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Abstract
1.	 Data from animal-borne inertial sensors are widely used to investigate several as-
pects of an animal's life, such as energy expenditure, daily activity patterns and be-
haviour. Accelerometer data used in conjunction with machine learning algorithms 
have been the tool of choice for characterising animal behaviour. Although machine 
learning models perform reasonably well, they may not rely on meaningful features, 
nor lend themselves to physical interpretation of the classification rules. This lack of 
interpretability and control over classification outcomes is of particular concern 
where different behaviours have different frequency of occurrence and duration, as 
in most natural systems, and calls for the development of alternative methods. 
Biomechanical approaches to human activity classification could overcome these 
shortcomings, yet their full potential remains untapped for animal studies.

2.	 We propose a general framework for behaviour recognition using accelerometers, 
and develop a hybrid model where (a) biomechanical features characterise movement 
dynamics, and (b) a node-based hierarchical classification scheme employs simple ma-
chine learning algorithms at each node to find feature-value thresholds separating 
different behaviours. Using triaxial accelerometer data collected on 10 wild Kalahari 
meerkats, and annotated video recordings of each individual as groundtruth, this hy-
brid model was validated in three scenarios: (a) when each behaviour was equally 
represented (EQDIST), (b) when naturally imbalanced datasets were considered 
(STRAT) and (c) when data from new individuals were considered (LOIO).

3.	 A linear-kernel Support Vector Machine at each node of our classification scheme 
yielded an overall accuracy of >95% for each scenario. Our hybrid approach had a 
2.7% better average overall accuracy than top-performing classical machine learning 
approaches. Further, we showed that not all models with high overall accuracy re-
turned accurate behaviour-specific performance, and good performance during 
EQDIST did not always generalise to STRAT and LOIO.

4.	 Our hybrid model took advantage of robust machine learning algorithms for auto-
matically estimating decision boundaries between behavioural classes. This not only 
achieved high classification performance but also permitted biomechanical interpre-
tation of classification outcomes. The framework presented here provides the 

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2019 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society

www.wileyonlinelibrary.com/journal/mee3
https://orcid.org/0000-0002-2975-6253
https://orcid.org/0000-0002-1744-1940
https://orcid.org/0000-0001-7477-2642
https://orcid.org/0000-0002-6582-5375
mailto:pritish.chakravarty@epfl.ch
http://creativecommons.org/licenses/by-nc/4.0/


2  |    Methods in Ecology and Evolu
on CHAKRAVARTY et al.

1  | INTRODUCTION

An in-depth understanding of wild animal behaviour and movement 
has assumed prime importance in recent years in light of an urgent 
need to augment our forecasting, conservation and management ca-
pacities in the face of rapid environmental change. Since gathering 
data on wild animals in their natural habitats is often precluded by lo-
gistical difficulty, animal-borne sensor systems that offer the possi-
bility of continuously and remotely recording data as the animal goes 
about its daily life have been developed (Ropert-Coudert & Wilson, 
2005). Over the two decades since their first application to remote 
monitoring of animal behaviour (e.g. Sellers, Varley, & Waters, 1998), 
animal-borne accelerometers have been employed to gain insights 
into the life histories of species as far apart in size, type of habi-
tat, speed and mode of locomotion as chipmunks (Tamias alpinus) 
(Hammond, Springthorpe, Walsh, & Berg-Kirkpatrick, 2016), seals 
(Leptonychotes weddellii) (Naito, Bornemann, Takahashi, McIntyre, & 
Plötz, 2010), African wild dogs (Lycaon pictus) and cheetahs (Acinonyx 
jubatus) (Cozzi et al., 2012), vultures (Gyps fulvus) (Nathan et al., 
2012) and blue whales (Balaenoptera musculus) (Goldbogen et al., 
2011). To keep pace with the increasing ubiquity of accelerometry, 
developing methods applicable across species has become essential. 
For instance, general methods have been developed to infer ani-
mal energy expenditure from recorded acceleration (Wilson et al., 
2006). However, despite progress in recognising animal behaviour 
from recorded acceleration, there is as yet no single technique that 
combines under one framework the virtues of easy-to-implement 
machine learning on the one hand, and the interpretability and ro-
bustness of biomechanically defined classification rules on the other.

Machine learning, often rather unenviably referred to as a black 
box (e.g. McClune et al., 2014), has been widely employed to infer 
animal behaviour from raw acceleration data (Nathan et al., 2012; 
Grünewälder et al., 2012; Gao, Campbell, Bidder, & Hunter, 2013; 
Bidder et al., 2014; Resheff, Rotics, Harel, Spiegel, & Nathan, 2014; 
Wang et al., 2015). Despite the power and ease of use of machine 
learning approaches, the need to develop behaviour recognition tools 
generalisable across species has brought to light the importance of 
being able to physically interpret classification rules, even at the cost 
of small gains in classification accuracy (Nathan et al., 2012). Model 
interpretability becomes particularly significant when accurately 
recognising relatively rarer behaviours is important. When machine 
learning approaches are applied to datasets that are heavily skewed 
in the frequency and duration of different behaviours (Watanabe, 
Izawa, Kato, Ropert-Coudert, & Naito, 2005; Grünewälder et al., 2012; 
Resheff et al., 2014; Wang et al., 2015), large overall accuracies may be 

obtained even when the recognition accuracy of under-represented 
behaviours is poor (He & Garcia, 2009); the issue of imbalanced classes 
has even been called a ‘curse’ in machine learning literature (Lemaitre, 
Nogueira, & Aridas, 2017). This occurs because machine learning algo-
rithms typically seek to minimise the overall misclassification rate, and 
thus tend to optimise for the most frequent behaviours since they con-
tribute most to the overall accuracy—the classification performance 
of rare behaviours may nevertheless remain poor. Examination of the 
classification rules would help understand how to improve the recog-
nition of rarer behaviours. However, the use of many features, which 
is typical with machine learning approaches (>15: Nathan et al., 2012; 
Resheff et al., 2014; Wang et al., 2015), implies that the resulting clas-
sification rules are a function of that many variables, and deciphering 
these high-dimensional complex rules and pinpointing the reasons 
behind misclassification of under-represented (rarer) but important 
behaviours quickly becomes intractable.

Confining the role of machine learning algorithms to threshold-
finding within a classification scheme predefined on the basis of 
biomechanical knowledge of animal movement dynamics, and using 
biomechanically significant movement descriptors (features) within 
the scheme, may help solve these difficulties. Such an approach is 
made possible by the fact that there are certain natural commonalities 
in the movement biomechanics of any animal: different behaviours 
may be carried out more or less intensely, in characteristic postures, 
erratically or in a periodic manner. Even though the actual names for 
different animal behaviours will depend on the environment and ani-
mal's context, broad behavioural categories will still lend themselves 
to description through the biomechanical principles of intensity, pos-
ture and periodicity.

Several studies have employed biomechanical considerations to 
characterise behaviours central to an animal's life, such as foraging, 
locomotion and resting (e.g. Shepard et al. 2008); in these studies, 
a majority of the acceleration-derived metrics used for behaviour 
recognition were aimed at quantifying the three biomechanical prin-
ciples of intensity, posture and periodicity. For instance, one study 
that categorised acceleration data in Adélie penguins (Pygoscelis ade-
liae) (Yoda et al., 2001) considered the division of behavioural classes 
into static and dynamic categories, discriminated between static 
behaviours based on posture and identified locomotion as being 
periodic. The use of periodicity metrics may help tease apart even 
highly context-, environment-  and mode-of-locomotion-dependent 
behaviours such as locomotion and foraging. For instance, peri-
odicity metrics have since been used to characterise locomotor 
movement across avian (Laich, Wilson, Quintana, & Shepard, 2008), 
marine (Kawabe et al. 2003) and terrestrial (Soltis et al., 2012) 

flexibility to adapt models to required levels of behavioural resolution, and has the 
potential to facilitate meaningful model sharing between studies.
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species; the aperiodicity of foraging has been alluded to for Little 
Penguins (Eudyptula minor) diving for unpredictably located and mo-
bile prey (Ropert-Coudert, Kato, Wilson, & Cannell, 2006; Watanabe 
& Takahashi, 2013). Despite extensive use of such biomechanically 
significant parameters in their behaviour recognition schemes, pre-
vious methods leave room for improvement—parameter thresholds 
for building classification rules were manually chosen (Laich et al. 
2008), and training data used for creating the model came only from 
a few captive animals (McClune et al., 2014; Soltis et al., 2012).

In this study, we present a general behaviour recognition frame-
work in the form of a hybrid model that combines general biome-
chanical principles on the one hand, and machine learning tools on 
the other. The proposed hybrid model consists of a tree-like classi-
fication framework predefined on the basis of biomechanical con-
siderations, where specific combinations of acceleration-derived 
biomechanical descriptors capturing movement biomechanics of 
behavioural categories studied across a range of species are used in 
conjunction with robust machine learning algorithms at each node of 
the tree. The use of biomechanics to instruct the classification makes 
the model interpretable, and the use of machine learning at each 
node of the tree completely automates the search for optimal metric 
thresholds separating different behaviours. We showcase the appli-
cation and benefits of this hybrid behaviour recognition framework 
on data collected on wild meerkats (Suricata suricatta), where the 
classification of their main activities such as vigilance, foraging, rest-
ing and running is essential for characterising their social and individ-
ual behaviour. We validated this hybrid model against synchronised, 
annotated video camera footage considered as the groundtruth, and 
compared its performance with benchmark measures obtained with 
alternative classification methods based entirely on classical machine 
learning.

2  | MATERIAL AND METHODS

2.1 | Biomechanically driven behaviour recognition 
and validation

2.1.1 | Quantifying movement biomechanics through 
acceleration-derived features

Raw triaxial acceleration data may be summarised in the form of 
quantifiable biomechanical descriptors of movement, which can then 
be used as features capable of discriminating between different be-
havioural categories. The features to be developed will be strongly 
dependent on the desired ethogram; here we shall consider an arche-
typal, general ethogram consisting of three common behaviours—lo-
comotion, resting and foraging. We focused on three biomechanical 
principles to characterise these behaviours: posture, movement in-
tensity and periodicity. These principles have been previously used to 
discriminate between behaviours for a range of species; we aim to syn-
thesise and combine these existing but scattered principles within one 
biomechanically defined classification framework. We quantify these 
three descriptors for each fixed-duration sliding window w containing 

N triaxial acceleration values recorded along the surge (asurge), sway 
(asway) and heave (aheave) axes as follows.

Posture
Common measures of posture involve estimating how the sensor 
is oriented with respect to Earth's gravity. Computation is done by 
averaging acceleration recorded along each axis of the accelerom-
eter, assuming that acceleration due to dynamic bodily movement 
shows up as oscillations around a constant, static value correspond-
ing to Earth's gravity (e.g. Yoda et al., 2001). For instance, the mean 
of surge acceleration in window w, asurge,w, may be computed as:

Intensity
Contrary to posture estimation, movement intensity is commonly 
characterised by quantifying dynamic acceleration, which is obtained 
by removing static acceleration corresponding to Earth's gravity from 
total recorded acceleration. For this, we considered the use of std-
Normw, the standard deviation of the Euclidean norm of the triaxial 
acceleration vector (||a⃗w||), which is equivalent to computing Vectorial 
Dynamic Body Acceleration (VeDBA, McGregor, Busa, Yaggie, & Bollt, 
2009):

Periodicity
To quantify movement periodicity, we analysed the frequency con-
tent of the signal through the use of the Fourier transform (FT). The 
FT of aperiodic signals such as acceleration recorded during foraging 
will be relatively flat, whereas that computed for periodic signals such 
as those recorded during locomotion will be marked by the presence 
of a clear, tall peak, usually at a characteristic frequency. This peak 
height was considered as a measure of signal periodicity, and may 
be computed as follows. For each window w, the acceleration signal 
from each of the three axes recorded at a sampling frequency of Fs 
may be: (a) normalised (zero mean and unit energy); (b) low-pass fil-
tered; (c) zero-padded and windowed; and (d) FT-ed with a resolution 
of U Hz (corresponding to FT computation at L = Fs/U equally spaced 
frequencies between 0 and Fs). From the FT of acceleration along 
each axis, the square of the magnitude of each Fourier coefficient 
(c2
fi ,w,sway

, c2
fi ,w,surge

, c2
fi ,w,heave

, i∈1… L), corresponding to the power of the 
signal at frequency fi, may be computed and averaged over the three 
axes. Finally, from this axis-averaged FT, the maximum power obtained 
across all frequencies fi

(
i∈1… L

)
 may be chosen as a measure of the 

periodicity of the signal. This feature will henceforth be referred to as 
fftPeakPowerAvg.

Note that actual values of the signal processing parameters, such 
as type, order and cut-off frequency of the low-pass filter, length of 
zero-padding, type of window and U, will depend on the characteris-
tics of the recorded acceleration signal, such as signal bandwidth and 
sampling frequency.

(1)meanSurgew=

∑
N �surge,w

N

(2)stdNormw= std
(||a⃗w||

)

(3)fftPeakPowerAvgw=max
L

c2
fi ,w,sway

+c2
fi ,w,surge

+c2
fi ,w,heave
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2.1.2 | A biomechanically defined hierarchical 
classification scheme with automated feature-
threshold computation

The proposed approach involves predefining a hierarchical tree-like 
scheme that classifies broader behavioural categories into increasingly 
specific ones up to the desired level of behavioural resolution. Each 
node of this tree uses one or more features tailored to the classifica-
tion at that node. A predefined hierarchical scheme has two interest-
ing characteristics that make it more advantageous over the common 
classical machine learning approach of directly classifying behaviours 
at their highest resolution. The first advantage concerns the ease of 
dealing with imbalanced classes. It is quite probable that when spe-
cific behaviours are grouped into compound categories at the higher 
placed nodes of the tree, a relatively rarer behaviour gets clubbed into 
the same compound category with a more frequent behaviour. As a 
result, the problem of imbalanced classes is not encountered at the 
higher placed node, and is deferred to a lower node where the rare 
behaviour can no longer be grouped into a compound category with 
the more frequent behaviour. Thus, if poor recognition accuracy of a 
rare behaviour is encountered, one can precisely identify the node at 
which the misclassification occurs. Moreover, since the input features 
are tailored to each node, one can understand which features to add 
or modify at the culprit node to improve classification. This process of 
optimising the model for each individual behaviour may be very dif-
ficult to do with machine learning approaches that classify directly up 
to the finest behaviour resolution level using classification rules which 
are a function of many (>15) features. Secondly, when higher behav-
ioural resolution is desirable, specific behaviours themselves can be 
considered as compound categories and separated into finer behav-
iours by adding nodes below them. For instance, adding a node below 
‘locomotion’ could distinguish between slow and fast locomotion. In 
classical machine learning, if behavioural classes are added retrospec-
tively, the entire model would have to be built anew.

The precise form of the classification tree for a specific application 
will depend on the ethogram of interest, so will the features to be given 
as inputs to each node. Here we demonstrate the construction of a clas-
sification tree for the archetypal ethogram considered in Section 2.1.1 
consisting of locomotion, resting and foraging. For the classification of 
these behaviours, the first node would separate the static (resting) and 
dynamic (locomotion and foraging) behavioural categories. At the sec-
ond stage of this tree, one node below the dynamic category would 
separate the two dynamic behaviours: locomotion and foraging. In this 
scheme, each node divides a parent behavioural category into exactly 
two daughter behavioural types. To accomplish this binary classification 
at each node, appropriate user-chosen biomechanically significant fea-
tures (cf. Section 2.1.1) may be given as inputs to commonly employed 
binary machine learning algorithms (such as Support Vector Machines 
(SVM)) to obtain optimal feature-value thresholds in a completely auto-
mated fashion. For instance, at the first node of the classification tree 
described here, stdNorm, a measure of movement intensity, may be 
used as a single-feature input to an SVM that will separate behaviours 
into the static and dynamic behavioural categories.

2.1.3 | Model validation

To test the utility of a behaviour recognition method, one needs to 
validate the predictions made by it against groundtruthed data—the 
latter typically coming from direct observation or video annotation 
of the behaviours of interest. Typically, a video camera synchro-
nised with the animal-borne accelerometer is used to film the ani-
mal while the accelerometer records data; the groundtruth is then 
obtained by having an expert assign behaviour labels to sections of 
the video based on a suitably defined ethogram. This process is then 
repeated for multiple individuals to capture inter-individual varia-
tion in behaviours. Finally, windows of acceleration corresponding 
to observed behaviours of interest are extracted from the continu-
ous acceleration data stream to obtain bouts of labelled behaviour 
of fixed duration. To evaluate the effect of imbalanced datasets and 
inter-individual variability on model classification, we discuss three 
different forms of cross-validation.

Equally distributed behaviour 10-fold cross-validation (EQDIST)
EQDIST evaluates model performance when the dataset has an equal 
number of bouts of each behaviour. It involves conducting standard 
10-fold cross-validation on subsampled datasets where the sample 
size for each behaviour is made equal. This is done by first pooling data 
from all individuals together, and then randomly selecting as many 
bouts from each behaviour as the one with the least number of bouts.

Stratified 10-fold cross-validation (STRAT)
STRAT evaluates model performance when some behaviours may 
be under-represented or rarer in the dataset than others. It involves 
pooling data from all individuals together and then dividing the pooled 
dataset into 10 equal parts in such a way that the proportion of bouts 
from each type of behaviour in each fold is equal to that in the entire, 
unmodified dataset.

Leave-one-individual-out cross-validation (LOIO)
LOIO evaluates model performance when inter-individual variation is 
taken into account. It involves training a model using data pooled over 
all individuals except one, and then testing this model on data from the 
individual left out. This process is repeated until each individual has 
been the ‘test’ individual once.

We used confusion matrix-based metrics to evaluate and com-
pare model performance. These performance statistics included 
three behaviour-specific metrics (sensitivity, precision and speci-
ficity), and overall model accuracy (see Appendix S1 for definitions).

2.2 | Case Study: Kalahari Meerkats

2.2.1 | Data collection and groundtruthing

Fieldwork was conducted at the Kalahari Meerkat Project, a long-term 
study of wild meerkats in the South African Kalahari Desert (Clutton-
Brock, Gaynor, & McIlrath, 1999). Eleven data-recording sessions were 
done on 10 adult meerkats (seven males, three females, body mass 
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667 ± 98 grams, age 24 ± 15 months); one of the individuals was re-
corded twice. For each individual, data were collected over 3 hr in the 
morning, which corresponds to the duration of normal morning meer-
kat activity (meerkats become inactive as temperatures soar around the 
midday hours). Individuals were captured using methodology described 
in Jordan, Cherry & Manser, 2007 and fitted with a collar equipped with 
an inertial measurement unit (IMU) (adapted version of Physilog IV, 
GaitUp SA, Switzerland) of size 35 mm × 29 mm × 19 mm and meas-
uring triaxial acceleration at 100 Hz/axis with a range of ± 156.96 m/
s2 (corresponding to ± 16 times the acceleration due to Earth's gravity) 
with 16-bit resolution. The overall collar weight was <25 g; collars of 
this size and weight have been shown not to affect meerkat behaviour 
(Golabek, Jordan, & Clutton-Brock, 2008). The collar was positioned so 
that the axes of the accelerometer were oriented as shown in Figure 1. 
The accelerometer was calibrated prior to each capture according to a 
standard procedure (Ferraris, Grimaldi, & Parvis, 1995). After release, 
the collared animal was filmed using a handheld video camera record-
ing at 25 frames/second and synchronised electronically with the IMU 
system. All videos were annotated using Solomon Coder (Version: beta 
17.03.22). This video annotation served as the groundtruthing for our 
behaviour recognition scheme.

2.2.2 | Meerkat behaviours and hierarchical 
classification scheme

Four different behaviours (Figure 2) were considered for the ethogram 
based on their biological significance:

•	 Vigilance: representative of the animal's general stress or alertness 
level. The meerkat is stationary and lifts its head and torso up to 
survey its surroundings.

•	 Foraging: can help derive proxies for body condition, which could, in 
turn, play a role in determining the animals’ survival and social sta-
tus (Hodge, Manica, Flower, & Clutton-Brock, 2008). Most meerkat 
prey live underground; foraging involves scanning the ground, dig-
ging, and handling and ingesting prey.

•	 Running: high-speed locomotion from one point to another with 
presumably high energy expenditure. Prolonged running events are 
rare and typically mark important events such as aggressive inter-
actions with rival meerkat groups.

•	 Resting: periods of inactivity, mainly due to fatigue or excessive heat. 
Typically, the meerkat lies down with its body flat on the ground.

Video clips of each behaviour are provided as Supplementary 
Information. Social context-dependent meerkat behaviours such as 
grooming and territory marking were excluded from the ethogram.

Based on the description of the behaviours of interest here and 
the framework presented in Section 2.1, a three-node hierarchi-
cal scheme was devised to classify meerkat behaviour, as shown in 
Figure 2. Movement intensity (stdNorm) and posture (meanSurge) were 
used to separate static (vigilance and resting) and dynamic (foraging 
and running) behaviours in the first node. At the second node, pos-
ture (meanSurge) was used to distinguish vigilance from resting—while 

the animal's torso is typically upright during vigilance, it is flat during 
resting. At the third node, movement intensity (stdNorm) and peri-
odicity (fftPeakPowerAvg) were used to separate foraging from run-
ning—running was observed to involve faster and more periodic limb 
movements compared to foraging. At each node, a separate machine 
learning algorithm (M1, M2 and M3 in Figure 2) was chosen from four 
candidates: Naïve-Bayes (NB), Linear Discriminant Analysis (LDA), 
Logistic Regression (LR) and linear-kernel Support Vector Machine 
(SVM). We shall henceforth refer to each such M1-M2-M3 combina-
tion as one ‘hybrid model’. Thus, since four candidates were possible at 
each of the three nodes, a total of 4 × 4 × 4 = 64 hybrid models were 
tested to find the best one. Scikit-learn (Pedregosa, 2011, version 
0.19.0) was used to implement all machine learning models (using their 
default configurations) in Python.

2.2.3 | Feature computation

A sliding window w of size two seconds was considered for feature com-
putation; this provided sufficient temporal resolution of behaviour and 
was short enough to capture bouts of running, the behaviour with the 
shortest duration. Successive windows had an overlap of 50%. Windows 
containing transitions between different behaviours were excluded; 
each window thus contained acceleration data corresponding to exactly 
one video-labelled behaviour.

For each window w, acceleration along the surge axis (asurge,w) only 
was averaged (meanSurgew) and used to estimate neck inclination 

F IGURE  1 Sensor axes orientation. The image shows the animal 
displaying typical bipedal vigilance behaviour
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(Equation 1), as values along this axis are least susceptible to changes 
due to possible rotations of the collar around the axis of the meerkat's 
cylindrical neck. For fftPeakPowerAvg computation (cf. Section 2.1.1 
under ‘Periodicity’), the parameters used were: Fs = 100 Hz, U = 0.01 Hz, 
L = 10000. The low-pass filter was a fourth-order Butterworth filter with 
a cut-off frequency of 10 Hz. The length of zero-padding was 1 s, and 
the Blackman–Harris windowing function was used. All feature compu-
tations were done using MATLAB R2016b. MATLAB code to compute 
fftPeakPowerAvg is supplied in Supplementary Information.

2.2.4 | Model validation

For EQDIST, 10 synthetically equalised datasets were generated using 
the Imbalanced-learn (Lemaitre et al., 2017, version 0.3.0) package in 
Python. STRAT was implemented using Scikit-learn (Pedregosa, 2011). 
For both EQDIST and STRAT, confusion matrices obtained from each 

test fold were added together to produce an aggregated confusion ma-
trix from which performance statistics were calculated. LOIO was done 
for individuals for which all four behaviours were recorded. Performance 
statistics for each individual were computed separately, and their mean 
and standard deviation across individuals were reported.

2.2.5 | Alternative classification methods: 
benchmarking against classical machine learning  
approaches

To benchmark our hybrid model's results against those obtained with 
alternative classification methods based entirely on classical machine 
learning, four commonly employed algorithms were considered: Naïve-
Bayes (NB), K-Nearest Neighbours (KNN, with K = 5), Random Forest (RF, 
with 10 trees) and Support Vector Machine (SVM) with a linear kernel. 
Features presented in a recent review of animal behaviour recognition 

F IGURE  2 Biomechanically 
informed behaviour recognition 
scheme. (a) Workflow showing feature 
extraction from triaxial acceleration; 
(b) At each of the three nodes of the 
classification scheme, a separate machine 
learning algorithm (M1, M2, M3) is 
trained with specific biomechanical 
features encapsulating information 
on posture (meanSurge), movement 
intensity (stdNorm) and periodicity 
(fftPeakPowerAvg)

Recording session 
number Vigilance Resting Foraging Running

Bouts per 
recording session

1 4,594 2,114 1,562 69 8,339

2 3,896 120 5,315 29 9,360

3 1,453 0 6,278 38 7,769

4 5,221 0 2,823 161 8,205

5 1,890 0 6,134 169 8,193

6 1,639 744 4,438 98 6,919

7 4,785 156 3,498 40 8,479

8 71 0 4,841 20 4,932

9 4,283 0 1,713 43 6,039

10 1,906 0 4,407 84 6,397

11 1,782 661 5,398 77 7,918

Bouts per activity 31,520 3,795 4,6407 828 82,550 
(total bouts)

TABLE  1 Summary of data collected. 
Data were collected on 10 unique 
individuals; data from recording session 
numbers 4 and 7 were collected on the 
same individual. A bout refers to a 
window w of two seconds containing one 
video-labelled behaviour
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(Nathan et al., 2012) were considered as input to these machine learning 
algorithms. They considered statistical features—mean, standard devia-
tion, skewness, kurtosis, maximum and minimum—computed from data 
from each accelerometer axis as well as the acceleration norm. For con-
sistency, we retained only those features that either used only the surge 
axis or all three axes together—16 such features were identified. Further, 
to meaningfully compare results with our three-feature hybrid model, 
we selected the top three features from this set of 16, thereby ensur-
ing that both approaches would have the same complexity in terms of 
feature-space dimensionality. Further details on feature selection can be 
found in Appendix S2.

3  | RESULTS

3.1 | Observed behaviour

A total of 105,604 2-s bouts of video-labelled behaviour were collected. 
About 12.3% of these bouts contained transitions from one observed 
behaviour to another, in 6.2% of them the animal was not caught on 
camera and 3.3% contained social behaviour such as grooming (cf. 

Section 2.2.2)—these bouts were excluded from the dataset. The re-
maining 82550 bouts corresponded to the four behaviours of interest, 
as presented in Table 1. Foraging (56.2% of retained bouts) and vigilance 
(38.2%) were the most common behaviours, whereas running (1%) was 
the rarest. Typical signals recorded for each behaviour are shown in 
Figure 3.

3.2 | Performance evaluation

Out of the 64 possible combinations for the M1-M2-M3 hybrid model, 
we found that SVM-SVM-SVM performed the best across all three 
cross-validation methods. The linear-kernel SVM not only fully auto-
mated the search for robust feature-value thresholds but also yielded 
simple linear decision boundaries, thereby rendering classification 
rules transparent and intuitive, as shown in Figure 4. The next three 
subsections give details on the performance of the SVM-SVM-SVM 
hybrid model for each cross-validation method tested, and benchmark 
them against results obtained with classical machine learning using 
the same number of features. Results obtained with classical machine 
learning using all 16 features are provided in Appendix S3.

F IGURE  3 Five-second snapshots of the four behaviours of interest for a typical individual (dataset #1). During vigilance, the meerkat is 
still; short perturbations in the signal occur when the head turns to scan the surroundings. During resting, the meerkat remains still and the 
surge signal has a different intercept compared to that during vigilance. Foraging produces erratically varying signals due to site-dependent 
digging and manoeuvring. Running is a fast, rhythmic activity marked by a highly periodic signal
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3.2.1 | EQDIST

Results for EQDIST in Table 2 show that for behaviour-specific met-
rics, the best hybrid model (SVM-SVM-SVM) performed better in 
terms of sensitivity (average 3.5% across the four behaviours), pre-
cision (average 3.3%) and specificity (average 1.1%) compared to the 
best machine learning model (K-Nearest Neighbours).

3.2.2 | STRAT

Results for STRAT in Table 3 show that for behaviour-specific metrics, 
the best hybrid model (SVM-SVM-SVM) performed better in terms of 
sensitivity (average 5.1% across the four behaviours), precision (aver-
age 3.1%) and specificity (average 0.7%) compared to the best machine 
learning model (K-Nearest Neighbours).

3.2.3 | LOIO

For LOIO, data from recording sessions numbered 3, 4, 5, 8, 9 and 
10 (see Table 1) were discarded since they did not contain any rest-
ing behaviour. The mean and standard deviation of all performance 

metrics for LOIO with data from the five retained recording sessions 
(corresponding to five unique individuals) are shown in Table 4. For 
behaviour-specific metrics, the best hybrid model (SVM-SVM-SVM) 
performed better in terms of mean sensitivity (average 1.1% across 
the four behaviours), mean precision (average 4.3%) and mean speci-
ficity (average 1.3%) compared to the best machine learning model 
(Random Forest).

4  | DISCUSSION

We presented a physically intuitive behaviour recognition framework 
based on a hybrid model that combines movement biomechanics and 
robust machine learning. We showed that with our biomechanically de-
fined node-based hierarchical classification framework, acceleration-
derived features summarising movement biomechanics could be used 
in conjunction with existing machine learning algorithms to recog-
nise behaviour from triaxial acceleration data. Using data collected 
on 10 wild meerkats, we demonstrated the efficacy of our hybrid 
model in scenarios where one or more behaviours are rarer or under-
represented in the dataset compared to others, and when there is 

F IGURE  4 Transparent classification. Linear decision boundaries ( l1, l2 and l3) found by the SVM-SVM-SVM hybrid model (for data used 
during EQDIST) render the classification scheme transparent and physically intuitive
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inter-individual variability. We showed that our hybrid model's predic-
tions were more accurate than those obtained with alternative clas-
sification methods based on classical machine learning using the same 
number of features.

Our results shed light on the complex interplay of several factors 
involved in behaviour recognition: feature selection, class imbalance, 
class separability, model selection and persistent misclassification. 
While the feature selection methods used in classical machine learning 
found measures of movement intensity (stdNorm, stdSurge; Appendix 
S2), they failed to select a measure of posture. This proved to be es-
pecially problematic for distinguishing the two static behaviours, vig-
ilance and resting, since they primarily differ in posture. Consistently 
poorer resting and vigilance detection performance resulted when a 
measure of posture was excluded (classical machine learning) com-
pared to when it was included (meanSurge in the hybrid model) even 
in EQDIST, where matters are not yet complicated by class imbalance. 
The effect of not including a measure of posture gets amplified when 
naturally occurring class imbalance is introduced in STRAT: the classi-
cal machine learning models NB and SVM completely miss the much 
rarer resting behaviour (vigilance bouts outnumber resting bouts 
8.3:1), whereas for KNN and RF, resting detection sensitivity plum-
mets to below 65% and precision to below 82%. Model response to 
class imbalance may vary unpredictably: classical machine learning 
with KNN and RF yields fair performance across EQDIST, STRAT 
and LOIO; SVM, on the other hand, first recognises resting during 
EQDIST (albeit poorly) despite the absence of a feature describing 
posture, then completely misses resting behaviour during STRAT and 
LOIO (even though overall model accuracy still remains high: 93.6% 
and 88.2% respectively), and then performs well when all 16 features 
are included (Appendix S3). This indicates the difficulty of general-
ising model behaviour across datasets when feature choice is left to 
an automatic algorithm. However, the hybrid model, where the SVM 
algorithm was only used to find feature-value thresholds within a 
biomechanically predefined tree-like classification structure with 
task-specific features (i.e. biomechanically appropriate features for 
each node in the classification tree), consistently performs well across 
EQDIST, STRAT and LOIO. Class imbalance may be less problematic 
when class separability is high. Running, despite being the rarest class 
in our dataset (foraging instances outnumber running instances 56:1) 
is recognised fairly accurately across EQDIST, STRAT and LOIO for 
the KNN, RF and SVM classical machine learning models, and the hy-
brid model. This might be because measures of intensity (stdNorm, std-
Surge) were particularly effective at separating foraging and running: 
this can be seen from Figure 4, where the magnitude of <1 of the slope 
of the decision boundary l3 implies that the feature on the vertical axis 
(stdNorm) is more discriminating than the one on the horizontal axis 
(fftPeakPowerAvg).

In addition to exponentially greater model complexity, perhaps the 
greatest disadvantage of increasing the number of features in classical 
machine learning is the loss of ability to understand why misclassi-
fications persist. The performance of classical machine learning be-
comes comparable to that of the hybrid model when all 16 features are 
used (Appendix S3), yet even with a fivefold increase in the number TA
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of features (from 3 to 16), resting detection performance still remains 
poor. Examination of the classification rules to understand the source 
of misclassification is rendered unmanageable by the fact that, for 16 
features, 16-dimensional space will need to be analysed. With the 
hybrid model, however, due to the hierarchical nature of the classifi-
cation scheme, it is easy to pinpoint where and why resting misclassi-
fication occurs. The rarer resting behaviour is clubbed with a frequent 
behaviour, vigilance, into the static behavioural category, and the rarer 
running behaviour is clubbed with a frequent behaviour, foraging, 
(foraging bouts outnumber running bouts 56:1) into the dynamic cat-
egory. Thereafter, since the static and dynamic behavioural categories 
are separated accurately (Table S7), it is easy to see that the primary 
deterioration of resting recognition accuracy must occur at the M2 
node. This node employs an SVM which uses only one feature as input, 
meanSurge (measure of posture)—this thus indicated that there may 
have been limitations to our hypothesis about posture during resting 
and/or vigilance. Indeed, re-consulting the groundtruthing video data, 
we discovered that the major source of erroneous resting detection 
was the disproportionately large contribution of an additional unex-
pected curled-up resting posture (different from the belly-flat posi-
tion typically observed) of a single individual (see Appendix S4). Thus, 
new insight into the groundtruthing data itself was obtained because 
of the interpretability offered by our hybrid model; this is in contrast 
to machine learning approaches, which have to rely completely on 
groundtruthing data.

Our behaviour recognition framework offers two other key advan-
tages over existing methods. Firstly, in our hybrid model, robust ma-
chine learning algorithms were tasked with searching for feature-value 
thresholds, thus making the mechanism of decision boundary selection 
automatic, general, clear and easy to implement. In the tree-based 
classification model presented by McClune et al., 2014, analyses were 
based on data from a single, tame individual, and it was not clear how 
their iterative feature-threshold selection method could be extended to 
data from more individuals. Secondly, our classification scheme has the 
potential to enable meaningful model sharing across studies by offering 
the added advantage of being adaptable to desired levels of behavioural 
resolution. For studies where coarse behavioural resolution is sufficient, 
our hybrid model can be used to simply determine when the animal was 
static or dynamic. For studies requiring higher behavioural resolution, 
our scheme may be used as a template upon which new nodes, possibly 
using additional biomechanically derived features, may be added fur-
ther down the tree to accommodate new behaviours when needed. For 
the meerkat ethogram chosen for this study, three biomechanically in-
terpretable features proved to be enough but, for instance, if one were 
interested in characterising meerkat foraging effort, one could add 
an additional node below ‘foraging’ and split it into ‘digging’ and ‘non-
digging’ through a peak-detection-based metric indicating front-paw 
swipes made during digging. In a classical machine learning approach, 
the whole model would need to be rebuilt from scratch if new be-
haviours were to be added; in our approach, adding higher behavioural 
resolution to a given ‘coarser’ model will not impact the existing model 
parameters. This could enable separate studies on the same species to 
add upon a single model until the required behavioural resolution has 

been achieved. This high-resolution model may then be made available 
for future studies on that species.

Choosing appropriate sensor parameters may be a crucial com-
ponent of achieving accurate behaviour classification. Even though 
Gao et al., 2013 followed a hierarchical classification scheme em-
ploying SVMs, the web-based system they developed limited the 
input sampling frequency to only 1 Hz which, they found for some 
species, was insufficient to extract meaningful information from the 
frequency-domain features they used. In our meerkat study, requisite 
signal processing techniques employed to compute movement peri-
odicity through fftPeakPowerAvg might have played an important role 
in successfully distinguishing meerkat running from foraging despite 
high class imbalance. This was due, in part, to the choice of a suffi-
ciently high sampling frequency of 100 Hz. We found that meerkat 
running had a characteristic frequency of around 4 Hz, and a good 
rule-of-thumb is to oversample by about 20 times when using a noisy 
sensor (Boyd, Sundaram, & Shrivastava, 2010), although the sam-
pling frequency could theoretically be reduced to the Nyquist limit 
of twice the maximum frequency of interest. Finally, while stdNorm 
and fftPeakPowerAvg, used in foraging vs. running classification, make 
no assumptions about sensor orientation with respect to the animal, 
meanSurge, used in vigilance vs. resting classification, assumes knowl-
edge of sensor placement around the meerkat's neck. Higher running 
classification accuracy (compared to that for resting) might thus indi-
cate that if the features used are independent of sensor orientation 
with respect to the animal, classification may be more robust for some 
species, since sensor fixation will inevitably be slightly different across 
individuals or species (e.g. collars in mammals and back-packs in birds). 
Studies on energy expenditure (e.g. Gleiss, Wilson, & Shepard, 2011) 
also suggested that when accelerometers cannot be accurately placed 
on the animal, using information from all axes together (Vectorial 
Dynamic Body Acceleration) may perform better than treating each 
axis independently (Overall Dynamic Body Acceleration).

Through the use of general biomechanical principles characterising 
animal movement, our conceptually simple, robust classification method 
may be applicable across a range of species, with different behaviour 
labels depending on the species’ specific context. The biomechanically 
defined node-based hierarchical format permitting model adaptation 
to coarser or finer behavioural resolution makes it apt for meaningful 
model sharing between studies on a given species. The advantage and 
novelty of our method is that it allows a high classification performance 
and, at the same time, a physical and biomechanical interpretation of the 
classification outcomes. The incorporation of common machine learning 
algorithms found in all popular, existing packages in Python, MatLab 
and R makes this method simple and accessible.
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