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Abstract

We propose a non-intrusive reduced basis (RB) method for parametrized nonlinear partial differential equa-
tions (PDEs) that leverages models of different accuracy. The method extracts parameter locations from a
collection of low-fidelity (LF) snapshots for the efficient creation of a high-fidelity (HF) reduced basis and
employs multi-fidelity Gaussian process regression (GPR) to approximate the combination coefficients of the
reduced basis. LF data is assimilated either via projection onto an LF basis or via an interpolation approach
inspired by bifidelity reconstruction. The correlation between HF and LF data is modeled with hyperpa-
rameters whose values are automatically determined in the regression step. The proposed methods not only
leverage the assimilated LF data to reduce the cost of the offline phase, but also allow for a fast evaluation
during the online stage, independent of the computational cost of neither the low- nor the high-fidelity solu-
tion. Numerical studies demonstrate the effectiveness of the proposed approach on manufactured examples
and problems in nonlinear structural mechanics. Clear benefits of using lower resolution models rather than
reduced physics models are observed in both the basis selection and the regression step. An active learning
scheme is used for additional snapshot selection at locations with high error. The speed-up in the online
evaluation and the high accuracy of extracted quantities of interest makes the multifidelity RB method a
powerful tool for outer-loop applications in engineering, as exemplified in uncertainty quantification.

Keywords: multifidelity methods, non-intrusive reduced order modeling, Gaussian process regression,
vector-valued machine learning, nonlinear structural analysis

1. Introduction1

In recent years, computer-aided engineering (CAE) has become an increasingly important tool in the de-2

sign, assessment and maintenance of engineering systems across a broad range of industries such as aerospace,3

offshore and automotive engineering. Simulations that rely on parametrized partial differential equations4

(PDEs) are increasingly used to replace physical experiments in applications for structural or performance5

optimization [9] and reliability analysis [19]. A large number of model evaluations is generally required6

to fully explore the parameter space, and engineers often face a trade-off in their design of experiments:7

accurately resolving the phenomena of interest versus obtaining the desired result with a limited budget of8

resources and time constraints.9

As highly accurate models induce a high cost in terms of both computational time and memory, their10

repeated evaluation is often infeasible for application domains which involve many queries. Computationally11

cheaper low-fidelity (LF) models can be generated by reducing either the accuracy of the computational12

model, e.g. using a coarser mesh, or by simplifying the underlying physical model, e.g. linearizing the13
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governing equations, or using simplifying assumptions such as 1D beam models for frame components [4].14

While the gain in speed-up can be significant when the LF model replaces the high-fidelity (HF) model, the15

accuracy of and confidence in model predictions generally suffer as a consequence of the simplifications [25].16

To address this, a significant amount of work has been invested into deriving cheap reduced models17

based on the original HF setup. Reduced basis (RB) modeling [16, 27], which projects the original governing18

equations onto a reduced basis extracted from a set of HF snapshots, is one of the most prominent candidates19

in this category. Such reduced models exploit the intrinsic similarities between the simulation outcomes at20

different parameter values and operate in an offline-online framework. While the RB schemes have been21

demonstrated to work well on linear problems, nonlinear problems often require dedicated and intrusive22

treatment of both nonlinearities and non-affine dependency on the parameters to achieve significant speed-23

up [8, 23]. Recently, the combination of a reduced basis with a data-driven machine learning model for the24

reconstruction of the solutions has resulted in a non-intrusive approach [12, 13, 17], which does not require25

a modification of the original HF solver and can been extended to incorporate physical constraints such as26

boundary conditions [28] and continuity [31]. However, for general nonlinear problems, these techniques27

often require a higher number of model evaluations to construct a reliable surrogate in the first place. In28

this work, we propose an extension to this non-intrusive approach that reduces the number of HF solutions29

by leveraging a large number of LF solutions.30

In the case of a single quantity of interest (QoI), multifidelity (MF) methods, which fuse models of31

different accuracy levels currently, have received substantial attention. The ultimate goal of such MF32

methods consists in reducing the cost of the outer loop application, while maintaining an acceptable accuracy33

in the computation of QoIs via a careful combination of information from the different models. MF methods34

have been successfully applied to importance sampling [24], subset simulation [29] and a variety of Monte35

Carlo techniques [26]. We refer to [25] for a comprehensive overview of MF techniques.36

We conjecture that there can be a significant gain in flexibility by first constructing a general, accurate37

surrogate model for the parametrized solution field of the governing PDE system before the QoIs are explored.38

Particularly in situations where the solution field exhibits better continuity properties than the QoI itself, it39

may be more feasible to reconstruct the smooth solution and then apply the discontinuous operator to extract40

the QoI. Consider, for example, the location of maximum stress in a structure: while the stress field changes41

smoothly throughout the parameter domain, the location of the maximum stress might jump between42

two or several critical points. Access to a general surrogate also allows to explore parametric dependence43

a posteriori; i.e., for different parameter distributions, the correlation between outputs and sensitivities44

can be investigated with the same surrogate model. One example of this is bifidelity reconstruction [20],45

which has emerged as a popular technique which has proven its success in the computation of statistical46

moments of some QoIs [32]. Recent efforts have been extended to construct an estimator for an upper error47

bound [14]. Yet, the online phase of bifidelity reconstruction continues to scale with the evaluation cost48

of the LF model. As an alternative, we propose a regression-based approach that uses Gaussian processes49

(GPs) [30], which decouples the model evaluation in the offline phase and the fast solution recovery in the50

online phase. We point out the contribution in [2], which first proposes a combination of MF Gaussian51

process regression (GPR) and a reduced basis to reconstruct the solution field and provides initial results52

on simulated aerodynamic flow for a small set of design points.53

In this paper, we propose techniques for ROMs of parametrized nonlinear PDEs which exploit the54

multifidelity setup in two ways, first in the reduced basis construction and secondly in the Gaussian process55

regression for the solution construction in the reduced basis space. In Section 2, we briefly state the problem56

setup together with a typical case in nonlinear structural analysis. In Section 3, we propose an algorithm57

for the construction of a MF reduced basis, that leverages a rank revealing QR decomposition on the LF58

solution snapshots to select salient parameter points for the HF basis. We further discuss the challenges59

of assimilating LF data so that it can be used in conjunction with the HF basis. Section 4 focuses on60

the multifidelity regression approach that enables the online-offline decoupling. We use an autoregressive61

formulation [22] to train GPs on both HF and LF data to learn the mapping between parameters and the62

RB expansion coefficients. In the online phase, the trained GP models are used to predict the expansion63

coefficients at unseen parameter combinations, to allow for a fast recovery of an (approximate) reduced64

order solution. We also discuss the challenges of sparse HF data and cost-concious HF snapshot selection65
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through an active learning criterion. In our numerical studies in Section 5, we first focus on a manufactured66

1D example to illustrate salient features of the developed techniques and compare the performance of single67

and multifidelity regression. We then proceed to cases from structural solid mechanics and fluid-structure68

interaction in 2D with two or three parameters. Conclusions are drawn in Section 6.69

2. Problem statement70

In this work, we consider parametrized nonlinear problems of the following form:71

N [u(X;µ);µ] = g(X;µ) , (X,µ) ∈ ΩX × Ωµ , (1)

where µ is the parameter vector with its variation over the parameter domain Ωµ, X is the space coordinates,72

u(µ) = u(X;µ) denotes the parameter-dependent solution field defined in the spatial domain ΩX , N [·;µ]73

is a nonlinear operator, and g is the source term.74

In this work, the discrete solution to (1) for a given parameter value µ is obtained with a finite element75

(FE) method on a discrete function space Vh, spanned by basis functions φi(X), i = 1, 2, · · · , Nh, with76

Nh being the number of degree of freedoms (DOF). The proposed methods are also applicable to other77

computational solvers that rely on domain discretization. In the following, it is assumed that we can78

compute an approximate FE solution uh(X;µ) ∈ Vh of the nonlinear problem at any location X ∈ ΩX and79

any parameter sample µ ∈ Ωµ. The FE solutions uh are expressed in terms of the basis functions as80

uh(X;µ) =

Nh∑
i=1

(uh(µ))iφi(X). (2)

Note that Nh is also the dimension of the expansion coefficient vector uh(µ) ∈ RNh .81

We are ultimately interested in the reconstruction of specific QoIs that depend on the recovered solution
field u, defined by a functional f as QoI = f(u), such as the maximum stress, displacement at critical
points, etc. For reliability analysis, one often computes an expected value E[QoI] or a probability to exceed
a threshold value tQoI, P(QoI > tQoI), for a given parameter distribution. Typically these quantities are
estimated with a Monte Carlo (MC) method, which requires a large number of evaluations at distinct
parameter values µ(j), j = 1, 2, · · · , NMC. We use the standard MC estimator IMC given by

IMC =
1

NMC

NMC∑
j=1

f(uh(µ(j))). (3)

To exemplify the application area for our developed method, we shortly discuss a typical problem from
nonlinear structural analysis. As shown in Figure 1, the loading force and stiffness of certain structural
components depend on a parameter vector µ ∈ Ωµ. Applying the principle of virtual work and specifying
appropriate Dirichlet boundary conditions leads to the governing equation in the variational form:∫

ΩX

S(u(µ);µ) : DvE(u(µ);µ)dΩ =

∫
ΩX

b(µ)TvdΩ +

∫
ΓN

t(µ)TvdΓ , ∀v ∈ V . (4)

with the second Piola-Kirchhoff stress tensor S, the Lagrangian strain tensor E, the body forces b and
tractions t on the Neumann boundary ΓN. The Lagrangian strain tensor E(·) evaluates the change in
length between two physical points in space and is defined as a nonlinear operator as

E(u) =
1

2

(
(∇Xu)T + ∇Xu+ (∇Xu)T∇Xu

)
. (5)
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Figure 1: A motivating example from structural mechanics. A frame is loaded from above and experiences large deformations,
so that linear strain assumptions no longer hold. The principle of virtual work leads to a nonlinear PDE which is solved
numerically with the FE method. The loading force and stiffness of selected domains depend on a parameter vector µ.

The small strain tensor ε(·),

ε(u) =
1

2

(
(∇Xu)T + ∇Xu

)
, (6)

replacesE(·) to simplify calculations for the linearized LF model “lin80p2”. However, such an approximation
only provides valid results for small deformations. To link the strains to the corresponding stresses S, we
use the hyperelastic constitutive laws that consider nonlinearities in the material response [4, 18], such as
the Saint Venant-Kirchhoff material model in terms of the Young modulus E and the Poisson ratio ν:

SVK =
Eν

(1 + ν)(1− 2ν)
tr(E)I +

E

(1 + ν)
E, (7)

where tr(·) denotes the trace operator.82

We generally use second order Lagrange polynomials (“p2”) for the elementwise approximation, whereas83

the most coarse LF model (“nl10p1”) only uses linear basis functions. The governing equations are im-84

plemented in FeniCS [3] and the nonlinear variational problem is solved with an iterative Newton method.85

The HF model (“nl80p2”) is simulated by adopting 80 p2 elements per domain. We further have access to86

solutions of varying accuracy by either linearizing the equations (“lin80p2”), reducing the resolution of the87

FE mesh (“nl20p2”) and/or using a lower polynomial order for the basis functions (“nl10p1”), see Figure 188

for a comparison of the computed deformations.89

3. Efficient construction of a reduced basis90

3.1. Classic approach via proper orthogonal decomposition (POD)91

Ideally, we seek to accurately capture the analytic solution manifold M = {u(µ) : µ ∈ Ωµ} of the
parametrized problem. This is clearly unavailable and we can only compute approximations of a discretized
counterpartMh = {uh(µ) : µ ∈ Ωµ}. However, evenMh generally cannot be explored fully, as we can only
evaluate a finite number of solutions uh(µ(i)), often referred to as ”snapshots”. Given a discrete point-set
Θ = {µ(1),µ(2), ...,µ(Ns)}, which contains |Θ| = Ns parameter samples, one computes only Ns evaluations
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of the form uh(µ(i)). This defines a subspace of the solution manifold Mh as

MΘ = span{uh(µ(1)),uh(µ(2)), ...,uh(µ(Ns))} ⊂ Mh ⊂ Vh. (8)

For a sufficiently fine sampling set Θ, we conjecture that MΘ accurately represents the solution manifold.92

In reduced order modeling, one aims to exploit the low-dimensional structure that the solution manifold
M often exhibits for parametrized PDEs, i.e., we seek a set of basis functions {ψ1,ψ2, ...,ψL}, with L� Nh,
which span a subspace of Mh. We aim to exploit this low-rank structure of the snapshot matrix S, that
collects the vectors uh(µ(i)) in its columns:

S =
[
uh(µ(1)) | uh(µ(2)) | ... | uh(µ(Ns))

]
. (9)

To construct a low-rank basis, the POD employs the singular-value decomposition (SVD) of the snapshot
matrix S, i.e.

S = UΣZT , (10)

where U and Z are unitary matrices, and Σ is diagonal with the singular values σ1 ≥ σ2 ≥ · · · in a non-93

increasing order. For numerical stability and/or to reduce the cost, one may also first construct the Gramian94

G = STS and compute the eigenvalue decomposition [20].95

Let Yk = {W ∈ RNh×k : WTW = Ik} be the set of all k-dimensional orthogonal bases of S. We further
denote by σk(S) = σk the kth largest singular value of S. The Schmidt-Eckart-Young theorem states that
the first k columns of U minimize the projection error among all W ∈ Yk: V = U [:, : k], i.e., the projection
error in the Frobenius norm can further be recovered as

min
W∈Yk

∥∥S −WWTS
∥∥2

F
=
∥∥S − V V TS∥∥2

F
=

Ns∑
i=1

∥∥∥uh(µ(i))− V V Tuh(µ(i))
∥∥∥2

2
=

Ns∑
i=k+1

σ2
i , (11)

where ‖ ·‖2 denotes the Euclidean norm, i.e., ‖a‖2 =
√

aTa, with a ∈ Rn and n ∈ N. Hence V is the optimal96

k-rank approximation of Mh based on the snapshots collected in S.97

3.2. Rank revealing QR decomposition for a multifidelity basis98

As a single HF snapshot uh(µ(i)) of the parametrized problem is costly to evaluate, the optimal basis99

V = U [:, : k] of size k of the POD is often unavailable since we cannot afford to sample the parameter100

space finely enough to ensure that MΘ ≈ Mh. Instead, we seek a set Θk of cardinality k ≤ rank (S),101

which contains ”optimal” parameter locations, so that the corresponding snapshots allow us to construct a102

sufficiently close approximation to MΘk
≈ Mh and, consequently, a good basis. To reduce the complexity103

of choosing the sampling points {µ(i)}ki=1, we restrict the search to the discrete set of candidate parameters104

Θ. When we have access to the snapshots for all elements in Θ, i.e. the original S, this task is known in the105

literature as the Column Subset Selection Problem (CSSP), which is likely NP-hard [6].106

In this work, we will approximately solve the CSSP on a LF snapshots matrix SLF. Such approaches have107

become popular for bifidelity reconstruction [14, 20], which exploits solutions of LF models to reconstruct108

interpolatory HF solutions. Instead of assembling HF snapshots SHF, we assemble the cheaper SLF and109

select the most important parameter locations by approximately solving the CSSP for SLF with a rank110

revealing QR decomposition (RRQR). Clearly, the quality of such an approach will depend on how well111

SLF reflects the structure of SHF and our numerical studies will asses how this substitution influences the112

projection error of the multifidelity basis.113

The first algorithm for a rank revealing QR decomposition of a matrix S was proposed in [7]. It is a
modified variant of the Householder QR factorization procedure and computes a factorization QR and a
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column pivoting P such that

Spivoted = SP = QR =
[
Q1 Q2

] [R11 R12

R22

]
, (12)

and the absolute values of the diagonal entries of the upper triangular matrix R are non-increasing. Here114

the matrices Q and P are products of Householder matrices and interchange matrices respectively, i.e., in115

each QR step, the columns are pivoted so that the first columns are maximally linearly independent. As a116

side product, this procedure also determines the rank of S via the numbers of pivots. We select k ≤ rank(S)117

snapshots of S according to the ordering of the pivoting P and assemble a smaller matrix Sk = Q1R11,118

which contains the first k columns of Spivoted. Note that rank(Sk) = k.119

Only then do we perform an SVD on Sk as

Sk = UkΣkZ
T
k , (13)

where the first k columns of Uk form the best orthonormal basis Uk[:, : k′] of Sk in a least squares sense for120

k′ ≤ k. Taking the reduced basis as V = U [:, : k], it is easy to demonstrate that the projection error of the121

snapshots S onto the reduced space spanned by V can be given as122 ∥∥S − V V TS∥∥
ξ

= ‖R22‖ξ, (14)

with ξ ∈ {2, F} representing either the spectral norm or the Frobenius norm, i.e., the projection error123

depends on the norm of the the residual triangular factor R22 and we do not introduce a projection error for124

the k snapshots. Algorithm 1 summarizes the proposed algorithm in the bifidelity case. For our numerical125

experiments, we rely on the linear algebra package of scipy to perform the RRQR (scipy.linalg.qr(..)),126

which provides the desired properties for the considered snapshot matrices.127

Algorithm 1 Construction of a bifidelity basis

Input: Parameter range P = [µmin,µmax], cut-off tolerance for rank εrank, maximum size k of basis.
Output: An orthonormal basis VHF of size at most k

1: Evaluate LF at snapshot locations µ ∈ Θ, with Θ ⊆ P sufficiently fine, form the snapshot matrix SLF

with {u(µ) : µ ∈ Θ} as column vectors.
2: Compute a rank revealing QR decomposition: SLFP = QR with εrank as stopping criterion.
3: Select min(k, rank(SLF)) snapshot locations in Θ according to the ordering induced by P : ΘLF

k ⊂ Θ.
4: Evaluate HF for the parameters in ΘLF

k and construct the snapshot matrix SHF.
5: Compute a POD, SHF = UΣZT , and set VHF = U [:, : rank(SHF)].

3.3. Approximating the solution in the reduced basis space128

For a given HF solution uHF(µ) and a HF basis VHF of rank k, we perform the projection onto the129

reduced space at an algebraic level and express the reduced order solution uRB
HF(µ) in functional form:130

uRB
HF(µ;X) =

Nh∑
i=1

(VHFV
T
HFuHF(µ))iφi(X)

=

k∑
l=1

((
V THFuHF(µ)

)
l

Nh∑
i=1

(VHF)ilφi(X)

)

=

k∑
l=1

(
V THFuHF(µ)

)
l
ψl(X) =

k∑
l=1

(cHF(µ))lψl(X) (15)
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We observe that (15) leads to a reduced function space spanned by the basis functions ψl =
∑Nh

i=1(VHF)ilφi,131

1 ≤ l ≤ k, and the projection/combination coefficients are collected in cHF(µ) = V THFuHF(µ).132

Note that the algebraic projection in (15) is not identical to the projection of the original solution uRB
HF(µ)133

onto the new basis functions ψl with respect to the L2 inner product, i.e., VHF[:, l]TuHF 6= 〈ψl,uRB
HF〉, where134

〈·, ·〉 denotes the L2 inner product as135

〈a(X), b(X)〉 =

∫
Ω

a(X)b(X)dX , a, b ∈ Vh , (16)

and the corresponding L2 norm ‖ · ‖L2 is defined as ‖a‖L2 =
√
〈a,a〉, a ∈ Vh. Moreover, we can also136

characterize the mass matrix M of the discrete space as137

Mij = 〈φi,φj〉 , 1 ≤ i, j ≤ Nh . (17)

Following [17], the L2 error between the truth and the reduced solution functions is bounded as∥∥uHF − uRB
HF

∥∥2

L2 = 〈uHF − uRB
HF ,uHF − uRB

HF〉 =
(
uHF − VHFV

T
HFuHF

)T
M
(
uHF − VHFV

T
HFuHF

)
(18)

=
∥∥∥M1/2

(
uHF − uRB

HF

)∥∥∥2

2
≤ ‖M‖2

∥∥uHF − uRB
HF

∥∥2

2
, (19)

i.e., the spectral norm of the mass matrix influences the quality of the approximated solution in the reduced138

space. Numerical studies in [17] show that (18) converges in unison with the algebraic projection error.139

3.4. Generating LF coefficients for the HF basis140

For the MF basis algorithm, we only require that the LF model captures the fundamental parametric141

dependence of the HF model. We now discuss how the RB solutions uRB
LF (µ) and the expansion coefficients142

cLF(µ) of the low fidelity are related to the corresponding quantities of the high fidelity, uRB
HF(µ) and cHF(µ).143

We denote by ϕi the LF basis functions, so that {ϕi}
NhLF
i=1 span the LF function space VhLF

. Furthermore,144

let VLF denote the matrix form of the reduced basis of the LF.145

3.4.1. Nested function spaces146

When VhLF
⊆ VhHF

, we can express the link between the HF and LF model via an analytical correction
term uδ, i.e.

uHF(µ) = uLF(µ) + uδ(µ) , (20)

in which the LF solution can be written in the following form since VhLF
⊆ VhHF

:

uLF(µ) =

NhLF∑
i=1

(uLF(µ))iϕi =

Nh∑
j=1

(ûLF(µ))jφj , (21)

where uLF and ûLF collects the combination coefficients of the LF and HF basis functions, respectively.147

Thus we can algebraically project the correction term onto the HF reduced space as148

uRB
δ =

k∑
l=1

(V THF(uHF − ûLF))lψl . (22)

Moreover, we have that

〈uLF,φj〉 =

NhLF∑
i=1

(uLF(µ))i〈ϕi,φj〉 =

Nh∑
l=1

(ûLF(µ))l〈φl,φj〉 , 1 ≤ j ≤ Nh, (23)
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and we recover a system of linear equations

M ûLF = TuLF , (24)

where the entries of T ∈ RNh×NhLF correspond to the inner products between the basis functions, i.e. their149

correlations150

Tjk = 〈φj ,ϕk〉 , 1 ≤ j ≤ Nh , 1 ≤ k ≤ NhLF . (25)

Combining (22), (24) with (15) allows to express the correction term explicitly as

uRB
δ (µ) =

k∑
l=1

[
V THF

(
uHF(µ)−M−1TuLF(µ)

)]
l
ψl =

k∑
l=1

[
(cHF(µ))l −

(
V THFM

−1TuLF(µ)
)
l

]
ψl . (26)

If uRB
δ (µ) is known for all µ ∈ Ωµ, it can be used as a ”bridge function” between HF and LF. This idea will151

play an important role in the proposed multifidelity regression scheme.152

3.4.2. Generic function spaces153

When the LF and HF models belong to two different spaces Vh and Vh′ , which may not even represent
discretizations on the same physical domain, we loose this direct link between the LF and HF RB coefficients,
expressed in (20). A straightforward workaround, as used in [2], consists of projection onto a corresponding
LF basis

cLF = V TLFuLF . (27)

It is clear that cLF still contains information about cHF. However, the question remains of how to best154

extract this information, especially if VLF and VHF do not have the same rank. In [2], the two coefficient155

vectors are matched entry-wise. However, it is not guaranteed that VLF and VHF actually represent the same156

RB modes in the same order, so that a mismatch between the expansion coefficients may occur, e.g. if the157

modes of the LF model do not carry the same energy as the corresponding modes of the HF. In such a case,158

no useful information can be extracted from the LF model. This is an issue that will be addressed once we159

introduce our information fusion scheme in the regression step. As an alternative, bifidelity reconstruction160

[20] provides an excellent tool as a lifting operator between LF and HF data. We propose a two step161

procedure as follows.162

Consider G = (Sk)TLF(Sk)LF, the Gramian of the LF snapshot matrix (Sk)LF of size k selected via rank
revealing QR. We use the corresponding HF snapshots (Sk)HF to perform a bifidelity reconstruction in a
least squares sense as follows:

ĉLF = G−1(Sk)TLFuLF , (28)

ûLF↗HF = (Sk)HFĉLF , (29)

in which ĉLF collects the combination coefficients of the HF snapshots (Sk)HF, and ûLF↗HF denotes the
reconstruction of the solution vector with the HF size. In the second step, one projects onto the HF basis
VHF:

cLF↗HF = V THFûLF↗HF . (30)

These coefficients provide an alternative to (27) and do not suffer the risk of mismatching the basis modes.163

In the following, we refer to the strategy in (27) as ”L-proj” and to the two step lifting approach of (30)164

as ”LH-interp”. When either of these strategies are used in conjunction with the HF basis, we recover165

a bifidelity reconstruction approach as described in [20]. We propose an additional regression step that166

decouples the online phase from the LF model and automatically determines a correction between HF and167

LF coefficients in the spirit of the analytic case in (26).168
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4. Multifidelity solution reconstruction169

Let us now discuss how to recover the HF coefficients for fast RB solution construction. In [12] and [17]170

regression techniques for supervised learning are used to approximate the mapping between parameters and171

HF coefficients. However, both the Gaussian process regression (GPR) in [12] and the training of the Neural172

Network in [17] require a large number of HF model evaluations, i.e., if we employ a similar approach, we173

loose the advantage of having consciously constructed a basis with very few HF evaluations.174

Instead, we propose to extend the work in [12] by a second layer of fidelity, so that the GPR can leverage175

the LF data to efficiently ”learn” the trend of the HF data in the offline phase. We thus seek to effectively176

reduce the number of HF evaluations, while still guaranteeing a desirable accuracy.177

4.1. Review of the GPR based RB approach178

Offline phase:179

As the RB basis is orthogonal, we train an individual regression model for each RB expansion coefficient,
i.e., we represent each entry of the mapping π(µ) : µ→ (cHF) as an independent GP f with mean function
m(x) and kernel kθ(x,x′) with hyperparameters θ, following [12]:

f ∼ GP(m(x), kθ(x,x′)).

To obtain the input training data for the GPR, we evaluate the model at a large set of parameter vectors X =
{µ(i)}Ntrain

i=1 , and assemble the corresponding solution snapshot matrix Strain, where X may overlap/coincide
with the parameter set Θ of the basis generation. The RB expansion coefficients, as defined in (15), can
then efficiently be computed in matrix form:

CHF =

c
(1)
row

...

c
(k)
row

 = V THFStrain. (31)

Each GPR uses one row of CHF as training input f(X)(j) =
(
c

(j)
row

)T
. For a reduced basis of size k, one

thus trains exactly k GPR models π(j) := f (j), 1 ≤ j ≤ k. The corresponding kernel hyperparameters
θ(j) are found with a maximum likelihood estimate (MLE) of the data [12, 30]. We use the mean of the
GP, conditioned on the observed data {X, f(X)}, to predict π(µ)(j) at unobserved parameter locations
X∗ = {µ(l)}Nnew

l=1 :

f(X∗)|X, f(X) ∼ GP (m∗(X∗),K∗(X∗, X∗)) , (32)

m∗(X∗) = Kθ(X∗, X)TK
(j)
θ (X,X)−1f(X)(j) = Kθ(X∗, X)Tα. (33)

For efficient prediction in the online phase, we save only the factors α(j)

α(j) = K
(j)
θ (X,X)−1f(X)(j), for 1 ≤ j ≤ k. (34)

Online phase:180

To reconstruct the full RB solution uRB(µ∗) online, we first evaluate the approximate mapping at the
new location µ∗

π̂(µ∗)(j) = K(j)({µ∗}, X)Tα(j), for 1 ≤ j ≤ k, (35)

and then employ the RB expansion coefficients to recover the discrete solution vector of the original function
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space ûRB(µ∗) = V π̂(µ∗), so that the RB-GPR solution is found as

uRB(µ∗) ≈ ûRB(µ∗) =

Nh∑
i=1

ûRB(µ∗)φi =

Nh∑
i=1

k∑
j=1

Vij π̂(µ∗)(j). (36)

4.2. Multifidelity Gaussian process regression181

GPR with inputs from different levels of accuracy is known in the literature as cokriging, multi-output182

or vector-valued learning [1, 5]. Since HF data tends to be more sparse than LF data, we consider the183

heterotopic data case, i.e., we do not necessarily observe the same locations for both fidelity levels. We184

continue to train a separate regression model for each mapping entry, and limit our discussion to learning185

a single HF mapping entry f1 = f
(j)
HF = π̂HF(µ)(j), for which we have access to a LF coefficient mapping186

f2 = f
(j)
LF = π̂LF(µ)(j) for a given j. Once each f

(j)
HF is trained, solution reconstruction follows (36), i.e., the187

online phase remains essentially identical.188

4.2.1. The Linear Model of Coregionalization as a generalization of AR(1)-cokriging189

In the simplest form of AR(1)-cokriging [22], the Gaussian process f1 of the HF data split into one part
that is correlated with f2 via a constant correlation parameter ρ and a correction part, sometimes also called
a ”bridge function” [15]:

f1(µ) = u1(µ) + ρu2(µ) (37)

f2(µ) = u2(µ). (38)

We refer to [22] for a precise discussion of the assumptions on the data that leads to this hierarchical form of
the correlation. To generalize to other forms of correlation between multiple levels, we write the equations
of cokriging in terms of the ”linear model of coregionalization” (LMC) [1]. In the LMC with D components,
each component fd is expressed as a linear combination of independent random functions uq:

fd(µ) =

Q∑
q=1

ad,quq(µ). (39)

For the class of ”sum of separable” (SoS) kernels, the cross-covariance of two composite functions fd and

f ′d is defined by a matrix valued kernel of the form K(µ,µ′) =
∑Q
q=1Bqkq(µ,µ

′), whose entries can be
constructed from the definition in (39):

cov[fd(µ), fd′(µ
′)] = (K(µ,µ′))d,d′ =

Q∑
q=1

ad,qad′,qkq(µ,µ
′), (40)

Nearly all results of the scalar GP case have a direct multidimensional equivalent, found by introducing the
notion of a matrix valued kernel:

f ∼ GP(m(µ),K(µ,µ′)). (41)

Given N data points, collected into an information set S where we have the full information of all D
components, we collect the data in an ND output vector ȳ. Inference at a new point µ∗ can be performed
in vector form, i.e., simultaneously for all components:

f(µ∗)|S, f ∼ N (m∗(µ∗),K∗(µ∗,µ∗)) , (42)
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with the posterior mean vector and covariance matrix given by

m∗(µ∗) = K({µ∗},X)T (K(X,X) + Σ)
−1

ȳ, (43)

K∗(µ∗,µ∗) = K(µ∗,µ∗)−K({µ∗},X)T (K(X,X) + Σ)
−1

K({µ∗},X). (44)

Here Σ = Σ◦IN incorporates the component-wise noise and K({µ∗},X) ∈ RD×ND has entries K(µ∗,µj)d,d′190

for 1 ≤ j ≤ and 1 ≤ d, d′ ≤ D. Note that for a concise notation, we dropped the dependence on the191

hyperparameters and give the expression for a single data point µ∗, while (33) considered a set of data192

points X∗. For the implementation of (43) and (44), as well as the precise formulations of the heterotopic193

case, we refer to [1] and [11].194

4.2.2. The two-level and three-level case195

A two-level hierarchy:196

Setting Q = 2, a1,1 = 1, a1,2 = ρ, a2,1 = 0, a2,2 = 1, we recover (37), where u1 and u2 denote two
independent Gaussian processes, each with their own kernel and hyperparameters. The cross-covariance for
the AR(1)-cokriging is simply (K(µ,µ′))1,2 = ρk2(µ,µ′), i.e., it is described by the correlation parameter ρ
and the properties of the LF GP kernel. The matrices Bq are thus:

B1 =

[
1 0
0 0

]
, B2 =

[
ρ2 ρ
ρ 1

]
. (45)

We use the software package GPy [11] as it conveniently implements the co-regionalization models. GPy
prescribes the B matrices in a particular way to ensure that the MLE of the hyperparameters yields positive
definite covariance matrices:

B = WWT + κI, (46)

where WWT is a low-rank matrix, usually of rank 1. For D = 2, we thus have W =
[
w1 w2

]T
. To create197

the structure of the matrix B1, we fix W1 =
[
1 0

]T
, κ1 =

[
0 0

]T
, which leads to the desired positive198

semidefinite matrix. For B2, the construction is similar by setting W2 =
[
ρ 1

]T
, κ2 =

[
0 0

]T
, so that199

the autoregressive approach effectively introduces only one additional hyperparameter for the correlation,200

which is an advantage when HF data is sparse. To propose a true multifidelity method, one must be able201

to extend the techniques to more than two levels and we consider two ways of extending the framework to202

three models.203

A three-level hierarchy:204

For three levels of fidelity, the methodology of O’Hagan and Kennedy [22] imposes a hierarchy and a
sum of GPs as follows:

f1(µ) = u1(µ) + ρ1f2(µ) = u1(µ) + ρ1u2(µ) + ρ1ρ2u3(µ),

f2(µ) = u2(µ) + ρ2f3(µ) = u2(µ) + ρ2u3(µ),

f3(µ) = u3(µ). (47)

This corresponds to a covariance kernel K of the form:

K(µi,µj) = W1W
T
1 k1(µi,µj) +W2W

T
2 k2(µi,µj) +W3W

T
3 k3(µi,µj), (48)

where ki is the kernel function assigned to each of the Gaussian processes ui and the respective covariance
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matrices are defined via Wi as

W1 =

1
0
0

 ,W2 =

ρ1

1
0

 ,W3 =

ρ2ρ1

ρ2

1

 . (49)

In the appendix we discuss how to enforce this exact correlation structure in GPy.205

Non-hierarchical coregionalization:206

We can also exploit the flexibility of the LCM to exploit other kinds of model dependencies. In some
cases, we may have access to several models with lower fidelity without a clear hierarchy between them. For
nonlinear structural mechanics, one might consider a lower resolution and a reduced physics model as LF
models. Instead of imposing a hierarchy, we now model the two lower fidelity levels by independent GPs
and only consider their respective correlation with the high fidelity:

f1(µ) = u1(µ) + ρ12f2(µ) + ρ13f3(µ)

f2(µ) = u2(µ)

f3(µ) = u3(µ) (50)

This structure could allow us to combine the best of two worlds at the cost of fitting an additional hyper-
parameter at the HF level f1. With the formulation in (48), the matrices Wi are

W1 =

1
0
0

 ,W2 =

ρ12

1
0

 ,W3 =

ρ13

0
1

 . (51)

4.3. A concrete algorithm for MF-ROM with GPR207

For a concrete set-up, we consider a given number of LF and HF evaluations (nLF, nHF) and a set of208

candidate locations Θc = {µ(1),µ(2), ...,µ(Nc)}, which may be randomly ordered or according to the RRQR209

pivoting. We propose the following approach: Set ΘLF and ΘHF to the first nLF, nHF elements of Θc210

respectively. For both fidelity levels, evaluate the snapshots at the locations given by Θ and assemble SLF211

and SHF. In subsection 3.4, we proposed two strategies for assimilating LF data in the general case and we212

now focus on the implications of each for the MF regression step.213

• ”L-proj”: We set f(XLF)(j) =
(
V TLFSLF

)(j)
, according to (27). In the case where k < k′, we set the214

f(XLF)(k′) = None, for k < j ≤ k′, i.e., we perform single (high) fidelity GPR in the absence of LF215

data.216

• ”LH-interp”: We set f(XLF)(j) = V THFS
(j)
LF↗HF, via the two step bifidelity reconstruction-projection217

approach described in (30).218

The full approach of the offline phase, in which the mapping π(µ) : µ→ cHF is learned, is more compactly219

described in Algorithm 2. The reconstruction of the actual solutions in the online phase proceeds identically220

to the single fidelity GPR, c.f. (36), by using the HF predictions.221

We already cautioned that the strategy ”L-proj” may provide unsatisfactory result if the reduced
basis space of the LF and HF are too different, whereas ”LH-interp” avoids this scenario. Unfortunately,
”LH-interp” may introduce a bias towards the LF trend, when HF solutions are sparse. It is important
to bear in mind that we need to use exactly the same k coinciding LF and HF snapshots at locations ΘHF

k

for (29) to be applicable. This also implies that for the lifted snapshots ûLF↗HF(µi) with µi ∈ ΘHF
k , i.e.,

the coinciding snapshots, the interpolation coefficients ĉLF are equal to one and the HF and LF input data
has identical values:

ûLF↗HF(µi) = uHF(µi)⇒ fLF(ΘHF
k )(j) = fHF(ΘHF

k )(j). (52)
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Algorithm 2 Two-fidelity GPR for learning the mapping π(µ) : µ→ cHF

Input: An ordered set of parameter locations Θc, budgets nLF and nHF, the choice of strategy, a suitable
covariance kernel.

Output: A GPR model that can be used to predict π̂(µ∗) : µ∗ → cHF

1: Set ΘLF = Θc[: nLF] and ΘHF = Θc[: nHF]. Compute the required solutions at ΘLF, ΘHF and assemble
SLF and SHF.

2: Compute the respective basis matrices VLF and VHF via POD.

3: Set XLF = ΘLF, XHF = ΘHF. Set the input data for the GP as f(XHF)(j) =
(
V THFSHF

)(j)
and f(XLF)(j)

according to strategy ”L-proj” or ”LH-interp”.
4: Train 2-level GPR models GPf (j) with input data Dj , Dj = ([XHF, XLF], [f(XHF)(j), f(XLF)(j)]), for

1 < j ≤ rank(VHF), by maximizing the MLE of the hyperparameters.

In the case of k = nHF < rank(SLF), we have that XHF ∩XLF = ΘHF
k , i.e., all HF snapshots are part of the

interpolation approach and thus:

fLF(XHF ∩XLF)(j) = fHF(XHF ∩XLF)(j) . (53)

This implies that wherever we have HF data, it coincides perfectly with the LF data by construction222

and independently of the actual usefulness of the LF data. This is especially important as the authors of223

[2] observe that the coinciding parameter locations ΘHF
k are essential for a successful cokriging setup. As224

a consequence, predictions for the HF model at new parameter locations may be heavily biased towards225

the LF trend and there may be no correcting effect of the HF data. We thus assess both strategies in our226

numerical experiments. We further follow these measures to facilitate and stabilize the training process:227

• We scale each entry of cHF and cLF with the corresponding singular value σ from the SVD for the GP228

input. We thus expect the scaled inputs f̃
(j)

= f (j)/σj to be of a magnitude around one.229

• Since we use simulated data, we fix σ2
noise of the GP to a value close to machine precision.230

• We use isotropic kernels for the HF data, when nHF is small as to avoid under-determination of231

the hyperparameters and otherwise an automatic relevance determination (ARD) kernel with distinct232

lengthscales for each parameter dimension. See [22], for a more elaborate discussion of suitable kernel233

properties for different fidelity levels.234

4.4. Active learning235

In this section, we propose an active learning procedure that can extend the selection of the HF snapshots,
beyond those chosen for the basis via RRQR. We seek to characterize the error of RB-GPR uRB-GP(µ) =
V πGP(µ):

εRB-GP(µ) = ‖utrue(µ)− uRB-GP(µ)‖2 . (54)

Exploiting the Galerkin orthogonality, we split this error into a contribution of the projection error and a
contribution of the regression error:

εRB-GP(µ)2 = ‖utrue(µ)− uRB(µ)‖22︸ ︷︷ ︸
ε2RB(µ)

+ ‖uRB(µ)− uRB-GP(µ)‖22︸ ︷︷ ︸
ε2GP(µ)

. (55)

We note that εRB(µ) cannot easily be interpolated via a Gaussian process as it is nonsmooth, zero at selected
snapshots for k ≤ rank(S) and strictly positive otherwise. We can, however, construct an error indicator for
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the regression error by using the properties of the Gaussian process.

εGP(µ) = ‖uRB(µ)− uRB-GP‖2
=
∥∥V V Tutrue(µ)− V πGP(µ)

∥∥
2

= ‖V (πRB(µ)− πGP(µ))‖2
= ‖πRB(µ)− πGP(µ)‖2 (56)

We use a confidence interval to estimate (56) as the GP allows us to quantify the error ε = πRB(µ)−πGP(µ)236

in terms of the variance since the error is normally distributed. We can thus use the standard deviations of237

the GPs, which are collected in the vector σGP, to indicate the regression error as238

εGP(µ) ≈ c‖σGP(µ)‖2. (57)

We note that (57) does not depend on the basis and thus can be evaluated at a cost independent of the239

underlying LF and HF models. This error indicator can now be used for an active learning scheme, following240

[12], see Algorithm 3.241

Algorithm 3 Active learning scheme

Input: Parameter range P = [µmin,µmax] and associated parameter pool Pc of candidate locations, initial

guess of l snapshot locations Θ
(0)
l = {µi}li=1 ⊂ Pc, a budget of LF and HF evaluations nLF and nHF, a

budget of additional evaluations nadd.
Output: A trained GPR model GPf (j), 1 ≤ j ≤ k with a reduced basis V , augmented snapshot locations

Θnadd
p .

1: Build a GPR model using Algorithm 2 with inputs (Θ
(0)
l , nLF and nHF). Algorithm 2 also computes

initial snapshot matrices S
(0)
HF and S

(0)
LF .

2: for i=1 to nadd do
3: Evaluate the error indicator εGP(µ) in (57) for all candidates µc ∈ Pc.
4: Choose the location of highest error: µi = argmaxµ∈Pc

εGP(µ) and add it to the parameter locations

Θ
(i)
l+i = Θ

(i−1)
l+i−1 ∪ {µi}.

5: Compute the solution vector uh(µi) and add it to the snapshot matrix: S
(i)
HF =

[
S

(i−1)
HF ,uh(µi)

]
.

6: Optional: Update the HF basis VHF by computing an SVD on S
(i)
HF: S

(i)
HF = UΣZT , VHF = U [:, :

rank(S
(i)
HF)].

7: Retrain the GPR model with the updated basis VHF and data
(

Θ
(i)
l+i, S

(i)
HF

)
using Algorithm 2.

8: end for

242

Due to the representer theorem [1, 30], the regression error equals zero at already explored points:243

εGP(µ) = 0, which this error indicator accurately reflects, so that a new point is explored in each step. For244

a stable approach, we propose to initialize Algorithm 3 with Θ(0) = Θk, i.e., the anchoring points of the245

basis snapshots. As the projection error tends to decay much faster than the regression error [12, 17], it246

is reasonable to choose k small and update the HF basis on the fly as proposed in Algorithm 3, expecting247

that the basis will converge with the regression. This idea proves straightforward in the single fidelity setup.248

However, it does not carry over as easily for the MF setup with ”LH-interp”: Since the error indicator249

is not sensitive to the actual structure of the underlying PDE, it does not guarantee that the snapshots of250

the selected points are actually linearly independent. As a consequence, the Gramian in (28) might not be251

invertible. To avoid this situation, we choose k = min (rank(SHF), rank(SLF)).252
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5. Numerical examples253

In this section, we assess the performance of the developed methods on typical examples. We begin254

with manufactured examples, consider large deformations in structural dynamics, and finally analyze a255

fluid-structure interaction problem in its steady-state.256

5.1. Example 1: A manufactured case257

To test the proposed algorithms, we introduce a manufactured example with a limited region of im-
portance in the parameter space. To visualize the results, we define a one-dimensional problem with one
parameter:

uLF(µ;x) = sin(g(µ)2πx) + g(µ)x+ 0.2 · exp(g(µ)x) (58)

uHF(µ;x) = sin(g(µ)2πx) + g(µ)x+ 2 · exp(g(µ)x) (59)

g(µ) =

{
µ, if 0 ≤ µ ≤ 0.5
0.5, otherwise

}
(60)

for x ∈ ΩX = [0, 2] and µ ∈ Ωµ = [0, 1]. Figure 2 shows some realizations of the functions for different

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

2

3

4

5

6

f(x
)

Realizations of u for different values of μ

(a) high-fidelity: uHF

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

f(x
)

Realizations of u for different values of μ

(b) low-fidelity: uLF

Figure 2: Plots of possible solutions for Example 1.

258

parameter values µ. In Figure 3, we observe that the RRQR algorithm correctly chooses snapshots in the259

critical region µ = [0, 0.5] for both the HF and the LF model.
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Figure 3: Performance of the bifidelity basis for Example 1: Different snapshots are selected with the RRQR on the LF and
HF model, however both selections allow for a reduced basis with similarly fast decay in the projection error. The projection
error of a basis constructed from space filling snapshots decays much more slowly.
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We confirm that the bifidelity basis with the RRQR on the LF performs much better than randomly261

choosing points in the parameter domain. In Figure 4, we plot the GPR results for the RB coefficients. We262

notice that the snapshots selected with the RRQR are concentrated where the RB coefficient varies, so that263

the constant part is not approximated well for the single fidelity regression, whereas the space-filling points264

lead to an overall average approximation. The MF-GPR with ”LH-interp” and 160 LF snapshots captures265

the parametric dependence perfectly. The error convergence (Figure 5) confirms this trend. We note that266

the strategy ”L-proj” does not improve the results over single fidelity (SF)-GPR, whereas the active learning267

scheme succeeds in reducing the error much faster than randomly chosen points.
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Figure 4: GPR for the RB coefficients for Example 1 with 10 HF snapshots. An ARD Matern kernel with smoothness
parameter ν = 3/2 is used. For the results on the left [(a), (d), (g)] a pure HF approach with snapshots by a space-filling
sequence are used to construct the basis and data for regression: SF-RB & SF-GPR. For the results in the middle [(b),(e),
(h)], HF snapshots and the basis are chosen according to Algorithm 1 and used in single fidelity GPR: MF-RB & SF-GPR.
The results on the right [(b),(e), (h)] use the both the MF basis and MF GPR, i.e., both Algorithm 1 and 2, with ”LH-interp”
and 160 LF snapshots: MF-RB & MF-GPR.

268

5.2. Example 2: 2D - structural analysis on a frame269

Next, we consider the previously introduced frame problem with three parameters. Figure 6 shows the270

considered parameter domain and the first three HF RB basis functions for this setup. The Young modulus271

in the remaining components is fixed to 210 GPa, and the Poisson ratio is ν = 0.3.272

16



2 4 6 8 10
Number of high fidelity evaluations

10−4

10−3

10−2

10−1

Av
er
ag

e 
re
la
tiv

e 
L_
2 
er
ro
r o

ve
r t
es
t s

et

Error convergence

SF-GPR, no LF info
SF-GPR, LF for QR
MF-GPR, L-proj
MF-GPR, LH-interp

(a) First part: Snapshots chosen via QR

0 5 10 15 20 25 30
Number of high fide ity eva uations

10−4

10−3

10−2

10−1

Av
er

ag
e 

re
 a

tiv
e 

L_
2 

er
ro

r o
ve

r t
es

t s
et

Error convergence
SF-GPR, no LF info
SF-GPR, LF for QR
SF-GPR, LF for QR, active
MF-GPR, L-proj
MF-GPR, L-proj, active
MF-GPR, LH-interp
MF-GPR, LH-interp, active

(b) Second part: Extension beyond QR snapshots

Figure 5: Convergence of the error for Example 1, computed over 200 randomly chosen test snapshots. To select HF snapshots
beyond the rank of the LF, we choose either a space-filling sequence or an active learning scheme with an error indicator.
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Figure 6: Parameter range and the first three corresponding RB functions for the 2D frame problem.

For UQ applications, we focus on two QoIs:273

• The displacement in the y direction at the location where the force pushes onto the frame.274

• The maximum von Mises stress in the structure.275

To simulate a realistic scenario, we sample from a truncated normal distribution, centred on the parameter
space under consideration. Even though the proposed method allows it, we do not consider correlations
between the parameters. The parameters are sampled according to

µi ∼ N (m,σ, cut-off) for 1 ≤ i ≤ 3, (61)

with mean m = µmin +0.5µmax, standard deviation σ = 0.5(m−µmin) and a cut-off of 2 standard deviations,276

so that µi ∈ [µmin, µmax] as defined in Figure 6.277

In Figure 7 (a), we observe convergence of the projection error with a gap between the POD and the278

RRQR basis. We note that the LF models exhibit lower rank, the linearized model (“lin80p2”) in particular279

has half as many distinct modes as the HF model. Figure 7 (b),(c) depict the error in solution recovery for280

both proposed strategies. Unsurprisingly, the best LF model gives the most improvement over SF-GPR,281

while the other two LF models provide much smaller gains and even lead to worse approximations in one282

case (”lin80p2” with ”LH-interp”). Interestingly, the strategy ”L-proj” seems capable of leveraging all three283

LF models in the presence of a high number of HF snapshots, i.e., it may also provide benefits outside of284

the ”small data” regime.285
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Figure 7: Error of the reduced basis and the 2-level GPR for Example 2. A RBF kernel with ARD properties is used when
more than 6 HF snapshots are available, otherwise the kernel is isotropic. 160 LF snapshots are used for each MF model.

Figure 8 assesses the match in the distribution of the y-displacement and compares the direct use of286

the LF models with a bifidelity approach on 6 HF snapshots. The very coarse model ”nl10p1” shows most287

improvements, whereas the linearized model is biased in both direct and bifidelity use. For succesfull MF-288

GPR, it thus seems more important that the LF model incorporates the correct physics than recovering a289

close solution in an engineering sense.290
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Figure 8: Distributions of the QoI ”y-displacement” for Example 2. For the top row (a), (b), (c) the solution is obtained
from the LF model directly, the bottom row (d), (e), (f) uses a surrogate model with MF -GPR regression on 6 HF and 160
LF snapshots with the strategy “LH-interp” and an RBF kernel. The ground truth is obtained with direct simulation on the
HF model.

Figure 9 confirms this observation for both the maximum stress and the y-displacement. While the291

linearized model is closer to the true QOI than the coarse model, its use in MF-GPR does not bring benefits292

over SF-GPR. In contrast, the MF-GPR with ”nl10p1” gives a perfect fit and outperforms SF-GPR on 6293

HF snapshots.294
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Figure 9: Recovery of the QoIs for Example 2 and fit with the ground truth of the HF model computed for different LF and
surrogate models. The plots on the left use the linearized LF model, the plots on the right use the coarse nonlinear LF model.
Top: maximum stress, bottom: y-displacement at the attack point of the force. 160 LF snapshots are used for the MF-GPR
with the strategy “LH-interp”.

Three-fidelity levels295

As the best LF model ”nl20p2” is also the most expensive, this section explores how a 3-level model can296

further reduce simulation costs. We consider297

• a hierarchical model which uses 40 snapshots from ”nl20p2” as a medium fidelity data and 300 snap-298

shots from ”nl10p1” as LF data and299

• a semi-hierarchical model which uses 40 snapshots from ”nl10p1” and 300 snapshots from ”lin80p2” as300

LF data. This model thus combines the linear high resolution model and the nonlinear low resolution301

model without imposing a hierarchy between the LF models.302

Figure 10 (a) shows the results of the hierarchical model (”MF(3)-GPR”), compared to a single fidelity303

model (”SF-GPR, no LF info”) and a bifidelity model (”MF(2)-GPR”), which only uses the 40 medium304

fidelity snapshots.305

For both assimilation strategies, we observe a significant improvement of the 3-level model as compared306

to the 2-level model. The semi-hierarchical model does not combine the best of two worlds as hoped for the307
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Figure 10: Performance of the 3-level models for solution recovery for Example 2 as compared to SF-GPR and 2-level models.

strategy ”LH-interp”, see Figure 10 (b). While the strategy ”L-proj” appears to benefit slightly from the308

additional information, it gives worse approximations than the bifidelity approach ”LH-interp”. We thus309

focus on the purely hierarchical model for the UQ applications. Figure 11 shows much faster error decay for310

MF-GPR compared to a direct MC estimator of the mean. We also observe that the surrogate models can311

give stable estimates of event probabilities with only 6 HF snapshots, while the MC estimate requires up to312

100 HF snapshots to reach a rough approximation.313

5.3. Example 3: 2D - fluid-structure interaction314

As a third example, we consider a benchmark fluid-structure interaction (FSI) between an elastic object315

and a laminar incompressible flow. We refer to [10] for a precise description of the problem setup. We use the316

implementation in [21], which uses a monolithic geometric convective explicit approach with a semi-implicit317

fluid and a nonlinear structural implementation, and parametrize the in-flow velocity and the stiffness of318

the beam. The parameter domain Ωµ is chosen so that the FSI solution converges to a steady state within319

10 seconds of simulation time. The benchmark focuses on 4 QoIs: The x- and y-displacement at the beam320

tip and the lift and drag on the beam. The HF model has 82169 degrees of freedom (dofs) in total, which321

can be compared to level 3 of the benchmark, which exhibits relative errors in the range of 1e-4 to 1e-3322

as compared to the highest resolution benchmark. We create a LF model with only 9847 dofs by using a323

coarser mesh and p1 elements for the fluid part. This reduction in DOFs with a factor ≈ 10 significantly324

reduces the simulation time. As demonstrated during our numerical studies, the LF model yields average325

errors of around 50% for the y-displacement and around 10% for the other 3 QoIs, compared to the HF326

model. In spite of this, the proposed MF-GPR algorithm can benefit from the LF information.327

As the magnitudes of the different solutions fields do not differ greatly, we stack the velocity, displacement328

and pressure field to obtain exactly one (steady-state) snapshot per parameter vector µ. An ARD Matérn329

kernel with smoothness parameter ν = 3/2 and 80 LF snapshots are used for the GPR if not stated otherwise.330

In Figure 12 (a)-(d), MF-GPR with a single HF snapshot suffices to approximate the solution field so331

closely that there are no visual differences. Figure 12 (e)-(g) show the first basis vectors for the velocity332

in x-direction for the parameter domain in Figure 12 (h). In Figure 13 (a), we see slight improvement333

in the projection error, when a snapshot selection scheme is used as compared to a space filing sequence.334

Regarding error in the solution field, Figure 14 (b), we note faster error convergence for both MF strategies335

when compared to SF GPR. The active learning scheme does not yield improvement as the error has already336

stagnated at a low level below 1e-4. In Figure 14, we observe that the error in specific QoIs decays slower337

than the error in the solution field. Consequently more HF snapshots are required for satisfactory results.338
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(a) QoI: maximum stress
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(b) QoI: y-displacement at the applied force
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(d) P(y-displacement > 0.18m)

Figure 11: UQ application for the two QoIs of Example 2. The top row shows the error in the MC estimate of the mean
of the maximum stress (a) and the y-displacement (b), the reference MC estimate was obtained on 10000 i.i.d samples. The
bottom row shows the MC events for the given event probabilities (c), (d).

We note a benefit of MF-GPR over SF-GPR for all four QoIs, notably, the strategy “LH-interp” can leverage339

the LF information more than “L-proj”, which aligns with our theoretical observations. Figure 15 shows340

that MF-GPR with only 6 and 10 HF snapshots performs better than both SF-GPR and the direct use of341

the LF model. This demonstrates that the proposed technique leverages LF models that are too inaccurate342

for direct use to improve the HF surrogate model efficiently.343
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(a) HF solution (b) MF-GPR solution with 1 HF snapshot and 80 LF
snapshots

(c) HF solution (d) MF-GPR solution with 1 HF snapshot and 80 LF
snapshots

(e) Basis 1 (f) Basis 2

(g) Basis 3

Parameter
Range

[µmin, µmax]
µ1 = uinlet [0.5, 1.5]× 0.2
µ2 = EBeam [0.5, 1.5] × 1.4e6

(h) Parameters

Figure 12: Visualization of Example 3. (a) and (c) show the HF solution for the pressure and x-velocity for µ = [0.27, 1.90]T ,
(b) and (d) show the MF-GPR reconstruction of the same fields. (e),(f), (g) depict the first three basis vectors for the velocity
field and (h) the parameter domain.
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Figure 13: Convergence of the error for Example 3 computed over a grid of 225 test snapshots. To select HF snapshots
beyond the rank of the LF, we choose either a space-filling sequence or an active learning scheme with an error indicator.
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Figure 14: Convergence of the error for the four QoIs in Example 3, computed over a grid of 225 test snapshots.
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(c) x-displacement, 6 HF snapshots
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(d) x-displacement, 10 HF evaluations
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(e) Drag, 6 HF snapshots
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(f) Drag, 10 HF snapshots

Figure 15: Fit between the approximated QoIs and the HF QoIs for Example 3. 6 HF snapshots are used in the models
for the plots on the left, 10 HF snapshots on the right. From top to bottom, we consider the y-displacement of the tip, the
corresponding x-displacement and the drag on the beam.
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6. Conclusions344

We have demonstrated the feasibility of a non-intrusive RB method for parametrized nonlinear PDEs345

that can leverage models of different fidelity to accurately recover both the full solution field and specific346

QoIs for UQ applications. The method extracts parameter locations from a collection of low-fidelity (LF)347

snapshots for the efficient creation of a high-fidelity (HF) reduced basis and employs multifidelity Gaussian348

process regression (MF-GPR) to approximate the coefficients of the reduced model. The basis selection349

relies on a rank revealing QR decomposition of a low fidelity snapshot matrix.350

For the three examples under consideration, we confirm that the proposed MF surrogate approach yields351

performance gains over a single fidelity (SF) surrogate and methods that directly use the LF model. For all352

solution fields, we achieve relative errors below 1e-3 with very few HF snapshots. Overall, the construction353

of a good RB space appears to require less snapshots than a reliable MF-GPR regression. We also observe354

greater benefit for low-resolution LF models as compared to reduced-physics LF models. It appears that, for355

a useful LF model, accurately incorporating the properties of the PDE is more important than accurately356

recovering the values of the solution field: even underresolved, low accuracy LF models can greatly improve357

the MF surrogate, as long as the properties of the PDE are preserved. It would be interesting to investigate358

if such conclusions hold for other applications, e.g. in fluid dynamics, where reduced physics models are359

commonly used.360

The proposed active learning scheme discovers snapshot locations that further reduce the error of the361

MF surrogate and thus enables the addition of HF data points beyond those chosen on the LF model.362

Interestingly, MF-GPR models can give benefits over SF-GPR models, even when a significant amount363

of HF data is available. Future work could thus leverage this additional HF information to exploit more364

complicated correlation structures, which use e.g. nonlinear or spatially varying correlation kernels, with365

the goal of obtaining an even more accurate MF surrogate model.366
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Appendix: GPy implementation of the three level autoregressive model428

The implementation of the LCM in the Python package GPy considers each entry of the W matrices as
independent. For the 2-level cokriging case, we can easily impose the structure by fixing parts of the matrices
W to a certain value. However, the interdependence between W2 and W3 given in (49) is more complex
and the implementation in GPy does not simply allow to link the parameters of different kernels together,
i.e., for the formulation in (48), GPy treats the factor ρ1ρ2 in W3 as an independent hyperparameter, which
introduces unnecessary complexity to the model. To impose the nested structure of 3-level cokriging in the
GPy package, which only has two degrees of freedom ρ1 and ρ2, we rewrite the formulation in (48). Let

M =

ρ2
1 ρ1 ρ1

ρ1 1 1
ρ1 1 1

 = WnestedW
T
nested, so that Wnested =

ρ1

1
1

 . (A.1)

We then factor out the ρ1 term to obtain W̃2 =

1
1
0

, W̃3 =

ρ2

ρ2

1

. This finally allows us to rewrite (48) as

K(µi,µj) = W1W
T
1 k1(µi,µj) +M ◦

(
W̃2W̃

T
2 k2(µi,µj) + W̃3W̃

T
3 k3(µi,µj)

)
, (A.2)

where ◦ denotes the entrywise matrix Hadamard product. In this way, the hyperparameter ρ1 only appears
in Wnested and ρ2 only appears in W̃3. It is then straightforward to extend the original coregionalization
kernel class to model the kernel W̃3 and one only needs to rewrite the definition of the gradient in terms of
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ρ2 by using the chain rule:
∂K

∂ρ2
=

∂K

∂W3

∂W3

∂ρ2
=

[
∂K

∂W3

]
1

+

[
∂K

∂W3

]
2

.
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