EXPONENTIAL INTEGRABILITY IN THE SPIRIT OF MOSER-TRUDINGER'S INEQUALITIES OF FUNCTIONS WITH FINITE NON-LOCAL, NON-CONVEX ENERGY

ARKA MALLICK AND HOAI-MINH NGUYEN

Abstract

Let $d \geq 1, p \geq d$, and let Ω be a smooth bounded open subset of \mathbb{R}^{d}. We prove some exponential integrability in the spirit of Moser-Trudinger's inequalities for measurable functions u defined in Ω such that $$
\int_{\Omega} \int_{\Omega}^{|u(x)-u(y)|>\delta} \frac{1}{|x-y|^{d+p}} d x d y<+\infty
$$ for some $\delta>0$. This double integral appeared in characterizations of Sobolev spaces and involved in improvements of the Sobolev inequaliies, Poincaré inequalities, and Hardy inequalities.

1. Introduction

Let $\left(\rho_{n}\right)$ be a sequence of non-negative radial functions satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\tau}^{\infty} \rho_{n}(r) r^{N-1} d r=0 \quad \forall \tau>0, \quad \text { and } \quad \lim _{n \rightarrow \infty} \int_{0}^{+\infty} \rho_{n}(r) r^{N-1} d r=1 \tag{1.1}
\end{equation*}
$$

Set

$$
\begin{equation*}
K_{d, p}:=\int_{\mathbb{S}^{d-1}}|\sigma \cdot e|^{p} d \sigma \tag{1.2}
\end{equation*}
$$

for some $e \in \mathbb{S}^{d-1}$, the unit sphere in \mathbb{R}^{d}.
Jean Bourgain, Haim Brezis, and Petru Mironescu [10, Theorems 1 and 2] (see also [11] and [8]) proved the following BBM formula:
Proposition 1.1. Let $d \geq 1, p>1$ and let Ω be a smooth bounded open subset in \mathbb{R}^{d} or $\Omega=\mathbb{R}^{d}$. Assume that $g \in L^{p}(\Omega)$ and let $\left(\rho_{n}\right)$ satisfy (1.1). Then $g \in W^{1, p}\left(\mathbb{R}^{d}\right)$ if and only if

$$
\liminf _{n \rightarrow \infty} \int_{\Omega} \int_{\Omega} \frac{|u(x)-u(y)|^{p}}{|x-y|^{p}} \rho_{n}(|x-y|) d x d y<+\infty
$$

Moreover, for $g \in W^{1, p}(\Omega)$,

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \int_{\Omega} \frac{|u(x)-u(y)|^{p}}{|x-y|^{p}} \rho_{n}(|x-y|) d x d y=K_{d, p} \int_{\mathbb{R}^{N}}|\nabla u(x)|^{p} d x .
$$

A variant of Propposition 1.1 for $p=1$ involving functions of bounded variations was obtained by Jean Bourgain, Haim Brezis, and Petru Mironescu [10] and Juan Davila [21]. Further studies related to this characterizations can be founded in $[2,6,16,17,20,25,35,38,39,42,43,44]$.

Key words and phrases. Sobolev's inequality, Poincaré's inequality, Moser-Trudinger's inequality.

We next discuss another characterization of Sobolev spaces in the spirit of the BBM formula. To this end, for $d \geq 1, p \geq 1$, and $\delta>0$, for a measurable subset O of \mathbb{R}^{d}, and for a measurable function u defined in O, set

$$
\begin{equation*}
I_{\delta, p}(u, O)=\int_{O} \int_{O(x)-u(y) \mid>\delta} \frac{\delta^{p}}{|x-y|^{d+p}} d x d y \tag{1.3}
\end{equation*}
$$

This quantity has its root in estimates for the topological degree in [13, 12, 29, 34, 45] which has the motivation from the study of the Ginzburg Landau equation [9].

It was shown [28, Theorems 2 and 5] and [7, Theorem 1] that
Proposition 1.2. Let $d \geq 1$ and Ω be a smooth bounded open subset in \mathbb{R}^{d} or $\Omega=\mathbb{R}^{d}$ and let $p>1$ and $g \in L^{p}(\Omega)$. Then $u \in W^{1, p}(\Omega)$ if and only if

$$
\liminf _{\delta \rightarrow 0} I_{\delta, p}(u, \Omega)<+\infty
$$

Moreover, for $g \in W^{1, p}(\Omega)$,

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} I_{\delta, p}(u, \Omega)=\frac{1}{p} K_{d, p} \int_{\Omega}|\nabla u(x)|^{p} d x \tag{1.4}
\end{equation*}
$$

where $K_{d, p}$ is defined by (1.2). We also have, for all $\delta>0$,

$$
\begin{equation*}
I_{\delta, p}(u, \Omega) \leq C_{d, p} \int_{\mathbb{R}^{N}}|\nabla u(x)|^{p} d x \quad \forall u \in W^{1, p}(\Omega) \tag{1.5}
\end{equation*}
$$

for some positive constant $C_{d, p}$ depending only on d and p.
The case $p=1$ is more delicate. One has [28, Theorem 8] (see also [18, Proposition 2]), for $u \in W^{1,1}(\Omega)$,

$$
\liminf _{\delta \rightarrow 0} I_{\delta, 1}(u, \Omega) \geq K_{d, 1} \int_{\Omega}|\nabla u| d x
$$

and (see [28, Theorem 8] and [7, Theorem 1]) that $u \in B V(\Omega)$ provided that $u \in L^{1}(\Omega)$ and $\liminf _{\delta \rightarrow 0} I_{\delta, 1}(u, \Omega)<+\infty$. Let B_{r} denote the ball centered at 0 and of radius r. An example due to Augusto Ponce presented in [28] showed that there exists $u \in W^{1,1}\left(B_{1}\right)$ such that $\lim _{\delta \rightarrow 0} I_{\delta, 1}\left(u, B_{1}\right)=+\infty$. When $d=1$, there exists $u \in W^{1,1}(0,1)[18$, Pathology 2$]$ such that

$$
K_{1,1} \int_{0}^{1}|\nabla u| d x=\liminf _{\delta \rightarrow 0} I_{\delta, 1}(u,(0,1))<\limsup _{\delta \rightarrow 0} I_{\delta, 1}(u,(0,1))=+\infty .
$$

It turns out that the concept of Γ-convergence fits very well this setting. It was shown [30, 32] that the Γ-limit exists for $p \geq 1$. Surprisingly, the Γ-limit, which is positive, is strictly less than the pointwise limit [32,30]. The quantity $I_{\delta, 1}$ has a similar form with non-local filters using in denoising process [19], in particular with Yaroslavsky's ones [47, 48]. A discussion on a connection between nonlocal filters using $I_{\delta, 1}$ and local ones involving the total variations via the Γ-convergence theory is given in [18, Section 5.2]. Further interesting investigations related to the Γ-limit of $I_{\delta, p}$ are given in $[3,4,5,18]$.

One can obtain new and improved variants of Poincaré's inequality, Sobolev's inequality and Rellich-Kondarachov's compactness criterion using the information of $I_{\delta, p}$ instead of the one of the gradient [33, Theorems 1, 2, and 3]. Concerning the Sobolev inequality, one has

Proposition 1.3. Let $1<p<d$ and set $q=d p /(d-p)$ and fix $\delta>0$ arbitrary. We have, for $u \in L^{p}\left(\mathbb{R}^{d}\right)$,

$$
\begin{equation*}
\left(\int_{|u|>\lambda \delta}|u|^{q}\right)^{1 / q} \leq C\left(I_{\delta, p}\left(u, \mathbb{R}^{d}\right)\right)^{1 / p} \tag{1.6}
\end{equation*}
$$

for some positive constants λ and C independent of u.
Concerning the Poincaré inequality, one obtains
Proposition 1.4. Let $d \geq 1, p \geq 1, \delta>0$, let B be an open ball of \mathbb{R}^{d}, and let $u \in L^{p}(B)$. There exists a positive constant $C_{d, p}$ depending only on d and p such that

$$
\begin{equation*}
\int_{B} \int_{B}|u(x)-u(y)|^{p} d x d y \leq C_{d, p}\left(|B|^{\frac{d+p}{d}} I_{\delta, p}(u, B)+\delta^{p}|B|^{2}\right) . \tag{1.7}
\end{equation*}
$$

The proof of Sobolev's inequality (1.6) is based on the one of Poincaré's inequality (1.7) and uses the theory of sharp functions due to Charles Fefferman and Elias Stein [23] and the method of truncation due to Vladimir Mazya [26]. The proof of Poincaré's inequality (1.7) has its roots in [7] and uses John-Nirenberg's inequality [24].
Remark 1.1. For a measurable function defined in B, by applying (1.7) for u_{k} with $u_{k}=\min \{k, \max \{u,-k\}\}$ and letting $k \rightarrow+\infty$, one also obtains (1.7) for measurable functions.

With Marco Squassina, the second author also established new and improved variants of Hardy and Caffarelli, Kohn, Nirenberg's inequality [35] using the quantity $I_{\delta, p}$. The approach used in [35] does not involve the integration-by-parts arguments and can be extended for the fractional Sobolev spaces [36]. Other investigations related to $I_{\delta, p}$ can be found in [14, 18, 31, 33, 36, 37, 38].

Let Ω be a smooth bounded open subset of \mathbb{R}^{d} and $p \geq d$. It follows from (1.7) that $u \in B M O(\Omega)$ provided that $u \in L^{1}(\Omega)$ and $I_{\delta, p}(u, \Omega)<+\infty$. More precisely, one has, for $p \geq d$,

$$
\|u\|_{B M O(\Omega)} \leq C_{\Omega}\left(I_{\delta, p}(u, \Omega)+\delta^{d}\right)
$$

where

$$
\begin{equation*}
\|u\|_{B M O(\Omega)}:=\sup _{\text {ball } B \subset \Omega} \frac{1}{|B|} \int_{B}\left|u-u_{B}\right| d x . \tag{1.8}
\end{equation*}
$$

Here, for a given a measurable set O of \mathbb{R}^{d} and a function $u \in L^{1}(O)$, one sets

$$
\begin{equation*}
|O|:=\operatorname{meas}(O) \quad \text { and } \quad u_{O}=f_{O} u d x \text { with } f_{O} u d x:=\frac{1}{|O|} \int_{O} u d x . \tag{1.9}
\end{equation*}
$$

One can then derive the exponential integrability of u from John-Nirenberg's inequality:

$$
\begin{equation*}
f_{B} e^{c\left|u-u_{B}\right| /\|u\|_{B M O(B)}} \leq C, \tag{1.10}
\end{equation*}
$$

for some positive constant c and C depending only on d and for any open ball B.
Using the Poincaré inequality, one can prove that $u \in W^{1, p}(\Omega)$ then $u \in B M O(\Omega)$, this yields the exponential integrability of u in (1.10). In fact, for $u \in W^{1, p}(\Omega)$ with $p \geq d$, one can improve (1.10). First, Morrey's inequality (see, e.g., [15]) states that $u \in C^{\alpha}(\Omega)$ with $\alpha=1-d / p$ if $u \in W_{0}^{1, p}(\Omega)$ for $p>d$. Second, Moser-Trudinger's inequality [27, 46, 40, 41] confirms that

$$
\sup _{\|u\|_{W_{0}^{1, d}(\Omega) \leq 1}} \int_{\Omega} e^{\alpha|u|^{d /(d-1)}} \leq C
$$

for some positive constants α and C depending only on Ω.

The goal of this paper is to understand whether or not a better integrability property of u than (1.10) inequality holds when $u \in L^{p}(\Omega)$ and $I_{\delta, p}(u, \Omega)<+\infty$. It is worth noting that, for all $\delta>0$, there exists $u \in L^{\infty}(\Omega) \backslash C(\bar{\Omega})$ such that $I_{\delta, p}(u, \Omega)=0$ for all $p \geq 1$. A simple example is the function $u=\delta \mathbb{1}_{B}$ in Ω, for some ball $B \Subset \Omega$, where $\mathbb{1}_{O}$ denotes the characteristic function of a subset O of \mathbb{R}^{d}. One can also show that there exists a function u such that $I_{\delta}(u, \Omega)<+\infty$ and $u \notin L^{\infty}(\Omega)$. An example for this is the function $u(x)=(\ln \lambda)^{-1} \ln \ln |x|^{-1}$ for $x \in B_{1 / e}$ and $\lambda>p / d$ (the verification is given in Section 3).

In this work, we address the gap between the exponential integrability (1.10) and the boundedness for functions u with $I_{\delta, p}(u, \Omega)<+\infty$ for some $\delta>0$ and $p \geq d$. Our first result is
Theorem 1.1. Let $p>d \geq 1, \delta>0$, and let B be a an open ball of \mathbb{R}^{d}. We have,
i) for $M>0$ and $\alpha>0$, there exists a constant $0 \leq \beta=\beta(\alpha, M) \leq 1$ depending only on M and α such that

$$
\begin{equation*}
\sup _{|B|^{\frac{p-d}{d}} \delta^{-p} I_{\delta, p}(u, B) \leq M} f_{B} e^{\alpha\left(\frac{p}{d}\right)^{\beta \delta^{-1}\left|u-u_{B}\right|}} d x \leq C, \tag{1.11}
\end{equation*}
$$

ii) given $\alpha>0$, there exists a positive constant M_{0} (small) depending only on α, d, and p such that

$$
\begin{equation*}
\sup _{|B|^{\frac{p-d}{d}} \delta^{-p} I_{\delta, p}(u, B) \leq M_{0}} f_{B} e^{\alpha\left(\frac{p}{d}\right)^{\delta^{-1}\left|u-u_{B}\right|}} d x \leq C . \tag{1.12}
\end{equation*}
$$

Here C denotes a positive constant depending only on d, p, and α.
As a consequence of Theorem 1.1, we obtain
Proposition 1.5. Let $p>d \geq 1, \delta>0$, and let Ω be a smooth bounded open subset of \mathbb{R}^{d}. We have,
i) for $M>0$ and $\alpha>0$, there exists a constant $0 \leq \beta=\beta(\alpha, M) \leq 1$ depending only on α and M such that

$$
\sup _{\delta^{-p} I_{\delta, p}(u, \Omega) \leq M} \int_{\Omega} e^{\alpha\left(\frac{p}{d}\right)^{\beta \delta^{-1}|u|}} d x \leq C_{\Omega} e^{\alpha\left(\frac{p}{d}\right)^{\beta \delta^{-1}\|u\|_{L^{1}(\Omega)}}, ~}
$$

ii) given $\alpha>0$, there exists a positive constant M_{0} (small) depending only on α, d, p, and Ω such that

$$
\sup _{\delta^{-p} I_{\delta, p}(u, \Omega) \leq M_{0}} \int_{\Omega} e^{\alpha\left(\frac{p}{d}\right)^{\delta^{-1}|u|}} d x \leq C_{\Omega} e^{\alpha\left(\frac{p}{d}\right)^{\delta^{-1}\|u\|_{L^{1}(\Omega)}}} .
$$

Here C_{Ω} denotes a positive constant depending only on d, p, α, and Ω.
Here is a variant of $i i$) of Theorem 1.1.
Theorem 1.2. Let $p=d \geq 1, \delta>0$, and let B be a an open ball of \mathbb{R}^{d}. Given $\alpha>0$, there exists a positive constant M_{0} (small) depending only on α and d such that

$$
\begin{equation*}
\sup _{\delta^{-d} I_{\delta, p}(u, B) \leq M_{0}} f_{B} e^{\alpha \delta^{-1}\left|u-u_{B}\right|} d x \leq C, \tag{1.13}
\end{equation*}
$$

for some positive constant C depending only on d and α.
Remark 1.2. Inequality (1.13) shares some similarities with John-Nirenberg's inequality but is different. In fact, fixing $\delta>0$, as a consequence of (1.7), we have

$$
\|u\|_{B M O(B)} \leq C(M+\delta),
$$

if $I_{\delta, p}(u) \leq M$. Hence $\|u\|_{B M O(B)}$ does not generally converge to 0 and (1.13) cannot be derived from (1.10).

As a consequence of Theorem 1.2, we have
Proposition 1.6. Let $p=d \geq 1, \delta>0$, and let Ω be a smooth bounded open subset of \mathbb{R}^{d}. Given $\alpha>0$, there exists a positive constant M_{0} (small) depending only on α, d, and Ω such that

$$
\sup _{\delta^{-p} I_{\delta, p}(u, \Omega) \leq M_{0}} \int_{\Omega} e^{\alpha \delta^{-1}|u|} d x \leq C_{\Omega} e^{\alpha \delta^{-1}\|u\|_{L^{1}(\Omega)}}
$$

for some positive constant C_{Ω} depending only on d, α, and Ω.
The exponential growths in (1.12) and (1.13) are optimal. In fact, we have
Proposition 1.7. Let $p \geq d \geq 1, \gamma>p / d$, and $\alpha>0$, and let B be a an open ball of \mathbb{R}^{d}.
i) If $p>d$ then for any $M>0$ there exists $u \in L^{1}(B)$ such that

$$
\begin{equation*}
I_{\delta, p}(u, B) \leq M \quad \text { and } \quad \int_{B} e^{\alpha \gamma^{\delta^{-1}\left|u-u_{B}\right|}} d x=+\infty . \tag{1.14}
\end{equation*}
$$

i) If $p=d$ then there exists a bounded sequence $\left(u_{n}\right) \subset L^{1}(B)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} I_{\delta, p}\left(u_{n}, B\right)=0 \quad \text { and } \quad \lim _{n \rightarrow+\infty} \int_{B} e^{\alpha\left(\delta^{-1}\left|u_{n}-u_{n}\right|\right)^{\gamma}} d x=+\infty . \tag{1.15}
\end{equation*}
$$

2. Proofs of Theorems 1.1 and 1.2

This section contains the proof of the Theorems 1.1 and 1.2. We first establish two lemmas used in the proof of (1.11), (1.12), and (1.13) and then establish Theorems 1.1 and 1.2.
2.1. Two useful lemmas. For $x \in \mathbb{R}^{d}$ and $\rho>0$, let $B_{\rho}(x)$ denote the ball in \mathbb{R}^{d} centered at x and of radius ρ. We have
Lemma 2.1. Let $d \geq 1, \lambda>0$, and let $E \subset F \subset \mathbb{R}^{d}$ be measurable subsets of \mathbb{R}^{d} with $0<|E|<$ $|F|<\infty$. Let $\rho>0$ be such that $|E|=\left|B_{\rho}\right|$ and let $x \in \mathbb{R}^{d}$ be such that $B_{2 \rho}(x) \subset F$. Then

$$
\begin{equation*}
\int_{F \backslash E} \frac{d y}{|x-y|^{\lambda}} \geq C_{d, \lambda}|E|^{1-\frac{\lambda}{d}}, \tag{2.1}
\end{equation*}
$$

for some positive constant $C_{d, \lambda}$ depending only on d and λ. As a consequence, if $p \geq 1,|E|=\left|B_{\rho}\right|$ for some $\rho>0$ and, for $p \geq 1, D$ is measurable subset of F such that for almost every $x \in D$, the ball $B_{2 \rho}(x) \subset F$, then

$$
\begin{equation*}
\int_{D} \int_{F \backslash E} \frac{d y d x}{|x-y|^{d+p}} \geq C_{d, p}|D||E|^{-\frac{p}{d}} \tag{2.2}
\end{equation*}
$$

for some positive constant $C_{d, p}$ depending only on d and p.
Proof. For $y \in \mathbb{R}^{d}$, we have

$$
B_{\rho}(y)=\left(B_{\rho}(y) \backslash E\right) \cup\left(B_{\rho}(y) \cap E\right) \text { and } E=\left(E \backslash B_{\rho}(y)\right) \cup\left(E \cap B_{\rho}(y)\right) .
$$

Since $|E|=\left|B_{\rho}(y)\right|$, it follows that

$$
\begin{equation*}
\left|E \backslash B_{\rho}(y)\right|=\left|B_{\rho}(y) \backslash E\right| \text { for } y \in \mathbb{R}^{d} . \tag{2.3}
\end{equation*}
$$

Fix x such that $B_{2 \rho}(x) \subset F$. We have

$$
\int_{F \backslash E} \frac{d y}{|y-x|^{\lambda}}=\int_{(F \backslash E) \cap B_{\rho}(x)} \frac{d y}{|y-x|^{\lambda}}+\int_{(F \backslash E) \cap\left(F \backslash B_{\rho}(x)\right)} \frac{d y}{|y-x|^{\lambda}}
$$

$$
\begin{equation*}
\geq \frac{1}{\rho^{\lambda}}\left|(F \backslash E) \cap B_{\rho}(x)\right|+\int_{(F \backslash E) \cap\left(F \backslash B_{\rho}(x)\right)} \frac{d y}{|y-x|^{\lambda}} . \tag{2.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|(F \backslash E) \cap B_{\rho}(x)\right| \stackrel{B_{\rho}(x) \subset F}{=}\left|B_{\rho}(x) \backslash E\right| \stackrel{(2.3)}{=}\left|E \backslash B_{\rho}(x)\right| \stackrel{E \subseteq F}{=}\left|\left(F \backslash B_{\rho}(x)\right) \cap E\right| . \tag{2.5}
\end{equation*}
$$

Combining (2.4) and (2.5) yields

$$
\int_{F \backslash E} \frac{d y}{|y-x|^{\lambda}} \geq \frac{1}{\rho^{\lambda}}\left|\left(F \backslash B_{\rho}(x)\right) \cap E\right|+\int_{(F \backslash E) \cap\left(F \backslash B_{\rho}(x)\right)} \frac{d y}{|y-x|^{\lambda}} .
$$

This yields

$$
\begin{aligned}
\int_{F \backslash E} \frac{d y}{|y-x|^{\lambda}} & \geq \int_{\left(F \backslash B_{\rho}(x)\right) \cap E} \frac{d y}{|y-x|^{\lambda}}+\int_{(F \backslash E) \cap\left(F \backslash B_{\rho}(x)\right)} \frac{d y}{|y-x|^{\lambda}} \\
& E \subset F \\
& \geq \int_{F \backslash B_{\rho}} \frac{d y}{|y-x|^{\lambda}} \stackrel{B_{2 \rho}(x) \subset F}{\geq} \int_{B_{2 \rho} \backslash B_{\rho}} \frac{d y}{|y-x|^{\lambda}} \geq C_{d, p}|E|^{1-\lambda / d},
\end{aligned}
$$

which is (2.1).
Integrating (2.1) w.r.t. x in D, we obtain (2.2).
Remark 2.1. A similar version of inequality (2.1) has played crucial roles in deriving fractional versions of Sobolev [22] and Hardy [1] inequalities.

The following simple lemma is also used in the proof of Theorem 1.1.
Lemma 2.2. Let $d \geq 1, p>1, \delta>0$, and let O be a ball in \mathbb{R}^{d}. Let $g \in L_{\text {loc }}^{1}(O)$. We have, $k \in \mathbb{N}_{+}$,

$$
\begin{equation*}
\int_{O} \int_{O}^{|u(x)-u(y)|>2^{k} \delta} \frac{\delta^{p}}{|x-y|^{d+p}} \leq 2^{-k(p-1)} \int_{|u(x)-u(y)|>\delta} \int_{O} \frac{\delta^{p}}{|x-y|^{d+p}} . \tag{2.6}
\end{equation*}
$$

Proof. By considering the function u / δ and by the recurrence, it suffices to consider the case $\delta=1$ and $k=1$. We have

$$
\begin{aligned}
& \iint_{\substack{\times \times O \\
|u(x)-u(y)|>2}} \frac{d x d y}{|x-y|^{d+p}}=\iint_{O \times O}^{|u(x)-u(x / 2+y / 2)+u(x / 2+y / 2)-u(y)|>1} \frac{d x d y}{|x-y|^{d+p}} \\
& \leq \iint_{O \times O}^{|u(x)-u(x / 2+y / 2)|>1} \frac{d x d y}{|x-y|^{d+p}}+\iint_{|u(x / 2+y / 2)-u(y)|>1} \frac{d x d y}{|x-y|^{d+p}} .
\end{aligned}
$$

By a change of variables $z=x / 2+y / 2$, we obtain

$$
\iint_{O \times O}^{|u(x)-u(y)|>2}\left|\frac{d x d y}{|x-y|^{d+p}} \leq 2^{-(p-1)} \iint_{O \times O}^{|u(x)-u(y)|>1}\right| \frac{d x d y}{|x-y|^{d+p}},
$$

which yields the conclusion for $\delta=1$ and $k=1$.
2.2. Proof of part i) of Theorem 1.1. In this proof, for notational ease, we denote $I_{\delta, p}$ by I_{δ} for $\delta>0$. Without loss of generality we can assume $B=B_{1}, u_{B}=0$, and $\delta=1$. Define \tilde{u} in $B_{3 / 2}$ by

$$
\tilde{u}(x)=\left\{\begin{array}{cl}
u(x) & \text { if } x \in B_{1} \\
u\left(\frac{(2-|x|) x}{|x|}\right) & \text { if } x \in B_{3 / 2} \backslash B_{1}
\end{array}\right.
$$

We have, for all $\tau>0$,

$$
\begin{equation*}
\left|\left\{x \in B_{3 / 2} ;|\tilde{u}| \geq \tau\right\}\right| \leq C\left|\left\{x \in B_{1} ;|u| \geq \tau\right\}\right| \tag{2.7}
\end{equation*}
$$

and, see e.g., [18, Lemma 17],

$$
\begin{equation*}
I_{1}\left(\tilde{u}, B_{3 / 2}\right) \leq C I_{1}\left(u, B_{1}\right) \tag{2.8}
\end{equation*}
$$

Using John-Nirenberg's inequality, we have

$$
\begin{equation*}
\left|\left\{x \in B_{3 / 2} ;|\tilde{u}| \geq \ell\right\}\right| \leq 1 / 8^{d} \tag{2.9}
\end{equation*}
$$

if $\ell \geq c_{1} M$ for some $c_{1}>0$.
We claim that, for $\ell \geq c_{1} M$ and $\lambda>2$,

$$
\begin{equation*}
\left|\left\{x \in B_{1}:|u(x)| \geq \lambda \ell\right\}\right| \leq c_{2} I_{\ell}\left(u, B_{1}\right)\left|\left\{x \in B_{1}:|u(x)| \geq(\lambda-1) \ell\right\}\right|^{\frac{p}{d}} \tag{2.10}
\end{equation*}
$$

In fact, fix an arbitrary $x \in B_{5 / 4}$ and let ρ be such that $\left|B_{\rho}(x)\right|=\left|\left\{x \in B_{3 / 2} ;|u| \geq(\lambda-1) \ell\right\}\right|$. Since $\lambda>2$, it follows from (2.9) that $\rho<1 / 8$, which yields $B_{2 \rho}(x) \subset B_{3 / 2}$. Applying Lemma 2.1 with $D=\left\{x \in B_{5 / 4} ;|\tilde{u}| \geq \lambda \ell\right\} \cap O, E=\left\{x \in B_{3 / 2} ;|\tilde{u}| \geq(\lambda-1) \ell\right\}$ and $F=B_{3 / 2}$, and using (2.7) and (2.8), we obtain (2.10).

Applying Lemma 2.2, we have, for $k \in \mathbb{N}$,

$$
I_{2^{k}}\left(u, B_{1}\right) \leq 2^{-k(p-1)} I_{1}\left(u, B_{1}\right) \leq 2^{-k(p-1)} M
$$

Fix k_{0} be such that for $k \geq k_{0}$, one has $c_{2} 2^{-k(p-1)} M \leq e^{-2 \alpha}$, which yields

$$
\begin{equation*}
c_{2} I_{2^{k}}\left(u, B_{1}\right) \leq e^{-\alpha(p / d)^{3}} \tag{2.11}
\end{equation*}
$$

Set

$$
\begin{equation*}
\ell_{0}=\max \left\{c_{1} M,\left(c_{3} M e^{2 \alpha}\right)^{1 /(p-1)}\right\} \tag{2.12}
\end{equation*}
$$

Then, for some c_{3} larger than c_{2},

$$
\ell_{0} \geq \max \left\{c_{1} M, 2^{k_{0}}\right\}
$$

Using (2.10), (2.11), and a standard iterative process, we have, for $\lambda \in \mathbb{N}$ and

$$
\begin{equation*}
\left|\left\{x \in B_{1} ;|u|>\lambda \ell_{0}\right\}\right| \leq e^{-\alpha(p / d)^{\lambda+2}}\left|\left\{x \in B_{1} ;|u|>\ell_{0}\right\}\right| . \tag{2.13}
\end{equation*}
$$

This implies

$$
\int_{B_{1}} e^{\alpha(p / d)^{|u|}} d x \leq \int_{\substack{B_{1} \\|u| \geq \ell_{0}}} e^{\alpha(p / d)^{|u|}} d x+\int_{\substack{B_{1} \\|u| \leq \ell_{0}}} e^{\alpha(p / d)^{\ell_{0}}} d x \leq C .
$$

This implies the conclusion of part i) with $\beta(\alpha, M)=\ell_{0}^{-1}$ where ℓ_{0} is given by (2.12).
2.3. Proof of part $i i$) of Theorem 1.1. The proof of part $i i$) is in the spirit of part i). In fact, noting that if M_{0} is small enough then (2.13) holds with $\ell_{0}=1$. The conclusion then follows.
2.4. Proof of (1.13) of Theorem 1.2. The proof is similar to the one of part $i i$) of Theorem 1.1 and is omitted.
2.5. Proof of Propositions 1.5 and 1.6. Propositions 1.5 and 1.6 can be derived from Theorems 1.1 and 1.2 respectively after using local charts and appropriately extending u in a neighborhood of Ω (see, e.g., [18, Lemma 17]. The details are omitted.

3. Proof of Proposition 1.7

Without loss of generality, one might assume that $B=B_{1 / e}$ and $\delta=1$.
Proof of assertion (1.14). Fix $\gamma>\lambda>p / d>1$, set, for $x \in B_{1 / e}$,

$$
u(x)=g(|x|) \quad \text { where } \quad g(r)=(\ln \lambda)^{-1} \ln \ln (1 / r) \text { for } r \in I:=(0,1 / e)
$$

It is clear that $g \in L^{1}(I)$. Using polar coordinates, we have

$$
\begin{align*}
& I_{1, p}\left(u, B_{1 / e}\right)=\int_{0}^{1 / e} \int_{0}^{1 / e} \int_{\mid \mathbb{S}^{d-1}} \int_{\mathbb{S}^{d-1}} \frac{r_{1}^{d-1} r_{2}^{d-1}}{\left|r_{1} \sigma_{1}-r_{2} \sigma_{2}\right|^{p+d}} d \sigma_{1} d \sigma_{2} d r_{1} d r_{2} \\
& \leq C_{d} \int_{\mid 0}^{1 / e} \int_{0}^{\left.1 / r_{2}\right) \mid>1} \tag{3.1}\\
& \int_{0}^{1 / e} \frac{r_{1}^{d-1} r_{2}^{d-1}}{\left|r_{1}-r_{2}\right|^{p+d}} d r_{1} d r_{2}
\end{align*}
$$

We have, for $0<r_{1}<r_{2}<e^{-1}$,

$$
\left|g\left(r_{1}\right)-g\left(r_{2}\right)\right|>1 \text { if and only if } r_{2}>r_{1}^{1 / \lambda} \text { and } 0<r_{1}<e^{-\lambda}
$$

this yields

$$
\frac{r_{1} r_{2}}{\left(r_{2}-r_{1}\right)^{1+p / d}} \leq \frac{C r_{1}}{r_{2}^{p / d}} \leq C
$$

for some positive constant C depending only on d, p, and λ. It follows that, for $0<r_{1}<r_{2}<e^{-1}$ and $\left|g\left(r_{1}\right)-g\left(r_{2}\right)\right|>1$,

$$
\begin{equation*}
\frac{r_{1}^{d-1} r_{2}^{d-1}}{\left|r_{1}-r_{2}\right|^{p+d}}=\left(\frac{r_{1} r_{2}}{\left(r_{2}-r_{1}\right)^{\frac{p}{d}+1}}\right)^{d-1} \frac{1}{\left|r_{1}-r_{2}\right|^{\frac{p}{d}+1}} \leq \frac{C}{\left|r_{1}-r_{2}\right|^{\frac{p}{d}+1}} \tag{3.2}
\end{equation*}
$$

We derive from (3.1) and (3.2) that

$$
\begin{equation*}
I_{1, p}\left(u, B_{1 / e}\right) \leq C I_{1, \frac{p}{d}}(g, I) \tag{3.3}
\end{equation*}
$$

We have

$$
\begin{align*}
& I_{1, p / d}(g, I)=2 \iint_{\substack{I \times I \\
\left|g\left(r_{1}\right)-g\left(r_{2}\right)\right|>1 \\
r_{1}<r_{2}}} \frac{1}{\left|r_{2}-r_{1}\right|^{1+\frac{p}{d}}} d r_{1} d r_{2} \tag{3.4}\\
& \quad \leq C \int_{0}^{e^{-\lambda}}\left(\frac{1}{\left(r_{1}^{1 / \lambda}-r_{1}\right)^{\frac{p}{d}}}-\frac{1}{\left(e^{-1}-r_{1}\right)^{\frac{p}{d}}}\right) d r_{1}<+\infty
\end{align*}
$$

since $r_{1}^{1 / \lambda}-r_{1} \geq C r_{1}^{1 / \lambda}$ and $e^{-1}-r_{1} \geq C$ for $r_{1} \in\left(0, e^{-\lambda}\right)$.
On the other hand, for any $\tau \in I$, we have, with $\rho=\frac{\ln \gamma}{\ln \lambda}-1$,

$$
\begin{equation*}
\int_{B_{\tau}} e^{\alpha \gamma^{g}} d x=\int_{0}^{\tau} e^{\alpha\left(\log r^{-1}\right)^{(1+\rho)}} r^{d-1} d r=+\infty \tag{3.5}
\end{equation*}
$$

since $\lim _{r \rightarrow 0_{+}}\left(\log r^{-1}\right)^{1+\rho} / \log r^{-1}=+\infty$.

Set, for $0<\tau<e^{-1}$,

$$
u_{\tau}(x)=u(\tau x) \text { for } x \in B_{e^{-1}} .
$$

Then

$$
\begin{equation*}
I_{1, p}\left(u_{\tau}, B_{e^{-1}}\right)=\tau^{p-d} I_{1, p}\left(u, B_{\tau e^{-1}}\right) \rightarrow 0 \text { as } \tau \rightarrow 0 \tag{3.6}
\end{equation*}
$$

Combining (3.5) and (3.6) yields the conclusion since for any $M>0$ we can choose $\tau>0$ small enough so that $I_{1, p}\left(u_{\tau}, B_{e^{-1}}\right) \leq M$.
Proof of assertion (1.15). Let $n \in \mathbb{N}$ large and fix $1<q<\gamma$ and denote $q^{\prime}=q /(q-1)$. Define

$$
u_{n}(x)=g_{n}(|x|) \text { where } g_{n}(r)=\left\{\begin{array}{cl}
\ln ^{\frac{1}{q}} n & \text { if } 0 \leq r \leq \frac{1}{n} \\
\frac{\ln \left(\frac{1}{r}\right)}{\ln ^{\frac{1}{q^{\prime}} n}} & \text { if } \frac{1}{n} \leq r \leq \frac{1}{e}
\end{array}\right.
$$

As in (3.3), we have

$$
\begin{equation*}
I_{1, d}\left(u_{n}, B_{1 / e}\right) \leq C I_{1,1}\left(g_{n}, I\right), \tag{3.7}
\end{equation*}
$$

where $I=(0,1 / e)$.
We now estimate $I_{1,1}\left(g_{n}, I\right)$. Denote $J_{n}=(0,1 / n)$, and $K_{n}=I \backslash J_{n}$. We have

$$
\begin{equation*}
I_{1,1}\left(g_{n}, I\right)=2 \mathcal{I}_{1}+\mathcal{I}_{2} \tag{3.8}
\end{equation*}
$$

where

$$
\mathcal{I}_{1}=\iint_{\substack{I_{n} \times J_{n} \\\left|g_{n}\left(r_{1}\right)-g_{n}\left(r_{2}\right)\right|>1}} \frac{1}{\left|r_{1}-r_{2}\right|^{2}} d r_{1} d r_{2} \quad \text { and } \quad \mathcal{I}_{2}=\iint_{\substack{J_{n} \times J_{n} \\\left|g_{n}\left(r_{1}\right)-g_{n}\left(r_{2}\right)\right|>1}} \frac{1}{\left|r_{1}-r_{2}\right|^{2}} d r_{1} d r_{2} .
$$

We next estimate \mathcal{I}_{1} and \mathcal{I}_{2}. We begin with \mathcal{I}_{1}. For $\left(r_{1}, r_{2}\right) \in J_{n} \times K_{n}$, we have $\left|g_{n}\left(r_{1}\right)-g_{n}\left(r_{2}\right)\right|>$ 1 if and only if

$$
\left|\ln ^{\frac{1}{q}} n-\frac{\ln \left(\frac{1}{r_{2}}\right)}{\ln ^{\frac{1}{q^{\prime}}} n}\right|>1 \text {, this implies } \frac{1}{e} \geq r_{2}>a_{n}:=\frac{e^{(\log n)^{\frac{1}{q^{7}}}}}{n} .
$$

It follows that

$$
\begin{equation*}
\mathcal{I}_{1}=\int_{0}^{\frac{1}{n}} \int_{a_{n}}^{\frac{1}{e}} \frac{d r_{2} d r_{1}}{\left|r_{1}-r_{2}\right|^{2}} \leq \ln \left(\frac{a_{n}}{a_{n}-1 / n}\right) \rightarrow 0 \text { as } n \rightarrow+\infty . \tag{3.9}
\end{equation*}
$$

We next deal with \mathcal{I}_{2}. For $\left(r_{1}, r_{2}\right) \in K_{n} \times K_{n}$ with $r_{2} \geq r_{1}$, we have $\left|g_{n}\left(r_{1}\right)-g_{n}\left(r_{2}\right)\right|>1$ if and only if

$$
\left|\frac{\ln \left(\frac{1}{r_{1}}\right)-\ln \left(\frac{1}{r_{2}}\right)}{\ln ^{\frac{1}{q^{\prime}}} n}\right|>1 \text {, this implies } \frac{1}{e} \geq r_{2}>r_{1} b_{n} \text { and } \frac{1}{n} \leq r_{1}<\frac{1}{e b_{n}} \text { with } b_{n}=e^{\ln \frac{1}{q^{\prime}} n} \text {. }
$$

We then have

$$
\begin{equation*}
\mathcal{I}_{2}=2 \int_{1 / n}^{1 /\left(e b_{n}\right)} \int_{r_{1} b_{n}}^{\frac{1}{e}} \frac{d r_{2}}{\left(r_{2}-r_{1}\right)^{2}} d r_{1} \leq 2 \int_{1 / n}^{1 /\left(e b_{n}\right)} \frac{1}{r_{1}\left(b_{n}-1\right)} d r_{1} \rightarrow 0 \text { as } n \rightarrow+\infty \tag{3.10}
\end{equation*}
$$

Combining (3.8), (3.9), and (3.10) yields

$$
\lim _{n \rightarrow \infty} I_{1,1}\left(g_{n}, I\right)=0
$$

which yields, by (3.7),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I_{1, d}\left(u_{n}, B_{1 / e}\right)=0 . \tag{3.11}
\end{equation*}
$$

We have

$$
\int_{\frac{1}{n}}^{\frac{1}{2}} \frac{\ln \left(\frac{1}{r}\right)}{\ln ^{\frac{1}{q^{\prime}}} n} d r=\frac{1}{(\log n)^{\frac{1}{q^{\prime}}}}\left(\frac{1}{2} \ln (2 e)-\frac{1}{n} \ln (n e)\right) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

This implies

$$
\begin{equation*}
0 \leq \lim _{n \rightarrow+\infty} \int_{B_{1 / e}} u_{n} d x \leq \lim _{n \rightarrow+\infty} \int_{I} g_{n} d x=0 \tag{3.12}
\end{equation*}
$$

On the other hand, since $\gamma>q$, we have

$$
\begin{equation*}
\int_{I} r^{d-1} e^{\alpha g_{n}^{r}} \geq \int_{0}^{\frac{1}{n}} r^{d-1} e^{\alpha \ln \gamma / q} n=\frac{1}{d n^{d}} e^{\alpha \ln ^{\gamma / q} n} \rightarrow+\infty \text { as } n \rightarrow+\infty . \tag{3.13}
\end{equation*}
$$

The conclusion now follows from (3.11), (3.12), and (3.13).

References

[1] Adimurthi and A Mallick, A Hardy type inequality on fractional order Sobolev spaces on the Heisenberg group, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18 (2018), 917-949.
[2] L. Ambrosio, G. De Philippis, and L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals, Manuscripta Math. 134 (2011), 377-403.
[3] C. Antonucci, M. Gobbino, M. Migliorini, and N. Picenni, On the shape factor of interaction laws for a non-local approximation of the Sobolev norm and the total variation. C. R. Math. Acad. Sci. Paris 356 (2018), 859-864.
[4] C. Antonucci, M. Gobbino, M. Migliorini, N. Picenni, Optimal constants for a non-local approximation of Sobolev norms and total variation, arXiv: 1708.01231.
[5] C. Antonucci, M. Gobbino, N. Picenni, On the gap between gamma-limit and pointwise limit for a non-local approximation of the total variation, arXiv:1712.04413.
[6] G. Aubert and P. Kornprobst, Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful for solving variational problems?, SIAM J. Numer. Anal. 47 (2009), 844-860.
[7] J. Bourgain and H.-M. Nguyen, A new characterization of Sobolev spaces, C. R. Math. Acad. Sci. Paris 3431 (2006).
[8] H. Brezis, How to recognize constant functions. Connections with Sobolev spaces, Volume in honor of M. Vishik, Uspekhi Mat. Nauk 57 (2002), 59-74; English translation in Russian Math. Surveys 57 (2002), 693-708.
[9] F. Bethuel, H. Brezis, F. Heilein, Gnzburg-Landau vortices. Reprint of the 1994 edition [MR1269538]. Modern Birkhuser Classics. Birkhuser/Springer, Cham, 2017. xxix +158 pp.
[10] J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, Optimal control and partial differential equations, IOS, Amsterdam (2001), 439-455.
[11] J. Bourgain, H. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s, p}$ when $s \uparrow 1$ and applications, J. Anal. Math. 87 (2002), 77-101.
[12] J. Bourgain, H. Brezis and P. Mironescu, Lifting, degree, and distributional Jacobian revisited, Comm. Pure Appl. Math. 58 (2005), 529-551.
[13] J. Bourgain, H. Brezis, H.-M. Nguyen, A new estimate for the topological degree. C. R. Math. Acad. Sci. Paris 340 (2005), 787-791.
[14] H. Brezis and H.-M. Nguyen, On a new class of functions related to VMO, C. R. Acad. Sci. Paris 349 (2011), 157-160.
[15] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011. xiv+599 pp.
[16] H. Brezis and H.-M. Nguyen, Two subtle convex nonlocal approximation of the $B V$-norm, Nonlinear Anal., 137 (2016), 222-245.
[17] H. Brezis and H.-M. Nguyen, The BBM formula revisited, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 27 (2016), 515-533.
[18] H. Brezis and H.-M. Nguyen, Non-local functionals related to the total variation and connections with image processing, Ann. PDE 14 (2018).
[19] A. Buades, B. Coll and J. M. Morel, Neighborhood filters and PDE's, Numer. Math. 105 (2006), 1-34.
[20] L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. PDE 41 (2011), 203-240.
[21] J. Davila, On an open question about functions of bounded variation, Calc. Var. Partial Differential Equations 15 (2002), 519-527.
[22] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 1365 (2012), 521-573.
[23] C. Fefferman and E. Stein, H^{p} spaces of several variables, Acta. Math. 129 (1972) 137-193.
[24] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961) 415-426.
[25] G. Leoni and D. Spector, Characterization of Sobolev and BV Spaces, J. Funct. Anal. 261 (2011), 2926-2958, Corrigendum to "Characterization of Sobolev and BV Spaces", J. Funct. Anal. 266 (2014), 1106-1114.
[26] V. G. Mazya, Sobolev Spaces. Springer, Berlin (1985).
[27] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 2011 (1971), 1077-1092.
[28] H.-M. Nguyen, Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006), 689-720.
[29] H.-M. Nguyen, Optimal constant in a new estimate for the degree, J. Anal. Math. 101 (2007), 367-395.
[30] H.-M. Nguyen, Г-convergence and Sobolev norms, C. R. Acad. Sci. Paris 345 (2007), 679-684.
[31] H.-M. Nguyen, Further characterizations of Sobolev spaces, J. European Math. Soc. 10 (2008), 191-229.
[32] H.-M. Nguyen, Г-convergence, Sobolev norms, and BV functions, Duke Math. J. 157 (2011), 495-533.
[33] H.-M. Nguyen, Some inequalities related to Sobolev norms, Calc. Var. Partial Differential Equations 41 (2011), 483-509.
[34] H.-M. Nguyen, A refined estimate for the topological degree, C. R. Math. Acad. Sci. Paris 355 (2017), 1046-1049.
[35] H.-M. Nguyen, A. Pinamonti, M. Squassina, and E. Vecchi, New characterizations of magnetic Sobolev spaces, Adv. Nonlinear Anal. 7 (2018), 227-245.
[36] H.-M. Nguyen and M. Squassina, Marco Logarithmic Sobolev inequality revisited, C. R. Math. Acad. Sci. Paris 355 (2017), 447-451.
[37] H.-M. Nguyen; M. Squassina, On Hardy and Caffarelli-Kohn-Nirenberg inequalities, Journal d'Analyse Mathematique. 2017, to appear.
[38] H.-M. Nguyen; M. Squassina, On anisotropic Sobolev spaces, Commun. Contemp. Math. 21 (2019), 1850017, 13 pp.
[39] M. Squassina, B. Volzone, Bourgain-Brezis-Mironescu formula for magnetic operators, C. R. Math. Acad. Sci.Paris 354 (2016), 825-831.
[40] J. Peetre, Espaces d'interpolation et theoreme de Soboleff, Ann. Inst. Fourier (Grenoble) 16 (1966), 279-317.
[41] S. I. Pohozhaev, The Sobolev imbedding in the case $p l=n$. Proc. Tech. Sci. Conf. on Adv. Sci. Research 1964-1965, Mathematics Section, 158- 170, Moskov. Energet. Inst., Moscow 1965
[42] A. Ponce, A new approach to Sobolev spaces and connections to Γ-convergence, Calc. Var. Partial Differential Equations 19 (2004), 229-255.
[43] A. Ponce, An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc. 6 (2004), 1-15.
[44] A. Ponce and S. Daniel On formulae decoupling the total variation of BV functions., Nonlinear Anal. 154 (2017), 241-257.
[45] J. V. Schaftingen, Estimates by gap potentials of free homotopy decompositions of critical Sobolev maps, arXiv:1811.01706v2 .
[46] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473-483.
[47] L. P. Yaroslavsky, Digital Picture Processing. An introduction, Springer, 1985.
[48] L. P. Yaroslavsky and M.Eden, Fundamentals of Digital Optics, Springer, 1996.

```
(A. Mallick) Department of Mathematics
EPFL SB CAMA
Station 8 CH-1015 Lausanne, Switzerland
E-mail address: arka.mallick@epfl.ch
```

(H.-M. Nguyen) Department of Mathematics

EPFL SB CAMA
Station 8 CH-1015 Lausanne, Switzerland
E-mail address: hoai-minh.nguyen@epfl.ch

