Supplementary Information

Photoelectrocatalytic Arene C-H Amination

Lei Zhang,¹ Laurent Liardet,¹ Jingshan Luo,^{2, 3} Dan Ren,² Michael Grätzel,² and Xile Hu^{1,*}

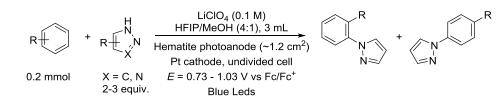
¹ Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, 1015 Lausanne, Switzerland

² Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LPI, 1015 Lausanne, Switzerland

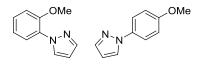
³ Institute of Photoelectronic Thin Film Devices and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China

* Corresponding author. E-mail address: xile.hu@epfl.ch

Table of Contents


Supplementary Methods	3
Supplementary References	29
Supplementary Figures	30

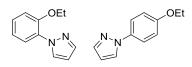
Supplementary Methods


Devices for Photoelectrochemical Oxidation

The photoelectrochemical oxidation was performed in an undivided cell by a threeelectrode configuration using VMP-3 instrument (Biologic Science Instrument). Hematite was used as a working electrode with a Ag/AgCl reference electrode and a Pt counter electrode. Blue led lamp (Kessil, A160We, 40W) was used as the light source. The distance between the lamp and the working electrode is ~5 cm (See Supplementary Figure 1).

C-N Coupling Reaction via Photoelectrocatalysis

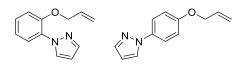
General procedure for coupling of aromatic compounds and azoles in a photoelectrochemical cell: Under N₂, LiClO₄ (31.9 mg, 0.1 M), arene (0.2 mmol), azole (0.4 or 0.6 mmol, 2 or 3 equiv) and solvent (HFIP/MeOH = 4/1, 3 mL) were added to a 20 mL test tube equipped with a magnetic stir bar. The photoelectrochemical oxidation were performed at a constant potential (see maintext for the specific potential for each substrate) at ambient temperature for 10~24 h in a photoreactor (Supplementary Figure 1). The resulting solution was concentrated under vacuum and the residue was purified by chromatography on silica gel, eluting with the mixture of ethyl acetate/hexane to give the corresponding products.



1-(2-methoxyphenyl)-1*H***-pyrazole (3a). 1-(4-methoxyphenyl)-1***H***-pyrazole (3b). 3a** and **3b** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1) to give the title compound as pale yellow oil (26.9 mg, 77%). The *ortho* : *para* ratio of the inseparable mixture was 6:1 as determined by ¹H NMR of the isolated product.

3a: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 2.1 Hz, 1H, aryl-H), 7.75-7.70 (m, 2H, aryl-H), 7.30 (td, J = 7.8, 1.7 Hz, 1H, aryl-H), 7.09-7.02 (m, 2H, aryl-H), 6.43 (t, J = 2.0 Hz, 1H, aryl-H), 3.87 (s, 3H, OCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 151.4 (aryl-C), 140.1 (aryl-C), 131.6 (aryl-C), 129.9 (aryl-C), 128.1 (aryl-C), 125.4 (aryl-C), 121.3 (aryl-C), 112.4 (aryl-C), 106.2 (aryl-C), 56.0 (OCH₃).

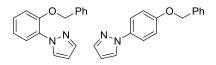
3b: ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 2.4 Hz, 1H, aryl-*H*), 7.69 (s, 1H, aryl-*H*), 7.59 (d, *J* = 9.0 Hz, 2H, aryl-*H*), 6.97 (d, *J* = 8.9 Hz, 2H, aryl-*H*), 6.43 (t, *J* = 2.0 Hz, 1H, aryl-*H*), 3.83 (s, 3H, OCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 158.3 (aryl-*C*), 140.7 (aryl-*C*), 134.1 (aryl-*C*), 126.9 (aryl-*C*), 121.0 (aryl-*C*), 114.6 (aryl-*C*), 107.3 (aryl-*C*), 55.7 (OCH₃).


These spectroscopic data correspond to reported data.¹

1-(2-ethoxyphenyl)-1*H***-pyrazole (4a). 1-(4-ethoxyphenyl)-1***H***-pyrazole (4b). 4a and 4b were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (20:1) to give the title compound as pale yellow oil (24.5 mg, 65%). The** *ortho* **:** *para* **ratio of the inseparable mixture was 7:1 as determined by ¹H NMR of the isolated product.**

4a: ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 2.5 Hz, 1H, aryl-*H*), 7.78 (dd, *J* = 7.9, 1.7 Hz, 1H, aryl-*H*), 7.70 (d, *J* = 1.9 Hz, 1H, aryl-*H*), 7.26 (td, *J* = 8.0, 1.7 Hz, 1H, aryl-*H*), 7.09-7.01 (m, 2H, aryl-*H*), 6.42 (t, *J* = 2.2 Hz, 1H, aryl-*H*), 4.10 (q, *J* = 7.0 Hz, 2H, OCH₂CH₃), 1.41 (t, *J* = 7.0 Hz, 3H, OCH₂CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 150.4 (aryl-*C*), 140.0 (aryl-*C*), 131.6 (aryl-*C*), 130.1 (aryl-*C*), 127.8 (aryl-*C*), 125.1 (aryl-*C*), 121.3 (aryl-*C*), 113.6 (aryl-*C*), 106.2 (aryl-*C*), 64.7 (OCH₂CH₃), 14.9 (OCH₂CH₃).

4b: ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 2.5 Hz, 1H, aryl-*H*), 7.69 (s, 1H, aryl-*H*), 7.58 (d, *J* = 9.0 Hz, 2H, aryl-*H*), 6.96 (d, *J* = 9.0 Hz, 2H, aryl-*H*), 6.42 (t, *J* = 2.2 Hz, 1H, aryl-*H*), 4.06 (q, *J* = 6.9 Hz, 2H, OCH₂CH₃), 1.43 (t, *J* = 6.9 Hz, 3H, OCH₂CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 157.7 (aryl-*C*), 140.7 (aryl-*C*), 134.0 (aryl-*C*), 126.9 (aryl-*C*), 121.0 (aryl-*C*), 115.2 (aryl-*C*), 107.2 (aryl-*C*), 63.9 (OCH₂CH₃), 14.9 (OCH₂CH₃). HRMS-ESI (*m*/*z*): Calcd for [(C₁₁H₁₂N₂O+H)+], 189.1022; found: 189.1025.

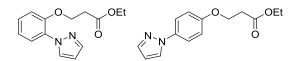


1-(2-(allyloxy)phenyl)-1*H*-pyrazole (5a). 1-(4-(allyloxy)phenyl)-1*H*-pyrazole (5b). 5a and 5b were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (30:1~10:1) to give the title compound as pale yellow oil (22.2 mg, 55%). The *ortho* : *para* ratio of the inseparable mixture was 4:1 as determined by ¹H NMR of the isolated product.

5a: ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 2.5 Hz, 1H, aryl-H), 7.76 (dd, J = 7.9, 1.7 Hz, 1H, aryl-H), 7.71 (d, J = 1.8 Hz, 1H, aryl-H), 7.26 (td, J = 7.7, 1.7 Hz, 1H, aryl-H), 7.10-7.01 (m, 2H, aryl-H), 6.43 (t, J = 2.1 Hz, 1H, aryl-H), 6.06-5.95 (m, 1H, CH=CH₂), 5.37 (dd, J = 17.3, 1.7 Hz, 1H, CH=CH₂), 5.27 (dd, J = 10.6, 1.7 Hz, 1H, CH=CH₂), 4.59 (d, J = 5.1 Hz, 2H, CH₂CH=CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 150.2 (aryl-C), 140.0 (aryl-C), 132.7 (CH=CH₂), 131.7 (aryl-C), 130.2 (aryl-C), 127.9 (aryl-C), 125.4 (aryl-C), 121.6 (aryl-C), 117.9 (CH=CH₂), 114.0 (aryl-C), 106.3 (aryl-C), 69.9 (CH₂CH=CH₂).

5b: ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 2.4 Hz, 1H, aryl-H), 7.69 (s, 1H, aryl-H), 7.58 (d, J = 9.0 Hz, 2H, aryl-H), 6.98 (d, J = 9.0 Hz, 2H, aryl-H), 6.43 (t, J = 2.1 Hz, 1H, aryl-H), 6.12-6.02 (m, 1H, CH=CH₂), 5.43 (dd, J = 17.2, 1.7 Hz, 1H, CH=CH₂), 5.31 (dd, J = 10.4, 1.6 Hz, 1H, CH=CH₂), 4.56 (d, J = 4.7 Hz, 2H, CH₂CH=CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 157.3 (aryl-C), 140.7 (aryl-C), 134.2 (aryl-C), 133.1 (CH=CH₂), 126.9 (aryl-C), 121.0 (aryl-C), 118.0 (CH=CH₂), 115.5 (aryl-C), 107.3 (aryl-C), 69.2 (CH₂CH=CH₂).

HRMS-ESI (*m*/*z*): Calcd for [(C₁₂H₁₂N₂O+H)+], 201.1022; found: 201.1026.

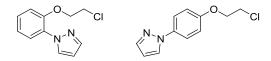


1-(2-(benzyloxy)phenyl)-1*H***-pyrazole (6a). 1-(4-(benzyloxy)phenyl)-1***H***-pyrazole (6b). 6a** and **6b** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (20:1) to give the title compound as colorless oil (33.1 mg, 66%). The *ortho* : *para* ratio of the inseparable mixture was 5:1 as determined by ¹H NMR of the isolated product.

6a: ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 2.5 Hz, 1H, aryl-*H*), 7.81 (dd, *J* = 7.9, 1.8 Hz, 1H, aryl-*H*), 7.73 (d, *J* = 1.8 Hz, 1H, aryl-*H*), 7.48-7.30 (m, 5H, aryl-*H*), 7.27 (td, *J* = 7.8, 1.8 Hz, 1H, aryl-*H*), 7.13-7.07 (m, 2H, aryl-*H*), 6.41 (t, *J* = 2.2 Hz, 1H, aryl-*H*), 5.13 (s, 2H, PhOC*H*₂). ¹³C NMR (101 MHz, CDCl₃) δ 150.3 (aryl-*C*), 140.1 (aryl-*C*), 136.5 (aryl-*C*), 131.7 (aryl-*C*), 130.4 (aryl-*C*), 128.7 (aryl-*C*), 128.2 (aryl-*C*), 127.9 (aryl-*C*), 127.3 (aryl-*C*), 125.3 (aryl-*C*), 121.8 (aryl-*C*), 114.3 (aryl-*C*), 106.4 (aryl-*C*), 71.2 (PhOCH₂).

6b: ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 2.2 Hz, 1H, aryl-*H*), 7.70 (d, *J* = 2.0 Hz, aryl-*H*), 7.60 (d, *J* = 9.0 Hz, 2H, aryl-*H*), 7.48-7.30 (m, 5H, aryl-*H*), 7.05 (d, *J* = 9.0 Hz, 2H, aryl-*H*), 6.44 (t, *J* = 2.1 Hz, 1H, aryl-*H*), 5.13 (s, 2H, PhOC*H*₂). ¹³C NMR (101 MHz, CDCl₃) δ 157.5 (aryl-*C*), 140.7 (aryl-*C*), 136.8 (aryl-*C*), 134.3 (aryl-*C*), 128.7 (aryl-*C*), 128.2 (aryl-*C*), 127.3 (aryl-*C*), 126.9 (aryl-*C*), 121.0 (aryl-*C*), 115.6 (aryl-*C*), 107.3 (aryl-*C*), 70.4 (PhOCH₂).

HRMS-ESI (*m*/*z*): Calcd for [(C₁₆H₁₄N₂O+H)+], 251.1179; found: 251.1183.


Ethyl 3-(2-(1*H*-pyrazol-1-yl)phenoxy)propanoate (7a). Ethyl 3-(4-(1*H*-pyrazol-1-yl)phenoxy)propanoate (7b). 7a and 7b were synthesized following the general

procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (4:1) to give the title compound as colorless oil (44.8 mg, 86%). The *ortho* : *para* ratio of the inseparable mixture was 6:1 as determined by ¹H NMR of the isolated product.

7a: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 2.5 Hz, 1H, aryl-H), 7.75 (dd, J = 7.9, 1.7 Hz, 1H, aryl-H), 7.67 (d, J = 1.9 Hz, 1H, aryl-H), 7.26 (td, J = 7.9, 1.7 Hz, 1H, aryl-H), 7.10-7.02 (m, 2H, aryl-H), 6.38 (t, J = 2.2 Hz, 1H, aryl-H), 4.30 (t, J = 6.3 Hz, 2H, OCH₂CH₂), 4.14 (q, J = 7.2 Hz, 2H, OCH₂CH₃), 2.76 (t, J = 6.2 Hz, 2H, OCH₂CH₂), 1.24 (t, J = 7.2 Hz, 3H, OCH₂CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 170.9 (*C*=O), 149.9 (aryl-*C*), 140.0 (aryl-*C*), 131.6 (aryl-*C*), 130.1 (aryl-*C*), 127.8 (aryl-*C*), 125.2 (aryl-*C*), 121.8 (aryl-*C*), 113.6 (aryl-*C*), 106.2 (aryl-*C*), 64.7 (OCH₂CH₂), 60.9 (OCH₂CH₃), 34.6 (OCH₂CH₂), 14.2 (OCH₂CH₃).

7b: ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 2.5 Hz, 1H, aryl-*H*), 7.67 (s, 1H, aryl-*H*), 7.57 (d, *J* = 9.0 Hz, 2H, aryl-*H*), 6.96 (d, *J* = 9.0 Hz, 2H, aryl-*H*), 6.42 (t, *J* = 2.1 Hz, 1H, aryl-*H*), 4.27 (t, *J* = 6.4 Hz, 2H, OCH₂CH₂), 4.19 (q, *J* = 7.2 Hz, 2H, OCH₂CH₃), 2.79 (t, *J* = 6.5 Hz, 2H, OCH₂CH₂), 1.27 (t, *J* = 7.1 Hz, 3H, OCH₂CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 171.0 (*C*=O), 157.3 (aryl-*C*), 140.7 (aryl-*C*), 134.3 (aryl-*C*), 126.8 (aryl-*C*), 120.9 (aryl-*C*), 115.4 (aryl-*C*), 107.3 (aryl-*C*), 64.0 (OCH₂CH₂), 60.9 (OCH₂CH₃), 34.7 (OCH₂CH₂), 14.3 (OCH₂CH₃).

HRMS-ESI (*m*/*z*): Calcd for [(C₁₄H₁₆N₂O₃+H)+], 261.1234; found: 261.1238.

1-(2-(2-chloroethoxy)phenyl)-1*H***-pyrazole (8a). 1-(4-(2-chloroethoxy)phenyl)-1***H***-pyrazole (8b). 8a** and **8b** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1) to give the title compound as white solid (31.4mg, 71%). The *ortho* : *para* ratio

of the inseparable mixture was 3:1 as determined by ¹H NMR of the isolated product.

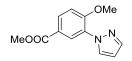
8a: ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 2.5 Hz, 1H, aryl-H), 7.79 (dd, J = 7.9, 1.7 Hz, 1H, aryl-H), 7.70 (d, J = 1.9 Hz, 1H, aryl-H), 7.26 (td, J = 7.9, 1.7 Hz, 1H, aryl-H), 7.10 (td, J = 7.7, 1.3 Hz, 1H, aryl-H), 6.99 (t, J = 8.8 Hz, 1H, aryl-H), 6.43 (t, J = 2.1 Hz, 1H, aryl-H), 4.25 (t, J = 5.6 Hz, 2H, OCH₂CH₂Cl), 3.78 (t, J = 5.5 Hz, 2H, OCH₂CH₂Cl). ¹³C NMR (101 MHz, CDCl₃) δ 149.6 (aryl-C), 140.2 (aryl-C), 131.9 (aryl-C), 130.3 (aryl-C), 127.9 (aryl-C), 125.4 (aryl-C), 122.3 (aryl-C), 113.8 (aryl-C), 106.5 (aryl-C), 69.1 (OCH₂CH₂Cl), 42.0 (OCH₂CH₂Cl).

8b: ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 2.5 Hz, 1H, aryl-*H*), 7.69 (d, *J* = 2.1 Hz, 1H, aryl-*H*), 7.59 (d, *J* = 9.0 Hz, 2H, aryl-*H*), 7.00 (d, *J* = 9.0 Hz, 2H, aryl-*H*), 6.43 (t, *J* = 2.1 Hz, 1H, aryl-*H*), 4.23 (t, *J* = 5.6 Hz, 2H, OCH₂CH₂Cl), 3.81 (t, *J* = 5.6 Hz, 2H, OCH₂CH₂Cl). ¹³C NMR (101 MHz, CDCl₃) δ 156.9 (aryl-*C*), 140.8 (aryl-*C*), 134.6 (aryl-*C*), 126.9 (aryl-*C*), 121.0 (aryl-*C*), 115.5 (aryl-*C*), 107.4 (aryl-*C*), 68.5 (OCH₂CH₂Cl), 41.9 (OCH₂CH₂Cl).

HRMS-ESI (*m*/*z*): Calcd for [(C₁₁H₁₁ClN₂O+H)+], 223.0633; found: 223.0638.

1-([1,1'-biphenyl]-4-yl)-1*H***-pyrazole (9). 9** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1) to give the title compound as white solid (21.8 mg, 50%).

9: ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 2.5 Hz, 1H, aryl-*H*), 7.78 (d, *J* = 8.8 Hz, 2H, aryl-*H*), 7.76 (s, 1H, aryl-*H*), 7.69 (d, *J* = 8.6 Hz, 2H, aryl-*H*), 7.63 (d, *J* = 7.3 Hz, 2H, aryl-*H*), 7.47 (t, *J* = 7.7 Hz, 2H, aryl-*H*), 7.37 (t, *J* = 7.4 Hz, 1H, aryl-*H*), 6.50 (t, *J* = 2.2 Hz, 1H, aryl-*H*). ¹³C NMR (101 MHz, CDCl₃) δ 141.3 (aryl-*C*), 140.2 (aryl-*C*), 139.5 (aryl-*C*), 139.5 (aryl-*C*), 129.0 (aryl-*C*), 128.2 (aryl-*C*), 127.6 (aryl-*C*), 127.1

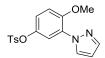

(aryl-C), 126.8 (aryl-C), 119.6 (aryl-C), 107.8 (aryl-C).

These spectroscopic data correspond to reported data.¹

1-(5-(tert-butyl)-2-methoxyphenyl)-1*H***-pyrazole (10). 10** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1) to give the title compound as pale yellow oil (35.8 mg, 77%).

10: ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 2.4 Hz, 1H, aryl-H), 7.72 (d, J = 1.4 Hz, 2H, aryl-H), 7.32 (dd, J = 8.6, 1.8 Hz, 2H, aryl-H), 6.98 (d, J = 8.7 Hz, 1H, aryl-H), 6.44 (t, J = 1.6 Hz, 1H, aryl-H), 3.85 (s, 3H, OCH₃), 1.35 (s, 9H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃) δ 149.3 (aryl-C), 144.4 (aryl-C), 140.0 (aryl-C), 131.8 (aryl-C), 129.2 (aryl-C), 125.0 (aryl-C), 122.7 (aryl-C), 112.1 (aryl-C), 106.2 (aryl-C), 56.1 (OCH₃), 34.4 (C(CH₃)₃), 31.5 (C(CH₃)₃).

HRMS-ESI (m/z): Calcd for [(C₁₄H₁₈N₂O+H)+], 231.1492; found: 231.1496.



Methyl 4-methoxy-3-(1*H***-pyrazol-1-yl)benzoate (11). 11** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (20:1~5:1) to give the title compound as white solid (17.0 mg, 37%).

11: ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 2.2 Hz, 1H, aryl-*H*), 8.01 (d, J = 2.5 Hz, 1H, aryl-*H*), 7.99 (dd, J = 8.7, 2.2 Hz, 2H, aryl-*H*), 7.71 (d, J = 1.8 Hz, 1H, aryl-*H*), 7.05 (d, J = 8.7 Hz, 1H, aryl-*H*), 6.42 (t, J = 2.2 Hz, 1H, aryl-*H*), 3.92 (s, 3H, COOC*H*₃),

3.87 (s, 3H, ArOC*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 166.2 (COOCH₃), 154.8 (aryl-*C*), 140.5 (aryl-*C*), 131.6 (aryl-*C*), 129.9 (aryl-*C*), 129.5 (aryl-*C*), 126.7 (aryl-*C*), 123.3 (aryl-*C*), 111.8 (aryl-*C*), 106.6 (aryl-*C*), 56.3 (OCH₃), 52.1 (COOCH₃).

HRMS-ESI (m/z): Calcd for [(C₁₂H₁₂N₂O₃+H)+], 233.0921; found: 233.0923.

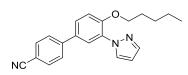
4-methoxy-3-(1*H***-pyrazol-1-yl)phenyl 4-methylbenzenesulfonate (12). 12** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (3:1) to give the title compound as yellow oil (37.1 mg, 54%).

12: ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 2.5 Hz, 1H, aryl-H), 7.72 (d, J = 8.4 Hz, 2H, aryl-H), 7.64 (d, J = 1.6 Hz, 1H, aryl-H), 7.47 (t, J = 1.6 Hz, 1H, aryl-H), 7.30 (d, J = 8.0 Hz, 2H, aryl-H), 6.91 (d, J = 1.7 Hz, 2H, aryl-H), 6.38 (t, J = 2.2 Hz, 1H, aryl-H), 3.84 (s, 3H, ArOCH₃), 2.42 (s, 3H, ArCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 149.6 (aryl-C), 145.6 (aryl-C), 143.0 (aryl-C), 140.4 (aryl-C), 132.3 (aryl-C), 131.5 (aryl-C), 130.0 (aryl-C), 129.9 (aryl-C), 128.6 (aryl-C), 121.1 (aryl-C), 119.0 (aryl-C), 112.7 (aryl-C), 106.7 (aryl-C), 56.4 (ArOCH₃), 21.8 (ArCH₃).

HRMS-ESI (m/z): Calcd for [(C₁₇H₁₆N₂O₄S+H)+], 345.0904; found: 345.0909.

1-(5-chloro-2-methoxyphenyl)-1*H***-pyrazole (13). 13** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1) to give the title compound as colorless oil (23.2 mg, 56%).

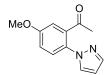
13: ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 2.5 Hz, 1H, aryl-*H*), 7.81 (d, *J* = 2.6 Hz, 1H, aryl-*H*), 7.70 (d, *J* = 1.8 Hz, 1H, aryl-*H*), 7.23 (dd, *J* = 8.8, 2.6 Hz, 1H, aryl-*H*), 6.96 (d, *J* = 8.8 Hz, 1H, aryl-*H*), 6.43 (t, *J* = 2.2 Hz, 1H, aryl-*H*), 3.87 (s, 3H, ArOCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 149.7 (aryl-*C*), 140.5 (aryl-*C*), 131.7 (aryl-*C*), 130.5 (aryl-*C*), 127.4 (aryl-*C*), 126.3 (aryl-*C*), 125.0 (aryl-*C*), 113.5 (aryl-*C*), 106.8 (aryl-*C*), 56.4 (OCH₃).


These spectroscopic data correspond to reported data.²

1-(5-bromo-2-methoxyphenyl)-1*H***-pyrazole (14). 14** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1) to give the title compound as pale yellow oil (25.6 mg, 51%).

14: ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 2.5 Hz, 1H, aryl-*H*), 7.94 (d, *J* = 2.5 Hz, 1H, aryl-*H*), 7.70 (d, *J* = 1.8 Hz, 1H, aryl-*H*), 7.37 (dd, *J* = 8.8, 2.5 Hz, 1H, aryl-*H*), 6.90 (d, *J* = 8.8 Hz, 1H, aryl-*H*), 6.42 (t, *J* = 2.2 Hz, 1H, aryl-*H*), 3.87 (s, 3H, ArOC*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 150.2 (aryl-*C*), 140.5 (aryl-*C*), 131.7 (aryl-*C*), 130.7 (aryl-*C*), 130.4 (aryl-*C*), 127.7 (aryl-*C*), 113.9 (aryl-*C*), 113.3 (aryl-*C*), 106.8 (aryl-*C*), 56.3 (OCH₃).

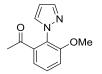
HRMS-ESI (m/z): Calcd for [(C₁₀H₉BrN₂O+H)+], 252.9971; found: 252.9978.



4'-(pentyloxy)-3'-(1H-pyrazol-1-yl)-[1,1'-biphenyl]-4-carbonitrile (15). 15 was synthesized following the general procedure. The residue was purified by

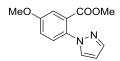
chromatography on silica gel, eluting with hexane/ethyl acetate (8:1) to give the title compound as white solid (34.2 mg, 52%).

15: ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 1.6 Hz, 1H, aryl-H), 8.09 (d, J = 2.4 Hz, 1H, aryl-H), 7.73 (d, J = 1.8 Hz, 1H, aryl-H), 7.72-7.65 (m, 4H, aryl-H), 7.49 (dd, J = 8.6, 2.4 Hz, 1H, aryl-H), 7.12 (d, J = 8.6 Hz, 1H, aryl-H), 6.46 (t, J = 2.1 Hz, 1H, aryl-H), 4.10 (t, J = 6.5 Hz, 1H, OCH₂), 1.88-1.78 (m, 2H, OCH₂CH₂), 1.47-1.32 (m, 4H, CH₂CH₂CH₃), 0.92 (t, J = 7.0 Hz, 3H, CH₂CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 150.8 (aryl-C), 144.5 (aryl-C), 140.3 (aryl-C), 132.7 (aryl-C), 132.1 (aryl-C), 131.7 (aryl-C), 130.4 (aryl-C), 127.4 (aryl-C), 126.2 (aryl-C), 123.6 (aryl-C), 119.1 (CN), 113.9 (aryl-C), 110.7 (aryl-C), 106.6 (aryl-C), 69.5 (OCH₂), 28.9 (OCH₂CH₂), 28.3 (OCH₂CH₂CH₂), 22.4 (CH₂CH₃), 14.1 (CH₂CH₃).


HRMS-ESI (m/z): Calcd for [(C₂₁H₂₁N₃O+H)+], 332.1757; found: 332.1761.

1-(5-methoxy-2-(1*H***-pyrazol-1-yl)phenyl)ethan-1-one (16a). 16a** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (2:1) to give the title compound as colorless oil (14.6 mg, 34%).

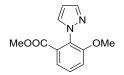
16a: ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 1.9 Hz, 1H, aryl-*H*), 7.64 (d, J = 2.4 Hz, 1H, aryl-*H*), 7.34 (d, J = 8.5 Hz, 1H, aryl-*H*), 7.07 (d, J = 2.8 Hz, 1H, aryl-*H*), 7.04 (dd, J = 8.5, 2.9 Hz, 1H, aryl-*H*), 6.46 (t, J = 2.2 Hz, 1H, aryl-*H*), 3.85 (s, 3H, ArOCH₃), 1.90 (s, 3H, C=OCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 201.1 (*C*=O), 159.3 (aryl-*C*), 141.2 (aryl-*C*), 137.5 (aryl-*C*), 131.8 (aryl-*C*), 130.3 (aryl-*C*), 126.4 (aryl-*C*), 117.6 (aryl-*C*), 113.0 (aryl-*C*), 107.8 (aryl-*C*), 55.9 (ArOCH₃), 28.8 (C=OCH₃).


HRMS-ESI (m/z): Calcd for [(C₁₂H₁₂N₂O₂+H)+], 217.0972; found: 217.0975.

1-(3-methoxy-2-(1*H***-pyrazol-1-yl)phenyl)ethan-1-one (16b). 16b** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (2:1) to give the title compound as white solid (6.0 mg, 14%).

16b: ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 2.4 Hz, 1H, aryl-H), 7.71 (d, J = 1.9 Hz, 1H, aryl-H), 7.41 (t, J = 8.0 Hz, 1H, aryl-H), 7.18 (d, J = 7.7 Hz, 1H, aryl-H), 7.14 (d, J = 8.3 Hz, 1H, aryl-H), 6.49 (t, J = 2.2 Hz, 1H, aryl-H), 3.84 (s, 3H, ArOC H_3), 1.85 (s, 3H, C=OC H_3). ¹³C NMR (101 MHz, CDCl₃) δ 200.9 (C=O), 153.5 (aryl-C), 140.8 (aryl-C), 139.4 (aryl-C), 132.6 (aryl-C), 129.4 (aryl-C), 127.5 (aryl-C), 120.2 (aryl-C), 114.4 (aryl-C), 107.2 (aryl-C), 56.5 (ArOCH₃), 28.7 (C=OCH₃).

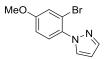
HRMS-ESI (m/z): Calcd for [(C₁₂H₁₂N₂O₂+H)+], 217.0972; found: 217.0976.



Methyl 5-methoxy-2-(1*H***-pyrazol-1-yl)benzoate (17a). 17a** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (2:1) to give the title compound as colorless oil (31.0 mg, 67%).

17a: ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 1.2 Hz, 1H, aryl-H), 7.60 (d, J = 2.3 Hz, 1H, aryl-H), 7.37 (d, J = 8.8 Hz, 1H, aryl-H), 7.33 (d, J = 3.0 Hz, 1H, aryl-H), 7.07 (dd, J = 8.7, 3.0 Hz, 1H, aryl-H), 6.40 (t, J = 2.0 Hz, 1H, aryl-H), 3.86 (s, 3H, ArOCH₃), 3.69 (s, 3H, COOCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 166.8 (COOCH₃), 159.0 (aryl-

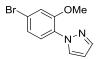
C), 140.6 (aryl-*C*), 133.0 (aryl-*C*), 130.4 (aryl-*C*), 128.8 (aryl-*C*), 127.4 (aryl-*C*), 117.9 (aryl-*C*), 115.0 (aryl-*C*), 106.6 (aryl-*C*), 55.9 (ArOCH₃), 52.5 (COOCH₃).


These spectroscopic data correspond to reported data.³

Methyl 3-methoxy-2-(1*H***-pyrazol-1-yl)benzoate (17b). 17b** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (2:1) to give the title compound as colorless oil (10.2 mg, 22%).

17b: ¹H NMR (400 MHz, CDCl₃) δ 7.70 (s, 2H, aryl-*H*), 7.45-7.39 (m, 2H, aryl-*H*), 7.17 (dd, *J* = 5.7, 4.0 Hz, 1H, aryl-*H*), 6.44 (t, *J* = 2.2 Hz, 1H, aryl-*H*), 3.83 (s, 3H, ArOC*H*₃), 3.69 (s, 3H, COOC*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 166.9 (COOCH₃), 154.3 (aryl-*C*), 140.3 (aryl-*C*), 132.4 (aryl-*C*), 131.1 (aryl-*C*), 129.3 (aryl-*C*), 128.8 (aryl-*C*), 122.0 (aryl-*C*), 115.1 (aryl-*C*), 106.2 (aryl-*C*), 56.5 (ArOCH₃), 52.5 (COOCH₃).

HRMS-ESI (m/z): Calcd for [(C₁₂H₁₂N₂O₃+H)+], 233.0921; found: 233.0925.



1-(2-bromo-4-methoxyphenyl)-1*H***-pyrazole (18a). 18a** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1) to give the title compound as colorless oil (25.2 mg, 50%).

18a: ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H, aryl-*H*), 7.69 (d, *J* = 2.5 Hz, 1H, aryl-*H*), 7.38 (d, *J* = 9.0 Hz, 1H, aryl-*H*), 7.20 (d, *J* = 2.8 Hz, 1H, aryl-*H*), 6.92 (dd, *J* = 8.8,

2.6 Hz, 1H, aryl-*H*), 6.43 (t, *J* = 2.2 Hz, 1H, aryl-*H*), 3.84 (s, 3H, ArOC*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 159.9 (aryl-*C*), 140.5 (aryl-*C*), 133.2 (aryl-*C*), 131.5 (aryl-*C*), 129.0 (aryl-*C*), 119.9 (aryl-*C*), 118.4 (aryl-*C*), 113.9 (aryl-*C*), 106.2 (aryl-*C*), 55.9 (ArO*C*H₃).

HRMS-ESI (m/z): Calcd for [(C₁₀H₉BrN₂O+H)+], 252.9971; found: 252.9981.

1-(4-bromo-2-methoxyphenyl)-1*H***-pyrazole (18b). 18b** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1) to give the title compound as colorless oil (16.2 mg, 32%).

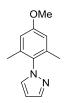
18b: ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 2.5 Hz, 1H, aryl-*H*), 7.70 (d, *J* = 1.8 Hz, 1H, aryl-*H*), 7.63 (d, *J* = 8.3 Hz, 1H, aryl-*H*), 7.23-7.16 (m, 2H, aryl-*H*), 6.43 (t, *J* = 2.2 Hz, 1H, aryl-*H*), 3.89 (s, 3H, ArOC*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 151.6 (aryl-*C*), 140.3 (aryl-*C*), 131.5 (aryl-*C*), 128.9 (aryl-*C*), 126.2 (aryl-*C*), 124.3 (aryl-*C*), 120.8 (aryl-*C*), 115.8 (aryl-*C*), 106.5 (aryl-*C*), 56.3 (ArOCH₃).

HRMS-ESI (m/z): Calcd for [(C₁₀H₉BrN₂O+H)+], 252.9971; found: 252.9981.

1-mesityl-1*H***-pyrazole (19). 19** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (8:1) to give the title compound as colorless oil (18.5 mg, 50%).

19: ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 1.9 Hz, 1H, aryl-*H*), 7.43 (d, *J* = 2.3 Hz, 1H, aryl-*H*), 6.94 (s, 2H, aryl-*H*), 6.43 (t, *J* = 2.1 Hz, 1H, aryl-*H*), 2.33 (s, 3H, ArCH₃),

1.97 (s, 6H, ArCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 140.0 (aryl-*C*), 138.8 (aryl-*C*),
137.0 (aryl-*C*), 136.0 (aryl-*C*), 130.9 (aryl-*C*), 128.8 (aryl-*C*), 105.8 (aryl-*C*), 21.2 (ArCH₃), 17.3 (ArCH₃).


These spectroscopic data correspond to reported data.¹

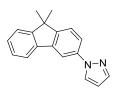
1-(2-methoxy-4,6-dimethylphenyl)-1*H***-pyrazole** (**20a**). **20a** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1) to give the title compound as colorless oil (23.2 mg, 57%).

20a: ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 1.9 Hz, 1H, aryl-*H*), 7.47 (d, *J* = 2.3 Hz, 1H, aryl-*H*), 6.71 (s, 1H, aryl-*H*), 6.66 (s, 1H, aryl-*H*), 6.42 (t, *J* = 2.2 Hz, 1H, aryl-*H*), 3.72 (s, 3H, ArOC*H*₃), 2.37 (s, 6H, ArC*H*₃), 2.00 (s, 3H, ArC*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 155.3 (aryl-*C*), 140.1 (aryl-*C*), 139.9 (aryl-*C*), 137.5 (aryl-*C*), 132.0 (aryl-*C*), 126.8 (aryl-*C*), 123.2 (aryl-*C*), 110.2 (aryl-*C*), 105.6 (aryl-*C*), 56.1 (ArOCH₃), 21.8 (ArCH₃), 17.3 (ArCH₃).

HRMS-ESI (m/z): Calcd for [(C₁₂H₁₄N₂O+H)+], 203.1179; found: 203.1183.

1-(4-methoxy-2,6-dimethylphenyl)-1*H***-pyrazole** (**20b**). **20b** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1) to give the title compound as colorless oil (8.3 mg, 21%).

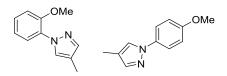
2r': ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 1.9 Hz, 1H, aryl-*H*), 7.42 (d, *J* = 2.3 Hz, 1H, aryl-*H*), 6.65 (s, 2H, aryl-*H*), 6.42 (t, *J* = 2.1 Hz, 1H, aryl-*H*), 3.81 (s, 3H, ArOCH₃), 1.97 (s, 6H, ArCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 159.5 (aryl-*C*), 140.1 (aryl-*C*), 137.7 (aryl-*C*), 132.8 (aryl-*C*), 131.2 (aryl-*C*), 113.2 (aryl-*C*), 105.9 (aryl-*C*), 55.5 (ArOCH₃), 17.7 (ArCH₃).


HRMS-ESI (m/z): Calcd for [(C₁₂H₁₄N₂O+H)+], 203.1179; found: 203.1183.

1-(naphthalen-1-yl)-1*H***-pyrazole (21). 21** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1) to give the title compound as pale yellow oil (24.2 mg, 62%).

2s': ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.90 (m, 2H, aryl-*H*), 7.86 (d, *J* = 1.9 Hz, 1H, aryl-*H*), 7.85-7.81 (m, 1H, aryl-*H*), 7.80 (d, *J* = 2.4 Hz, 1H, aryl-*H*), 7.58-7.48 (m, 4H, aryl-*H*), 6.55 (t, *J* = 2.1 Hz, 1H, aryl-*H*). ¹³C NMR (101 MHz, CDCl₃) δ 140.9 (aryl-*C*), 137.5 (aryl-*C*), 134.4 (aryl-*C*), 131.7 (aryl-*C*), 129.3 (aryl-*C*), 129.0 (aryl-*C*), 128.2 (aryl-*C*), 127.3 (aryl-*C*)), 126.7 (aryl-*C*), 125.2 (aryl-*C*), 123.3 (aryl-*C*), 123.3 (aryl-*C*), 106.6 (aryl-*C*).

These spectroscopic data correspond to reported data.⁴

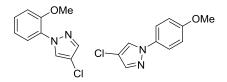


1-(9,9-dimethyl-9*H*-fluoren-3-yl)-1*H*-pyrazole (22). 22 was synthesized following the general procedure. The residue was purified by chromatography on silica gel,

eluting with hexane/ethyl acetate (10:1) to give the title compound as pale yellow oil (31.1 mg, 60%).

2t: ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 2.0 Hz, 1H, aryl-*H*), 7.84 (s, 1H, aryl-*H*), 7.79-7.75 (m, 2H, aryl-*H*), 7.73 (d, *J* = 6.9 Hz, 1H, aryl-*H*), 7.62 (dd, *J* = 8.2, 2.1 Hz, 1H, aryl-*H*), 7.46 (d, *J* = 6.8 Hz, 1H, aryl-*H*), 7.40-7.31 (m, 2H, aryl-*H*), 6.50 (t, *J* = 2.2 Hz, 1H, aryl-*H*), 1.55 (s, 6H, C(CH₃)₂). ¹³C NMR (101 MHz, CDCl₃) δ 155.3 (aryl-C), 153.9 (aryl-C), 141.1 (aryl-C), 139.6 (aryl-C), 138.4 (aryl-C), 137.8 (aryl-C), 127.5 (aryl-C), 127.3 (aryl-C)), 127.1 (aryl-C), 122.8 (aryl-C), 120.8 (aryl-C), 120.1 (aryl-C), 118.2 (aryl-C), 114.4 (aryl-C), 107.7 (aryl-C), 47.3 (*C*(CH₃)₂), 27.2 (C(*C*H₃)₂).

These spectroscopic data correspond to reported data.⁵


4-chloro-1-(2-methoxyphenyl)-1*H***-pyrazole (23a). 4-chloro-1-(4-methoxyphenyl)-**1*H***-pyrazole (23b). 23a** and **23b** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1) to give the title compound as pale yellow oil (15.6 mg, 41%). The *ortho* : *para* ratio of the inseparable mixture was 7:1 as determined by ¹H NMR of the isolated product.

23a: ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H, aryl-*H*), 7.68 (dd, *J* = 7.8, 1.7 Hz, 1H, aryl-*H*), 7.51 (s, 1H, aryl-*H*), 7.27 (td, *J* = 7.9, 1.6 Hz, 1H, aryl-*H*), 7.07-7.00 (m, 2H, aryl-*H*), 3.88 (s, 3H, OCH₃), 2.16 (s, 3H, ArCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 151.3 (aryl-*C*), 140.9 (aryl-*C*), 130.3 (aryl-*C*), 130.0 (aryl-*C*), 127.8 (aryl-*C*), 125.1 (aryl-*C*), 121.3 (aryl-*C*), 116.7 (aryl-*C*), 112.3 (aryl-*C*), 56.0 (OCH₃), 9.1 (ArCH₃).

23b: ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H, aryl-*H*), 7.54 (d, *J* = 9.1 Hz, 2H, aryl-

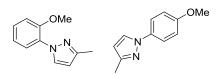
H), 7.49 (s, 1H, aryl-*H*), 6.95 (d, *J* = 9.0 Hz, 2H, aryl-*H*), 3.83 (s, 3H, OC*H*₃), 2.15 (s, 3H, ArC*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 158.0 (aryl-*C*), 141.3 (aryl-*C*), 134.3 (aryl-*C*), 125.6 (aryl-*C*), 120.5 (aryl-*C*), 117.9 (aryl-*C*), 114.6 (aryl-*C*), 55.6 (OCH₃), 9.0 (ArCH₃).

These spectroscopic data correspond to reported data.¹

4-chloro-1-(2-methoxyphenyl)-1*H***-pyrazole (24a). 4-chloro-1-(4-methoxyphenyl)-**1*H***-pyrazole (24b). 24a** and **24b** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1) to give the title compound as pale yellow oil (24.4 mg, 58%). The *ortho* : *para* ratio of the inseparable mixture was 14:1 as determined by ¹H NMR of the isolated product.

24a: ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H, aryl-*H*), 7.70 (d, *J* = 7.9 Hz, 1H, aryl-*H*), 7.62 (s, 1H, aryl-*H*), 7.31 (t, *J* = 7.8 Hz, 1H, aryl-*H*), 7.09-7.01 (m, 2H, aryl-*H*), 3.89 (s, 3H, OCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 151.0 (aryl-*C*), 138.5 (aryl-*C*), 129.6 (aryl-*C*), 129.3 (aryl-*C*), 128.5 (aryl-*C*), 124.7 (aryl-*C*), 121.2 (aryl-*C*), 112.3 (aryl-*C*), 110.7 (aryl-*C*), 55.9 (OCH₃).

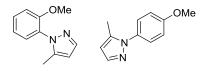
24b: ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H, aryl-*H*), 7.62 (s, 1H, aryl-*H*), 7.52 (d, *J* = 8.6 Hz, 2H, aryl-*H*), 6.96 (d, *J* = 8.7 Hz, 2H, aryl-*H*), 3.83 (s, 3H, OCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 158.6 (aryl-*C*), 139.0 (aryl-*C*), 133.5 (aryl-*C*), 131.6 (aryl-*C*), 124.9 (aryl-*C*), 120.7 (aryl-*C*), 114.6 (aryl-*C*), 55.6 (OCH₃).


These spectroscopic data correspond to reported data.⁶

4-bromo-1-(2-methoxyphenyl)-1*H***-pyrazole (25). 25** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1) to give the title compound as pale yellow oil (22.3 mg, 44%).

25: ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H, aryl-*H*), 7.70 (d, *J* = 7.9 Hz, 1H, aryl-*H*), 7.65 (s, 1H, aryl-*H*), 7.31 (t, *J* = 7.8 Hz, 1H, aryl-*H*), 7.09-7.01 (m, 2H, aryl-*H*), 3.89 (s, 3H, OCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 151.1 (aryl-*C*), 140.6 (aryl-*C*), 131.7 (aryl-*C*), 129.3 (aryl-*C*), 128.6 (aryl-*C*), 124.8 (aryl-*C*), 121.3 (aryl-*C*), 112.3 (aryl-*C*), 94.1 (aryl-*C*), 56.0 (OCH₃).

These spectroscopic data correspond to reported data.⁶

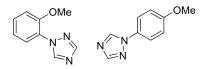

1-(2-methoxyphenyl)-3-methyl-1*H***-pyrazole** (26a). **1-(4-methoxyphenyl)-3-methyl-1***H***-pyrazole** (26b). 26a and 26b were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1) to give the title compound as colorless oil (14.2 mg, 38%). The *ortho* : *para* ratio of the inseparable mixture was 7:1 as determined by ¹H NMR of the isolated product.

26a: ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 2.4 Hz, 1H, aryl-*H*), 7.70 (d, *J* = 7.7 Hz, 1H, aryl-*H*), 7.30-7.22 (m, 1H, aryl-*H*), 7.08-6.99 (m, 2H, aryl-*H*), 6.21 (d, *J* = 2.4 Hz, 1H, aryl-*H*), 3.86 (s, 3H, OCH₃), 2.38 (s, 3H, ArCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 151.3 (aryl-*C*), 149.5 (aryl-*C*), 132.4 (aryl-*C*), 129.9 (aryl-*C*), 127.7 (aryl-*C*),

125.2 (aryl-*C*), 121.3 (aryl-*C*), 112.3 (aryl-*C*), 106.2 (aryl-*C*), 56.0 (OCH₃), 13.8 (ArCH₃).

26b: ¹H NMR (400 MHz, CDCl₃) δ 7.70 (s, 1H, aryl-*H*), 7.54 (d, *J* = 9.0 Hz, 2H, aryl-*H*), 6.94 (d, *J* = 9.0 Hz, 2H, aryl-*H*), 6.21 (d, *J* = 2.4 Hz, 1H, aryl-*H*), 3.83 (s, 3H, OCH₃), 2.38 (s, 3H, ArCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 158.0 (aryl-*C*), 150.1 (aryl-*C*), 134.2 (aryl-*C*), 127.6 (aryl-*C*), 120.7 (aryl-*C*), 114.6 (aryl-*C*), 107.1 (aryl-*C*), 55.7 (OCH₃), 13.8 (ArCH₃).

These spectroscopic data correspond to reported data.¹


1-(2-methoxyphenyl)-5-methyl-1*H***-pyrazole** (26c). **1-(4-methoxyphenyl)-5-methyl-1***H***-pyrazole** (26d). 26c and 26d were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1) to give the title compound as colorless oil (10.0 mg, 27%). The *ortho* : *para* ratio of the inseparable mixture was 1:1 as determined by ¹H NMR of the isolated product.

26c: ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H, aryl-*H*), 7.41 (td, *J* = 8.0, 1.8 Hz, 1H, aryl-*H*), 7.33 (d, *J* = 4.1 Hz, 1H, aryl-*H*), 7.08-7.00 (m, 2H, aryl-*H*), 6.17 (s, 1H, aryl-*H*), 3.79 (s, 3H, OC*H*₃), 2.15 (s, 3H, ArC*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 154.8 (aryl-*C*), 140.8 (aryl-*C*), 139.9 (aryl-*C*), 130.3 (aryl-*C*), 129.2 (aryl-*C*), 128.7 (aryl-*C*), 120.9 (aryl-*C*), 112.2 (aryl-*C*), 105.3 (aryl-*C*), 55.9 (OCH₃), 11.4 (ArCH₃).

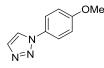
26d: ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H, aryl-*H*), 7.34 (d, *J* = 8.8 Hz, 2H, aryl-*H*), 6.97 (d, *J* = 8.9 Hz, 2H, aryl-*H*), 6.17 (s, 1H, aryl-*H*), 3.85 (s, 3H, ArC*H*₃), 2.29 (s, 3H, ArC*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 159.1 (aryl-*C*), 139.6 (aryl-*C*), 138.9

(aryl-*C*), 133.1 (aryl-*C*), 126.5 (aryl-*C*), 114.3 (aryl-*C*), 106.4 (aryl-*C*), 55.7 (OCH₃), 12.3 (ArCH₃).

These spectroscopic data correspond to reported data.¹

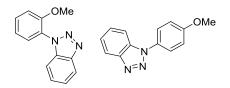
1-(2-methoxyphenyl)-1H-1,2,4-triazole (27a). **1-(4-methoxyphenyl)-1H-1,2,4-triazole** (27b). 27a and 27b were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (2:1) to give the title compound as pale yellow oil (15.2 mg, 43%). The *ortho* : *para* ratio of the inseparable mixture was 2:1 as determined by ¹H NMR of the isolated product.

27a: ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H, aryl-*H*), 8.06 (d, *J* = 2.0 Hz, 1H, aryl-*H*), 7.35 (t, *J* = 7.8 Hz, 1H, aryl-*H*), 7.08 (t, *J* = 8.2 Hz, 2H, aryl-*H*), 6.99 (d, *J* = 8.5 Hz, 1H, aryl-*H*), 3.90 (s, 2H, OC*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 151.3 (aryl-*C*), 150.9 (aryl-*C*), 144.6 (aryl-*C*), 129.1 (aryl-*C*), 126.4 (aryl-*C*), 124.5 (aryl-*C*), 121.3 (aryl-*C*), 112.2 (aryl-*C*), 56.0 (OCH₃).


27b: ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H, aryl-*H*), 8.06 (d, *J* = 2.0 Hz, 1H, aryl-*H*), 7.76 (d, *J* = 7.9 Hz, 2H, aryl-*H*), 7.55 (d, *J* = 8.7 Hz, 2H, aryl-*H*), 3.84 (s, 3H, OC*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 159.5 (aryl-*C*), 152.4 (aryl-*C*), 140.8 (aryl-*C*), 130.5 (aryl-*C*), 121.9 (aryl-*C*), 114.8 (aryl-*C*), 55.6 (OCH₃).

These spectroscopic data correspond to reported data.¹

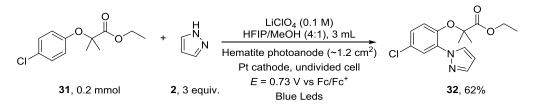
1-(2-methoxyphenyl)-1*H***-1,2,3-triazole (28a). 28a** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (3:1) to give the title compound as colorless oil (20.5 mg, 59%).


28a: ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H, aryl-*H*), 7.81 (s, 1H, aryl-*H*), 7.78 (dd, J = 7.9, 1.6 Hz, 1H, aryl-*H*), 7.42 (td, J = 7.9, 1.6 Hz, 1H, aryl-*H*), 7.14-7.05 (m, 2H, aryl-*H*), 3.88 (s, 2H, OC*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 151.3 (aryl-*C*), 133.3 (aryl-*C*), 130.2 (aryl-*C*), 126.4 (aryl-*C*), 125.8 (aryl-*C*), 125.7 (aryl-*C*), 121.3 (aryl-*C*), 112.4 (aryl-*C*), 56.1 (OCH₃).

1-(4-methoxyphenyl)-1*H***-1,2,3-triazole (28b). 28b** were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (3:1) to give the title compound as white solid (5.2 mg, 15%).

28b: ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H, aryl-*H*), 7.84 (s, 1H, aryl-*H*), 7.64 (d, *J* = 8.5 Hz, 2H, aryl-*H*), 7.03 (d, *J* = 8.5 Hz, 2H, aryl-*H*), 3.87 (s, 3H, OCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 160.0 (aryl-*C*), 134.4 (aryl-*C*), 130.7 (aryl-*C*), 122.5 (aryl-*C*), 122.0 (aryl-*C*), 114.9 (aryl-*C*), 55.8 (OCH₃).

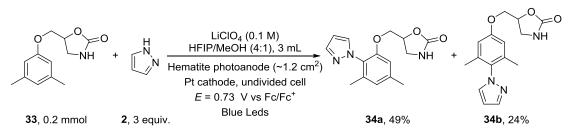
These spectroscopic data correspond to reported data.¹


1-(2-methoxyphenyl)-1*H*-benzo[d][1,2,3]triazole (29a). 1-(4-methoxyphenyl)-1*H*benzo[d][1,2,3]triazole (29b). 29a and 29b were synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (2:1) to give the title compound as pale yellow oil (26.5 mg, 59%). The *ortho* : *para* ratio of the inseparable mixture was 4:1 as determined by ¹H NMR of the isolated product.

29a: ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.2 Hz, 1H, aryl-*H*), 7.54-7.41 (m, 3H, aryl-*H*), 7.37 (t, *J* = 8.6 Hz, 2H, aryl-*H*), 7.16-7.11 (m, 2H, aryl-*H*), 3.77 (s, 3H, OC*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 153.7 (aryl-*C*), 145.7 (aryl-*C*), 134.1 (aryl-*C*), 131.1 (aryl-*C*), 128.2 (aryl-*C*), 127.6 (aryl-*C*), 125.3 (aryl-*C*), 123.9 (aryl-*C*), 121.1 (aryl-*C*), 119.9 (aryl-*C*), 112.5 (aryl-*C*), 111.3 (aryl-*C*), 56.0 (OCH₃).

29b: ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.2 Hz, 1H, aryl-*H*), 7.61-7.67 (m, 3H, aryl-*H*), 7.54-7.41 (m, 2H, aryl-*H*), 7.09 (d, *J* = 8.9 Hz, 2H, aryl-*H*), 3.88 (s, 3H, OC*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 159.9 (aryl-*C*), 146.3 (aryl-*C*), 132.7 (aryl-*C*), 130.0 (aryl-*C*), 128.1 (aryl-*C*), 124.6 (aryl-*C*), 124.3 (aryl-*C*), 120.2 (aryl-*C*), 115.0 (aryl-*C*), 110.3 (aryl-*C*), 55.7 (OCH₃).

These spectroscopic data correspond to reported data.¹


Late-stage Functionalization of Pharmaceuticals

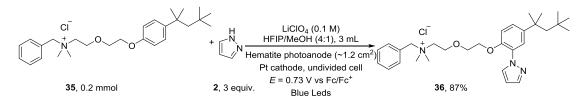
Ethyl 2-(4-chloro-2-(1*H***-pyrazol-1-yl)phenoxy)-2-methylpropanoate (32). 32** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with hexane/ethyl acetate (5:1) to give the title compound as pale yellow oil (38.2 mg, 62%).

32: ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 2.5 Hz, 1H, aryl-*H*), 7.78 (d, *J* = 2.7 Hz, 1H, aryl-*H*), 7.69 (d, *J* = 1.9 Hz, 1H, aryl-*H*), 7.15 (dd, *J* = 8.8, 2.7 Hz, 1H, aryl-*H*), 6.95 (d, *J* = 8.9 Hz, 1H, aryl-*H*), 6.41 (t, *J* = 2.2 Hz, 1H, aryl-*H*), 4.22 (q, *J* = 7.1 Hz, 2H, CH₂CH₃), 1.42 (s, 6H, C(CH₃)₂), 1.26 (t, *J* = 7.1 Hz, 3H, CH₂CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 173.5 (*C*=O), 145.5 (aryl-*C*), 140.7 (aryl-*C*), 134.2 (aryl-*C*), 131.9 (aryl-*C*), 128.7 (aryl-*C*), 127.2 (aryl-*C*), 125.5 (aryl-*C*), 121.6 (aryl-*C*), 106.8 (aryl-*C*), 81.7 (OC(CH₃)₂), 61.8(OCH₂CH₃), 24.9 (OC(CH₃)₂), 14.2 (OCH₂CH₃).

HRMS-ESI (m/z): Calcd for [(C₁₅H₁₇ClN₂O₃+H)+], 309.1000; found: 309.1007.

5-((3,5-dimethyl-2-(1*H***-pyrazol-1-yl)phenoxy)methyl)oxazolidin-2-one (34a). 34a** was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with ethyl acetate to give the title compound as white solid (28.3 mg, 49%).

34a: ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 1.9 Hz, 1H, aryl-H), 7.48 (d, J = 2.3


Hz, 1H, aryl-*H*), 6.78 (s, 1H, aryl-*H*), 6.67 (s, 1H, aryl-*H*), 6.42 (s, 1H, aryl-*H*), 5.79 (s, 1H, N*H*), 4.73 (m, 1H, COOC*H*), 4.08 (dd, J = 10.3, 4.6 Hz, 1H, ArOC*H*₂), 3.98 (dd, J = 10.3, 3.8 Hz, 1H, ArOC*H*₂), 3.47 (t, J = 8.9 Hz, 1H, C*H*₂NH), 3.26 (dd, J = 8.6, 6.1 Hz, 1H, C*H*₂NH), 2.36 (s, 3H, ArC*H*₃), 2.05 (s, 3H, ArC*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 159.4 (*C*=O), 153.8 (aryl-*C*), 140.1 (aryl-*C*), 140.0 (aryl-*C*), 137.6 (aryl-*C*), 132.2 (aryl-*C*), 127.5 (aryl-*C*), 124.5 (aryl-*C*), 112.2 (aryl-*C*), 105.8 (aryl-*C*), 74.0 (COOCH), 69.1 (ArOCH₂), 42.1 (CH₂NH), 21.7 (ArCH₃), 17.3 (ArCH₃).

HRMS-ESI (m/z): Calcd for [(C₁₅H₁₇N₃O₃+H)+], 288.1343; found: 288.1348.

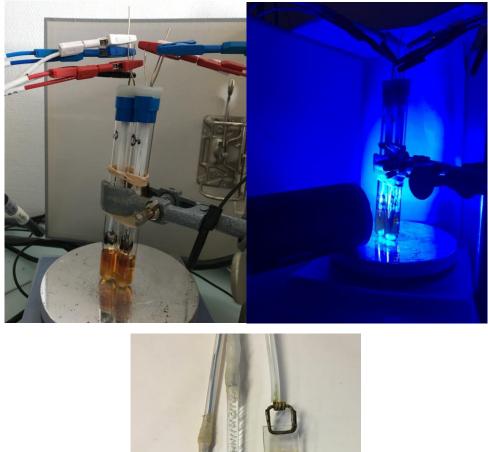
5-((3,5-dimethyl-4-(1H-pyrazol-1-yl)phenoxy)methyl)oxazolidin-2-one (34b). 34b was synthesized following the general procedure. The residue was purified by chromatography on silica gel, hexane/ethyl acetate (5:1) to give the title compound as white solid (13.7 mg, 24%).

34b: ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H, aryl-*H*), 7.42 (s, 1H, aryl-*H*), 6.67 (s, 2H, aryl-*H*, aryl-*H*), 6.43 (s, 1H, aryl-*H*), 5.62 (s, 1H, N*H*), 4.97 (m, 1H, COOC*H*), 4.16 (d, *J* = 4.8 Hz, 2H, ArOC*H*₂), 3.78 (t, *J* = 8.8 Hz, 1H, C*H*₂NH), 3.61 (t, *J* = 7.4 Hz, 1H, C*H*₂NH), 1.96 (s, 6H, ArC*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ 159.2 (*C*=O), 157.9 (aryl-*C*), 140.1 (aryl-*C*), 137.9 (aryl-*C*), 133.5 (aryl-*C*), 131.1 (aryl-*C*), 113.9 (aryl-*C*), 105.9 (aryl-*C*), 74.1 (COOCH), 68.1 (ArOCH₂), 42.6 (CH₂NH), 16.4 (ArCH₃).

HRMS-ESI (m/z): Calcd for [(C₁₅H₁₇N₃O₃+H)+], 288.1343; found: 288.1346.

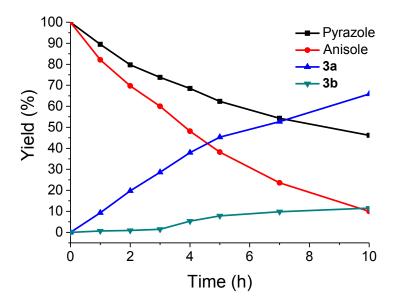
Ethyl 2-(4-chloro-2-(1*H*-pyrazol-1-yl)phenoxy)-2-methylpropanoate (36). 36 was synthesized following the general procedure. The residue was purified by chromatography on silica gel, eluting with DCM/MeOH (10:1) to give the title

compound as pale yellow oil (89.8 mg, 87%).

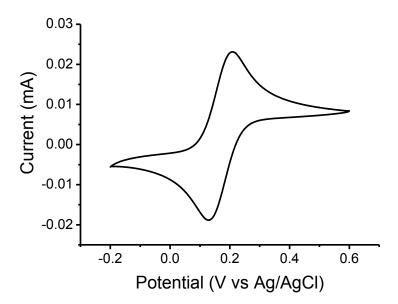

36: ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 2.5 Hz, 1H, aryl-H), 7.61 (dd, J = 6.1, 2.1 Hz, 2H, aryl-H), 7.47-7.35 (m, 5H, aryl-H), 7.30-7.25 (m, 1H, aryl-H), 6.93 (d, J = 8.7 Hz, 1H, aryl-H), 6.40 (t, J = 2.1 Hz, 1H, aryl-H), 4.47 (s, 2H, ArCH₂N), 4.16 (t, J = 4.2 Hz, 2H), 3.90 (t, J = 4.6 Hz, 2H), 3.83 (t, J = 4.2 Hz, 2H), 3.53 (t, J = 4.6 Hz, 2H), 2.91 (s, 6H, N(CH₃)₂), 1.71 (s, 2H, CH₂C(CH₃)₃), 1.35 (s, 6H, ArC(CH₃)₂), 0.72 (s, 9H, CH₂C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃) δ 148.0 (aryl-C), 144.0 (aryl-C), 140.0 (aryl-C), 133.3 (aryl-C), 131.9 (aryl-C), 130.9 (aryl-C), 129.3 (aryl-C), 129.2 (aryl-C), 126.9 (aryl-C), 126.0 (aryl-C), 123.6 (aryl-C), 113.0 (aryl-C), 106.5 (aryl-C), 69.8, 69.6, 68.3, 65.0, 63.1, 56.8, 50.3, 38.2, 32.4, 31.9, 31.6.

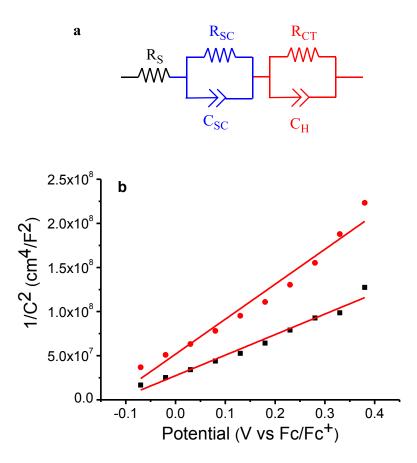
HRMS-ESI (m/z): Calcd for [(C₃₀H₄₄ClN₃O₂-Cl)+], 478.3428; found: 478.3426.

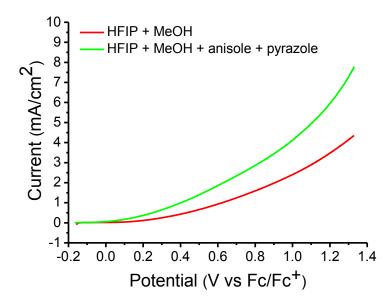
Supplementary References

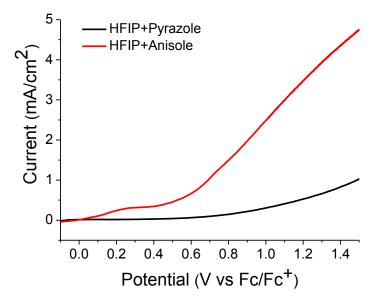

- 1 Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective arene C-H amination via photoredox catalysis. *Science* **349**, 1326-1330 (2015).
- 2 Mohamed, A. B. M.; Ewen, D. D. C.; Daugirdas, T. R. & Andrew, S. Intermolecular Aryl C–H Amination through Sequential Iron and Copper Catalysis. *Chem. Eur. J.* **23**, 1044-1047 (2017).
- 3 Mita, T., Tanaka, H., Michigami, K. & Sato, Y. Ruthenium-Catalyzed C–H Silylation of 1-Arylpyrazole Derivatives and Fluoride-Mediated Carboxylation: Use of Two Nitrogen Atoms of the Pyrazole Group. *Synlett* **25**, 1291-1294 (2014).
- 4 Boswell, M. G., Yeung, F. G. & Wolf, C. Copper-Catalyzed C–N Bond Formation with N-Heterocycles and Aryl Halides. *Synlett* **2012**, 1240-1244 (2012).
- 5 Niu, L. *et al.* Photo-induced oxidant-free oxidative C–H/N–H cross-coupling between arenes and azoles. *Nat. Commun.* **8**, 14226 (2017).
- Somnath, D., Palani, N. & Burkhard, K. Teaching Old Compounds New Tricks:
 DDQ Photocatalyzed C-H Amination of Arenes with Carbamates, Urea, and
 N Heterocycles. *Chem. Eur. J.* 23, 18161-18165 (2017).
- 7 Le Formal, F. *et al.* Passivating surface states on water splitting hematite photoanodes with alumina overlayers. *Chem. Sci.* **2**, 737-743 (2011).

Supplementary Figures

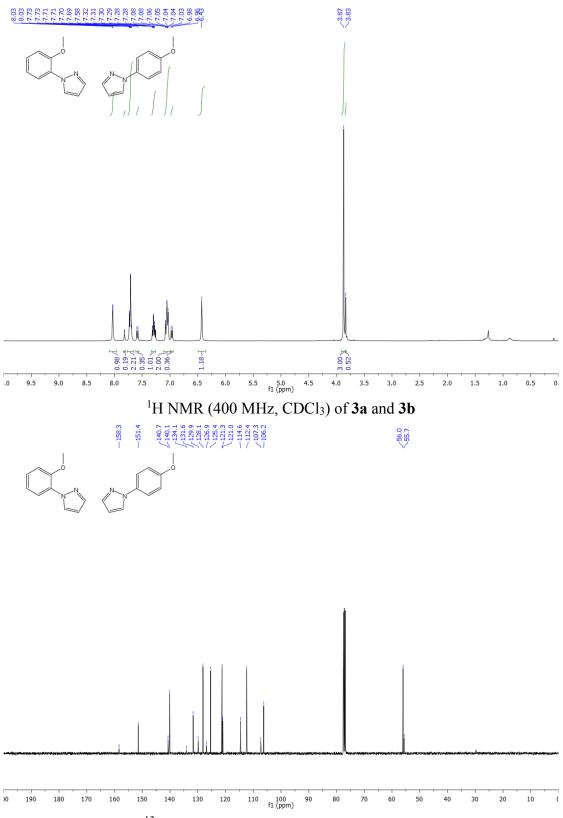



Supplementary Figure 1. Undivided cell for photoelectrochemical oxidation

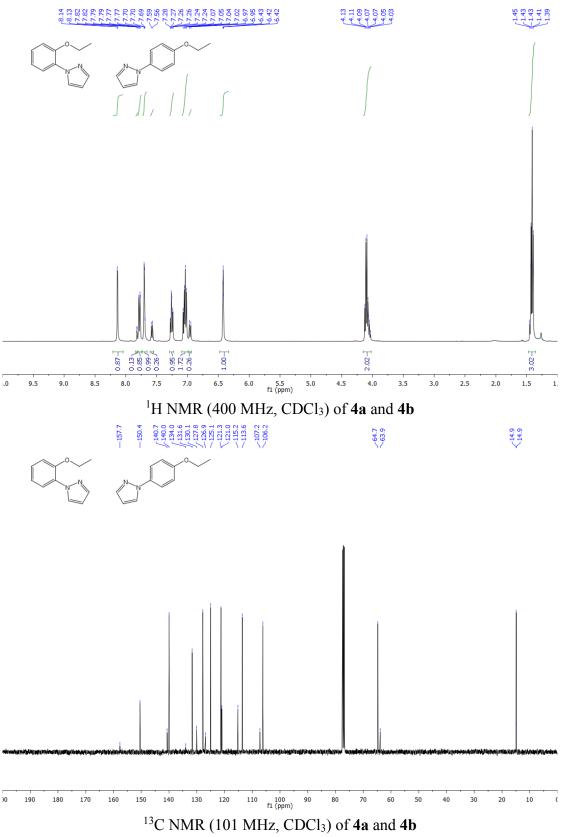

Supplementary Figure 2. Time-dependent concentration profile of reactants and products. Reaction conditions: Anisole (0.2 mmol), Pyrazole (0.4 mmol) in HFIP/MeOH (4:1, 3 mL) containing LiClO₄ (0.1 M). Applied potential: E = 0.73 V vs Fc/Fc⁺.

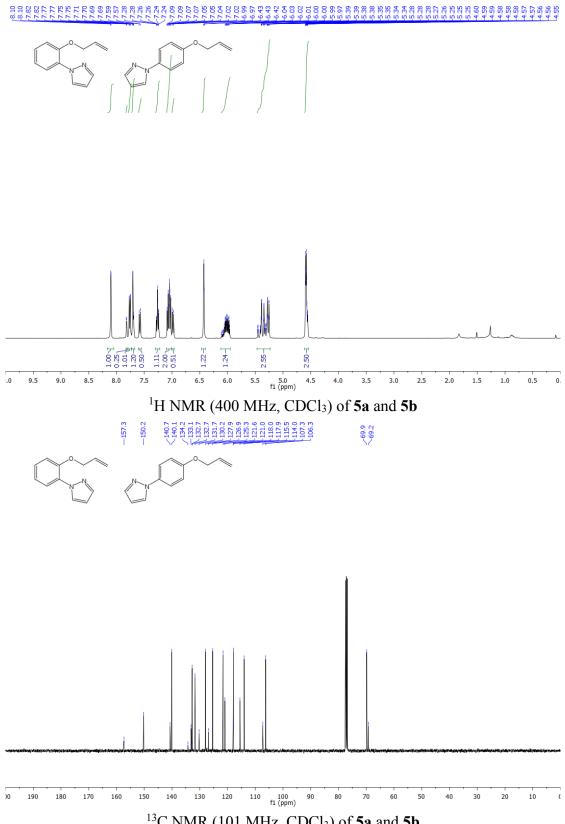

Supplementary Figure 3. CV curve of ferrocene in HFIP/MeOH (3:1) containing LiClO₄ (0.1 M). Glassy carbon electrode was used as a working electrode with a Ag/AgCl reference electrode and a Pt counter electrode. Scan rate: 30 mV/s.

Supplementary Figure 4. Electrochemical impedance spectroscopy (EIS) investigation. a. Electronic equivalent circuit representing the photoanode/electrolyte system used for EIS data modeling.⁷ R_S represents a circuit series resistance. R_{SC} represent the charge transfer resistance and C_{CS} represent the capacitance of space charge region. R_{CT} represent the semiconductor-electrolyte charge transfer resistance and C_H represent the Helmholtz capacitance. b. Mott-Schottky curve of hematite in HFIP/MeOH (4:1) derived from EIS data. Electrochemical impedance spectroscopy (EIS) was conducted on two different hematite samples, and the results are similar.

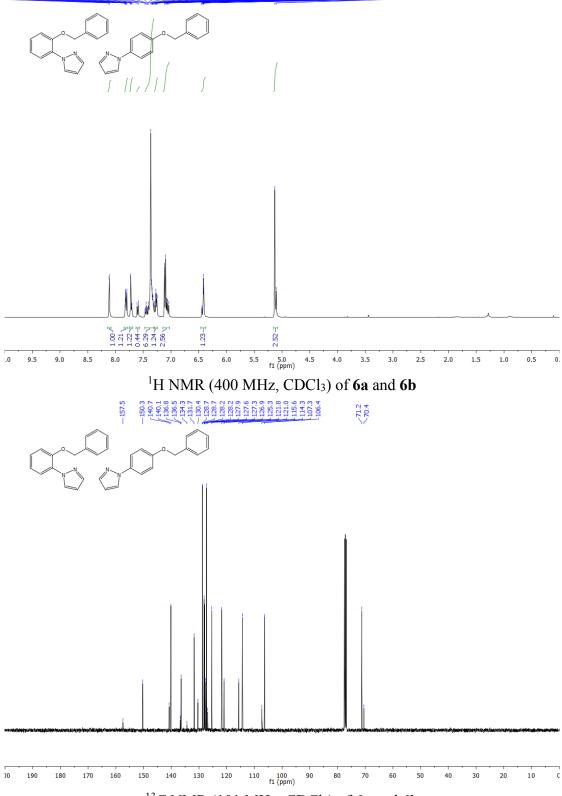


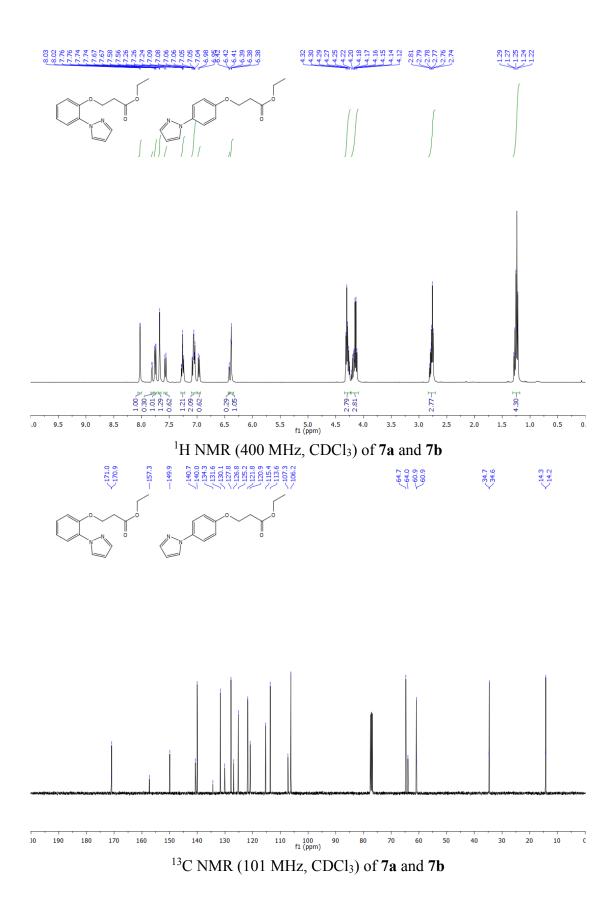
Supplementary Figure 5. LSV curves of PEC oxidation under LED illumination. The electrolyte is 0.3 mmol LiClO4. Photocurrent profiles correspond to the organic solvent alone (HFIP: MeOH = 4:1, 3 mL) (red) and the solvent plus substrates (0.2 mmol anisole and 0.4 mmol pyrazole) (green). Scan rate: 30 mV/s. The oxidation of MeOH appears to occur as a background reaction.

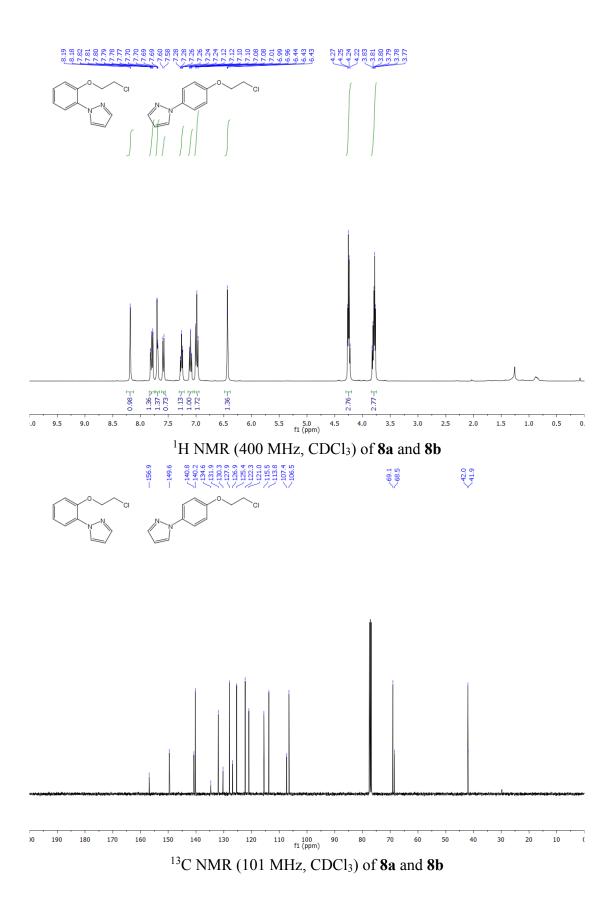


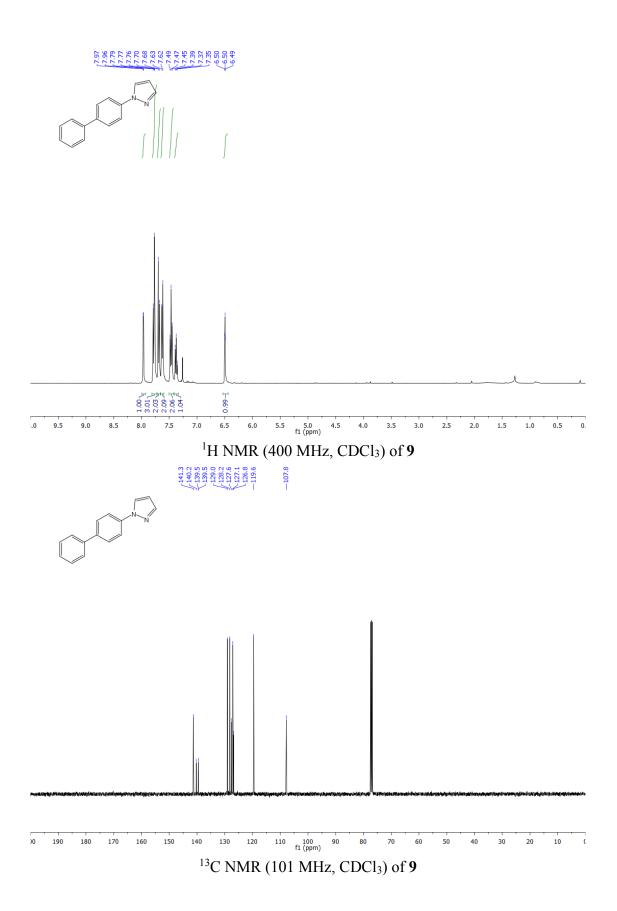

Supplementary Figure 6. LSV curves of PEC oxidation under LED illumination. The electrolyte is 0.3 mmol TBAPF₆. Photocurrent profiles correspond to 0.2 mmol anisole in 3 mL HFIP (red) and 0.4 mmol pyrzole in 3 mL HFIP (black). Scan rate: 30 mV/s.

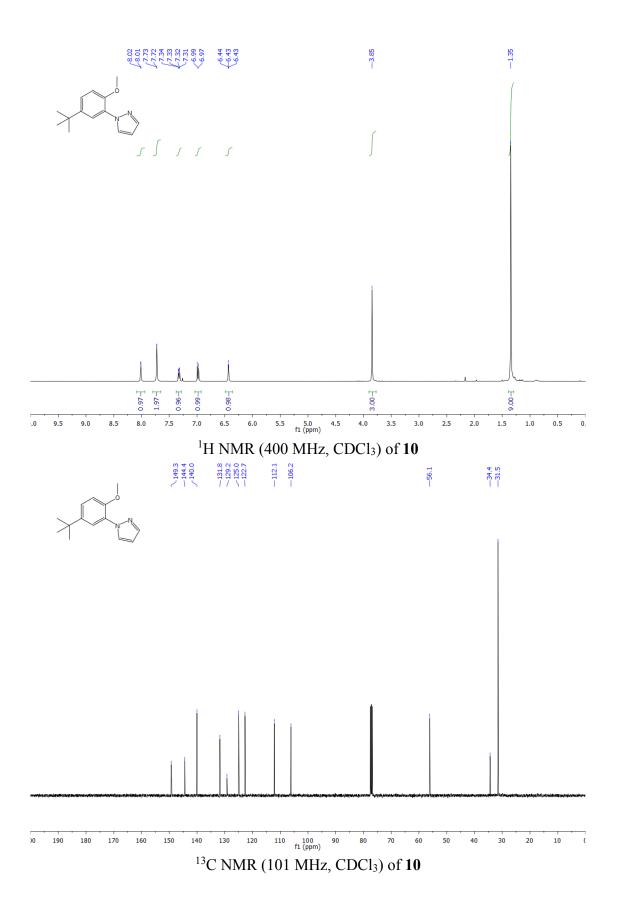
NMR Spectra

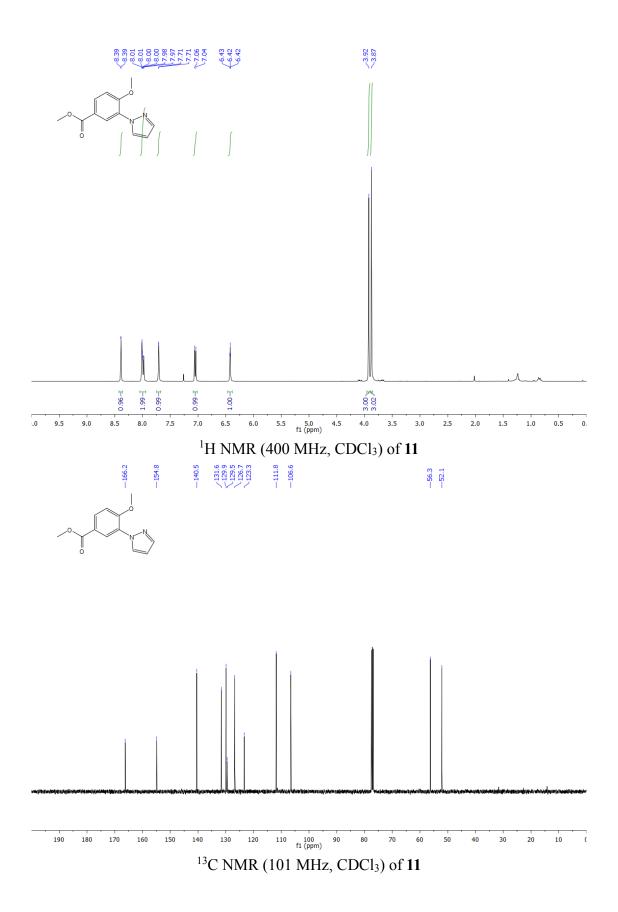

 ^{13}C NMR (101 MHz, CDCl₃) of 3a and 3b

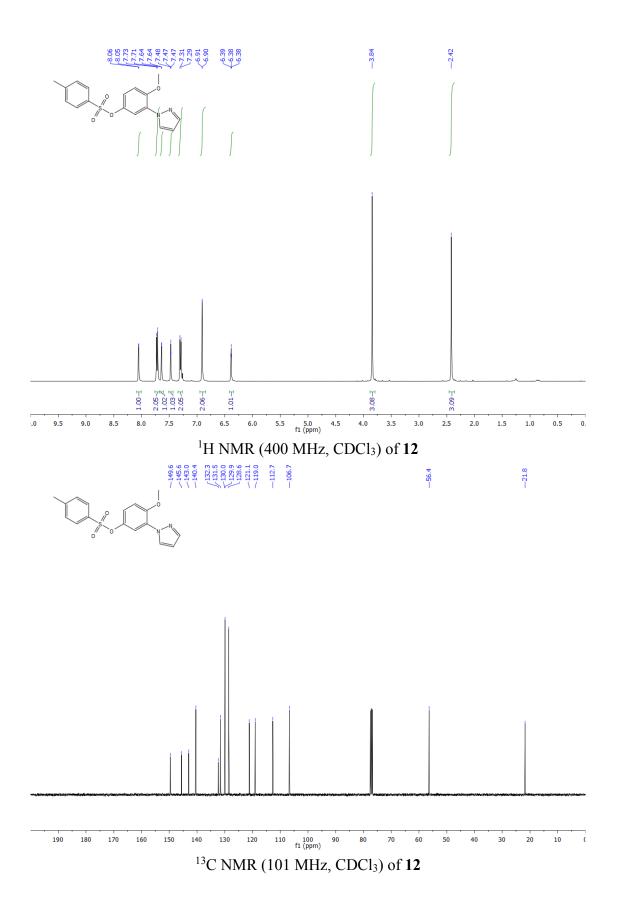


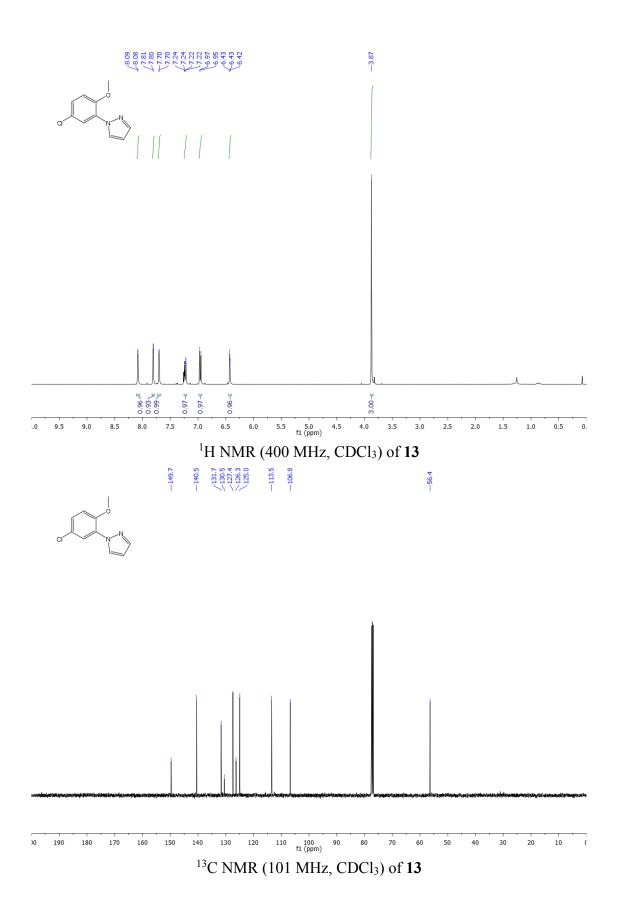

 ^{13}C NMR (101 MHz, CDCl₃) of **5a** and **5b**

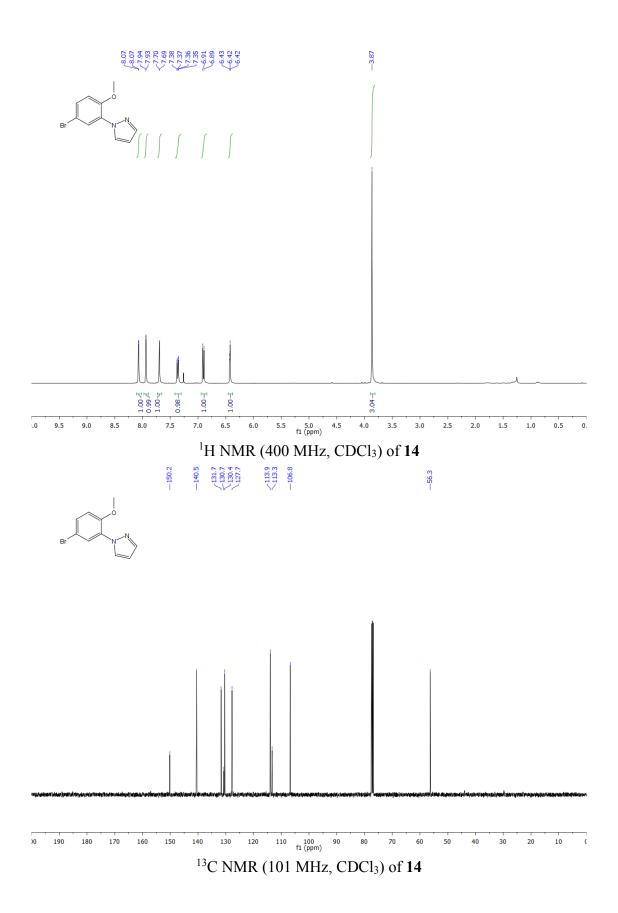


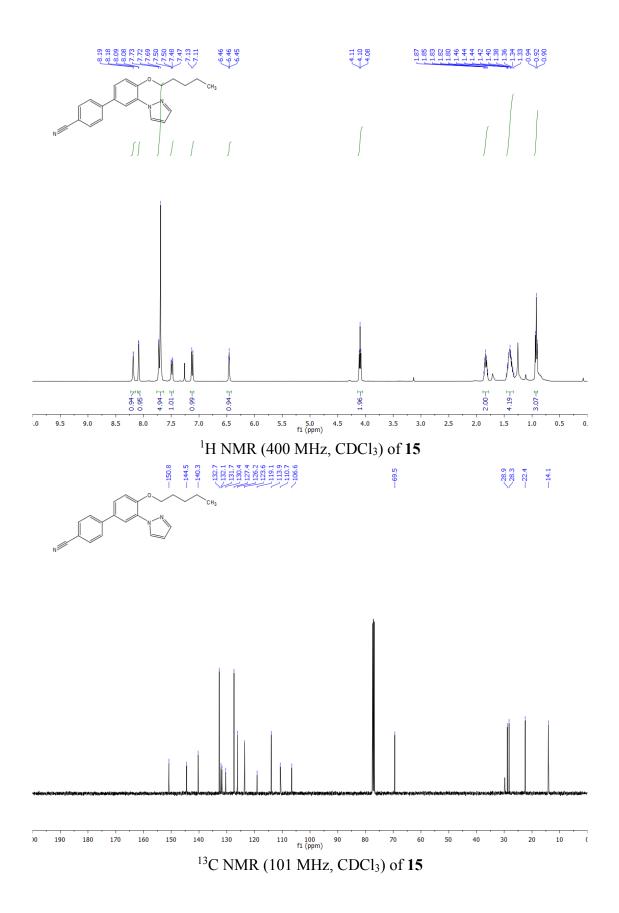


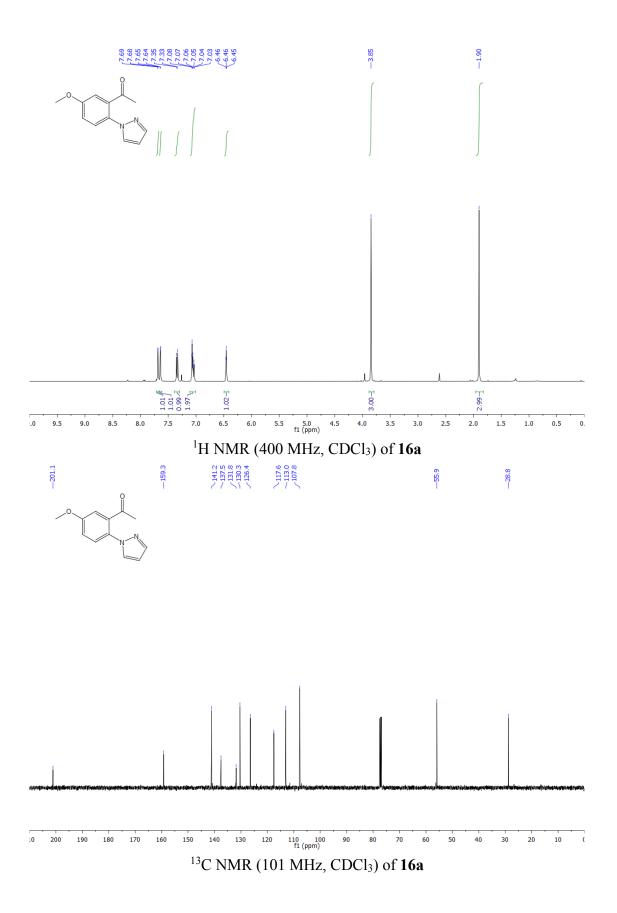

 ^{13}C NMR (101 MHz, CDCl₃) of **6a** and **6b**

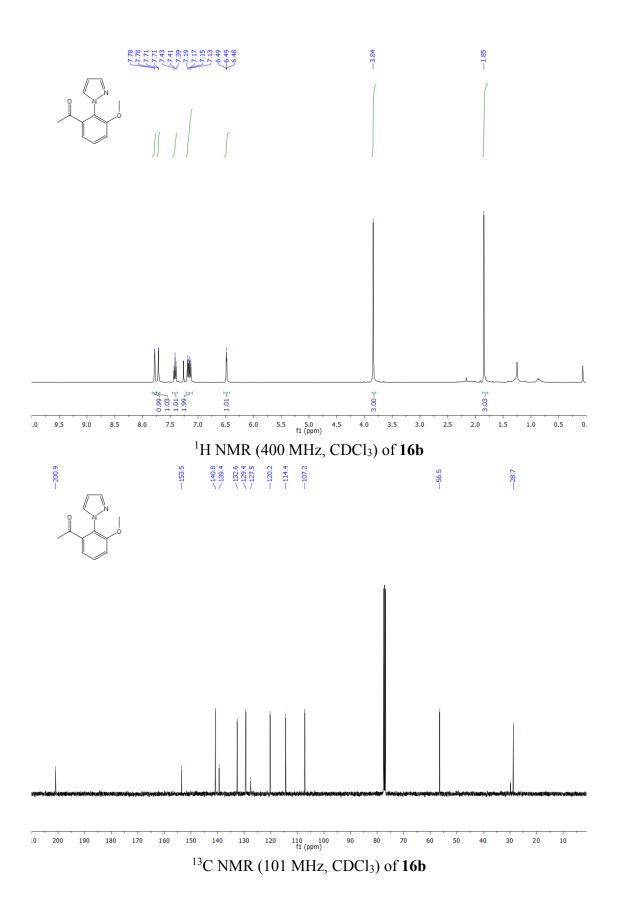


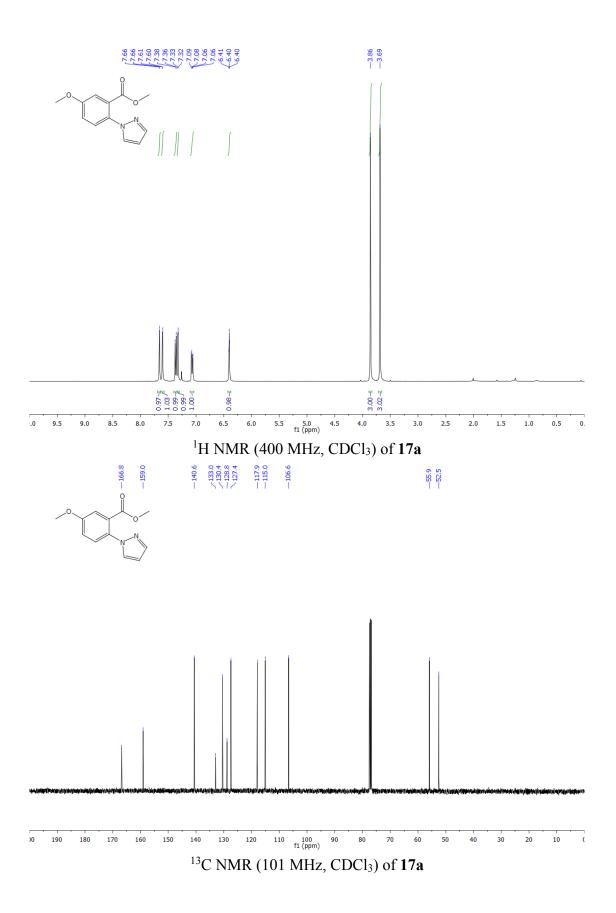


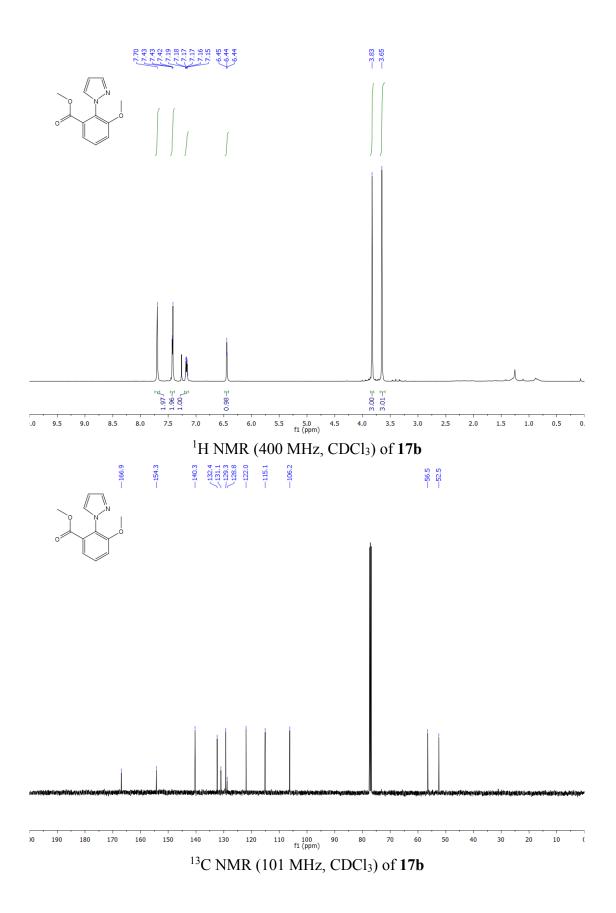


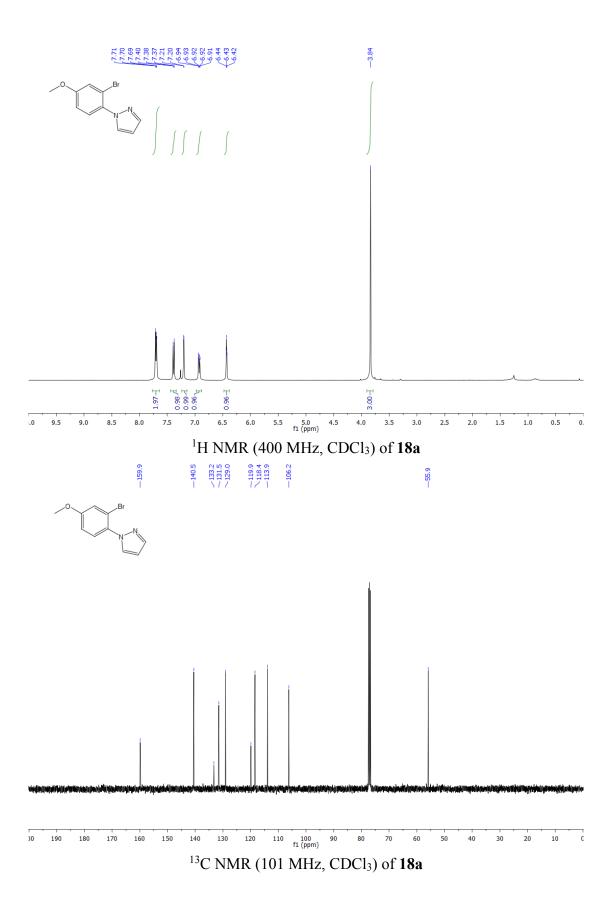


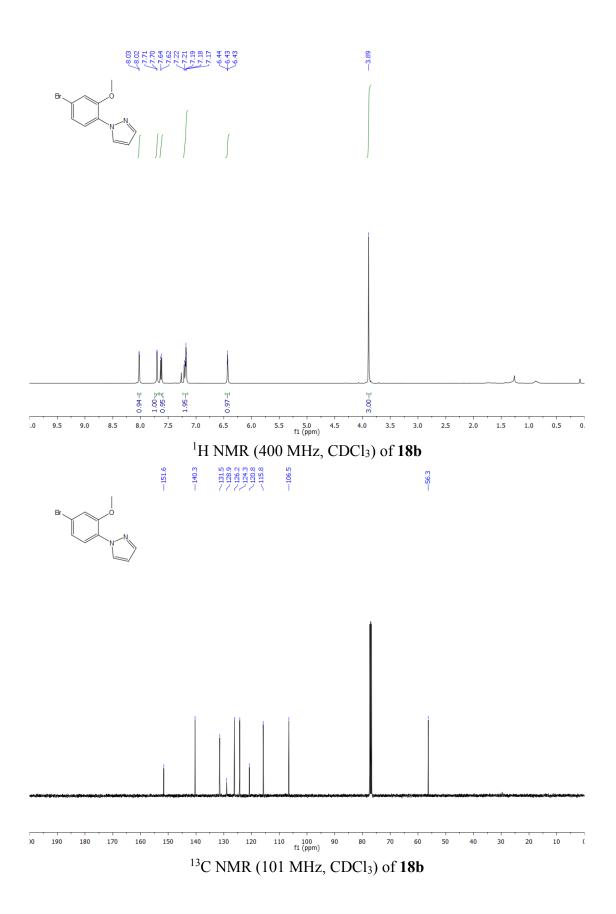


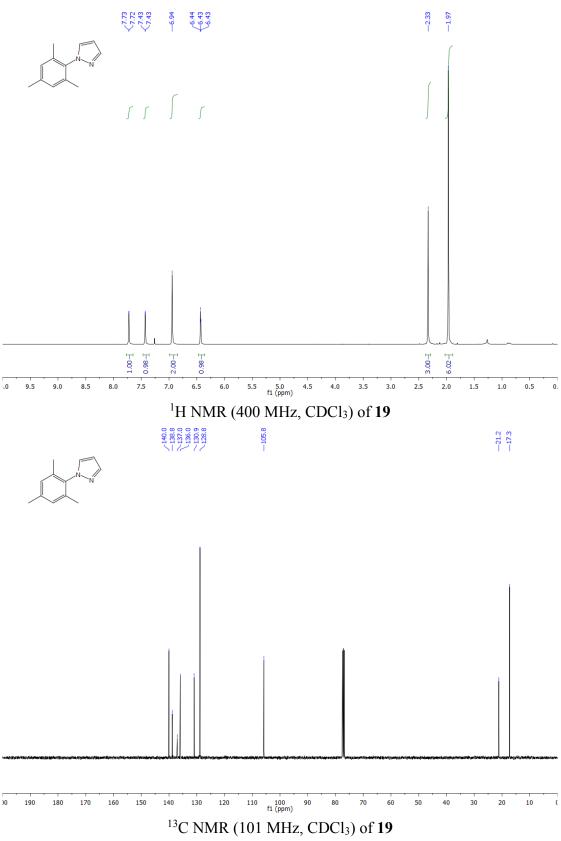


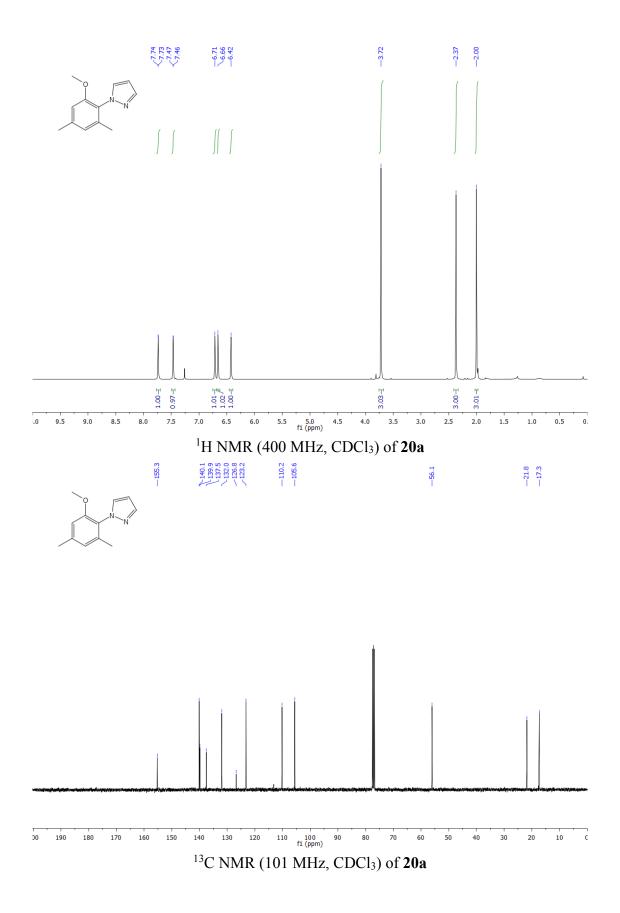


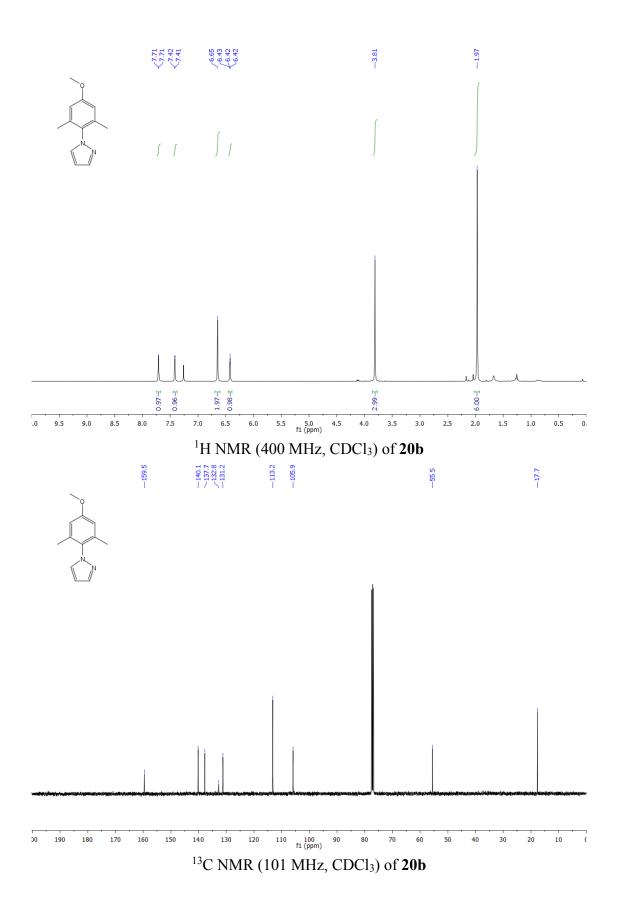


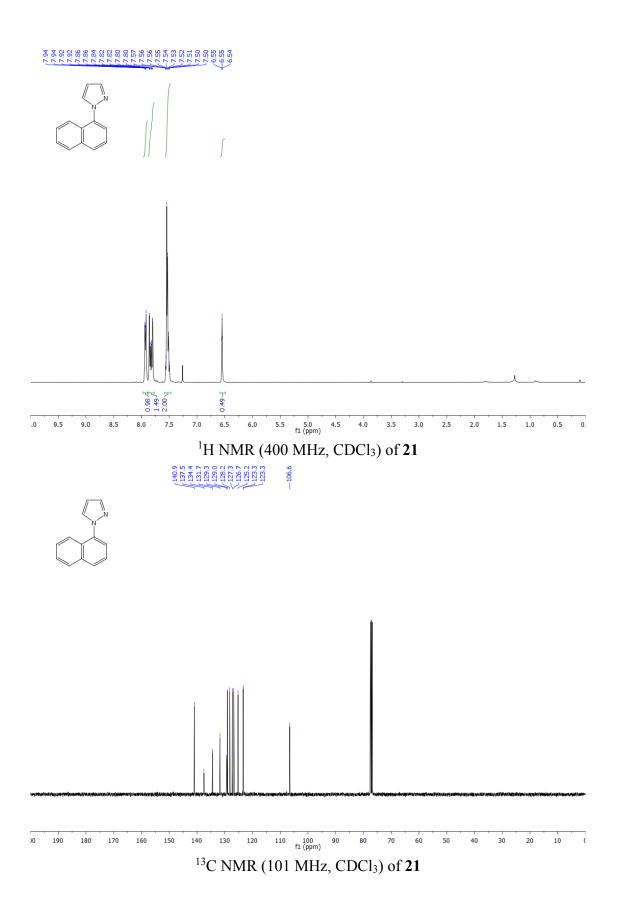


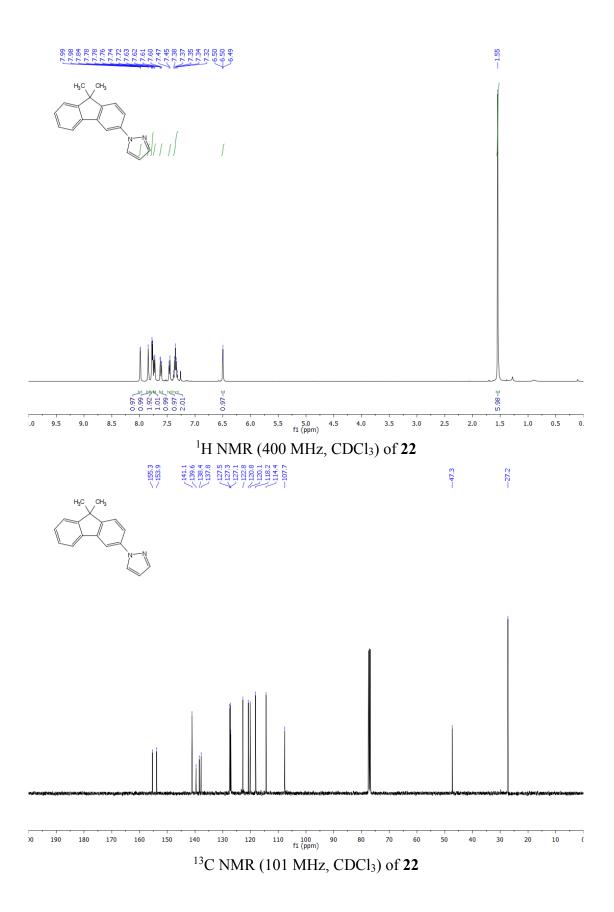


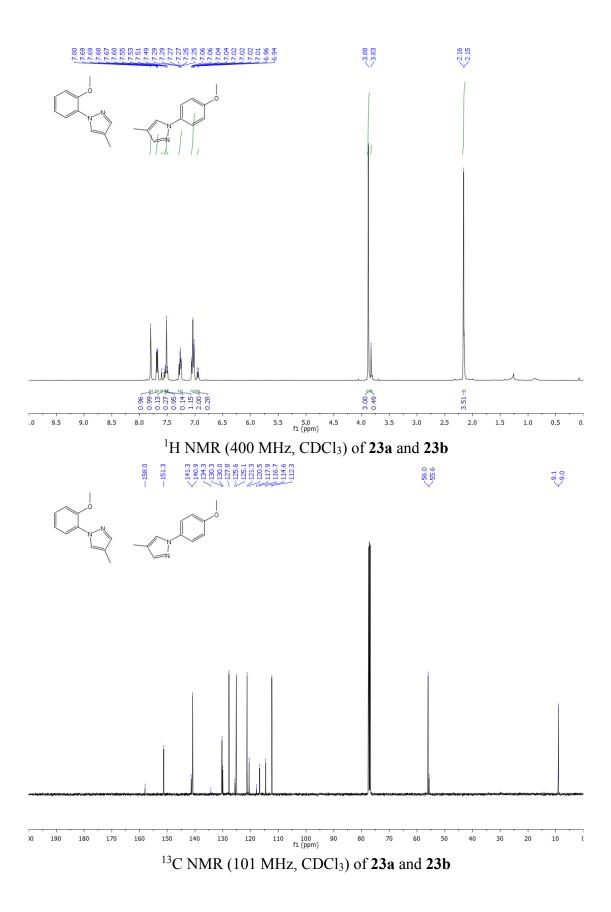


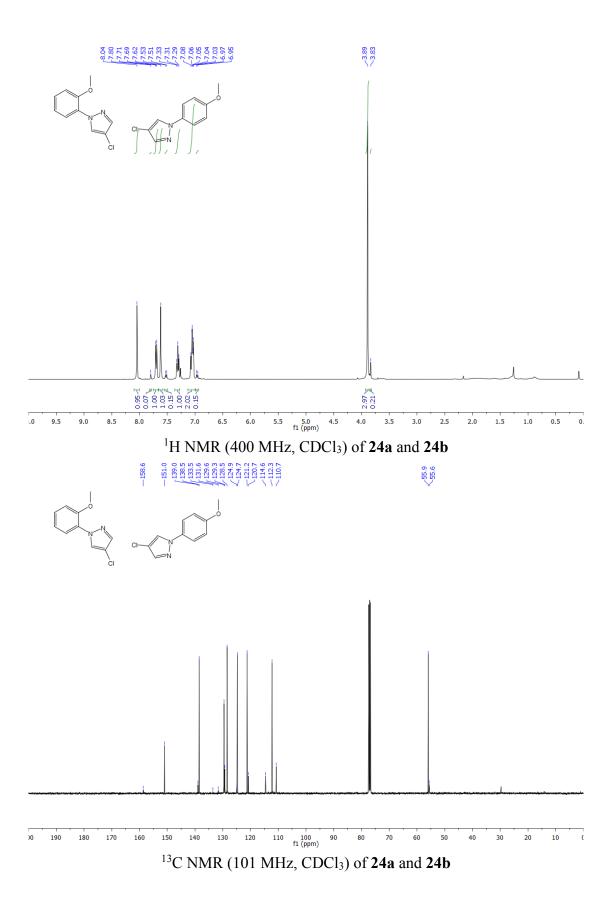


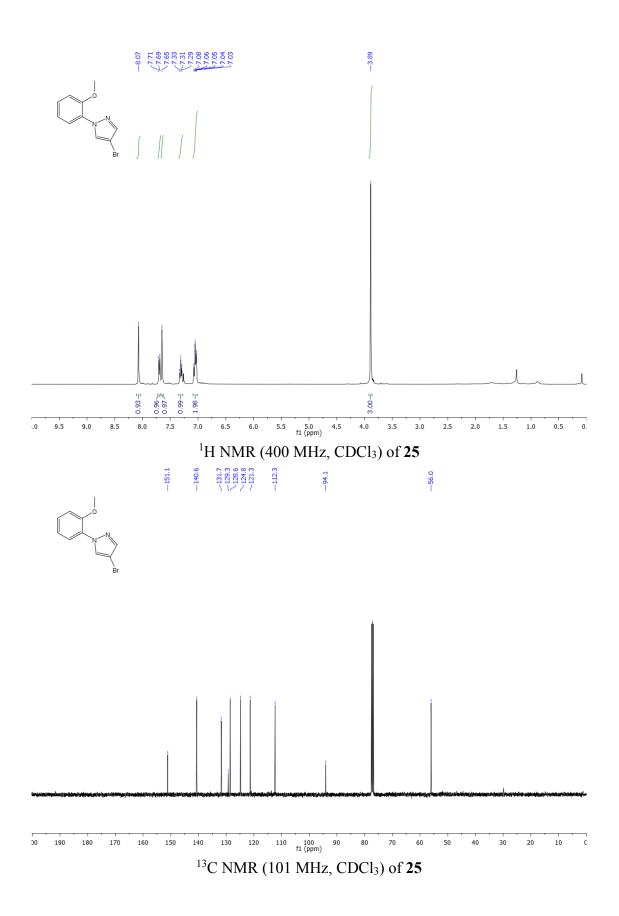


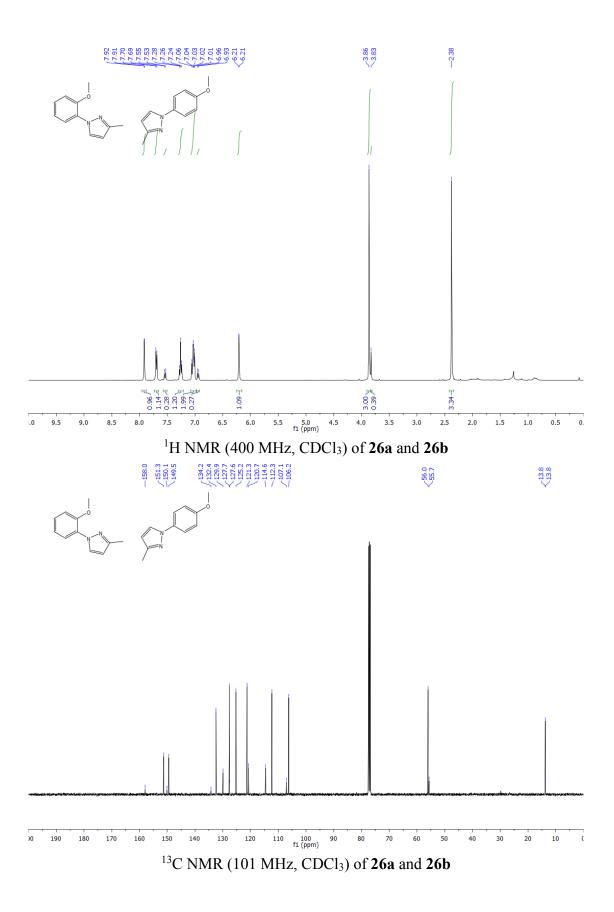


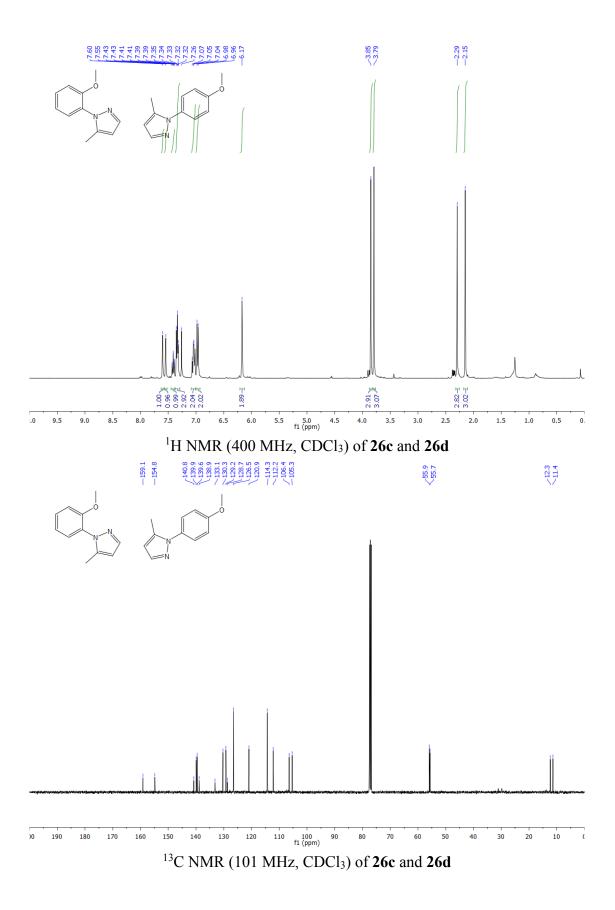


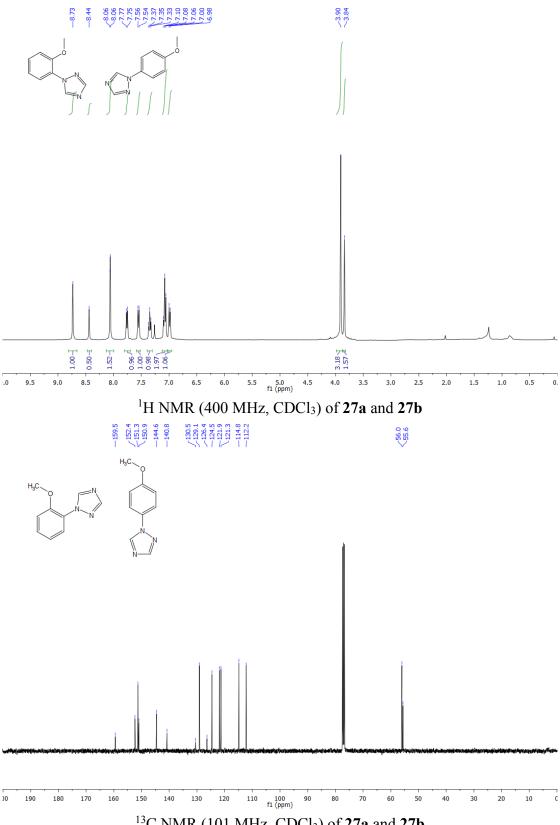


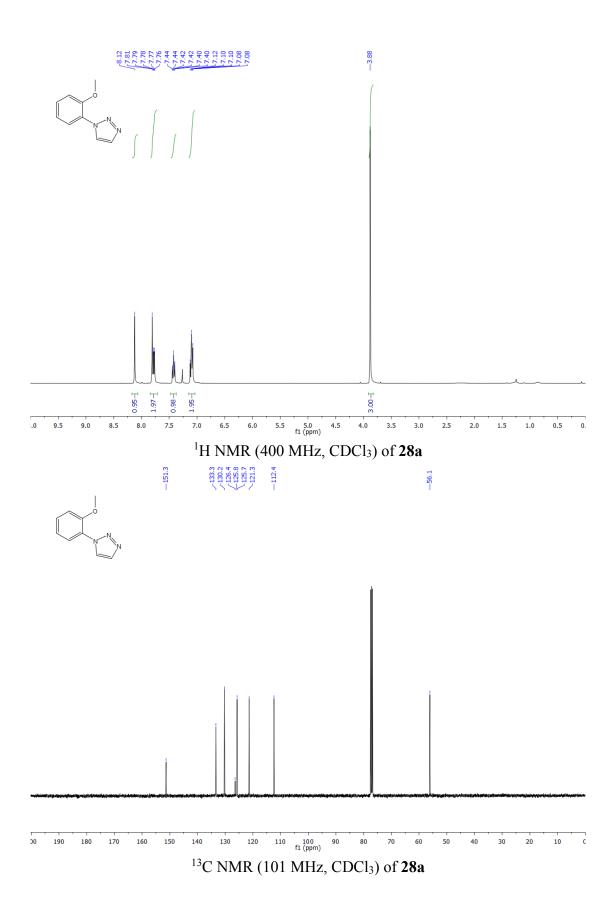


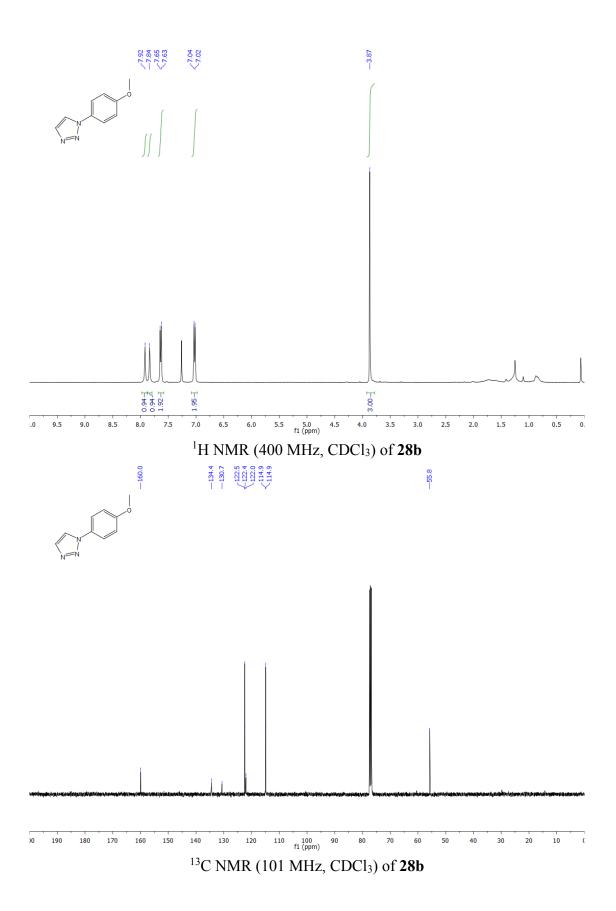


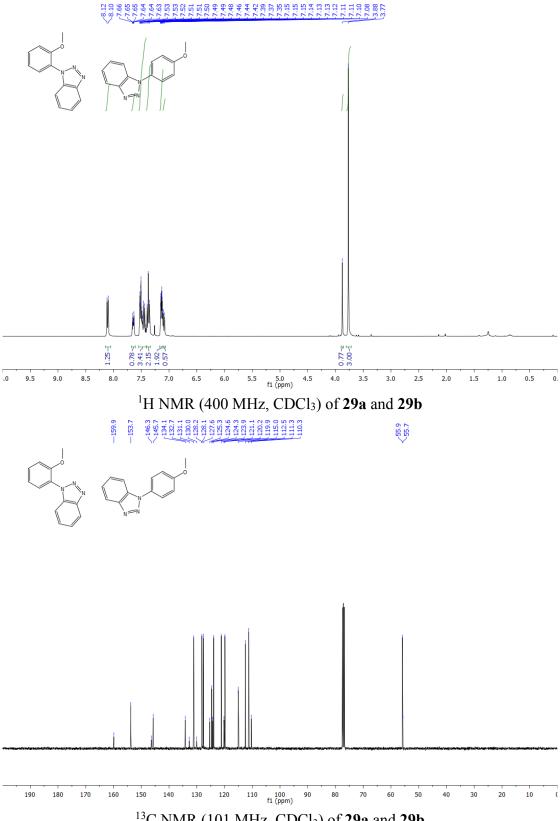


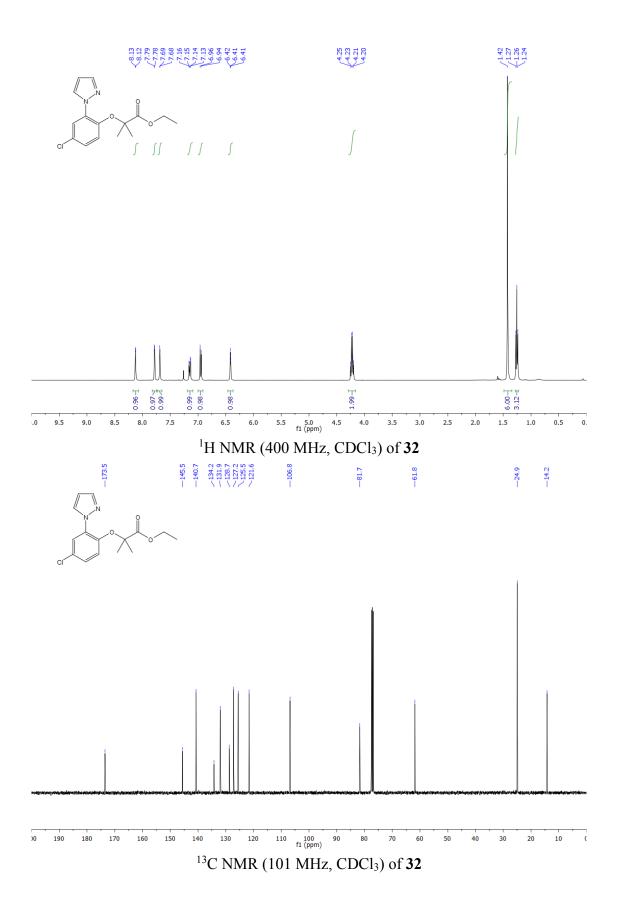


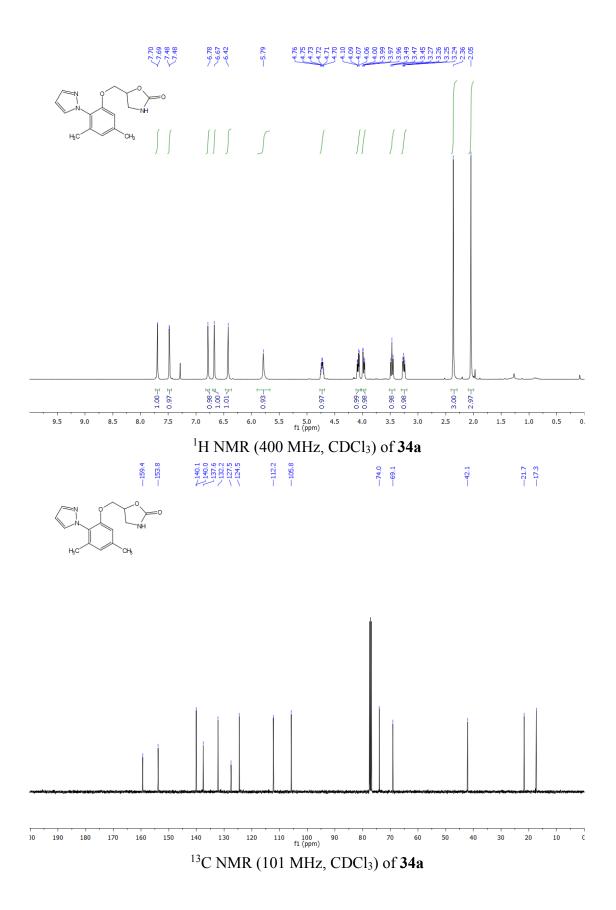


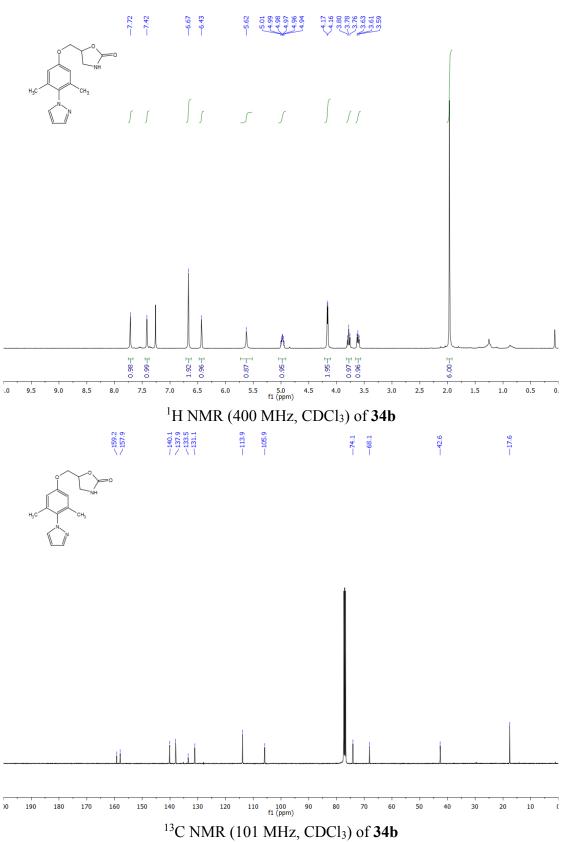


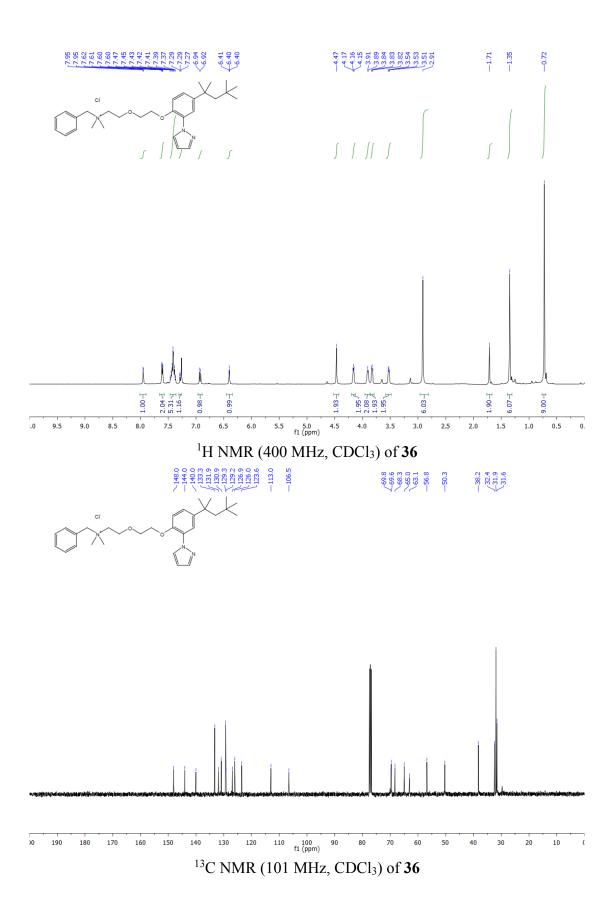





 ^{13}C NMR (101 MHz, CDCl_3) of 27a and 27b







¹³C NMR (101 MHz, CDCl₃) of **29a** and **29b**

