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Abstract

Uncertainty in deep learning has recently received a lot of attention in research. While state-
of-the-art neural networks have managed to break many benchmarks in terms of accuracy, it
has been shown that by applying minor perturbations to the input data, they are susceptible to
fooling, yielding unreasonably high confidence scores while being wrong. While some research
has gone into the design of new architectures that are probabilistic in nature, such as Bayesian
Neural Networks, other researchers have tried to model uncertainty of standard architectures
heuristically. This work presents a novel method to assess uncertainty in Convolutional Neural
Networks, based on fitting a forests of randomized Decision Trees to the network activations
before the final classification layer. Experimental results are provided for patch classification
on the MNIST dataset and for semantic segmentation on satellite imagery used for land cover
classification. The land cover dataset consists of overhead imagery of the city of Zurich in
Switzerland taken in 2002, with corresponding manually annotated ground truth. The Density
Forest confidence estimation method is compared to a number of baselines based on softmax
activations and pre-softmax activations. All methods are evaluated with respect to novelty
detection. The study shows that using pre-softmax activations of the Fully Connected layer
provides a better overall confidence estimate than just using the softmax activations. For the
MNIST dataset, softmax measures outperform pre-softmax based novelty detection measures,
while in the Zurich dataset, pre-softmax based methods not only show better performance in
detecting the left-out class, but they also manage to identify particular objects for which no
class exists in the ground truth. Among the main explanations for the varying performance of
pre-softmax measures, we find the curse of dimensionality when working with high-dimensional
activation vectors and class separability issues due to partially trained networks. Future re-
search should go into studying the influence of the activation vector dimensionality on novelty
detection methods, applying them to more diverse datasets and evaluating different novelty
detection measures in practical applications, such as Active Learning.

Keywords: Uncertainty, Convolutional Neural Networks, Decision Trees, Density Forest, pre-
softmax, novelty detection, patch classification, semantic segmentation, remote sensing, land cover
classification
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1 Introduction

The recent breakthroughs in Machine Learning (ML), Artificial Intelligence (AI) and in computing
power have set new accuracy standards in many computer vision tasks, including, but not limited
to, medical applications [26, 42], autonomous driving [27] and remote sensing [54, 21, 60, 46]. In
the field of image classification, a particularly successful used type of Machine Learning algorithms
are Convolutional Neural Networks (CNNs). While CNNs have superseded many supervised clas-
sification approaches in terms of accuracy, CNNs typically fail to provide reliable and consistent
uncertainty measures and network outputs have often been misinterpreted as probabilities [36, 17].
This has raised the question of how to find better uncertainty estimates [23, 14].

Model uncertainty accounts for incomplete information, such as our inability to distinguish a mug
from a cup on an image if the handle is invisible [43]. Model uncertainty is also crucial for detecting
objects belonging to a new class which was never seen in the training set. A typical application of
ML methods in medical imaging is disease detection, in which ML methods can perform some of the
tasks usually done by human experts [26]. In such applications, it is not only crucial to determine
the diseases with high accuracy, but also to provide a measure of certainty. This is where current
ML methods typically fall short of human experts, who can accurately assess their certainty and
consult more colleagues if needed [26].

In remote sensing, relevant applications of uncertainty measures include tasks related to land cover
classification and change detection after natural disasters. In Active Learning, model performance
can be improved by asking the user to provide labels for the most uncertain pixels of an image [34,
58, 40, 51, 52]. For change detection, reliable confidence measures could help reduce the number of
false alarms.

Uncertainty estimation has become an active field of research in which many different approaches to
capture model uncertainty have been put forward [14, 9, 23, 48, 26, 49]. The sources of uncertainty
have traditionally been classified in two parts: epistemic uncertainty, capturing model uncertainty
which can be reduced by adding more training samples, and aleatoric uncertainty, representing
intrinsic noise in the data, which cannot be reduced by additional training samples [23].

Contrary to probabilistic classification models, many current ML models do not provide a direct
measure of confidence. Thus, many authors have proposed new network structures that are either
probabilistic or that show better robustness to data transformation and fooling attempts. An
example of probabilistic network architectures are Bayesian Neural Networks (BNNs), which provide
a direct measure of confidence by optimizing over distributions rather than single-valued weights
[14, 23]. Rather than changing the network architecture completely, some authors have proposed
approaches to measure confidence by applying minor changes to existing networks, such as adding
a special meta-loss function to maximize class distances between activations [30] or training a
confidence detector on top of a network [2].

A different set of methods model uncertainty by working with the direct outputs of the network,
which can either be activations of intermediate network layers or of the final network layer. Such
methods have the advantage that they do not require a change in the network architecture and
are applicable to many different standard network types. In classification, a common pitfall is to
interpret the network’s output activation as probabilities. Some shortcomings of using the softmax
activations as a confidence measure are explained in section 2.
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Most of these heuristic confidence estimation methods are either evaluated with respect to error
detection, which can be seen as a binary classification task consisting of identifying each class
prediction as correct or incorrect, or to novelty detection, where the confidence score is used to
assess whether a point from the test set belongs to a class not yet seen in the training set [30, 35].
Typically, a confidence measure should give a low value to a false prediction in error detection and
to points which it supposes to be of an unseen class in novelty detection.

This study presents a density-based clustering approach for uncertainty estimation within the frame-
work of image classification, using the activations of the pre-softmax layer in a CNN. These acti-
vations are retrieved during test time and are clustered using an ensemble of Density Trees, called
Density Forests (DFs), following the framework proposed by Criminisi et al. [10]. Similar to Random
Forests (RFs), which use many Decision Trees to separate labelled data, Density Forests separate
unlabelled data using several Density Trees. An Information Gain (IG) function is used to deter-
mine the best split at each tree node by maximizing the Gaussianity of the two resulting splits.
Unlike Decision Trees, the goal of Density Trees is not to predict a label but to best partition the
data into Gaussian-like clusters. To predict the probability of each sample to belong to a seen class,
each Density Tree in a forest is descended and the Gaussian Probability Density Function (PDF)
that the sample belongs to the leaf node is calculated.

The objectives of this work are the following:

1. To implement Density Forests and evaluate them with respect to novelty detection, using
pre-softmax CNN activations;

2. To compare Density Forests to other novelty detection methods using pre-softmax activations
as well as baselines using softmax activations;

3. To study the potential of these novelty detection methods both for the case of patch classifi-
cation and semantic segmentation.

The Density Forest confidence measure is compared to other, standard novelty detection methods
as well as to baseline confidence measures for CNNs. The main requirement for all tested methods
is that they do not need any changes in the network architecture: they all have to work directly
with the activations of either the final or intermediate network layers.

The performance of the Density Forest algorithm is evaluated both with respect to patch classifi-
cation in the Modified National Institute of Standards and Technology (MNIST) dataset and with
respect to semantic segmentation of the “Zurich Summer v1.0” (Zurich) dataset, using networks
trained on N − 1 of the available classes and predicting on all classes [25, 53]. Receiver Operating
Characteristic (ROC) curves are used to evaluate each novelty detection measure.

This work is structured as follows: In section 2 a review of confidence estimation methods and
novelty detection methods for CNNs is given. In section 3, the framework and methodology of
the Density Forest algorithm are explained. Section 4 presents the datasets to which the novelty
detection methods are applied. The experimental setup and implementation details of novelty
detection methods are explained in section 5. Results are presented in 6 and followed by a discussion
structured by types of novelty detection methods in section 7. Section 8 concludes this work with
an outlook into open fields of relevant future research.
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2 Literature Review

The shortcomings of standard deep learning tools in capturing model uncertainty have been pointed
out by many authors, such as Gal and Ghahramani [16], Nguyen et al. [36], and Mandelbaum and
Weinshall [30]. As Subramanya et al. [48] show, the notions of confidence and accuracy are related:
a model with high accuracy should ideally give high confidence values to its predictions on average,
as otherwise the model would suggest high confidence for incorrect predictions.

Confidence scores for ML methods are typically evaluated either in error detection, which aims
at classifying each class prediction as correct or incorrect, or in novelty detection, consisting of
identifying labels different from the classes seen during training. Both error detection and novelty
detection can be seen as binary classification tasks, with the aim of attributing a label (-1 or 1)
to each data point according to whether it is likely to be wrongly predicted, in error detection,
or according to whether it belongs to an unseen class in the training set, for novelty detection [2,
30]. Although most confidence methods focus either on error detection or novelty detection, some
methods are applied to both [49, 2, 30].

Novelty detection is an important field of research in Machine Learning and has been subject
of numerous literature reviews [4, 31, 32, 39, 35]. Novelty detection is described as the task of
classifying test data that differ from the data available during training [39]. This can been seen as
“one-class classification”, in which a model is trained to model the “normal” distribution, hoping that
data following an “abnormal” distribution will be recognized as being different. Related topics are
anomaly detection and outlier detection, which usually require the novelties to be few and different
from the samples of the seen classes [35, 39].

Typologies of uncertainty heuristics have been made in categories such as “white box” methods,
requiring changes in the model architecture to fit the purpose of detecting confidence, “gray box”
methods, which require only some degree of re-training, and “black-box” methods, which require no
re-training of the network [2]. This general scheme fits well into the framework of the developed
methodology, which mainly focuses on methods requiring little changes to the network structure.

The following literature review tackles some of the most prominent confidence measures with respect
to both error detection and novelty detection. A selection of these methods will be tested with
respect to their performance in novelty detection and compared to Density Forests. Since many of
the presented confidence measures as well as Density Forests are applied to novelty detection, some
popular novelty detection methods are also briefly addressed.

The following notation is based on [10]. Vectors are denoted in bold (v), matrices in telescope
uppercase letters (M) and sets using calligraphic notation (S). Furthermore, following notation is
used for classes and membership probabilities:

L = {ci}1≤i≤nc
Set of classes (1)

P (ci)(x) = P (x ∈ ci) Membership probability of a sample x to class ci (2)

Since there are many detailed overviews on neural networks architectures and building blocks avail-
able, they are only covered very briefly in the following literature review [44, 60, 22].
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2.1 Methods Based on Network Output

2.1.1 Single-Pass Methods

A first set of methods look at the network output vector P(x) of a single pass of the input x through
the network, typically a softmax activation vector for patch classification. The simplest possible
baseline consists of considering the Maximum Softmax Response (MSR) as a confidence indicator
[18, 59]:

C1(x) = P (c1)(x) (3)

where x is a data point and c1 = argmaxc∈L P
(c)(x).

A similar approach takes into account the two highest network outputs and calculates a confidence
score based on the margin between the two [37, 30]:

C(x) = P (c1)(x)− P (c2)(x) (4)

where c1 = argmaxc∈L P
(c)(x) and c2 = argmaxc∈L\c1 P

(c)(x).

The negative entropy H of all normalized softmax activations can be used to take into account all
output activations [59]:

C2(x) = −H(P(x)) = −
∑
c∈L

P (c)(x) logP (c)(x) (5)

The entropy is zero if all activations but one are zero and it is minimal when all activations are
equally probable.

Many further, similar measures have been developed using the final network output scores to predict
uncertainty, such as Sun and Lampert [49], proposing the use of network activations to predict out-
of-order behavior of a network, by applying a Kolmogorov-Smirnov (KS) test to the distribution of
the softmax activation vectors.

2.1.2 Invariance to Image Transformations

In contrast to the baseline methods explained above which rely on using the softmax output scores of
a single pass through the network, Bahat and Shakhnarovich [2] use a more sophisticated approach
which relies on multiple softmax outputs of transformed input data (fig. 1). In the case of an
image classifier, a test image is transformed multiple times before prediction by applying contrast
enhancements, blurring the image, applying a gamma filter or by flipping and rotating the image.
The assumption is that a classifier will react differently to transformations in the case of correctly
and incorrectly classified data points, being more invariant to transformations of correctly classified
input. Softmax activations are retrieved for the original image as well as for each transformed
image using the same CNN model. All softmax scores are then reordered in the rank of descending
softmax response in the original image. The scores can be truncated such as to keep only the first
n components in each softmax response, reducing the subsequent calculation time. All reordered
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and truncated softmax scores are then concatenated and used as a training set for a Multi-Layer
Perceptron (MLP), a simple Neural Network structure, which calculates the probability of the
network to make a wrong prediction.

Transformed
images

CNN
Output 
Softmax

Reorder Truncate Concatenate

MLP

Pred == True?

Pred == True?

Figure 1: Invariance To Image Transformation: Schema for MNIST digit example [2].

This approach requires training an MLP on top of an existing network to assess uncertainty, which
can however be done efficiently and in linear time in the number of image transformations. They
also propose a slightly more complex version of their algorithm for novelty detection [2].

2.1.3 MC-Dropout

Gal and Ghahramani [16] propose the use of Monte-Carlo Dropout (MC-Dropout) during prediction
to quantify the model uncertainty. In order for MC-Dropout to work the neural network has to be
trained with dropout applied after every convolution layer. Then, in order to retrieve the uncertainty
C(x) for a data point x, T stochastic forward passes through the network are performed, each time
randomly dropping a certain number of weights using test-time dropout. Thus, only a subset of
all available weights defined by dropout probability p is used for prediction. The predictions are
calculated as the average output of all T runs and the certainty as the mean variance of the softmax
outputs. This method has been used as a de-facto uncertainty measure for neural networks in many
papers [30, 26, 24, 48, 22].

2.2 Methods Based on Network Activations

As Gal and Ghahramani [16] point out, a model can be very uncertain about its predictions despite
yielding a high softmax output. Nguyen et al. [36] demonstrate that neural networks can be

5



easily fooled using an algorithm that generates images unrecognizable to humans but creating
almost perfectly certain predictions by the softmax activation output of the network. In addition,
Goodfellow et al. [17] have shown that an adversary network can induce minor perturbations into an
image which create false predictions with very high confidence. Thus, many authors have decided
to model the implicit information contained in the network feature vectors before the softmax
activation for error detection and novelty detection tasks [48, 30, 4].

Amongst other authors, Subramanya et al. [48] point out that softmax scores can vary drastically
when applying transformations such as Gaussian noise, blurring or JPEG compression to an image.
In order to provide a more robust confidence estimator, they propose to model the density over each
seen class in the pre-softmax activations: In order to estimate the confidence score of a prediction
in a classification problem, they calculate the Gaussian densities belonging to the activations of
the N classes. Their confidence estimate yields more robust to image transformations such as
noise injection and JPEG compression, but may suffer in case of Gaussian blurring and adversarial
training.

Mandelbaum and Weinshall [30] have opted for a similar approach, however approximating local
density by the Euclidean distance between a point and its k -Nearest Neighbors (k -NN) in the feature
space created by the network in one of its pre-softmax layers. During test time, their method
retrieves the activations of each data point and computes the distance to the k nearest neighbors
of each sample. In order to provide reasonable uncertainty estimates, this method requires either
adversarial training or a special loss function in which the distance between pairs of adjacent points
belonging to different classes is maximized. Without this special loss function, their method yields
worse or similar results compared to the baselines margin and entropy [30]. Using a modern GPU
implementation of nearest neighbor search, they achieve a computational complexity of O(kN), k
being the number of nearest neighbors to search and N the number of data points, making their
method scale well with big datasets.

2.3 Network Architectures for Confidence Estimation

The current state-of-the-art method to estimate uncertainty in ML is based on BNNs, allowing
for direct estimation of the uncertainty from the model probabilities [15, 16, 23]. However, this
approach requires a certain number of changes, such as optimizing over weight distributions instead
of fixed weights. However, in Gal and Ghahramani [15, 16], the authors demonstrate the equivalence
regarding confidence estimation between a BNN and a standard MLP with dropout applied after
every weight layer during test time (MC-Dropout).

Goodfellow et al. [17] show that adversarial examples can be used to improve the resistance of the
network against fooling attempts (sec. 2.2), using Adversarial Training. This however comes at a
high price in computational cost at up to twice the training time [30].

Further methods have been developed based on ensembles of NN models, such as in Lakshmi-
narayanan et al. [24] and Mandelbaum and Weinshall [30]. These methods however suffer from
heavily increased computation complexity for training several models.

6



2.4 Comparison to Novelty Detection Methods

Many more novelty detection methods have been developed to model the support of data belonging
to the “normal” class versus new “anormal” data [39, 31, 32]. Novelty detection methods have
been mainly characterized as either probabilistic, distance-based, reconstruction-based and domain-
based. Since not all methods could be implemented and evaluated in this work, only a subset of
the most popular novelty detection are covered here.

Two of the most common novelty detection methods are presented in this paper. The first are
Gaussian Mixture Models (GMMs), which assume that the data was generated by an underlying
mixture of Gaussian distributions [41]. GMMs work by initializing a pre-defined number of Gaussian
distributions with random mean and covariance parameters, then fitting them iteratively to the
training data via the Expectation-Maximization (EM) algorithm [11]. Some applications of GMMs
to novelty detection are presented in [39]. The second are One-Class Support Vector Machines
(OC-SVMs), in which the support boundary is searched for a given set of training points [55, 3].
Support Vector Machines (SVMs) try to find a linear hyperplane using a kernel function which can
represent similarities between pairs of data points in an abstract geometric space [50].

A difference between anomaly detection and novelty detection is that anomaly detection usually
assumes novelties to be rare [35]. Some popular methods for anomaly detection include Isolation
Forests (IFs) and Local Outlier Factor (LOF) [39, 7, 28]. In contrast, GMMs and DFs can be seen
as clustering methods, which allow detecting novelties even if they are abundant.

2.5 Summary

A summary of the reviewed literature and methods for confidence estimation in neural networks is
shown in table 1. Since the existing body of research on confidence estimation is vast and many
related papers exist to each of the presented topics, only a selection of reviewed papers is presented.

Type Method Name Focus Reference

Softmax
activations

MSR, Margin, Entropy Softmax activations [18]
Tranformations Invariance Input data Perturbations [2]

MC-Dropout Dropout during prediction [16]
KS-test KS-test on output distribution [49]

Pre-softmax
activations

Density Density Modelling [48]
Distance k -NN Distance [30]

New Network
Architectures

Adversarial Training Training Perturbations [17]
BNNs Probabilistic Modelling [23]

Ensembles Multiple Neural Network [30]

Table 1: Summary of reviewed confidence measures for neural networks. Implemented baselines are
indicated in bold.
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3 Methodology

3.1 Overview: Density Forests

Similar to the activations-based methods presented in section 2.2, the confidence measure developed
below tries to distinguish activations of the training set from new, unseen activations in the test
set. Similar to the way Decision Trees and Random Forests are used in the case of labelled data,
Density Trees and Density Forests are used for unlabelled data to distinguish “normal”, seen data
from unseen, new data points.

The methodology proposed below is based on Criminisi et al. [10], who propose a unified framework
for random decision forests, which can be extended to classification, regression, density estimation
and other tasks. Therefore, this unifying framework of decision forests is first addressed before
covering the extension to Density Forests.

An overview of the methodology for novelty detection using Density Forests is shown in figure 2.

3.2 Decision Trees

A Decision Tree is a binary tree consisting of hierarchical nodes and edges which, at each level,
provide the most important features to determine the outcome of a dependent variable, given an
arbitrary number of independent variables [10]. Using an entropy function H(S), the goal of a
Decision Tree is to find the best possible split to partition the feature space S at each level starting
from top to bottom such as to maximize an Information Gain function:

I = H(S)−
∑

i∈{l,r}

|Si|
|S|

H(Si) (6)

Where I is the Information Gain, H is an optimizer or entropy function, S is the original dataset
at a node and Si is left and right data subset resulting from the split. For instance, in the case of
labeled data and decision trees, the Shannon entropy is often used (equation 5).

Common stopping criteria for individual trees include maximum tree depth and minimum IG for
a given split. Such stopping criteria aim at avoiding overfitting and creating smooth decision
boundaries.

3.3 Random Forests

Smoother and more generalized boundaries can be obtained by using Random Forests, which com-
bine a set of individually trained trees on bootstrapped subsamples of the initial data [10, 6].
Bootstrapping is a technique of sampling a smaller subset of data from a larger subset with re-
placement [61]. The aggregation of multiple predictors based on bootstrapped samples is usually
referred to as bagging [5]. A simple visualization of Random Forests on generated synthetic data
is provided in appendix B. Aside of the parameters and stopping criteria mentioned for individual
trees, important factors for Random Forests are the number of trees, the subsample size of the
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Figure 2: Workflow Diagram

initial data on which each tree is trained and the number of dimensions each node may consider as
a candidate dimension for splitting.
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3.4 Density Forests

A Density Tree can be seen as similar to Decision Trees, but with the aim of clustering unlabelled
data into regions that maximize the Gaussianity of each cluster [57]. Same as with Decision Trees,
a generic Information Gain function is maximized (eq. 6). An unsupervised entropy function is
designed based on the assumption of a multivariate Gaussian distribution at each tree node [10]:

H(S) = 1

2
log
(
(2πe)d|Λ(S)|

)
(7)

Λ being the associated d×d covariance matrix. Hence, the Information Gain at the jth split becomes
[10]:

Ij = log(|Λ(Sj)|)−
∑

i∈{l,r}

|Sij |
|Sj |

log(|Λ(Sj)|) (8)

For a description of the motivation behind this optimization method, refer to Criminisi et al. [10].

At prediction time, a given data point descends the Density Tree according to the split dimension
and value split associated with each tree node until it reaches a leaf node. The probability of a test
data point to belong to root node of the tree is calculated as follows [10]:

pt(x) = πlN (x|µl(x), Λl(x)) (9)

With µl(x) and Λl(x) denoting the mean and covariance of the leaf node corresponding to the data
point x, πl being the proportion of points falling into the respective leaf node. The multivariate
Gaussian PDF is defined as follows:

N (x|µ, Λ) = 1√
(2π)d det Λ

exp
(
−1

2
(x− µ)>Λ−1(x− µ)

)
(10)

Where µ is the mean, Λ is the co-variance matrix and d is the number of dimensions of x [45].
The thus obtained probability is weighted by the percentage πl of all the data used for training the
Density Tree falling into this leaf node. For the purpose of this study, no probability normalization
term has been implemented, as we are only interested in relative confidence values between classes.
Figure 3 illustrates the splitting steps for a single Density Tree.
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Figure 3: Illustration of tree growth for a fictive dataset. Covariance ellipses are indicated in red
lines and splitting lines in red dotted lines, indicating the dimension and value along which a node
is split. Di and Vi denote the split dimension and value of the i-th split. Nodes are considered leaf
nodes when no further split is necessary or possible, either because the Information Gain of a new
split would be lower than a defined threshold or because the maximum tree depth is reached. In a
Density Forest, every tree would see a subset of all points and fit slightly different leaf nodes each
time.
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4 Datasets

4.1 Synthetic Datasets

First, some synthetic data were produced to test how well individual Density Trees could fit points
generated in 2-dimensional space, and visualize the decision boundaries. The following three data
generators have been implemented:

1. A generator which produces n clusters according to Gaussian distributions N (x|µ, Λ) with
parameters µ, Λ. The mean µ is chosen between a defined minimum and maximum value
in each dimension and the covariance Λ is initialized as an identity matrix multiplied by a
given coefficient. For each cluster, the covariance matrices Λ can be randomly multiplied by
a coefficient in only one dimension, such as to create an elongated cluster, and non-linear
transformations can be applied to make the cluster less Gaussian-like.

2. A data generator producing points along a spiral, according to following parametric equations:

x = a
√
θ cos θ

y = a
√
θ sin θ

(11)

θ being the angle and a being the distance between successive terms of the spiral.

3. A generator which produces data along an S shape similar to the method above, but with
only one arm, generating data points as follows:

x = a
√
θ sin θ

y = xa
√
θ sin θ

(12)

Datasets generated according to these three data generators are shown in figure 4.

(a) 4 clusters with non-linear transforma-
tions applied to two clusters (b) Spiral with 4 arms

(c) S-shaped distribution

Figure 4: Synthetic datasets
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4.2 MNIST Dataset

Confidence Measures have been first applied to the MNIST dataset, containing 24 × 24 gray level
images of handwritten digits from 0 to 9 and corresponding labels [25]. The training set and test
set consist of 60’000 and 10’000 samples respectively, with roughly the same amount of images for
each class. The MNIST dataset is used as a de-facto baseline to test many algorithms related to
computer vision and Machine Learning tasks. Some examples of handwritten digits are shown in
figure 5.

Figure 5: Sample images of the MNIST dataset for true y labels 0 to 9 [25]

4.3 Zurich Dataset

In addition to the MNIST dataset, the confidence measures were applied to semantic segmentation,
which consists of attributing a class label to every pixel of an image [54]. For this task, the “Zurich
Summer v1.0” (Zurich) dataset was used, consisting of a set of 20 RGB-Infrared (IR) satellite images
taken from a QuickBird acquisition of the city of Zurich (Switzerland) in August 2002, together with
a corresponding set of annotated ground truth images [53]. 8 different urban and peri-urban classes
have been annotated: Roads, Buildings, Trees, Grass, Bare Soil, Water, Railways and Swimming
Pools. The Zurich dataset was split into a training set consisting of images 1-10, a validation set
consisting of images 11-15 and a test set consisting of images 16-20, corresponding roughly to a
50/25/25 split, although the images are of varying sizes. An example pair of an RGB-IR image and
its ground truth is given in fig. 6.
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(a) RGB Image (IR not shown) (b) Ground Truth

Background Roads Buildings Trees Grass
Bare Soil Water Railways Swimming Pools

Figure 6: Sample pair of images and ground truth for the Zurich dataset [53]

Classes are imbalanced, with only very few samples for some classes, such as swimming pools or
railways (fig. 7).
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Figure 7: Class distribution in the Zurich dataset
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5 Experimental Setup

The following section covers network architectures for training CNNs, the structure of experiments,
implementation details for novelty detection methods as well as evaluation and hyperparameter
search schemes.

5.1 Network Architectures

5.1.1 MNIST dataset

10 CNN models were each trained on about 54’000 training images of the MNIST dataset without
images of the left-out class, and validated on 10’000 test images, including images of the left-out
class. CNNs were trained for novelty detection using the network architecture described in table
2. Dropout was added after each MaxPooling layer to avoid overfitting [47]. The Rectified Linear
Unit (ReLU) activation function (f(x) = max(0, x)) was used after each convolution layer of the
network. The Fully Connected (FC) layer denotes the pre-classification layer in the network, in
which every input is connected to every output by a weight and followed by a ReLU activation.

Layer Parameters
Input Dimension |b| × 28× 28
Convolution + ReLU 32 3 × 3 filters
Convolution + ReLU 64 3 × 3 filters
MaxPooling 2 × 2 pool size
Dropout p = 0.25
Flatten
Dense (FC) + ReLU 128 neurons
Dropout p = 0.5
Output + Softmax 9 neurons

Table 2: Architecture of the CNN used for MNIST digit classification. |b| = batch size, p = dropout
probability.

5.1.2 Zurich dataset

Similar as for the MNIST dataset, CNN models were trained for each left-out class, setting each time
the labels of the left-out class to “background” in the training set. The U-Net network architecture
was applied to perform semantic segmentation on the Zurich dataset (fig 8). It consists of a
sequence of down-sampling and up-sampling layers, yielding a “U”-shaped layer architecture [42].
This architecture has shown good performance in various semantic segmentation tasks, and has
been especially applied in medical imaging [42, 1, 13]. A full overview of the layers is given in
appendix table E.1.
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Figure 8: Modified U-Net architecture, according to Ronneberger et al. [42]. Numbers on top of
each blue block indicate the number of filters, numbers on the bottom left of the blocks indicate
the resolution of each filter. Each convolution layer was padded to avoid cropping.

Image Tiling and Padding For training the U-Net model, the training and validation images
were tiled into non-overlapping patches of patch size 64×64×nc where nc is the number of channels.
For prediction, the test set images were tiled into overlapping patches using the same patch size of
64 × 64 × nc, with shorter strides between patches, keeping only the central overlapping stride ×
stride pixels between adjacent patches. Central pixels of a patch are assumed more certain because
of the larger available spatial context in the patch compared to pixels near the patch borders which
partially lack neighbor information, leading to strong border effects [33]. Although the optimal
stride would seem to be 1, keeping only the central pixel would lead to excessive computational costs
with little additional accuracy gain. Therefore, intermediate strides have to be chosen empirically.
Several strides were chosen and results averaged to further reduce border effects. For instance, for
a stride of 32 pixels and a patch size of 64 pixels, patches of 64 × 64 × nc are created and only
the 32× 32× nc central pixels are kept for the final prediction. Since only the central part of each
patch is kept, the original images first had to be padded in order to avoid cropping. For a given
stride and patch size, the image was first padded on each side to make it divisible by the amount
of overlapping pixels, and by an additional amount (patch size - stride) / 2 on either side of the
image to be able to fit patches of size 64×64 with the given stride around the entire padded image.
For each patch, only the stride × stride central pixels were kept, concatenated and the pad was
removed from the image to give it the same dimensions as the input image.
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Data Augmentation Data augmentation was performed to improve the accuracy of the network.
Following transformations have been applied both to the image and ground truth patches, according
to Volpi and Tuia [54]:

1. Extraction of patches at random locations of the training set images to avoid seeing the same
types of patches in each training minibatch. Class imbalance is not considered during patch
extraction.

2. Random horizontal and vertical flipping and random rotations in steps of 90 degrees (0, 90,
180 or 270 degrees). These transformations aim at improving invariance to differing spatial
organizations of the image.

3. Noise injection: Add noise to every pixel of the image, sampling the noise from a Normal
distribution in N (0, 0.01) with subsequent rescaling of the data between [0, 1]

5.2 Novelty Detection Baselines

Some implementation details are discussed below for for DensityForests and for novelty detection
baselines to which Density Forests are compared.

5.2.1 MSR, Margin, Entropy

The confidence measures relying on the softmax output of a network were implemented using the
equations of section 2 (eq. 3, 4 and 5).

5.2.2 MC-Dropout

In this study, a slightly simplified version of the MC-Dropout algorithm was implemented, perform-
ing dropout during test time only in the pre-softmax layer and calculating the entropy on the mean
of the softmax activations (eq. 5). This has the advantage of speeding up calculations by repeating
only the forward pass through the last layers of the network instead of having to repeat the entire
forward pass.

5.2.3 Pre-Softmax Methods

In addition to the implemented baselines indicated in bold in table 1, novelty detection methods
GMM and OC-SVM have been implemented to detect novelties using the network’s pre-softmax
activations. In this work, the GMM and OC-SVM approaches have been applied to novelty detection
using the same activations as Density Forests. Both GMM and OC-SVM model the “normal” data,
consisting of activations of seen classes. As confidence values, GMM calculates the log-likelihood for
a given a data point and OC-SVM calculates the signed distance from the separating hyperplane,
being positive for inliers and negative for outliers. For both GMM and OC-SVM, the scikit-learn
implementations were used [38].
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5.3 Density Forests

Density Forests have been implemented according to the formulas in section 3. Within each di-
mension of the dataset, a range of possible split values is checked to find the split which minimizes
entropy, i.e., maximizing Information Gain. For each candidate split dimension, a number of candi-
date split values have been tested randomly between the interval of the dim-th smallest and dim-th
largest data point values, such as to ensure at least dim datapoints to either side of the split to
ensure invertible matrices.

Stopping criteria for growing individual tree branches have been implemented according to [10],
based on maximum maximum tree depth and based on the minimum Information Gain required at
each node to continue splitting. The implemented data structure for Density Trees and Decision
Trees is represented in appendix A.

Parameters for Density Forest are listed in table 3.

Parameter Description Parameter Range

n_trees Number of trees to create. A higher number
of trees linearly increases training and prediction
time.

10 - 50

max_depth Maximum depth allowed for each tree. Deeper
trees lead to more clusters.

1 - 5

subsample_pct Size of each random data subset sampled from the
original dataset used as input for a Density Tree,
in percentage of the size of the original dataset

(0, 1)

min_subset Minimum dataset size of each cluster, indicated as
percentage of the original dataset size.

0 - subsample_pct / 2

n_max_dim Number of dimensions to consider for splitting at
each node. If dim ≤ 0, all dimensions are consid-
ered. If dim > 0, a random number of dimensions
between 1 and dim is considered for splitting at
each node. Further adds randomization to trees.

[0, dim)

ig_improvement The Information Gain improvement that has to be
made at each node in order to create a new split.
Avoids unnecessary splits in already Gaussian-like
clusters

(0, 0.9)

Table 3: Density Forest parameters and suggested parameter ranges.

5.4 Dimensionality Reduction and Data Separability

For both the MNIST dataset and the Zurich dataset, activations of the fully connected layer were
retrieved, resulting in a large number of input dimensions. For example, the FC layer of the MNIST
dataset contains 128 filters, therefore, for a batch of n patches, the activations retrieved during
prediction are of dimension n× 128 (table 2). Many of these activations are similar, which causes
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collinearity and matrix inversion issues during the calculation of the Gaussian entropy. Therefore,
a dimensionality reduction was performed using Principal Component Analysis (PCA). For both
the MNIST and Zurich datasets, PCA components were chosen such as to explain over 95% of the
data variance. For MNIST, the first 30-40 components were kept, while for the Zurich dataset,
the first 5-10 dimensions were kept (fig. 9. Despite computational complexity induced by higher
dimensions, lower-dimensional data also reduces problems related to the curse of dimensionality,
which causes notions of distance between points to become meaningless and which, together with
data noise, negatively impacts performance of many clustering algorithms [19, 20]. The number of
components kept for each class in the MNIST and Zurich datasets are shown in appendices F and
G.
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(a) MNIST dataset, left-out class 8
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(b) Zurich dataset, left-out class “roads”

Figure 9: Cumulative variance explained as a function of the number of components

Separability between activations corresponding to different classes was ensured before and after
PCA, using t-distributed Stochastic Neighbor Embedding (t-SNE) which allows visualization of
high-dimensional data [29]. t-SNE tries to find a mapping between high-dimensional data points
and their representation in a lower-dimensional space, typically in 2 to 3 dimensions, by preserving
the local structure of the original, high-dimensional data (fig. 10). To preserve the original data
structure, t-SNE models the pairwise similarity between data points in their high-dimensional and
lower-dimensional space. Similarities between pairs of data points xj and xi are measured as the
conditional probabilities of xi choosing xj as its neighbor, if neighbors were picked in proportion to
their probability density of a Gaussian centered at xi [29]. t-SNE minimizes the sum of Kullback-
Leibler divergences over all data points, measuring the differences between similarity values in
higher and lower dimensions. Since t-SNE directly transforms the training data without finding a
parametric mapping and has a computational and memory complexity quadratic in the number of
data points, its scalability is very limited [29].
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Figure 10: t-SNE schema with toy data. t-SNE finds a mapping between the original, high-
dimensional data (left) and the lower-dimensional data representation (right). Classes of data
points are indicated in blue, red and green. If data points within the same class are more similar to
each other in high-dimensional space, they will be closer to each other in the t-SNE visualization.

Density Forests were trained on the dimensionality-reduced activations belonging to the seen classes
of the training set. Based on the observation that wrongly predicted points of seen classes are often
outliers and have activations further away from the cluster centers, only activations of correctly
predicted training points were used, to improve the performance of pre-softmax novelty detection
methods. The baselines GMM and OC-SVM both use the same dimensionality-reduced activations
as the Density Forests for the hyperparameter search and for fitting the final model with the best
found parameters. For all methods based on pre-softmax activations, hyperparameters are found
using the scheme described in section 5.6. The same procedure was also applied to error detection,
in which case the training set activations of correctly predicted points were used to fit the GMM,
OC-SVM and Density Forest. The performance of the confidence measures for error detection are
only presented in the appendix G.

5.5 Evaluation

For CNN models, accuracy metrics are indicated using Overall Accuracy (OA) and Average Accu-
racy (AA) as well as precision and recall (table 4). While OA reports the percentage of all data
points correctly classified, AA calculates the mean of the percentage of correctly classified data
points per class. While recall (R) measures how large a fraction of the expected results is actually
found, precision (P) measures how many of the results returned are actually relevant. Precision
and recall are based on the confusion matrix shown in table 4. True Positives (TP) True Negatives
(TN), False Negatives (FN) and False Positives (FP) denote positives and negatives correctly pre-
dicted as positives and negatives repectively for TP and TN, and positives and negatives falsely
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predicted as negatives and positives respectively for FN and FP.

R =
TP

TP + FN

P =
TP

TP + FP

(13)

he F1 score is often used as a weighted harmonic mean between precision and recall:

F1 =
2PR

P +R
(14)

True labels y PA

Predicted labels y

1 2 . . . r
1 n11 n12 . . . n1r n11/n1•
2 n21 n22 . . . n2r n22/n2•
...

...
...

. . .
...

...
r nr1 nr2 . . . nrr nrr/nr•

UA n11/n•1 n22/n•2 . . . nrr/n•r OA=
∑

i nii/n••

Table 4: Confusion Matrix for classification problem with r classes. UA = User’s Accuracy =
Precision, PA = Producer’s Accuracy = Recall, OA = Overall Accuracy, 1, 2, . . . , r=classes. nij
counts the number of labels predicted as class i and belonging to the true class j. Bullet indexes
signify either the sum of the row (e.g., nO•), the sum of the column (e.g., n•O) or the sum of all
elements of the Confusion Matrix (n••).

Evaluation of the confidence measures is made according to the target of novelty detection: We are
interested in a binary outcome, predicting whether a new point will belong to a class seen during
training or to an unseen class. Performance of the uncertainty measures is evaluated using ROC
curves, which plot the TP rate against the TN rate for varying confidence thresholds. The Area
Under the curve of the Receiver Operating Characteristic (AUROC) is used to summarize the ROC
curve.

5.6 Hyperparameter Search

For the synthetic datasets, no hyperparameter search was performed since their only purpose is
to illustrate the behavior of Density Trees and Density Forest. Density Trees and Density Forests
were trained using the parameters listed in table 5. The same parameters have been used for each
synthetic dataset.
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Parameter Value

max_depth 5
n_trees 20

subsample_pct .01
min_subset .0001
n_max_dim -1

ig_improvement .5

Table 5: Density Forest parameters for each synthetic dataset

For the MNIST dataset and the Zurich dataset, best hyperparameters were searched for the novelty
detection methods OC-SVM, GMM as well as Density Forest. The ranges of tried parameter
combinations are listed in appendix H. For each candidate parameter combination, models were
trained in parallel several times on a subset of the training set activations belonging to points of
the seen classes and evaluated on a subset of all validation data1. Finally, the parameter set with
the highest AUROC was applied to the test set. The final AUROC indicated in the results is
calculated on the test set, using the best parameters found as described before. In addition to
finding best hyperparameters, kernel spaces have been visualized for OC-SVM (fig. H.1 and H.2).
Hyperparameter results and visualizations are shown in appendix H.

6 Results

6.1 Experiments

In the following section, the experiments will be presented in the following order: In section 6.2,
Density Forests will be illustrated by fitting individual Density Trees as well as Density Forests to
the generated synthetic data, visualizing the effects of the Density Tree parameters on the number
and shape of generated clusters. In section 6.3, Density Forests as well as the baseline confidence
measures explained in section 2 will be applied to the MNIST dataset and their performance will
be compared with regard to novelty detection. In section 6.4, Density Forests as well as the
baseline confidence measures will be applied to the Zurich dataset, again measuring performance
with respect to novelty detection and highlighting in addition some objects with particularly low
confidence values.

6.2 Synthetic Dataset

Figure 11 shows points of the synthetic datasets generated according to the data generators de-
scribed in section 4.1 and covariance ellipses of an individual Density Tree trained on all data using
the parameters listed in table 5.

1For the class “swimming pools” of the Zurich dataset, hyperparameters were both trained and evaluated on the
training set, since the there are no samples of the “swimming pools” class in the validation set.

22



(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Figure 11: Covariance ellipses of individual Density Tree fitted on synthetic datasets

Figure 12 shows the covariance ellipses of the splits found at each depth of a Density Tree used to
fit dataset 2. With deeper levels of the tree, more splits are created, but only in regions of the spiral
arms with fewer points. It seems that in these regions, since there are less points, more ellipses are
necessary to fit the local distribution.
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Figure 12: Splitting steps of a single node, showing the data, covariance ellipses and Information
Gain of the parent node for dataset 2
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Figure 13 shows the Gaussian PDF distribution of the corresponding leaf nodes on a regular grid
according to a single tree and according to a Density Forest of 20 trees.

(a) Density Tree (D1) (b) Density Tree (D2) (c) Density Tree (D3)

(d) Density Forest (D1) (e) Density Forest (D2) (f) Density Forest (D3)

Figure 13: Gaussian PDF distribution according to single tree (top row) and according to a Density
Forest of 20 trees (bottom row)

While the single tree in figure 13 still clearly reflects the ellipsoids visible in figure 11, Density
Forest show smoother probability distributions. In particularly densely concentrated regions, such
as near the central parts of the spiral arms in dataset 2, darker regions represent regions of higher
density, due to smaller Gaussians being fitted to theses regions.

6.3 MNIST Dataset

Using the CNN architecture listed in table 2, 10 models were trained on all training data except
for images belonging to the left-out class. The accuracy of each network was evaluated on training
and test points belonging to the seen classes (table 6). Since classes are balanced in the MNIST
dataset, only the Overall Accuracy, which is almost identical to Average Accuracy in this case, is
indicated. Detailed accuracy measures for each left-out class are shown in appendix D.
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Training set Test set

99.34 99.03

Table 6: Mean training and test set OA in % for the CNN models trained on N − 1 classes

First, predictions were made for the unseen class to inspect the outcome distribution (fig. 14).
Some left-out classes are mispredicted more homogeneously than others and have a higher mean
MSR. A possible explanation could be the visual similarity between certain digits, such as 4 and 9,
which may look similar whereas no digit clearly resembles the digit 8. It is important to notice that
higher intrinsic similarity between classes can make the task of novelty detection harder. Prediction
counts for all left-out classes are shown in appendix F.1.
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(c) Left-out class 1
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(d) Left-out class 7

Figure 14: Predicted labels for networks with left-out classes 4 and 8 (top) and 1 and 7 (bottom).
While digits showing a 4 are mostly mislabeled as a 9, the digit 8 is mislabeled less homogeneously.
While one could suppose that digits 1 and 7 look similar and might be confused, digits 7 are mostly
classified as digit 9, and digit 1 mostly as digits 4 and 8.
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Second, ReLu activations of the Fully Connected layer were extracted as described in section 5.4.
For each image, a vector of 128 activations was retrieved. PCA was applied to this vector in order
to reduce the redundancy of the filters. For the activations before and after PCA, data separability
was checked using t-SNE visualizations (fig. 15). The t-SNE visualizations in all cases looked
similar before and after PCA, and are therefore only presented for one of the 10 trained models.
t-SNE visualizations for activations of each left-out class after PCA are shown in appendix F.

(a) t-SNE before PCA (b) t-SNE after PCA

Class: • 0 • 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9
× Unseen class

Figure 15: t-SNE of MNIST activations before and after PCA for the model with left-out class
7. Both before and after PCA, activations of different classes seem well separable, including the
unseen class.

Figure 15 shows that the t-SNE visualizations of the network activations before and after PCA look
almost identical. Note that the rotation of the plot before and after applying PCA is irrelevant, since
the lower-dimensional data representation yielded by t-SNE only models the pairwise proximities
between data points and not their absolute position in space. For novelty detection methods to work
well, the unseen class should be well-separated from the other, seen classes. The t-SNE visualization
indicates that all classes are well-separated, including the unseen class.

The tendencies with respect to the class confusion shown in figure 14 can also be observed in the
t-SNE visualizations (figure 16): while class 4 tends to be confused mainly with class 9, class 8 is
confused with several clusters. Unseen class 8 seems to be slightly better separable than unseen
class 4, which is very close to the activations of class 9.
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(a) Class 4 (b) Class 8

Class: • 0 • 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9
× Unseen class

Figure 16: t-SNE of MNIST activations, after PCA transformations.

After retrieving the activations of all data points and applying PCA dimensionality reduction, pa-
rameter search has been performed for GMM, OC-SVM and Density Forests. Best hyperparameters
found for each left-out class and novelty detection method are listed in table H.1.

AUROC metrics for the Density Forest method and baseline methods are indicated in table 7.
Metrics for each left-out class are indicated in appendix table D.2.

MSR Margin Entropy MC-Dropout GMM OC-SVM DF

0.97 0.97 0.97 0.96 0.67 0.75 0.75

Table 7: Mean AUROC for each left-out class in the MNIST dataset

In the MNIST dataset, GMM, OC-SVM and DF perform worse compared to the baseline methods
MSR, margin, entropy and MC-Dropout. Reasons for the lower performance of the pre-softmax
based novelty detection methods are discussed in section 7.
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6.4 Zurich Dataset

6.4.1 Overall Results

Since class imbalance is greater than in the MNIST dataset, model performance is indicated for
each left-out class separately in table 9. For comparison, accuracy metrics for a CNN trained on
all classes is given in table 8. In this section, illustrations are shown for the model trained on all
classes but “roads” and the equivalent figures for the other models are shown in appendix G.

Class Precision [%] Recall [%] F1 Score [%]

Roads 83.63 69.77 76.07
Buildings 64.93 88.00 74.72
Trees 79.80 82.69 81.22
Grass 94.06 67.52 78.61
Bare Soil 48.04 71.81 57.57
Water 97.94 91.41 94.56
Railways 0.01 0.01 0.01
Swimming Pools 84.75 89.80 87.20

Average 69.15 70.13 68.75

Table 8: Test set accuracy for the U-Net CNN trained on all classes (Overall Accuracy: 77.59 %)

The low accuracy for the class “railways” could be due to the low number of class samples (fig. 7), to
the visual similarity with the “roads” class or to suboptimal network parameters and architecture.

Training set Validation set Test set
Left-out Class OA [%] AA [%] OA [%] AA [%] OA [%] AA [%]

Roads 71.33 65.09 91.79 80.39 87.92 76.39
Buildings 68.12 62.50 89.44 77.93 83.94 69.38
Trees 65.36 58.84 88.79 72.59 88.58 71.40
Grass 57.27 54.49 79.55 68.15 81.49 69.23
Bare Soil 59.41 53.97 80.43 72.28 80.49 71.01
Water 65.37 62.90 85.73 71.83 84.04 68.31
Railways 62.37 57.96 82.55 71.02 82.11 71.09
Swimming Pools 59.56 57.72 80.55 70.50 82.34 71.34

Mean 63.60 59.18 84.85 73.09 83.86 71.02

Table 9: Accuracy measures for the U-Net CNN trained on N − 1 classes.

A sample visualization of a prediction from a model with the left-out class “roads” is shown in figure
17. Most pixels annotated as “road” in the ground truth are either classified as “buildings”, “bare
soil” or “railways”.
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(a) Ground Truth (b) Prediction

Background Roads Buildings Trees Grass
Bare Soil Water Railways Swimming Pools

Figure 17: Prediction and Ground Truth for the model trained without the roads class

As for the MNIST dataset, misclassification distributions were checked for all models (fig. 18).
Again, more homogeneously misclassified class samples are correlated with higher mean MSR.
Prediction counts for each left-out class are shown in appendix G.1
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(a) Left-out class “Roads”
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(b) Left-out class “Trees”

Figure 18: Predictions for network with left-out class “roads” and “trees”. While roads are mostly
mislabelled as buildings, trees are mislabelled less homogeneously.

After network training, activations of all images in the training, validation and test sets were
retrieved and PCA was applied to reduce their dimensionality. The cumulative variance explained
by each additional component is shown for the model with the left-out class “roads” in figure 9b. As
figure 9 shows, less components are needed to explain a high percentage of the variance compared
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to the MNIST dataset.

Similar to the MNIST dataset, it was checked by t-SNE visualization if the pre-softmax activations
are separable, both before and after PCA (fig. 19). Ideally, both t-SNE plots should show the
same relative arrangement between classes. While clusters may be of different sizes, they should be
separated according to the classes for a well-enough trained network.

(a) t-SNE before PCA (b) t-SNE after PCA

Class: • Roads • Buildings • Trees • Grass
• Bare Soil • Water • Railways • Pools

× Unseen class

Figure 19: t-SNE of Zurich dataset activations, model with left-out class buildings. The same
number of points are shown by class, although the real class distribution is imbalanced (figure 7).

Fig 19 shows that t-SNE visualizations before and after PCA look almost the same. The unseen
class “buildings” is confused most strongly with the class “roads” and partly with other classes.
t-SNE visualizations of the classes “roads” and “trees” are shown in figure 20.
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(a) Roads (b) Trees

Class: • Roads • Buildings • Trees • Grass
• Bare Soil • Water • Railways • Pools

× Unseen class

Figure 20: t-SNE of Zurich dataset activations after PCA for left-out classes “Roads” and “Trees”.

Although there seems to be a confusion between the classes “roads” and “railways” which suggests
difficulties to separate both classes, the class “railways” is very rare (fig. 7). It is expected that
Density Trees mainly fit ellipses in high-density regions containing many points. Therefore, it is
likely that a Density Forest with limited depth will fit few leaf nodes directly to the “railways”
class. Figure G.3 in appendix shows t-SNE visualizations of the activations after PCA for all left-
out classes and for the model trained on all classes. While some classes are separable in most
cases, such as bare soil, water and swimming pools, some classes are more mixed together, such as
buildings and roads, or grass and trees. It is also noteworthy that some classes are only separable
from others when seen during training, such as the class “water”, while some also remain separable
when unseen, such as the class “swimming pools”.

Best parameters for each left-out class model and novelty detection method are shown in appendix
table H.2. AUROC metrics for each left-out class and novelty detection method are shown in table
10.
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Left-Out Class MSR Margin Entropy MC-Dropout GMM OC-SVM DF

Roads 0.60 0.59 0.61 0.59 0.66 0.52 0.70
Buildings 0.65 0.66 0.65 0.65 0.58 0.62 0.61
Trees 0.74 0.74 0.74 0.75 0.66 0.78 0.55
Grass 0.38 0.37 0.39 0.39 0.47 0.24 0.55
Bare Soil 0.68 0.70 0.63 0.59 0.66 0.67 0.65
Water 0.59 0.60 0.58 0.58 0.59 0.79 0.66
Railways 0.57 0.59 0.53 0.54 0.55 0.69 0.40
Swimming Pools 0.26 0.28 0.23 0.28 0.99 0.97 0.99

Average 0.56 0.57 0.55 0.54 0.65 0.66 0.64

Table 10: AUROC for each left-out class and novelty detection method

Table 10 indicate that the pre-softmax-based methods outperform other softmax-based novelty de-
tection methods in 6 of 8 classes, with OC-SVM and DF showing the highest performance. On
average, the increase in AUROC from softmax-based methods to pre-softmax based methods cor-
responds to about 0.1, or an increase of 18%. DF clearly outperforms other methods on the classes
“roads” and “grass”. Pre-softmax-based methods most clearly outperform softmax-based methods
on the swimming pools class. Visual results of the different methods are shown in appendices G.7
- G.8. ROC curves used to produce the AUROC metrics of table 10 are shown in appendix G.15.

6.4.2 Visual Interpretation

To illustrate the performance of the novelty detection methods, confidence images for individual
left-out classes can be visualized and analyzed. In this section, results are compared between MSR
and Density Forests according to the classes on which the Density Forest performs better or worse
than other novelty detection methods. Figures for all methods and left-out classes are shown in
figures G.7 - G.14.

A property of novelty detection methods is that they attribute extreme values to outliers, leading
to skewed distributions of the confidence values. This can be observed in the results of the methods
GMM, OC-SVM and DF. In the case of novelty detection, some particular objects of the image
may be recognized as very uncertain, leading to lesser visibility of confidence differences in the rest
of the image. Therefore, histogram equalization was applied to the confidence images of GMM,
OC-SVM and DF to enhance the overall image contrast and show more local differences between
classes [12] (fig. 21). Individual objects with very high uncertainty visible in the original images
are discussed in section 6.4.3.
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Figure 21: Original and equalized confidence distributions for DF, using the left-out class “Roads”.
While outliers are visible in the original figure, smaller differences in confidence values within classes
are better visible after histogram equalization.

Figure 22 shows visual results for the class “roads”. Density Forest here outperforms the other
methods, confirming visually that it has the highest AUROC values of all confidence estimation
methods (table 10). The unseen class “Roads” clearly appears to be the least certain, while for
MSR, the roads seem as uncertain as other classes. MSR just like margin and entropy, the other
baseline methods based on the softmax output, mainly show low certainty along class changes (figure
G.7). While OC-SVM highlights the roads as uncertain, it also recognizes many other objects as
uncertain, belonging to the seen classes buildings, grass and water.
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Figure 22: Visual uncertainty results for selected methods on left-out class “roads” and correspond-
ing ground truth. Contrast stretching and histogram equalization have been applied to OC-SVM
and DF images for better visibility. Cumulative variance explained per PCA components and ROC
curves are shown below the confidence images.
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Figure 23 shows a class for which the Density Forest underperforms. In this case, OC-SVM shows
the best performance in detecting the unseen class “trees” (along the river and on the top-left side
of the big grass field). While the winning method OC-SVM and DF both show low confidence in
the regions containing trees, the Density Forest in addition shows very low confidence along the
river and along some parts of the roads.

For both left-out classes roads and trees, a low number of PCA components are needed to explain
the initial variance of activations. Visual results, explained variance by PCA components and ROC
curves are provided for all left-out classes in appendix G.

Figure 24 shows the t-SNE points colored by confidence values of different novelty detection meth-
ods for the left-out class “trees”. All points with a solid border belong to the unseen class. Ideally,
those points should be colored red (uncertain) while points of other classes should be yellow or
green. Figure 24 also shows different behavior in the seen classes between novelty detection meth-
ods. Softmax-based methods MSR, margin, entropy and MC-Dropout all behave similarly and
identify the regions of lowest confidence at the borders of clusters and within the unseen class. The
pre-softmax based confidence measures GMM, OC-SVM and DF behave similarly and generally
attribute a higher confidence to the cluster centers and unseen class, while GMM and DF also
attribute lower certainty to points of the class “bare soil’ and identify the class “swimming pool” as
particularly uncertain, which could indicate their ability better identify heterogeneous classes, such
as “bare soil”, and classes with few samples, such as “swimming pools”.
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Figure 23: Visual uncertainty results for selected methods on left-out class “trees” and corresponding
ground truth. Contrast stretching and histogram equalization have been applied to OC-SVM and
DF images for better visibility. Cumulative variance explained per PCA components and ROC
curves are shown below the confidence images.
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(a) t-SNE of test set activations (b) MSR (c) Margin

(d) Entropy (e) MC-Dropout (f) GMM

(g) OC-SVM (h) DF
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Figure 24: t-SNE visualizations colored according to scores of various novelty detection methods for the left-out class “Trees”.
Points belonging to the unseen classes are indicated with a solid-edge circle. Ideally, all solid-edge circles should be red, and all
other points green to yellow. The original t-SNE plot of the test set activations after PCA and the ROC curves for each method
are shown for comparison.
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Although figure 24 suggests that softmax-based methods MSR, margin, entropy and MC-Dropout
work best for the unseen class “trees”, this is not confirmed by the ROC curve in subfigure 24i,
showing that the best-performing method is OC-SVM. The reason for this visual mismatch could be
that OC-SVM attributes the lowest confidence values partly to samples of the seen classes swimming
pools and water. While on the t-SNE figures, the same number of points is shown per class, in
reality there are very few samples for the swimming pool class (fig. 7). If the confidence values were
shown on a t-SNE plot with a points proportional to the real class distribution, confidence values of
OC-SVM after histogram stretching would indicate lower confidence values compared to softmax-
based methods. However, In that case the swimming pool class as well as the classes “railways” and
“bare soil” would barely appear on the t-SNE visualization.

6.4.3 Particular Objects

In addition to analyzing the performance of Density Forest and baseline methods in novelty detec-
tion, a few particular objects can be distinguished on the test images for which the pre-softmax
activations-based methods GMM, OC-SVM and Density Forest all show particularly low confi-
dence. In the following, confidence maps of MSR and Density Forests are shown for particular
objects within which Density Forests indicate low confidence. GMM or OC-SVM mostly yield
confidence values similar to those of Density Forests for these objects and are shown in appendix
G.

Figure 25 shows a particular Region of Interest (ROI) annotated as a swimming pool, containing
visible swimming lanes. While MSR attributes a fairly high confidence to this region, again just
highlighting the class borders, DF indicates very low confidence values within this object.
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(a) Image with ROI overlay (b) Ground Truth

(c) MSR (d) Density Forest (non-equalized)
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Figure 25: Swimming pool object with MSR and DF confidence images

Figure 26 shows another region around a soccer pitch for which DF yields low confidence, seemingly
a race track.
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(a) Image with ROI overlay (b) Ground Truth

(c) MSR (d) Density Forest (non-equalized)
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Figure 26: Soccer pitch object with MSR and DF confidence scores

For the swimming pool in figure 25, the reason for the varying confidence between MSR and Density
Forest could be the number of training samples for the swimming pool class (fig. 7). For the race
track in figure 26, there is no corresponding land cover class, explaining the lower confidence of the
Density Forest.

Generally, GMM, OC-SVM and DF attribute very low values to particular objects whose activations
seem very different from those of seen classes or for objects belonging to very infrequent classes.
For the class “swimming pools”, all three methods strongly outperform softmax-based confidence
estimators (table 10). Since the class “swimming pool” is very rare, this might indicate that these
methods work best for outlier detection, where the novelties are very few and different from the
“normal” distribution.
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7 Discussion

The following discussion is structured by types of novelty detection methods which are either based
on softmax activations or on pre-softmax activations.

7.1 Softmax-Based Methods

Overall Performance Softmax-based methods show a consistently high performance in the
MNIST dataset with an average AUROC of above 90% (table 7). For the Zurich dataset, the
performance of the softmax-based measures is less consistent with an average AUROC of 54-57 %,
being just slightly better than a predictor making random guesses based on the novelty frequency,
which would correspond to an AUROC of around 50% (table 10). The deficiencies of softmax-based
measures are also visible on the confidence images of the Zurich dataset, showing low confidence
values mainly along class changes (appendix G).

Similarities between Softmax-Based Methods In most cases, the softmax-based confidence
measures MSR, margin, entropy and MC-Dropout all show very similar results. In the MNIST
dataset, the performance of these classifiers is almost identical (table 7) while for the Zurich dataset,
performance differences between softmax-based methods are on the order of 1-2 percents (table
10). This indicates that taking into account the full softmax activation vector does not necessarily
improve the novelty detection performance compared to simple MSR. With respect to MC-Dropout,
part of the similarity to other softmax-based methods could be due to the simplified version which
was used in this study, using dropout in test time only after the FC layer and with a dropout
probability of 0.1. A higher dropout probability should be defined and compared to standard
MC-Dropout in future studies.

7.2 Pre-Softmax-Based Methods

Overall Performance Regarding the MNIST dataset, pre-softmax based methods are consis-
tently outperformed by softmax-based methods, while in the Zurich dataset, Density Forests and
other pre-softmax-based confidence estimation methods show on average a significant improvements
over softmax-based methods in terms of novelty detection performance. While the performance of
the classifiers GMM, OC-SVM and DF is partly inconsistent within left-out classes, this indicates
that taking into account the pre-softmax network activations should yield more information than
just estimating the confidence based on the softmax output. Yet, the performance of various novelty
detection methods differ strongly between classes. Some of the reasons for this varying performance
are discussed below, including network architectures, different lengths of feature vectors yielded by
the pre-softmax activation functions, network accuracy, input data types, class imbalance and class
confusion, as well as differences between kernel-based and forest-based classifiers.

FC Features and the Curse of Dimensionality First, the MNIST and Zurich datasets both
use different network architectures which yield a different number of features in the FC layer. While
the MNIST CNN (table 2) has 128 filters in the FC layer, the U-Net used for the Zurich dataset has
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only 32 filters in the corresponding layer before the classification layer. The number of filters in the
FC layer strongly correlates with the number of PCA components needed to explain the variance
of the full feature vector (figure 9). To explain 95% of the variance, only 5-10 PCA components
are needed for the Zurich dataset while for the MNIST dataset, 30-40 components have to be kept
(tables 2 and E.1). Linked to the number of components kept after dimensionality reduction, part
of the inconsistent performance of Density Forests as well as GMM could be due to their underlying
assumption of a Gaussian distribution in high dimensions. Both methods rely on finding the
support of the activations belonging to seen classes through fitting a certain number of Gaussian
distributions to the data. In high-dimensional, noisy data, this might be especially difficult due to
the curse of dimensionality, making the notion of distance less meaningful in clustering problems
[19]. Different dimensionality reduction methods than PCA would be desirable in order to reduce
the data to a lower number of dimensions while preserving the structure of the high-dimensional
data. The influence of other dimensionality reduction method on the performance of Density Forests
should be studied more deeply.

Data Complexity Differences in the network accuracy as well as performance of novelty detec-
tion methods between the MNIST and Zurich datasets could be linked to the amount of training
data, their complexity and their within-class heterogeneity. Despite the much higher number of
parameters trained in the U-Net used for the Zurich dataset, the MNIST networks reach a test
accuracy of around 99%, while the U-Net reaches only a lower test set accuracy of about 84% on
average (tables 6 and 9). Most importantly, it might be more difficult to separate complex classes
such as “roads” and “buildings”, which are described by a rich set of spectral and geometric at-
tributes within the objects themselves and in their surroundings, compared to the more simple case
of hand-written digits. In addition, land use classes defined by the ground truth might be noisier
and less homogeneous, such as samples of various land cover types grouped in the class “bare soil”.
A further difference to the MNIST dataset may be that some unseen classes in the Zurich dataset
systematically combine features of other classes: The swimming pool class might be such an exam-
ple, where both concrete around the object and water within the object define the class, combining
features from both the classes roads and water.The fact that activations of the swimming pool class
systematically combine only certain parts of seen classes may give it its distinct position in the
feature space.

Despite the lower network accuracy, the increased complexity of classes might provide the net-
work with more features to accurately describe and thus separate each class. t-SNE may not show
the distances between classes accurately since it focuses on preserving distances between nearby
data points rather than distances between points far away from each other, therefore the distances
between well-separated data clusters may be meaningless [29, 56]. Due to these reasons, the com-
plexity and heterogeneity of land use classes makes it seem plausible that activations of different
classes in the Zurich dataset are further away from each other compared to activations of different
classes of hand-written digits.

Class Imbalance and Class Separability Part of the inconsistency of pre-softmax methods
might be due to the distribution and frequencies of the pre-softmax activations. The t-SNE vi-
sualizations show different clustering behavior for the activations of the Zurich dataset than for
activations of the MNIST dataset, with some classes in the Zurich dataset being better separated
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from other classes and some classes being separated only if seen during training (fig. 19). Pre-
softmax-based methods seem to work better on class activations which are well-separated from
other, frequent classes. Regarding the Zurich dataset, the network accuracy is lower, however some
classes are only confused with infrequent other classes, which should be less of a problem, as Den-
sity Forests mainly fit clusters to frequent classes. For instance, all pre-softmax-based confidence
methods clearly outperform other baselines in the class “swimming pools” (fig. G.14). This might
be in part due to the fact that these activations are very well separable from others, even for the
model trained without the class “swimming pools” (fig. G.3h). While t-SNE visualizations also
indicate good separation of the class water for models trained with the class, the class appears to
be less well-separable when not seen during training (fig. G.3f). It is thus to very likely that part
of the varying performance between the unseen classes of the Zurich dataset is due to how well the
unseen class is separated even if it has not been seen during training.

Kernel Methods and Forest-Based Methods Similarly, although the task of a neural net-
work is to make data linearly separable, a suboptimal network will still have non-linearly separable
activations in the FC layer. A possible advantage of algorithms such as OC-SVM could be their
ability to increase data separability by explicitly reorganizing non-linearities from non-optimally
trained networks, using the kernel trick. Although Density Forests do not explicitly apply any kind
of feature augmentation, forest-based methods can model non-linear data distributions through
bagging of many weak learners. Optimal hyperparameters for OC-SVM included non-linear kernels
in some cases (table H.2). This could be due to an inability of the network to separate the classes
related to the high data complexity, too few training samples or to the network structure and pa-
rameters. Both kernel-based and forest-based methods require a certain number of hyperparameters
to be tuned to correctly model such non-linearities. Which of both methods is better able to model
non-linearities can not be seen from the presented results, which show roughly equivalent accuracies
between OC-SVM and DF. The relation between the data complexity, network architecture and
best OC-SVM kernel for novelty detection should be studied further.
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8 Conclusion

Density Forests try to model the density of a complex, potentially non-linear distribution through
bagging of weak learners. In the case of CNNs, Density Forests have been used to model the
support of activations belonging to seen classes, to detect new, unseen data in the test set. This
study has shown that the developed method works in many cases, within certain limitations, and
that softmax-based confidence measures are unsuitable for novelty detection in the Zurich dataset.
This conclusion lists the main contributions made in this work, its limitations, future research to
be done and ends with an outlook on the bigger picture of relevant novelty detection applications
in ML.

8.1 Main Contributions

Following contributions have been made in this work:

• Density Forests have been implemented and applied to a synthetic dataset as well as a more
complex dataset consisting of high-dimensional neural network activations. Their potential
for novelty detection in the MNIST dataset and in the more complex Zurich dataset has been
assessed and discussed.

• Importantly, a ready-to-use library for Density Forests was implemented, which can be eas-
ily installed using the command pip install density_forest. The code, detailed usage
instructions, code documentation and illustrations are hosted on GitHub (https://github.
com/CyrilWendl/SIE-Master), including a variety of methods training Density Trees or Den-
sity Forests on a training set and predicting confidence values for a test set. In addition, the
library includes a number of generic functions that include:

1. Perform hyperparameter search to find the best parameter set for training a Density
Forest as described in section 5.6.

2. Generate synthetic datasets as described in section 4.1.

3. Generic plotting functions to produce all the visualizations of this report.

The syntax for fitting Density Forests, predicting confidence values, performing hyperpa-
rameter search and using auxiliary functions is described in the README.md of the GitHub
repository.

• This study has aimed to show the potential of using the pre-softmax activation vector to
improve novelty detection in trained CNNs. In a more complex, real-world example, this
idea has proven successful, however only within the limited scope of the restrictions described
below.

8.2 Limitations

While pre-softmax-based methods and Density Forests in particular have shown improvements over
softmax-based measures in the Zurich datasets, they only work under a set of limitations.
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First, the implemented pre-softmax-based confidence measures require a certain number of hyper-
parameters to be tuned in order to work. This task can be time-consuming and the correct range
of parameters may be difficult to identify. In some cases, this may even be impossible due to a
too small dataset, making it difficult to split the dataset into a training, validation and test set of
sufficient sizes to perform hyperparameter search. In addition, if the unseen class is very rare, it
may not be present in a validation set used to find optimal parameters.

Second, the network structure may play an important role for the performance of both softmax-
based and pre-softmax-based confidence measures. A network with many filters in the FC layer may
produce redundant and noisy information spread over many filters, resulting in a long activation
vector even after PCA. This not only deteriorates the training and prediction time of each model
but may also lead to greater difficulties in separating high-dimensional activations due to the curse
of dimensionality. In addition, the influence of the network accuracy on the performance of each
confidence measure is to be discussed as well as the influence of the data complexity on the novelty
detection performance.

Third, Density Forests, GMM and OC-SVM work better for activations that are very different and
rare, such as those of the class “swimming pools”. Thus, in order to effectively identify unseen
points, a special meta-loss would need to be introduced in the network to maximize the distance
between activations of different classes.

8.3 Future Research

Further research should go into understanding the reasons for the inconsistent behavior of Density
Forests.

Datasets and Architectures To further study the performance of Density Forests, the method
should be applied to further datasets and to different network architectures.

Dimensionality Reduction Regarding Density Forests, the influence of the dimensionality on
the performance of Density Forests should be evaluated more thoroughly. For instance, differ-
ent network architectures with a varying number of pre-softmax activations could be trained and
compared with respect to the Density Forest performance. Such a comparison has not been im-
plemented because of the explicit assumption that Density Forests should be applicable to many
different standard network architectures without modifying them. Yet, there are good reasons to
assume that Density Forests will deal better with lower-dimensional activations, related to the curse
of dimensionality.

Meta-Loss to Increase Class Separability For similar reasons, contrary to the method pro-
posed by Mandelbaum and Weinshall [30], no special meta-loss has been implemented to maximize
the distance between activations belonging to different classes, again because of the assumption
that the proposed confidence measure should not require any changes in the network architecture.
It would however be interesting to see if there are significant performance gains for any of the
pre-softmax-based methods if such a meta-loss was implemented.
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Parameter Sensitivity In addition to finding the best parameter set, the sensitivity of each
parameter should be assessed. This could potentially reduce the number of hyperparameters and
accelerate parameter search.

Further Research Ideas To avoid modeling the distribution of high-dimensional activations,
a different idea for a confidence measure would be to work directly with the network activations
and weights: In addition to retrieving the activations x

(L)
i , i ∈ 1, ..., n, one could also retrieve the

weights w(L)
i,j for a class j just before they are passed to the final softmax activation (fig. 27). By

looking at their sign (negative / positive contribution to a class), the degree of agreement between
activations could be used as a confidence indicator.
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Figure 27: Alternative confidence measure scheme: red parts are to be retrieved and their entropy
calculated to measure the degree of agreement of the input to the softmax activation function.

Further, similar ideas to estimate the confidence using activations include maximizing differences
between the separating planes produced by each softmax input via a special meta-loss. This way,
the network would learn to find as many distinct separations between classes as possible, and thus
map class distributions implicitly. However, this again contradicts the basic idea of the proposed
methodology, which is to build on an existing network architecture.

Evaluation Any of the analyzed confidence methods are heuristic in nature and are evaluated
according to an application-specific goal. The notion of confidence in many cases remains related
to particular applications such as error detection or novelty detection. A formal proof of the equiv-
alence between some optimal, pre-softmax activations-based confidence measure and probabilistic
uncertainty measures yet has to be provided. Due to their heuristic nature, confidence measures
should also be evaluated in applied contexts, such as active learning.

8.4 Outlook

Ultimately, this study has shown a strong potential of Density Forests and pre-softmax confidence
measures to improve novelty detection performance without changing the structure of the network.
Although less successful in error detection, the methods GMM, OC-SVM and DF in most cases show
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better performance than the baselines relying on the softmax output. Further research possibilities
in this direction should show whether the information contained in the network activations can be
used to determine the uncertainty of a network without changing its architecture.

In terms of practical applications, it would be of great help if standard CNNs could provide more
reliable confidence measures. Active Learning is an example where novelty detection using confi-
dence values would be very helpful to save time spent by users manually annotating ground truth.
By asking users to provide labels for the least certain parts of an image, the accuracy of a CNN
could be improved maximally at each iteration and thus time spent annotating images is reduced
to a minimum. Such applications could ultimately lead to better land cover maps, helping to
recognize spatial developments of global importance such as urbanization, illegal logging, littoral-
ization or other socially and environmentally relevant developments, while spending less time efforts
for ground truth annotation and obtaining more accurate results. Further applications of better
confidence measures are countless, including medical diagnosis, autonomous driving and weather
forecasting. Ultimately, a good model will fail in many situation if it cannot provide a reliable
measure of confidence. While this study has aimed at making a contribution to understanding
model uncertainty in ML, there are still major questions to be answered in future research.
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9 Appendices

A Code Documentation

The implementation of the Density Forest code can be found on GitHub: https://github.com/
CyrilWendl/SIE-Master. Jupyter notebooks are available to illustrate results of the novelty de-
tection methods applied to all datasets:

1. Synthetic dataset: /Code/Density Forest.ipynb

2. MNIST dataset: /MNIST/MNIST Novelty Detection.ipynb

3. Zurich dataset: /Zurich/Zurich Novelty Detection.ipynb

B Random Forest

The result of a Decision Tree with no stopping criterion applied to synthetic labelled data is shown
in figure B.1. The ruggedness of the decision boundaries is in part due to visualizing the decision
boundaries on a discrete coordinate mesh.
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Figure B.1: Decision boundaries of a single Decision Tree on 2-dimensional synthetic data with
labels 1 to 6, splitting the data until every leaf node only contains data of one cluster. Left:
decision boundaries with Data, right: decision boundaries only. The Decision Tree clearly overfits
the data.

The Decision Tree clearly overfits the data and tends to produce edgy boundaries. The associated
Decision Tree is shown in figure B.2.
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Figure B.2: Decision tree with unlimited depth on the training data for shown for illustrative
purposes, with the split dimension and split value at every non-leaf node and the class label at
every leaf node. The tree clearly overfits the data and produces edgy decision boundaries

The classification using Random Forest is shown in figure B.3.
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Figure B.3: Decision boundaries of a Random Forest on 2-dimensional synthetic data. 1000 Decision
Trees have been trained on a 30% bootstrap sample of the original data. Left: decision boundaries
with Data, right: decision boundaries only. The Random Forest manages to smooth out the class
decision boundaries.
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C Data Structure

Figure C.1: Implemented data structure for Decision Tree nodes. Every node saves a pointer to
its parent, the unique labels contained at its split level, the split dimension and value, methods for
tree descending and formatting as well information about its child nodes.

Figure C.2: Implemented data structure for Density Tree nodes. Every node saves a pointer to
its parent, the split dimension and value as well as its distribution parameters including mean
and covariance. In addition, each density tree node has a set of methods for tree descending and
formatting as well information about its child nodes. For each child node, pre-calculated inverse and
determinant of the covariance are saved to speed up calculation of Gaussian PDF during prediction
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D MNIST Evaluation Metrics

Left-out class Training set Test set
OA AA OA AA

0 99.29 99.30 99.01 99.02
1 99.21 99.21 98.97 98.98
2 99.34 99.35 98.80 98.80
3 99.27 99.27 99.12 99.12
4 99.33 99.32 98.95 98.93
5 99.46 99.46 99.11 99.11
6 99.36 99.36 98.94 98.94
7 99.39 99.38 99.20 99.19
8 99.38 99.38 99.03 99.04
9 99.39 99.39 99.19 99.18

Table D.1: Accuracy metrics in % for the CNN trained on N − 1 classes for the MNIST dataset

Left-Out class MSR Margin Entropy MC-Dropout GMM OC-SVM DF

0 0.98 0.98 0.98 0.98 0.83 0.93 0.43
1 0.99 0.99 0.99 0.99 0.96 0.91 0.47
2 0.97 0.97 0.97 0.96 0.77 0.82 0.55
3 0.96 0.96 0.96 0.96 0.89 0.87 0.69
4 0.92 0.92 0.93 0.91 0.79 0.95 0.45
5 0.96 0.96 0.96 0.96 0.46 0.87 0.41
6 0.97 0.97 0.97 0.97 0.85 0.92 0.63
7 0.97 0.97 0.97 0.96 0.94 0.88 0.40
8 0.98 0.98 0.98 0.98 0.82 0.90 0.61
9 0.98 0.98 0.98 0.98 0.92 0.92 0.70

Mean 0.97 0.97 0.97 0.97 0.82 0.90 0.53

Table D.2: AUROC for each left-out class in the MNIST dataset
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E Zurich Network Architecture

Name Layer Parameters

Input Dim: (|b|, w, h, nc)
Conv + ReLu 32 5 × 5 filt
Dropout p = .1

conv1 Conv + ReLu 32 5 × 5 filt
MaxPooling 2 × 2 pool size
Conv + ReLu 64 3 × 3 filt
Dropout p = .1

conv2 Conv + ReLu 64 3 × 3 filt
MaxPooling 2 × 2 pool size
Conv + ReLu 128 3 × 3 filt
Dropout p = .1

conv3 Conv + ReLu 128 3 × 3 filt
MaxPooling 2 × 2 pool size
Conv + ReLu 256 3 × 3 filt
Dropout p = .1

conv4 Conv + ReLu 256 3 × 3 filt
Conv + ReLu 512 3 × 3 filt
MaxPooling 2 × 2 pool size
Dropout p = .1

conv5 Conv + ReLu 512 3 × 3 filt

(a) Downsampling Layers

Type Parameters

Concat(Conv T, conv4) 256 2 × 2 filt, 2 str
Conv + ReLu 256 3 × 3 filt
Dropout p = .1
Conv + ReLu 256 3 × 3 filt
Concat(Conv T, conv3) 128 2 × 2 filt, 2 str
Conv + ReLu 128 3 × 3 filt
Dropout p = .1
Conv + ReLu 128 3 × 3 filt
Concat(Conv T, conv2) 64 2 × 2 filt, 2 str
Conv + ReLu 64 3 × 3 filt
Dropout p = .1
Conv + ReLu 64 3 × 3 filt
Concat(Conv T, conv1) 32 2 × 2 filt, 2 str
Conv + ReLu 32 5 × 5 filt
Dropout p = .1
Conv + ReLu 32 5 × 5 filt
Conv + Softmax N − 1 1 × 1 filt

(b) Upsampling Layers

Table E.1: U-Net Architecture of the CNN used for Zurich Dataset, according to Ronneberger et al.
[42]. Conv = convolution, filt = filters, str = stride, p = dropout probability, dim = dimensions,
Input dimensions |b|, w, h, nc = batch size, width, height, number of channels, N = number of
classes. A convolution or transpose convolution always takes the previous layer in the network as
input.
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F MNIST Dataset Figures
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Figure F.1: Count of predictions for each left-out class
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(a) Class 0 (b) Class 1 (c) Class 2

(d) Class 3 (e) Class 4 (f) Class 5

(g) Class 6 (h) Class 7 (i) Class 8

(j) Class 9

Class: • 0 • 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9
× Unseen class

Figure F.2: t-SNE of MNIST dataset activations after PCA transformations for each left-out class
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G Zurich Dataset Figures
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Figure G.1: Count of label predictions for each left-out class and for the CNN trained on all classes
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(a) Roads
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(b) Buildings
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(c) Tress
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(d) Grass
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(e) Bare Soil
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(f) Water
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(g) Railways
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(h) Swimming Pools
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(i) All classes

Figure G.2: Cumulative variance explained by PCA components for activations of each left-out class and for activations of the
model trained on all classes. The number of PCA components was chosen such as to explain more than 95% of the variance.
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(a) Roads (b) Buildings (c) Tress

(d) Grass (e) Bare Soil (f) Water

(g) Railways (h) Swimming Pools (i) All classes

Class: • Roads • Buildings • Trees • Grass
• Bare Soil • Water • Railways • Pools

× Unseen class

Figure G.3: t-SNE of Zurich dataset activations after PCA transformations for each left-out class and for the activations of the
network trained on all classes. The same number of points are shown by class to show class separability, although the real class
distribution is imbalanced (table 8).
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On the following pages, confidence scores are shown for all left-out classes and for one confidence estimation method at a
time. For each left-out class, the confidence values are shown for one image of the training set containing some object with
the corresponding ground truth. More images can be found on https://github.com/CyrilWendl/SIE-Master/tree/master/
Figures/Zurich/Im_cert. The following images are shown below:

(a) Image (b) Ground Truth

Figure G.4: Image and ground truth pair for confidence images shown for left-out classes roads, buildings, trees, grass and water

(a) Image (b) Ground Truth

Figure G.5: Image and ground truth pair for confidence images shown for left-out class bare soil

(a) Image (b) Ground Truth

Figure G.6: Image and ground truth pair for confidence images shown for left-out class swimming pools
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(a) Ground Truth (b) MSR

(c) Margin (d) Entropy

(e) MC-Dropout (f) GMM (equalized)

(g) OC-SVM (equalized) (h) DF (equalized)
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Bare Soil Water Railways Swimming Pools
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Figure G.7: Ground Truth and visual results for left-out class “roads”.
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(a) Ground Truth (b) MSR

(c) Margin (d) Entropy

(e) MC-Dropout (f) GMM (equalized)

(g) OC-SVM (equalized) (h) DF (equalized)
Ground Truth

Background Roads Buildings Trees Grass
Bare Soil Water Railways Swimming Pools
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Figure G.8: Ground Truth and visual results for left-out class “buildings”.
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(a) Ground Truth (b) MSR

(c) Margin (d) Entropy

(e) MC-Dropout (f) GMM (equalized)

(g) OC-SVM (equalized) (h) DF (equalized)
Ground Truth
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Figure G.9: Ground Truth and visual results for left-out class “trees”.
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(a) Ground Truth (b) MSR

(c) Margin (d) Entropy

(e) MC-Dropout (f) GMM (equalized)

(g) OC-SVM (equalized) (h) DF (equalized)
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Figure G.10: Ground Truth and visual results for left-out class “grass”.
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(a) Ground Truth (b) MSR (c) Margin

(d) Entropy (e) MC-Dropout (f) GMM (equalized)

(g) OC-SVM (equalized) (h) DF (equalized)
Ground Truth
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Bare Soil Water Railways Swimming Pools
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Figure G.11: Ground Truth and visual results for left-out class “bare soil”.
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(a) Ground Truth (b) MSR

(c) Margin (d) Entropy

(e) MC-Dropout (f) GMM (equalized)

(g) OC-SVM (equalized) (h) DF (equalized)
Ground Truth
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Figure G.12: Ground Truth and visual results for left-out class “water”.
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(a) Ground Truth
(b) MSR (c) Margin

(d) Entropy (e) MC-Dropout (f) GMM (equalized)

(g) OC-SVM (equalized) (h) DF (equalized)
Ground Truth
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Figure G.13: Ground Truth and visual results for left-out class “railways”.
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(a) Ground Truth (b) MSR (c) Margin

(d) Entropy (e) MC-Dropout (f) GMM (equalized)

(g) OC-SVM (equalized) (h) DF (equalized)
Ground Truth
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Figure G.14: Ground Truth and visual results for left-out class “swimming pools”.
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Figure G.15: ROC curves of confidence measures for novelty detection and for error detection
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H Hyperparameter Search Results

Hyperparameters were searched in the following ranges:

1. GMM

• Components: 1 - 10

2. OC-SVM

• Kernel: Radial Basis Function (RBF), poly

• Degree: 1 - 3 (only for poly)

• Nu: 1e-4, 1e-3, 1e-2, .1, .3, .5

3. Density Forests:

• Maximum depth: 2, 3, 4, 5

• Minimum IG: 0, .3, .7

Hyperparameters for both GMM and OC-SVM are described in the documentation of the scikit-
learn implementation [38].

The minimum Information Gain parameter is rather difficult to tune, since the IG usually becomes
smaller for higher-dimensional data. Tuning it correctly can however still have an important effect
by avoiding unnecessary splits (table 3).

Hyperparameter search results for the MNIST dataset and for the Zurich dataset using the hyper-
parameter search scheme discussed in section 5.6 and the hyperparameter ranges listed above are
represented in tables H.1 and H.2.

Method GMM OC-SVM Density Forest
Class Components Kernel Degree Nu Depth Min. IG

0 8 poly 15 .1 2 .7
1 8 poly 15 .01 2 .7
2 9 poly 5 .5 4 .3
3 9 poly 13 .01 4 .7
4 4 poly 3 .3 4 .7
5 5 poly 3 .5 5 0
6 9 poly 15 .01 5 0
7 6 poly 15 .1 2 .5
8 8 poly 15 .1 2 0
9 7 poly 9 .3 4 .3

Table H.1: Best hyperparameters for the MNIST Dataset
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Method GMM OC-SVM Density Forest
Class Components Kernel Degree Nu Depth Min. IG

Roads 3 poly 2 0.001 1 0
Buildings 5 poly 1 0.001 3 0
Trees 4 poly 1 0.010 1 .7
Grass 3 poly 1 0.001 3 0
Bare Soil 9 poly 1 0.500 1 0
Water 3 poly 1 0.001 1 0
Railways 9 poly 3 0.500 3 .7
Swimming Pools 3 RBF - 0.500 3 .7

Table H.2: Best hyperparameters for the Zurich Dataset

Regarding OC-SVM, in most cases, a polynomial kernel of degree 1 was found optimal. This makes
sense, since a neural network performs the task of making data linearly separable.

(a) Buildings (b) Roads (c) Trees (d) Grass

(e) Bare Soil (f) Water (g) Railways (h) Swimming Pools

Similarity

Low High

Figure H.1: RBF Kernel visualizations for One-Class Support Vector Machine in Zurich dataset.
Kernels were applied to a class-balanced subsample of training activations belonging to the seen
classes. Contrast stretching has been applied to the images of the polynomial kernels to highlight
more local variation. Best kernels found for each class using hyperparameter search are labelled in
bold.
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(a) Roads, r = 2 (b) Buildings, r = 1 (c) Trees, r = 1 (d) Grass, r = 1

(e) Bare Soil, r = 1 (f) Water, r = 1 (g) Railways, r = 3 (h) Pools, r = 1

Similarity

Low High

Figure H.2: Polynomial kernel visualizations for One-Class Support Vector Machine in Zurich
dataset with best degree r. Kernels were applied to a class-balanced subsample of training ac-
tivations belonging to the seen classes. Contrast stretching has been applied to the images of
the polynomial kernels to highlight more local variation. Best kernels found for each class using
hyperparameter search are labelled in bold.
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