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Abstract

We propose a simulation-based decision strategy for the proactive maintenance of complex structures with
a particular application to structural health monitoring (SHM). The strategy is based on a data-driven ap-
proach which exploits an offline-online decomposition. A synthetic dataset is constructed offline by solving
a parametric time-dependent partial differential equation for multiple input parameters, sampled from their
probability distributions of natural variation. The collected time-signals, extracted at sensor locations, are
used to train classifiers at such sensor locations, thus constructing multiple databases of healthy configu-
rations. These datasets are then used to train one class Support Vector Machines (OC-SVMs) to detect
anomalies. During the online stage, a new measurement, possibly obtained from a damaged configuration,
is evaluated using the classifiers. Information on damage is provided in a hierarchical manner: first, using
a binary feedback, the entire structure response is either classified as inlier (healthy) or outlier (damaged).
Then, for the outliers, we exploit the outputs of multiple classifiers to retrieve information both on the
severity and the spatial location of the damages. Because of the large number of signals needed to construct
the datasets offline, a model order reduction strategy is implemented to reduce the computational burden.
We apply this strategy to both 2D and 3D problems to mimic the vibrational behavior of complex structures
under the effect of an active source and show the effectiveness of the approach for detecting and localizing
cracks.

Keywords: Structural Health Monitoring, Digital Twin, Crack Detection, Reduced Order Modeling,
Anomaly Detection, One-Class Classification

1. Overview1

Structural Health Monitoring (SHM) refers to automated monitoring procedures that aim at assessing the2

state of damage of aerospace, civil or mechanical structures [16]. An early detection of faults, e.g., cracks or3

corrosion, has the potential to greatly reduce the maintenance cost over the life time of a structure and may4

help prevent catastrophic events. The combined advent of low-cost sensor technologies and digital twins, i.e.,5

accurate virtual representations of complex heavy industry assets, have helped in the transition from classical6

time-based maintenance with scheduled periodic inspections to condition-based maintenance for large-scale7

structural systems. The combination of parametrized mathematical models with experimental data is crucial8

to guarantee reliable monitoring of the lifecycle phases of a structure. We focus here on applications where9

the physical system can be modeled by parametric partial differential equations (pPDEs), e.g., offshore wind10

turbines and concrete oil-rigs, or smaller components such as wind turbine blades or composite pipes.11

We present a general data-driven methodology that, by combining physics-based models with experimental12

observations, allows us to make predictions on the state of damage of a structure of interest [16]. Mathe-13

matical numerical models are exploited to approximate the propagation of waves in the structure under the14

effect of an active source. However, a continuous source, used to mimic the effect of tides or wind, could also15

be considered. The goal is to compare the measurements of a network of sensors, placed on the structure,16
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with equivalent quantities of interests obtained from numerical simulations. By introducing suitable approx-17

imations, we recreate the geometry of the structure with its material properties and boundary conditions18

to emulate the time-signals recovered from sensors, e.g., local displacements, accelerations or strains in a19

specified time frame. Then, under the assumption that the received signals from a healthy or damaged20

structure will encode substantial differences, we aim to identify structural flaws. We rely on reduced order21

modeling techniques to accelerate the process of constructing the database and machine learning techniques22

to build a classifier.23

This process fully exploits an offline-online decomposition of tasks. The offline phase consists in building24

a synthetic database of time-signals which represent the behavior of the structure of interest under normal25

operational conditions and healthy variations. These time-signals are an approximation of the real time-26

signals collected from the sensors placed on heathy structure. During the online phase, real experimental27

time-signals, either collected from sensors placed on a damaged or a healthy structure, are compared with28

those simulated offline using the classifier. This approach differs from a model-based methodology, where29

the goal is to estimate the parameters that minimize the difference between the model response and the30

new sensor measurements. Such inverse-problem approach is often ill-posed and requires many online PDE31

solves, which is therefore not suitable for real-time damage assessment [16].32

1.1. A short review of existing methods for damage identification33

Data-driven SHM is a very broad topic and has been studied from many different points of view in the civil34

engineering and aerospace communities. Non-destructive evaluation and testing (NDE/NDT) technologies35

are often classified in two categories: wave-based or vibration-based. We highlight the works related to diag-36

nostics Lamb waves and wavelet transforms, which are often integrated with piezoelectric sensors/actuators37

(see e.g., [25, 32, 21, 50]). This line of work focuses primarily on diagnostic signal generation and signal38

processing and it aims at measuring the change in the received signals after sending diagnostic stress or39

ultrasonic waves along the structures. Alternatively, works considering the changes in natural frequencies40

and mode shape as a consequence of flaws in structures under ambient excitations, as for example [12, 30, 43],41

are worth mentioning.42

Despite the numerous works related to structural damage identification, only few combine machine learn-43

ing techniques with numerical simulations. In [63], the authors propose to use a neural network classifier to44

measure the size of cracks by using synthetic data generated with 2D finite element models of cracked rivet45

holes under the propagation of longitudinal wave modes. The performance is tested on experimental data of46

specimens containing similarly sized cracks. Similarly, in [34] simulations are used to generate waveforms,47

which are then used to train a neural network to either classify crack types or identify their locations. Both48

the training and test sets are obtained by extracting a few relevant features from the synthetic response49

to better distinguish salient characteristics of different flaw classes. Aerospace applications are presented50

in [31], where real time sensor information are compared to simulation data from precomputed damaged51

scenarios to update the estimates of vehicle capabilities using a Bayesian classification process. In the recent52

work [54], the authors propose a simulation-based procedure for classification by comparing the performance53

of four machine learning techniques. The dataset is generated by exploiting parametric model order reduc-54

tion techniques to make the computational effort of constructing the synthetic database affordable, while55

an experimental apparatus is used for testing. An a priori error analysis is provided to link the nominal56

performance on synthetic data to experimental performance.57

While novelty detection is popular in the structural damage identification community (see e.g., [36, 10, 3]),58

it has, to the authors knowledge, never been studied when combined with synthetic datasets.59

1.2. Our contribution and outline60

The main contributions of this paper are:61

• By making the realistic assumption that real sensors measure time signals of a predefined quantity,62

e.g., displacement or accelerations, we solve the PDEs in the whole domain and create a dataset of time63

signals, extracted at the sensors locations. Instead of considering a time discretization, we solve the64

PDE in the frequency domain and reconstruct the time-signals by using a numerical inverse Laplace65

transform. The latter allows us to recover information of the transient phase, which is a key feature66

for the classification phase.67
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• Since machine learning algorithms are well-known to behave better when using a large dataset [5], col-68

lecting a synthetic database requires a model order reduction approach to overcome the computational69

burden involved in the repeated solution of pPDEs. As employed in other works of simulation-based70

SHM [54, 31], we use the Reduced Basis method, a projection-based method whose key idea is to71

reconstruct the solution for a new parameter as a linear combination of suitable basis functions gener-72

ated from the high-fidelity problem. In particular, for stability reasons, we rely on a proper symplectic73

decomposition with a symplectic Galerkin projection.74

• We propose an anomaly detection procedure where the database is constructed from synthetic sensor75

data obtained from undamaged configurations only. Features are then extracted from this baseline76

system. Any subsequent data, which may originate from either a healthy or a damaged configuration,77

can be tested to verify if it conforms with the generated dataset. This allows a binary classification:78

it either belongs to the cluster of previously considered healthy signals, i.e., it is an inlier, or it is an79

outlier. This corresponds to a semi-supervised learning approach, also called one-class classification80

method, where labelled data, belonging to the “normal” class, are used in the training phase and81

unlabelled data from both classes are used in the test phase to identify abnormal data which deviate82

from the normal model [46, 19]. With one-class algorithms it is possible to locate the damage by83

training a different classifier for each sensor, based on the measurements collected at this sensor (see84

e.g., [36]).85

This procedure is sometimes called novelty or outlier detection and is an alternative to supervised86

or unsupervised anomaly detection techniques. In the former case, the training set is composed of87

fully labelled data, obtained from both healthy and damaged structures by predefining a number of88

exhaustive configuration classes for the described system. The classifier then maps each new sensor89

data to one of the anticipated classes. The advantage of our approach over supervised learning methods90

is substantial as there is no need to model all possible types of damage in a structure. This represents91

a significant gain in terms of development cost and computational time, e.g., we can consider physical92

parametrizations only, without having to include complex geometrical parametrizations in the Reduced93

Basis model. Furthermore, it is unrealistic to anticipate all types of damage and the number of different94

classification labels may grow rapidly. Unsupervised learning, instead, does not require any label and95

it does no distinction between training and test phases. The anomaly detection algorithm is based96

solely on intrinsic properties of the dataset, typically using a distance- or density-based approach [19].97

This alternative is not an option for our simulation-based approach, where labels of generated data are98

always available.99

• In addition to 2D studies, we also present 3D digital twins examples, where experimental data from100

damaged and undamaged structures are replaced with noisy synthetic data. However, the presented101

methodology is general and permits the incorporation of experimental data, after providing a suitable102

model calibration.103

The reminder of the paper is organized as follows. Section 2 presents the general data-driven approach and104

highlights the decomposition of tasks into two phases: expensive offline simulations to fully characterize the105

response of healthy structures, followed by the training of a classifier to be used for rapid online testing106

of new experimental sensor responses. These concepts are further developed in Sections 3 and 4. In the107

former, we provide the mathematical details to construct the database by emphasizing the important role108

of MOR and, in the latter, we illustrate the classification strategy and the choice of features which act as109

damage indicators. Numerical examples in 2 and 3 dimensions with quantitative and qualitative analysis are110

presented in Section 5. Conclusions, remarks, and future developments are offered in Section 6.111

2. A data-driven offline-online decomposition112

In this section, we describe the general setup for our data-driven approach. As mentioned previously, a113

data-based strategy comprises two phases: an offline expensive phase consisting in the collection of a dataset114

used to train a classifier followed by a fast online phase where the classifier is employed to monitor the struc-115

ture based on new measurements. For SHM procedures, the assembly of the database can be done either116

by using experimental data from the structure or similar structures, or by performing synthetic experiments117
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based on a parametrized model, approximating the structural dynamics under the effect of a source [16]. In118

this work, we rely solely on synthetic measurements to demonstrate the overall workflow. Furthermore, accu-119

rate datasets based on physical experiments are rarely available and often lack a comprehensive description120

of the natural variations of the structure of interest [16]. Here, we generate synthetic sensors measurements121

from healthy structures only, without the ambition of representing all possible system configurations. Indeed,122

our goal is to capture the baseline (uncertain) operational and environmental conditions, to create a robust123

database of signals reflecting healthy structure behaviors. The parameters that express such variations are124

physical and are typically related to the material properties, the boundary or initial conditions or the source125

term. Geometric parameterizations are not included here as we only consider one healthy structure at a126

time with the assumption that its geometrical properties are not uncertain. However, this is not an essential127

assumption.128

In practice, let Ω ⊂ Rd, with d = {2, 3}, be an open bounded domain associated with the structure129

of interest, [0, T ] the time domain related to the temporal measurements and P ⊂ Rp the parameter130

space with p being the number of parameters used to characterize the model. Given a generic parametric131

model with suitable boundary and initial conditions, for a given µ ∈ P, we seek the vector-valued solution132

u := u(x, t;µ) : Ω× [0, T ]× P → Rd such that133

∂2u

∂t2
+ Ldamp

[
∂u

∂t
;µ

]
+ L [u;µ] = h(t;µ)s(x;µ) (1)

and evaluate a relevant output of interest134

gi(t;µ) := `(u(xi, t;µ);µ), for i = 1, . . . , Ns, and t ∈ [0, T ]. (2)

In (1), Ldamp[·,µ] and L[·,µ] are linear operators, representing damping and elasticity, respectively, while135

h : R × P → Rd and s : Ω × P → Rd represent the source dependencies with respect to time and space,136

respectively. In particular, h(t;µ) is often called a control function and, in this study, it mimics the effect of137

an active source on the structure, possibly excited by piezoelectric actuators or shakers (see e.g., [54, 65]).138

Moreover, the parameter-dependent output functional ` : Rd × P → Rq maps the time-signals, evaluated139

at locations xi ∈ Ω, into q-dimensional vectors that emulate the real sensor measurements, e.g., local140

displacements, accelerations, or strains. The spatial locations {xi}Ns−1
i=0 represent an approximation to141

the position of each of the Ns sensors attached to the structure. In this framework, the time-dependent142

experimental sensor measurements gexp
i (t) : R→ Rq are given by143

gexp
i (t) = gi(t;µ) + εi, for i = 1, . . . , Ns, and t ∈ [0, T ],

where εi ∼ N (0, γ2
i ) and γi ∈ R is a priori unknown.144

The first goal of the offline phase is to generate Ns (one per sensor) synthetic time-signals by evaluating145

(2) for many values of the input parameters µ ∈ P. With the aim of representing the natural variation of146

healthy configurations under normal behavior, we generate a set of Ntr parameters147

ΞNtr := {µm}
Ntr
m=1, (3)

obtained by either uniformly sampling from the parameter space P or by leveraging a Bayesian approach.148

Here, for model calibration, we assume the probability distribution of such model parameters to be known149

a priori, e.g., provided by engineering experience. For the sake of simplicity, but without loss of generality,150

only uniform distributions are considered. The numerical solutions, obtained by solving (1) Ntr times, once151

per each parameter in ΞNtr , are evaluated at the sensor locations to obtain the outputs of interest (2).152

Assuming the interval [0, T ] is partitioned into Nt equal subintervals, the discrete time-signals are obtained153

by evaluating the output of interest (2) at time tn := n T
Nt

for n = 0, . . . , Nt, i.e.,154

gmi := [gi(t0;µm), gi(t1;µm), . . . , gi(tNt ;µm)] for i = 1, . . . , Ns, and m = 1, . . . , Ntr. (4)

We observe that gmi ∈ Rq×(Nt+1) and, in the following, we use the interchangeable notation gmi = gi(µm).155

The synthetic datasets correspond to the collection of these time signals, i.e.,156

DNtr
i := {gmi }

Ntr
m=1, for i = 1, . . . , Ns. (5)
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We remark that DNtr
i ∈ RNtr×q×(Nt+1).157

The second part of the offline phase consists in the training of Ns one-class classifiers based on the158

database of synthetic healthy signals (5). More specifically, from each sample we first extract Q ∈ R159

engineering-based features, assumed to be damage-sensitive indicators, by using an ad-hoc feature function160

F : Rq×(Nt+1) → RQ. In practice, let FNtr
i ∈ RNtr×Q be the feature-based database of signals at location161

xi, obtained by applying F to each sample of DNtr
i , i.e.,162

FNtr
i := {F (gi(µm))}Ntr

m=1 , for i = 1, . . . , Ns. (6)

Then, each classifier fNtr
i : RQ → R is constructed as163

[fNtr
i ] := OC-ML

(
FNtr
i

)
, for i = 1, . . . , Ns, (7)

where OC-ML is a one-class Machine Learning (OC-ML) technique.164

Finally, during the online phase, these classifiers are used to detect possible anomalies in new sensor165

data. The classifier will be able to distinguish data generated from an undamaged structure from data166

generated from a damaged one. Indeed, a new datum g?i := [gexpi (t0), . . . , gexpi (tNt
)] is classified as outlier if167

fNtr
i (F(g?i )) < 0 and as an inlier otherwise. More precisely, by looking at which sensor signals g?i are classified168

as outliers, we can retrieve information about the position of the damage and its severity. For major damages,169

many sensors will be classified as outliers, while for minor, localized damages, only the signals obtained by170

evaluating the solution at sensors close to the damage will be classified as outliers. Moreover, the absolute171

value of fNtr
i (F (g?i )) gives information about the uncertainty of belonging to one of the two classes: higher172

values correspond to a higher confidence on the output. In practice, we replace real experimental sensor173

data with noisy simulated data using new, unseen sampled parameters, i.e., ΞNtest := {µ?m}
Ntest
m=1 ∈ P. We174

expect fNtr
i (gi(µ

?
m) + εi) to be positive for all m = 1, . . . , Ntest and all i = 1, . . . , Ns if the variance γ2 of175

the additional noise is sufficiently small. To simulate the response of damaged structures we replace the176

domain, used to generate the healthy database, with different faulty domains, i.e., we modify the domain177

Ω to include cracks of different sizes and located at different positions. We expect fNtr
i (gi(µ

?) + εi) to be178

negative if gi(µ
?) is generated by solving (1) for µ? ∈ P over a damaged domain with a crack close to the i-th179

sensor. Signals obtained on healthy domains, but generated using an input parameter outside the baseline180

operational range P, are also expected to be classified as outliers. However, in this work, only geometrical181

flaws are considered.182

To summarize, the flow chart in Figure 1 gives an overview of the data-driven one-class classification183

problem with synthetic data and highlights the separation of the offline and online phases.184

3. A database of time series using a parametrized mathematical model185

3.1. Problem setup: the acoustic-elastic wave equation186

Throughout this work, we consider (1) to be the acoustic-elastic wave PDE and Ω a d-dimensional domain187

approximating a healthy structure of interest. The acoustic-elastic wave equation in strong form, equipped188

with suitable boundary conditions on the piecewise smooth boundary Γ = ∂Ω and initial conditions for both189

the displacement field and its derivative, is expressed as:190 

ρ
∂2u

∂t2
+ ρη

∂u

∂t
−∇ · σ(u;µ) = h(t;µ)s(x;µ) in Ω× (0, T ]

u = gD(x, t;µ) on ΓD × (0, T ]

σ(u;µ) · n̂ = gN (x, t;µ) on ΓN × (0, T ]

u|t=0 = u0(x;µ) in Ω

∂u

∂t

∣∣
t=0

= v0(x;µ) in Ω

, (8)

where u represents the displacement field, ρ is the density coefficient, η is a non-dimensional damping191

coefficient, h := h(t;µ) and s := s(x;µ) are the source functions, describing the time and space dependency,192
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Database collection

1. Sample {µm}Ntr
m=1 uniformly in

P and collect a set of parame-
ters ΞNtr

2. For each element of ΞNtr , solve
(1) and evaluate the output of
interest (2) to get the discrete
time signals gm

i (4)

3. Construct Ns databases DNtr
i for

i = 1, . . . , Ns

Parametric model
(1) + output
of interest (2)

Identify natural varia-
tions for healthy con-
figurations, i.e., µ ∈ P

Training classifiers

1. Identify damage-indicators
and apply the feature function
F to each sample as in (6)

2. Train Ns OC classifiers and,
using (7), obtain the anomaly
score function fNtr

i

In absence of experimental
data, for testing, solve (1) for
a new µ? ∈ P, using either Ω
or Ωdamaged, evaluate (2) and

add noise, i.e., g?i = gi(µ
?) + ε

Testing classifiers

For all i = 1, . . . , Ns, apply F to
g?i and evaluate fNtr

i (F(g?i ))
to locate damages, i.e.,{

fNtr
i (F(g?i )) < 0, → outlier

fNtr
i (F(g?i ) ≥ 0, → inlier

New experimen-
tal sensor datum g?i

offline

online

Figure 1: Workflow chart to synthesize the offline and online phases of simulation-based SHM procedure.

respectively, and σ := σ(u;µ) is the stress tensor193

σ := 2µε(u) + λtr (ε(u)) I, (9)

where I is the d dimensional identity matrix, tr(·) is the trace operator applied to the strain tensor194

ε(u) =
∇u+ (∇u)T

2
,

and the Lamé constants µ and λ are immediately derived by E, the Young’s modulus, and ν, the non-195

dimensional Poisson’s ratio, as196

µ =
E

2(1 + ν)
and λ =

Eν

(1 + ν)(1− 2ν)
. (10)

In (8), n̂ is the outward normal vector to Γ. ΓD and ΓN are such that ΓD ∪ ΓN = Γ and ΓD ∩ ΓN = ∅ and197

they represent the portions of the surface of Ω where displacement boundary conditions gD := gD(x, t;µ)198

and stress boundary conditions through the traction vector gN := gN (x, t;µ) are applied, respectively. We199

note that, alternatively, one could prescribe free slip boundary conditions:200 {
u · n̂ = 0

(σ · n̂) · τ = gN
on ∂Ω, (11)

where τ is the tangential vector to Γ. For the sake of simplicity and consistent with the numerical tests,201

we consider zero Dirichlet and Neumann data; the non-homogeneous case can be treated similarly. Finally,202

u0 := u0(x;µ) and v0 := v0(x;µ) describe the initial displacement and velocity in space, respectively.203

In the remaining section we consider µ to be a generic parameter which can be related to the material204

properties, the boundary conditions, the initial conditions or the source functions h and s. In a real setup, the205

choice of these physical parameters together with their probability distribution is inferred by experimental206

results and prior engineering knowledge.207
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3.2. The discretized problem in time domain208

To provide the discrete form of (8) with homogenous boundary conditions, i.e., gD = 0 and gN = 0, we intro-209

duce its weak formulation. For a fixed parameter µ ∈ P and a fixed t ∈ (0, T ], find210

u(t;µ) ∈ V := {w ∈ [H1(Ω;Rd)]d : w|ΓD
= 0} 2 such that211

ρm

(
∂2u(t;µ)

∂t2
,ψ

)
+ ρηm

(
∂u(t;µ)

∂t
,ψ;µ

)
+ a(u(t;µ),ψ;µ) = h(t;µ)f(ψ;µ), (12)

for all ψ ∈ V with u(0) = u0 and ∂u(t)
∂t

∣∣
t=0

= v0. In (12), the bilinear forms m(·, ·) and a(·, ·;µ) and the
functional f(·;µ) have the following expressions

m(u,ψ) :=

∫
Ω

u(t;µ) ·ψ dΩ, (13)

a(u,ψ;µ) :=

∫
Ω

σ(u(t;µ);µ) : ∇ψ dΩ

=

∫
Ω

(2µε(u(t;µ)) : ε(ψ) + λ(∇ · u(t;µ))(∇ ·ψ)) dΩ,

f(ψ;µ) :=

∫
Ω

s(µ) ·ψ dΩ

where, in the definition of a(·, ·;µ), we have used the definition of the stress tensor (9) and the fact that212

ε(u) : ∇ψ = ε(u) : ε(ψ)

and213

tr(ε(u))I : ∇ψ = (∇ · u)I : ∇ψ = (∇ · u)(∇ ·ψ).

The weak formulation is discretized in space by introducing an approximation for the displacement in a214

finite-dimensional subspace to obtain a linear system of ordinary differential equations. Let us introduce a215

triangulation Th of the domain Ω, i.e., K non-overlapping triangles (d = 2) or tetrahedra (d = 3) and216

the FE space Xr
h = {wh ∈ C0(Ω̄) : wh|K ∈ Pr ∀K ∈ Th}, where h represents the mesh size3, i.e.,217

hK := diam(K) ≤ h,∀K ∈ Th. Consider Vh := V ∩ Xr
h as a conforming finite-dimensional subspace of218

V and {ϕj ∈ Rd}Nh
j=1 as a basis for Vh, we define219

uh(x, t;µ) :=

Nh∑
j=1

uj(t;µ)ϕj(x), (14)

where Nh := dim(Vh) is the number of degrees of freedom (DOFs) which depends on the number of physical220

variables, the underlying mesh and the polynomial order r of the FE discretization. Moreover, if we denote221

by uh(t;µ) ∈ RNh the vector having as components the unknown coefficients uj(t;µ) then, at the algebraic222

level, we obtain the discrete system223

ρM

(
∂2uh
∂t2

(t;µ) + η
∂uh
∂t

(t;µ)

)
+ A(µ)uh(t;µ) = h(t;µ)f(µ), (15)

where M ∈ RNh×Nh is the mass matrix with elements Mij = m(ϕj ,ϕi), A := A(µ) ∈ RNh×Nh is the224

stiffness matrix with elements Aij = a(ϕj ,ϕi;µ) and f := f(µ) ∈ RNh is the vector with components225

fi = f(ϕi;µ).226

2Note that throughout this work we slightly abuse the notation by considering u(t) ∈ V for all t ∈ (0, T ], while it would be
more precise to consider u ∈ C2

(
[0, T ]; [L2(Ω;Rd)]d

)
∩C0 ([0, T ], V ). Moreover, we note that when one seeks to solve (8) with

free slip boundary conditions (11), V has to be replaced with Vfs = {w ∈ [H1(Ω;Rd)]d : w · n̂ = 0}.
3The mesh size h should not be confused with the time-dependent source function h := h(t;µ).
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To obtain a fully discretized system, we use the classic Newmark method, defined in [42], for the time227

discretization of the second order initial value problem (15). Let us first consider a partition of the interval228

[0, T ] in Nt subintervals of equal size ∆t = T
Nt

, such that tn = n∆t, ∀n = 0, . . . , Nt. Moreover, we denote229

by unh(µ) := uh(tn;µ) the displacement, vnh(µ) := ∂uh(t;µ)
∂t

∣∣
t=tn

the velocity, and anh(µ) := ∂2uh(t;µ)
∂t2

∣∣
t=tn

the230

acceleration vectors at time tn, respectively. The Newmark method is defined as231

un+1
h := unh + ∆tvnh + (∆t)2

(
βan+1

h +
1− 2β

2
anh

)
, (16a)

vn+1
h := vnh + ∆t

(
ζan+1

h + (1− ζ)anh
)
, (16b)

where β and ζ are constant parameters. This method is implicit unless β = ζ = 0 and it is unconditionally232

stable if 2β ≥ ζ ≥ 1
2 . In this work we fix ζ = 2β = 1

2 , which corresponds to a popular second order method,233

even if spurious oscillatory solutions may arise for long time intervals (see e.g., [48, 64]).234

If in (15) we replace uh(t;µ) and ∂uh(t;µ)
∂t with the expressions in (16a) and (16b), respectively, and solve235

for an+1
h (µ) ∈ RNh , we obtain the fully discrete linear system:236

K(µ)an+1
h (µ) = qn+1(µ), (17)

where K := K(µ) ∈ RNh×Nh and qn+1 := qn+1(µ) ∈ RNh have the following expression

K := ρ (1 + ηζ∆t) M + β(∆t)2A(µ),

qn+1 := hn+1(µ)f(µ)−A(µ)unh(µ)− (ρηM + ∆tA(µ))vnh(µ)

−
(
ρη(1− ζ)∆tM +

1− 2β

2
(∆t)2A(µ)

)
anh(µ),

where hn(µ) := h(tn;µ). Hence, the semi-discrete variational problem (15) is equivalent to the following237

statement: for n = 0, . . . , Nt−1, solve (17) for an+1
h (µ) and update un+1

h (µ) and vn+1
h (µ) using the Newmark238

method (16). We observe that both m(·, ·) and a(·, ·;µ) are symmetric and coercive bilinear forms, where, for239

the coerciveness of a, we have used Korn’s inequality [23]. This guarantees that K is invertible. Moreover,240

note that the initial conditions for u0
h(µ) and v0

h(µ) are given, while a0
h(µ) must be recovered by solving241

(17) with q0(µ) = h0(µ)f(µ).242

3.3. The need for a reduced order model243

As introduced in Section 2, our goal is to construct Ns synthetic databases DNtr
i , i = 1, . . . , Ns as defined in244

(5). In the numerical examples, the generic output of interest (2) will be given by the local displacement,245

i.e., the solution of (8) at the sensors locations:246

gi(tn;µm) := uh(xi, tn;µm) ∈ Rd, (18)

with uh(·, ·;µ) defined in (14). In the literature, sensor measurements often correspond to displacements or247

accelerations, see e.g., [36]. Moreover, we highlight that the location of the i-th sensor, i.e., xi ∈ Ω, may not248

belong to the triangularization Th introduced in the previous section, i.e., xi is not necessarily a DOF. The249

construction of such databases requires the solution of (8) Ntr times, using Ntr different input parameters250

µm ∈ P. In particular, the linear system (17) with Nh DOFs has to be solved NtrNt times. This suggests251

that, in a many-query context when either the number of DOFs or the number of time steps is large, solving252

the full-order model is not affordable. Indeed, in our damage-detection setting, we need many samples to253

build robust classifiers.254

We therefore introduce a strategy that, on one hand, reduces the number of times we need to solve the255

linear system (17), and, on the other hand, replaces the original FE high-fidelity problem with a reduced256

order model without compromising the overall accuracy. The former point is achieved by replacing the time257

domain with the frequency domain, combined with the use of the Laplace transform of the displacement as258

unknown field, described in detail in Section 3.4. Since we are also interested in reconstructing the time259

history of the displacement, we employ a numerical inverse Laplace transform strategy, the details of which260

are provided in Section 3.5. The reduced order model in space is obtained using the reduced basis method,261

discussed in Section 3.6.262
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3.4. The Laplace domain263

When considering the translation of a time-dependent PDE into frequency domain, we face the choice of the264

transform to use. Popular choices in the structural damage detection field are the Fourier transform (see e.g.,265

[54]) or the Laplace transform as in [65], where the authors model the behavior of smart structures combined266

with piezoelectric actuators and sensors using the boundary element method applied to the elastodynamics267

equation. Here, we also choose the Laplace transform to allow the study of the transient response of damaged268

structures when using active sources to excite the structure. The Fourier transform is a suitable alternative269

if we study the periodic behavior of the vibrations of a structure under the effect of continuous sources, e.g.,270

wind, waves or tides. The choice of the Laplace transform will be better motivated in Section 4.2, where we271

discuss the damage sensitive features extracted from raw time signals.272

Given a fixed frequency z ∈ C and a fixed input parameter µ ∈ P, by multiplying the acoustic-elastic wave273

equation (8) by e−zt and integrating in time over the infinite interval [0,∞), the time-dependent problem re-274

duces to the computation of the Laplace transform of u evaluated at z, i.e., find275

ũ := ũ(x, z;µ) : Ω× C× P → Cd such that276 
ρ(z2 + zη)ũ−∇ · σ(ũ;µ) = h̃(z;µ)s(x;µ) in Ω

ũ = 0 on ΓD

σ(ũ;µ) · n̂ = 0 on ΓN

, (19)

where, for the sake of simplicity, we have assumed homogenous boundary conditions and zero initial condi-277

tions. In (19) h̃ := h̃(z;µ) : C× P → Cd is the Laplace transform of the time-dependent part of the source278

function h(t;µ).279

Since both u and ũ have the same dependency on the space variable x ∈ Ω, the space discretization280

derived in Section 3.2 applies here. Given Ṽ := {w ∈ [H1(Ω;Cd)]d : w|ΓD
= 0} as the corresponding Hilbert281

space in frequency domain, the approximate Galerkin problem becomes: for all z ∈ C and all µ ∈ P find282

ũh(z;µ) ∈ Ṽh := Ṽ ∩Xr
h such that283

ρ
(
z2 + ηz

)
m(ũh(z;µ),vh) + a(ũh(z;µ),vh;µ) = h̃(z;µ)f(vh;µ), ∀vh ∈ Ṽh, (20)

where ũh is the Galerkin approximation of ũ, while the bilinear forms m(·, ·), a(·, ·;µ) and the functional284

f(·;µ) are defined in (13). The discrete problem (20) is equivalent to a system of linear equations. In285

order to provide an algebraic formulation analogous to the time-dependent one in (15), we first introduce286

a complex canonical basis ϕ̃j ∈ Cd for j = 1, . . . , Nh for the finite-dimensional space Ṽh. Note that each287

complex basis ϕ̃j is either purely real or purely imaginary and all the mixed terms are obtained by their288

linear combinations. The Nh basis are therefore given by Nh/2 purely real basis and Nh/2 purely imaginary289

basis, i.e.,290

ϕ̃j := ψjIj≤Nh
2

+ iψNh−j+1Ij>Nh
2

, for j = 1, . . . , Nh, (21)

where i is the imaginary constant. Moreover, let291

ũh(x, z;µ) :=

Nh∑
j=1

ũj(z;µ)ϕ̃j(x). (22)

If we denote by ũh(z;µ) the vector having as components the unknown coefficients ũj(z;µ), solving problem292

(20) is equivalent to: find ũh(z;µ) ∈ CNh such that293 [
ρ
(
z2 + ηz

)
M̃ + Ã(µ)

]
ũh(z;µ) = h̃(z;µ)f̃(µ), (23)

where M̃ ∈ CNh×Nh is the complex mass matrix with elements M̃ij = m(ϕ̃j , ϕ̃i), Ã := Ã(µ) ∈ CNh×Nh is294

the stiffness matrix with elements Ãij = a(ϕ̃j , ϕ̃i;µ) and f̃ := f̃(µ) ∈ CNh is the vector with components295

f̃i = f(ϕ̃i;µ). This system can be split into a set of 2Nh real equations such that, for a given z := α + iy,296

the solution of (23) can be rewritten as ũh(z;µ) := ũαh(µ) + iũyh(µ). This splitting is especially important297

for implementation purposes and, by simple manipulations, we obtain298 [
Kα(µ) −Ky(µ)
Ky(µ) Kα(µ)

] [
ũαh(z;µ)
ũyh(z;µ)

]
=

[
q̃α(z;µ)
q̃y(z;µ)

]
, (24)
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where
Kα(µ) := ΘαM̃α −ΘyM̃y + Ãα(µ),

Ky(µ) := ΘαM̃y + ΘyM̃α + Ãy(µ),

q̃α(z;µ) := h̃α(z;µ)f̃α(µ)− h̃y(z;µ)f̃y(µ),

q̃y(z;µ) := h̃y(z;µ)f̃α(µ) + h̃α(z;µ)f̃y(µ).

(25)

Here, Θα := ρ
(
α2 − y2 + ηα

)
, Θy := ρy (2α+ η) and Θα + iΘy = ρ(z2 + ηz). In (24) and (25) we have used299

the following notation: M̃α ∈ RNh×Nh and M̃y ∈ RNh×Nh are the real and imaginary parts of the mass300

matrix M̃, respectively, with components301

M̃α
ij = m(ψj ,ψi)I{i,j≤Nh

2

} −m(ψNh−j+1,ψNh−i+1)I{
i,j>

Nh
2

},
M̃y

ij = m(ψj ,ψNh−i+1)I{
j≤Nh

2 , i>
Nh
2

} +m(ψNh−j+1,ψi)I{i≤Nh
2 , j>

Nh
2

},
where the real basis ψj is introduced in (21). We observe that, given M̃Nh/2 ∈ RNh/2×Nh/2 as the mass302

matrix with half degrees of freedom and components M̃
Nh/2
ij = m(ψj ,ψi), M̃α and M̃y have a block diagonal303

structure:304

M̃α =

[
M̃Nh/2 0

0 −M̃Nh/2

]
, M̃y =

[
0 M̃Nh/2

M̃Nh/2 0

]
.

The real and imaginary parts of the stiffness matrix Ã have the same expressions as the mass matrix by305

simply replacing m(·, ·) with a(·, ·;µ). For the right-hand-side, we define h̃α(z;µ) and h̃y(z;µ) to be the306

real and imaginary parts of h̃(z;µ), respectively, and f̃p := f̃p(µ) ∈ RNh with components f̃pi := f(ϕ̃pi ;µ) for307

p ∈ {α, y}.308

3.5. Recovering the time-dependent signals using the Weeks method309

To recover the time signals (18) at all sensors locations we need to compute the inverse Laplace transform310

on the solution of (23) or (24). This corresponds to an integration over the infinite imaginary axis in the311

complex plane:312

u(t) =
eαt

2πi

∫ ∞
−∞

eityũ(α+ iy)dy, t > 0, α > α0, (26)

where α ∈ R is a free parameter greater than α0
4, which is the rightmost real number for which ũ(·) is313

defined. This integral, known as the Bromwich integral, is difficult to evaluate analytically, especially since314

ũ(·) is here replaced with315

g̃i(zj ;µm) := ũh(xi, zj ;µm) ∈ Cd, (27)

where ũh(·, ·;µ) is defined in (22) and the expansion coefficients are obtained by solving (23) at discrete316

points zj := αj + iyj . Therefore, we need to approximate (26) by resorting to numerical inverse Laplace317

transform strategies.318

Among three numerical inverse Laplace transform methods, reviewed in [14], i.e., the trapezoidal rule319

[13], Talbot’s method [55] and the expansion in the Laguerre’s polynomials, also known as the Weeks method320

[60, 37], we choose the latter one. Indeed, the former two are unfeasible: the complex inversion integral is321

obtained by a numerical quadrature where the nodes depend on the independent variable t. This means that,322

to reconstruct the entire discrete time series gmi , introduced in (18), we need to solve (23) as many times323

as the number of time steps. As a result, the computational cost would be greater than solving the direct324

problem with the Newmark method. Instead, the Weeks method is obtained as an expansion in terms of325

the Laguerre’s polynomials. The main advantage is that, once the expansion coefficients are determined, the326

Laplace transform and the inverse can be obtained at any value tn by means of a simple series summation.327

We mention that there exists variants of the trapezoidal rule, relying on added correction terms (see e.g.,328

4Note that this parameter is usually denoted by σ0 in the literature, but here we choose α0 to avoid confusion with the
stress tensor.
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[9, 15]), where the Laplace transform does not depend on time. These variants have been successfully used329

to reconstruct time histories with a time interval of T of the order of 10−4, 10−5 seconds in [65]. However,330

they often become oscillatory and deviate from the right solution when T is large.331

We briefly recall the Weeks method to retrieve a generic time signal, beginning with the representation332

u(t) = e(α−b)t
∞∑
k=0

akLk(2bt), (28)

where b ∈ R+ is a free parameter and Lk(·) denotes the Laguerre polynomial of degree k. The expansion333

coefficients ak, which depend on the Laplace transform ũ(z), are defined by a Maclaurin series334

G(ω;α, b) :=
2b

1− ω
ũ

(
α+ b

1 + ω

1− ω

)
=

∞∑
k=0

akω
k,

where ω = iy−b
iy+b . Using the Cauchy’s formula one can show that335

ak :=
1

2πi

∫
|ω|=1

G(ω;α, b)

ωk+1
dω =

1

2π

∫ π

−π
G(eiθ;α, b)e−ikθdθ, (29)

where the change of variable ω = eiθ has been used. To approximate this integral, we follow [61], where it is336

suggested to use the midpoint rule instead of the trapezoidal rule because both θ = 0 and θ = 2π would map337

to ω = 1 in (29), which would require one to evaluate ũ(z) at infinity. The coefficients ak, k = 0, . . . , Nz−1,338

are therefore approximated as339

âk :=
1

2Nz

Nz−1∑
j=−Nz

G(eiθj+1/2 ;α, b)e−ikθj+1/2 =
b

Nz

Nz−1∑
j=−Nz

e−ikθj+1/2

1− eiθj+1/2
ũ

(
α+ b

1 + eiθj+1/2

1− eiθj+1/2

)
, (30)

where we have used a midpoint discretization based on 2Nz intervals with θj = jπ/Nz. It is easy to see340

that, by evaluating G(·;α, b) at eiθj+1/2 , the frequencies at which ũ(·) has to be evaluated have the following341

simplified expression342

zj := α+ ib cot
θj+1/2

2
for j = −Nz, . . . , Nz − 1. (31)

We note that only the imaginary part varies with the discretization index, while the real part α remains343

fixed. Finally, the time signal, based on a Nz−term truncation of the Laguerre series (28), becomes344

û(t) := e(α−b)t
Nz−1∑
k=0

âkLk(2bt), (32)

where Lk(·) can be computed recursively using, e.g., the Clenshaw’s algorithm [7].345

As mentioned in Section 3.3, our goal is to recover the (discrete) time signals at sensors locations, so we346

replace ũ(zj) in the definition of the Weeks coefficients (30) with g̃i(zj ;µm) defined in (27), thus obtaining347

the expansion coefficients348

âk,h :=
b

Nz

Nz−1∑
j=−Nz

e−ikθj+1/2

1− eiθj+1/2
g̃i(zj ;µm), k = 0, . . . , Nz − 1, (33)

where the additional subscript h indicates that the Laplace transform is the solution of a PDE using a FE349

discretization. Then, by replacing âk with âk,h in (32), we obtain the discrete displacement vectors at point350

xi and at time tn:351

ĝi(tn;µm) := e(α−b)tn
Nz−1∑
k=0

âk,hLk(2btn), for all i = 1, . . . , Ns and all n = 1, . . . , Nt. (34)

We thus obtain the full discrete time history ĝmi := [ĝi(t0;µm), . . . , ĝi(tNt
;µm)], i.e., the Weeks approxima-352

tion of the discrete time signals gmi , defined in (18), for all sensors locations.353
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Remark 1. (Halving the number of solutions) By observing that θj+1/2 = −θ2Nz−(j+1/2)+1 for all354

j = −Nz, . . . ,−1 and exploiting trigonometric identities, one can show that zj = z̄(2Nz−j+1) in (31), where355

z̄ is the complex conjugate of z. Moreover, it is easy to prove that if ũjh is the complex solution of (23) for356

z := zj then its conjugate ũjh is the solution of (23) for z := z̄j . This halves the number of times we need to357

solve the linear system (23) to compute {g̃i(zj ;µm)}Nz−1
j=−Nz

and the coefficients âk,h in (33).358

Remark 2. (The free parameters α and b) The Weeks method contains two free parameters, α ∈ R and359

b ∈ R+, and it has been observed that the accuracy of this algorithm depends critically on the choice of360

these. There exists several rules of thumb in the literature (see, e.g., [60, 45, 17]), where an estimate for361

α and b often requires the user to know at least the real part of the rightmost singularity of the Laplace362

transform α0. In these studies, larger values of b correspond to faster convergence of the series, but at the363

same time a smaller value is preferable for large time intervals T . A more systematic study is presented in364

[18], where the authors define the optimal b for a given α and a particular class of transforms. However,365

to apply this we would need to determine the location of the singularities (and in particular α0) of the366

solution of (23), evaluated at the sensors locations, i.e., ũh(xi, zj ;µm) defined in (22). This is challenging367

because this quantity is expensive to compute and thus it would be available only at few frequency locations.368

Moreover, it would be complex to verify that this Laplace transform fulfils the properties required to belong369

to the class defined in [18].370

Two additional strategies to find the optimal values are proposed in [61]. While the second one requires371

no information of the location of the singularities, both algorithms assume t to be fixed and require as input372

the analytical expression of the Laplace transform. While one may overcome the first issue by observing that373

the optimal parameters α and b are, to a large degree, independent of t for large Nz, no alternative is known374

for the case in which the Laplace transform is not known analytically. Indeed, α and b are obtained by375

performing a minimization on a truncation error which is based on the evaluation of the Laplace transform376

at multiple frequency locations. When the Laplace transform is the unknown solution of a PDE, the Weeks377

method is ideal to retrieve the entire time signal at the cost of solving Nz times the linear system (23).378

Unfortunately, the solutions proposed in [61] to identify optimal values of α and b are not suitable as they379

would require many additional solutions of (23).380

Instead, we choose these hyper-parameters using a different approach: for a fixed µ∗ ∈ P and a fixed381

resolution Nz, we solve (23) for few input values in the ansatz intervals α ∈ [αm, αM ] and b ∈ [bm, bM ]. Then,382

using a fixed number of time steps Nt, we choose as optimal the values for which the ‖·‖2 error between the383

recovered time signals and the corresponding Newmark solutions at all sensors locations is minimized, i.e.,384

αopt, bopt := min
α,b

∥∥∥∥∥∑
i

(g∗i − ĝ∗i )

∥∥∥∥∥
2

2

, (35)

where g∗i and ĝ∗i are defined in (18) and (34), respectively. We remark that only ĝ∗i depends on the parameters385

α and b.386

Algorithm 1 summarizes the Weeks method and how it is connected to the solution of the acoustic-elastic387

wave equation in the frequency domain. Clearly, the Weeks method, applied to the solutions of (23), is388

advantageous with respect to solving the PDE in time only if the number of frequencies, needed to generate389

an adequate numerical inverse Laplace transform, are significantly less than the number of time steps to390

generate the discrete time signal, i.e., Nz � Nt.391

3.6. The Reduced Basis method392

We present a reduced-order approach that significantly reduces the computational burden of repeatedly393

solving the parametrized problem (19) by exploiting the µ-dependence of the solution. Indeed, solving the394

high-fidelity complex linear system (23), or its real counterpart (24), for many input parameters is essential to395

construct databases and robust classifiers to detect anomalies in unseen data. Even though the translation396

to frequency domain described in the previous sections reduces the computational effort to generate the397

datasets of discrete time signals, a substantial speedup can still be achieved by applying reduced order398

modelling (ROM) techniques. Projection-based ROM techniques, and in particular the well-known reduced399
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Algorithm 1 Construction of Ns synthetic databases of time signals by solving PDE in frequency domain

1: procedure ConstructDatabases({xi ∈ Ω}Ns
i=1, ΞNtr , α, b,Nz, Nt)

2: for m = 1 to Ntr do
3: for j = 0 to Nz − 1 do
4: Compute yj = Im(zj) defined in (31)
5: Solve the linear system (23) for z = α+ iyj and µm
6: Evaluate the solution at all the Ns sensors’ locations and obtain g̃i(zj ;µm) ∈ Cd using (27)

7: Obtain the remaining {g̃i(zj ;µm)}−1
j=−Nz

by complex conjugation ∀i = 0, . . . , Ns
8: for i = 1 to Ns do
9: Compute the coefficients {âk,h ∈ Rd}Nz−1

k=0 using (33)
10: Retrieve the full time series ĝmi ∈ Rd×(Nt+1) by expansion in the Laguerre’s polynomials (34)

11: return D̂Ntr
i = {ĝmi }

Ntr
m=1,∀i = 1, . . . , Ns

basis (RB) method, have been applied extensively to efficiently replace large algebraic parametric systems400

with much smaller ones in many-query contexts for design, real-time control, optimization or uncertainty401

quantification, and others. We refer the interested reader to [47, 22, 49] and the references therein for an402

in-depth overview of RB methods.403

The main idea of RB methods is to generate an approximate solution to (20) for any choice of the404

parameter within the given parameter set at a cost that is independent of the cost of the original high-405

fidelity problem. In particular, the reduced solution ũN belongs to a low-dimensional subspace ṼN ⊂ Ṽh of406

dimension N � Nh. The smaller N , the cheaper it will be to solve the reduced system. To restrict the trial407

and test space Ṽh introduced in Section 3.4, to a low-dimensional subspace ṼN , we construct the reduced basis408

associated to ṼN , obtained by orthonormalization of a set of high-fidelity solutions, called snapshots, and409

computed for a small set of parameter values. Then, a Galerkin projection onto this subspace is performed to410

construct the RB problem. The generic RB method relies on an offline-online decomposition of tasks: offline411

we compute the snapshots for different parameter values and use them to generate the N basis functions,412

while online, for a new parameter, we solve an algebraic system of dimension N , whose solution is then413

projected onto the original high-fidelity space by a linear combination of the precomputed basis.414

We use the proper orthogonal decomposition (POD) to generate the low-dimensional subspace where the415

RB solution is sought. Let us generate the snapshot matrix whose columns are the high-fidelity solutions of416

(23), obtained for ns < Nh different values of the input frequency z ∈ C and the physical parameter µ ∈ P:417

S̃ :=
[
ũh (z0;µ0) | . . . |ũh

(
zns−1;µns−1

)]
∈ CNh×ns . (36)

For a prescribed dimension N ≤ ns, the POD relies on the singular value decomposition (SVD) of S to iden-418

tify the N -dimensional subspace which best approximates the snapshots among all possible N -dimensional419

subspaces. Let420

S̃ = ŨΣZ̃T ,

where Ũ ∈ CNh×Nh and Z̃ ∈ Cns×ns are two orthogonal matrices and Σ̃ = diag(σ1, . . . , σns
) ∈ CNh×ns with421

σ1 ≥ σ2 ≥ · · · ≥ σns
. The POD basis V ∈ CNh×N of dimension N is defined as the set of the first N left422

singular vectors of U.423

These basis minimizes the 2-norm of the projection error of the snapshot vectors (see e.g., Proposition424

6.1 of [47]). However, since ũh(z;µ) ∈ Ṽh ⊂ Ṽ , it is natural to consider the SVD with respect to a scalar425

product induced by the X̃h-norm, where X̃h ∈ CNh×Nh is the matrix associated with the scalar product426

defined on Ṽh, i.e.,427

‖ũ‖2 := m(ũ, ũ) + a(ũ, ũ;µ),

where m(·, ·) and a(·, ·;µ) are defined in (13) for unit values of the Lamé constants (10). By considering428

the SVD of X̃1/2S̃ we obtain a basis that is X̃h-orthonormal. Similarly, the POD basis can conveniently be429

obtained by computing the first N eigenvectors of the correlation matrix C̃ := S̃T X̃hS̃, i.e., C̃ψ̃i = σ2
i ψ̃i.430

Therefore, the POD basis can also be seen as the set of vectors431

ζ̃j :=
1

σj
S̃ψ̃j , j = 1, . . . , N. (37)
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In practice, the number of basis N is not chosen a priori, but for a prescribed tolerance εPOD, given as the432

smallest integer such that433

I(N) :=

∑N
i=1 σ

2
i∑ns

i=1 σ
2
i

≥ 1− εPOD, (38)

i.e., the energy retained by the last ns −N modes is equal or smaller than εPOD. I(N), called the relative434

information content of the POD basis, represents the percentage of energy of the snapshots captured by the435

first N POD modes [47].436

Given the particular setting described in Section 3.5, to recover the time-dependent signals using the437

Weeks method for a new parameter µ ∈ P, we have to solve Nz reduced systems of size N . Hence, we438

perform a reduction not only on the parameter space P, but also on the frequency set (31). However, as439

these frequencies are fixed5, the frequency z (or equivalently its imaginary part y) does not have to be440

considered as an additional parameter per se as done in (36). Instead, by choosing the number of snapshots441

ns to be a multiple of the number of frequencies Nz, we fix the snapshots to be computed for those exact442

frequencies that will be needed online. In practice, given kz ∈ R, we sample ns := kzNz < Nh parameters443

µ ∈ P and pair them with the Nz frequencies so that the snapshot matrix (36) becomes444

S̃ :=
[
ũh (z0;µ0) | . . . |ũh

(
zNz−1;µNz−1

)
| . . . |ũh

(
z0;µ(kz−1)Nz

)
| . . . |ũh

(
zNz−1;µkzNz−1

)]
, (39)

where zj are defined in (31) for j = 0, . . . , Nz − 1. Provided Nz is sufficiently large to ensure that the445

high-fidelity time signals, retrieved with the Weeks method, are a good approximation of the high-fidelity446

time signals that could have been obtained with the Newmark method, Nz parameters µ ∈ P may not be447

enough to provide a good representative basis of dimension N for complex problems. When the solution in448

µ is non smooth and/or P is too large, large values of kz should be used. Alternatively, one could consider449

Nz different RB problems with Nz different snapshot matrices S̃j ∈ CNh×ns for j = 0, . . . , Nz − 1. In this450

case, each frequency might be associated with a different number of basis Nj . This option is more laborious,451

but, at the same time, it may result in more stable approximations.452

From a practical perspective, we solve (24), instead of the complex (23). Hence, the snapshot matrix453

(39) is rewritten as454

S :=

[
S̃α

S̃y

]
∈ R2Nh×kzNz , (40)

where S̃p ∈ RNh×kzNz for p = {α, y} is defined as455

S̃p :=
[
ũph (z0;µ0) | . . . |ũph

(
zNz−1;µNz−1

)
| . . . |ũph

(
z0;µ(kz−1)Nz

)
| . . . |ũph

(
zNz−1;µkzNz−1

)]
, (41)

where ũph(zj ;µi) for p = {α, y} is the solution of (24) for a fixed parameter µi and for zj = α + yj defined
in (31) for j = 0, . . . , Nz − 1 and i = 0, . . . , kzNz − 1. The correlation matrix C ∈ RkzNz×kzNz is then
constructed as follows

C := STX2hS =

[
S̃α

S̃y

]T [
Xh 0
0 Xh

] [
S̃α

S̃y

]
=
[
S̃α,T , S̃y,T

] [XhS̃
α

XhS̃
y

]
=
[
S̃α,TXhS̃

α + S̃y,TXhS̃
y
]
,

where X2h ∈ R2Nh×2Nh is the symmetric positive definite matrix associated with the scalar product in456

the real space Vh of dimension 2Nh. X2h is a block diagonal matrix with two equal blocks Xh, where457

Xh ∈ RNh×Nh . We solve the eigenvalue problem458

Cψi = σ2
iψi, i = 1, . . . , kzNz (42)

and construct the POD basis as the set of 2Nh-dimensional vectors (37) by replacing S̃ with S and ψ̃i with459

ψi. Let V :=
[
Vα,T ,Vy,T

]T ∈ R2Nh×N be the so-defined POD basis with Vα,Vy ∈ RNh×N . Then, the460

5Indeed, the frequencies zj only depend on the parameters α and b, which are fixed (see Remark 2) and the number of
frequencies Nz , which can be chosen to be the same offline and online.

14



reduced algebraic problem (24) becomes461

KN

[
ũαN (z;µ)
ũyN (z;µ)

]
= qN ,

where462

KN :=VT K̃(µ)V =

[
Vα

Vy

]T [
Kα(µ) −Ky(µ)
Ky(µ) Kα(µ)

] [
Vα

Vy

]
=VαT (Kα(µ)Vα −Ky(µ)Vy) + VyT (Ky(µ)Vα + Kα(µ)Vy) ,

qN :=VT

[
q̃α(z;µ)
q̃y(z;µ)

]
,

where K̃(µ) is the matrix on the left-hand-side of (24) and q̃α(z;µ), and q̃y(z;µ) are defined in (25). We463

notice that the reduced matrix KN fails to preserve the structure of the high-fidelity matrix K̃(µ), which464

causes the reduced solutions to be unstable. To overcome this loss of structure, we resort to a proper465

symplectic decomposition (PSD) with a symplectic Galerkin projection, and apply the cotangent-lift method466

introduced in [44], where the snapshot matrix (40) is considered in extended form, i.e.,467

Scl :=
[
S̃α, S̃y

]
∈ RNh×2kzNz ,

where S̃α and S̃y are defined in (41). The corresponding correlation matrix becomes468

Ccl :=
[
S̃α, S̃y

]T
Xh

[
S̃α, S̃y

]
=

[
S̃α,TXhS̃

y S̃α,TXhS̃
y

S̃y,TXhS̃
α S̃y,TXhS̃

y

]
.

Then, as before, we solve (42) by replacing C with Ccl and, for any N ≤ kzNz, the POD basis469

Φ = [ζcl1 | . . . | ζ
cl
N ] ∈ RNh×N of dimension N is defined, similarly to (37), as the set of Nh-dimensional470

vectors471

ζcli :=
1

σi
Sclψcli , i = 1, . . . , N.

Finally, the symplectic basis is constructed as472

Vcl =

[
Φ 0
0 Φ

]
∈ R2Nh×2N . (43)

We observe that, by construction, ΦTXhΦ = IN . Therefore, Vcl is Xh-orthonormal, i.e.,473

Vcl,TX2hV
cl = I2N . With this particular choice of basis, the structure of the system is preserved and474

the reduced solutions are stable. In particular, for a new parameter µ we need to solve the following reduced475

system of dimension 2N :476

Kcl
N

[
ũαN (z;µ)
ũyN (z;µ)

]
= qclN , (44)

where477

Kcl
N :=Vcl,T K̃(µ)Vcl =

[
Φ 0
0 Φ

]T [
Kα(µ) −Ky(µ)
Ky(µ) Kα(µ)

] [
Φ 0
0 Φ

]
=

[
ΦTKα(µ)Φ −ΦTKy(µ)Φ
ΦTKy(µ)Φ ΦTKα(µ)Φ

]
,

qclN :=Vcl,T

[
q̃α(z;µ)
q̃y(z;µ)

]
.

Algorithm 2 summarizes the cotangent lift method to construct a symplectic RB basis.478

Algorithm 1 can be updated to include the RB approach by simply modifying lines 5 and 6, provided that479

the symplectic basis (43) is previously constructed. In line 5 we need to solve the reduced linear system480

(44) instead of (24) and in line 6 the output of interests g̃i(zj ;µm) are obtained by evaluating the real and481

imaginary part of the solution separately, i.e.,482

g̃i(zj ;µm) =

N∑
j=1

ũαj (z;µ)ζ̃
cl

j (x) + i

N∑
j=1

ũyj (z;µ)ζ̃
cl

j (x), j = 1 . . . , N,
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Algorithm 2 Construct a symplectic basis using on the cotangent lift method

1: procedure ConstructRB(S̃α, S̃y,Xh, kz, Nz, εPOD)
2: Form the snapshot matrix Scl := [S̃α, S̃y]
3: Form the correlation matrix Ccl := (Scl)TXhS

cl

4: Solve the eigenvalue problem Cclψcli = σ2
iψ

cl
i , i = 1 . . . , kzNz

5: Set ζcli := 1
σi

Sclψcli , i = 1, . . . , N where N is the minimum integer that satisfies (38)

6: Set Φ = [ζcl1 | . . . | ζ
cl
N ]

7: return Vcl, defined in (43)

where ũαj (z;µ) is the j-th entry and ũyj (z;µ) is the j + N -th of the solution of the linear system (44),483

respectively. Finally, we note that both the offline and the online phases of the RB method belong to the484

database construction phase, which corresponds to one of the offline steps of the anomaly-detection process485

(see Figure 1).486

4. The one-class classification problem487

Anomaly (or novelty) detection indicates the task of identifying substantial differences in the test dataset488

when compared to the data available during training [46]. Such method is applied to contexts where there489

is an abundance of “normal” (or positive) examples and abnormal examples (or negative) are scarce or non-490

existent. Intrusions in electronic security systems, video surveillance, medical diagnostic problems, industrial491

or structural faults and failure detection are examples of some of the applications involving unbalanced492

training datasets. The scarcity of anomalous data can be explained by three principal reasons: (i) occurrence493

of abnormal events is not expected or difficult to model, (ii) even if such examples are available for training, it494

is difficult to cover every possible abnormal event, and (iii) acquisition of abnormal events is costly [11]. Since495

our training dataset is a simulated one, the last two reasons motivate us to opt for a one-class classification496

approach instead of a supervised one.497

The anomaly detection problem can be treated as a one-class classification task by considering the498

semi-supervised counterpart of several classical supervised machine learning algorithms. These methods499

learn a description of the healthy training data offline and detect if a previously unseen object reflects this500

description by means of an online novelty score. Among many possibilities (see e.g., the reported summaries501

in [11, 46, 19, 2]) we highlight three well-known strategies: the Isolation Forest [33], based on the principles502

of the Random Forest method, the Local Outlier Factor [6], a nearest-neighbors based approach, and the503

One Class Support Vector Machine (OC-SVM) [52, 8], with details given in Section 4.1. Motivated by the504

use of the latter one in several SHM-related studies (see e.g., [36, 10, 3]), we rely on this for our approach.505

We also mention autoencoders, a particular type of neural networks, trained to attempt to copy their506

inputs to their outputs, which have gained particular notoriety in the framework of anomaly detection507

(see e.g., [26, 38, 41]). By the combination of two networks, called encoder and decoder, an autoencoder508

learns the underling salient features, which are sufficient to describe and reconstruct the input. In doing509

so, the autoencoder exploits the idea that the training data (positive examples) concentrate around a low-510

dimensional manifold, learned by redundancy compression. Then, the reconstruction error, i.e., the norm of511

the difference between a new datum and its reconstruction, is used as a novelty score under the assumption512

that positive instances are expected to be reconstructed accurately, while negative instances, i.e., abnormal513

data, are not. The main advantage of using a reconstruction-based anomaly detection approach like the514

autoencoders lies in the fact that specific engineering-based, damage indicator features do not need to be515

specified, different from others one-class methods mentioned above. We refer the interested readers to516

Chapter 14 of [20] and references therein for an overview on autoencoders.517

4.1. One Class SVM518

The One Class SVM method is derived as a simple modification of the well-known supervised SVM method519

[8], used in several SHM applications (see e.g., [24, 54]). Binary classification SVMs are successful learning520

techniques that, given two-class input data, map them into a high dimensional, non-linear feature space521
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where it is possible to construct a linear separation boundary, i.e., a hyperplane [58]. Given X, the set of522

the input training data, and F , the feature space of dimension greater than X, the idea behind this method523

is known as the kernel trick, i.e., the transformation function Φ : X → F is not computed explicitly. Instead524

it is defined by a kernel to project the data into a higher dimensional space. The simple evaluation of this525

kernel gives the dot product in the feature map526

k(x, y) := Φ(x) · Φ(y). (45)

A common choice is the Gaussian kernel527

K(x, y) := exp

{
−‖x− y‖

2

σ̂2

}
, (46)

where σ̂ ∈ R is a free parameter.528

OC-SVMs, introduced in [52, 51], apply the same binary technique to find the optimal hyperplane that529

separates all the healthy training data from the origin with maximum margin. The origin (in feature space)530

is used as a proxy for the unrepresented anomalous data.531

Let F : Rd×(Nt+1) → RQ be a function which extracts Q damage-indicator features from Ntr recovered
signals (34) and let FNtr

i = [F(ĝ1
i ), . . . ,F(ĝNtr

i )] ∈ RNtr×Q be the so obtained training database of feature-
valued signals at location xi, which will be defined in (52). The hyperplane, described by the parameters

wi ∈ F and the bias b̂i ∈ R, is obtained by the minimization problem

min
wi, bi, ξm

‖wi‖2

2
+

1

ν̂Ntr

Ntr∑
m=1

ξm − b̂i

subject to: wi · φ (F(ĝmi )) ≥ b̂i − ξm, ξm ≥ 0, for m = 1, . . . , Ntr

where ξm ∈ R,m = 1, . . . , Ntr are non-zero slack variables that allow soft margins, i.e., large values of ξj532

allow the m-th data point to lie on the wrong side of the decision boundary. The tradeoff between the533

number of misclassified training examples and the smoothness of the margin, identified by wi, is controlled534

by the regularization parameter ν̂ ∈ ]0, 1]. Given the separating hyperplane535

pNtr
i (x) := wi · Φ(x)− b̂i, (47)

the OC-SVM algorithm returns a function fNtr
i : RQ → {−1, 1} that, for each sensor, evaluates every new536

data point to determine on which side of the hyperplane it falls in features space. Hence, the decision537

function538

fNtr
i (x) := sgn (pi(x)) (48)

will take values +1 for most of the training samples. The problem can be transformed to a dual form using
Lagrangian multipliers and the kernel trick (45) as

min
α

Ntr∑
m,n=1

αmαnk (F(ĝmi ),F(ĝni ))

subject to: 0 ≤ αm ≤
1

ν̂Ntr
,∀m = 1, . . . , Ntr and

Ntr∑
m=1

αm = 1,

where the non-zero αm are the support vectors (SVs). The latter are required to evaluate any new datum539

using the SV expansion of the hyperplane (47), which becomes540

pNtr
i (x) =

Ntr∑
m=1

αmk (x,F(ĝmi ))− b̂i. (49)

With this expression, it can be proven that ν̂ is an upper bound on the fraction of outliers, i.e., misclassified541

training samples, and a lower bound on the fraction of SVs [52]. A smaller value of ν̂ implies fewer SVs and542

17



therefore a smooth, crude decision boundary, while a larger value of ν̂ leads to more SVs and therefore to543

a curvy decision boundary. The optimal value of ν̂ should be large enough to capture the data distribution544

and small enough to avoid overfitting. In our experiments we choose ν̂ := 0.65.545

As mentioned in [2, 29], a continuous outlier score reveals more information than a simple binary label546

as the output (48). Indeed, the absolute value of (49) gives information on the distance of the point x from547

the hyperplane: larger values are farther away from the hyperplane. Larger negative values are not only548

associated with more severe damages, but also with a greater confidence on the binary output (48). The549

choice of using (48), or another anomaly score based on (49), as decision strategy depends on the importance550

given to misclassification errors, i.e., false negative and false positive predictions. The formers, also called551

false alarms, arise when a healthy structure is classified as damaged and false positive predictions when552

damaged structures are classified as healthy. Ideally, one would like to keep both rates low, but in practice553

one of the two will be more frequent. This choice translates in the relative position of the hyperplane:554

moving the hyperplane towards the origin (in feature space) will increase the false positive rate and, vice-555

versa, moving the hyperplane towards the training set will increase the number of false negative test data.556

A relative approach is applied here to compute the anomaly score, i.e., we follow the strategy presented in557

[2], where, given p̂i the maximum distance between the training data and the decision boundary for the i-th558

sensor, the score (49) is scaled as559

fNtr
i (x) :=

p̂i − pNtr
i (x)

p̂i
. (50)

Therefore, the points classified as outliers outliers are identified with scores greater than 1.560

Finally, a large amount of experiments have demonstrated that the choice of the free parameter σ̂ in561

(46) may severely impact the generalization performance of OC-SVMs. Indeed, an inappropriate choice of562

σ̂ may lead to overfitting (small values) or under-fitting (large values). In semi-supervised or unsupervised563

frameworks, this hyper-parameter can not be estimated using classical strategies for model parameters564

selection, such as cross validation. Indeed, since only positive examples exist in the training set, it is565

impossible to estimate the misclassification error of the OC-SVM model. In the past decades, several566

strategies have been proposed to overcome this issue: for example a training error based approach in [57],567

a geometry based approach in [28], a tightness detection strategy, based on the spatial locations of the568

interior and edge samples [62, 3] and an approach based on the Fisher linear discrimination [59]. The first569

three strategies are observed to be equivalently succesful to detect various damage scenarios on a laboratory570

structure in [36]. The authors also report that the least computationally expensive method, which does not571

require repeated training, is the geometric approach where σ̂ is chosen based on the the maximum distance572

between the two least similar training points [28]. This strategy is used also in this work, where the Kernel573

factor becomes574

σ̂2
i :=

d̂i√
− ln δ

, where δ :=
1

Ntr(1− ν̂) + 1
,

where d̂i is the Euclidean distance between the two least similar training points for the i-th dataset.575

4.2. Feature Extraction576

The displacement time series at each sensor location, ĝmi = [ĝmi (t0), . . . , ĝmi (tNt
)] ∈ Rd×(Nt+1), for577

m = 1, . . . , Ntr, acquired using Algorithm 1, including the appropriate modifications to leverage the578

RB framework described in Section 3.6, need to be pre-processed before being used to train the one-class579

classifiers. The ideal features for a robust structural damage detection and localization system should be580

sensitive to the presence of damage, but insensitive to the operational and environmental variability in a581

normal range [16]. Common choices for the damage-sensitive features can be found for example in [36, 34].582

In this work, the raw displacement signals are processed into a Q-dimensional feature vectors with583

Q := 6d. We consider the following characteristic values: the d−dimensional crest factor, which indicates584

how extreme the peaks are in a waveform, the maximum and minimum values of the d-dimensional response,585

the corresponding arrival times, i.e., the onset, and the number of peaks and valleys in the signals. Indeed,586

it has already been observed (see e.g., [65, 34]) that, in the presence of a crack, which acts as an obstacle587

dissipating some of the energy carried by the transmitted waves, the signal becomes more attenuated and588

the time of arrival becomes longer because of the extra distance between the source and the sensor due to589

the discontinuity of the material.590
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For each sample ĝmi , the crest factor Cm
i ∈ Rd is defined as591

Cm
i :=

|ĝmi |peak
(ĝmi )rms

, where

{
|ĝmi |peak := maxn |ĝmi (tn)|
(ĝmi )rms :=

√
1

Nt+1

∑Nt

n=0 (ĝmi (tn))
2 . (51)

The arrival time Am
i ∈ Rd, the number of peaks Pm

i ∈ Rd and valleys Vm
i ∈ Rd are defined using the592

peakfinder Matlab function [39]. Precisely, Am
i ∈ Rd is defined as the time step corresponding to the first593

peak or valley. The two hyper-parameters of the peakfinder function, i.e., sel and thresh, are defined as a594

percentage of the maximum amplitude of 30 randomly chosen healthy training signals for the firstNt = 20′000595

steps, sensor by sensor and component by component. In particular we choose sel, which gives information596

on the peak value, relative to surrounding data, to be identified as the 3% or 7% of the maximum amplitude597

of the healthy signals, for the 2D and 3D problems, respectively. The threshold thresh, i.e., the value for598

which peaks must exceed to be a maxima or a minima, is fixed to 5.5% or 9% of the maximum amplitude,599

for the 2D and 3D problems, respectively. These values are chosen experimentally by visually inspecting the600

position of the onset values over a set of signals. We note that, for the 3D problem, using higher percentages601

of the maximum amplitude of the healthy signals leads to a choice of these hyper-parameters, which can602

better distinguish between the effective signal arrival and spurious oscillations. Moreover, we observe that603

the classification results obtained using peakfinder are more robust and less prone to be affected by artefacts604

generated by the numerical inverse Laplace transform reconstruction with respect to finding the onset based605

only on a sensor-dependent threshold εi of the signal values, i.e., Am
i := arg minn {|ĝmi (tn)| ≥ εi}.606

Therefore, for all i = 1, . . . , Ns, the feature-based database becomes607

FNtr
i :=

[
F(ĝ1

i ), . . . ,F(ĝNtr
i )

]
, where F(ĝmi ) :=


Cm
i

Am
i

Pm
i

Vm
i

maxn ĝmi (tn)
minn ĝmi (tn)

 for m = 1, . . . , Ntr. (52)

We observe that, features extracted directly from the raw signals in frequency domain, i.e., before apply-608

ing the Weeks method for reconstruction, are not considered here. Nevertheless, such features (e.g., the609

transmissibility defined for example in [36]), could be also included either by direct extraction for simulated610

samples or by pre-applying a Laplace transform for experimental sensor signals, which are available only in611

time domain.612

4.3. Dimensionality reduction613

Among the Q selected features, dimensionality reduction is needed to generate robust classifiers. Indeed,614

we observe that the OC-SVM strategy does not capture anomalies well if applied directly to the feature-615

based datasets (52). It has been shown (see e.g., [56]) that using too many features may introduce too much616

noise in the dataset and leadi to overfitting. In general, classic feature selection strategies do not guarantee617

the best classification performances when applied to highly unbalanced training datasets, i.e., retaining only618

the high-variance directions may not provide informative results on the features that are most sensitive to619

damage. Even though there exist several studies (see e.g., [40, 27]) in which the information carried by low-620

variance directions is emphasized, in many cases removing redundant features by projecting the data on the621

high-variance directions remains beneficial. Principal component analysis (PCA) and random projections622

(RP) are two widely used compression methods. While for very large datasets RP are known to achieve best623

performances (see e.g., [1]), given our choice of relatively few features, i.e., Q := 6d, PCA transformation is624

more appropriate.625

In practice, we first normalize the training data so that each feature has zero mean and unit standard626

deviation among the training samples. We remark that the scaling required to achieve this transformation627

is then applied to the test dataset before class prediction. Then, we apply the PCA and store the principal628

coefficients PPCA ∈ RQ×kPCA . In this work, for all sensors we observe a rapid decay of the PCA eigenvalues,629

which motivates our choice of retaining only 1 principal component, i.e., kPCA = 1. Finally, we apply the630

OC-SVM approach to FNtr
i PPCA for all i = 1, . . . , Ns. The same transformation is applied to the test631

datasets.632
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Figure 2: Healthy meshes for the 2D (left) and 3D (right) problems. The former represents the section of a simplified beam
and the latter is obtained by extruding a similar 2D domain, but with larger holes, along the third direction. The 2D problem
has normalized dimensions 1× 1, while the 3D one has dimensions 1× 1× 0.1.

4.4. Hierarchical classification633

Training separate models for each sensor allows for both detection and localization of damages. We identify634

three levels of damage identification. First of all, a structure is considered damaged if at least one sensor is635

classified as an outlier, i.e., the anomaly score (50) is greater than 1. Secondly, as the anomaly score is a636

continuous value, one can additionally deduce information about the severity of the damage, distinguishing637

between strong outliers, i.e., values much bigger than 1, and mild outliers, i.e., values slightly above unity.638

Indeed, if a structure presents many strong outliers, we expect a severe damage. Finally, damage localization639

is achieved by observing that damage is expected to be closer to those sensors which are classified as outliers.640

5. Numerical results641

In this section we first present the geometrical domain with its sensors and source definition, the values and642

distribution of the input parameters and the parameters used for the numerical inverse Laplace transform643

reconstruction. Then, we describe the construction of the training and test datasets for both the 2D and644

3D problems and highlight the classification results. In our experiments, FEniCS [35] is employed for the645

implementation of the high fidelity solver, while the open source library RBniCS [4, 22], that implements646

several reduced order modeling techniques, is used to implement the reduced basis solver. The numerical647

inverse Laplace reconstruction is implemented with ad hoc Python functions, while the feature extraction,648

dimensionality reduction, and classification steps are carried out in Matlab [39], employing, in particular,649

the built-in functions peakfinder, pca, and fitcsvm.650

The mesh for the healthy domain Ω ⊂ Rd is reproduced in Figure 2 for d = 2, 3. The domain is discretized651

using tetrahedral cells; a FE approximation by P1 elements is used, resulting in 30’912 and 217’344 DOFs652

for d = 2, 3, respectively. We remark that, since we solve (24), half of the DOFs represent the real part and653

the other half the imaginary part of the d−dimensional solution. Indeed, the number of DOFs required to654

solve the same problem in time domain (15) is halved, provided the same mesh is used.655

5.1. The parameter space656

In the following numerical experiments we use the homogenous free-slip boundary conditions (11), i.e.,657

gN = 0, and we choose the density and damping coefficients as ρ := 1 and η := 0.1, respectively. All the658

other parameters are defined below and in the following subsections.659
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Figure 3: Source function for various values of the parameter k. The source function h(t; k) is plotted as a function of time
(left) and its corresponding Laplace transform, split in its real (full lines) and imaginary (dashed lines) components, is plotted
as a function of y, i.e., the imaginary part of frequency z for a fixed α value (right).

Aiming at representing the different environmental and operational conditions, necessary to make reliable660

damage predictions, we choose three parameters of variation, i.e., µ := [E, ν, k] ∈ P ⊂ Rp with p = 3. E is661

the Young’s Modulus, ν the Poisson’s ratio which determines the Lamé constants (10) and k is a parameter662

of the source function h(t;µ) (or equivalently h̃(z;µ)), whose expression is defined in the following section.663

In the generation of the dataset, the parameter set (3) is based on uniform random samples. We choose664

ΞNtr := {Em, νm, km}Ntr

m=1 ∈ P, with P := [0.999, 1.001]× [0.329, 0.331]× [1.9, 2.1]. (53)

A more realistic parameter space could be provided by relying on model calibration, based on the combination665

of experimental data with prior knowledge. However, this goes beyond the scope of this paper.666

5.2. The source term and the sensors locations667

The excitation of the structure is necessary to generate waveforms which propagate in the structure and668

are measured at sensors for signal diagnostic. In this work, we consider active sources, as an alternative to669

passive continuous sources such as wind or tides. In several vibration-based non-destructive evaluation tests,670

electromechanical shakers are used to inject pure white Gaussian noise (see e.g., [36, 43]). Alternatively,671

sources based on sinusoidal waves are also used (see e.g., [54, 65]), which we also focus on. Moreover, in672

the SHM framework, short pulse impulses are often used for non-destructive evaluation and testing (see673

e.g., the more sophisticated Hanning-windowed sinusoidal tone-bursts used in [65]) in combination with the674

damage-sensitive features described in Subsection 4.2. In particular, it is observed that damaged structures675

produce greater attenuation for signals with higher frequency, i.e., signals with higher frequency are more676

sensitive to the presence of damage sites as explained in [12, 32].677

In this work, the source functions s(x;µ) and h(t;µ) of (19) are chosen as678

s(x;µ) :=
exp

{
−
∑d
i=1

(xi−µ̄i)
2

2σ̄2
i

}
2πσ̄d

, h(t;µ) := ks sin(kπt) te−t,

where σ̄ := 0.01 represents the width of a Gaussian centered at µ̄ := [0.55, 0.125] and µ̄ := [0.51, 0.06, 0] in679

2D and 3D, respectively. Since these values are fixed for all numerical examples, the space source function680

is independent of the parameter µ. For the time-dependent source function, we choose the scaling factor681

ks := 100, such that h only depends on one parameter, k, which controls the number of cycles before682

attenuation. Moreover, our choice guarantees ∂h(t;µ)
∂t

∣∣
t=0

= 0, which provides a solution that is coherent with683

the homogenous initial conditions, i.e., u0 = v0 = 0. The corresponding Laplace transform of h̃ is684

h̃(z; k) = ks
2πk(z + 1)

(π2k2 + (z + 1)2)2
. (54)
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Figure 4: Sketch of sensors numbering system and source placement for the 2D problem. Numbered filled circles represent the
15 sensor locations, while the triangle represents the source position µ̄ = [0.55, 0.125].

Given z := α + iy, (54) can be split in its real and imaginary parts, i.e., h̃α(α + iy; k) and h̃y(α + iy; k),685

required in (25). Figure 3 shows the source function in time and frequency domain when the real part of the686

frequency z is fixed, i.e., α = 0.26, and for different values of k ∈ [1.9, 2.1].687

We consider a total of Ns = 15 sensors for the 2D problem and Ns = 46 for the 3D problem. For688

the 2D model, the sensor locations x := (xi, yj), sketched in Figure 4, are obtained by all combina-689

tions i, j, where xi ∈ [0.1, 0.275, 0.5, 0.725, 0.9], yj ∈ [0.11, 0.5, 0.925]. In 3D, for practical engineering690

purposes, sensors embedded in the structure are excluded and the sensors location are restricted to the691

model surface, i.e., x := (xi, yj , zk), represented in Figure 5, is given by all combinations i, j, k, where692

xi ∈ [0, 0.1, 0.275, 0.5, 0.725, 0.9, 1], yj ∈ [0, 0.075, 0.5, 0.925, 1] and zk ∈ [0, 0.5, 1]. We observe that, in 3D,693

because of the homogenous free-slip boundary conditions, for each sensor on the surface, one of three dis-694

placement components (i.e., the one normal to the surface) is identically zero. This implies that 6 of the695

18 features, extracted from each sensor signal and defined in 4.2, are identically zero. Hence, for the 3D696

problem with no embedded sensor we consider Q = 6(d− 1), i.e., Q = 12 for both the 2D and 3D case.697

5.3. The free parameters in the Weeks method698

As explained in Remark 2, to apply the Weeks method to reconstruct the solution in time, we need to define699

the free parameters α and b, which are obtained by applying (35). In particular, when ĝ∗i , i . . . , Ns in (35) are700

the high-fidelity signals obtained by applying Algorithm 1 to the 2D problem with µ∗ = [1, 0.33, 2], Nz = 200,701

∆t = 1e−3 and Nt = 30′000, we obtain αopt = 0.26 and bopt = 6.5, as shown in Figure 6. For simplicity,702

these hyper-parameters are also used for all the other problems considered here and for all input parameters703

(53). Figure 7 shows that, for these optimal values, the error of the reconstructed solution in 2D decreases704

with second order of convergence as the number of coefficients Nz in the Laugerre’s expansion increases.705

In all our 2D simulations, we use Nz = 200, which guarantees good results as shown in Figure 8, where706

the behavior of the time-dependent solutions (displacements in the x− and y− directions) recovered at the707

6th sensor of coordinates x6 = (0.275, 0.925), using either the Newmark method or the Weeks method, are708

presented. As time increases, we observe a matching degradation between the solutions in time domain and709

the reconstructed solution in frequency domain, which is expected considering the expansion in the Laguerre’s710

polynomials. For the 3D simulations, the number of frequencies Nz is increased to 500 to guarantee better711

alignement with the Newmark solution, considered as a reference solution, and avoid spurious oscillations712

before the signal arrival. Additionally, in 3D, we consider a reduced time frame of Nt = 22′500 time steps713

to discard incorrect oscillations caused by the Weeks method.714

5.4. The training set715

We present here the details to construct the training set for the2D and 3D problems, whose geometries,716

sensors and source locations are shown in Figures 4 and 5, respectively. For both problems, we primarily717
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Figure 5: Sketch of sensors numbering system and source placement for the 3D problem. Numbered filled black semi-spheres
represent the 46 surface sensors, while the larger green semi-sphere represents the source position, i.e., µ̄ = [0.51, 0.06, 0]. The
face with coordinate z = 0 is shown on the left, while the face with coordinate z = 0.1 is shown on the right.

generate a dataset using the RB strategy presented in Section 3.6. For this, we set kPOD = 1e − 11 and718

kz = 3. Having chosen Nz = 200 and Nz = 500 for the 2D and 3D problems, respectively, we consider a719

total of ns = 600 and ns = 1500 snapshots, respectively. To generate such snapshots, the input parameters720

{µm}
ns
m=1 are uniformly sampled from P and the Nz input frequencies are defined in (31). By applying721

Algorithm 2, we obtain N = 159 basis for the 2D problem and N = 251 basis for the 3D case. Setting722

Ntr = 1000 for both problems, the training datasets DNtr
i are constructed by solving the reduced problem723

NzNtr times and by applying Algorithm 1 for i = 1, . . . , Ns.724

Finally, after extracting the damage-indicator features as explained in Section 4.2 and applying the PCA725

reduction to the normalized dataset (see Section 4.3), the OC-SVMs are trained on the reduced-feature-based726

datasets FNtr
i PPCA for i = 1, . . . , Ns.727

5.5. The test set728

The test set is composed of both healthy and damaged synthetic sensor measurements. The discrete time729

signals are obtained by solving the high fidelity problem (24) for Ntest new input parameters, sampled from730

the same parameter distribution used offline. As explained in Section 2, we add zero-mean random Gaussian731

noise to all time steps of all test signals. In particular, for each component of the reconstructed test signals732

ĝ?i , we add noise εi ∈ N (0,γ2
i ), where γi corresponds to 0.01% of the maximum amplitude of 30 randomly733

chosen training healthy signals over the first Nt = 20′000 steps, component by component. Different from734

the training set, some of the signals are obtained by solving the PDE on faulty geometries. In particular,735

in 2D, we consider 9 damage scenarios, sketched in Figure 9, of which 4 are considered major damages736

(a− d), 4 as minor damages (e− h) and 1 (i) is obtained by combining two major damages. For the healthy737

configuration and each damaged configuration we consider 10 samples for a total of Ntest = 100 test samples.738

In 3D, the test set is composed of 1 healthy and 3 damaged configurations (2 major damages and 1 minor739

damage) for a total of Ntest = 40 test samples, i.e., again 10 samples for each configuration are considered.740

The geometries are shown in Figure 13.741

We compare the high-fidelity solutions obtained in Laplace domain, before and after applying the Weeks742

method, for healthy and damaged structures in 2D. In particular, the signals retrieved at the 9th sensor,743

i.e., x9 = (0.5, 9.25), are provided in Figure 10. The graphs compare two healthy solutions obtained with744

two input parameters µ∗,µ∗∗ ∈ P and a solution obtained when the beam located between the 8th and 9th
745
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Figure 6: Contour plot of the error obtained using 9 equally spaced points for α ∈ [0.1, 0.9] and 13 equally spaced points
for b ∈ [1, 16], leading to αopt = 0.2 and bopt = 7.25 indicated by the white dot (left). Additional refinement in the region
α ∈ [0.1, 0.4] and b ∈ [4.5, 9.25] for 16 and 20 equally spaced points, respectively, leading to the optimal values αopt = 0.26 and
bopt = 6.5 (right).

Figure 7: Loglog plot of the error
∥∥∑

i

(
ĝ∗i − g∗i

)∥∥2
2
, where the reconstructed high-fidelity signals ĝ∗i are obtained using

αopt = 0.26 and bopt = 6.5 for increasing values of Nz . Both ĝ∗i and g∗i are obtained using Nt = 30′000 time steps of
size ∆t = 1e−3 and for input parameter µ∗ = [1, 0.33, 2].
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Figure 8: Comparison of the 2D high-fidelity signals retrieved at the 6th sensor when using the Newmark method (black circled
line) or the Laplace method with Weeks reconstruction (blue starred line) using αopt = 0.26, bopt = 6.5, Nz = 200. Both ĝ∗i
and g∗i are obtained using Nt = 30′000 time steps of size ∆t = 1e−3 and for input parameter µ∗ = [1, 0.33, 2]. The first (left)
and second (right) components of the displacement signals are shown.

S

(a)

S

(b)

S

(c)

S

(d)

S

(e)

S

(f)

S

(g)

S

(h)

S

(i)

Figure 9: Sketch of 9 damage configurations. Figures (a-d) correspond to major damages, while (e-h) correspond to minor
damages. Figure (i) is a superposition of two major damages, i.e., (a) and (c).
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Figure 10: Comparison of 2D signals retrieved at the 9th sensor, obtained from the healthy structure or form a structure with a
damage between the 8th and 9th sensor (i.e., damage (a) in Figure 9). From left to right, the first row shows the reconstructed
signals obtained using the Weeks method on the first and second component, respectively. The second row shows the absolute
value of the raw solutions in Laplace domain. For the four plots, we show two healthy signals, obtained with two different
parameters are shown, i.e., µ∗ = [1, 0.33, 2] (blue dashed line with filled dots), and µ∗∗ = [0.9993, 0.3307, 2.07] (orange dotted
line with empty diamonds), and a damaged signal, obtained with µ∗ (black line with empty dots).

sensor is broken (see Fig. 9a) using µ∗ as input parameter. Especially for the second component of the746

solution in Laplace domain and the consequent reconstructed signals, we can observe significant differences747

between the two healthy signals and the damaged ones. This visual inspection confirms our assumption:748

signals generated from damaged structure differ from those generated from healthy structures. For this type749

of damage, signals retrieved at the 9−th sensor happens to be the most affected ones. This can be explained750

by considering the relative positions of the source, the sensor and the damage, i.e., the damage lies between751

the source and the receiver, which implies that the signals has to negotiate around the damage to reach the752

sensor, giving rise to a modified and delayed signal. The same reconstructed solutions, retrieved at sensors 6,753

8 and 12, are shown in Figure 11. Qualitatively, we observe some differences between the two healthy signals754

and the damaged one: damaged signals at sensors 6 and 12 appear to be delayed with respect to the healthy755

signals, while the signals at sensor 8 are very close for few time-steps and then diverge. These observations756

can once again be explained by looking at the relative positions of the source, sensors, and damage. Indeed,757

signals retrieved at sensor 8 begin to diverge when the signals get reflected at the crack. Moreover, after758

computing the crest factor (51) and arrival time of these signals, we observe that these values are significantly759

different when looking at the damaged signals or the healthy ones (see Table 1). This observation supports760

our choice of using, among others, the crest factor and arrival time as damage-indicator features.761
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Figure 11: Comparison of the second component of 2D reconstructed signals retrieved at the 6th, 8th and 12th, sensors, obtained
from the healthy structure or form a structure with a damage between the 8th and 9th sensor. For the three plots, we show
two healthy signals, obtained with two different parameters are shown, i.e., µ∗ = [1, 0.33, 2] (blue dashed line with filled dots),
and µ∗∗ = [0.9993, 0.3307, 2.07] (orange dotted line with empty diamonds), and a damaged signal, obtained with µ∗ (black line
with empty dots).

Sensor CF1 AT1 CF2 AT2 Parameter Structure Type
number

3.04 1352 3.41 1005 µ∗ Healthy
6 3.16 1354 3.26 1003 µ∗∗ Healthy

3.74 1868 3.08 1442 µ∗ Damaged
3.16 649 2.35 637 µ∗ Healthy

8 3.04 647 2.29 631 µ∗∗ Healthy
3.30 651 3.31 638 µ∗ Damaged
3.04 2024 2.78 913 µ∗ Healthy

9 3.15 2017 2.85 909 µ∗∗ Healthy
3.04 2016 3.43 1960 µ∗ Damaged
3.14 1389 3.29 1016 µ∗ Healthy

12 3.16 1381 3.11 1013 µ∗∗ Healthy
3.15 2554 3.67 1750 µ∗ Damaged

Table 1: Comparison of crest factor (CF ) and arrival time (AT ) for high-fidelity reconstructed 2D signals at four different
sensor locations for the healthy structure (see Fig. 4) and a damaged (see Fig. 9a) configuration. The retrieved signals are
obtained using two input parameters, i.e. µ∗ = [1, 0.33, 2] and µ∗∗ = [0.9993, 0.3307, 2.07]. The subscript indicates the signal
component.
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Sensor Healthy Damage Damage Damage Damage Minor Minor Minor Minor Combined
(a) (b) (c) (d) damage (e) damage (f) damage (g) damage (h) damage (i)

1 0 0.4 0.4 0 0.1 0.1 0 0 0.1 0.1
2 0 0.5 1 1 0 0.2 0 0 0.5 1
3 0 0.7 0.1 0.7 0 0 0 0 0.1 0.3
4 0 0 0.9 0.4 0 0.1 0.5 0.1 0.1 0.1
5 0 0 1 1 1 0.2 0 1 0 1
6 0 1 1 0 0 1 0 0 0 1
7 0 0.1 1 0 0 0 0 0 0 0.1
8 0 0.3 1 1 0 0.1 0.5 0.1 0.1 1
9 0 1 1 0 0 0.1 0.1 0 0 1
10 0 0 0 0.3 0.1 0.1 0 0.2 0.1 0.1
11 0 0.1 1 0.1 1 0 0 0.2 0 0
12 0.1 1 1 0 0.1 0.5 1 0 0 1
13 0 0.1 0 0.1 0 0 0 0 0.3 0.1
14 0 0.1 1 0.1 1 0.2 0 0.1 0.1 0.8
15 0 1 1 0.1 0.1 1 0 0 0.1 1

Table 2: Fractions of test samples for the 2D problem classified as outliers (i.e., with anomaly score (50) greater than 1) for the
healthy configuration (see Fig. 4) and 9 damaged configurations (see Fig. 9). A set of 10 uniformly sampled input parameters
{µ?m}10m=1 ∈ P is used to construct 10 test samples per configuration.

5.6. Classification results762

We present here the one-class classification results on the test sets, sensor by sensor. In 2D, the test set is763

composed of Ntest := 100 samples, i.e., 10 samples for each one of the 10 configurations (1 healthy and 9764

damaged). In 3D, Ntest := 40 samples, i.e., 10 samples for each one of the 4 configurations (1 healthy and765

3 damaged), compose the test set. In both cases, each one of the 10 samples is obtained by solving the766

high fidelity problem with different input parameters µ. Tables 2 and 3 show, for each type of damage, the767

fraction of test samples classified as outliers, i.e., with an anomaly score greater than 1, while the mean values768

for each damaged configurations are shown in Figures 12 and 13, for the 2D and 3D problems, respectively.769

Sensors whose average anomaly score is greater than 1 are represented with red markers, while blue markers770

identify the sensors with average anomaly score smaller than 1. For visualization purposes, we introduce an771

arbitrary value to additionally differentiate between strong and mild outliers; i.e., strong outliers are those772

with mean anomaly score greater or equal than 2, while mild outliers have mean anomaly score greater than773

or equal to 1, but smaller 2. Strong outliers are represented with red squares, while mild outliers with red774

asterisks in 2D and red semi-spheres in 3D.775

We observe that, both in 2D and 3D, on average, damages are always detected, i.e., at least one sensor776

is classified as outlier if the structure is damaged, and that, in most of the cases, damages are close to the777

sensors that are classified as strong outliers. Even if not reported in Figure 12, all sensors of 2D healthy778

configuration are, on average, classified as inliers, while the average result for the 3D healthy configuration779

(Figure 13 a) presents 1 misclassified sensors. In general, the 3D results present a slightly higher false alarm780

rate than the 2D problem, even though it is still possible to identify a macro-region where the damage is781

located (see Figure 13).782

The relative position of source, sensors and damage is important to successfully use this approach to783

locate the damage. Indeed, in 2D, for the major damages (a, c, d, i), only the sensor “behind” the damage784

are classified as outliers, allowing for localization. Instead, with the 2D damage (b) positioned too close785

to the source, 11 out of 15 sensors are, on average, classified as outliers, thus preventing localization. A786

similar behavior is observed in the 3D results. The combination of solutions obtained with different active787

sources at different locations is likely to address this issue. For example, we refer to [53], where piezoelectric788

transducers are used as both sensors and actuators for Lamb wave propagation. In this work, once the789

damaged path-ways between each couple of sensor/actuator have been determined, the location of damages790

is identified with the regions with higher number of intersecting damaged pathways. Alternative solutions791

are reported in [16].792

6. Conclusion793

We propose a data-driven approach for SHM which leverages the physics-based representation of the794

structure of interest. From a mathematical standpoint, the goal of data-driven approaches is classification,795
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Figure 12: Sketch to summarize of the one-class classification average results on test data for 9 damaged configurations. Red
filled squares correspond to sensors classified as outliers with an average score fNtr

i ≥ 2 (strong outliers), red asterisks to sensors

classified as outliers with an average score fNtr
i ∈ [1, 2[ (mild outliers), and blue empty circles to sensors classified as inliers,

i.e., with an average score fNtr
i < 1. The black triangles labeled with the letter S indicate the source position. For all types of

damages we can identify at least one sensor classified as a outlier. With the exception of damage (b), a clear proximity between
the location of the damages and the sensors classified as outliers can be observed. The position of the source plays an important
role in classification and therefore, to localize damage (b), the source should be placed differently. For major damages (a, c, d),
3 to 4 sensors are classified as strong outliers and at most 1 as as mild outlier with a maximum total of 5 sensors classified as
outliers. For minor damages (e, f, g, h) from 1 to 3 sensors are classified as outliers. For the combined damage (i) 7 sensors are
classified as strong outliers and 1 as mild outlier.
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as opposed to model-based approaches where the goal is to solve an inverse problem and estimate the796

(unknown) input parameters.797

Damage detection and localization is carried out on a sensor-by-sensor basis by constructing synthetic798

training data emulating the sensor response of the structure to active sources, i.e., we analyze the structural799

response to the propagation of guided waves. These training databases are constructed offline by repeatedly800

solving PDEs in the frequency domain for different input parameters and by exploiting MOR techniques801

for speedup. The reconstruction of time signals is carried out using the Weeks method, a numerical inverse802

Laplace transform. The set of input parameters used to generate the dataset represents the natural variations803

of the structure, i.e., the environmental and operational conditions, and provides the baseline variability.804

After extracting damage-sensitive engineering-based features from the raw discrete signals, we employ one-805

class classifiers, the OC-SVM algorithm, to compare the healthy training dataset with new blind test data.806

The latter are obtained by extracting the same features from high-fidelity signals obtained by solving the807

PDEs for unseen input parameters and by possibly modifying the geometry to include cracks of different808

sizes and at different locations. Noise is added to the test signals to emulate the unknown experimental809

sensor response.810

This approach is successful in both detecting and localizing damages for 2D and 3D digital twins test811

problems. The method is highly generalizable to other examples and more realistic experiments will be812

carried out within a laboratory environment to validate our approach. We observe that, using active sources,813

localization is possible only for damages which are sufficiently far from the source. To address this limitation,814

we will investigate the possibility of introducing a network of sources placed at different locations. The source815

location could be used as additional input parameter to construct the RB model and the combination of816

different classification results could help gain insight on damages on the entire domain. Moreover, the offline-817

online decoupling of tasks and the MOR techniques allow us to compute the sensor response under different818

operational and environmental conditions in a fast and inexpensive manner. By exploiting this advantage,819

we aim to study the optimal placement of sensors needed to both retrieve maximum information about820

the potential structure damages and guarantee a robust network of sensors, which aims to maintain the821

stability of the network even when some sensors malfunction. Finally, alternative passive periodic sources,822

mimicking the effect of tides or wind, could be integrated in the model by replacing the Laplace transform823

with the Fourier transform. In this case, the features used as damage-indicators would need to be adapted or824

alternative anomaly detection strategies like the autoencoders should be employed to automatically identify825

the underling characteristics of healthy signals.826
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Figure 13: Sketch to summarize the geometries of the 4 configurations used in the test set for the 3D problem, together with
the one-class classification average results. For each configuration, sensors represented by red squares indicate that the mean
classification score is above 2 (i.e., the sensor is classified as strong outlier on average), red semi-spheres indicate sensors classified
as mild outliers, , i.e. with mean anomaly score between 1 and 2, and blue semi-spheres represent sensors classified as inliers,
i.e. with mean anomaly score below 1. The green larger semi-sphere indicates the source position. The left and right plots
show the front (z = 0) and rear (z = 0.1) of the 3D configurations. For the damaged configurations, a correlation between
sensors classified as outliers and location of damage can be identified. A low false positive error is observed for both the healthy
and damaged configurations: 1 sensor is misclassified in the healthy configuration a and few sensors, far from the damages, are
mistakenly classified as mild outliers, especially for the damaged configuration d.
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Sensor Healthy Damage Minor Damage
(a) (b) damage (c) (d)

1 0 0 0.2 0
2 0 0 0.1 1
3 0 0 0 1
4 0 0 0 0
5 0.4 0 0 1
6 0 0 0 1
7 0 0 0 0
8 0 1 0.3 0
9 0 1 1 1
10 0 0 0 0
11 0 0.1 0 0
12 0 0 0 1
13 0 0 0 0.6
14 0 0 0 0
15 0 0 0 0
16 0 0 0 0
17 0 0 0.3 1
18 0 0 0 1
19 0 0.3 0 0
20 0 0 0 0
21 0 0.3 0 1
22 0 0 0 0
23 0 0 0 0
24 0 1 1 0
25 0 0 0 0
26 0 0 0 0.9
27 0 1 0 1
28 0 0 0 0.6
29 0 0 0 0
30 0 0 0 0
31 0 0 0 0.2
32 0 0 0.3 1
33 0 0 0 0
34 0 0 0 0.3
35 0.6 0 0 0
36 0 0 0 0
37 0 0 0 0
38 0 0.3 0 0.1
39 0 0 0 0
40 0 1 0 0
41 0.7 0 0 0
42 0 0 0 1
43 0 0.4 0 1
44 0 1 0 1
45 0 1 0.8 1
46 0.6 0 0.1 0

Table 3: Fractions of test samples for the 3D problem classified as outliers (i.e., with anomaly score (50) greater than 1) for
the healthy configuration and the 3 damaged configurations (see Fig. 13). A set of 10 uniformly sampled input parameters
{µ?m}10m=1 ∈ P is used to construct 10 test samples per configuration.
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