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Brain-machine interfaces (BMI) based on motor imagery (MI) have emerged as a promising 

approach to enhance motor skills and restore motor functions. However, the efficacy and efficiency 

of BMI systems remain limited. The current lack of usability can be explained by the fact that 

significant efforts have been dedicated to improve decoding efficiency and accuracy, but BMI studies 

have generally ignored the user-training component of BMI operation. It has been suggested that 

somatosensory feedback would be more suitable than standard visual feedback to train subjects to 

control a BMI. In this thesis, a novel feedback modality has been explored to improve BMI usability, 

namely sensory-threshold neuromuscular electrical stimulation (St-NMES). St-NMES delivers 

transcutaneous electrical stimulation that depolarizes sensory and motor axons without eliciting any 

muscular contraction. In order to assess the effect of this new feedback modality on BMI skill learning 

this thesis is composed of four experiments. In a first experiment, the effect of St-NMES on MI 

performance was investigated. Twelve healthy subjects participated in a cross-over design experiment 

comparing St-NMES with visual feedback. Offline analyses showed that St-NMES not only enhanced 

MI brain patterns, but also improved classification accuracy. Importantly, St-NMES alone did not 

induce detectable artefacts. In a second experiment, physiological impact of online BMI training on 

corticospinal tract (CST) plasticity was studied according to the feedback modality –either St-NMES 

or visual feedback. Ten healthy participants were enrolled in a cross-over design experiment testing 

both BMI systems. Results showed that BMI based on St-NMES significantly enhanced CST 

excitability compared to BMI based on visual feedback. Moreover, BMI system based on St-NMES 

was significantly more robust and accurate over days. A third experiment further explored the 

parallelism between BMI learning based on St-NMES feedback and natural motor learning, putting 

particular attention on the underlying physiology of the process. Apart from analyzing the evolution 

of BMI performance, we also examined changes in CST excitability and modulation of intracortical 

inhibition in the early learning phase (after one BMI session) as well as later learning stage (after 2 

weeks training). Ten healthy participants were trained to control a BMI based on St-NMES feedback. 

Results showed that subjects improved their BMI control with practice, what might be explained by 

the adaptation of the central nervous system over time. Finally, the last experiment explored the 

feasibility of BMI-St-NMES for upper limb rehabilitation after stroke. A chronic stroke patient with 

a severe motor disability was trained with BMI-St-NMES over 3 weeks. After training, upper-limb 

motor function improved, reaching clinical relevance. Based on our previous observations, we believe 

that BMI-St-NMES training enhanced CST projections leading to motor recovery. 
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As a conclusion, this thesis showcases that a contingent activation of central nervous system 

with somatosensory stimulation through BMI-St-NMES is a promising solution to enhance BMI 

control and to induce cortico and corticospinal changes. This new BMI modality could become a 

future opportunity for several fields of research including mental training assistive scenarios as well 

as motor rehabilitation of patients with lesions within central nervous system.  

 

 
Brain-machine interfaces, somatosensory feedback, electroencephalography, sensory threshold 

neuromuscular electrical stimulation, transcranial magnetic stimulation, brain-machine interfaces 

skills, motor rehabilitation.  
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Les interfaces cerveau-machine (ICM) basées sur l’imagerie motrice (IM) sont une nouvelle 

approche pour améliorer et restaurer les fonctions motrices. Cependant, l’efficacité de ces systèmes 

reste limitée. Les difficultés d’utilisation des ICM peuvent être expliquées par le fait que les études 

en ICM ont généralement négligé les aspects liés à l’entrainement du sujet. Il a été suggéré qu’un 

feedback somatosensoriel serait plus approprié qu’un feedback visuel pour entrainer un sujet à 

contrôler une ICM. Dans cette thèse, un nouveau feedback basé sur la stimulation électrique 

neuromusculaire au seuil sensoriel (appelé St-NMES) a été développé. La St-NMES délivre un 

courant électrique transcutané qui dépolarise les axones sensoriels et moteurs sans induire de 

contraction musculaire. Dans le but de comprendre l’effet de la St-NMES sur l’apprentissage du 

control d’une ICM, cette thèse se compose de quatre expériences. Dans la première expérience, l’effet 

de la St-NMES sur les performances d’IM a été investiguée. Douze sujets ont participé à l’expérience 

en cross-over, comparant l’utilisation de la St-NMES comme feedback par rapport à un feedback 

visuel.  Les analyses offlines ont montré que la St-NMES non seulement augmentait l’activation 

cérébrale pendant l’IM mais améliorait également les performances de l’ICM. Une deuxième 

expérience a été mise en place pour étudier l’impact d’un entrainement avec une ICM selon la 

modalité du feedback (St-NMES ou visuelle) sur la plasticité corticospinale. Dix sujets ont été recruté 

pour cette expérience en cross-over pour tester les deux ICM. Les résultats ont montré que l’ICM 

basée sur la St-NMES était non seulement plus efficace mais améliorait également l’excitabilité de la 

voie corticospinale en comparaison à une ICM utilisant un feedback visuel. Une troisième expérience 

a exploré plus en détails le parallèle entre apprendre à contrôler une ICM et un simple apprentissage 

moteur. En plus d’analyser l’évolution des performances de l’ICM, nous avons aussi étudié les 

changements de l’excitabilité de la voie corticospinale ainsi que la modulation de l’inhibition intra-

cortical dans la phase précoce d’apprentissage (après une séance d’ICM) et dans une phase 

d’apprentissage plus tardive (deux semaines après entrainement). Dix participants ont été entrainés à 

contrôler une ICM basée sur la St-NMES. Les résultats ont montré une modification de la plasticité 

cérébrale et une amélioration des capacités de contrôle de l’ICM avec l’entraînement. Finalement, 

une dernière expérience a été faite pour explorer la possibilité d’utiliser cette nouvelle ICM basé sur 

la St-NMES pour la rééducation motrice du membre supérieur après un accident vasculaire cérébral 

(AVC). Une patiente présentant une atteinte sévère de la motricité, a également testé le protocole 

d’ICM-St-NMES pendant trois semaines. Après entrainement, la fonction motrice du membre 

supérieur a été améliorée (avec un gain atteignant le seuil de pertinence clinique).  



 vi 

En conclusion, cette thèse démontre que l’activation contingente entre le système nerveux 

central et la stimulation somatosensorielle grâce à l’ICM basée sur la St-NMES est une solution 

prometteuse pour promouvoir l’acquisition de compétences nécessaires au contrôle d’une ICM et 

induire une plasticité cérébrale. Cette nouvelle ICM pourrait devenir un atout pour différents secteurs 

de recherche notamment la rééducation motrice de patients avec une lésion du système nerveux 

central.  

 

 

 

 
Interface cerveau-machine, feedback somatosensoriel, électroencéphalographie, stimulation 

électrique neuromusculaire au seuil sensoriel, stimulation magnétique transcrânienne, rééducation 

motrice. 
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Consolidation and acquisition of motor skills is a major concern for a wide range of fields 

such as sport, daily life activities and motor rehabilitation. Skill acquisition has been defined as a set 

of processes by which movements are executed more quickly and accurately with practice [1]. The 

training involves repetitions of movements with a correlated activation between central nervous 

system, peripheral nervous system and muscles. In the case of rehabilitation, there is no motor 

intervention that showed a superiority in improvement of motor skills [2,3].That is the reason why, 

new technologies have emerged to enhance motor skills, such as robotics, non-invasive brain 

stimulation, virtual reality, neurofeedback. These practices are based on the current knowledge of the 

central nervous system and the plastic properties of the brain. Among them, brain-machine interfaces 

appeared to be a promising strategy to improve motor skills, especially in the case of severely 

impaired patients.  

 

1.1 Brain machine interfaces (BMI) 
« A BMI is a communication system in which messages or commands that an individual sends to the 

external world do not pass through the brain’s normal output pathways of peripheral nerves and 

muscles. » Jonathan R. Wolpaw 

 

A brain-machine interface (BMI) is a system which records the brain activity and extracts the 

characteristics of a specific mental state. It involves invasive or non-invasive recordings, but in this 

thesis we will focus exclusively on non-invasive BMI. The recorded signal of interest is translated 

into a command for an external device and this without requiring any body movement. Thus, patients 

with impaired motor function can use a BMI, since the system will directly “connect” patients’ brain 

intention with their environment. A BMI is often composed of 6 steps:

1) Measurement of brain activity. Depending on the application, the recording technique 

needs to target a high temporal resolution (EEG, MEG) or high spatial resolution (fMRI).  

2) Preprocessing. The signal of interest is filtered to obtain a better signal/noise ratio.  

3) Features extraction. Values that characterize the signal of interest are extracted.

4) Classification. For each mental state defined by the extracted features, a class is attributed.  

5) Translation into a command. Each class is linked to a command for an external device 

(moving a cursor, driving a robot, etc...). 
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6) Feedback. Subject receives a feedback of his/her performance. In most BMI, the feedback 

modality is visual, but it can be also auditive or proprioceptive. 

 

The most common BMI, also used in this thesis, is a BMI based on electroencephalography 

recordings (EEG). EEG is the measurement of electrical activity of large neuronal populations 

thanks to electrodes placed over the scalp. The spatial resolution is limited from several millimeters 

to one centimeter. However, it allows a high temporal resolution (in the range of millisecond) that 

is crucial to observe time-locked brain activation. Thus, BMI based on EEG can record in real-time 

brain patterns linked to a specific mental task. Four different types of brain signals are standardly 

used with BMI-EEG:  

• Steady State Visual Evoked Response (SSVERs) appearing over primary visual cortex after 

visual stimuli with a defined frequency. In this case, different visual stimuli are flickering at 

specific frequencies on a screen. The subject can select one of the objects by fixating it. After 

a frequency analysis of the SSVERs, it is possible to assess the object of interest [4–6].  

• Event Related Potentials (ERPs) is a short duration electrical signal produced by the brain 

in response to an external stimulus. ERPs response can be used to create binary BMI 

commands [7,8] or to develop a BMI for communication [9,10]. As example, P300 is a well-

known ERP used for BMI. It represents a positive fluctuation approximatively 300 ms after 

the appearance of the target of interest among stimuli that are not the target. The appearance 

of a P300 into the EEG signal is a marker of subject’s choice. 

• Slow cortical potentials (SCPs) belong to the family of event-related potentials, although it 

is generated endogenously and does not require any external stimulation. SCPs are slow 

rhythms in the brain usually below 1 Hz and they appear in a latency range of < 0.5s up to 

several seconds from the eliciting event. SCPs have been reported as markers for movement 

planification and anticipation [11,12]. SCPs have been used to control a spelling device for 

paralyzed patients [13].  

• Sensorimotor rhythm (SMR) is a physiological spontaneous brain oscillation recorded over 

motor cortical regions. It is defined by a frequency of [8 12] Hz (μ band) and [13 30] Hz (β 

band). The amplitude of the signal reflects the activation of the motor regions and it can be 

voluntary modulated with motor execution or motor imagery. Relevant features of these 

SMRs are the so-called event related desynchronization (ERD), characterized by a decrease 

SMR amplitude due to a desynchronization of the local neuronal activity, and event related 

synchronization (ERS), an increase in amplitude of the recorded signal due to a local 
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synchronization of the neuronal activity [14]. For BMI based on the modulation of SMR, 

the user imagines movements of different body parts (usually, arm/hands and feet).  
 

For motor skills improvement, three BMI strategies can be applied according to the context: 

motor function substitution, motor function restoration or motor function improvement.  For the first 

context, the motor function is completely missing, and BMIs aim to substitute it. In this case, all types 

of EEG signals can be used to create an assistive BMI device. Pfurtscheller et al. [15] for example, 

developed a BMI to substitute the grasping function of a tetraplegic patient. After 5 months training, 

the patient could grasp again by controlling a functional electrical stimulation through a BMI. Other 

researchers combined the BMI to robotic orthosis that executes the lost function [16,17]. BMI can 

also be used to improve daily life independency: to restore communication, for example in the case 

of locked-in patients that lost the ability to interact with their environment [18], to control devices 

like a wheelchair with the voluntary brain activation [19,20], the cursor of a computer [21], or a video 

game [22]. For the two other contexts, motor restoration and motor function improvement, BMI based 

on SMR modulation are mostly used. The main goal in this case is to improve or restore (in severe 

cases) a specific motor skill, through the direct training of brain motor regions. During the BMI 

training, users can learn how to actively modulate their cortical motor areas. This type of BMI have 

the potential to promote motor recovery after stroke [23–25], and might facilitate motor skills 

(through MI practice) [26–29]. For this thesis, the main objective was to develop a BMI to enhance 

activation of motor cortical areas and potentially restore motor skills. Thus, this thesis will discuss 

about BMI based on SMR modulation. More specifically, these BMI are based on motor imagery. 

 

1.2 BMI based on motor imagery 
 

Motor imagery (MI) is defined as a specific mental imagination of a body action without any 

corresponding motor output. More precisely, the subject has to re-think and re-feel a movement 

without any motor execution. During MI, a modulation of SMR is recorded over brain motor regions.  

These modulations are similar to the ones observed during motor execution but with smaller 

amplitudes [30]. Indeed, it has been showed that during MI, there is a decrease amplitude (ERD) in 

μ and β frequency band in the contralateral cortex compared to a resting state [14]. Interestingly, 

ERD patterns are specific to the limb of interest [31,32]. Thus, it is possible with a BMI to target a 

specific limb function according to ERD-ERS patterns. Moreover, in the context of motor 

rehabilitation, there is a strong correlation between the ability to perform large ERD and motor 
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recovery of stroke patients [24,30]. BMI based on MI are a promising tool to enhance the activation 

of impaired motor regions, and promote motor recovery [23–25,33–36]. 

Although everybody, including people with motor impairments, should elicit ERD patterns 

during MI, this is not always the case [37,38]. It has been proposed that the inability to elicit accurate 

ERD patterns (namely, chaotic imagery as defined by Sharma et al. [39]) could be sustained by an 

inefficient strategy such as visual imagery. Indeed, MI strategies can be divided into kinesthetic motor 

imagery and visual motor imagery. Although related, visual imagery and kinesthetic imagery are two 

distinguishable cognitive processes [40,41]. Kinesthetic imagery imposes subjects to re-feel a 

movement and focus their attention on kinesthetic sensation of the limb. This specific internal 

imagery activates a large fronto-parietal network and recruits in addition subcortical and cerebellar 

regions, similarly to motor execution and motor preparation. On the contrary, if the subject is 

visualizing the movement during MI, it resorts to visual imagery. In this case, sensorimotor networks 

are not activated, while it predominantly involves occipital regions and superior parietal lobules. It 

has been largely demonstrated that kinesthetic imagery is the predominant component of MI in order 

to activate sensorimotor networks [42,43] and modulate corticomotor excitability [44].This is the 

reason why MI have even been also defined as “a mental event where kinesthetic memory of a prior 

movement is reactivated giving rise to an experience of re-executing the movement” [45]. In practice 

it seems artificial to split kinesthetic from visual imagery during MI, nonetheless, it is now agreed 

that BMI users should be clearly briefed on how to perform kinesthetic imagery [46,47], and focus 

their attention on the sensation instead of the visualization of the imagined movement. However, 

despite this new instruction to control BMI, BMI usage remains limited to laboratories, and suffer 

from poor transferability to daily life training.  

 

1.3 BMI current limitations 
 

BMI based on MI suffer from lack of transferability to daily life training because of important 

technical and usability challenges [48].  

 Technical limitations are intrinsically linked to the electrophysiology properties of the EEG 

signal. Indeed, EEG analysis has to cope with the non-linearity and non-stationarity characteristics of 

the signal. The non-linearity is explained by the fact that the brain is a highly complex system, that 

do not rely on simple linear activity. The neuronal activation during MI involve multiple interlinked 

networks that modulates the neuronal activation within primary sensorimotor regions. The EEG 
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signal can be, then, represented as a chaotic behavior of neuronal ensembles. Although linear methods 

can accurately discriminate MI brain patterns from resting state, dynamical methods could be a 

solution to enhance the decoding of MI. However, the non-stationarity of the EEG signal remains a 

major concern for BMI field. It can be explained by a continuous change of the signal of interest over 

time, between and even within a single session. These changes are due to several factors: (i) Changes 

in the electrodes’ placement will naturally induce variability in the recorded signal. (ii)  EEG is very 

sensitive to noise. It includes all unwanted signals caused by environmental noise, subjects’ related 

artifacts like movements, or electrical activity of muscles or eye blinking. It results a decrease of 

signal to noise ratio that limits BMI decoders. (iii) The mental and emotional involvement during the 

task can differ over time and have a drastic impact on subjects’ performance. (iv) The fatigue, the 

attention and motivation also massively contribute to EEG signal variability. These limitations, 

especially the non-stationarity of the EEG signal, results in poor efficacy of BMI decoders. Indeed, 

BMI present high error rates [49,50] and a large percentage (10 to 30 %) of subjects are considered 

not capable to control a BMI [51].  

Usability challenges are defined by the user acceptance to use BMI [52]. The major limitation is 

the poor efficiency of BMI training. Indeed, all users need to be trained before being able to control 

a BMI [27]. They need first a relatively long calibration session [53], necessary to build individualized 

BMI decoder. The calibration is followed by a long and intense training period with numerous 

sessions (that can be months [15,22]) before being able to control accurately the BMI. This heavy 

training is necessary for several reasons. It allows to record data over time so that the BMI decoders 

can model the natural variability of the target signals. Also, it permits the user to understand the task. 

Indeed, doing MI is not a straightforward task since it does not imply any physical outcomes. 

Probably, most novice participants just do not know how to focus their attention on their limb 

sensation. As explained before, even if they are instructed to adopt a kinesthetic approach, it is not 

obvious how to feel a movement without any internal or external stimulation. The lack of 

understanding of BMI instructions is a major limitation to obtain an efficient BMI device.  

 

A usable BMI should be defined as a robust signal processing and a well-trained user. A lot of 

effort and research is provided toward the improvement of signal processing (with better pre-

processing and elaborated machine learning algorithms). Unfortunately, we have neglected the user 

training aspects. We have to re-consider how we are training subjects to control a BMI. Indeed, they 

need to understand and acquired proper BMI skills. BMI skills include the ability to perform 

discriminable, stable and accurate MI patterns. Discriminability, stability and accuracy are the three 
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pillars to improve BMI efficiency: better signal-to-noise ratio, decrease of non-stationarity of the 

signal, and BMI efficacy: accurate and robust BMI decoder. Moreover, BMI skills encompass also 

the ability to control and react to the BMI decoder. Regarding this last point, it is not meaningless to 

make a parallel between BMI skills acquisition and motor skills acquisition. Although there is no 

motor output when user control a BMI, subjects receive a real-time feedback of the current status of 

BMI decoding, and they have to adjust their behavior accordingly. Comparatively with motor learning 

process, with BMI training subjects should improve their performance in terms of accuracy and speed. 

BMI skills can be compared to a sensorimotor training and in this sense, the feedback used to teach 

subjects how to control the BMI becomes crucial.  

 

1.4 BMI feedback modality 
 

As discussed by Wolpaw and Wolpaw [54],  a brain-machine interface (BMI, or brain-computer 

interface) is framed on the sensorimotor hypothesis, namely that “the whole function of central 

nervous system (CNS) is to convert sensory inputs into appropriate motor outputs.” Thus, acquiring 

BMI skills (i.e., learning to modulate brain signals that are translated into new kinds of outputs that 

are not mediated by the normal pathways of the CNS) should be guided by similar principles to 

learning any other natural motor behavior. As Wolpaw and Wolpaw noted, “normal CNS outputs … 

are mastered and maintained by initial and continuing adaptive changes in all the CNS areas 

involved”, areas that extend from the cerebral cortex to the spinal cord. 

Adhesion to the sensorimotor hypothesis leads to a number of postulates. First, sensory inputs 

(i.e., the afferent information to the CNS as result of its efferent commands, or feedback) plays a 

critical role in BMI –inputs and outputs having to rely on the corresponding natural pathways. In 

particular, for the case of MI-BMIs, somatosensory feedback should be more effective than standard 

visual feedback. Second, BMI use should induce plastic changes not only in the cortical area from 

which it computes the outputs, but also in all other CNS areas that normally adapt to control spinal 

motoneurons. In particular, we hypothesize that online operation of a BMI based on MI of a limb 

coupled to somatosensory feedback delivered to that limb should increase corticospinal tract (CST) 

excitability as measured by motor-evoked potentials (MEP) elicited by single pulse transcranial 

magnetic stimulation (TMS) of the corresponding muscle. Such an increase in CST excitability is an 

indicator of positive plastic changes associated to cortico motor outputs in healthy and CNS-injured 

humans [55,56]. 
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Regarding postulate 1, several studies have underlined the potential advantage of 

somatosensory feedback for improving performance of EEG-based MI-BMIs; e.g., via robotic 

devices [17,33,57], vibrotactile stimulation [58–61] or neuromuscular electrical stimulation (NMES) 

[23,36,62].  For example, Vukelić et al. (2015) [57] demonstrated that a robotic orthosis was more 

suitable than a visual feedback to entrain motor network with BMI. Reynolds et al. (2015) [62] 

showed that NMES during MI induced a larger desynchronization of the sensorimotor rhythms 

compared to motor imagery supported only by visual feedback. Cincotti et al. (2007) [58] have 

highlighted the fact that vibrotactile feedback was perceived by subjects as more natural feedback for 

BMI. However, passive somatosensory feedback delivered via these modalities elicits similar brain 

activation to active MI [63–66], thus risking biasing the BMI output. An alternative source of 

somatosensory feedback necessitates to be explored. As for postulate 2, different studies have 

documented plastic changes in the sensorimotor cortical areas used as input for the BMI. However, 

there is a lack of direct evidence of adaptation in other CNS areas involved in natural motor control. 

A new somatosensory feedback, supporting CNS plasticity and BMI skills learning needs to be 

investigated.  

 

1.5 Sensory-threshold neuromuscular electrical stimulation 
 

Neuromuscular electrical stimulation (NMES) is a common tool with a wide range of 

applications in research and rehabilitation. NMES is a repetitive transcutaneous electrical stimulation 

that depolarizes lower motor neurons axons until it triggers the contraction of the innervating 

muscular fibers. In the same way the motor axons are activated by NMES, sensory axons are also 

depolarized. Volley of depolarization are sent to the central nervous system traveling through the 

sensory pathways to the somatosensory cortex, at the frequency of the stimulation. Interestingly 

NMES may induce plastic changes in the nervous system [68–70].  

However, as explained before, NMES induces strong ERD and might bias BMI output. Strong 

somatosensory afferences (e.g., passive movement of the joint of muscular contraction) elicits strong 

brain activation similar to MI. BMI algorithms are then, not able to dissociate subjects’ intentional 

MI from the evoked brain activation elicited by feedback. As a result, subjects cannot achieve the 

resting task if, by mistake, the BMI output is MI and triggers somatosensory feedback. Thus, the 

purpose of this thesis is to investigate the usage of sensory threshold NMES (St-NMES) as a novel 

somatosensory feedback for BMI. Indeed, NMES can be also used with a sensory threshold 

stimulation [71,72]. In this way it conveys natural proprioception by depolarizing sensory and motor 
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nerves without eliciting any muscular contraction related to MI performance. We hypothesize that St-

NMES feedback will drastically improve BMI training by (i) improving MI patterns discriminability, 

accuracy and stability (ii) facilitating the acquisition of BMI skills, and (iii) inducing cortical and 

subcortical reorganization linked to learning processes. In order to demonstrate the interest of St-

NMES as a BMI feedback, this thesis is composed of 4 parts. First of all, we investigated in an offline 

EEG study the impact of St-NMES on MI performance compared to a standard visual feedback. We 

also assessed the impact St-NMES on EEG recordings. In the context of BMI control it was important 

to control that St-NMES does not bias BMI outcomes and by eliciting detectable ERD. Secondly, we 

compared the usage of St-NMES feedback with a standard visual feedback during online BMI 

training. We additionally investigated corticospinal tract changes induced by both BMI training based 

either on St-NMES or visual feedback. Then, different stages of BMI learning and its related cortical 

and corticospinal changes were explored in a third experiment. Finally, our BMI-St-NMES protocol 

was tested with a chronic stroke patient suffering from a severe impairment of upper-limb motor 

function.  

 



21 

 
 

2.1 Introduction 
 

As previously explained, MI has been defined as “a mental event where kinesthetic memory 

of a prior movement is reactivated giving rise to an experience of re-executing the movement” [45]. 

In order to improve the usability of BMI based on MI, it becomes crucial to propose an appropriate 

training to enhance kinesthetic performance compared to visual imagery [46]. Although it is agreed 

that users should be clearly briefed on how to perform kinesthetic imagery, MI patterns are not 

sufficiently reliable and users’ performances are still limited. That is the reason why we proposed the 

usage of a new somatosensory modality, called St-NMES, to foster MI training and subjects’ 

performances. Prior to designing an online feedback for BMI application, it was important to evaluate 

the feasibility to use St-NMES while performing MI and to study its advantages against standard 

visual information. We presume that under St-NMES subjects will adopt less chaotic MI strategy and 

will focus more on kinesthetic sensations. Moreover, since we are using sensory threshold 

stimulation, we do not expect any contamination of the feedback on the recorded brain patterns. Thus, 

we hypothesize that St-NMES does not induce detectable ERD patterns and fosters MI performance. 

 

2.2 Material and Method 
 

2.2.1 Experimental paradigm 
Twelve healthy subjects (4 females, age 28.8 ±2.69, 2 left-handed) naïve to motor imagery practice, 

took voluntary part in the experiment. The study was approved by an internal ethical protocol and 

participants gave their written informed consent before participation. During the whole experiment 

subjects were seated on a fixed chair in front of a computer screen with hands on the knees, palms 
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up, to have a relaxed position. EEG signal was recorded at 512 Hz using a gHiAmp system (gTec, 

Austria) from 60 channels equally distributed over the scalp following the 10/10 International System.  

The experiment was composed of two days of recordings during which all subjects were asked 

to perform motor imagery (MI) of closing their dominant hand with two different guidance during 

the task: continuous St-NMES or continuous visual guidance (Figure 1). The term guidance is defined 

as the support a subject is receiving while performing the task. It differs from the term feedback since 

it is not linked to subjects’ performance, but it only assists the task. Tasks, conditions and instructions 

were the same for both days of recordings, and only differed in the number of executed trials. The 

instructions were the following: “For MI trials, you have to perform MI of closing the dominant hand 

while seeing the visual guidance on the screen or while feeling St-NMES. It is one continuous MI, 

not repetitive MI. In order to perform MI, you should not see your hand closing, but you have to feel 

it without eliciting any muscular contraction. Try to keep a consistent strategy over trials. During 

resting trials, you have to stay as calm as possible, you should neither move nor blink, and you should 

not think about your hand.” Thus, the importance of adopting a kinesthetic strategy during MI task 

was clearly explained to each subject. Importantly, guidance during the resting trials differed for the 

St-NMES modality and the visual modality, as explained below. 

On day 1, subjects were asked to execute 4 runs composed of 15 trials either for MI and rest 

task, with one guidance modality (St-NMES or visual), then 4 runs with the other guidance modality 

(visual or St-NMES). The first guidance modality was randomly assigned for each subject as well as 

the order of trials (MI or rest) of each run. On day 2, only 2 runs were performed per modality. We 

designed a third condition to control for possible artifacts induced by St-NMES (NMES-control) 

during which subjects were receiving St-NMES without performing MI. The order of the NMES-

control recording was shuffled for each participant. For all 3 conditions (St-NMES, visual, NMES-

control) each trial started with the preparation cue (3 s), then a cue indicating the type of trial (MI or 

rest, 1 s), followed by the task (MI or resting, 4 s) and finished with the appearance of the stop cue (1 

s). Inter-trial intervals lasted 3 to 4.5 s. 
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Figure 2:1 Schema of the experimental paradigm 
 

Guidance modality order (St-NMES-visual or visual-St-NMES) is assigned randomly across 

subjects. During day 1, 4 runs are recorded per modality. During day 2, 2 runs are done per 

condition. A third condition called NMES-control is randomly run before, between the two 

guidance trainings or after the training. The NMES-control condition served to evaluate the impact 

of St-NMES without performing MI compared to rest with no stimulation.

 

 

 

2.2.2 St-NMES modality 
NMES electrodes were placed on the Flexor digitorum superficialis muscle at the anterior 

face of the forearm. Sensory-threshold (St-NMES) and motor threshold (Mt-NMES) amplitudes of 

NMES were evaluated independently for each subject before recordings (on average St-NMES 

amplitude was 5 ±1 mA and Mt-NMES amplitude was 9 ±1 mA). Sensory-threshold stimulation 

induced a tingling sensation in the palm and forearm but without eliciting any muscular contraction. 

Contrarily, Mt-NMES provoked a muscular contraction leading to a passive hand closure. The 

frequency of stimulation was fixed to 30 Hz for all conditions and subjects. In order to minimize the 

noise injected by NMES on the EEG signal, we respected the procedure described in the literature 

[73]: The NMES device was installed on a different surface than the EEG device and an electrode 

was installed on the ipsilateral biceps to ground the subject. During MI and NMES-control trials, 

subjects started the MI task right after the appearance of the cue on the screen, when they started 

feeling St-NMES. Then, during the 4s trials, subjects were performing MI and in parallel they were 

receiving St-NMES supporting subjects’ performances. The trial ended with 1s of Mt-NMES 

stimulation that closed the hand. No guidance was delivered during resting trials. 
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2.2.3 Visual modality 
Subjects were instructed to perform kinesthetic MI. During MI, subjects received guidance 

via the visualization of a bar going up (for MI trials) until the bar reached a threshold (represented 

by a line on the screen) indicating the end of the trial. During resting trials subjects had to stay calm 

until the bar reached the bottom of the screen. 

 

2.2.4 Preprocessing 
EEG was filtered in the frequency band [1-100] Hz (zero-phase Butterworth 4th order) with a 

50 Hz notch filter, re-referenced to linked ears, then common-averaged referenced. Noisy channels 

(detected post-experiment by visual inspection) were manually replaced by the mean of the 

orthogonal neighboring channels. Trials were concatenated per condition (St-NMES, visual, NMES-

control), composed of a baseline from [-3 0] s, a task time window [1 5] s, and a time after the task 

[5 6] s. These extracted trials were used for all the analyses. Trials with a filtered EEG signal above 

100 µV were marked as artifactual and discarded. 

 

2.2.5 Analysis of the sensorimotor modulation 
In order to understand the effect of the guidance modality on MI neural correlates, we used 

data from the second day to compare the 3 conditions (St-NMES, visual, NMES-control). 

Sensorimotor rhythms modulations (SMR) were computed by extracting the power spectrum for 

frequency bands 1-45 Hz with 1 Hz resolution for each electrode for all trials. We computed the 

amplitude spectra of each trial with a sliding window (1 s window with 62.5 ms overlap). The baseline 

spectrum of each trial was extracted from EEG immediately preceding each event. The spectral 

transforms of each trial were then normalized by subtracting their respective mean baseline spectra 

and dividing by this same baseline value in order to compute the corresponding event-related 

desynchronization (ERD) [14], see Equation 2:1. For left handed subjects (n=2), electrodes were 

flipped in order to have contralateral electrodes of the dominant hand in the same topographical 

position. ERDs were finally averaged for each condition. For topographical analysis, ERD data were 

averaged across time and across µ (8-12 Hz) and β (13-24 Hz) frequency bands. The frequency bands 

were selected based on what is define in the literature [74]. β band was restricted to 24 Hz in order to 

avoid the injected noise from St-NMES around 30Hz. The averaged ERD values of each electrode 

was used to interpolate a topographic map. The obtained topographic maps were compared between 

pairs of tasks via a cluster permutation approach, which automatically corrects for multiple 

comparisons [75]. Only significant clusters were considered (p < 0.05). Moreover, in order to control 
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which factor between the task (rest or MI) or the electrical stimulation (stimulation o or stimulation 

on) had a significant impact on SMR modulations recorded over the sensorimotor cortex (averaged 

recordings from electrodes Cz, C1 and C3), we performed a repeated measures ANOVA with these 

two within-subject factors followed by Bonferonni post-hoc test. 

 

 
 
 

Equation 2:1 – Event related desynchronization 
 

2.2.6 Connectivity analysis 
We also analyzed the impact of the guidance modality at the brain network level. To this end, 

we performed a connectivity analysis at the voxel level following previous approaches [76]. First, 

EEG data from MI trials, were re-computed into cortical current density time series at 6239 cortical 

voxels using standardized Low-Resolution Electromagnetic Tomography [77]. We manually selected 

4 regions of interest (ROI) in the contralateral hemisphere BA4: primary motor cortex (mostly 

recorded by C line channels); BA6: SMA and premotor cortex (FC line channels); BA7: associative 

somatosensory cortex (CP line channels), and BA18,19: visual cortex, (PO and O lines) [78]. The 

signal at each cortical ROI consisted of the average activation of voxels belonging to the ROI. Intra-

cortical lagged coherence was computed between all possible pairs of the 4 ROIs for each of the 

following frequency bands of interest: µ (8-12 Hz), β (13-24 Hz). For the sake of simplicity, this 

analysis was performed only between St-NMES and visual MI tasks. Paired t-statistics were 

performed for each frequency band, and then corrected using a non-parametric randomization method 

[79]. 

 

2.2.7 Feature extraction and single sample classification 
We used power spectral density (PSD) features among all modalities to evaluate the 

discriminability of the recorded signals. PSD for the 16 channels covering the sensorimotor regions 

(Fz, FCz-1-3-2-4, Cz-1-3-2-4 and CPz-1-3-2-4) were computed using the Welch method with internal 

Hanning windows of 500 ms (75% overlap) leading to 49 PSD evaluations per trial. For each 

condition (St-NMES or visual) features were selected to classify MI, rest and NMES-control trials 

based on signed squared values of point-biserial correlation coefficients (signed r2). We restricted 

our feature selection within the bands of interest i.e. 8-24 Hz, to reduce the possibility of selecting 
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noisy features, and performed classification using a linear discriminant (LDA). Three different 

analyses were applied :   

1. Discriminability (cross-validation on day 1) 

Two classifiers were built according to the guidance condition (St-NMES or visual). To 

estimate the accuracy of each classifier in order to discriminate MI class from rest class, we 

computed a 4-fold cross validation, respecting the time structure, based on data recorded on 

day 1. In order to avoid overfitting, the 5 best features were selected from the training set of 

each fold. 

2. Transferability (train on day 1 and test on day 2) 

In order to have an insight about future online applications, we decided to follow a standard 

procedure of BMI. To this end, we built classifiers based on data from day 1 (train sets), we 

manually selected 5 optimal features that were neurophysiologically relevant based on signed 

squared values of point-biserial correlation coefficients (signed r²), and finally classifiers were 

tested with data coming from day 2 (test sets). 

3. Artifact evaluation (cross-validation on day 2) 

In order to control if St-NMES induced EEG discriminable patterns, we built all possible pairs 

of classifiers based on: MI with St-NMES guidance trials; resting trials; NMES-control trials 

(rest with stimulation). All classifiers were tested with 4-fold cross-validation, respecting the 

time structure. Since less data were used in the cross-validation, only the best 3 features were 

selected. 

 

When applicable, classification performances were compared with a non-parametric paired 

statistical test (Wilcoxon signed-rank test) and Bonferroni corrected. Statistical significance of 

classification was defined from a binomial cumulative distribution assuming equal priors (p = 0.5) 

and the number of trials available (n = 80) leading to a chance level of 0.60. Finally, non-parametric 

correlations (Spearman correlation) were also computed between discriminability and transferability 

results. The two correlations were compared, using the cocorr statistical toolbox [80], to assess 

whether they were significantly different based on the modified Fishers Z procedure [81]. 

 

2.2.8 Representative cases  
We investigated how the discriminability of MI EEG patterns compared to rest is affected by 

the guidance modalities (St-NMES, visual). We used all features from µ and β frequency bands for 

all channels for each condition to fed a then fed them to principal component analysis (PCA). Then 
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we plotted the first two principal components extracted from 4 pairs of tasks (St-NMES MI vs rest; 

visual MI vs rest; visual MI vs St-NMES MI; and St-NMES MI vs control), in order to observe the 

different patterns related to the guidance modality. For sake of simplicity, we selected two 

representative cases that represent a subject with low performance with visual guidance but high 

performance with St-NMES and a subject with low performance indepently of the guidance modality.  

Furthermore, we also asked subjects to subjectively evaluate the two modalities in order to 

understand which kind of guidance would be more suitable for online experiments. To this end, the 

NASA TLX questionnaires were filled by all subjects for each guidance modality. This questionnaire 

evaluates the workload of the task from the following points: mental, physical and temporal demand, 

the estimated performance, the effort and the frustration. 

 

2.3 Results 
 

2.3.1 MI neural correlates 
In order to understand MI neural correlates, we used topographic interpolation of EEG 

modulation during MI for the three conditions (St-NMES, visual, NMES-control) Figure 2:2. During 

motor imagery task a clear ERD pattern appeared in the contralateral hemisphere with both guidance 

modalities in µ and β rhythms (Figure 2:2b). The time-frequency plots (Figure 2:2a) confirmed that 

the subjects were performing motor imagery in a sustained manner, with larger desynchronization in 

µ and β bands when using St-NMES. Additionally, it can be seen that Mt-NMES also generates a 

large desynchronization not related to MI. However, theses ERD were larger with the St-NMES 

guidance compared to visual and these topographical differences were significant (p < 0.05) in the β 

frequency band (Figure 2c). Interestingly, the stimulation itself, without performing any MI (NMES-

control), did not induce any significant desynchronization (p > 0.05). MI patterns for visual and St-

NMES conditions were also significantly different than the brain patterns induced by the stimulation 

itself (NMES-control), for both β (Figure 2c) and µ rhythms (p < 0.05 for all conditions). However, 

from the moment the NMES induced a muscular contraction (motor threshold NMES) a significant 

desynchronization was recorded over the sensorimotor areas for µ and β. 

 

2.3.2 Task-related desynchronization 
We investigated which factor between the task (MI or rest) and the electrical stimulation had 

an impact on ERD over the contralateral primary sensorimotor cortex. The ANOVA analysis Figure 
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2:3 confirmed that the task factor (MI vs rest) had a significant effect on the desynchronization over 

the primary sensorimotor cortex for both µ and β bands (F1,11 = 8.20, p = 0.015 and F1,11 = 22.50, 

p = 0.001 respectively). However, the stimulation factor had a significant effect only on β (F1,11 = 

7.12; p = 0.022) band, but not on µ rhythm (F1,11 = 0.05, p = 0.823). The interaction between the 

two within-subjects’ factors (task*stimulation) was only significant for β band (F1,11 = 5.02, p = 

0.047), contrary to µ rhythm (F1,11 = 0.14, p = 0.713). Bonferonni post-hoc test for β band 

highlighted that the desynchronization was significantly larger (p = 0.008) with St-NMES guidance 

(MI task with sensory stimulation) compared to visual guidance (MI task with no sensory 

stimulation). Importantly, during the resting task the stimulation did not induce significant differences 

(p = 0.86) in the power spectrum of the region of interest. 

 

2.3.3 Connectivity 
At the brain network level, significantly higher connectivity (p < 0.05) was found in the 

fronto-parietal network during MI with St-NMES guidance compared to MI with visual guidance. In 

particular, in β (13-24 Hz) rhythm, the connectivity was significantly higher between BA7 

(associative somatosensory cortex, mostly computed from CP line channels) and BA6 (Premotor 

cortex and SMA, FC line), and between BA4 (primary motor cortex, C line) and BA7 (CP line). 

Higher connectivity was also found in between BA6 (FC line) and BA7 (CP line) and in β between 

BA4 (C line) and BA6 (FC line), but these results were not significant (p > 0.1). No higher 

connectivity was found for the visual guidance compared to St-NMES, and no significant differences 

were found between occipital and fronto-parietal regions. 
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Figure 2:2 Topographical analysis

 
 

a) Time-frequency plot over C3 channel, grand averaged across subjects for the three conditions 

(St-NMES, Visual, NMES-Control). The period [1 5] s indicates the MI task. The time window 

before [-3 0] s corresponds to baseline and the period after [5 7] s corresponds to Mt-NMES 

(St-NMES and Control condition) or end of trial (Visual).  

b) Topographical analysis of µ (8-12 Hz) (top) and β (16-24Hz) (bottom) rhythms modulations 

during MI epochs for the three conditions St-NMES, visual and NMES-control. 
c) Cluster permutation analysis highlighting significant topographical differences between pairs of 

conditions in β band between St-NMES vs visual (left) and between St-NMES vs NMES-control (right).  

d) Topographical analysis of µ (top) and β (bottom) rhythms modulations while subjects received motor 

threshold stimulation (Mt-NMES) that induced muscular contraction. Note that subjects were not 

performing MI task during Mt-NMES. 
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Figure 2:3 ERD over contralateral sensorimotor cortex 
 
 

Repeated measure ANOVA with 2 within-subjects’ factors: task (rest or MI) and stimulation (St-

NMES on or St-NMES off) of EEG modulation recorded over the sensorimotor cortex (averaged 

signal from Cz, C1 and C3). Data are recorded the same day (day 2). Rest with stimulation 

represents St-NMES control data, Rest without stimulation represents resting task during visual 

condition, MI with stimulation represents MI trials with St-NMES guidance and MI without 

stimulation represents MI trials during visual guidance. 

* p < 0.05, ** p < 0.01 
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Figure 2:4 Connectivity analysis 

 
Representation of significantly larger functional connectivity (lagged coherence) during MI with St-

NMES guidance compared to visual guidance, in β frequency band.  

 

 

 

2.3.4 Classification accuracy 
In order to evaluate whether St-NMES guidance makes MI EEG patterns more 

distinguishable, we computed classification accuracy metrics (Figure 2:5). Classification accuracies 

above chance level (0.60) highlight the ability to significantly detect an MI brain pattern as compared 

to rest. Discriminability (on day 1) and transferability accuracies (on day 2) are represented on Figure 

2:5a. The discriminability was better for St-NMES classifier compared to the visual (St-NMES: 0.73 

±0.13 and visual: 0.68 ±0:07), yet this difference was not significant (p = 0.078). More specifically, 

10 subjects over 12 performed better (on average 8%), whereas only 1 subject achieved better 

classification with visual guidance (St-NMES: 0.53 and visual: 0.66). The remaining subject achieved 

no significant performance with any condition (accuracy < 0.60). Moreover, transferability results 

were significantly better for the St-NMES condition compared to visual (St-NMES: 0.72 ±0.13, 

visual: 0.65 ±0.09, p = 0.014). Knowing that all subjects were naïve to MI, 9 subjects over 12 attained 

a significant classification (accuracy > 0.60) under St-NMES guidance whereas, only 7 subjects over 

12 had a significant classification with the visual condition. Possible discriminable artefacts during 

St-NMES were controlled in order to understand what is classified during St-NMES guidance (Figure 

2:5b). NMES-control represents the situation when subjects were receiving St-NMES without 
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performing any MI. We found that the stimulation itself did not generate neither discriminable ERD 

nor discriminable artefacts. Indeed, no significant classification was possible between rest and 

NMES-control (accuracy = 0.59 ±0.07). Moreover, the two classifiers MI vs rest and MI vs NMES-

control were not significantly different (accuracies = 0.75 ±0.13 and 0.74 ±0.13 respectively, p = 

0.301). These two classifiers were also significantly different than rest vs NMES-control (p = 0.0049 

and p = 0.0122). 

Interestingly, subjects’ performances across days were more consistent with St-NMES 

guidance. Indeed, accuracies results were highly correlated with St-NMES guidance (r = 0.92, p < 

0.0001), contrary to results with visual guidance (r = 0.56, p = 0.057) (Figure 2:5c). The correlation 

of St-NMES was significantly better than that obtained with a visual guidance (r = 0.92 vs r = 0.56, 

p = 0.02, z-score = 2.27, two-tailed modified Fishers Z procedure). 

The increase classification performance observed with St-NMES guidance might be explained 

by the fact that subjects’ MI distribution is becoming more discriminable compare to the rest 

distribution. Moreover, some subjects considered “bad” for MI with visual guidance became “good” 

with St-NMES.  Figure 2:6 illustrates the case of subject 1 that had low MI performance since its 

distribution is poorly discriminable from rest distribution. With St-NMES guidance, the 

discriminability was strongly increased and the variance of MI performance decreased and. Thus, this 

subject obtained better classification performance. However, for some subject like subject 3 St-

NMES did not facilitate MI performance.  

We also investigated which kind of feedback would be more convenient for subjects. To this 

end, subjects answered NASA TLX questionnaire. Results highlighted that the workload of the MI 

task was significantly lower with St-NMES than visual modality (St-NMES: 9.47 ±2.87, visual: 11.96 

±3.34, p = 0.0015). More specifically, the frustration, the effort and the mental demand, which can 

affect motor learning and motor performances, were lower. Thus, subjects were more engaged with 

St-NMES than visual condition. All together these results suggest the benefits of the proposed 

guidance modality not only from an electrophysiological point of view, but also from a subjective 

perspective. 
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Figure 2:5 Classification accuracy results 
 

a) Left panel represents discriminability results (cross-validation on day1) and right panel 

represents transferability results (training on day 1 and test on day 2). b) control of artefact 

discriminability (cross-validations on day 2). The black line represents the chance level 

estimated at 0.60 with at 95% confidence. c) non-parametric correlation (Spearman 

correlation) between accuracies from both days (discriminability and transferability results) 

for St-NMES condition (left panel) and visual condition (right panel). 
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Figure 2:6 PCA analysis, example of 2 representative subjects 
 

PCA analysis between the 4 pairs of tasks St-NMES (blue), visual (red), rest (green) and control 

(yellow). Representation of the two first principal components of each pairs of tasks. Each dot 

represents a sample. The ellipsoids represent the covariance matrix of the distriutions and the cross 

the mean of the distribution. The black line represents the hyperplane computed from an LDA 

classifier. Subject 1 represents the case of a subject with “bad” MI performance with visual 

guidance, but “good” MI performance with St-NMES. Subject 3 represents the case of a subject 

with “bad” MI performance independently of the guidance modality 
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2.4 Discussion 
 

This study investigated a novel guidance modality for novice subjects during MI based on 

sensory threshold neuromuscular electrical stimulation (St-NMES) compared to standard visual 

guidance. We found that St-NMES fostered subjects’ performances by enhancing MI neural brain 

patterns without inducing any bias in the EEG signal. 

 

2.4.1 Enhancement of MI neural correlates 
EEG neural correlates of MI production were fostered when the MI guidance was St-NMES 

compared to visual. Indeed, µ and β rhythms modulations in the contralateral hemisphere were larger 

with St-NMES. In the case of β frequency band, these results were significantly larger over the fronto-

parietal brain regions. This specific enhancement of ERD patterns in the β frequency band could be 

explained by the hypothesis of Auman et al. (2015) [74], which indicates that oscillations play a 

crucial role for muscle representations in the brain solicited during MI. This idea is also supported by 

a recent study showing that oscillations are particularly relevant in the context of corticospinal 

communication [82]. Importantly, the neural correlates enhancement was linked to an improvement 

in MI efficiency and not by the stimulation itself. Indeed, the sensory threshold stimulation did not 

induce detectable brain activation due to the brain treatment of somatosensory afferences. Moreover, 

MI with St-NMES guidance induced not only larger ERD, but it also enhanced connectivity between 

fronto-parietal regions similar to those described by fMRI studies. Indeed, fronto-parietal regions 

such as M1, SMA, PMC in the frontal lobe and inferior parietal lobule, superior parietal lobule and 

S1, are well described during kinesthetic motor imagery and reflect subjects’ MI performances   [41–

43,45,83]. Furthermore, Hanakawa et al. (2003) [84] demonstrated that activity of the superior 

precentral sulcus and intraparietal sulcus areas, predominantly on the left hemisphere for right-handed 

subjects, was associated with more reliable imagery task performance. Along these lines, our results 

show that subjects were more accurate in the imagery performance with St-NMES. Moreover, it is 

known that MI has a distinguishable correlate to motor execution which is connectivity between 

Brodmann's area 7 (superior parietal lobule and intraparietal sulcus) and Brodmann's area 6 

(supplementary and pre-supplementary motor areas) [37,42,84,85]. This specific connectivity seemed 

to be stronger for the St-NMES modality implying that subjects were performing better MI compared 

to the visual guidance. Due to the limitations of our source localization model, though, results should 

be taken with caution, and additional analysis using fMRI would be needed in order to confirm these 

results. However, compared to fMRI studies, no significant ipsilateral activation was detected. 
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Furthermore, no activity in visual areas was described with the visual guidance condition whereas it 

is known that visual imagery involves occipital regions and the superior parietal lobules [42]. A 

possible explanation is that even with visual guidance subjects were able to produce MI and they 

were not performing visual imagery still, correlates of motor imagery were weaker. 

 

2.4.2 Enhancement of kinesthetic imagery 
As already stated in the introduction, it is necessary to enhance kinesthetic experience during 

MI. Hanakawa et al. (2008) [86] explained that “Motor Imagery likely corresponds to activation of 

the neural representation of a “potential” movement, which may be triggered by sensory stimuli or 

retrieved volitionally from motoric memory”. That is the reason why athletes or experts, with an 

efficient memory of the movements, produce more efficient motor imagery of the specific field of 

expertise [87–89] . On the contrary, for novice users, MI might be mostly triggered by sensory stimuli. 

Moreover, it is known that motor actions such as motor execution or MI require the knowledge of 

body representation and body location. Recent evidence has shown that congruent sensory feedback 

is crucial to properly represent our body [90]. MI performance is linked to the internal body 

representation [91,92] combined with somesthetic sensations [30]. Indeed, Lorey et al. have shown 

that proprioceptive information on actual body posture is more relevant for first person perspective 

imagery [93], which should also be the case for MI. Also, Shenton et al. suggested that proprioceptive 

in ow may represent the dominant sensory input of body representation [94]. In line with these 

previous works, our results suggest that, by providing somatosensory input, St-NMES may have 

helped subjects to trigger motoric memory of a given movement and support better body limb 

representation, leading to better MI. MI performance may also be enhanced by the attention towards 

the limb sensations (defined as an internal focus) induced by St-NMES [95]. Thus, St-NMES might 

be more suitable to encourage subjects to drive efficiently their attentional resources and exploit better 

motoric memory strategies during MI. 

Furthermore, we also assume that St-NMES, by depolarizing motor and sensory nerve, 

mimics the physiological peripheral MI response. Indeed, Solodkin et al. [42] have shown that 

kinesthetic MI induces an increase in muscular tone. Several studies confirmed the fact that 

kinesthetic MI induces an increase of corticospinal tract excitability [44,96]. Recently, Takemi et al. 

[97] have suggested that this increase could also happen at the spinal cord level measured   as an 

increase of F-wave. Kinesthetic MI “may correspond to activation of the neural correlates of motor 

representations probably involving sensory threshold activation of the descending motor pathway” 

[86]. Following this theory, with St-NMES guidance the descending and ascending motor pathways 
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are both activated below the motor threshold, which might correspond to the physiological activation 

of the peripheral pathway during MI. As explained in Veldman et al.’s review about sensory electrical 

stimulation [98], St-NMES activates sensorimotor nerves and sensory volley ascends in the rostral 

thalamus and project to S1 (BA1,2,3a,3b and 4) and S2 (BA 40 and 43). Due to this activation, St-

NMES can induce long-term potentiation in M1 via excitatory glutamatergic synapses. Indeed, it has 

been shown in several studies that sensory electrical stimulation had the potential to induce brain 

plasticity in particular the excitability and the organization of the motor cortex [71,99] . Combined to 

MI, St-NMES probably facilitates the activation of sensorimotor networks and reinforces 

corticospinal excitability. Thus, St-NMES is a promising tool that, associated to MI, may not only 

foster brain patterns but also enhance motor learning and recovery by reinforcing peripheral and 

central pathways activation during MI. 

 

2.4.3 Comparison with other somatosensory guidance/feedback 
In this study, we have presented a novel method for providing guidance to induce accurate 

MI, and compared it to the most common modality (visual) usually provided in the field. Nonetheless, 

the comparison between St-NMES and other types of kinesthetic feedback, such as a robotic orthosis 

or vibrotactile feedback, needs to be investigate in the future. Despite it has been demonstrated that a 

somatosensory feedback is more suitable to perform MI, it remains unclear how such rich feedback 

could be used without biasing the analysis. As an example, Vukelić et al. (2015) [57] have shown 

that a robotic orthosis is more suitable than visual feedback to train motor imagery networks, whereas 

a passive movement of the joint will induce similar activation of motor networks [17,63].  

In our experiment we confirmed that when muscular contraction and joint movement are 

induced by Mt-NMES, a large desynchronization was recorded over sensorimotor areas, similarly to 

other studies [64]. It worth noticing, that the resting inter-trial interval was sufficiently long, 7 to 8.5 

times longer that the Mt-NMES, to prevent any priming effect. Importantly, the control condition also 

received Mt-NMES and the analysis showed no possible influence of 1s Mt-NMES on results. 

However, since Mt-NMES has a direct impact on EEG modulation, we may then conclude that the 

limb should stay at rest during the entire MI task. We may then conclude that the limb should stay at 

rest during the entire MI task. Nonetheless, vibrotactile stimulation which does not induce any 

movement, seems to also elicit ERD and bias MI classification. Indeed, Chatterjee et al. (2007) [59] 

demonstrated that the placement of vibrotactile electrodes induces a significant bias in MI 

classification accuracy. In our study we did not investigate the possible bias due to different electrodes 

placements; nevertheless, St-NMES itself did not bias MI classification. Ahn et al. (2014) [61] also 
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showed that selective attention using vibrotactile stimulation causes a large ERD over the 

sensorimotor cortex, similarly to motor threshold NMES as revealed in our study. In our case the 

selective attention to St-NMES did not induce ERD during the NMES-control condition. Further 

investigation will be needed to shed light on the differences between vibrotactile stimulation and St-

NMES. We presume that the main difference between both modalities reside in their mechanisms. 

Indeed, mechanical vibrations only activated cutaneous afferences, whereas St-NMES directly 

stimulates sensory and motor nerves which might involve a more complex sensory neural treatment 

that is less detectable at the cortical level. This hypothesis is in line with an fMRI experiment that 

also shows that sensory threshold NMES do not significantly induce detectable brain activation [100]. 

On the contrary, several studies demonstrated significant BOLD activations in the sensorimotor 

networks during vibrotactile stimulation  [65,101,102]. 

 

2.4.4 Implication for brain-machine interfacing 
The improvement of MI neural correlates thanks to St-NMES enhanced the possibility to 

classify more accurately MI with EEG. These results could possibly have a positive impact on brain-

machine interfaces (BMI) based on MI. Thanks to BMI systems, subjects can receive in real-time a 

feedback on their ability to generate the expected brain pattern. Interestingly, subjects’ MI 

performances have been correlated to motor skills level in healthy subjects [27,88,89]. Even if EEG-

based BMI are very promising, they are still limited by the poor reliability and stability of decoders 

[49,103]. Our results suggest that St-NMES could be interesting to be used as a feedback during BMI-

based MI training. We showed that classification accuracy was higher and a large majority of subjects 

obtained better classification accuracy under St-NMES guidance (10 over 12 subjects). More 

importantly, subjects’ performances were more stable over time contrary to standard BMI with visual 

guidance approaches. Nonetheless, two subjects did not improve their performances with St-NMES. 

These two subjects were right-handed subjects similarly to 8 other subjects. Our study does not allow 

us to assess any hand-related differences in MI ability. To the best of our knowledge, we do not know 

any prior work showing differences between left- and right-handed MI performers. Further online 

studies involving a larger cohort of subjects, able-bodied and with motor disabilities, will be needed 

to understand the advantages and limitations of the proposed approach. 
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3.1 Introduction 
 

We previously explored the use of sensory-threshold NMES (St-NMES) in an offline BMI 

study. Our results showed that St-NMES alone did not elicit brain patterns significantly different from 

resting. Furthermore, during MI, St-NMES induced significantly larger activity over sensorimotor 

areas and significantly increased connectivity within the fronto-parietal cortical network as compared 

to visual feedback. The objective of this new study is to investigate the usability of St-NMES as a 

real-time feedback and its effect on BMI performance compared to a visual feedback. As previously 

suggested, learning to control a BMI system might be compared to a natural motor learning although 

no motor output is required. Thus, in this experiment we also investigated the underlying mechanisms 

linked to BMI learning. According to motor learning theories, acquiring the skills to control a BMI 

should induce plastic changes at cortical and subcortical levels. We hypothesized that BMI based on 

St-NMES will facilitate the acquisition of BMI skills and will induce an increase corticospinal tract 

(CST) excitability, as measured by motor-evoked potentials (MEP) elicited by single pulse 

transcranial magnetic stimulation (TMS) of the corresponding muscle. Such an increase in CST 

excitability would be an indicator of positive plastic changes associated to cortico-motor outputs in 

healthy and CNS-injured humans [55,56].

 

3.2 Material and Methods 
 

In this experiment, we investigated the impact of the feedback modality on subjects and 

system learning, comparing St-NMES to a visual feedback, during a BMI training. Twenty healthy 

subjects (10 female, age: 25.6 ±2.9, from 22 to 31 years old) right handed and naive to MI and BMI, 

took part in the experiment. Ten of these subjects (including 5 female) were enrolled in a cross-over 

BMI experiment and ten other subjects (gender and aged-matched) were recruited in a control St-
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NMES experiment. Every subject provided written informed consent. The experimental procedure 

was approved by the Cantonal Ethical Committee of Geneva (Ethics approval number: 

PB_2017_00295).  

 

3.2.1 Cross-over BMI experiment 
Subjects in the cross-over design BMI experiment performed both BMI protocols based on 

St-NMES or visual feedback (Figure 3:1). The first BMI modality (St-NMES or visual) was pseudo-

randomly assigned to each subject, balancing the conditions. For both BMI systems, subjects received 

similar instructions and they were asked to perform the same MI task. Instructions were the following: 

“you are requested to perform continuous MI of wrist and finger extension of the dominant hand 

while looking at visual feedback on the screen or while receiving St-NMES feedback. In order to 

perform MI, you should not visualize your hand, but you need to feel it without making any muscular 

contraction. Try to keep a consistent strategy over trials”. Each BMI protocol was composed of three 

consecutive days (Figure 3:1): an offline calibration session (day 0) followed by two days of closed-

loop BMI training (days 1 and 2).  Before and after each recording of days 1 and 2, MEP peak-to-

peak amplitude as well as the resting motor threshold (RMT) of the primary motor cortex, were 

recorded with transcranial magnetic stimulation (TMS). Between the first and second BMI training 

protocols a break of 10 to 14 days was respected in order to limit a possible learning effect being 

transferred from one feedback modality to the other. 

3.2.1.1 Offline calibration (day 0)  
Subjects were seated on a fixed chair in front of a computer screen with arms on a folded 

towel with approximately 15 degree of wrist flexion. During the whole BMI experiment, EEG was 

recorded at a sampling frequency of 512 Hz with 16 active surface electrodes placed over the 

sensorimotor cortex i.e., on positions Fz, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, 

CPz, CP2 and CP4 of the 10/20 system (reference: right mastoid; ground: AFz; gtec gUSBamp, Guger 

Technologies OG, Graz, Austria).  Both BMI protocols, with St-NMES or visual feedback, were 

based on the same BMI system except for the feedback modality. Raw EEG was filtered in the 

frequency band [1-45] Hz (Butterworth 4th order). Noisy channels (detected post-experiment by 

visual inspection) were manually replaced by the mean of the orthogonal neighbouring channels. 

Each of the EEG channel was spatially filtered with a Laplacian derivation, whereby the weighted 

sum of the voltages of orthogonal neighbouring channels is subtracted from that channel. Trials with 

a filtered EEG signal above 100 μV were marked as artefactual and discarded. Then, trials were 
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concatenated per condition (MI or rest trials). As a final pre-processing step, we computed the power 

spectrum density (PSD) of each spatially-filtered EEG channel for the frequency bands [8 26] Hz 

with 2 Hz resolution. We have restricted our analysis to μ and β bands, with an upper limit of 26 Hz 

in order to avoid eventual noise from St-NMES around 30 Hz.  

 

 

       

 
Figure 3:1 Experimental protocol 

 
Ten healthy subjects were enrolled in the cross-over design BMI experiment. Five subjects started with BMI 

with visual feedback (blue squares) and 5 subjects with BMI-St-NMES (red squares). Each BMI training 

block was composed of three consecutive days. Day 0 was an offline calibration recording. Day 1 and day 2 

were closed-loop BMI training. Before and after each BMI training session, we recorded MEP-peak-to-peak 

amplitude as well as the resting motor threshold of the extensor carpi longus radialis with TMS (TMS-pre 

and TMS-post). A break of, at least, 10 days was respected before starting the other feedback modality. Ten 

other subjects (aged and gender-matched) participated to the control St-NMES experiment (green square), 

during which we tested the impact of St-NMES alone on CST excitability. 

Raw EEG was filtered in the frequency band [1-45] Hz (Butterworth 4th order). Noisy 

channels (detected post-experiment by visual inspection) were manually replaced by the mean of the 

orthogonal neighbouring channels. Each of the EEG channel was spatially filtered with a Laplacian 

derivation, whereby the weighted sum of the voltages of orthogonal neighbouring channels is 

subtracted from that channel. Trials with a filtered EEG signal above 100 μV were marked as 

artefactual and discarded. Then, trials were concatenated per condition (MI or rest trials). As a final 
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pre-processing step, we computed the power spectrum density (PSD) of each spatially-filtered EEG 

channel for the frequency bands [8 26] Hz with 2 Hz resolution. We have restricted our analysis to μ 

and β bands, with an upper limit of 26 Hz in order to avoid eventual noise from St-NMES around 30 

Hz (see below). PSDs were computed every 62.5 ms, using the Welch method with an internal 

Hanning windows of 500 ms (75% overlap), and the obtained data were log-transformed. The five 

most relevant features, one channel associated with one frequency bin, (e.g. channel C3 at [10 12] 

Hz) were manually selected. Finally, a BMI decoder was trained to discriminate MI neural correlates 

from the resting condition using these features (EEG sample).  

3.2.1.2 Online closed-loop BMI training (day 1 and day 2)  
In day 1 and day 2, subjects were asked to perform 4 runs of 15 trials of MI and 5 trials of rest. 

For each trial, subjects received real-time feedback about their performance –i.e., probability that they 

were performing MI or resting. This probability was computed by integrating the outputs of the 

decoder to EEG samples (extracted from the raw EEG as in the calibration session) in order to better 

estimate the confidence of the subject’s intention. More details on BMI decoder training and operation 

can be found in [104]. The BMI response was “MI” when the integrated probability reached a certain 

confidence threshold. In order to keep the same motivation and involvement across the BMI training, 

the decision threshold was manually adjusted (from 60% to 85%) to obtain an average of 70% of 

success for both BMI feedback modalities (St-NMES or visual), as done in [23]. If needed, the 

decision threshold was adjusted after each run depending on performance. Each trial started with a 

fixation cross (3 s), then a cue indicating the type of trial (MI or resting, 1 s), followed by the task 

(MI or resting, up to 7 s). Inter-trial periods lasted from 4 to 6 s. MI trials were considered as a success 

when the subject managed to reach the decision threshold in less than 7 s. In resting trials, designed 

to probe that the BMI decoder was not biased by feedback (especially, St-NMES), subjects had not 

to reach the decision threshold during 7 s. 

3.2.1.3 St-NMES feedback 
Two pairs of NMES oval electrodes (4 x 6.4 cm) for neurostimulation were placed on the 

posterior part of the forearm (Figure 3:2). Sensory-threshold amplitudes of NMES were evaluated 

independently for each pair of NMES channels and each individual subject before recordings (on 

average St-NMES amplitude was 4 ±1 mA). Sensory-threshold stimulation is the minimal intensity 

necessary to induced a light tingling sensation in the arm for the proximal channel and in the hand 

and fingers for the distal channels. We verified that no muscular contraction was elicited by visual 

and tactile inspections. The frequency of stimulation was fixed to 30 Hz. In order to minimize the 

noise injected by NMES on the EEG signal, we respected the procedure described in the literature 
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[105]: The NMES device was installed on a different surface than the EEG device and an electrode 

was placed on the ipsilateral biceps to ground the subject. During online trials, subjects started the 

MI task right after the appearance of the cue on the screen. Then, during a maximum of 7 s, when the 

decoder confidence that the subject was performing MI increased, St-NMES was delivered on the 

two proximal channels. On the contrary, if the confidence decreased, no St-NMES was provided. 

Moreover, once the decoder confidence was approaching the decision threshold, the subject received 

St-NMES on the proximal and distal channels. Thus, at every time point subjects were informed about 

the dynamics of their BMI performance. The success of the trial was indicated on the screen (similarly 

to the visual condition). For the resting trials, feedback was identical; i.e. subjects received 

stimulation when the system classified subjects’ performance as MI. 

3.2.1.4 Visual feedback 
Subjects received similar instructions except that the feedback provided was visual. During 

trials, a bar was moving up when the decoder confidence was increasing, and down when it was 

decreasing (Figure 3:2). The trials ended when the bar reached the decision threshold (represented 

by a line on the screen). During the resting trials the visual feedback was the same, and the purpose 

was to keep the bar low, avoiding it to reach the decision threshold during 7 seconds. 

3.2.1.5 Transcranial magnetic stimulation (TMS) 
Subjects were seated on a chair with the arms pronated and relaxed on a table. They were instructed 

to keep their eyes opened, and to stay relaxed. Surface electromyography (EMG) was recorded from 

their extensor carpi radiali (ECR).  The signal was amplified (gain 500) and online filtered 

(Noraxon DTS Receiver, sampling rate 3kHz, high-pass filter/sensor-based analog Sallen-Key 10 

Hz, low-pass filter: 1000 Hz digital FIR 128th order Butterworth 1kHz). A Magstim 200 stimulator 

TMS  
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  Legend                                  

 

 

Figure 3:2 Illustration of the BMI training experiment 
Ten healthy subjects were enrolled in the cross-over design BMI experiment. Five subjects started with BMI 

with visual feedback (blue squares) and 5 subjects with BMI-St-NMES (red squares). Each BMI training 

block was composed of three consecutive days. Day 0 was an offline calibration recording. Day 1 and day 2 

were closed-loop BMI training. Before and after each BMI training session, we recorded MEP-peak-to-peak 

amplitude as well as the resting motor threshold of the extensor carpi longus radialis with TMS (TMS-pre 

and TMS-post). A break of, at least, 10 days was respected before starting the other feedback modality. Ten 

other subjects (aged and gender-matched) participated to the control St-NMES experiment (green square), 

during which we tested the impact of St-NMES alone on CST excitability. 
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system was used to deliver single-pulses with a monophasic current waveform. A figure-of-eight-

shaped coil (double 70 mm alpha coil) was used, and the center of the coil was placed over the motor 

hand area, with an angle of 45 degrees relative to the midsagittal line. The first TMS recording (day 

1 before closed-loop BMI session) was used to define the optimal position (motor hot spot). By 

slightly moving the coil over the left M1 area until we selected the spot with the highest and most 

stable MEPs response from the ECR for a fixed intensity of stimulation. The exact position of the 

coil and of the EMG electrodes were marked with a felt pen and preserved for the four recordings 

(day 1 pre and post, day 2 pre and post). Then, we defined the stimulus intensity S1 used to evoke 

MEPs in the range of approximately 0.8 to 1 mV peak-to-peak amplitude. This stimulation intensity 

and the hot spot were identical for the four recordings (day 1 pre-post and day 2 pre-post). We also 

measured resting motor threshold (RMT) defined as the lowest stimulus intensity to evoke at least 

five out of ten MEPs responses (with peak-to-peak amplitude of 0.05 mV) [106].  Finally, 25 MEPs 

of the ECR were recorded at the defined stimulation intensity S1. The inter-stimulus-intervals were 

randomized in-between (7 s ± 2 s). 

 

3.2.2 Control St-NMES experiment 
Ten subjects (gender and aged-matched) were enrolled in the control experiment (Figure 3:1). 

We investigated if St-NMES alone had an impact on modulation of CST excitability. Thus, we 

performed similar TMS recordings before and after an St-NMES session. MEP peak-to-peak 

amplitude as well as RMT were recorded. The St-NMES session was composed of 4 runs of 15 trials 

(similar to the number of MI trials) of 7 s. We decided to set the time to 7 s because it is the maximum 

length of one BMI-St-NMES trials. During these trials, subjects had to relax and not to move. Each 

trial was the same than an MI trial. After the cue subjects received first 4 s St-NMES at the proximal 

channel and then 2 s St-NMES on both channels, proximal and distal.  

 

3.2.3 Data analysis 
One subject was excluded from all EEG data analysis because EEG data were corrupted by 

artefacts for the first day of St-NMES online training. 

3.2.3.1 Motor-evoked potentials (MEP) and resting motor threshold (RMT) 
An increase CST excitability has been reported in literature as a marker of MI learning [107]. 

MEP amplitude is a common measure of CST excitability [108]. That is why we recorded MEP peak-
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to-peak amplitude with TMS before and after every BMI training was analysed offline. MEP were 

visually inspected and trials with muscular pre-activation were discarded. We extracted MEP peak-

to-peak amplitude of each trial, and trials were averaged for each of the 4 recordings (day 1 pre-post, 

day 2 pre-post). Results for each recording were, then, averaged across subjects. Importantly, for the 

4 consecutives TMS recordings (in day 1 and 2), the hot spot, EMG electrodes placement and 

stimulation intensity S1 were kept identical. We compared the effect of BMI training on CST 

excitability by comparing MEP peak-to-peak amplitude. Similarly, we also compared the effect of 

BMI training on the recorded RMT.  

3.2.3.2 Event-related desynchronization 
The contingency between neural correlates of motor imagery (as detected by the BMI) and 

success delivery has been showed to be important in order to induce brain plasticity [23]. A prominent 

component of these sensorimotor rhythms is the ERD, which we computed using the last second of 

each successful MI trial (when the desynchronization of the contralateral sensorimotor cortex has to 

be strong) and the last second of preceding inter-trial period (considered as our baseline) [14] (see 

Equation 2:1). ERD analysis was limited to the electrodes FC3, C3 and CP3 since they are located 

over the contralateral sensorimotor cortex. For each subject, ERDs in the μ (8-12 Hz) and β (14-26 

Hz) bands were averaged across trials. Before averaging, we discarded trials contaminated by artifacts 

by computing the z-score of the power spectrum in the μ and β  bands for each electrode of interest. 

A trial was discarded if a MI window or its corresponding baseline had a z-score above 3 for μ or β. 

3.2.3.3 BMI success rate 
We controlled that subjects’ BMI success rate was on average 70% for both feedback 

modalities so that the motivation and involvement during the MI task were similar. The number of 

success trials (i.e., number of times the decision threshold was reached), was divided by the total 

number of trials. Moreover, in order to probe that the decoder was not biased, especially during St-

NMES feedback, we also computed the success rate of rest trials. 

3.2.3.4 Decoding accuracy 
EEG processing was similar to the one described in paragraph offline calibration 3.1.1.2. In 

addition to computing subjects’ BMI performance at the trial level, designed to be constant, we also 

report BMI decoding accuracies at the single EEG sample level that is not affected by the value of 

the decision threshold. 

3.2.3.5 BMI speed 
We compared whether the speed of command delivery during closed-loop sessions (time for 
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the BMI to reach the decision threshold) was different between feedback modalities. For this a-

posteriori analysis we computed the time needed for every subject and trial to reach different 

decisions ranging from 50% to 100%. For trials that ended with a cumulative probability below the 

decision threshold, the time was set to 7 s (maximal duration of a trial). 

3.2.3.6 Stability of MI features 
To investigate the stability of MI features, we analysed how the distribution of the selected 

features on day 1 and 2 diverged from the original distribution from day 0. Feature stability was 

computed as the Kullback-Leibler divergence between the features’ distribution from day 0 and the 

distribution of each run (4 runs per day).  

 

3.2.4 Statistical analysis 
For all analyses, we defined the significance level to 0.05. A Kolmogorov-Smirnov test did 

not reject the null hypothesis of normal population distribution for MEP data, RMT data nor for ERD 

data (evaluate independently for each day each condition). For MEP and RMT data sets we performed 

a repeated-measure ANOVA with three within-subject factors; namely feedback (St-NMES or 

visual), time (pre or post training with the online BMI), and day (day 1 or day 2). For ERD data we 

performed a two within-subjects repeated-measure ANOVA between feedback x days independently 

for the three channels FC3, C3 and CP3. The ANOVA analyses were followed by post-hoc paired-

wise comparison analyses with a two-tailed paired t-test, Bonferroni corrected. For decoding accuracy 

data Kolmogorov-Smirnov test indicated that the decoding accuracy data, only the St-NMES on day 

did not follow a normal distribution (D(9) = 0.29, p = 0.031). We performed a repeated ANOVA 

analysis with two within-subjects factors; namely feedback and day. The amount of delivery success 

as well as the amount of resting trials success among conditions were compared with a Wilcoxon 

signed-rank two-tailed paired test. To analyze stability of MI correlates over runs, we compared 

Kullback-Leiber distance between MI distributions from day 0 to days 1 and 2 with non-parametric 

Wilcoxon signed-rank two-tailed paired tests, and we applied FDR correction for multiple 

comparisons. 
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3.3 Results  
 

3.3.1 Cortico-spinal tract excitability 
We investigated if the feedback modality (feedback factor: St-NMES or visual) could influence 

CST excitability after BMI training (time factor: pre, post), and if it induced an effect across days 

(day factor: day 1, day 2) (Figure 3:3). The ANOVA analysis showed no interaction among feedback 

x time x days factors (F(1,9) < 0.01, p = 0.64). The time factor had significant effect (p < 0.01) and 

we could notice a trend for the feedback effect (p = 0.08). No significant effect was found for the day 

factor (p = 0.40). However, there was a significant interaction between feedback x time (F(1,9) = 

6.73, p = 0.03). Post-hoc analyses, Bonferroni corrected, revealed that St-NMES modality 

significantly increased MEP peak-to-peak amplitude after BMI training (St-NMES pre = 1.09±0.52 

mV, St-NMES post = 1.45±0.52 mV, two-tailed paired t-test p < 0.01), contrary to the visual feedback 

(Visual pre: 0.94±0.28 mV, Visual post: 1.05±0.29 mV, two-tailed paired t-test p = 0.14). No 

significant difference between feedback modalities were found pre-intervention (two-tailed paired t-

test p = 0.34), but they were significantly different after the intervention (two-tailed paired t-test p = 

0.03). No significant interaction between factors feedback x time x days was found for RMT (F(1,9) 

0 8.64, p = 0.089) and no interaction was found between feedback x time (F(1,9) = 2.74, p = 0.13. 

Figure 3:4a illustrates the intra-subject variability of CST modulation over days. Using BMI-

St-NMES, 80% of subjects increased CST excitability for both days after training, whereas only 30% 

of subjects did with the visual feedback. Figure 3:5 shows the statistical analysis for each individual 

subject, comparing MEP trials recorded before and after a BMI session based either on St-NMES 

feedback or visual feedback. The comparison was performed with a non-parametric Wilcoxon paired 

test (two-tailed). Results showed that 8 subjects obtained a significant increase in MEP peak-to-peak 

amplitude after one of the BMI - St-NMES session whereas only 3 subjects showed a significant 

increase in MEP after one of the BMI-visual session.  

The control condition was used to examine the impact of St-NMES alone (without MI) on CST 

excitability. Subjects received the maximum amount of stimulation that a subject could have received 

in the BMI- St-NMES group. St-NMES alone had no significant effect on MEP-peak-to-peak 

amplitude (Control pre = 0.98±0.40 mV, Control post = 1.04±0.45 mV, two-tailed paired t-test p = 

0.95) (Figure 3:3) The MEP peak-to-peak difference between post and pre-stimulation was on 

average 0.06±0.2 mV (see Figure 3:4b). 
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Figure 3:3 MEP peak-to-peak amplitude. 

The figure shows the average MEP peak-to-peak amplitude with its standard error of the mean, 

averaged across subjects for each of the TMS recordings. From the left to right panel, it shows the 

MEP amplitude recorded pre and post BMI intervention for St-NMES feedback day 1 and day 2, for 

BMI with visual feedback, and finally for the St-NMES condition (that consists of only St-NMES 

stimulation without MI). A paired-wise comparison, Bonferroni corrected was applied. *** 

indicates p < 0.01. 
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Figure 3:4 Modulation of CST excitability per subject. 
 
 

A) Difference between post and pre-BMI interventions for both online BMI days. It reflects the 

stability of MEP peak-to-peak results across two days. The square on the top-right 

highlights subjects that increased their CST excitability after each day of BMI training. For 

St-NMES feedback, 8 subjects out of 10 had an increase of MEP amplitude both days. With 

a visual feedback, only three subjects out of ten obtained a consistent increase of MEP 

amplitude. B) Difference between post and pre-St-NMES stimulation session. No MI was 

performed. The black line indicates the mean difference (0.06 mV) and the dashed lines the 

standard deviation. 
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Figure 3:5 Modulation of CST excitability per subject, statistical analysis 
 

 
Each boxplot represents the distribution of 15 MEP peak-to-peak amplitude recorded before (pre) 

or after a BMI session either with St-NMES feedback (left panel) or visual feedback (right panel) 

for each individual subject. Black boxplots represent MEP recorded over day 1 before the BMI 

session, blue boxplots: MEP over day 1 after BMI session, red: MEP over day 2 before BMI 

session, magenta: MEP over day 2 after BMI session. For each subject we compared the difference 

in MEP amplitude for both days. The paired-wise comparison was performed with a non-

parametric Wilcoxon paired-test (two-tailed). On the figure, * represent a significant MEP increase 

after BMI during day 1 and x represent a significant MEP increase after BMI during day 2.  

 

 



Sensory threshold neuromuscular electrical stimulation promotes the acquisition of BMI skills 

 52 

3.3.2 Event-related desynchronization 
We wanted to compare the impact of feedback modality on the ability to desynchronize the 

contralateral sensorimotor rhythm. Figure 6 shows the strength of ERD recorded over the 

contralateral sensorimotor network. No significant differences could be observed for the μ band (p > 

0.1, paired-ttest two tailed not corrected). However, in the β band, subjects exhibited a significantly 

stronger ERD over C3 and CP3 channels. An ANOVA analysis showed a significant effect of the 

feedback modality (C3, p = 0.05 and CP3, p = 0.024), with larger ERD for St-NMES compared to 

visual feedback modality. Moreover, the ANOVA analysis revealed a significant interaction day × 

feedback (F(1,8) = 7.06, p = 0.029) for the ERD recorded over CP3. The paired-wise comparison, 

followed by a Bonferroni correction, showed that on day 2 the ERD were significantly larger with St-

NMES compared to visual feedback (St-NMES: -: -44.03±4.5, Visual: -30.56±6.62, p = 0.01). 

Moreover, for the visual feedback, ERD were significantly smaller on day 2 (day 1: -37.53±4.8, day 

2: -30.56±6.62; p = 0.04); whereas for St-NMES, ERDs tend to be larger the second day but the 

difference was not significant (day 1: -37.88±5.30, day 2: -44.03±4.5; p = 0.06). There was no 

significant interaction for C3 (F(1,8) <1.73 p = 0.22) nor for FC3 (F(1,8) < 0.001 p = 0.99). 

                              

 
Figure 3:6 Event related desynchronization ERD in β band (14-26 Hz) 

 
 
ERD for channels FC3 C3 and CP3, for both days and each feedback (red St-NMES, blue visual). 

The bar plot indicates the mean and the error of the mean. Statistical analyses were based on a 

Bonferroni-corrected two-tailed paired t-test. * p < 0.05; ** p < 0.01. 
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3.3.3 BMI performance 
We also investigated if the feedback modality also had an effect on BMI performance (Figure 3:7). 

In both conditions, and as per our experimental design where we adjusted the decision threshold of 

the BMI for every subject and session, subjects reached a similar amount of success during online MI 

trials (Figure 3:7a) St-NMES 73.3% ±9.9; visual 74.1% ±16.4, (Wilcoxon signrank two-tailed test, p 

= 0.92). The amount of success for resting trials was neither significantly different among groups: St-

NMES 66.0% ±21.9; Visual: 68.6% ±23.8, (Wilcoxon signrank two-tailed test, p = 0.85). This 

indicates that the BMI based on St-NMES was not biased by somatosensory feedback, as subjects 

were able not to deliver commands during the resting trials even if they were eventually receiving St-

NMES. 

We also compared BMI decoding accuracies at the single sample level, which is not affected 

by the value of the decision threshold that was manipulated to achieve a constant level of BMI 

performance. The single sample accuracy was on average significantly better for St-NMES feedback 

compared to visual feedback (on Figure 3:7b). A repeated measure ANOVA revealed a significant 

effect of the feedback factor: St-NMES: 0.89±0.09, Visual: 0.80±0.12, p = 0.04. There was no 

significant interaction between feedback x day F(1,8) = 0.16, p = 0.70). Nevertheless, we can notice 

that St-NMES had a positive influence on BMI decoding accuracy (Figure 3:7c). Although in day 1 

there was no significant difference (St-NMES: 0.88±0.11, Visual: 0.80±0.17; two-tailed paired t-test 

p = 0.28), for day 2 St-NMES had a significantly better classification accuracy (St-NMES: 0.91±0.11, 

Visual: 0.80±0.11, two-tailed paired t-test p = 0.004). 

As for any motor skill, apart from better accuracy, another indication that St-NMES feedback 

better supports BMI learning is the speed at which commands were delivered. Figure 3:8reports BMI 

speed during closed-loop sessions for both feedback modalities for different decision thresholds (DT). 

On average across all subjects and trials (Figure 3:8a), BMI based on St-NMES seemed to be faster 

than when the BMI was coupled to visual feedback on both days for DTs up to 70%. In particular, 

subjects did significantly better on day 2 for St-NMES at DT 0.6 (signrank Wilcoxon two tailed test, 

FDR correction, p = 0.039), and there was a positive trend for DTs 0.5, 0.55 and 0.65 (signrank 

Wilcoxon two tailed test, FDR correction, p = 0.058 for all three DTs). For higher decision thresholds 

BMI speed was similar for both feedback modalities. It is worth noting that the actual DTs set during 

the closed-loop sessions were, on average, always below 75% (St-NMES day 1: 0.74±0.07; St-NMES 

day 2: 0.72±0.07; Visual day 1: 0.70±0.08; Visual day 2: 0.71±0.05; no statistical differences, 

Wilcoxon signrank two-tailed test). Moreover, as illustrated in Figure 7b right panel, a higher 

percentage of subjects reached decision thresholds in between 60% and 75% at least once (60% was 
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the lowest threshold actually used during the closed-loop sessions) with St-NMES, while only for 

80% more subjects did it with visual feedback. At the single subject level (Figure 3:8 b), and 

combining results for the two days, 5 subjects out of 9 were faster with St-NMES, while only 1 did 

with visual feedback, the remaining 3 achieving similar BMI speed. 

 
 
 
 

 
 
 
 

Figure 3:7 BMI decoding accuracy 
.  
 

A: Percentage of success for online MI trials and resting trials for both feedback conditions, St-

NMES (red) and visual (blue). No significant difference in success was reported suggesting first 

that subjects’ involvement and motivation should be similar and second that the BMI system was 

not bias by St-NMES feedback since subjects managed to perform resting trials. B: Single sample 

accuracy of BMI based on St-NMES feedback (red) or visual feedback (blue) for both online days. 

C: St-NMES significantly enhanced BMI accuracy on the second day. Statistical analyses were 

based on a two-tailed paired t-test. * p < 0.05. 
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Figure 3:8 BMI speed decoding   

 

BMI speed during closed-loop sessions for both feedback modalities, measured as the time needed 

by the BMI to reach the decision threshold. A: Average BMI speed across all subjects and trials, for 

each feedback modality and day, for different decision thresholds ranging from 50% to 100% (left) 

and percentage of subjects who successfully reached the decision thresholds (DT). For trials that 

ended with a cumulative probability below the decision threshold, the time was set to 7 s (maximal 

duration of a trial). B: Single subject analysis for St-NMES and visual feedback, both days 

together. The right panel shows the speed difference between the two modalities per subject. Yellow 

highlights faster performance for visual feedback compared to St-NMES, blue faster for St-NMES 

compared to visual, and green equal BMI speed for the two feedback modalities. 
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On the physiological side, acquisition of BMI skills can be ascribed to a key property of the 

brain features that subjects have to learn to modulate, namely stability. Features stability is the ability 

to reproduce accurately a similar brain activation over runs and over days. Features instability 

(fluctuations of brain patterns associated to mental commands) is a major limitation of current BMI 

systems. Figure 3:9 reports the stability of MI features used to control the BMI. The Kullback-Leiber 

divergence was computed between MI features on day 0 (calibration day) and during online BMI 

training runs (day 1 and day 2). Run-wise averages were larger for visual compared to St-NMES 

feedback, indicating that MI features were more stable for St-NMES. Significant differences were 

found for runs 5-6-7, corresponding to runs from day 2 (signrank Wilcoxon two tailed test, FDR 

correction, run 5: St-NMES: 1.20, Visual: 2.17 p = 0.03; run 6: St-NMES: 1.25, Visual: 2.11 p = 0.02; 

run 7: St-NMES: 1.10, Visual: 1.95 p = 0.02). 

 

 

 
 

Figure 3:9 Features stability.  
 

 

Stability of MI features across days (dashed line sperate the two days) measured with Kullback-

Leiber divergence between MI features selected from day 0 and the MI features executed on day 1 

and day 2., for both feedback modalities St-NMES (red) and visual (blue). Statistical analyses were 

based on paired Wilcoxon test, Bonferroni corrected (* p < 0.05).
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3.4 Discussion 
 

In this study we investigated the effect of BMI feedback modality on the acquisition of BMI 

skills. We compared our new feedback St-NMES with a commonly used visual feedback during 

online BMI training. Results showed that St-NMES facilitates BMI learning through two different 

aspects, as postulated by the BMI sensorimotor hypothesis. First, BMI performance and stability were 

significantly enhanced with St-NMES feedback compared to visual feedback. Second, subjects’ CST 

excitability and cortical ERD increased only after BMI with St-NMES, highlighting a BMI learning 

process supported by plastic changes across CNS areas that normally adapt to support natural motor 

control. 

 

3.4.1 CST excitability as a marker of MI-BMI learning 
   Ruffino et al. [107] propose a neural adaptation model of MI practice involving cortical and 

subcortical adaptation over three different stages of learning: initial phase, (proper) learning phase 

and automatic phase. They propose that, at the cortical level, both cortical representation and cortical 

excitability should increase during the learning phase then would decrease in the automatic phase. In 

our experiment, which corresponds to the learning phase of Ruffino et al.’s model, we observed a 

significant increase of cortical ERD (implying a desynchronization of a larger area) and CST 

excitability only after a BMI based on St-NMES training suggesting that subjects were able to better 

learn how to perform MI and control the BMI with somatosensory feedback as compared to a standard 

feedback.  

In the literature, it has been showed that MI activates CST projection [86]. Indeed, several 

studies showed an increase MEP peak-to-peak amplitude during MI [96,105,109,110]. However, to 

the best of our knowledge, only Bonassi et al. [111] was able to show a post-training effect of MI 

combined to auditory cues. All other studies only reported an effect during MI, but they did not 

observe any post training effect [112–114]. In our experiment, BMI coupled to visual feedback did 

not induce a significant enhancement of CST excitability. A simple MI training or MI-BMI training 

based on visual feedback is probably not enough to promote immediate plastic changes of the CST 

that support MI-BMI skill acquisition. Only by combining BMI with St-NMES we could induce a 

significant post-training effect. 

On the other side, it is known that prolonged sensory stimulation (at least 1.5 hours) can induced 

persistent changes in excitability of CST projection and cortical reorganization [115,116]. For 
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example, St-NMES has been successfully used for rehabilitation of dysphagia after stroke [99]. More 

recently, St-NMES was also used in the context of upper limb rehabilitation. Tu-Chan et al. [117]. 

have recently shown with 8 chronic brain injured subjects that a 2 hours session of St-NMES over 

the medial, ulnar and radial nerves was associated with significant improvements of motor 

performance in upper limb motor function (ARAT score) as well as in finger fractionation. Similarly, 

Klaiput et al. [118] found an increase strength in pinch after 2 hours stimulation of the median and 

ulnar nerves, for subacute stroke patients. Using peripheral nerve stimulation (PNS, series of brief 

electrical pulses), Celnik et al [119] illustrated that synchronous PNS on the median and ulnar nerves 

at 1 Hz for 2 hours, but not asynchronous PNS (alternative stimulation of each single nerve every 15 

min), induced an increase CST excitability in chronic stroke patients. On healthy subjects, 

Golaszewski et al. [72] showed that St-NMES of the whole hand during 30 min elicited increases in 

motor cortical excitability lasting at least 1 h. Still, the mechanisms of St-NMES on brain plasticity 

remain unclear and results inconsistent [120]. In our study, St-NMES itself did not induce a 

significant modulation of CST projections. It is important to point out that in our case the amount of 

sensory stimulation was considerably shorter (60 trials of 7 s stimulation; i.e., 7 min) compared with 

previous studies [115–119] (1.5-2 hours session stimulation) and more focal than in [72], suggesting 

that longer periods might be required to induce effects. On the other hand, with our BMI-St-NMES 

intervention, only a session of 45 minutes (including the setup and less than 7 min of effective focal 

stimulation) was enough to induce a significant modulation of CST projections. Thus, it seems that 

contingent delivery of St-NMES upon BMI decoding of MI is key for fast elicitation of brain 

plasticity. 

Our results indicate that closing the sensory-motor loop with BMI-St-NMES induces plastic 

changes across CNS areas and, thus, facilitates BMI learning. Nevertheless, in our study the effect of 

BMI St-NMES on CST excitability was limited in time. Indeed, we could only observe a post-training 

effect, and no pre-BMI training difference was detected over the two days. This absence of carry-

over effect on MEP amplitudes suggests that subjects were still in the learning phase and they had 

not yet acquired completely the MI-BMI skill (according to the learning model of Ruffino et al. [107]. 

 

3.4.2 BMI performance and stability 
     Learning to control a BMI system reliably remains a major challenge in the field. Although 

many studies report improvement of subject’s BMI accuracy, this is not necessarily a marker of BMI 

skill acquisition [121]. A more appropriate indicator of such a learning process is the stability of the 

brain features fed to the BMI decoder that subjects have to learn to modulate. Only a few studies have 
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reported feature stability although during offline BCI usage [67]. The present study confirms that St-

NMES feedback fosters stability of BMI features, especially on the second day. Furthermore, all our 

subjects were naïve to MI-BMI and, yet, they were all able to control their BMI system with higher 

performances with St-NMES feedback as compared to visual feedback. However, the design of our 

experiment does not allow to corroborate whether feature stability will persist with a longer training. 

Several studies already showed that somatosensory feedback enhanced BMI features and BMI 

performance [17,57–59,62]. However, none of them probed that somatosensory feedback does not 

bias BMI decoding. Indeed, strong somatosensory afferences (e.g., passive movement of the joint of 

muscular contraction) elicits strong brain activation similar to MI. BMI algorithms are then, not able 

to dissociate subjects’ intentional MI from the evoked brain activation elicited by feedback. As a 

result, subjects cannot achieve the resting task if, by mistake, the BMI output is MI and triggers 

somatosensory feedback. To the best of our knowledge, our study is the first one demonstrating a full 

control of a BMI system coupled with somatosensory feedback. Although subjects’ performance for 

resting trials was lower than for MI trials, this performance was similar between feedback modalities. 

 

As a conclusion, St-NMES is a promising feedback for BMI applications since it enhanced 

BMI learning. However, the training duration was short in time. A longer training would be 

interesting to investigate different stages of BMI learning and the associated physiological changes. 
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4.1 Introduction 
 

In the previous experiment we showed that a short BMI-St-NMES training enhanced BMI 

learning and increased CST excitability. In this chapter we further explore the parallelism between 

BMI learning based on St-NMES feedback and natural motor learning, putting particular attention on 

the underlying physiology of the process. Acquiring a new skill is mostly based on repetitive training 

and requires different stages of learning and neural adaptation. Motor learning is characterized by 

three consecutives phases: (i) an early learning during which improvement in performance occurs 

within the initial session, (ii) a later phase during which the performance continues to be improved 

but the task required less cognitive resources, and (iii) a retention phase during which the task can be 

executed after long delays without further practice. BMI learning can be assimilated to a motor 

learning skill since it activates a similar central and peripheral motor network and it requires motoric 

memory of movements. 

In this new experiment, we investigated the effect of an intensive BMI training based on St-

NMES feedback on BMI learning. Apart from analyzing the evolution of BMI performance, we also 

examined changes in CNS and more specifically CST excitability and modulation of intracortical 

inhibition (SICI) in the early learning phase (after one BMI session) as well as later learning stage 

(after 2 weeks training). Moreover, we tested subjects’ retention ability to control a BMI after 3 weeks 

of break. Based on our previous results and according to Ruffino et al.’s neural adaptation model of 

MI learning skills [107], we expected an increase of CST excitability and a decrease SICI during an 

early learning stage; then, a decrease CST excitability as well no modulation of SICI with 

performance stabilization during the later learning phase. Finally, we predicted that our subjects 

would still be able to control the BMI system after three weeks of break. 
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4.2 Material and Methods 
 
 

In this experiment, we investigated subjects’ ability to control a BMI and CNS adaptation 

during an intensive BMI-St-NMES training. Ten healthy subjects (5 female, age: 26 ± 2 years old) 

right handed and naive to MI and BMI, took part in the experiment. Every subject provided written 

informed consent. The experimental procedure was approved by the Cantonal Ethical Committee of 

Geneva (Ethics approval number: PB_2017_00295).  

 

4.2.1 Experimental design 
The BMI-St-NMES training consisted in 10 different days of recordings:  

• Day 1, BMI calibration: During the first day subjects were asked to performed MI of wrist 

and fingers extension or a resting task similarly to the calibration session of the previous 

experiment (cf  3.2.1.1 offline calibration).  

• Day 2, baseline or early learning stage: During the baseline recording we assessed the impact 

of the first BMI-St-NMES online sessions on CNS plasticity, similarly to our previous 

experiment (cf Chapter 3). TMS recordings were performed before and after the BMI-St-

NMES training to evaluate CST excitability and intracortical inhibition. 

• Days 3 to 8, BMI-St-NMES training: Subjects were trained to control the BMI-St-NMES 

three times a week during two consecutive weeks. The training consisted in performing MI of 

right-hand extension or a resting task.  

• Day 9, post-training or later learning stage: the effect BMI-St-NMES session on CNS 

adaptation was recorded with similar TMS protocols than baseline (day 2).  

• Day 10, follow-up or retention stage: after a break of approximately 15 days without any 

practice (minimum 8 days maximum 30 days), subjects were evaluated on their ability to 

control the BMI-St-NMES and the associated CNS adaptation. TMS protocols were similar 

to baseline and post-training evaluations (day 2 and day 9).  
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Figure 4:1 Illustration of the experimental design 
 

The study is composed of 10 days of recording. Day 1 is the calibration day during which we 

calibrate our BMI system to discriminate MI neural correlates from resting state EEG. Day 2 is the 

baseline. The baseline is composed of TMS recordings before and after the 1st closed-loop BMI 

training, to access CST excitability and short intracortical inhibition within M1. Days 3 to 8 are 

closed-loop BMI training sessions during which subjects are trained to control the BMI system. 

Day 9 is the post-training evaluation with similar evaluations than during baseline. Day 10 is the 

follow-up, in which we tested the retention of BMI skills. Evaluations were similar to baseline and 

post-training.  

 

 

4.2.2 Data acquisition 

4.2.2.1 EEG recordings  
During EEG recordings, subjects were seated on a fixed chair in front of a computer screen 

with arms on a folded towel with approximately 15 degree of wrist flexion. During the whole 

experiment, EEG was recorded at a sampling frequency of 512 Hz with 16 active surface electrodes 

placed over the sensorimotor cortex i.e., on positions Fz, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, 

C4, CP3, CP1, CPz, CP2 and CP4 of the 10/20 system (reference: right mastoid; ground: AFz; gtec 

gUSBamp, Guger Technologies OG, Graz, Austria).

EEG recordings were composed of four different acquisitions: (i) BMI calibration (ii) offline 

recordings (iii) online BMI-St-NMES during baseline, post-training and follow-up (iv) intensive 

online BMI-St-NMES training:  

i. Calibration (day 1): The calibration was similar to the previous experiment (cf  3.2.1.1 offline 

calibration). Subjects were asked to perform 4 runs of 15 MI trials supported by St-NMES 
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guidance and 15 resting trials, in a randomized order. The data were analyzed offline to build 

an individual BMI classifier.  

ii. Offline recordings (day 2, day 9 and day 10): During baseline, post-training and follow-up 

recordings, the ability to perform discriminant MI patterns compared to rest was evaluated 

without any external support (without St-NMES or real-time feedback). Similarly to 

calibration, subjects were asked to perform 4 runs of 15 MI trials and 15 resting trials without 

any kind of feedback. Data were storage for further offline analyses.  

iii. Online BMI-St-NMES (day 2, day 9 and day 10):  Subjects were asked to control a BMI-St-

NMES. The session was composed of 4 runs of 15 trials of MI. They received in real-time a 

St-NMES feedback (see 3.2.1.3) about their actual performance, and a successful trial was 

rewarded by a muscular contraction elicited by NMES.  

iv. Intensive online BMI St-NMES training (days 3 to 8): Three times a week, during two weeks, 

subjects were trained to control the BMI-St-NMES. Each day of training was composed of 4 

runs of 15 MI trials and 5 resting trials presented in a randomized order. The protocol was 

comparable to online recordings from the previous experiment (see 3.2.1.2 for more details). 

During MI trials subjects were ask to perform MI in order to reach the decision threshold. 

When the trial was a success they received motor threshold NMES (Mt-NMES). During 

resting trials subjects were instructed to control the BMI in order to not reach the decision 

threshold and avoid receiving Mt-NMES. The decision threshold was manually adjusted 

before each run to control the level of difficulty of MI task. The idea was to keep the task 

engaging and not too boring or too demanding.  

4.2.2.2 BMI-St-NMES setting  

Similarly to the previous BMI-St-NMES experiment (see 3.2.1), features that contain the most 

discriminable information between MI neuronal correlates or resting task have been manually 

selected during the offline calibration session.  An individual classifier was trained with data recorded 

during day 1, and each classifier had been preserved the whole experiment. No re-calibration was run 

during the whole protocol. Only for 2 subjects, their classifiers had to be trained a second time after 

the first online training (on day 3) due to a poor performance during day 1 (calibration day).  

4.2.2.3 St-NMES feedback 

 The St-NMES feedback provided during closed-loop BMI sessions (from day 2 to day 10) 

and the St-NMES parameters were comparable to the feedback used in the previous experiment (see 

3.2.1.3 and Figure 3:2.). Two St-NMES channels were placed on the forearm (channel 1 at the 

proximal location and channel 2 at distal location) to deliver sensory threshold sensation according 
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to the BMI output probabilities. The way to provide St-NMES feedback was slightly different from 

the previous experiment. We decided to reward subjects when they had sufficient brain activation 

related to MI performance. Thus, the St-NMES was delivered when the BMI system output was in 

favor of the MI class compared to rest, subject received St-NMES on the distal channel (channel 1). 

When the probability got closed to the decision threshold (see 3.2.1.2 for more explanation) subject 

received St-NMES at channel 1 and channel 2. When the decision threshold was reached, subject 

received Mt-NMES eliciting a muscular contraction with a wrist and fingers extension. However, if 

the probabilities were in favor of a resting task no St-NMES was delivered neither at channel 1 nor 

channel 2. The St-NMES and Mt-NMES amplitudes were adjusted for each subject before each BMI 

session (on average St-NMES amplitude was 4 ±1 mA and Mt-NMES amplitude was 10 ±1 mA). 

4.2.2.4 TMS recordings 
The TMS settings and parameters were similar to our previous experiment (see 3.2.1.6). 

Subjects were seated on a chair with the arms pronated and relaxed on a table. They were instructed 

to keep their eyes opened, and to stay relaxed. Surface electromyography (EMG) was recorded from 

their extensor carpi radiali (ECR), first dorsal interosseous (FDI) and abductor digiti quinti (ADM). 

The ECR was defined as the main muscle of interest and TMS was calibrated according to EMG of 

ECR muscle. The hot spot was defined as the best coil location that induces the largest and the most 

stable MEP of the target muscle (ECR muscle). For the three days with TMS recordings (baseline, 

post-training and follow-up) the hot spot and EMG electrode locations were defined at the beginning 

of the pre-recording, marked with a pen, and used for all TMS recordings within the same day (for 

pre and post recordings).  The resting motor threshold (RMT), in respect to the target muscle, was 

defined as the lowest stimulus intensity to evoke at least five out of ten MEPs responses (with peak-

to-peak amplitude of 0.05 mV) [60], was measured before and after the BMI session.  

Corticospinal excitability was assessed by TMS recruitment curves (RC), during baseline, 

post-training and follow-up, before and immediately after a BMI-St-NMES session. TMS RCs 

represent the mean of MEP peal-to-peak amplitudes values for different level of TMS stimulator 

output. TMS stimulator outputs were defined for each individual as a percentage of their initial RMT 

(RMTinit) measured during the baseline before the BMI session. MEP were elicited at stimulus 

intensities of RMTinit and 110% - 120% -130% - 140% -150% and 160% of RMTinit. The same 

intensities defined on RMTinit were used for the three days baseline, post-training and follow-up. For 

the three first subjects we did not recorded the intensities of 150% RMTinit and 160% RMTinit. For 

each amplitude, 15 MEPs were recorded over three blocks containing 5 trials of each amplitude in a 

randomized order. The inter-stimulus-intervals within one block were randomized in-between 7 s ± 
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2 s. 

Paired-pulses TMS were also used to assess changes in short-interval intracortical inhibition 

(SICI) during baseline, post-training and follow-up.  SICI paired-pulse paradigm uses a subthreshold 

conditioning stimulus delivered 1 to 6 ms before a supra-threshold test stimulus [122] delivered 

through the same coil. From this interaction results an inhibition of MEP amplitude. In our 

experiment, we defined the conditioning stimulus (CS) intensity as 80% of subject’s RMT.  The test 

stimulus (TS) intensity was selected as the TMS stimulator output intensity able to evoked MEPs 

peak-to-peak amplitude in the range approximately 0.8 1 mV ± 0.2mV. The inter-stimulus interval 

was fixed to 3ms. In order to understand possible changes in cortical inhibition due to BMI-St-NMES 

training, SICI paradigm was performed when subjects were at rest and during a MI task:  

(i) SICI during rest: Subjects were asked to keep eyes opened and to relax. A total of 30 MEPs 

was recorded including 15 conditioned MEPs (with CS-TS) and 15 non-conditioned MEPs (with TS). 

The order between conditioned and non-conditioned pulses was randomized, and the inter-stimulus-

interval was randomized in-between 7 s ± 2 s. 

(ii) SICI during MI: The SICI parameters were the same than the previous SICI protocol run 

during rest. Subjects were asked to perform the same MI than during BMI recordings, but without St-

NMES nor BMI set-up. On the screen placed in front of them subjects saw the following instructions: 

a fixation cross during 1s, then a ball appeared on the screen and after 1s started to move on the left 

until it reached a bar. The ball displacement lasted 4s. Subjects were instructed to perform MI while 

the ball was moving on the screen and relax when the ball reached the bar. Each trial was followed 

by an inter-trial break of 4 s ± 2 s. We recorded over two blocks equally distributed: 24 non-

conditioned MEP and 24 conditioned MEP. 

 

4.2.3 Data analysis 

4.2.3.1 Recruitment Curve analysis 
 Each trial was visually inspected, and trials containing a pre-activation on ECR, FDI or 

ADM muscles were discarded. Then, for all EMG channel we computed the detrended EMG signal. 

For each amplitude, MEP peak-to-peak amplitudes were averaged. Then, we averaged the obtained 

MEP peak-to-peak amplitudes across subjects for each amplitude (from the 1 to 7) for each day and 

each pre or post recording. For the sake of simplicity, we reported only MEP recorded for the ECR 

muscle since the TMS protocols were exclusively tuned for this muscle.  
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4.2.3.2 Short interval intracortical inhibition 
For SICI during rest, each trial was visually inspected, and trials containing a pre-activation 

on ECR, FDI or ADM muscles was discarded.  Then, for all EMG channel we computed the detrended 

EMG signal. During rest as well as during MI task, MEP amplitude of each condition was averaged 

for each subject. The degree of inhibition was computed using Equation 4:1 where NC is the average 

of non-conditioned MEP amplitude after test stimulus pulses, and C average conditioned MEP 

amplitude. The degree of inhibition is represented by the % of inhibition. Only results regarding the 

ECR muscles are presented. 

 

 
 

Equation 4:1 – Short interval intracortical inhibition  
 

 

4.2.3.3 Event-related desynchronization 
We assessed the ability to elicit ERD during MI trials at the beginning or later in the process 

of BMI learning. We computed ERD in β frequency band for FC, C and CP lines, similarly to the 

previous experiment (see 3.2.3.2). We compared ERD during baseline, post-training and follow-up 

for the offline (without any feedback) and online recordings (with BMI-St-NMES). 

4.2.3.4 Decoding accuracy 
EEG processing was similar to the one described in paragraph offline calibration (cf  3.2.1.1 

offline calibration). We extracted log(PSD) for the 16 channels covering the sensorimotor regions, 

and we evaluated the discriminability of the recorded signals. For online trials performed each day 

(baseline, post-training and follow-up) we extracted the selected features of interest and we performed 

a single-sample classification using a linear discriminant (LDA).  

4.2.3.5 BMI speed 
We evaluated the speed of command delivery over days. For this a-posteriori analysis we 

computed the time needed for every subject and trial to reach different decisions ranging from 50% 

to 100%. For trials that ended with a cumulative probability below the decision threshold, the time 

was set to 7 s (maximal duration of a trial). 

4.2.3.6 MI discriminability 

For each day of assessment (baseline, post-training and follow-up) we measured how MI 

patterns were discriminable from rest. In particular, we computed the Fisher score between MI and 
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rest distributions (from the selected features) as a measurement of how the two distributions (MI and 

rest) were distinguishable.  

 

4.2.4 Statistical analysis 
  For all analyses we defined the significance level to 0.05. Kolmogorov-Smirnov test was 

performed to evaluated the normality of the data. For MEP recorded with TMS-RC protocol, all the 

recorded variables (including: days (baseline, post-training, follow-up); time (pre, post) and 

amplitude (from 0 to 7)) did not reject the null hypothesis of normal population distribution. Except 

for three variables: baseline pre at amplitude 0 (D(10) = 0.3, p = 0.008), post-training post at 

amplitude 4 (D(10) = 0.28, p = 0.025) and follow-up post at amplitude 2 (D(10) = 0.37, p = 0.001) 

did not follow a normal distribution. However, we decided to perform an ANOVA analysis since it 

has been described that ANOVA is robust to violations of normality [123]. A repeated-measure 

ANOVA with two within-subject factors; namely time (pre or post training with online BMI), 

amplitude (from amplitude 1 to 7) for each day (baseline, post-training and follow-up) was performed.  

For MEP recorded during TMS-SICI protocols during rest and during MI, the Kolmogorov-

Smirnov test did not reject the null hypothesis of normal population distribution. A repeated-measure 

ANOVA with two within subjects’ factor day (baseline, post-training and follow-up) and time (pre 

or post online BMI). Sphericity of data was tested with Mauchly's test of sphericity. In the case of 

data that were not rated equally, we applied a Greenhouse-Geisser correction. The ANOVA analyses 

were followed by post-hoc paired-wise comparison analyses with a paired two tailed t-test, 

Bonferroni corrected.  

For ERD recorded online the Kolmogorov-Smirnov test did not reject the null hypothesis of 

normal population distribution. However, for ERD recorded offline, two variables did not follow a 

normal distribution: ERD recorded with FC and C electrodes during baseline (D(10) = 0.35, p = 0.001 

and D(10) = 0.34, p = 0.003). As previously explained, although two variables were not normally 

distributed we performed a repeated-measure ANOVA with two within-subjects’ factors day and 

feedback, for each of the three groups of EEG channels (FC3-FC1, C3-C1and CP3-CP1). The 

ANOVA analyses were followed by post-hoc paired-wise comparison analyses with a paired two 

tailed t-test. For BMI performance analyses including percentage of success, decoding accuracy, 

discriminability of MI patterns, we performed non-parametric paired-wised comparison (two-tailed 

Wilcoxon signrank test).  
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4.3 Results 
 

4.3.1 Corticospinal excitability 
We investigated the effect of an intensive BMI training on CST excitability. CST excitability 

was assessed with a recruitment curve protocol. For different intensities of TMS stimulator we 

recorded MEP peak-to-peak amplitude before and after an online BMI-St-NMES session, at different 

stages of learning (baseline, post-training and follow-up). The ANOVA analysis showed a significant 

interaction between time x amplitudes for baseline (F(2.8, 25.9) = 5,75, p = 0.004 Greenhouse-

Geisser corrected). No significant interaction was found neither for post-training (F(2.33,21.02) = 

1.86, p = 0.18 Greenhouse-Geisser corrected ) nor follow-up F(2.34, 18.76) = 2.77, p = 0.082 

Greenhouse-Geisser corrected). The amplitude had a significant effect for each day (baseline p < 

0.001, post-training p < 0.001, follow-up p = 0.003, Greenhouse-Geisser corrected). The time factor 

(pre, post training) had a significant effect only for baseline (p = 0.004), highlighting significantly 

larger MEP peak-to-peak amplitude after the 1st online BMI. Time had no significant effect neither 

for post-training (p = 0.18) nor follow-up (p = 0.37).  CST excitability was significantly enhanced 

after the first online BMI session; however, after BMI training the CST excitability was not 

modulated after an online BMI session. 

 

 

Figure 4:3 shows MEP peak-to-peak amplitudes recorded only for a stimulator intensity of 

120% RMT for each individual subject. A non-parametric Wilcoxon paired test (two-tailed) 

compared the MEP recorded before and after the BMI session for the three days of assessment 

(baseline, post-training and follow-up). Results showed that 5 subjects significantly increase their 

MEP amplitude after the first online BMI session (baseline). After two weeks of BMI training (post-

training), only one subject had a significant increase of MEP amplitude. For the follow-up, three 

subjects significantly increased their MEP amplitude. 
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Figure 4:2 Recruitment curve analysis 
 
 
 

From right to left panel, recruitment curve pre and post BMI training, for the early stage of 

learning (baseline) later stage of learning (post-training) and retention two weeks without training 

(follow-up). The averaged MEP peak-to-peak amplitude of the ECR are reported for each TMS 

amplitude. For each subject the amplitudes were defined as 100% to 160% (with incrementation of 

10%) of the RMT recorded during baseline pre. For each subject the individualized amplitudes 

were the same across days. As a result, during baseline, we can observe an increase CST 

excitability compared to post-training and follow-up.
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4.3.2 Cortical inhibition during rest 
The level of inhibition within primary motor cortex (M1) can be assessed with a standard SICI 

protocol. Figure 4:4 presents the amount of inhibition in percentage within M1 during rest, comparing 

before and after an online BMI session during baseline, post-training and follow-up. The ANOVA 

analysis showed a significant effect of time (p = 0.019) but no significant effect of day (p = 0.075). 

The interaction time x day was significant (F(1,9) =5.93 , p = 0.010 Greenhouse-Geisser correction). 

Paired-wise comparison (2-tailed paired ttest Bonferroni corrected) comparing pre and post for each 

day, showed significantly less inhibition after an online BMI session during baseline only (t(9) = 3.05 

p = 0.042). No difference was recorded neither for post-training (t(9) = 1.24, p = 0.93) nor follow-

up (t(9) = 1.05, p = 0.96).  

 

4.3.3 Cortical inhibition during MI 
A decrease inhibition during MI is a marker of good MI performance. Figure 4:5 shows the 

comparison of SICI during MI before and after an online BMI-St-NMES session for baseline, post-

training and follow-up. A paired-wise comparison between pre and post training, for each day, did 

not reveal any significant difference during baseline and follow-up (baseline pre = 45.7 ± 24.5, post 

= 42 ± 20.3, p = 0.43; follow-up pre = 26.0 ±  22.5 post = 38.8 ±25.0, p = 0.11, two-tail paired ttest). 

Nonetheless, we could observe a trend in decrease SICI for the post-training (pre = 45.5 ± 20.9 post 

= 33.0 ±26.9, p = 0.06).  

                                    
Figure 4:4 SICI in % during rest 

 
Amount of inhibition in % measured by SICI protocol pre (in blue) and post (in red) online BMI 

session for the three days baselined, post-training and follow-up. The bar plot presents the mean 

and the standard error of the mean for the averaged amount of SICI across subjects 
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Figure 4:5 SICI in % during MI 

 
Amount of inhibition in % measured during MI task. We compared pre (in blue) and post (in red) 

BMI session for the three days baselined, post-training and follow-up. A decreased SICI during MI, 

is a marker of MI good performance. The bar plot presents the mean and the standard error of the 

mean for the averaged amount of SICI across subjects. 

 

 

4.3.4 Event related desynchronization (ERD) during MI  
ERD is a well-known marker of MI performance. ERD amplitude (in percentage) were 

recorded in the early phase of BMI training (baseline), and compared to later phase of training (post-

training) and after a break of two weeks (follow-up). ERD analyses were performed for offline 

recordings (without any feedback) and online recordings (with BMI-St-NMES). Figure 4:6 presents 

ERD in β band [14-26] Hz recorded by FC electrodes, C electrodes, and CP electrodes covering the 

left sensorimotor network.  

For offline recordings, the repeated measure ANOVA showed a significant effect of time over 

CP electrodes (F(2,18) = 5.11, p = 0.018) but no effect neither for C (F(2,18) = 1.52 , p = 0.24) nor  

FC electrodes ( F(1.03,9.31) =  0.8, p = 0.40  Greenhouse-Geisser corrected). Paired-wise comparison 

(two-tailed paired ttest) between days for CP electrodes revealed significantly larger ERD post-

training compared to baseline (t(9) = 2.47, p = 0.03), and a trend that ERD are larger on CP during 

follow-up compared to baseline (t(9) = 1.25, p = 0.07). No significant difference were observed 

between post-training and follow-up (t(9) = -1.64, p = 0.13). 
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During online recordings, ERD were larger compared to offline recordings, indicating that the 

BMI supported MI performance. However, the ANOVA analyses showed no significant effect of 

time, but a trend for CP electrodes (F(2,18) = 3.40, p = 0.06) and no significant effect neither for C 

(F(2,18) = 1.95, p = 0.17) not FC electrodes (F(2,18) = 1.00, p = 0.39). 

                         
 
  

Figure 4:6 ERD during MI task 
 
 

ERD for channels FC C and CP electrodes covering the motor network during baseline (blue), 

post-training (red) and follow-up (green). The bar plot indicates the mean and the error of the 

mean. ERD were computed during offline recordings (top) and online recordings (down). Statistical 

analyses were based on a Bonferroni-corrected two-tailed paired t-test. * p < 0.05; ** p < 0.01.
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4.3.5 BMI performance 
 

BMI performance can be assessed by three factors: the number of successful MI and resting 

trials, the accuracy of the BMI decoder and discriminability of MI features compared to rest.  

Figure 4:7 represents subjects’ successful trials in percentage per online sessions and the 

averaged decision threshold used per session. For MI trials, the success was on average (68,8 ± 2.2) 

no significant difference was recorded over session. The worse performance was achieved during the 

first online session (66.98 ± 18.2) and the best was the fourth session (72.04 ± 11.4). There was no 

significant difference between the first and last session (p = 0.77, two-tailed Wilcoxon signrank test) 

neither between the best and worst session (p = 0.07, two-tailed Wilcoxon signrank test). This result 

was expected since the decision threshold was manually adjusted in order to keep the task engaging 

and motivating. Interestingly we can notice that for a similar amount of success, decision thresholds 

were  

 

 

Figure 4:7 Successful trials with the associated decision threshold 
 
 

The right panel represents the amount of successful trials averaged across subjects. Red line 

represents MI trials and blue line rest trials. For MI trials the decision threshold was manually 

selected in order to keep the task engaging and motivated, for resting trial the decision threshold 
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was the same than MI trials and the objective was not to reach it during 7s. Subjects were able to 

perform resting trials despite they were receiving St-NMES. The left panel shows the averaged 

decision threshold used across online sessions.  

 

increased over sessions. The decision thresholds used for the last session was significantly higher 

compared to the first (online 1: 0.74 ± 0.11, online 6: 0.80  ± 0.08, p = 0.04, two-tailed Wilcoxon 

signrank test).  BMI subjects were able to perform better control at the end of the two weeks BMI 

training. Moreover, subjects were also able to perform resting trials. The performances were largely 

variable across subjects but on averaged they reached 84% ± 24% of success. It highlights that BMI 

was not bias by St-NMES and subjects were able not to cope with St-NMES.  

Figure 4:8 represents the single-sample decoding accuracy for the three days of assessment 

(baseline, post-training and follow-up). Results showed a significant improvement in decoding 

accuracy after the intensive BMI training compared to before (baseline = 0.66 ±0.2, post-training = 

0.75±0.2, p = 0.05), but no remaining effect for the follow-up (follow-up = 0.68 ±0.26). For six 

participants out of ten, the decoding accuracy was better for the post-training compared to baseline, 

and the decoding accuracy decreased only for two participants (difference > 0.01). However, for the 

follow-up, 5 participants obtained higher decoding accuracy compared to baseline, but the 5 other 

participants decreased decoding accuracy.  About the speed to decode MI intention, no difference (p> 

0.1) could be measured between the three days. Further analysis would be to be done to understand 

if BMI training had an impact on speed performance.  

Discriminability of MI features compared to rest is represented on Figure 4:9. Results showed 

that MI patterns were more discriminable after BMI training compared to calibration but the 

difference was not significant (calibration: 0.11 ± 0.09, post-training:0.18 ± 0.11, p = 0.08). Fisher 

score remains higher for follow-up compared to calibration but the difference was not significant 

(follow-up: 0.16 ± 0.08, p = 0.15).  
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Figure 4:8 Decoding accuracy 
 
         Single sample classification of MI trials compared to rest for the three online assessments 

baseline, post-training and follow-up. Each dot represents the average accuracy with its standard 

error of the mean. Paired-wise comparison was performed with Wilcoxon signrank test. 

 

 

 

Figure 4:9 Discriminability of MI features  
 

Discriminability of MI features compared to rest during offline recordings was computed with 

Fisher Score during the first offline recordings (calibration), after BMI training (post-training) and 

again during the follow-up. The dots represent the mean with its standard error of the mean.  
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4.4 Discussion 
 

In this study, we investigated the effect of intensive BMI-St-NMES training on BMI learning 

and CNS adaptation over time. In the early phase of the BMI learning, results showed an increased 

CST excitability and a decrease local inhibition. After two weeks of training, subjects improved their 

ability to control BMI. At this time, no more modulation of cortico and corticospinal excitability was 

recorded. However, during BMI-MI, subjects showed larger physiological markers of MI 

performance. These results indicated that subjects improved their BMI skills. The skill improvement 

seemed to be consolidated since all subjects were still able to control their BMI system after two 

weeks without training. Thus, BMI based on St-NMES is a promising strategy to foster BMI learning. 

 

4.4.1 BMI learning model and adaptation of CNS 
  Learning to control a BMI is a skill that needs to be acquired with practice [124]. In this new 

protocol we tested the idea that BMI skill acquisition implies different stages of learning linked to 

different CNS adaptation.   

Halsband et al. [125] suggested that a standard sensorimotor learning consists of three distinct 

phases: (1) Initial stage: Slow and irregular performance under close sensory guidance. During the 

initial phase we learn by trials and errors. The critical requirement of this phase is the novel 

establishment of perceived sensory cues with the correct motor commands. The establishment of this 

novel sensorimotor association is closely related to attention and sensory feedback processing. (2) 

Intermediate stage: With practice, sensorimotor maps become stronger. Sensory cues are transformed 

accurately and fast to the precise motor response. (3) Advanced stage: After long-term practice, 

movements become automatic and can be performed at high speed and accuracy, even if subjects do 

not attend to the action.  In addition, in their model, Ruffino et al. [107] proposed specific CNS 

adaptation supporting these learning phases during MI learning: (a) Early learning: Cortical map 

representing trained muscles and the corticospinal excitability would increase during the first sessions 

of learning. (b) Later learning and automatization: General decrease of cortical activity and decrease 

of CST excitability. Cortical maps would decrease with performance stabilization in the automatic 

phase. These learning models can be transposed to our BMI learning model: (i) Initial stage: 

Difficulty to perform accurate MI strategy. BMI control is difficult and instable. (ii) Early learning 

stage: increase corticospinal tract excitability due to the establishment of a novel sensorimotor 

association that is decoding of MI (BMI part) associated to St-NMES feedback. BMI performances 

are improved. (iii) Later learning (intermediate stage): St-NMES feedback is accurately and rapidly 
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integrated by subject during its performance. It leads to more stable and discriminable MI pattern 

(ERD). BMI control is increased. (iv) Advanced stage should be associated to the expertise of 

controlling BMI that can be acquired after long use of BMI. This stage has not been investigated yet.  

Our findings are in line with our BMI learning hypothesis, except that we did not observe any 

change in speed decoding. However, further investigation will be needed in order to answer this point. 

In the early phase of BMI learning an increase in CST excitability and a decrease cortical inhibition 

was observed. This result confirmed results from our previous experiment. As discussed in the 

previous chapter (3.4.1) it is known that during MI, an increase CST excitability [44,96,105,109] and 

that motor cortex inhibition is decreased [126] are described. Also, a prolonged and continuous 

sensory electrical stimulation and peripheral nerve stimulation, can induce a decrease cortical 

inhibition [72,127,128]. However, from the best of our knowledge, no MI or BMI studies have shown 

showed a post-training effect on CNS plasticity. In our two studies involving BMI-St-NMES, the 

increase of CST excitability as well as the cortical inhibition were sustained after a first BMI-St-

NMES session. On the opposite, after two weeks of intensive BMI training, no significant modulation 

of cortical inhibition and CST excitability was recorded. According to our BMI learning model, we 

hypothesized that subjects learnt to control the BMI and that their sensorimotor maps were stronger. 

Indeed, subjects increased their BMI performances with higher decoding accuracy, more 

discriminable MI patterns and more robust ERD. Interestingly, ERDs were significantly larger over 

CP electrodes. CP electrodes are covering parietal regions that are linked to somatosensory 

integration. This result might refer to the idea of a more accurate integration of sensory feedback 

during MI performance. Although, no correlation between MEP changes and BMI performance could 

be found, due to a small sample size, the physiological markers of MI performance were increased 

after two weeks training, reinforcing the idea of a BMI learning. Indeed, ERD were significantly 

larger, and cortical inhibition was decreased during MI during the post-training evaluation. After two 

weeks training, subjects probably learnt to perform an appropriate strategy to control BMI-MI.  

Interestingly, after two weeks without any practice, subjects were still able to control their 

BMI. No significant change in CNS was recorded at this time. There were two possible explanations 

for these results. First, we can hypothesize that subjects preserved their ability to control their BMI 

similarly to the post-training evaluation. The second hypothesis was that the BMI trained the first day 

was not aligned anymore with subjects’ brain patterns. Thus, there was no association of the feedback 

with their performance. It might leaded to an inappropriate training and, so, did not support adaptation 

of CNS. In practice, probably both situations happened. Indeed, no difference was showed in the 

physiological markers of MI performance compared to baseline. A per subject analyses would be 
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interesting in order to classify subjects that maintained the ability to perform accurate MI, compared 

to those that lost this ability and understand what are the predictors factors of BMI skills learning.   

 

4.4.2 BMI skills learning 
BMI learning can be measures in different ways: the online success, decoding accuracy and 

discriminability of brain patterns. The online success is recorded by the amount of successful trials. 

Although, the decision threshold was manually set-up in order to obtain approximatively 70% of 

success for MI trials, decision thresholds were increased over time. In other words, subjects learnt to 

reach more difficult decision thresholds. This can be seen as an improvement in the BMI control. 

Moreover, the single-sample decoding accuracy (that was not influences by decision threshold) was 

also significantly higher after BMI training. Interestingly, even in absence of any kind of feedback, 

the ability to elicit discriminable MI pattern from resting brain pattern was enhanced after BMI 

training. After two weeks training, subjects learnt the skills necessary to control accurately a BMI. 

These results are particularly interesting in the BMI field since it pushes back the limits of BMI 

usability.   

Although in literature 10 to 30% of the population has been found not able to control a BMI 

[49,51] all our subjects except one was able to achieve a decision threshold of 70% after training 

(20% above random chance level). The subject that did not manage to reach 70% threshold also 

gradually increased his BMI skills starting from a decision threshold at 0.58 and finished to 0.65. 

BMI learning environment, including sufficient amount of learning and accurate instructions, are 

crucial to make every subject being able to learn BMI skills. Similarly to Vidaurre et al. [129], we 

observed three categories of subjects: subjects for whom (I) a classifier could be successfully trained 

and who performed feedback with good accuracy directly for the first online. Nonetheless, their 

performances increased with time and we could observe changes in CNS adaptation over time (II) a 

classifier could be successfully trained, but feedback did not work well at the beginning but they 

learnt with training to improve their performance (III) no classifier with acceptable accuracy could 

be trained after one session. We had to train a classifier again with the data of the first online. 

Nonetheless, they managed to learn with some training how to control the BMI. We believe that most 

of BMI studies might neglect this last category of subjects. However, they have the ability to control 

a BMI but they required more time and more instructions to drive a BMI.  

Moreover, contrary to many BMI protocols, we did not recalibrate subjects’ classifier during the 

two weeks training and neither for the follow-up training. As explained by Perdikis et al [22], frequent 
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recalibration creates situations in which subject’s learning could be hindered by the demand to adapt 

to a changing decoder. We hypothesized that it also contributed to the BMI learning. However, during 

the follow-up assessment some subjects decreased their ability to control the BMI. This situation 

might be explained by two main factors: The amount of training was not enough for subjects to retain 

the skill. The initial classifier was not adapted any longer to subjects’ current performance. The 

selected features might have changed due to non-stationarity of EEG, and important variability of 

subjects’ performance [130]. Further investigations would be needed to understand when it would be 

more suitable to update a subject’s classifier in order to develop his BMI expertise. 

 

As a conclusion, BMI based on St-NMES feedback is a very promising tool for BMI usage as 

well as for BMI applied to motor rehabilitation. Indeed, BMI-St-NMES induced CNS plasticity 

related to the motor task. Several studies already showed that BMI associated to somatosensory 

feedback could enhance motor recovery after stroke [23,24]. Another study would be needed in order 

to assess if our BMI-St-NMES could be applicable in the context of upper limb rehabilitation.  
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5.1 Introduction 
 

In Europe, stroke is the third most common cause of death, responsible for over 5 million 

deaths per year, and it is a major cause of handicap [131]. It has been shown that 80% of patients who 

suffer from a stroke [132] present an upper limb paresis including motor and sensitive deficit of the 

upper limb. A study highlighted that six months after stroke 30% to 60% of severely impaired patients 

do not recover the motor function of the upper limb and only 5% to 20% fully recover [133]. Upper 

limb rehabilitation after stroke is then, a major concern. However, the impact of current rehabilitation 

therapies is limited and the advantage at long-term is controversial [134-136]. Moreover, for patients 

severely impaired, there is only few strategies to enhance upper limb recovery. Most of these patients 

remain importantly handicapped at the chronic stage [137,138]. In this context, BMI appeared to be 

a promising tool for upper-limb rehabilitation [23,139]. Interestingly, it has been showed in literature 

that reactivation of the damaged primary motor cortex and CST excitability improvement are 

biomarkers of motor recovery [140–143]. In this thesis, we previously showed that BMI based on St-

NMES feedback can induce a significant improvement of brain activation within the contralateral 

sensorimotor cortex, and an increase in CST excitability. BMI-St-NMES could be then a solution to 

foster motor rehabilitation after stroke.  

 The purpose of this case study is first to investigate the applicability of our BMI for motor 

rehabilitation after chronic stroke, and secondly to understand if BMI-St-NMES could lead to 

enhancement of motor recovery.   

 

5.2 Material and Methods 
 

5.2.1 Presentation of the patient 
For this case study, one patient, age: 63 yo, right-handed, was enrolled in the protocol. She 

suffered from a left ischemic stroke three years ago. As a consequence, she suffered from Brocca 
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aphasia, right hemi-neglect and severe sensorimotor impairment of the right hemi-body. After 6 

months of intensive rehabilitation in a rehabilitation center, she had motor therapy every week. 

Despite intense rehabilitation, she still suffers from severe motor deficit of the upper-limb. She gave 

and oral and written informed consent to participate to our study. 

 

5.2.2 Experimental Design 
The purpose of this case study was to understand the possible impact of our BMI-St-NMES 

on motor recovery. The experimental design was comparable to the previous experiment run with 

healthy participants (see 4.2.1). The differences in the protocol were that clinical evaluations were 

performed before, after and one month after the BMI experiment (baseline, post-training and follow-

up). Moreover, the patient did three weeks of BMI training compared to only two weeks in the 

previous chapter. The aim was to provide to the patient a similar amount of session than in Biasucci 

et al.’s experiment [23]. The new experimental protocol is illustrated on  Figure 5:1.  

 

5.2.3 Clinical assessment 
The primary outcome of this case study was the Fugl Meyer Assessment score (FMA). FMA is an 

evaluation of motor recovery after score, used to define the severity of motor impairment. For the 

upper-limb evaluation the maximal FMA score is 66 points. Before the experiment, the FMA score 

was 14 / 66 points highlighting a severe impairment of the upper-limb at the proximal and distal level. 

The second clinical outcome was the muscular testing (Daniels & Worthingham muscle testing). This 

test analytically evaluates muscular strength and muscular function. The evaluated functions and 

muscles were: shoulder flexion, extension and abduction, the biceps and triceps, pronators and 

supinators of the forearm, wrist extensors and flexors, fingers extensors and flexors, abductor, flexor 

and extensor of the thumb. The evaluation is evaluated from 0 no muscular contraction to 5 no 

strength disorder. The other clinical outcomes were the modified Ashworth testing and the visual 

analog scale (VAS) to evaluate pain. The modified Ashworth score is an evaluation of spasticity by 

judging the muscle resistance to a stretching movement [144]. The scoring is from 0: no increase in 

muscle tone to 4: affected part rigid in flexion or extension. The VAS permits the patient to assess 

his/her pain on a visual scale from 0: no pain to 10: the pain is extreme.  
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Figure 5:1 Illustration of the experimental protocol 
 

Clinical assessment, in green, were performed before and after the experiment. A follow-up was 

done one month after the post evaluation. BMI sessions are composed of one calibration session (in 

blue) and three weeks of training composed of 3 training per week (in yellow). TMS evaluations are 

represented in blue. Three sessions were performed: baseline, post-training and follow-up. During 

these days TMS recordings were performed before and immediately after a close-loop BMI session. 

 

 

 

5.2.4 BMI training 
BMI training was comparable to the previous experimental design ( 4.2.1 ) at the exception 

that the patient had to perform motor attempt instead of MI, to control the BMI. The patient was 

instructed to perform a wrist and fingers extension despite a complete lack of motor function. The St-

NMES feedback was similar to the previous protocol (4.2.2.3). When the decoder confidence was in 

favor of motor attempt, she received St-NMES on channel 1. When the confidence was closed to 

reach the decision threshold she received St-NMES on both St-NMES channels. At the time the 

patient reached the decision threshold, she received NMES eliciting a hand opening. On the opposite, 

if the decoder was in favor of a resting task no St-NMES was delivered. 

 

5.2.5 TMS recordings 
The position of C3 channel was used as an initial “hot-spot” to elicit a MEP of patient’s 

paralyzed hand. TMS stimulator intensity was set-up to 90% of maximal intensity. By moving slowly 

the coil we tried to elicit MEP. No MEP could be recorded for none of the recordings (baseline, post-

training nor post-training 2). Ten trials were recorded to document the patient’s situation.  
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5.2.6 BMI performance analysis 
Similarly to the previous experiment, we compared BMI single-sample accuracy (see 4.2.3.4 for 

method), BMI speed decoding and decoding success (see 4.2.3.5) before and after BMI training. 

 

5.3 Results 

5.3.1 Clinical outcomes 
The FMA score evaluated before, after and one month after the BMI training showed an 

improvement of motor function clinically relevant (defined by an increase FMA of 5 points in the 

case of chronic stroke patients). Indeed, before the experiment the FMA score was 14 / 66. After the 

BMI training the FMA score increased to 21 / 66. This increase of FMA score was especially reflected 

in an improvement of shoulder and elbow function. One month after the training, the FMA score was 

24 / 66. Although the difference is not clinically relevant, it was good to notice an improvement in 

wrist extension function.  

The MRC evaluations showed an improvement in shoulder flexion and extension as well as 

elbow flexion and extension (see Table 5:1) before compared to after BMI training. Moreover, we 

could observe the appearance of thumb abduction, but the movement was not functional. Modified 

Ashworth showed a decrease of spasticity after the BMI training (see Table 5:2). No change in pain 

had been observed. The patient also reported in improvement of Gait and a decrease neglect about 

the right hemi-body.  

 

Name Pre-evaluation Post-evaluation 
Shoulder ABD 2+ 2+ 

Shoulder flexion 3- 3 
Shoulder extension 2+ 3- 

Elbow flexion 2 3- 
Elbow extension 2- 3 

Wrist flesion 0 0 
Wrist extension 0 0 

Thumb opposition 0 0 
Thumb ABD 0 1 

Fingers flexion 0 0 
Fingers extension 0 0 

   
 

Table 5:1 MRC score 
 

MRC score is a muscular testing evaluation.  
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A value of 0 reflect no muscular contraction, 1 muscular contraction but no movement for the joint, 

2 movement in the whole amplitude without gravity, 3 movement against gravity but without 

resistance, 4 movement against light resistance, 5 movement against maximal resistance. Green 

values highlight an improvement in MRC score. 

 
 
 

Name Pre-evaluation Post-evaluation 
Elbow flexion 3 3 

Elbow extension 4 3 
Wrist flexion 0 0 

Wrist extension 4 4 
Fingers flexion 0 0 

Fingers extension 4 3 
 

Table 5:2 Modified Ashworth Score 

Modified Ashworth score is an evaluation of spasticity. 

0 no increase in muscular tone, 1 Slight increase in muscle tone, manifested by a catch and release 

or by minimal resistance at the end of the range of motion when the affected part(s) is moved in 

flexion or extension, 1+: Slight increase in muscle tone, manifested by a catch, followed by minimal 

resistance throughout the remainder (less than half) of the ROM, 2: More marked increase in 

muscle tone through most of the ROM, but affected part(s) easily moved, 3: Considerable increase 

in muscle tone, passive movement difficult, 4: Affected part(s) rigid in flexion or extension. 

Green values highlight a decrease in muscular tone. 
 
 
 
 

 

5.3.2 BMI outcomes 
BMI performances were increase after training. The single sample accuracy was increased 

after BMI training (baseline 0.84, post-training 1: 0.96, post-training 2: 0.92) as well as decoding 

success and speed ( Figure 5:2). Results highlighted the fact that the patient was able to learn how 

to accurately control the BMI despite her motor disabilities.  
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Figure 5:2 Successful decoding and speed of decoder according to decision threshold.  

Comparison between baseline (in green) and post-training (in red). 

 
 

 

5.4 Discussion 
In this study case, we have tested the use of BMI St-NMES as an upper-limb therapy for a 

patient suffering from a chronic stroke. Our results showed that after 10 sessions, the patient improved 

her upper limb motor function especially at the proximal part. Moreover, the patient was able to 

control BMI and she even improved her ability to operate it.  

Although we could not record MEP, we hypothesized that the patient’s motor recovery might 

be due to cortical and corticospinal reorganization according to results from our previous experiment.  

BMI-St-NMES is then, a very promising tool for motor rehabilitation. Although, BMI training has 

been already showed to be valuable for stroke rehabilitation [23–25], we believed that St-NMES 

feedback might enhance BMI effect on motor recovery especially because it might support CNS 

adaptation and facilitate BMI control. Moreover, sensory electrical stimulation alone also showed 

promising results for upper limb rehabilitation [117,118]. The combination of BMI and St-NMES 

appeared to be extremely interesting at the light of these preliminary results. A study with a larger 

population and a control group will need to be investigated, in combination with rich CNS imaging, 

in order to infer about the potential of BMI-St-NMES for stroke rehabilitation.  

 

One main concern to apply BMI-St-NMES for motor rehabilitation might be the possible 

sensory deficit of patients. In our case, the patient had an impaired sensation but she reported to feel 

St-NMES at intensities higher for the impaired limb compared to the healthy one. Interestingly the 



BMI based on St-NMES a promising tool for motor rehabilitation after stroke: a case study. 

 89 

patient also described a decrease neglect toward her upper limb during and after the BMI-St-NMES 

sessions. This could be explained because she was feeling her paretic limb and that she needed to 

intensively focus her attention on it. Finally, a limitation of this study case is that the evaluator was 

not impartial. For a further experiment it would be important that the clinical assessments are 

performed by an external evaluator blind to the patient group. A group control will be also needed to 

compare the use of BMI St-NMES to a standard upper limb therapy.  

 

 This single-case study showed that BMI-St-NMES is applicable for motor rehabilitation after 

stroke and might enhance motor function after intensive BMI training. Nonetheless, a controlled 

clinical trial will be needed to conclude any effect of BMI-St-NMES on motor recovery. 
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The goal of this thesis is to provide the scientific rationale, technical details and physiological 

evidence supporting the use of St-NMES as feedback for BMI applications. Through different 

experiments, our findings showed that St-NMES is a somatosensory feedback that promoted BMI 

skill acquisition and improved BMI usability. BMI-St-NMES reduced BMI current limitations by 

improving BMI accuracy and stability. Moreover, with BMI-St-NMES training, subjects learnt to 

control a BMI. As explained by Carmena et al. [146], one main challenge for BMI systems is getting 

the brain to recognize an external “actuator” that is not part of the body, and being able to control it 

without enacting over physical movements. By coupling the central activation of the imagined 

movement with peripheral sensation of the limb, this thesis sustains the hypothesis that BMI-St-

NMES promotes CNS plasticity and facilitates BMI learning.  

In order to achieve a BMI learning two components have to be considered: motor and sensory  

[146]. The motor side is represented by the performance of BMI systems based on both neural 

adaptation (brain plasticity) and machine adaptation (machine learning). With training, the goal is to 

achieve high accuracy with a minimum of cognitive resources and permits any user (with or without 

motor impairments) to effortlessly control a BMI in daily life activities. In theory, the user simply 

needs to imagine a limb movement and the BMI will perform the associated action. However, in 

practice the BMI usability is limited by major technical and human factors. On the sensory side, the 

goal is to provide realistic sensory feedback that would mimic the natural input or, in the case of MI, 

emphasize the motoric and kinesthetic memory of a movement. Nonetheless the sensory feedback 

should not interfere with the BMI decoding. This thesis provided evidences that both motor and 

sensory aspects of BMI learning are increased with the usage of St-NMES as BMI feedback.  

 

6.1 BMI learning: motor aspects 
 

From the motor aspects, this thesis has shown that compared to a standard visual feedback, St-

NMES improved BMI performance. Subjects were able to learn how to perform the task and to 

control the BMI assuming both machine and CNS adaptation. From a machine learning point of view, 

this learning is defined by the fact that the decoder can accurately predict subjects’ brain state (MI or 

rest) from the recorded neural activity. Through our different experiments we could indeed, observe 
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that St-NMES feedback improved decoders’ accuracy and stability. Interestingly, BMI based on St-

NMES offered a faster decoder compared to visual feedback, which is also a component of skill 

acquisition. However, more investigations are needed to understand the relationship between BMI 

learning and speed decoding improvement. Moreover, subjects were able to use the same BMI system 

over a month without any re-calibration. In principle this can be viewed as an antagonism for machine 

learning adaptation since we consider the machine system as fixed. However, training a new decoder 

regularly, even with the same features, might eliminates cortical map formation and the associated 

performance improvements [147].  Ganguly and Carmena [147] showed with an invasive BMI study 

on monkeys that the stability of the decoder is a crucial component in the development of a new motor 

map and BMI skill acquisition. Compared to a BMI with visual feedback, features selected for BMI-

St-NMES decoder were more stable over time and subjects could be trained across sessions with a 

constant decoder. We hypothesize that it facilitated the consolidation of new cortical maps and 

promoted the acquisition of BMI skills.  

The development of new maps is due to the second aspect of motor learning, namely, the neural 

adaptation. Brain plasticity supports the formation of decoder-specific pattern of cortical activity and 

the associated feedback. Different stages of learning could be observed through our experiments 

supported by different phases of neural adaptation. In the early stage, BMI-St-NMES induced an 

increase CST excitability and a decrease cortical inhibition. This adaptation could be linked to the 

early process of motor and sensory coupling. At this stage this coupling was crucial to induce 

plasticity since neither BMI with visual feedback nor St-NMES alone induce CST modulation. 

Moreover, the fronto-parietal network was significantly more involved with BMI-St-NMES. In later 

learning phase, no modulation of CST excitability could be recorded after BMI training suggesting 

that this neural adaptation mechanisms were not needed any longer. We hypothesized that cortical 

maps were already formed and subjects were already in a later learning stage. This idea was sustained 

by the fact that after two weeks training, the cortical activation during MI task was significantly 

increased as well as the decoding accuracy. From our results, we suggest that the observed 

neuroplasticity mechanisms may have created a specialized BMI control network that allows skillful 

control.  

However, Ganguli and Carmena [147] also showed that once a cortical map became consolidated, 

a second map could be learned and stored. Once subjects acquired BMI skills, it would be interesting 

to adapt the BMI decoder to the new acquired patterns. Indeed, in the early stage subjects’ 

performance and motor strategies are highly variable. The preliminary decoder might be then, not 

optimal for long-term training. As example, Perdikis et al. [22], although also considering  that the 
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decoder stability is essential for BMI learning,  had to retrain their decoder twice over months for the 

training of their users. An efficient re-training of decoder might enhance BMI learning and more 

specifically BMI performance over time. In the future, further investigations would be needed to 

understand how and when to adapt BMI decoders according to subjects’ expertise. Following this 

idea, another possible solution to enhance BMI learning is the development of BMI St-NMES with 

more complex decoding algorithms. In this thesis we used simple LDA algorithm. Due to the non-

linearity of brain mechanisms maybe and adaptive decoder and complex mathematical models would 

be able to characterized better EEG signals to develop subjects’ expertise.  

 

6.2 BMI learning: sensory aspects 
 

The somatosensory system plays an essential role in motor learning [148–150]. St-NMES 

provides somatosensory afferences to the brain by depolarizing sensory nerves. BMI based on MI 

might be considered as a central activation of a “potential” movement triggered from the integration 

of sensory stimuli from the motoric memory of the movement [86]. As explained before, to control a 

BMI it is well known that we should emphasize kinesthetic imagery of the movement. According to 

Stinear et al. [44] only kinesthetic imagery can modulate CST excitability compared to visual 

feedback. In this thesis, we showed that BMI based on St-NMES induced an increase CST excitability 

compared to BMI based on visual feedback. St-NMES feedback probably promoted kinesthetic 

strategies and the integration of somatosensory information of the “potential” movement. In addition, 

subjects reported that the tingling sensations in the limb helped them to drive and keep their attention 

toward limb sensation contrary to the visual feedback. St-NMES also permitted to enhance peripheral 

activation by depolarizing sensory nerves. Thus, the physiological activation of the peripheral 

pathway during BMI-MI was reinforced. BMI-St-NMES not only mimic but also strengthen the 

natural sensorimotor loop by combining central and peripheral activation. The association of 

sensorimotor mapping and the facilitation of attentional resources were probably key components to 

support the learning process. That is the reason why we believe that St-NME is currently the most 

suitable modality of non-invasive feedback to sustain BMI learning and brain plasticity.  

Somatosensory feedback has been already reported to be better than visual feedback for BMI 

control. However, from our knowledge, no study was able to prove that a somatosensory feedback 

had no direct impact on BMI decoding. Our experiment showed that St-NMES alone did not induce 

significant ERD and our BMI decoders correctly classified passive delivery of St-NMES as rest. This 

aspect of somatosensory feedback is very important because the decoder should predict subjects’ 
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intention and not the brain response to the feedback. If the somatosensory feedback induces detectable 

patterns, the decoder risk to fail to couple subjects’ motor intention with the feedback, but to couple 

brain evoked response to the feedback. Thus, subjects might not be able to learn to control the device. 

Regarding this statement, most of the previous BMI studies investigated somatosensory impact only 

during the MI task without considering resting trials. To assure that the BMI is not biased by the 

feedback, and that the user is “voluntary” in control of the BMI, it is important to verify that users 

are able to control both mental states (MI and rest). Throughout our different experiments, subjects 

reported that at the early stage of the experiment, performing resting trials with St-NMES was more 

difficult than with visual feedback. Receiving St-NMES, subjects’ attention toward the upper-limb 

was strong, whereas for resting trials they had to quickly disengage from the task and change their 

attentional strategy. With a relatively short amount of practice (after one day of training) subjects 

managed to control both mental tasks with St-NMES feedback. Therefore, St-NMES can be 

considered as a usable somatosensory feedback for BMI applications. 

One limitation of the used somatosensory feedback is that we defined a fixed St-NMES 

configuration for all subjects. St-NMES was then, very limited in term of amount of information it 

provided to the user, and might limit BMI learning. Changing St-NMES parameters according to BMI 

decoding does not appear to be a solution since parameters like waveform, stimulation intensity, 

frequency, the time course might influence changes in sensorimotor cortex [120]. On the contrary, 

the use of multimodal feedback and multisensory inputs might be a solution promote BMI learning. 

Indeed, in order to develop subjects’ expertise, the feedback used should be richer over time. Our 

idea is that in the early phase of training, low amount of information about BMI decoding through 

binary St-NMES feedback seems to be sufficient. However, later in the training, the development of 

skill expertise might require higher amount of information thanks to multi-sensory inputs. For 

example, combining St-NMES with more detailed visual information could be a solution to enhance 

subjects’ skills. This multi-sensory combination needs to be investigated in the future to promote 

different phases of BMI learning.  

Another limitation in this thesis is the lack of evidence that St-NMES need to be accurately 

linked to the BMI decoding to induce BMI learning compared to a sham BMI-St-NMES. A sham 

BMI-St-NMES would imply similar involvement of participants with similar amount of St-NMES, 

but the St-NMES will not be correlated to subjects’ brain activation. However, Biasucci et al. [23] 

compared the use of BMI based on motor NMES to a sham BMI with NMES for stroke rehabilitation. 

Results showed that only patients using BMI-NMES significantly improved their motor function as 

well as increase the connectivity within the damaged motor cortex. No plastic changes and no motor 
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improvement were observed in the sham group. Thus, we hypothesize that a BMI training not coupled 

to a correlated St-NMES will not induce efficient plasticity or learning skills.  

 

6.3 Improvement of BMI usability 
 

Ideally, any kind of user, with or without motor disability, should be capable to use a BMI to 

augment their daily-life activities. A usable BMI can be defined as efficient, accurate and user-

friendly.  The current lack of usability can be explained by the fact that significant efforts have been 

dedicated to improve decoding efficiency and accuracy however,  BMI studies have generally ignored 

the user-training component of BMI operation [124]. In this thesis, we showed that St-NMES 

feedback enhanced BMI usability by improving decoder efficiency and, more importantly user-

training aspects. 

St-NMES feedback enabled subjects to develop an appropriate strategy to control BMI and to 

foster kinesthetic imagery. All subjects reported that the task was mentally demanding but that the 

way to focus their attention was easier compared to the visual feedback. Thus, St-NMES improved 

the “user-friendly” aspects of BMI in the sense that it made our BMI accessible to all participants. 

Although in literature 10 to 30% of the population has been found not able to control a BMI, this was 

not the case in the experiments reported in this thesis. With current EEG-based BMI technology, the 

only exception are perhaps patients with involuntary movement disorders because of muscular 

artifacts interfering with EEG recordings. The environment, the experimental conditions and the 

feedback are crucial elements to achieve BMI control. However, in order to improve the BMI 

usability, it would be interesting to distinguish fast learners from slow learners and to adjust the 

training and the BMI, according to subject’s current ability. For example, for a fast learner an enriched 

environment and a more complex feedback might improve their BMI skills. On the contrary, slow 

learners might need simple somatosensory feedback, more frequent adaptation s of their decoders, 

and a longer training period.  

While the development of St-NMES feedback showed improvement in BMI usability, more 

challenges remain to be investigated. For example, in our experiments we used the decoding of 

analytical movement. It would be interesting to decode more complex movements like different 

synergia or different kinds of grasps. Importantly the transfer to daily-life activities need to be 

developed. Technological limitations also need to be tackled like EEG usability (dry electrodes, easy 

to use, decrease signal to noise ratio). Although further improvements are still necessary for BMI-St-

NMES to move the technology outside the laboratory, it is a very promising tool for certain BMI 
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applications especially for motor rehabilitation where it will be deployed in rather controlled 

conditions and by trained professionals. 

 
 

6.4 Therapeutic perspectives 
 

BMI coupled to St-NMES feedback might be a promising tool for motor rehabilitation. 

Indeed, using high-density EEG, BMI-St-NMES showed previously to increase brain connectivity 

and brain activation in the contralateral hemisphere to the MI limb [67] and to enhance CST 

excitability. These properties are especially relevant for stroke rehabilitation since reactivation of the 

damaged primary motor cortex and CST excitability improvement are biomarkers of motor recovery 

[140,142]. Our BMI approach can combine real-time decoding of MI (or even motor attempt in the 

case of plegic patients) supported with St-NMES and deliver a peripheral therapy such as a robotic 

orthosis or NMES at the end of the trial. It has been shown that the combination of MI-BMI with a 

robotic orthosis has the potential to improve motor performance for moderate to severely impaired 

chronic stroke patients [24,33,151]. Similarly, combining a MI-BMI with NMES is also a promising 

alternative for motor rehabilitation [68]. Recently, Biasucci et al. [23] compared a BMI-NMES 

intervention with sham NMES for motor rehabilitation of chronic stroke patients. The experimental 

group was based on contingent delivery of NMES upon BMI decoding of patients’ motor attempt of 

the paretic hand. On the contrary, in the sham group NMES delivery was not contingent with patients’ 

brain activity. As a result, they observed a significant, clinically relevant and lasting motor recovery 

of arm and hand function only for the BMI group (6.6 points in the Fugl-Meyer score, which remained 

6-12 months after the end of therapy). Authors hypothesized that the observed motor recovery was 

probably due to plasticity in the corticospinal projections. Their hypothesis is in line with our results. 

Although we could not show that BMI-St-NMES increase CST plasticity after stroke, we 

accumulated evidences that BMI-St-NMES can directly impact CST and cortical plasticity. Further 

experiments comparing with TMS protocols and diffusion MRI before and after BMI-St-NMES for 

motor rehabilitation will be needed to understand the impact of this new BMI on CNS plasticity and 

motor recovery.  

As a conclusion, BMI-MI based on St-NMES are a very promising tool to induce motor 

recovery and motor learning. This new BMI modality could become a future opportunity for several 

fields of research including mental training during assistive scenarios as well as motor rehabilitation 

of patients with CNS lesions.  
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