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Abstract. Let d ≥ 1, p ≥ d, and let Ω be a smooth bounded open subset of Rd. We prove some
exponential integrability in the spirit of Moser-Trudinger’s inequalities for measurable functions u
defined in Ω such that ˆ

Ω

ˆ
Ω

|u(x)−u(y)|>δ

1

|x− y|d+p dx dy < +∞,

for some δ > 0. This double integral appeared in characterizations of Sobolev spaces and involved
in improvements of the Sobolev inequaliies, Poincaré inequalities, and Hardy inequalities.

1. Introduction

Let (ρn) be a sequence of non-negative radial functions satisfying

(1.1) lim
n→∞

ˆ ∞
τ

ρn(r)rN−1 dr = 0 ∀ τ > 0, and lim
n→∞

ˆ +∞

0
ρn(r)rN−1 dr = 1.

Set

(1.2) Kd,p :=

ˆ
Sd−1

|σ · e|p dσ,

for some e ∈ Sd−1, the unit sphere in Rd.

Jean Bourgain, Haim Brezis, and Petru Mironescu [10, Theorems 1 and 2] (see also [11] and [8])
proved the following BBM formula:

Proposition 1.1. Let d ≥ 1, p > 1 and let Ω be a smooth bounded open subset in Rd or Ω = Rd.
Assume that g ∈ Lp(Ω) and let (ρn) satisfy (1.1). Then g ∈W 1,p(Rd) if and only if

lim inf
n→∞

ˆ
Ω

ˆ
Ω

|u(x)− u(y)|p

|x− y|p
ρn(|x− y|) dx dy < +∞.

Moreover, for g ∈W 1,p(Ω),

lim
n→∞

ˆ
Ω

ˆ
Ω

|u(x)− u(y)|p

|x− y|p
ρn(|x− y|) dx dy = Kd,p

ˆ
RN
|∇u(x)|p dx.

A variant of Propposition 1.1 for p = 1 involving functions of bounded variations was obtained
by Jean Bourgain, Haim Brezis, and Petru Mironescu [10] and Juan Davila [21]. Further studies
related to this characterizations can be founded in [2, 6, 16, 17, 20, 25, 35, 38, 39, 42, 43, 44].
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2 A. MALLICK AND H.-M. NGUYEN

We next discuss another characterization of Sobolev spaces in the spirit of the BBM formula.
To this end, for d ≥ 1, p ≥ 1, and δ > 0, for a measurable subset O of Rd, and for a measurable
function u defined in O, set

(1.3) Iδ,p(u,O) =

ˆ
O

ˆ
O

|u(x)−u(y)|>δ

δp

|x− y|d+p
dx dy.

This quantity has its root in estimates for the topological degree in [13, 12, 29, 34, 45] which has
the motivation from the study of the Ginzburg Landau equation [9].

It was shown [28, Theorems 2 and 5] and [7, Theorem 1] that

Proposition 1.2. Let d ≥ 1 and Ω be a smooth bounded open subset in Rd or Ω = Rd and let p > 1
and g ∈ Lp(Ω). Then u ∈W 1,p(Ω) if and only if

lim inf
δ→0

Iδ,p(u,Ω) < +∞.

Moreover, for g ∈W 1,p(Ω),

(1.4) lim
δ→0

Iδ,p(u,Ω) =
1

p
Kd,p

ˆ
Ω
|∇u(x)|p dx,

where Kd,p is defined by (1.2). We also have, for all δ > 0,

(1.5) Iδ,p(u,Ω) ≤ Cd,p
ˆ
RN
|∇u(x)|p dx ∀u ∈W 1,p(Ω),

for some positive constant Cd,p depending only on d and p.

The case p = 1 is more delicate. One has [28, Theorem 8] (see also [18, Proposition 2]), for
u ∈W 1,1(Ω),

lim inf
δ→0

Iδ,1(u,Ω) ≥ Kd,1

ˆ
Ω
|∇u| dx

and (see [28, Theorem 8] and [7, Theorem 1]) that u ∈ BV (Ω) provided that u ∈ L1(Ω) and
lim infδ→0 Iδ,1(u,Ω) < +∞. Let Br denote the ball centered at 0 and of radius r. An exam-
ple due to Augusto Ponce presented in [28] showed that there exists u ∈ W 1,1(B1) such that
limδ→0 Iδ,1(u,B1) = +∞. When d = 1, there exists u ∈W 1,1(0, 1) [18, Pathology 2] such that

K1,1

ˆ 1

0
|∇u| dx = lim inf

δ→0
Iδ,1(u, (0, 1)) < lim sup

δ→0
Iδ,1(u, (0, 1)) = +∞.

It turns out that the concept of Γ-convergence fits very well this setting. It was shown [30, 32] that
the Γ-limit exists for p ≥ 1. Surprisingly, the Γ-limit, which is positive, is strictly less than the
pointwise limit [32, 30]. The quantity Iδ,1 has a similar form with non-local filters using in denoising
process [19], in particular with Yaroslavsky’s ones [47, 48]. A discussion on a connection between
nonlocal filters using Iδ,1 and local ones involving the total variations via the Γ-convergence theory
is given in [18, Section 5.2]. Further interesting investigations related to the Γ-limit of Iδ,p are given
in [3, 4, 5, 18].

One can obtain new and improved variants of Poincaré’s inequality, Sobolev’s inequality and
Rellich-Kondarachov’s compactness criterion using the information of Iδ,p instead of the one of the
gradient [33, Theorems 1, 2, and 3]. Concerning the Sobolev inequality, one has
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Proposition 1.3. Let 1 < p < d and set q = dp/(d − p) and fix δ > 0 arbitrary. We have, for
u ∈ Lp(Rd),

(1.6)
(ˆ
|u|>λδ

|u|q
)1/q

≤ C
(
Iδ,p(u,Rd)

)1/p
,

for some positive constants λ and C independent of u.

Concerning the Poincaré inequality, one obtains

Proposition 1.4. Let d ≥ 1, p ≥ 1, δ > 0, let B be an open ball of Rd, and let u ∈ Lp(B). There
exists a positive constant Cd,p depending only on d and p such that

(1.7)

ˆ
B

ˆ
B
|u(x)− u(y)|pdxdy ≤ Cd,p

(
|B|

d+p
d Iδ,p(u,B) + δp|B|2

)
.

The proof of Sobolev’s inequality (1.6) is based on the one of Poincaré’s inequality (1.7) and
uses the theory of sharp functions due to Charles Fefferman and Elias Stein [23] and the method of
truncation due to Vladimir Mazya [26]. The proof of Poincaré’s inequality (1.7) has its roots in [7]
and uses John-Nirenberg’s inequality [24].

Remark 1.1. For a measurable function defined in B, by applying (1.7) for uk with
uk = min

{
k,max{u,−k}

}
and letting k → +∞, one also obtains (1.7) for measurable functions.

With Marco Squassina, the second author also established new and improved variants of Hardy
and Caffarelli, Kohn, Nirenberg’s inequality [35] using the quantity Iδ,p. The approach used in [35]
does not involve the integration-by-parts arguments and can be extended for the fractional Sobolev
spaces [36]. Other investigations related to Iδ,p can be found in [14, 18, 31, 33, 36, 37, 38].

Let Ω be a smooth bounded open subset of Rd and p ≥ d. It follows from (1.7) that u ∈ BMO(Ω)
provided that u ∈ L1(Ω) and Iδ,p(u,Ω) < +∞. More precisely, one has, for p ≥ d,

‖u‖BMO(Ω) ≤ CΩ

(
Iδ,p(u,Ω) + δd

)
,

where

(1.8) ‖u‖BMO(Ω) := sup
ball B⊂Ω

1

|B|

ˆ
B
|u− uB| dx.

Here, for a given a measurable set O of Rd and a function u ∈ L1(O), one sets

(1.9) |O| := meas(O) and uO =

 
O
u dx with

 
O
u dx :=

1

|O|

ˆ
O
u dx.

One can then derive the exponential integrability of u from John-Nirenberg’s inequality:

(1.10)

 
B
ec|u−uB |/‖u‖BMO(B) ≤ C,

for some positive constant c and C depending only on d and for any open ball B.
Using the Poincaré inequality, one can prove that u ∈W 1,p(Ω) then u ∈ BMO(Ω), this yields the

exponential integrability of u in (1.10). In fact, for u ∈W 1,p(Ω) with p ≥ d, one can improve (1.10).

First, Morrey’s inequality (see, e.g., [15]) states that u ∈ Cα(Ω) with α = 1 − d/p if u ∈ W 1,p
0 (Ω)

for p > d. Second, Moser-Trudinger’s inequality [27, 46, 40, 41] confirms that

sup
‖u‖

W
1,d
0 (Ω)≤1

ˆ
Ω
eα|u|

d/(d−1) ≤ C,

for some positive constants α and C depending only on Ω.
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The goal of this paper is to understand whether or not a better integrability property of u than
(1.10) inequality holds when u ∈ Lp(Ω) and Iδ,p(u,Ω) < +∞. It is worth noting that, for all δ > 0,
there exists u ∈ L∞(Ω) \ C(Ω̄) such that Iδ,p(u,Ω) = 0 for all p ≥ 1. A simple example is the
function u = δ1B in Ω, for some ball B b Ω, where 1O denotes the characteristic function of a
subset O of Rd. One can also show that there exists a function u such that Iδ(u,Ω) < +∞ and

u 6∈ L∞(Ω). An example for this is the function u(x) = (lnλ)−1 ln ln |x|−1 for x ∈ B1/e and λ > p/d
(the verification is given in Section 3).

In this work, we address the gap between the exponential integrability (1.10) and the boundedness
for functions u with Iδ,p(u,Ω) < +∞ for some δ > 0 and p ≥ d. Our first result is

Theorem 1.1. Let p > d ≥ 1, δ > 0, and let B be a an open ball of Rd. We have,
i) for M > 0 and α > 0, there exists a constant 0 ≤ β = β(α,M) ≤ 1 depending only on M and

α such that

sup

|B|
p−d
d δ−pIδ,p(u,B)≤M

 
B
eα( pd)

βδ−1|u−uB |
dx ≤ C,(1.11)

ii) given α > 0, there exists a positive constant M0 (small) depending only on α, d, and p such
that

sup

|B|
p−d
d δ−pIδ,p(u,B)≤M0

 
B
eα( pd)

δ−1|u−uB |
dx ≤ C.(1.12)

Here C denotes a positive constant depending only on d, p, and α.

As a consequence of Theorem 1.1, we obtain

Proposition 1.5. Let p > d ≥ 1, δ > 0, and let Ω be a smooth bounded open subset of Rd. We
have,
i) for M > 0 and α > 0, there exists a constant 0 ≤ β = β(α,M) ≤ 1 depending only on α and

M such that

sup
δ−pIδ,p(u,Ω)≤M

ˆ
Ω
eα( pd)

βδ−1|u|
dx ≤ CΩe

α( pd)
βδ−1‖u‖

L1(Ω)
,

ii) given α > 0, there exists a positive constant M0 (small) depending only on α, d, p, and Ω
such that

sup
δ−pIδ,p(u,Ω)≤M0

ˆ
Ω
eα( pd)

δ−1|u|
dx ≤ CΩe

α( pd)
δ−1‖u‖

L1(Ω)
.

Here CΩ denotes a positive constant depending only on d, p, α, and Ω.

Here is a variant of ii) of Theorem 1.1.

Theorem 1.2. Let p = d ≥ 1, δ > 0, and let B be a an open ball of Rd. Given α > 0, there exists
a positive constant M0 (small) depending only on α and d such that

sup
δ−dIδ,p(u,B)≤M0

 
B
eαδ
−1|u−uB |dx ≤ C,(1.13)

for some positive constant C depending only on d and α.

Remark 1.2. Inequality (1.13) shares some similarities with John-Nirenberg’s inequality but is
different. In fact, fixing δ > 0, as a consequence of (1.7), we have

‖u‖BMO(B) ≤ C(M + δ),
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if Iδ,p(u) ≤ M . Hence ‖u‖BMO(B) does not generally converge to 0 and (1.13) cannot be derived
from (1.10).

As a consequence of Theorem 1.2, we have

Proposition 1.6. Let p = d ≥ 1, δ > 0, and let Ω be a smooth bounded open subset of Rd. Given
α > 0, there exists a positive constant M0 (small) depending only on α, d, and Ω such that

sup
δ−pIδ,p(u,Ω)≤M0

ˆ
Ω
eαδ
−1|u|dx ≤ CΩe

αδ−1‖u‖L1(Ω) ,

for some positive constant CΩ depending only on d, α, and Ω.

The exponential growths in (1.12) and (1.13) are optimal. In fact, we have

Proposition 1.7. Let p ≥ d ≥ 1, γ > p/d, and α > 0, and let B be a an open ball of Rd.
i) If p > d then for any M > 0 there exists u ∈ L1(B) such that

(1.14) Iδ,p(u,B) ≤M and

ˆ
B
eαγ

δ−1|u−uB |dx = +∞.

i) If p = d then there exists a bounded sequence (un) ⊂ L1(B) such that

(1.15) lim
n→+∞

Iδ,p(un, B) = 0 and lim
n→+∞

ˆ
B
eα
(
δ−1|un−unB |

)γ
dx = +∞.

2. Proofs of Theorems 1.1 and 1.2

This section contains the proof of the Theorems 1.1 and 1.2. We first establish two lemmas used
in the proof of (1.11), (1.12), and (1.13) and then establish Theorems 1.1 and 1.2.

2.1. Two useful lemmas. For x ∈ Rd and ρ > 0, let Bρ(x) denote the ball in Rd centered at x
and of radius ρ. We have

Lemma 2.1. Let d ≥ 1, λ > 0, and let E ⊂ F ⊂ Rd be measurable subsets of Rd with 0 < |E| <
|F | <∞. Let ρ > 0 be such that |E| = |Bρ| and let x ∈ Rd be such that B2ρ(x) ⊂ F . Then

(2.1)

ˆ
F\E

dy

|x− y|λ
≥ Cd,λ |E|1−

λ
d ,

for some positive constant Cd,λ depending only on d and λ. As a consequence, if p ≥ 1, |E| = |Bρ|
for some ρ > 0 and, for p ≥ 1, D is measurable subset of F such that for almost every x ∈ D, the
ball B2ρ(x) ⊂ F , then

(2.2)

ˆ
D

ˆ
F\E

dy dx

|x− y|d+p
≥ Cd,p|D| |E|−

p
d ,

for some positive constant Cd,p depending only on d and p.

Proof. For y ∈ Rd, we have

Bρ(y) =
(
Bρ(y) \ E

)
∪
(
Bρ(y) ∩ E

)
and E =

(
E \Bρ(y)

)
∪
(
E ∩Bρ(y)

)
.

Since |E| = |Bρ(y)|, it follows that

(2.3) |E \Bρ(y)| = |Bρ(y) \ E| for y ∈ Rd.
Fix x such that B2ρ(x) ⊂ F . We haveˆ

F\E

dy

|y − x|λ
=

ˆ
(F\E)∩Bρ(x)

dy

|y − x|λ
+

ˆ
(F\E)∩

(
F\Bρ(x)

) dy

|y − x|λ
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≥ 1

ρλ
|(F \ E) ∩Bρ(x)|+

ˆ
(F\E)∩

(
F\Bρ(x)

) dy

|y − x|λ
.(2.4)

Then

(2.5) |(F \ E) ∩Bρ(x)|Bρ(x)⊂F
= |Bρ(x) \ E| (2.3)

= |E \Bρ(x)|E⊂F= |(F \Bρ(x)) ∩ E| .

Combining (2.4) and (2.5) yields

ˆ
F\E

dy

|y − x|λ
≥ 1

ρλ
|(F \Bρ(x)) ∩ E|+

ˆ
(F\E)∩

(
F\Bρ(x)

) dy

|y − x|λ
.

This yields

ˆ
F\E

dy

|y − x|λ
≥
ˆ(
F\Bρ(x)

)
∩E

dy

|y − x|λ
+

ˆ
(F\E)∩

(
F\Bρ(x)

) dy

|y − x|λ

E⊂F
≥

ˆ
F\Bρ

dy

|y − x|λ
B2ρ(x)⊂F
≥

ˆ
B2ρ\Bρ

dy

|y − x|λ
≥ Cd,p|E|1−λ/d,

which is (2.1).
Integrating (2.1) w.r.t. x in D, we obtain (2.2). �

Remark 2.1. A similar version of inequality (2.1) has played crucial roles in deriving fractional
versions of Sobolev [22] and Hardy [1] inequalities.

The following simple lemma is also used in the proof of Theorem 1.1.

Lemma 2.2. Let d ≥ 1, p > 1, δ > 0, and let O be a ball in Rd. Let g ∈ L1
loc(O). We have, k ∈ N+,

ˆ
O

ˆ
O

|u(x)−u(y)|>2kδ

δp

|x− y|d+p
≤ 2−k(p−1)

ˆ
O

ˆ
O

|u(x)−u(y)|>δ

δp

|x− y|d+p
.(2.6)

Proof. By considering the function u/δ and by the recurrence, it suffices to consider the case δ = 1
and k = 1. We have

¨
O×O

|u(x)−u(y)|>2

dx dy

|x− y|d+p
=

¨
O×O

|u(x)−u(x/2+y/2)+u(x/2+y/2)−u(y)|>1

dx dy

|x− y|d+p

≤
¨
O×O

|u(x)−u(x/2+y/2)|>1

dx dy

|x− y|d+p
+

¨
O×O

|u(x/2+y/2)−u(y)|>1

dx dy

|x− y|d+p
.

By a change of variables z = x/2 + y/2, we obtain

¨
O×O

|u(x)−u(y)|>2

dx dy

|x− y|d+p
≤ 2−(p−1)

¨
O×O

|u(x)−u(y)|>1

dx dy

|x− y|d+p
,

which yields the conclusion for δ = 1 and k = 1. �



EXPONENTIAL INTEGRABILITY IN THE SPIRIT OF MOSER-TRUDINGER’S INEQUALITIES 7

2.2. Proof of part i) of Theorem 1.1. In this proof, for notational ease, we denote Iδ,p by Iδ for
δ > 0. Without loss of generality we can assume B = B1, uB = 0, and δ = 1. Define ũ in B3/2 by

ũ(x) =


u(x) if x ∈ B1

u

(
(2− |x|)x
|x|

)
if x ∈ B3/2 \B1.

We have, for all τ > 0, ∣∣∣{x ∈ B3/2; |ũ| ≥ τ
}∣∣∣ ≤ C∣∣∣{x ∈ B1; |u| ≥ τ

}∣∣∣(2.7)

and, see e.g., [18, Lemma 17],

I1

(
ũ, B3/2

)
≤ CI1 (u,B1) .(2.8)

Using John-Nirenberg’s inequality, we have

(2.9)
∣∣∣{x ∈ B3/2; |ũ| ≥ `

}∣∣∣ ≤ 1/8d,

if ` ≥ c1M for some c1 > 0.
We claim that, for ` ≥ c1M and λ > 2,∣∣∣{x ∈ B1 : |u(x)| ≥ λ`

}∣∣∣ ≤ c2I` (u,B1)
∣∣∣{x ∈ B1 : |u(x)| ≥ (λ− 1)`

}∣∣∣ pd .(2.10)

In fact, fix an arbitrary x ∈ B5/4 and let ρ be such that |Bρ(x)| =
∣∣{x ∈ B3/2; |u| ≥ (λ − 1)`

}∣∣.
Since λ > 2, it follows from (2.9) that ρ < 1/8, which yields B2ρ(x) ⊂ B3/2. Applying Lemma 2.1
with D = {x ∈ B5/4; |ũ| ≥ λ`} ∩ O, E = {x ∈ B3/2; |ũ| ≥ (λ − 1)`} and F = B3/2, and using (2.7)
and (2.8), we obtain (2.10).

Applying Lemma 2.2, we have, for k ∈ N,

I2k(u,B1) ≤ 2−k(p−1)I1(u,B1) ≤ 2−k(p−1)M.

Fix k0 be such that for k ≥ k0, one has c22−k(p−1)M ≤ e−2α, which yields

(2.11) c2I2k(u,B1) ≤ e−α(p/d)3
.

Set

(2.12) `0 = max
{
c1M,

(
c3Me2α

)1/(p−1)}
.

Then, for some c3 larger than c2,
`0 ≥ max{c1M, 2k0}.

Using (2.10), (2.11), and a standard iterative process, we have, for λ ∈ N and

(2.13)
∣∣∣{x ∈ B1; |u| > λ`0

}∣∣∣ ≤ e−α(p/d)λ+2
∣∣∣{x ∈ B1; |u| > `0

}∣∣∣.
This implies ˆ

B1

eα(p/d)|u| dx ≤
ˆ
B1

|u|≥`0

eα(p/d)|u| dx+

ˆ
B1

|u|≤`0

eα(p/d)`0 dx ≤ C.

This implies the conclusion of part i) with β(α,M) = `−1
0 where `0 is given by (2.12). �

2.3. Proof of part ii) of Theorem 1.1. The proof of part ii) is in the spirit of part i). In fact,
noting that if M0 is small enough then (2.13) holds with `0 = 1. The conclusion then follows. �

2.4. Proof of (1.13) of Theorem 1.2. The proof is similar to the one of part ii) of Theorem 1.1
and is omitted. �
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2.5. Proof of Propositions 1.5 and 1.6. Propositions 1.5 and 1.6 can be derived from Theo-
rems 1.1 and 1.2 respectively after using local charts and appropriately extending u in a neighbor-
hood of Ω (see, e.g., [18, Lemma 17]. The details are omitted. �

3. Proof of Proposition 1.7

Without loss of generality, one might assume that B = B1/e and δ = 1.

Proof of assertion (1.14). Fix γ > λ > p/d > 1, set, for x ∈ B1/e,

u(x) = g(|x|) where g(r) = (lnλ)−1 ln ln(1/r) for r ∈ I := (0, 1/e).

It is clear that g ∈ L1(I). Using polar coordinates, we have

I1,p(u,B1/e) =

ˆ 1/e

0

ˆ 1/e

0

ˆ
Sd−1

ˆ
Sd−1

|g(r1)−g(r2)|>1

rd−1
1 rd−1

2

|r1σ1 − r2σ2|p+d
dσ1 dσ2 dr1 dr2.

≤ Cd
ˆ 1/e

0

ˆ 1/e

0
|g(r1)−g(r2)|>1

rd−1
1 rd−1

2

|r1 − r2|p+d
dr1 dr2.(3.1)

We have, for 0 < r1 < r2 < e−1,

|g(r1)− g(r2)| > 1 if and only if r2 > r
1/λ
1 and 0 < r1 < e−λ,

this yields
r1r2

(r2 − r1)1+p/d
≤ Cr1

r
p/d
2

≤ C,

for some positive constant C depending only on d, p, and λ. It follows that, for 0 < r1 < r2 < e−1

and |g(r1)− g(r2)| > 1,

rd−1
1 rd−1

2

|r1 − r2|p+d
=

(
r1r2

(r2 − r1)
p
d

+1

)d−1
1

|r1 − r2|
p
d

+1
≤ C

|r1 − r2|
p
d

+1
.(3.2)

We derive from (3.1) and (3.2) that

(3.3) I1,p(u,B1/e) ≤ CI1, p
d
(g, I).

We have

(3.4) I1,p/d(g, I) = 2

¨
I×I

|g(r1)−g(r2)|>1
r1<r2

1

|r2 − r1|1+ p
d

dr1 dr2

≤ C
ˆ e−λ

0

(
1(

r
1/λ
1 − r1

) p
d

− 1(
e−1 − r1

) p
d

)
dr1 < +∞,

since r
1/λ
1 − r1 ≥ Cr1/λ

1 and e−1 − r1 ≥ C for r1 ∈ (0, e−λ).

On the other hand, for any τ ∈ I, we have, with ρ = ln γ
lnλ − 1,

(3.5)

ˆ
Bτ

eαγ
g
dx =

ˆ τ

0
eα
(

log r−1
)(1+ρ)

rd−1 dr = +∞,

since limr→0+

(
log r−1

)1+ρ
/ log r−1 = +∞.
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Set, for 0 < τ < e−1,
uτ (x) = u(τx) for x ∈ Be−1 .

Then

(3.6) I1,p(uτ , Be−1) = τp−dI1,p(u,Bτe−1)→ 0 as τ → 0.

Combining (3.5) and (3.6) yields the conclusion since for any M > 0 we can choose τ > 0 small
enough so that I1,p(uτ , Be−1) ≤M . �

Proof of assertion (1.15). Let n ∈ N large and fix 1 < q < γ and denote q′ = q/(q − 1). Define

un(x) = gn(|x|) where gn(r) =


ln

1
q n if 0 ≤ r ≤ 1

n
,

ln
(

1
r

)
ln

1
q′ n

if
1

n
≤ r ≤ 1

e
.

As in (3.3), we have

(3.7) I1,d(un, B1/e) ≤ CI1,1(gn, I),

where I = (0, 1/e).
We now estimate I1,1(gn, I). Denote Jn = (0, 1/n), and Kn = I \ Jn. We have

(3.8) I1,1 (gn, I) = 2I1 + I2.

where

I1 =

¨
In×Jn

|gn(r1)−gn(r2)|>1

1

|r1 − r2|2
dr1 dr2 and I2 =

¨
Jn×Jn

|gn(r1)−gn(r2)|>1

1

|r1 − r2|2
dr1 dr2.

We next estimate I1 and I2. We begin with I1. For (r1, r2) ∈ Jn×Kn, we have |gn(r1)−gn(r2)| >
1 if and only if ∣∣∣∣∣∣ln 1

q n−
ln
(

1
r2

)
ln

1
q′ n

∣∣∣∣∣∣ > 1, this implies
1

e
≥ r2 > an :=

e(logn)
1
q′

n
.

It follows that

(3.9) I1 =

ˆ 1
n

0

ˆ 1
e

an

dr2dr1

|r1 − r2|2
≤ ln

(
an

an − 1/n

)
→ 0 as n→ +∞.

We next deal with I2. For (r1, r2) ∈ Kn ×Kn with r2 ≥ r1, we have |gn(r1) − gn(r2)| > 1 if and
only if∣∣∣∣∣∣

ln
(

1
r1

)
− ln

(
1
r2

)
ln

1
q′ n

∣∣∣∣∣∣ > 1, this implies
1

e
≥ r2 > r1bn and

1

n
≤ r1 <

1

ebn
with bn = eln

1
q′ n.

We then have

I2 = 2

ˆ 1/(ebn)

1/n

ˆ 1
e

r1bn

dr2

(r2 − r1)2
dr1 ≤ 2

ˆ 1/(ebn)

1/n

1

r1(bn − 1)
dr1 → 0 as n→ +∞.(3.10)

Combining (3.8), (3.9), and (3.10) yields

lim
n→∞

I1,1 (gn, I) = 0.

which yields, by (3.7),

lim
n→∞

I1,d

(
un, B1/e

)
= 0.(3.11)
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We have ˆ 1
2

1
n

ln
(

1
r

)
ln

1
q′ n

dr =
1

(log n)
1
q′

(
1

2
ln(2e)− 1

n
ln(ne)

)
→ 0 as n→∞.

This implies

(3.12) 0 ≤ lim
n→+∞

ˆ
B1/e

un dx ≤ lim
n→+∞

ˆ
I
gn dx = 0.

On the other hand, since γ > q, we have

(3.13)

ˆ
I
rd−1eαg

r
n ≥

ˆ 1
n

0
rd−1eα lnγ/q n =

1

dnd
eα lnγ/q n → +∞ as n→ +∞.

The conclusion now follows from (3.11), (3.12), and (3.13). �
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