couple to the applied stress, giving rise to a generalized stacking fault enthalpy (GSFH) that does
decrease with increasing normal stress. However, the apparent “opening softening” observed in
the GSFH does not directly translate to “opening softening” in all mechanics problems involving
stacking faults.

The above results are examined via simulation for two canonical problems: the partial dissociation
spacing of dislocations in fcc metals and the emission of a dislocation from a crack tip. Theory
using the GSFE and opening A,, as an eigenstrain shows that the partial spacing does increase
with increasing normal stress, consistent with “opening softening”, but not to the degree predicted
using the GSFH. Simulations fully support the analysis. Simulations of crack tip emission under
Mode II/Mode I loading show no change in the critical Mode II stress intensity for emission due
to applied Mode I, and thus no “opening softening”, in spite of normal stresses at the crack tip
reaching 5 — 10GPa. This is consistent with the need to analyze mechanics problems using the
GSFE and rather than the GSFH directly. In Chapter 4 on crack tip emission in Mode I, we also
obtained quantitative agreement with many simulations using an analysis that does not involve
any effects of normal stress on the slip behavior.

Opverall, the present study provides a fairly complete understanding of the effects of normal stress
on stacking fault energies, and demonstrates the consequences for several different situations.
“Opening softening” is not a general phenomenon. Analysis of any problem requires consid-
eration of the GSFE and the net inelastic opening displacement A,,, and conclusions depend
on the specific problem. The results and understanding here thus provide a basis for detailed
investigation, or re-investigation, of nanoscale dislocation plasticity phenomena under stresses
normal to the slip plane of the dislocations.
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The continuum Rice and the Tadmor-Hai theories for predicting the critical stress intensity
factor for crack tip dislocation emission are well-accepted and widely used in solid-mechanics
community. However, atomistic simulations on a wide range of fcc metals have revealed that
their predictions are not highly accurate due to various reasons. In this work, two new theories
for describing the mechanics of crack-tip dislocation emission and twinning are presented. We
now reiterate the main findings presented in this manuscript and discuss future implications of
the theories presented.

Atomistic simulations across wide range of fcc metals have revealed that critical shear displace-
ment at the tip A{ is usually much smaller, while the critical stress intensity factor for the first
partial emission K }Zm is higher, than predicted by the approximate Rice theory for Mode I.
The present inconsistency appears due to the fact that the first partial dislocation emission is
always followed by the surface step creation, a feature completely absent from the Rice theory.
An energy cost associated with the step creation then leads to the crack-tip nucleation energy
without a maximum. However, the maximum is crucial in the Rice theory since it sets the point
for the emission. The new theory presented is fundamentally different from the original Rice
theory. The new theory is based on the fact that an incipient dislocation is trapped at the tip by
the lattice due to a high energy cost for shearing. As a consequence, dislocation emission is
controlled by the local mechanical instability and nucleation occurs when the crack-tip shear
displacement reaches the critical value AS. The physical behavior observed in simulations has
been rationalized using a Peierls model for nucleation energy at the crack tip and for the GSF
energy further along the slip plane. An approximate analytical expression proposed (see Eq. 4.7)
shows an excellent agreement with simulations across 22 different fcc materials described using
either EAM or pair potentials. Finally and the most importantly, the new theory naturally reduces
to the Rice theory once the step energy becomes negligible.

A similar discrete analysis of the local energetics and deformation in the crack tip vicinity is then
used for analyzing the crack-tip twinning. It so happens that the emission of the twinning partial
dislocation does not involve step creation and, in fact, there is a decrease in energy near the crack
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tip. Twinning is then controlled by the second twinning unit along the twinning plane, which
follows the bulk GTF energy. However, the stress acting at the second twinning unit is lower
than that at the crack tip. Accounting for this lower stress leads to predictions for the K fle"m in
excellent agreement with simulations. Additional analyses demonstrate why twinning is always
observed at 7" = 0K in all materials studied here. A new twinning mode is reported wherein the

crack first advances by cleavage and then emits the twinning partial at the new crack-tip.

Several extensions of the present analysis are necessary. Dislocation nucleation is a thermally
activated process at finite temperatures. Computing the energy barrier for nucleation at loads
K7 < K. is required, and the step energy will contribute an important component to this energy
barrier. Furthermore, since the twinning partial emission is not, and trailing partial is, followed
by the step creation, the Rice theory is not fully consistent with simulations on predicting the
transition from twinning partial emission to trailing partial emission at finite 7" [103, 104].

The new theory has implications for chemical effects on dislocation nucleation, and it can be
extended for predicting the crack-tip dislocation emission in conventional and high entropy alloys.
Solutes around at the crack tip can change the step energy, and thus alter the load needed for
dislocation emission. The Rice theory accommodates chemistry only through the influence of
chemical species on s . Based on the ratio v, /7s = 0.15 + 0.05 for materials studied in this
work, the current theory shows that the step energy contributes ~ 65% of the critical energy
release rate, and hence will predict different trends for emission versus specific composition then
the standard model.

The role of local chemical transport at the crack tip, and hence kinetic effects, then also becomes
important in determining emission just as in cleavage [51]. There is some experimental evidence
for hydrogen-enhanced dislocation emission that may be consistent with effects predicted by
extension of the present model [62, 148] while coupled Quantum/Continuum methods show
that the precise position of an H impurity relative to the slip plane determines whether K. is
increased or decreased [97]. Thus, behavior at the step will influence chemical embrittlement, i.e.
the transition from emission (ductile behaviour) to cleavage (brittle behaviour) in the presence of
a chemical environment around the crack.

Finally, the stress dependence of the generalized stacking fault energy (GSFE) has been analyzed.
It has been shown that GSFE generally increases with applied far-field stress normal to the slip
plane. The observed behavior is in contradiction with the long-standing wisdom that GSFE
decreases with applied normal stress. The stacking fault is then shown to be not only a pure-shear
defect, but involves inelastic normal displacement across the slip plane A,,. The inelastic normal
displacement, coupled to the applied stress, gives rise to the generalized stacking fault enthalpy
(GSFH). The GSFH does decrease with the applied normal stress since A, is usually positive.
However, our mechanics analyses of (i) fcc partial dissociation distance under normal far-field
stress, and of the (ii) crack-tip dislocation emission in mixed Mode II/I have shown that GSFH is
not useful for general mechanics problems. A nice outcome of the analysis presented in Chapter 6
is that Eshelby inclusion method can be applied for analyzing the atomic scale crystal defects
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such as stacking faults. Eventually, the Eshelby method can be employed for evaluating the stress
field due to stacking faults in different crystal structures. Stress field due to the stacking fault can
have implications on dislocation cross-slip driven by the far-field loading. We will report on this

in close future.
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The appendices presented are extracted from the following publications:

(1) Andric P, Curtin WA. New theory for Mode I crack-tip dislocation emission. Journal
of the Mechanics and Physics of Solids. 2017 Sep 1;106:315-37.

(2) Andric P, Curtin WA. New theory for crack-tip twinning in fcc metals. Journal of
the Mechanics and Physics of Solids. 2018 Apr 1;113:144-61.

(3) Andric P, Yin B, Curtin WA. Stress-dependence of generalized stacking fault
energies. Journal of the Mechanics and Physics of Solids. 2019 Jan 1;122:262-79.

A.1 Effective elastic constants

Tangent elastic moduli for singe crystal Ni [81] (see Sec. 2.4.3.2 and Fig. 2.9) are computed using
the following computational method. We define a simulation box, having periodic boundaries,
oriented with X; = [100], X2 =[010] and X3 = [0 0 1], and with dimensions in every direction
of approximately 50A. We set desired stress perpendicular to the X5 — X3 plane by increasing
lattice parameter in X direction, while the lateral lattice parameter is held constant. At a given
applied stress we compute C'1; and Co from the stress-strain response due to applied stress
increment of Ao; = 0.1MPa, while for estimating Cy4 we apply shear stress of 712 = 0.1MPa.
Fig. 2.9a-c shows the elastic constants as a function of the applied stress. When the crystal
orientation is aligned with the cubic axis we find that C1; can change up to 30% for the applied
stress ~ 6GPa. Furthermore, we use the same method for estimating elastic constant for tension
along [1 1 1] direction as a function of the applied stress. Fig. 2.9d shows that within this crystal
orientation elastic constant is less sensitive (up to ~5%) and therefore we observe convergence in
K. for sufficiently big crack (see Fig. 2.17).

In addition, results presented Section 6.5.2 are based on linear isotropic elasticity and thus require
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proper effective elastic constants input as a function of the normal stress applied. We again
employ the molecular statics simulations for calculating the effective isotropic elastic constants
as follows. We define a simulation box, having periodic boundaries, oriented with X; = [121],
Xy = [111] and X3 = [101], and with dimension of approximately 35 x 60 x 50A. We set a
desired stress perpendicular to the X; — X3 plane by increasing the lattice parameter along
[111], while the lateral lattice parameter is held constant. At given applied normal stress we
compute the effective shear modulus 4 from the stress-shear strain response due to applied shear
of 73 = 0.1MPa. Then, by relaxing the stress along X3 direction, we compute the effective
Poisson’s ratio as v = —e33/ego. Figure A.1 shows the computed effective isotropic tangent
moduli as a function of applied stress in Ni and Al. For the applied stresses considered here we
find that the shear modulus, in both studied materials, increases with normal tensile stress in
part because the Poisson contraction decreases the in-plane atomic spacing which increases the
curvature of the energy landscape in shear.
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Figure A.1 — Tangent elastic Shear modului © and Poisson’s ratios v in Ni and Al computed
using molecular statics at 7' = 0K as a function of the applied far-field normal stress 75,.
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A.2 Shearing of the triangular crack tip structural unit

We analyze the shear deformation of triangular structural units along the slip plane. The crack tip
dislocation emission is controlled by the local mechanical instability at the crack tip, which is
achieved by the critical shear displacement of the crack tip structural unit. The theory presented
in Chapter 4 assumes that triangular structural units along the slip plane (see Figure A.2a) are
subjected to pure shear deformation. If the structural unit is subjected to pure shear, it will change
the shape but not the area (see Figure A.2b). Then, the relative shear displacement of the crack tip
unit can be computed as Aq = u?-ul = u2-ul = A, where us is the atom displacement in [112]
direction (for fcc materials). This condition is satisfied in the computation of nucleation energies,
and in Mode II crack simulations (with some small deviations). In Mode I crack simulations, the
K-field introduces normal stresses parallel to the slip plane. Due to normal stresses in the [112]
direction, the area of the structural units will be changed (see Figure A.2c). This is an additional
energy cost which is not incorporated in the standard nucleation energy. Also, the additional
displacement causes that A} # A;. This can make a confusion which relative displacement is the
representative one. In Mode I simulations studied here, the X» coordinate of atoms 2 and 1 is
the same, X3 = X3 (see the initial geometry in Figure 4.3). Using the initial geometry described
above, we conclude that dislocation emission is controlled by the A; rather than A}. However,
it is also possible to use A/, or an average value, as a measure of the crack tip displacement.
This approach will lead to slightly higher predictions than the results presented here (Al M, Al E,
Au, Ag, Cu, Pd and Ni potentials). The bigger discrepancy can arise if the crack geometry used
changes the vertical position of the crack plane due to surface relaxation effects. We observe this
type of behavior in the Cr10-Cr100 materials. As a consequence, we find that A} better describes
the crack-tip behavior for this particular group of materials. The additional stretching of the
structural units is present along the slip plane, as well. We believe that this effect has the more
significant effect than the so-called "opening softening". However, it has not been discussed, nor
even commented up to date.

Figure A.2 — Studied crack tip triangular structural unit: a) initial geometry; b) the crack tip unit
under pure shear; c¢) the crack tip unit under shear and normal stresses.
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A.3 Comparison of shear displacement profiles in Mode I and
Mode 11

Both the Rice theory and the theories presented in Chapters 4 and 5 assume that the shear
displacement distribution along the slip plane for Mode I, caused by K ;{ I KF 12(6), is the
same as that for Mode II. In the theory for the emission of the first and trailing partial dislocations,
the only difference is that the shear displacement of the crack tip unit is controlled by the
nucleation energy rather than the GSF energy. Therefore, the same crack tip shear displacement
Aj is achieved at different applied K values for Mode I and Mode II. Nonetheless, for a given
crack tip shear displacement A1, the shear displacements As, Ag, ... should be the same in
Mode I and Mode II. We have verified this explicitly via simulation. Specifically, we measure
the shear displacements A; (i = 1,2,3,...) along the slip plane for both increasing Mode II
Ky and increasing Mode I K7, and obtain the displacements A; 7(Kr) and A; (K Ief ! ). We
then find the load levels K7y and Kﬁ 7 at which the crack tip shear displacements are equal,
Ay rr(Kpr) = AL[(K;{JC), and examine the shear displacements A; ;(K7r) and Ai,[(K;ff)
for¢ =2, 3, ... further along the slip plane. The results for Ni are shown in Figure A.3, where
we show the “screening” case for Mode Il and the “blunting” case for Mode I so as to add an
extra apparent level of difference. Figure A.3 demonstrates that the slip distribution along the slip
plane is essentially identical for Mode I and Mode II loadings at the same crack tip displacement
Ay. The step arising in the Mode I case restrains the crack tip shear displacement A 7, and so a
eff
I

larger applied K77 is required to obtain the same displacement that would be obtained in Mode

II (or in Mode I with no step). This restraint is seen in the graphical analysis of Figure 4.10.
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Figure A.3 — The shear displacement distribution along the slip plane in Mode II (screening) and
Mode I (blunting) at different far-field K in Ni.
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A.4 Computation of the crack-tip parameter

The crucial parameter in describing the crack tip displacement is the parameter 3. Here we present
an approximate computational method for finding /5. As already discussed in Appendix A.3, at
same applied far-field loading we observe different crack tip displacements depending on the
step presence. The surface step creation changes the shear resistance of the crack tip structural
unit. Within known shear displacements of crack tip unit at same far-field loading K;; = K ;{ !
and with known restoring stresses 7, the slope of the applied stress 7., is uniquely defined.
Using this approach we compute the parameter 3 for 10 fcc materials studied here. We compute
B =1.4-2.3, as expected. The surprisingly low value in Au is most probably due to high materials
anisotropy (see Table A.1). Figure A.4 shows the family of the applied stresses computed in
Nickel along with the restoring stresses. Our atomistic simulations reveal that applied stresses
Tapp are indeed parallel when effects due to non-linearity are negligible.

6
——  Restoring stress with step creation Material ‘ Parameter 3
— ——— Restoring stress without step creation
g ——— Family of applied stresses Cr100 [127] 1.91
O 4| Cr50 [127] 2.6
: Crl0 [127] 2.36
o AL[81] 1.83
4 Al [124] 148
C Au [126] 1.23
3| Ab[126] 14
£ u [125] 2.62
7 Nl [81] 2.15
Pd [126] 1.41

0 0.025 0.05
Relativ slip A/bp

Figure A.4 — Restoring stress ;.5 of the crack tip struc-
tural with the surface step creation (the blue line) and
without the surface step creation (the red line) and the
family of applied stresses 7.y, (green lines) for different
applied K in Nickel.

Table A.1 — Values of the pa-
rameter $ computed in vari-
ous fcc systems.

A.5 Assessment of the theory for K f;m and different slip plane ori-
entations

The new theory presented in the paper, and the Rice theory as well, assume that dislocation
emission from a crack tip in Mode I is controlled by the effective mode II stress intensity factor
Kff 7. All differences with respect to the slip plane inclination angle 6 are accounted for in K7 ef 7
Here, we examine this assumption in all respects using molecular statics crack s1mu1at10ns at
0 =35.3°, 54.7°, 70.5° and 90° in fcc Ni.
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First, we show that a slip profile along the sliding plane is independent of the slip plane inclination
angle 6. For each inclination angle we find the far field K loading that causes the same
shear displacement of the crack tip unit Ai (i = I, II, III, ..)! at all orientation angles.
We then compare the shear displacements of the structural units further along the slip plane
A; (7 =2, 3, 4, ...). We find that the slip profiles along the sliding plane are indeed independent
of the inclination angle, as shown in Figure A.5a. At the highest testing load, there is a very small
deviation along the sliding plane when 6 = 35.3 which could be, at this angle, due to the some
non-linear effects caused by the larger opening displacement along the sliding plane.
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Figure A.5 — a) The shear displacement distribution along the slip plane in Mode I for different
inclination angles 8; b) The effective Mode II stress intesity factor as a function of the inclination
angle ¢ which causes the same crack tip shear displacements.

Second, we compare K ;{ F-K 1F12(0) for the three crack tip shear displacements at each angle,
as shown in Figure A.5b. K ;}c U nearly independent of 6, but does show a decreasing trend with
increasing 6. This could be due to some softening effects caused by the normal stresses (normal
and parallel to the sliding plane).

Third, we examine the nucleation energy including the surface step for the different inclination
angles. The nucleation energy as a function of the relative slip \Ilfﬁfcs lt(A) is computed for
different inclination angles using the computational method described in Section 4.3. As shown
in Figure A.6, the energy and slip resistance are indeed independent of angle for 6 > 54.7° and

show only small deviations for 6 = 35.3°.

Fourth, we present the critical stress intensity factor K ;. observed in the simulations as a function
of the slip plane inclination angle as shown in Figure A.7a. The analytical predictions for K.
of Eq. 4.7 are also shown, and excellent agreement is obtained except at § = 35.3°, where the
analytical model is notably larger. The predictions of the Rice model (which works well for Ky,
in Ni) are also shown, and the simulations at 6 = 35.3° fall below the Rice value as well. The
low K7, at 8 = 35.3° emission is facilitated by the presence of two symmetrical slip systems

"Roman indices used in this notation correspond to different magnitudes of the far-field K loading.
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activated. To demonstrate this, simulations at § = 35.3° were performed by constraining the
first structural unit below the crack plane (unit 1B; see Figure A.7b) to displace according to
the elastic K-displacement. With this constraint, dislocation emission along the upper slip plane
occurs at a much higher K, that is also in excellent agreement with the prediction of Eq. 4.7.
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Figure A.6 — a) Nucleation energy as a function of the relative slip for different inclination angles
0; b) The shear resistance, computed from the nucelation energy, for differet inclination angles 6.
These curves are computed for fcc Ni.
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Figure A.7 — a) Critical stress intensity factor for dislocation emission as a function of the slip
plane inclination angle € in fcc Ni; Simulation (red diamonds); Analytical model Eq. 4.7 (purple
circles); Rice theory (black squares); dashed line shows the simulation result when constraining
deformation of the symmetric slip plane that exists at the lowest angle. b) Crack tip geometry
when 6 = 35.3° and definition of the structural units along two symmetric slip planes.

We conclude that there are small differences in precise behavior as a function of inclination
angle, with somewhat larger deviations if two symmetrical slip systems are activated; non-
linearity and local crack tip geometry will always impart small material-dependent deviations
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from theoretical idealizations. However, these differences usually have little impact on the
quantitative results, and the predictions of the current model remain generally in good agreement
with simulations. This enables application of the theory to make good predictions based on
computed or experimental material properties (e.g. unstable stacking fault and surface energies)
for systems where interatomic potentials do not exist or are inadequate. We also note that the
differences shown in Figures A.5 and A.7 pertain to the Rice theory as well as the present model.
The present theory emphasizes the essential role of step creation in determining the major details
of dislocation emission, and this important new feature is independent of slip plane inclination
angle.

A.6 Assessment of the theory for K’*"" and different slip plane ori-
entations

The new theory for crack-tip twinning is shown to be in excellent agreement with simulations for
the slip plane inclination angle 6 = 70.5° in different fcc metals. We now examine the accuracy of
the theory using molecular statics simulations for § = 30.3°, 54.7°, 70.5° and 90° in the specific
case of fcc Ni [81]. We perform standard K-test without the shielding effect, as described above.

First, Table 3 shows that the parameter f 1) (Crjr) changes very little due to anisotropy and a
slightly different position of the twinning unit with respect to the trailing unit. Second, in every
case we observe the twinning partial emission, as expected. We then compare the critical stress
intensity factors Kﬁf”t?p observed in the simulations with the theoretical predictions. We find
excellent quantitative and qualitative agreement, except at § = 35.3°. In this case the new theory
for crack-tip twinning is notable higher, despite the fact that we accurately predict the twinning
mode (see Table A.2). This discrepancy arises by the presence of the two active symmetrical slip
systems that interact slightly. We found similar behavior in the case of the first partial dislocation

emission (see Appendix A.5).

For other crack orientations, especially when ¢ ;.5 # 0, the theory applies when using the correct
component(s) of the Burgers vector(s) that couple to the applied crack tip stress field. Examining
all possible cases is far beyond the scope of the present thesis. To conclude, we believe that
the work presented here, being an entirely new type of analysis for a long-standing problem, is
sufficient for validating the new theory.

A.7 GSFE under uniaxial tension

In Section 6.2 we investigate the GSFE stress dependence whit the lateral cell sizes held fixed.
This loading scenario corresponds to the so-called uniaxial strain (imposed with the stress
boundary conditions). We now investigate the influence of the lateral stresses on the GSFE by
performing an additional set of GSF simulations, in which the relaxation of the lateral stresses is
allowed (uniaxial tension). All other simulation details are identical to those presented in
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Figure A.8 — GSFE versus slip displacement, for various applied normal tensile stresses under
uniaxial strain (solid line) and uniaxial stress (dashed line) as computed using interatomic
potentials at 7" = 0K in a) nickel, b) copper and c) aluminum

Section 6.2. Figure A.8 shows the GSFE curves computed using interatomic potentials for Ni, Cu
and Al at different applied normal stresses imposed by the uniaxial strain (solid line) or uniaxial
stress (dashed line). We find that lateral loads in Ni and Cu have no significant influence on the
GSFE. Furthermore, the GSFE in Al tends to be more sensitive for Ag > 0.6b,, and for applied
normal stress above SGPa. The observed behavior is mainly due to potential which under uniaxial
tension becomes unstable for applied stresses slightly above 6GPa.

A.8 Partials dissociation d and stress dependence of isotropic elas-
tic properties

Stress dependence of the materials elastic properties nominally affects only the interaction
energy W19 between two partials, since the inclusion energy Wi is negligible. Therefore, we
investigate how big this effect on predicted dissociation distance d is. Figure A.9 shows the
simulated dissociation distance d, along with the predictions of Eq. 6.24 with and without
taking into account stress dependence of the elastic properties (see Appendix A.1). Influence
of the stress dependent elastic properties on the overall behavior is more emphasized in Ni than
in Al. The result sensitivity in Ni is due to similar contribution to the crystal enthalpy from
W19 and the stacking fault (change in GSFE and inelastic normal displacement with applied
normal stress) itself. The stacking fault contribution in Al is bigger than Wi, (due to very big
inelastic displacement (see Figure 6.9)); thus, change in elastic properties only slightly influences
predictions on the dissociation distance with increasing applied normal stress.
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Figure A.9 — Equilibrium separation between partial dislocations in a) Ni and b) Al at different
applied stress that perpendicular to the slip plane, normalized with its value at zero applied
load, as predicted by equation by Eq. 6.24 when stress dependence of elastic properties is (blue
color)/is not (red color) taken into account, and as observed in atomistic simulations (orange
squares).
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