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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Solar photovoltaic (PV) is one of the most promising technologies for the transition from fossil fuels to renewable energy 
production. Accurate spatial and temporal modelling of solar irradiance is a key factor in the evaluation of PV technology potential 
for harvesting solar energy. We present here a data-driven approach based on an ensemble of Extreme Learning Machines using 
geographic and topographic features in input to predict the global horizontal irradiance in Switzerland from coarse-resolution 
satellite measurements. This provides a precise mapping of hourly global solar irradiance for each (250 × 250) m2 pixel of a grid 
covering the entire country. The uncertainty on predicted values is quantified through a variance-based analysis, able to distinguish 
between model and data uncertainty. The former amounts to 1%, whereas the latter is close to 15% of the predicted values. The 
presented methodology is scalable and applicable to any large environmental dataset. Our modelling of solar irradiance at hourly 
temporal resolution and of its uncertainty will allow for an estimate of hourly PV potential in Switzerland to facilitate a more 
efficient integration of solar photovoltaics into the built environment. 
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1. Introduction 

Current climate and environmental policies in Switzerland and worldwide aim at a strong reduction of CO2 

emissions in the next decades by transitioning from fossil fuels to renewable energy. Harvesting solar energy using 
photovoltaic (PV) and solar thermal technologies is one promising approach to achieve the ambitious emission targets. 
To determine the potential for large-scale deployment of solar technologies and to assess the requirements for a 
successful integration into the built environment, an accurate modelling of the spatial and temporal patterns of solar 
irradiance is essential. In this study, we present a methodology for modelling environmental variables at high spatial 
and temporal resolution by using large satellite datasets. We apply it to predict hourly global horizontal irradiance 
(GHI) on a (250 × 250) m2 grid, in order to be able to estimate PV potential at the neighborhood scale in Switzerland.  

Several data-driven methods exist to model solar irradiance. These include averaging the nearest neighbors [1], 
geostatistical methods such as kriging [2] as well as machine learning approaches such as Support Vector Machines 
[3], Random Forests [4] and neural networks [5,6]. As averaging tends to oversimplify the modelling, and kriging is 
computationally intensive and requires modelling of anisotropic spatial correlations and stationarity of the process, 
the data-driven machine learning algorithms have recently gained much attention due to their performance and speed 
[7]. Most studies however focus either on a high spatial or temporal resolution and frequently do not consider the 
uncertainty that is intrinsic to the modelling [8]. We use an Extreme Learning Machine (ELM) ensemble algorithm 
that allows to predict solar irradiance at an hourly time granularity for a high spatial resolution (250 × 250) m2 grid 
over Switzerland and to estimate the uncertainty related to the model and the data. The main advantages of this 
algorithm are (i) its fast training time and (ii) its ability to learn and to model complex non-linear phenomena with the 
desired precision. Hence this algorithm is well suitable for the analysis and modelling of large datasets [6,9,10]. 

In this paper we present a methodology to accurately model hourly global horizontal irradiance at the scale of 
Switzerland using an ensemble of machine learning models. The methodology for training the ELM ensemble from 
topographic features and for estimating the modelling uncertainty is presented in Section 2. In Section 3, the input 
dataset and the high-resolution grid used for prediction are described. Finally, the resulting spatial and temporal 
prediction and model performance are discussed in Section 4 and the results are visualized in maps, along with the 
corresponding model and data uncertainties. 

2. Methodology 

2.1. Extreme Learning Machine Ensemble algorithm 

Extreme Learning Machines, as proposed by Huang et al. [11], are single-layer feed-forward neural networks which 
are trained using a single-step optimization. The training process of ELM is up to hundreds of times faster than the 
training of other machine learning algorithms [11]. For our model we aggregate M ELM to an ensemble, as shown in 
Fig. 1. This is known to improve the generalization performance by reducing the risk of overfitting [6,9,12], and 
allows to estimate the uncertainty as described in Section 2.2. At the hidden layer of each ELM, the training points xi 
of dimensionality d are multiplied by the randomly chosen input weights w and added to the random bias b. An 
activation function ƒ( ) is applied to the resulting random projections for modelling nonlinear behaviour of the data. 
We use a sigmoid activation function in this study, which is a common choice for regression problems [12]. The 
hidden layer is multiplied by the output weights b and summed to give the model output 𝑦𝑦#i (see Eq.1). During training, 
only b needs to be optimized. 

For ensemble training, we apply a bootstrap-aggregating (bagging) approach [13] where each ensemble member is 
trained on one bootstrapped resample of the training data. Each bootstrap replicate is obtained by resampling the N 
training samples N times uniformly and with replacement. On average, every replicate contains 63.2% of the original 
data, with some duplicated samples. At the output, the predictions 𝑦𝑦#i

m	of each ELM are averaged to give the final 
estimation 𝑦𝑦#i as shown in Eq. 2. The generation of M bootstrap replicates comes at a computational cost. For the 
implementation of each ELM, we therefore use the python toolbox hpelm with GPU acceleration [14]. This showed 
significant speed-up in performance compared to the standard CPU implementation. This implementation allows us 
to train and to test ELM ensembles with a large number of hidden neurons on our large environmental dataset. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2019.01.219&domain=pdf
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Extreme Learning Machines, as proposed by Huang et al. [11], are single-layer feed-forward neural networks which 
are trained using a single-step optimization. The training process of ELM is up to hundreds of times faster than the 
training of other machine learning algorithms [11]. For our model we aggregate M ELM to an ensemble, as shown in 
Fig. 1. This is known to improve the generalization performance by reducing the risk of overfitting [6,9,12], and 
allows to estimate the uncertainty as described in Section 2.2. At the hidden layer of each ELM, the training points xi 
of dimensionality d are multiplied by the randomly chosen input weights w and added to the random bias b. An 
activation function ƒ( ) is applied to the resulting random projections for modelling nonlinear behaviour of the data. 
We use a sigmoid activation function in this study, which is a common choice for regression problems [12]. The 
hidden layer is multiplied by the output weights b and summed to give the model output 𝑦𝑦#i (see Eq.1). During training, 
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For ensemble training, we apply a bootstrap-aggregating (bagging) approach [13] where each ensemble member is 
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m	of each ELM are averaged to give the final 
estimation 𝑦𝑦#i as shown in Eq. 2. The generation of M bootstrap replicates comes at a computational cost. For the 
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significant speed-up in performance compared to the standard CPU implementation. This implementation allows us 
to train and to test ELM ensembles with a large number of hidden neurons on our large environmental dataset. 



6380	 Alina Walch et al. / Energy Procedia 158 (2019) 6378–6383
 Author name / Energy Procedia 00 (2018) 000–000  3 

 

 

Fig. 1. Bootstrapped ELM ensemble showing 3 copies of an Extreme Learning Machine. Input weights wj and biases bj are selected randomly, 
output weights βj are optimized during training. The outputs of all ELMs are averaged to give the predicted values 𝑦𝑦#i. 
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2.2. Uncertainty estimation 

Applying bagging to the ELM ensemble increases the quality of the prediction and it also allows to compute the 
model uncertainty 𝜎𝜎#M, derived from the variance 𝜎𝜎#&'  of the M model outputs 𝑦𝑦#i

m (see Eq. 3) [9,15]. Afterwards, 
remaining residuals are derived by subtracting the model variance from the squared difference between the model 
outputs and the targets ti, as visible in Eq. 4. We compute these residuals for the training data, which are used to train 
a second ELM ensemble. The output is the data noise variance 𝜎𝜎#(', and the standard deviation 𝜎𝜎#D quantifies the data 
uncertainty. Adding model and data noise variance provides a qualitative estimate of the uncertainty on the predictions. 
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3. Dataset description 

To model solar irradiance in Switzerland, we combine meteorological data from satellite measurements with 
topographic features from a digital elevation model (DEM). The satellite data of hourly GHI is available through the 
Swiss Federal Office of Meteorology and Climatology (www.meteoswiss.admin.ch) in raster format. Each cell covers 
1.25° of longitude and latitude, or approximately (1.6 × 2.3) km2, giving a total of 11,243 locations. The dataset 
includes historical measurements of GHI for 12 years (2004-2015), which are averaged to provide a smoother input 
to the model. Figure 2(a) shows the spatial distribution of the yearly sum of the averaged GHI, while Fig. 2(b) shows 
their temporal distribution. Noticeably, both spatial and temporal features are essential to accurately model GHI. 
We merge the meteorological data with topographic features extracted from the DEM, namely altitude, x- and y- 
coordinates. The DEM is accessible through the Swiss Federal Office of Topography (www.swisstopo.admin.ch) and 
is aggregated to a raster of (250 × 250) m2 for the modelling of GHI, defining a grid of about 640,000 pixels covering 
the entire Switzerland. Other topographic features that may be derived from the DEM, such as slope or orientation, 
meteorological variables that are considered in related studies [3,4,8] are not used here, as adding these variables 
would require a prepended modelling step, introducing significant additional uncertainty. The resulting input dataset 
is split into 12 smaller subsets, one for each month, allowing a customized model training and thus better accounting 
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Fig. 2. (a) Yearly solar irradiation from satellite data, (b) hourly distribution of solar irradiance at selected location, averaged for 2004-2015. 

for seasonal variations in predicting the irradiance. The training data for each subset has 4 input features (x-coordinate, 
y-coordinate, altitude, hour) and a single output target (hourly GHI). During data pre-processing, all hours with 
constantly zero GHI measurements are removed (i.e. night hours). The remaining 10-17 day hours result in ~3-6 
million data samples per month, depending on the month. From the 11,243 locations, 80% (» 9,000) are used as 
training locations, while the rest are kept for the test set (TST). The measurements from the training locations are split 
into two random subsets, giving the training set (TRN) and validation set (VAL) with proportions of 80% and 20% 
respectively. We normalize each variable to zero mean and unit variance as requested by the algorithm structure [14]. 

4. Results and Discussion 

4.1. Model structure selection 

Model structure selection is concerned with finding appropriate hyper-parameters for the machine learning model 
in order to maximize the generalization performance of the model and to reduce overfitting from data. The two main 
hyper-parameters for our ELMs ensemble are the number of hidden nodes (L) and the size of the ensemble (M). While 
the number of nodes significantly impacts the generalization performance of the algorithm, an increased ensemble 
size improves the stability of the algorithm and hence M is mainly limited by computational time. 

The hyper-parameters are tuned by minimizing the mean-squared error (MSE) calculated over the validation 
dataset. A k-fold cross-validation procedure, as suggested in [10], is not applied here as it is beneficial for relatively 
small data sizes but does not bring significant improvements for large datasets as used here [15]. The tuning of ELM 
hyper-parameters based on the MSE minimization on VAL dataset is performed by scanning M ranging from 10 to 
100 and L from 50 to 10000. Preliminary studies showed that this is a reasonable range, given that higher values come 
at high computational cost without resulting in significant improvements. Depending on L, the wall clock time needed 
for training a single model can range from few seconds up to 15-20 minutes, as shown in Fig. 3(a), on a GPU 
accelerated machine using one K40 NVIDIA card. The optimal number of M and L is hence a trade-off between the 
computational time required by the model and the exhibited performance on the VAL sample. 
Results of the model structure selection for the month of June are reported in Fig. 3(a) and Fig. 3(b). The computational 
time is dominated by the evaluation of the chosen model on the dense spatial grid used for the GHI predictions (PRED). 
The MSE for VAL, representing the model performance, steeply falls before 500 nodes and then stabilizes on low 
values without significant improvement when further increasing L, suggesting a minimum model size of L = 500. 
Considering also the computational time, which constantly increases with L, we choose the model hyper-parameters 
as L = 2000 and M = 30, as a trade-off between performance and computational efficiency. The model performance 
on TST shows a-posteriori that this choice is appropriate. 

Table 1. Mean squared error (MSE) for data modelling (L = 2000, M = 30). 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Satellite data  0.097 0.067 0.073 0.057 0.057 0.045 0.064 0.049 0.124 0.105 0.106 0.057 

VAL  0.100 0.067 0.070 0.056 0.057 0.042 0.060 0.049 0.117 0.096 0.103 0.058 

TST  0.103 0.068 0.070 0.056 0.057 0.043 0.061 0.050 0.118 0.096 0.104 0.061 
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outputs and the targets ti, as visible in Eq. 4. We compute these residuals for the training data, which are used to train 
a second ELM ensemble. The output is the data noise variance 𝜎𝜎#(', and the standard deviation 𝜎𝜎#D quantifies the data 
uncertainty. Adding model and data noise variance provides a qualitative estimate of the uncertainty on the predictions. 
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3. Dataset description 

To model solar irradiance in Switzerland, we combine meteorological data from satellite measurements with 
topographic features from a digital elevation model (DEM). The satellite data of hourly GHI is available through the 
Swiss Federal Office of Meteorology and Climatology (www.meteoswiss.admin.ch) in raster format. Each cell covers 
1.25° of longitude and latitude, or approximately (1.6 × 2.3) km2, giving a total of 11,243 locations. The dataset 
includes historical measurements of GHI for 12 years (2004-2015), which are averaged to provide a smoother input 
to the model. Figure 2(a) shows the spatial distribution of the yearly sum of the averaged GHI, while Fig. 2(b) shows 
their temporal distribution. Noticeably, both spatial and temporal features are essential to accurately model GHI. 
We merge the meteorological data with topographic features extracted from the DEM, namely altitude, x- and y- 
coordinates. The DEM is accessible through the Swiss Federal Office of Topography (www.swisstopo.admin.ch) and 
is aggregated to a raster of (250 × 250) m2 for the modelling of GHI, defining a grid of about 640,000 pixels covering 
the entire Switzerland. Other topographic features that may be derived from the DEM, such as slope or orientation, 
meteorological variables that are considered in related studies [3,4,8] are not used here, as adding these variables 
would require a prepended modelling step, introducing significant additional uncertainty. The resulting input dataset 
is split into 12 smaller subsets, one for each month, allowing a customized model training and thus better accounting 

Input layer

Hidden layer

Output layer

Training data: X = {x0, x1, ..., xn-1}

Prediction: y = {y0, y1, ..., yn-1}

Bootstrap 2 : X = {x02, x12, ..., xn-12}

!12 !L2

"11
2

"dL
2

#

$$$ $ $

Bootstrap 1 : X1 = {x01, x11, ..., xn-11}

!11 !L1

"11
1

"dL
1

#

$$$ $ $

Bootstrap M : XM = {x0M, x1M, ..., xn-1M}

!1M !LM

"11
M

"dL
M

#

$$$ $ $

. .  . 

b2b1 bM

ŷi
m =

j=1

L

∑β j
m f (w j

mx i + bj
m ), x i ∈R

d ,wm ∈RL×d , i = 1,…,N ,m = 1,...,M
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Fig. 2. (a) Yearly solar irradiation from satellite data, (b) hourly distribution of solar irradiance at selected location, averaged for 2004-2015. 

for seasonal variations in predicting the irradiance. The training data for each subset has 4 input features (x-coordinate, 
y-coordinate, altitude, hour) and a single output target (hourly GHI). During data pre-processing, all hours with 
constantly zero GHI measurements are removed (i.e. night hours). The remaining 10-17 day hours result in ~3-6 
million data samples per month, depending on the month. From the 11,243 locations, 80% (» 9,000) are used as 
training locations, while the rest are kept for the test set (TST). The measurements from the training locations are split 
into two random subsets, giving the training set (TRN) and validation set (VAL) with proportions of 80% and 20% 
respectively. We normalize each variable to zero mean and unit variance as requested by the algorithm structure [14]. 

4. Results and Discussion 

4.1. Model structure selection 

Model structure selection is concerned with finding appropriate hyper-parameters for the machine learning model 
in order to maximize the generalization performance of the model and to reduce overfitting from data. The two main 
hyper-parameters for our ELMs ensemble are the number of hidden nodes (L) and the size of the ensemble (M). While 
the number of nodes significantly impacts the generalization performance of the algorithm, an increased ensemble 
size improves the stability of the algorithm and hence M is mainly limited by computational time. 

The hyper-parameters are tuned by minimizing the mean-squared error (MSE) calculated over the validation 
dataset. A k-fold cross-validation procedure, as suggested in [10], is not applied here as it is beneficial for relatively 
small data sizes but does not bring significant improvements for large datasets as used here [15]. The tuning of ELM 
hyper-parameters based on the MSE minimization on VAL dataset is performed by scanning M ranging from 10 to 
100 and L from 50 to 10000. Preliminary studies showed that this is a reasonable range, given that higher values come 
at high computational cost without resulting in significant improvements. Depending on L, the wall clock time needed 
for training a single model can range from few seconds up to 15-20 minutes, as shown in Fig. 3(a), on a GPU 
accelerated machine using one K40 NVIDIA card. The optimal number of M and L is hence a trade-off between the 
computational time required by the model and the exhibited performance on the VAL sample. 
Results of the model structure selection for the month of June are reported in Fig. 3(a) and Fig. 3(b). The computational 
time is dominated by the evaluation of the chosen model on the dense spatial grid used for the GHI predictions (PRED). 
The MSE for VAL, representing the model performance, steeply falls before 500 nodes and then stabilizes on low 
values without significant improvement when further increasing L, suggesting a minimum model size of L = 500. 
Considering also the computational time, which constantly increases with L, we choose the model hyper-parameters 
as L = 2000 and M = 30, as a trade-off between performance and computational efficiency. The model performance 
on TST shows a-posteriori that this choice is appropriate. 

Table 1. Mean squared error (MSE) for data modelling (L = 2000, M = 30). 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Satellite data  0.097 0.067 0.073 0.057 0.057 0.045 0.064 0.049 0.124 0.105 0.106 0.057 

VAL  0.100 0.067 0.070 0.056 0.057 0.042 0.060 0.049 0.117 0.096 0.103 0.058 

TST  0.103 0.068 0.070 0.056 0.057 0.043 0.061 0.050 0.118 0.096 0.104 0.061 
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Fig. 3. (a) Wall clock time per model, (b) data MSE as a function of number of nodes, (c) accuracy of ELM model per month. Accuracy is 
measured from the test data (TST) and is shown together with the linear regression curve fitted on targets and predicted values. 

In Table 1, we report the model performance in the form of MSE for each month and we compare it with the mean 
squared difference between the raw satellite data points and the corresponding average GHI per hour of each month. 
The test errors are very close to the satellite ones, which indicates that the ELM ensemble is appropriate for modelling 
the spatial and temporal patterns of monthly GHI. The high accuracy is also shown by the linear relationship between 
predicted values and targets, shown in Fig. 3(c). The goodness-of-fit is confirmed by the R2 value which is close to 
unity. The observed spread represents the intrinsic data uncertainty which we measure using the residuals. For 
modelling these residuals, an analysis equivalent to the one presented above is conducted, giving optimal model hyper-
parameters of L = 500 and M = 50. 

4.2. Prediction and uncertainties 

After defining the model parameters and training the model on the satellite data, we predict the monthly-mean-
hourly GHI on a dense grid over Switzerland and estimate the model uncertainty from the ELM ensemble variance 
and the data uncertainty from the second ELM ensemble trained on the remaining residuals. Table 2 shows the monthly 
mean predictions and satellite data, as well as model and data uncertainty. All values were summed over the respective 
time span (month or year) and averaged across all locations. We observe that the predicted monthly mean values are 
slightly above the satellite data. However, the total difference amounts to 0.2% of yearly predicted GHI, which is 
negligible compared to the yearly model uncertainty of 0.94% of GHI. Overall, data uncertainty dominates with a 
total of 14.45% of GHI. Figure 4 shows the high-resolution spatial prediction and the spatial distribution of the 
uncertainties, summed to yearly values. Note that the scale for the prediction is equivalent to Fig. 2(a). The spatial 
patterns follow the ones observed in the satellite data, but with much higher precision. In the low-altitude regions of 
Switzerland, spanning from the west to the north-east of the country, the total potential is low, and so is the model 
uncertainty. In the high-altitude regions of the Swiss alps with high predicted irradiance, as well as near the borders 
we can observe a higher model uncertainty, with some peaks at the summits of high mountains. These peaks may be 
due to spatial extrapolation and a lack of data at these altitudes, as the satellite data is the mean over a pixel. The data 
uncertainty shows some correlation with the altitude profile of Switzerland and is largest in the south-western part of 
the country. This can be an indication that the weather in this region is least predictable. 

Table 2. Monthly mean solar irradiation (in kWh/m2) and monthly mean estimation of uncertainties (in % of prediction values). 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 

Satellite data (kWh/m2) 44.8 66.0 113.8 144.8 167.6 180.1 182.3 150.5 115.0 76.90 45.40 36.50 1323.7 

Prediction (kWh/m2) 44.9 66.2 114.2 145.0 167.8 180.3 182.4 150.6 115.2 77.10 45.60 36.60 1325.9 

Relative 𝜎𝜎#M (%) 1.20 0.96 0.78 0.84 0.86 0.91 1.03 0.91 1.05 1.00 0.95 1.03 0.94 

Relative 𝜎𝜎#D (%) 16.19 14.70 15.41 13.50 13.82 11.22 13.47 13.27 18.85 18.13 18.89 14.05 14.45 
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Fig. 4. Maps of the yearly sum of (a) predicted irradiation, (b) model uncertainty, and (c) data uncertainty. Model uncertainty sums to ~1% of the 
predicted irradiation, while data uncertainty is close to 15% of the yearly irradiation. 

5. Conclusions 

We develop a model to forecast the global solar horizontal irradiance at hourly time granularity and high spatial 
resolution (250 × 250) m2 over Switzerland, using an ensemble of Extreme Learning Machines. Additionally, we 
propose a method, based on variance estimation, to compute the uncertainty associated to the predicted values, able 
to distinguish between different sources of uncertainty. We provide model uncertainty for each location and 
timestamp, being on average 0.9% of the predicted values. Likewise, we quantify the statistical noise from data to be 
on average 14.4% of the predictions. Combining together model and data uncertainties gives a preliminary assessment 
of the uncertainty associated to the output of our predictive model. Our methodology can be applied to other 
environmental variables (e.g. diffuse and direct irradiance) to assess the potential for an efficient integration of solar 
PVs into the built environment. Future work also includes the comparison of this method with other predictive models 
(e.g. Random Forest) as well as further research into handling, comparing and visualizing uncertainty. 
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Fig. 3. (a) Wall clock time per model, (b) data MSE as a function of number of nodes, (c) accuracy of ELM model per month. Accuracy is 
measured from the test data (TST) and is shown together with the linear regression curve fitted on targets and predicted values. 

In Table 1, we report the model performance in the form of MSE for each month and we compare it with the mean 
squared difference between the raw satellite data points and the corresponding average GHI per hour of each month. 
The test errors are very close to the satellite ones, which indicates that the ELM ensemble is appropriate for modelling 
the spatial and temporal patterns of monthly GHI. The high accuracy is also shown by the linear relationship between 
predicted values and targets, shown in Fig. 3(c). The goodness-of-fit is confirmed by the R2 value which is close to 
unity. The observed spread represents the intrinsic data uncertainty which we measure using the residuals. For 
modelling these residuals, an analysis equivalent to the one presented above is conducted, giving optimal model hyper-
parameters of L = 500 and M = 50. 

4.2. Prediction and uncertainties 

After defining the model parameters and training the model on the satellite data, we predict the monthly-mean-
hourly GHI on a dense grid over Switzerland and estimate the model uncertainty from the ELM ensemble variance 
and the data uncertainty from the second ELM ensemble trained on the remaining residuals. Table 2 shows the monthly 
mean predictions and satellite data, as well as model and data uncertainty. All values were summed over the respective 
time span (month or year) and averaged across all locations. We observe that the predicted monthly mean values are 
slightly above the satellite data. However, the total difference amounts to 0.2% of yearly predicted GHI, which is 
negligible compared to the yearly model uncertainty of 0.94% of GHI. Overall, data uncertainty dominates with a 
total of 14.45% of GHI. Figure 4 shows the high-resolution spatial prediction and the spatial distribution of the 
uncertainties, summed to yearly values. Note that the scale for the prediction is equivalent to Fig. 2(a). The spatial 
patterns follow the ones observed in the satellite data, but with much higher precision. In the low-altitude regions of 
Switzerland, spanning from the west to the north-east of the country, the total potential is low, and so is the model 
uncertainty. In the high-altitude regions of the Swiss alps with high predicted irradiance, as well as near the borders 
we can observe a higher model uncertainty, with some peaks at the summits of high mountains. These peaks may be 
due to spatial extrapolation and a lack of data at these altitudes, as the satellite data is the mean over a pixel. The data 
uncertainty shows some correlation with the altitude profile of Switzerland and is largest in the south-western part of 
the country. This can be an indication that the weather in this region is least predictable. 

Table 2. Monthly mean solar irradiation (in kWh/m2) and monthly mean estimation of uncertainties (in % of prediction values). 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 

Satellite data (kWh/m2) 44.8 66.0 113.8 144.8 167.6 180.1 182.3 150.5 115.0 76.90 45.40 36.50 1323.7 
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Fig. 4. Maps of the yearly sum of (a) predicted irradiation, (b) model uncertainty, and (c) data uncertainty. Model uncertainty sums to ~1% of the 
predicted irradiation, while data uncertainty is close to 15% of the yearly irradiation. 

5. Conclusions 

We develop a model to forecast the global solar horizontal irradiance at hourly time granularity and high spatial 
resolution (250 × 250) m2 over Switzerland, using an ensemble of Extreme Learning Machines. Additionally, we 
propose a method, based on variance estimation, to compute the uncertainty associated to the predicted values, able 
to distinguish between different sources of uncertainty. We provide model uncertainty for each location and 
timestamp, being on average 0.9% of the predicted values. Likewise, we quantify the statistical noise from data to be 
on average 14.4% of the predictions. Combining together model and data uncertainties gives a preliminary assessment 
of the uncertainty associated to the output of our predictive model. Our methodology can be applied to other 
environmental variables (e.g. diffuse and direct irradiance) to assess the potential for an efficient integration of solar 
PVs into the built environment. Future work also includes the comparison of this method with other predictive models 
(e.g. Random Forest) as well as further research into handling, comparing and visualizing uncertainty. 
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