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Abstract
1.	 Data	from	animal-borne	inertial	sensors	are	widely	used	to	investigate	several	as-
pects	of	an	animal's	life,	such	as	energy	expenditure,	daily	activity	patterns	and	be-
haviour.	Accelerometer	data	used	in	conjunction	with	machine	learning	algorithms	
have	been	the	tool	of	choice	for	characterising	animal	behaviour.	Although	machine	
learning	models	perform	reasonably	well,	they	may	not	rely	on	meaningful	features,	
nor	lend	themselves	to	physical	interpretation	of	the	classification	rules.	This	lack	of	
interpretability	 and	 control	 over	 classification	 outcomes	 is	 of	 particular	 concern	
where	different	behaviours	have	different	frequency	of	occurrence	and	duration,	as	
in	 most	 natural	 systems,	 and	 calls	 for	 the	 development	 of	 alternative	 methods.	
Biomechanical	approaches	 to	human	activity	classification	could	overcome	 these	
shortcomings,	yet	their	full	potential	remains	untapped	for	animal	studies.

2.	 We	propose	a	general	 framework	for	behaviour	recognition	using	accelerometers,	
and	develop	a	hybrid	model	where	(a)	biomechanical	features	characterise	movement	
dynamics,	and	(b)	a	node-based	hierarchical	classification	scheme	employs	simple	ma-
chine	 learning	algorithms	at	each	node	to	find	feature-value	thresholds	separating	
different	behaviours.	Using	triaxial	accelerometer	data	collected	on	10	wild	Kalahari	
meerkats,	and	annotated	video	recordings	of	each	individual	as	groundtruth,	this	hy-
brid	model	was	validated	 in	 three	scenarios:	 (a)	when	each	behaviour	was	equally	
represented	 (EQDIST),	 (b)	 when	 naturally	 imbalanced	 datasets	 were	 considered	
(STRAT)	and	(c)	when	data	from	new	individuals	were	considered	(LOIO).

3.	 A	linear-kernel	Support	Vector	Machine	at	each	node	of	our	classification	scheme	
yielded	an	overall	accuracy	of	>95%	for	each	scenario.	Our	hybrid	approach	had	a	
2.7%	better	average	overall	accuracy	than	top-performing	classical	machine	learning	
approaches.	Further,	we	showed	that	not	all	models	with	high	overall	accuracy	re-
turned	 accurate	 behaviour-specific	 performance,	 and	 good	 performance	 during	
EQDIST	did	not	always	generalise	to	STRAT	and	LOIO.

4.	 Our	hybrid	model	took	advantage	of	robust	machine	learning	algorithms	for	auto-
matically	estimating	decision	boundaries	between	behavioural	classes.	This	not	only	
achieved	high	classification	performance	but	also	permitted	biomechanical	interpre-
tation	 of	 classification	 outcomes.	 The	 framework	 presented	 here	 provides	 the	
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1  | INTRODUCTION

An	in-	depth	understanding	of	wild	animal	behaviour	and	movement	
has	assumed	prime	importance	in	recent	years	in	light	of	an	urgent	
need	to	augment	our	forecasting,	conservation	and	management	ca-
pacities	in	the	face	of	rapid	environmental	change.	Since	gathering	
data	on	wild	animals	in	their	natural	habitats	is	often	precluded	by	lo-
gistical	difficulty,	animal-	borne	sensor	systems	that	offer	the	possi-
bility	of	continuously	and	remotely	recording	data	as	the	animal	goes	
about	its	daily	life	have	been	developed	(Ropert-	Coudert	&	Wilson,	
2005).	Over	the	two	decades	since	their	first	application	to	remote	
monitoring	of	animal	behaviour	(e.g.	Sellers,	Varley,	&	Waters,	1998),	
animal-	borne	accelerometers	have	been	employed	to	gain	 insights	
into	 the	 life	 histories	 of	 species	 as	 far	 apart	 in	 size,	 type	 of	 habi-
tat,	 speed	 and	mode	 of	 locomotion	 as	 chipmunks	 (Tamias alpinus)	
(Hammond,	 Springthorpe,	Walsh,	 &	 Berg-	Kirkpatrick,	 2016),	 seals	
(Leptonychotes weddellii)	(Naito,	Bornemann,	Takahashi,	McIntyre,	&	
Plötz,	2010),	African	wild	dogs	(Lycaon pictus)	and	cheetahs	(Acinonyx 
jubatus)	 (Cozzi	 et	al.,	 2012),	 vultures	 (Gyps fulvus)	 (Nathan	 et	al.,	
2012)	 and	 blue	 whales	 (Balaenoptera musculus)	 (Goldbogen	 et	al.,	
2011).	To	keep	pace	with	the	increasing	ubiquity	of	accelerometry,	
developing	methods	applicable	across	species	has	become	essential.	
For	 instance,	 general	 methods	 have	 been	 developed	 to	 infer	 ani-
mal	 energy	expenditure	 from	 recorded	 acceleration	 (Wilson	et	al.,	
2006).	However,	 despite	progress	 in	 recognising	 animal	behaviour	
from	recorded	acceleration,	there	is	as	yet	no	single	technique	that	
combines	 under	 one	 framework	 the	 virtues	 of	 easy-	to-	implement	
machine	learning	on	the	one	hand,	and	the	interpretability	and	ro-
bustness	of	biomechanically	defined	classification	rules	on	the	other.

Machine	 learning,	often	rather	unenviably	referred	to	as	a	black	
box	 (e.g.	McClune	 et	al.,	 2014),	 has	 been	widely	 employed	 to	 infer	
animal	 behaviour	 from	 raw	 acceleration	 data	 (Nathan	 et	al.,	 2012;	
Grünewälder	 et	al.,	 2012;	 Gao,	 Campbell,	 Bidder,	 &	 Hunter,	 2013;	
Bidder	et	al.,	 2014;	Resheff,	Rotics,	Harel,	 Spiegel,	&	Nathan,	2014;	
Wang	 et	al.,	 2015).	Despite	 the	 power	 and	 ease	 of	 use	 of	machine	
learning	approaches,	the	need	to	develop	behaviour	recognition	tools	
generalisable	 across	 species	 has	brought	 to	 light	 the	 importance	of	
being	able	to	physically	interpret	classification	rules,	even	at	the	cost	
of	small	gains	 in	classification	accuracy	 (Nathan	et	al.,	2012).	Model	
interpretability	 becomes	 particularly	 significant	 when	 accurately	
recognising	 relatively	 rarer	 behaviours	 is	 important.	When	machine	
learning	approaches	are	applied	to	datasets	that	are	heavily	skewed	
in	 the	 frequency	 and	 duration	 of	 different	 behaviours	 (Watanabe,	
Izawa,	Kato,	Ropert-	Coudert,	&	Naito,	2005;	Grünewälder	et	al.,	2012;	
Resheff	et	al.,	2014;	Wang	et	al.,	2015),	large	overall	accuracies	may	be	

obtained	even	when	the	recognition	accuracy	of	under-	represented	
behaviours	is	poor	(He	&	Garcia,	2009);	the	issue	of	imbalanced	classes	
has	even	been	called	a	‘curse’	in	machine	learning	literature	(Lemaitre,	
Nogueira,	&	Aridas,	2017).	This	occurs	because	machine	learning	algo-
rithms	typically	seek	to	minimise	the	overall	misclassification	rate,	and	
thus	tend	to	optimise	for	the	most	frequent	behaviours	since	they	con-
tribute	most	 to	 the	overall	accuracy—the	classification	performance	
of	rare	behaviours	may	nevertheless	remain	poor.	Examination	of	the	
classification	rules	would	help	understand	how	to	improve	the	recog-
nition	of	rarer	behaviours.	However,	the	use	of	many	features,	which	
is	typical	with	machine	learning	approaches	(>15:	Nathan	et	al.,	2012;	
Resheff	et	al.,	2014;	Wang	et	al.,	2015),	implies	that	the	resulting	clas-
sification	rules	are	a	function	of	that	many	variables,	and	deciphering	
these	 high-	dimensional	 complex	 rules	 and	 pinpointing	 the	 reasons	
behind	 misclassification	 of	 under-	represented	 (rarer)	 but	 important	
behaviours	quickly	becomes	intractable.

Confining	 the	 role	 of	machine	 learning	 algorithms	 to	 threshold-	
finding	 within	 a	 classification	 scheme	 predefined	 on	 the	 basis	 of	
biomechanical	knowledge	of	animal	movement	dynamics,	and	using	
biomechanically	 significant	 movement	 descriptors	 (features)	 within	
the	 scheme,	may	 help	 solve	 these	 difficulties.	 Such	 an	 approach	 is	
made	possible	by	the	fact	that	there	are	certain	natural	commonalities	
in	 the	movement	 biomechanics	 of	 any	 animal:	 different	 behaviours	
may	be	carried	out	more	or	less	intensely,	in	characteristic	postures,	
erratically	or	in	a	periodic	manner.	Even	though	the	actual	names	for	
different	animal	behaviours	will	depend	on	the	environment	and	ani-
mal's	context,	broad	behavioural	categories	will	still	lend	themselves	
to	description	through	the	biomechanical	principles	of	intensity,	pos-
ture	and	periodicity.

Several	studies	have	employed	biomechanical	considerations	to	
characterise	behaviours	central	to	an	animal's	life,	such	as	foraging,	
locomotion	and	resting	(e.g.	Shepard	et	al.	2008);	 in	these	studies,	
a	majority	 of	 the	 acceleration-	derived	metrics	 used	 for	 behaviour	
recognition	were	aimed	at	quantifying	the	three	biomechanical	prin-
ciples	of	intensity,	posture	and	periodicity.	For	instance,	one	study	
that	categorised	acceleration	data	in	Adélie	penguins	(Pygoscelis ade-
liae)	(Yoda	et	al.,	2001)	considered	the	division	of	behavioural	classes	
into	 static	 and	 dynamic	 categories,	 discriminated	 between	 static	
behaviours	 based	 on	 posture	 and	 identified	 locomotion	 as	 being	
periodic.	The	use	of	periodicity	metrics	may	help	tease	apart	even	
highly	context-	,	 environment-		 and	mode-	of-	locomotion-	dependent	
behaviours	 such	 as	 locomotion	 and	 foraging.	 For	 instance,	 peri-
odicity	 metrics	 have	 since	 been	 used	 to	 characterise	 locomotor	
movement	across	avian	(Laich,	Wilson,	Quintana,	&	Shepard,	2008),	
marine	 (Kawabe	 et	al.	 2003)	 and	 terrestrial	 (Soltis	 et	al.,	 2012)	

flexibility	to	adapt	models	to	required	levels	of	behavioural	resolution,	and	has	the	
potential	to	facilitate	meaningful	model	sharing	between	studies.

K E Y W O R D S
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movement	intensity,	movement	periodicity,	posture
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species;	 the	aperiodicity	of	 foraging	has	been	alluded	 to	 for	Little	
Penguins	(Eudyptula minor)	diving	for	unpredictably	located	and	mo-
bile	prey	(Ropert-	Coudert,	Kato,	Wilson,	&	Cannell,	2006;	Watanabe	
&	Takahashi,	2013).	Despite	extensive	use	of	such	biomechanically	
significant	parameters	in	their	behaviour	recognition	schemes,	pre-
vious	methods	leave	room	for	 improvement—parameter	thresholds	
for	 building	 classification	 rules	were	manually	 chosen	 (Laich	 et	al.	
2008),	and	training	data	used	for	creating	the	model	came	only	from	
a	few	captive	animals	(McClune	et	al.,	2014;	Soltis	et	al.,	2012).

In	this	study,	we	present	a	general	behaviour	recognition	frame-
work	 in	 the	 form	of	 a	hybrid	model	 that	 combines	general	biome-
chanical	principles	on	the	one	hand,	and	machine	learning	tools	on	
the	other.	The	proposed	hybrid	model	consists	of	a	tree-	like	classi-
fication	 framework	predefined	on	 the	basis	 of	 biomechanical	 con-
siderations,	 where	 specific	 combinations	 of	 acceleration-	derived	
biomechanical	 descriptors	 capturing	 movement	 biomechanics	 of	
behavioural	categories	studied	across	a	range	of	species	are	used	in	
conjunction	with	robust	machine	learning	algorithms	at	each	node	of	
the	tree.	The	use	of	biomechanics	to	instruct	the	classification	makes	
the	model	 interpretable,	 and	 the	 use	 of	machine	 learning	 at	 each	
node	of	the	tree	completely	automates	the	search	for	optimal	metric	
thresholds	separating	different	behaviours.	We	showcase	the	appli-
cation	and	benefits	of	this	hybrid	behaviour	recognition	framework	
on	 data	 collected	 on	wild	meerkats	 (Suricata suricatta),	 where	 the	
classification	of	their	main	activities	such	as	vigilance,	foraging,	rest-
ing	and	running	is	essential	for	characterising	their	social	and	individ-
ual	behaviour.	We	validated	this	hybrid	model	against	synchronised,	
annotated	video	camera	footage	considered	as	the	groundtruth,	and	
compared	its	performance	with	benchmark	measures	obtained	with	
alternative	classification	methods	based	entirely	on	classical	machine	
learning.

2  | MATERIAL AND METHODS

2.1 | Biomechanically driven behaviour recognition 
and validation

2.1.1 | Quantifying movement biomechanics through 
acceleration- derived features

Raw	 triaxial	 acceleration	 data	 may	 be	 summarised	 in	 the	 form	 of	
quantifiable	biomechanical	descriptors	of	movement,	which	can	then	
be	used	as	features	capable	of	discriminating	between	different	be-
havioural	 categories.	 The	 features	 to	 be	 developed	will	 be	 strongly	
dependent	on	the	desired	ethogram;	here	we	shall	consider	an	arche-
typal,	general	ethogram	consisting	of	three	common	behaviours—lo-
comotion,	resting	and	foraging.	We	focused	on	three	biomechanical	
principles	 to	 characterise	 these	 behaviours:	 posture,	movement	 in-
tensity	and	periodicity.	These	principles	have	been	previously	used	to	
discriminate	between	behaviours	for	a	range	of	species;	we	aim	to	syn-
thesise	and	combine	these	existing	but	scattered	principles	within	one	
biomechanically	defined	classification	framework.	We	quantify	these	
three	descriptors	for	each	fixed-	duration	sliding	window	w	containing	

N	 triaxial	 acceleration	values	 recorded	along	 the	 surge	 (asurge),	 sway	
(asway)	and	heave	(aheave)	axes	as	follows.

Posture
Common	measures	 of	 posture	 involve	 estimating	 how	 the	 sensor	
is	oriented	with	respect	to	Earth's	gravity.	Computation	is	done	by	
averaging	acceleration	recorded	along	each	axis	of	the	accelerom-
eter,	assuming	that	acceleration	due	to	dynamic	bodily	movement	
shows	up	as	oscillations	around	a	constant,	static	value	correspond-
ing	to	Earth's	gravity	(e.g.	Yoda	et	al.,	2001).	For	instance,	the	mean	
of	surge	acceleration	in	window	w,	asurge,w,	may	be	computed	as:

Intensity
Contrary	 to	 posture	 estimation,	 movement	 intensity	 is	 commonly	
characterised	by	quantifying	dynamic	acceleration,	which	is	obtained	
by	removing	static	acceleration	corresponding	to	Earth's	gravity	from	
total	 recorded	 acceleration.	 For	 this,	we	 considered	 the	 use	 of	 std-
Normw,	 the	 standard	deviation	of	 the	Euclidean	norm	of	 the	 triaxial	
acceleration	vector	(||a⃗w||),	which	is	equivalent	to	computing	Vectorial	
Dynamic	Body	Acceleration	(VeDBA,	McGregor,	Busa,	Yaggie,	&	Bollt,	
2009):

Periodicity
To	 quantify	 movement	 periodicity,	we	 analysed	 the	 frequency	 con-
tent	of	the	signal	through	the	use	of	the	Fourier	transform	(FT).	The	
FT	of	aperiodic	signals	such	as	acceleration	recorded	during	foraging	
will	be	relatively	flat,	whereas	that	computed	for	periodic	signals	such	
as	those	recorded	during	locomotion	will	be	marked	by	the	presence	
of	 a	 clear,	 tall	 peak,	 usually	 at	 a	 characteristic	 frequency.	This	 peak	
height	 was	 considered	 as	 a	 measure	 of	 signal	 periodicity,	 and	 may	
be	computed	as	 follows.	For	each	window	w,	 the	acceleration	signal	
from	each	of	 the	 three	axes	 recorded	at	 a	 sampling	 frequency	of	Fs 
may	be:	 (a)	normalised	 (zero	mean	and	unit	energy);	 (b)	 low-	pass	 fil-
tered;	(c)	zero-	padded	and	windowed;	and	(d)	FT-	ed	with	a	resolution	
of	U	Hz	(corresponding	to	FT	computation	at	L	=	Fs/U	equally	spaced	
frequencies	 between	 0	 and	 Fs).	 From	 the	 FT	 of	 acceleration	 along	
each	 axis,	 the	 square	 of	 the	 magnitude	 of	 each	 Fourier	 coefficient	
(c2
fi ,w,sway

, c2
fi ,w,surge

, c2
fi ,w,heave

, i∈1… L),	corresponding	to	the	power	of	the	
signal	at	frequency	fi,	may	be	computed	and	averaged	over	the	three	
axes.	Finally,	from	this	axis-	averaged	FT,	the	maximum	power	obtained	
across	all	frequencies	fi

(
i∈1… L

)
	may	be	chosen	as	a	measure	of	the	

periodicity	of	the	signal.	This	feature	will	henceforth	be	referred	to	as	
fftPeakPowerAvg.

Note	that	actual	values	of	the	signal	processing	parameters,	such	
as	type,	order	and	cut-	off	frequency	of	the	low-	pass	filter,	 length	of	
zero-	padding,	type	of	window	and	U,	will	depend	on	the	characteris-
tics	of	the	recorded	acceleration	signal,	such	as	signal	bandwidth	and	
sampling	frequency.

(1)meanSurgew=

∑
N �surge,w

N

(2)stdNormw= std
(||a⃗w||

)

(3)fftPeakPowerAvgw=max
L

c2
fi ,w,sway

+c2
fi ,w,surge

+c2
fi ,w,heave
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2.1.2 | A biomechanically defined hierarchical 
classification scheme with automated feature- 
threshold computation

The	proposed	approach	 involves	predefining	a	hierarchical	 tree-	like	
scheme	that	classifies	broader	behavioural	categories	into	increasingly	
specific	ones	up	to	the	desired	level	of	behavioural	resolution.	Each	
node	of	this	tree	uses	one	or	more	features	tailored	to	the	classifica-
tion	at	that	node.	A	predefined	hierarchical	scheme	has	two	interest-
ing	characteristics	that	make	it	more	advantageous	over	the	common	
classical	machine	learning	approach	of	directly	classifying	behaviours	
at	their	highest	resolution.	The	first	advantage	concerns	the	ease	of	
dealing	with	imbalanced	classes.	It	 is	quite	probable	that	when	spe-
cific	behaviours	are	grouped	into	compound	categories	at	the	higher	
placed	nodes	of	the	tree,	a	relatively	rarer	behaviour	gets	clubbed	into	
the	same	compound	category	with	a	more	frequent	behaviour.	As	a	
result,	the	problem	of	 imbalanced	classes	 is	not	encountered	at	the	
higher	placed	node,	and	is	deferred	to	a	lower	node	where	the	rare	
behaviour	can	no	longer	be	grouped	into	a	compound	category	with	
the	more	frequent	behaviour.	Thus,	if	poor	recognition	accuracy	of	a	
rare	behaviour	is	encountered,	one	can	precisely	identify	the	node	at	
which	the	misclassification	occurs.	Moreover,	since	the	input	features	
are	tailored	to	each	node,	one	can	understand	which	features	to	add	
or	modify	at	the	culprit	node	to	improve	classification.	This	process	of	
optimising	the	model	for	each	individual	behaviour	may	be	very	dif-
ficult	to	do	with	machine	learning	approaches	that	classify	directly	up	
to	the	finest	behaviour	resolution	level	using	classification	rules	which	
are	a	function	of	many	(>15)	features.	Secondly,	when	higher	behav-
ioural	resolution	is	desirable,	specific	behaviours	themselves	can	be	
considered	as	compound	categories	and	separated	into	finer	behav-
iours	by	adding	nodes	below	them.	For	instance,	adding	a	node	below	
‘locomotion’	could	distinguish	between	slow	and	fast	locomotion.	In	
classical	machine	learning,	if	behavioural	classes	are	added	retrospec-
tively,	the	entire	model	would	have	to	be	built	anew.

The	precise	form	of	the	classification	tree	for	a	specific	application	
will	depend	on	the	ethogram	of	interest,	so	will	the	features	to	be	given	
as	inputs	to	each	node.	Here	we	demonstrate	the	construction	of	a	clas-
sification	tree	for	the	archetypal	ethogram	considered	in	Section	2.1.1	
consisting	of	locomotion,	resting	and	foraging.	For	the	classification	of	
these	behaviours,	the	first	node	would	separate	the	static	(resting)	and	
dynamic	(locomotion	and	foraging)	behavioural	categories.	At	the	sec-
ond	stage	of	 this	 tree,	one	node	below	the	dynamic	category	would	
separate	the	two	dynamic	behaviours:	locomotion	and	foraging.	In	this	
scheme,	each	node	divides	a	parent	behavioural	category	into	exactly	
two	daughter	behavioural	types.	To	accomplish	this	binary	classification	
at	each	node,	appropriate	user-	chosen	biomechanically	significant	fea-
tures	(cf.	Section	2.1.1)	may	be	given	as	inputs	to	commonly	employed	
binary	machine	learning	algorithms	(such	as	Support	Vector	Machines	
(SVM))	to	obtain	optimal	feature-	value	thresholds	in	a	completely	auto-
mated	fashion.	For	instance,	at	the	first	node	of	the	classification	tree	
described	 here,	 stdNorm,	 a	measure	 of	movement	 intensity,	may	 be	
used	as	a	single-	feature	input	to	an	SVM	that	will	separate	behaviours	
into	the	static	and	dynamic	behavioural	categories.

2.1.3 | Model validation

To	test	the	utility	of	a	behaviour	recognition	method,	one	needs	to	
validate	the	predictions	made	by	it	against	groundtruthed	data—the	
latter	typically	coming	from	direct	observation	or	video	annotation	
of	 the	 behaviours	 of	 interest.	 Typically,	 a	 video	 camera	 synchro-
nised	with	 the	animal-	borne	accelerometer	 is	used	 to	 film	 the	ani-
mal	while	 the	accelerometer	 records	data;	 the	groundtruth	 is	 then	
obtained	by	having	an	expert	assign	behaviour	labels	to	sections	of	
the	video	based	on	a	suitably	defined	ethogram.	This	process	is	then	
repeated	 for	 multiple	 individuals	 to	 capture	 inter-	individual	 varia-
tion	 in	 behaviours.	 Finally,	windows	of	 acceleration	 corresponding	
to	observed	behaviours	of	interest	are	extracted	from	the	continu-
ous	acceleration	data	stream	to	obtain	bouts	of	 labelled	behaviour	
of	fixed	duration.	To	evaluate	the	effect	of	imbalanced	datasets	and	
inter-	individual	variability	on	model	classification,	we	discuss	three	
different	forms	of	cross-	validation.

Equally distributed behaviour 10- fold cross- validation (EQDIST)
EQDIST	evaluates	model	performance	when	the	dataset	has	an	equal	
number	of	bouts	of	each	behaviour.	 It	 involves	conducting	standard	
10-	fold	 cross-	validation	 on	 subsampled	 datasets	 where	 the	 sample	
size	for	each	behaviour	is	made	equal.	This	is	done	by	first	pooling	data	
from	 all	 individuals	 together,	 and	 then	 randomly	 selecting	 as	many	
bouts	from	each	behaviour	as	the	one	with	the	least	number	of	bouts.

Stratified 10- fold cross- validation (STRAT)
STRAT	 evaluates	 model	 performance	 when	 some	 behaviours	 may	
be	under-	represented	or	rarer	in	the	dataset	than	others.	It	 involves	
pooling	data	from	all	individuals	together	and	then	dividing	the	pooled	
dataset	into	10	equal	parts	in	such	a	way	that	the	proportion	of	bouts	
from	each	type	of	behaviour	in	each	fold	is	equal	to	that	in	the	entire,	
unmodified	dataset.

Leave- one- individual- out cross- validation (LOIO)
LOIO	evaluates	model	performance	when	inter-	individual	variation	is	
taken	into	account.	It	involves	training	a	model	using	data	pooled	over	
all	individuals	except	one,	and	then	testing	this	model	on	data	from	the	
individual	 left	out.	This	process	 is	repeated	until	each	individual	has	
been	the	‘test’	individual	once.

We	used	confusion	matrix-	based	metrics	to	evaluate	and	com-
pare	model	 performance.	 These	 performance	 statistics	 included	
three	behaviour-	specific	metrics	 (sensitivity,	precision	and	speci-
ficity),	and	overall	model	accuracy	(see	Appendix	S1	for	definitions).

2.2 | Case Study: Kalahari Meerkats

2.2.1 | Data collection and groundtruthing

Fieldwork	was	conducted	at	the	Kalahari	Meerkat	Project,	a	long-	term	
study	of	wild	meerkats	in	the	South	African	Kalahari	Desert	(Clutton-	
Brock,	Gaynor,	&	McIlrath,	1999).	Eleven	data-	recording	sessions	were	
done	 on	 10	 adult	 meerkats	 (seven	males,	 three	 females,	 body	mass	
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667	±	98	grams,	 age	24	±	15	months);	 one	of	 the	 individuals	was	 re-
corded	twice.	For	each	individual,	data	were	collected	over	3	hr	in	the	
morning,	which	corresponds	to	the	duration	of	normal	morning	meer-
kat	activity	(meerkats	become	inactive	as	temperatures	soar	around	the	
midday	hours).	Individuals	were	captured	using	methodology	described	
in	Jordan,	Cherry	&	Manser,	2007	and	fitted	with	a	collar	equipped	with	
an	 inertial	 measurement	 unit	 (IMU)	 (adapted	 version	 of	 Physilog	 IV,	
GaitUp	SA,	Switzerland)	of	size	35	mm	×	29	mm	×	19	mm	and	meas-
uring	triaxial	acceleration	at	100	Hz/axis	with	a	range	of	±	156.96	m/
s2	(corresponding	to	±	16	times	the	acceleration	due	to	Earth's	gravity)	
with	16-	bit	 resolution.	The	overall	collar	weight	was	<25	g;	collars	of	
this	size	and	weight	have	been	shown	not	to	affect	meerkat	behaviour	
(Golabek,	Jordan,	&	Clutton-	Brock,	2008).	The	collar	was	positioned	so	
that	the	axes	of	the	accelerometer	were	oriented	as	shown	in	Figure	1.	
The	accelerometer	was	calibrated	prior	to	each	capture	according	to	a	
standard	procedure	 (Ferraris,	Grimaldi,	&	Parvis,	1995).	After	 release,	
the	collared	animal	was	filmed	using	a	handheld	video	camera	record-
ing	at	25	frames/second	and	synchronised	electronically	with	the	IMU	
system.	All	videos	were	annotated	using	Solomon	Coder	(Version:	beta	
17.03.22).	This	video	annotation	served	as	the	groundtruthing	for	our	
behaviour	recognition	scheme.

2.2.2 | Meerkat behaviours and hierarchical 
classification scheme

Four	different	behaviours	(Figure	2)	were	considered	for	the	ethogram	
based	on	their	biological	significance:

• Vigilance:	representative	of	the	animal's	general	stress	or	alertness	
level.	The	meerkat	 is	stationary	and	lifts	 its	head	and	torso	up	to	
survey	its	surroundings.

• Foraging:	can	help	derive	proxies	for	body	condition,	which	could,	in	
turn,	play	a	role	in	determining	the	animals’	survival	and	social	sta-
tus	(Hodge,	Manica,	Flower,	&	Clutton-Brock,	2008).	Most	meerkat	
prey	live	underground;	foraging	involves	scanning	the	ground,	dig-
ging,	and	handling	and	ingesting	prey.

• Running:	 high-speed	 locomotion	 from	 one	 point	 to	 another	with	
presumably	high	energy	expenditure.	Prolonged	running	events	are	
rare	and	typically	mark	important	events	such	as	aggressive	inter-
actions	with	rival	meerkat	groups.

• Resting:	periods	of	inactivity,	mainly	due	to	fatigue	or	excessive	heat.	
Typically,	the	meerkat	lies	down	with	its	body	flat	on	the	ground.

Video	 clips	 of	 each	 behaviour	 are	 provided	 as	 Supplementary	
Information.	 Social	 context-	dependent	 meerkat	 behaviours	 such	 as	
grooming	and	territory	marking	were	excluded	from	the	ethogram.

Based	on	the	description	of	 the	behaviours	of	 interest	here	and	
the	 framework	 presented	 in	 Section	2.1,	 a	 three-	node	 hierarchi-
cal	 scheme	was	devised	 to	 classify	meerkat	behaviour,	 as	 shown	 in	
Figure	2.	Movement	intensity	(stdNorm)	and	posture	(meanSurge)	were	
used	to	separate	static	 (vigilance	and	resting)	and	dynamic	(foraging	
and	running)	behaviours	 in	the	first	node.	At	the	second	node,	pos-
ture	(meanSurge)	was	used	to	distinguish	vigilance	from	resting—while	

the	animal's	torso	is	typically	upright	during	vigilance,	it	is	flat	during	
resting.	 At	 the	 third	 node,	movement	 intensity	 (stdNorm)	 and	 peri-
odicity	 (fftPeakPowerAvg)	were	 used	 to	 separate	 foraging	 from	 run-
ning—running	was	observed	to	involve	faster	and	more	periodic	limb	
movements	compared	to	foraging.	At	each	node,	a	separate	machine	
learning	algorithm	(M1,	M2	and	M3	in	Figure	2)	was	chosen	from	four	
candidates:	 Naïve-	Bayes	 (NB),	 Linear	 Discriminant	 Analysis	 (LDA),	
Logistic	 Regression	 (LR)	 and	 linear-	kernel	 Support	 Vector	 Machine	
(SVM).	We	shall	henceforth	refer	to	each	such	M1-	M2-	M3	combina-
tion	as	one	‘hybrid	model’.	Thus,	since	four	candidates	were	possible	at	
each	of	the	three	nodes,	a	total	of	4	×	4	×	4	=	64	hybrid	models	were	
tested	 to	 find	 the	 best	 one.	 Scikit-	learn	 (Pedregosa,	 2011,	 version	
0.19.0)	was	used	to	implement	all	machine	learning	models	(using	their	
default	configurations)	in	Python.

2.2.3 | Feature computation

A	sliding	window	w	of	size	two	seconds	was	considered	for	feature	com-
putation;	this	provided	sufficient	temporal	resolution	of	behaviour	and	
was	short	enough	to	capture	bouts	of	running,	the	behaviour	with	the	
shortest	duration.	Successive	windows	had	an	overlap	of	50%.	Windows	
containing	 transitions	 between	 different	 behaviours	 were	 excluded;	
each	window	thus	contained	acceleration	data	corresponding	to	exactly	
one	video-	labelled	behaviour.

For	each	window	w,	acceleration	along	the	surge	axis	(asurge,w)	only	
was	 averaged	 (meanSurgew)	 and	 used	 to	 estimate	 neck	 inclination	

F IGURE  1 Sensor	axes	orientation.	The	image	shows	the	animal	
displaying	typical	bipedal	vigilance	behaviour
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(Equation	1),	as	values	along	this	axis	are	 least	susceptible	to	changes	
due	to	possible	rotations	of	the	collar	around	the	axis	of	the	meerkat's	
cylindrical	 neck.	 For	 fftPeakPowerAvg	 computation	 (cf.	 Section	2.1.1	
under	‘Periodicity’),	the	parameters	used	were:	Fs	=	100	Hz,	U = 0.01	Hz,	
L	=	10000.	The	low-	pass	filter	was	a	fourth-	order	Butterworth	filter	with	
a	cut-	off	frequency	of	10	Hz.	The	length	of	zero-	padding	was	1	s,	and	
the	Blackman–Harris	windowing	function	was	used.	All	feature	compu-
tations	were	done	using	MATLAB	R2016b.	MATLAB	 code	 to	 compute	
fftPeakPowerAvg	is	supplied	in	Supplementary	Information.

2.2.4 | Model validation

For	EQDIST,	10	synthetically	equalised	datasets	were	generated	using	
the	Imbalanced-	learn	(Lemaitre	et	al.,	2017,	version	0.3.0)	package	in	
Python.	STRAT	was	implemented	using	Scikit-	learn	(Pedregosa,	2011).	
For	both	EQDIST	and	STRAT,	confusion	matrices	obtained	from	each	

test	fold	were	added	together	to	produce	an	aggregated	confusion	ma-
trix	from	which	performance	statistics	were	calculated.	LOIO	was	done	
for	individuals	for	which	all	four	behaviours	were	recorded.	Performance	
statistics	for	each	individual	were	computed	separately,	and	their	mean	
and	standard	deviation	across	individuals	were	reported.

2.2.5 | Alternative classification methods: 
benchmarking against classical machine learning  
approaches

To	benchmark	our	hybrid	model's	 results	against	 those	obtained	with	
alternative	 classification	methods	 based	 entirely	 on	 classical	machine	
learning,	four	commonly	employed	algorithms	were	considered:	Naïve-	
Bayes	(NB),	K-	Nearest	Neighbours	(KNN,	with	K	=	5),	Random	Forest	(RF,	
with	10	trees)	and	Support	Vector	Machine	(SVM)	with	a	linear	kernel.	
Features	presented	in	a	recent	review	of	animal	behaviour	recognition	

F IGURE  2 Biomechanically	
informed	behaviour	recognition	
scheme.	(a)	Workflow	showing	feature	
extraction	from	triaxial	acceleration;	
(b)	At	each	of	the	three	nodes	of	the	
classification	scheme,	a	separate	machine	
learning	algorithm	(M1,	M2,	M3)	is	
trained	with	specific	biomechanical	
features	encapsulating	information	
on	posture	(meanSurge),	movement	
intensity	(stdNorm)	and	periodicity	
(fftPeakPowerAvg)

Recording session 
number Vigilance Resting Foraging Running

Bouts per 
recording session

1 4,594 2,114 1,562 69 8,339

2 3,896 120 5,315 29 9,360

3 1,453 0 6,278 38 7,769

4 5,221 0 2,823 161 8,205

5 1,890 0 6,134 169 8,193

6 1,639 744 4,438 98 6,919

7 4,785 156 3,498 40 8,479

8 71 0 4,841 20 4,932

9 4,283 0 1,713 43 6,039

10 1,906 0 4,407 84 6,397

11 1,782 661 5,398 77 7,918

Bouts	per	activity 31,520 3,795 4,6407 828 82,550 
(total	bouts)

TABLE  1 Summary	of	data	collected.	
Data	were	collected	on	10	unique	
individuals;	data	from	recording	session	
numbers	4	and	7	were	collected	on	the	
same	individual.	A	bout	refers	to	a	
window w	of	two	seconds	containing	one	
video-	labelled	behaviour
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(Nathan	et	al.,	2012)	were	considered	as	input	to	these	machine	learning	
algorithms.	They	considered	statistical	features—mean,	standard	devia-
tion,	skewness,	kurtosis,	maximum	and	minimum—computed	from	data	
from	each	accelerometer	axis	as	well	as	the	acceleration	norm.	For	con-
sistency,	we	retained	only	those	features	that	either	used	only	the	surge	
axis	or	all	three	axes	together—16	such	features	were	identified.	Further,	
to	meaningfully	compare	 results	with	our	 three-	feature	hybrid	model,	
we	selected	the	top	three	features	from	this	set	of	16,	thereby	ensur-
ing	that	both	approaches	would	have	the	same	complexity	in	terms	of	
feature-	space	dimensionality.	Further	details	on	feature	selection	can	be	
found	in	Appendix	S2.

3  | RESULTS

3.1 | Observed behaviour

A	total	of	105,604	2-	s	bouts	of	video-	labelled	behaviour	were	collected.	
About	12.3%	of	these	bouts	contained	transitions	from	one	observed	
behaviour	 to	another,	 in	6.2%	of	 them	the	animal	was	not	caught	on	
camera	 and	 3.3%	 contained	 social	 behaviour	 such	 as	 grooming	 (cf.	

Section	2.2.2)—these	 bouts	were	 excluded	 from	 the	 dataset.	 The	 re-
maining	82550	bouts	corresponded	to	the	four	behaviours	of	interest,	
as	presented	in	Table	1.	Foraging	(56.2%	of	retained	bouts)	and	vigilance	
(38.2%)	were	the	most	common	behaviours,	whereas	running	(1%)	was	
the	 rarest.	 Typical	 signals	 recorded	 for	 each	 behaviour	 are	 shown	 in	
Figure	3.

3.2 | Performance evaluation

Out	of	the	64	possible	combinations	for	the	M1-	M2-	M3	hybrid	model,	
we	 found	 that	SVM-	SVM-	SVM	performed	 the	best	 across	 all	 three	
cross-	validation	methods.	The	linear-	kernel	SVM	not	only	fully	auto-
mated	the	search	for	robust	feature-	value	thresholds	but	also	yielded	
simple	 linear	 decision	 boundaries,	 thereby	 rendering	 classification	
rules	transparent	and	intuitive,	as	shown	in	Figure	4.	The	next	three	
subsections	give	details	on	the	performance	of	the	SVM-	SVM-	SVM	
hybrid	model	for	each	cross-	validation	method	tested,	and	benchmark	
them	 against	 results	 obtained	with	 classical	machine	 learning	 using	
the	same	number	of	features.	Results	obtained	with	classical	machine	
learning	using	all	16	features	are	provided	in	Appendix	S3.

F IGURE  3 Five-	second	snapshots	of	the	four	behaviours	of	interest	for	a	typical	individual	(dataset	#1).	During	vigilance,	the	meerkat	is	
still;	short	perturbations	in	the	signal	occur	when	the	head	turns	to	scan	the	surroundings.	During	resting,	the	meerkat	remains	still	and	the	
surge	signal	has	a	different	intercept	compared	to	that	during	vigilance.	Foraging	produces	erratically	varying	signals	due	to	site-	dependent	
digging	and	manoeuvring.	Running	is	a	fast,	rhythmic	activity	marked	by	a	highly	periodic	signal
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3.2.1 | EQDIST

Results	for	EQDIST	in	Table	2	show	that	for	behaviour-	specific	met-
rics,	 the	 best	 hybrid	 model	 (SVM-	SVM-	SVM)	 performed	 better	 in	
terms	of	 sensitivity	 (average	3.5%	across	 the	 four	behaviours),	 pre-
cision	(average	3.3%)	and	specificity	(average	1.1%)	compared	to	the	
best	machine	learning	model	(K-	Nearest	Neighbours).

3.2.2 | STRAT

Results	for	STRAT	in	Table	3	show	that	for	behaviour-	specific	metrics,	
the	best	hybrid	model	(SVM-	SVM-	SVM)	performed	better	in	terms	of	
sensitivity	(average	5.1%	across	the	four	behaviours),	precision	(aver-
age	3.1%)	and	specificity	(average	0.7%)	compared	to	the	best	machine	
learning	model	(K-	Nearest	Neighbours).

3.2.3 | LOIO

For	LOIO,	data	 from	 recording	 sessions	numbered	3,	4,	5,	8,	9	 and	
10	(see	Table	1)	were	discarded	since	they	did	not	contain	any	rest-
ing	behaviour.	The	mean	and	standard	deviation	of	all	performance	

metrics	for	LOIO	with	data	from	the	five	retained	recording	sessions	
(corresponding	 to	 five	unique	 individuals)	 are	 shown	 in	Table	4.	 For	
behaviour-	specific	metrics,	 the	best	hybrid	model	 (SVM-	SVM-	SVM)	
performed	better	 in	 terms	of	mean	sensitivity	 (average	1.1%	across	
the	four	behaviours),	mean	precision	(average	4.3%)	and	mean	speci-
ficity	 (average	1.3%)	 compared	 to	 the	best	machine	 learning	model	
(Random	Forest).

4  | DISCUSSION

We	presented	a	physically	intuitive	behaviour	recognition	framework	
based	on	a	hybrid	model	that	combines	movement	biomechanics	and	
robust	machine	learning.	We	showed	that	with	our	biomechanically	de-
fined	node-	based	hierarchical	classification	framework,	acceleration-	
derived	features	summarising	movement	biomechanics	could	be	used	
in	 conjunction	 with	 existing	 machine	 learning	 algorithms	 to	 recog-
nise	 behaviour	 from	 triaxial	 acceleration	 data.	 Using	 data	 collected	
on	 10	 wild	 meerkats,	 we	 demonstrated	 the	 efficacy	 of	 our	 hybrid	
model	in	scenarios	where	one	or	more	behaviours	are	rarer	or	under-	
represented	 in	 the	 dataset	 compared	 to	 others,	 and	when	 there	 is	

F IGURE  4 Transparent	classification.	Linear	decision	boundaries	( l1,	l2 and l3)	found	by	the	SVM-	SVM-	SVM	hybrid	model	(for	data	used	
during	EQDIST)	render	the	classification	scheme	transparent	and	physically	intuitive
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inter-	individual	variability.	We	showed	that	our	hybrid	model's	predic-
tions	were	more	accurate	than	those	obtained	with	alternative	clas-
sification	methods	based	on	classical	machine	learning	using	the	same	
number	of	features.

Our	results	shed	light	on	the	complex	interplay	of	several	factors	
involved	in	behaviour	recognition:	feature	selection,	class	imbalance,	
class	 separability,	 model	 selection	 and	 persistent	 misclassification.	
While	the	feature	selection	methods	used	in	classical	machine	learning	
found	measures	of	movement	intensity	(stdNorm,	stdSurge;	Appendix	
S2),	they	failed	to	select	a	measure	of	posture.	This	proved	to	be	es-
pecially	problematic	for	distinguishing	the	two	static	behaviours,	vig-
ilance	and	resting,	since	they	primarily	differ	in	posture.	Consistently	
poorer	resting	and	vigilance	detection	performance	resulted	when	a	
measure	 of	 posture	was	 excluded	 (classical	machine	 learning)	 com-
pared	to	when	it	was	included	(meanSurge	in	the	hybrid	model)	even	
in	EQDIST,	where	matters	are	not	yet	complicated	by	class	imbalance.	
The	effect	of	not	including	a	measure	of	posture	gets	amplified	when	
naturally	occurring	class	imbalance	is	introduced	in	STRAT:	the	classi-
cal	machine	learning	models	NB	and	SVM	completely	miss	the	much	
rarer	 resting	 behaviour	 (vigilance	 bouts	 outnumber	 resting	 bouts	
8.3:1),	whereas	 for	KNN	and	RF,	 resting	detection	sensitivity	plum-
mets	to	below	65%	and	precision	to	below	82%.	Model	response	to	
class	 imbalance	 may	 vary	 unpredictably:	 classical	 machine	 learning	
with	 KNN	 and	 RF	 yields	 fair	 performance	 across	 EQDIST,	 STRAT	
and	 LOIO;	 SVM,	 on	 the	 other	 hand,	 first	 recognises	 resting	 during	
EQDIST	 (albeit	 poorly)	 despite	 the	 absence	 of	 a	 feature	 describing	
posture,	then	completely	misses	resting	behaviour	during	STRAT	and	
LOIO	(even	though	overall	model	accuracy	still	 remains	high:	93.6%	
and	88.2%	respectively),	and	then	performs	well	when	all	16	features	
are	 included	 (Appendix	 S3).	 This	 indicates	 the	difficulty	 of	 general-
ising	model	behaviour	across	datasets	when	feature	choice	is	left	to	
an	automatic	algorithm.	However,	the	hybrid	model,	where	the	SVM	
algorithm	 was	 only	 used	 to	 find	 feature-	value	 thresholds	 within	 a	
biomechanically	 predefined	 tree-	like	 classification	 structure	 with	
task-	specific	 features	 (i.e.	 biomechanically	 appropriate	 features	 for	
each	node	in	the	classification	tree),	consistently	performs	well	across	
EQDIST,	STRAT	and	LOIO.	Class	imbalance	may	be	less	problematic	
when	class	separability	is	high.	Running,	despite	being	the	rarest	class	
in	our	dataset	(foraging	instances	outnumber	running	instances	56:1)	
is	 recognised	 fairly	 accurately	 across	EQDIST,	 STRAT	and	LOIO	 for	
the	KNN,	RF	and	SVM	classical	machine	learning	models,	and	the	hy-
brid	model.	This	might	be	because	measures	of	intensity	(stdNorm,	std-
Surge)	were	particularly	effective	at	separating	foraging	and	running:	
this	can	be	seen	from	Figure	4,	where	the	magnitude	of	<1	of	the	slope	
of	the	decision	boundary	l3	implies	that	the	feature	on	the	vertical	axis	
(stdNorm)	 is	more	discriminating	than	the	one	on	the	horizontal	axis	
(fftPeakPowerAvg).

In	addition	to	exponentially	greater	model	complexity,	perhaps	the	
greatest	disadvantage	of	increasing	the	number	of	features	in	classical	
machine	 learning	 is	 the	 loss	of	 ability	 to	understand	why	misclassi-
fications	persist.	The	performance	of	 classical	machine	 learning	be-
comes	comparable	to	that	of	the	hybrid	model	when	all	16	features	are	
used	(Appendix	S3),	yet	even	with	a	fivefold	increase	in	the	number	TA
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of	features	(from	3	to	16),	resting	detection	performance	still	remains	
poor.	Examination	of	the	classification	rules	to	understand	the	source	
of	misclassification	is	rendered	unmanageable	by	the	fact	that,	for	16	
features,	 16-	dimensional	 space	 will	 need	 to	 be	 analysed.	With	 the	
hybrid	model,	however,	due	to	the	hierarchical	nature	of	the	classifi-
cation	scheme,	it	is	easy	to	pinpoint	where	and	why	resting	misclassi-
fication	occurs.	The	rarer	resting	behaviour	is	clubbed	with	a	frequent	
behaviour,	vigilance,	into	the	static	behavioural	category,	and	the	rarer	
running	 behaviour	 is	 clubbed	 with	 a	 frequent	 behaviour,	 foraging,	
(foraging	bouts	outnumber	running	bouts	56:1)	into	the	dynamic	cat-
egory.	Thereafter,	since	the	static	and	dynamic	behavioural	categories	
are	separated	accurately	(Table	S7),	it	is	easy	to	see	that	the	primary	
deterioration	of	 resting	 recognition	 accuracy	must	occur	 at	 the	M2	
node.	This	node	employs	an	SVM	which	uses	only	one	feature	as	input,	
meanSurge	 (measure	of	posture)—this	 thus	 indicated	 that	 there	may	
have	been	limitations	to	our	hypothesis	about	posture	during	resting	
and/or	vigilance.	Indeed,	re-	consulting	the	groundtruthing	video	data,	
we	discovered	that	the	major	source	of	erroneous	resting	detection	
was	the	disproportionately	 large	contribution	of	an	additional	unex-
pected	 curled-	up	 resting	posture	 (different	 from	 the	belly-	flat	 posi-
tion	typically	observed)	of	a	single	individual	(see	Appendix	S4).	Thus,	
new	insight	into	the	groundtruthing	data	itself	was	obtained	because	
of	the	interpretability	offered	by	our	hybrid	model;	this	is	in	contrast	
to	machine	 learning	 approaches,	 which	 have	 to	 rely	 completely	 on	
groundtruthing	data.

Our	behaviour	recognition	framework	offers	two	other	key	advan-
tages	over	existing	methods.	Firstly,	 in	our	hybrid	model,	 robust	ma-
chine	learning	algorithms	were	tasked	with	searching	for	feature-	value	
thresholds,	thus	making	the	mechanism	of	decision	boundary	selection	
automatic,	 general,	 clear	 and	 easy	 to	 implement.	 In	 the	 tree-	based	
classification	model	presented	by	McClune	et	al.,	2014,	analyses	were	
based	on	data	from	a	single,	tame	individual,	and	it	was	not	clear	how	
their	iterative	feature-	threshold	selection	method	could	be	extended	to	
data	from	more	individuals.	Secondly,	our	classification	scheme	has	the	
potential	to	enable	meaningful	model	sharing	across	studies	by	offering	
the	added	advantage	of	being	adaptable	to	desired	levels	of	behavioural	
resolution.	For	studies	where	coarse	behavioural	resolution	is	sufficient,	
our	hybrid	model	can	be	used	to	simply	determine	when	the	animal	was	
static	or	dynamic.	For	studies	requiring	higher	behavioural	resolution,	
our	scheme	may	be	used	as	a	template	upon	which	new	nodes,	possibly	
using	additional	biomechanically	derived	features,	may	be	added	fur-
ther	down	the	tree	to	accommodate	new	behaviours	when	needed.	For	
the	meerkat	ethogram	chosen	for	this	study,	three	biomechanically	in-
terpretable	features	proved	to	be	enough	but,	for	instance,	if	one	were	
interested	 in	 characterising	 meerkat	 foraging	 effort,	 one	 could	 add	
an	additional	node	below	‘foraging’	and	split	it	into	‘digging’	and	‘non-	
digging’	 through	 a	 peak-	detection-	based	metric	 indicating	 front-	paw	
swipes	made	during	digging.	In	a	classical	machine	learning	approach,	
the	whole	model	 would	 need	 to	 be	 rebuilt	 from	 scratch	 if	 new	 be-
haviours	were	to	be	added;	in	our	approach,	adding	higher	behavioural	
resolution	to	a	given	‘coarser’	model	will	not	impact	the	existing	model	
parameters.	This	could	enable	separate	studies	on	the	same	species	to	
add	upon	a	single	model	until	the	required	behavioural	resolution	has	

been	achieved.	This	high-	resolution	model	may	then	be	made	available	
for	future	studies	on	that	species.

Choosing	 appropriate	 sensor	 parameters	may	 be	 a	 crucial	 com-
ponent	 of	 achieving	 accurate	 behaviour	 classification.	 Even	 though	
Gao	 et	al.,	 2013	 followed	 a	 hierarchical	 classification	 scheme	 em-
ploying	 SVMs,	 the	 web-	based	 system	 they	 developed	 limited	 the	
input	 sampling	 frequency	 to	 only	 1	Hz	which,	 they	 found	 for	 some	
species,	was	insufficient	to	extract	meaningful	 information	from	the	
frequency-	domain	features	they	used.	In	our	meerkat	study,	requisite	
signal	processing	 techniques	employed	 to	compute	movement	peri-
odicity	through	fftPeakPowerAvg	might	have	played	an	important	role	
in	successfully	distinguishing	meerkat	running	from	foraging	despite	
high	class	 imbalance.	This	was	due,	 in	part,	 to	the	choice	of	a	suffi-
ciently	high	 sampling	 frequency	of	100	Hz.	We	 found	 that	meerkat	
running	 had	 a	 characteristic	 frequency	 of	 around	4	Hz,	 and	 a	 good	
rule-	of-	thumb	is	to	oversample	by	about	20	times	when	using	a	noisy	
sensor	 (Boyd,	 Sundaram,	 &	 Shrivastava,	 2010),	 although	 the	 sam-
pling	 frequency	 could	 theoretically	 be	 reduced	 to	 the	Nyquist	 limit	
of	 twice	 the	maximum	frequency	of	 interest.	Finally,	while	stdNorm 
and fftPeakPowerAvg,	used	in	foraging	vs.	running	classification,	make	
no	assumptions	about	sensor	orientation	with	respect	to	the	animal,	
meanSurge,	used	in	vigilance	vs.	resting	classification,	assumes	knowl-
edge	of	sensor	placement	around	the	meerkat's	neck.	Higher	running	
classification	accuracy	(compared	to	that	for	resting)	might	thus	indi-
cate	that	 if	the	features	used	are	 independent	of	sensor	orientation	
with	respect	to	the	animal,	classification	may	be	more	robust	for	some	
species,	since	sensor	fixation	will	inevitably	be	slightly	different	across	
individuals	or	species	(e.g.	collars	in	mammals	and	back-	packs	in	birds).	
Studies	on	energy	expenditure	(e.g.	Gleiss,	Wilson,	&	Shepard,	2011)	
also	suggested	that	when	accelerometers	cannot	be	accurately	placed	
on	 the	 animal,	 using	 information	 from	 all	 axes	 together	 (Vectorial	
Dynamic	Body	Acceleration)	may	perform	better	than	treating	each	
axis	independently	(Overall	Dynamic	Body	Acceleration).

Through	the	use	of	general	biomechanical	principles	characterising	
animal	movement,	our	conceptually	simple,	robust	classification	method	
may	be	applicable	across	a	 range	of	species,	with	different	behaviour	
labels	depending	on	the	species’	specific	context.	The	biomechanically	
defined	 node-	based	 hierarchical	 format	 permitting	 model	 adaptation	
to	coarser	or	 finer	behavioural	 resolution	makes	 it	apt	 for	meaningful	
model	sharing	between	studies	on	a	given	species.	The	advantage	and	
novelty	of	our	method	is	that	it	allows	a	high	classification	performance	
and,	at	the	same	time,	a	physical	and	biomechanical	interpretation	of	the	
classification	outcomes.	The	incorporation	of	common	machine	learning	
algorithms	found	in	all	popular,	existing	packages	in	Python,	MatLab 
and R	makes	this	method	simple	and	accessible.

ACKNOWLEDGEMENTS

We	thank	the	Northern	Cape	Conservation	Authority	for	permission	
to	conduct	this	research,	and	the	farmers	neighbouring	the	KRC	for	
granting	us	access	to	their	private	land.	We	thank	the	Trustees	of	the	
KRC	 for	 access	 to	 research	 facilities	 in	 the	Kuruman	River	Reserve	
and	the	Directors	of	the	KMP	for	access	to	habituated	animals	with	



12  |    Methods in Ecology and Evoluon CHAKRAVARTY eT Al.

known	life	histories.	During	the	period	of	our	project,	the	long-	term	
research	on	meerkats	was	supported	by	a	European	Research	Council	
Advanced	Grant	 (No.	294494)	 to	Tim	Clutton-	Brock,	 the	University	
of	 Zurich	 and	 the	Mammal	 Research	 Institute	 at	 the	 University	 of	
Pretoria.	We	thank	the	field	managers,	collaborators	and	assistants	for	
facilitating	field	work	and	helping	with	data	collection,	and	in	particu-
lar	David	Gaynor,	Tim	Vink,	Ana	Morales	González	and	Héctor	Ruiz	
Villar.	 Special	 thanks	 to	Nino	Maag	 for	helping	with	developing	 the	
conceptual	 framework	 of	 the	 project,	 definition	 of	meerkat	 behav-
iours	and	data	collection.	We	thank	Selin	Ersoy	for	annotating	all	vid-
eos,	and	Pascal	Morel	for	adapting	the	Physilog	IV	for	this	study.	This	
project	was	supported	by	the	Swiss	National	Science	Foundation	(re-
search	grant	no.	CR32I*_159743)	to	Arpat	Ozgul	and	Kamiar	Aminian.	
We	thank	the	three	anonymous	reviewers,	associate	editor	and	han-
dling	editor	 for	 their	 thoughtful	comments	 that	helped	 improve	 the	
presentation	and	clarity	of	the	manuscript.

AUTHORS’ CONTRIBUTIONS

K.A.	 and	 P.C.	 developed	 the	 research	 idea,	 and	 G.C.	 and	A.O	con-
tributed	to	refinements.	P.C.	and	G.C.	supervised	the	fieldwork.	P.C.	
performed	data	 analyses	 and	 led	 the	writing	 of	 the	manuscript.	All	
authors	contributed	critically	to	the	drafts	and	gave	final	approval	for	
publication.

DATA ACCESSIBILIT Y

Data	 deposited	 in	 the	 Dryad	 Digital	 Repository	 https://doi.
org/10.5061/dryad.7q294p8	(Chakravarty	et	al.	2019).	

ORCID

Pritish Chakravarty  https://orcid.org/0000-0002-2975-6253 

Gabriele Cozzi  https://orcid.org/0000-0002-1744-1940 

Arpat Ozgul  https://orcid.org/0000-0001-7477-2642 

Kamiar Aminian  https://orcid.org/0000-0002-6582-5375 

REFERENCES

Bidder,	 O.	 R.,	 Campbell,	 H.	 A.,	 Gómez-Laich,	 A.,	 Urgé,	 P.,	Walker,	 J.,	 &	
Cai,	Y.,	…	Wilson,	R.	P.	(2014).	Love	thy	neighbour:	Automatic	animal	
	behavioural	 classification	 of	 acceleration	 data	 using	 the	 k-	nearest	
neighbour	algorithm.	PLoS ONE,	9(2),	e88609.	https://doi.org/10.1371/
journal.pone.0088609

Boyd,	J.,	Sundaram,	H.,	&	Shrivastava,	A.	(2010).	Power-accuracy	tradeoffs	
in	human	activity	transition	detection.	In	Proceedings of the Conference 
on Design, Automation and Test in Europe	 (pp.	1524–1529).	 European	
Design	and	Automation	Association.

Chakravarty,	P.,	Cozzi,	G.,	Ozgul,	A.,	&	Aminian,	K.	 (2019).	Data	 from:	A	
novel	biomechanical	approach	for	animal	behaviour	recognition	using	
accelerometers.	Dryad Digital Repository,  https://doi.org/10.5061/ 
dryad.	7q294p8

Clutton-Brock,	 T.	 H.,	 Gaynor,	 D.,	 McIlrath,	 G.	 M.,	 Maccoll,	 A.	 D.	 C.,	
Kansky,	 R.,	 Chadwick,	 P.,	 …	 Brotherton,	 P.	 N.	M.	 (1999).	 Predation,	
group	 size	 and	 mortality	 in	 a	 cooperative	 mongoose,	 Suricata 

suricatta. Journal of Animal Ecology,	 68(4),	 672–683.	 https://doi.
org/10.1046/j.1365-2656.1999.00317.x

Cozzi,	G.,	Broekhuis,	F.,	McNutt,	J.	W.,	Turnbull,	L.	A.,	Macdonald,	D.	W.,	&	
Schmid,	B.	(2012).	Fear	of	the	dark	or	dinner	by	moonlight?	Reduced	
temporal	partitioning	among	Africa's	large	carnivores.	Ecology,	93(12),	
2590–2599.	https://doi.org/10.1890/12-0017.1

Ferraris,	F.,	Grimaldi,	U.,	&	Parvis,	M.	(1995).	Procedure	for	effortless	in-	
field	calibration	of	 three-	axial	 rate	gyro	and	accelerometers.	Sensors 
and Materials,	7(5),	311–330.

Gao,	L.,	Campbell,	H.	A.,	Bidder,	O.	R.,	&	Hunter,	J.	(2013).	A	Web-	based	se-
mantic	tagging	and	activity	recognition	system	for	species’	accelerom-
etry	data.	Ecological Informatics,	13,	47–56.	https://doi.org/10.1016/j.
ecoinf.2012.09.003

Gleiss,	A.	C.,	Wilson,	R.	P.,	&	Shepard,	E.	L.	(2011).	Making	overall	dynamic	
body	acceleration	work:	On	the	theory	of	acceleration	as	a	proxy	for	
energy	 expenditure.	Methods in Ecology and Evolution,	 2(1),	 23–33.	
https://doi.org/10.1111/j.2041-210X.2010.00057.x

Golabek,	 K.	 A.,	 Jordan,	 N.	 R.,	 &	 Clutton-Brock,	 T.	 H.	 (2008).	
Radiocollars	 do	 not	 affect	 the	 survival	 or	 foraging	 behaviour	 of	
wild	 meerkats.	 Journal of Zoology,	 274(3),	 248–253.	 https://doi.
org/10.1111/j.1469-7998.2007.00377.x

Goldbogen,	J.	A.,	Calambokidis,	J.,	Oleson,	E.,	Potvin,	J.,	Pyenson,	N.	D.,	
Schorr,	G.,	&	Shadwick,	R.	E.	 (2011).	Mechanics,	hydrodynamics	and	
energetics	of	blue	whale	lunge	feeding:	Efficiency	dependence	on	krill	
density.	 Journal of Experimental Biology,	214(1),	 131–146.	 https://doi.
org/10.1242/jeb.048157

Grünewälder,	S.,	Broekhuis,	F.,	Macdonald,	D.	W.,	Wilson,	A.	M.,	McNutt,	J.	
W.,	Shawe-Taylor,	J.,	&	Hailes,	S.	(2012).	Movement	activity	based	clas-
sification	of	animal	behaviour	with	an	application	to	data	from	cheetah	
(Acinonyx	jubatus).	PLoS ONE,	7(11),	e49120.	https://doi.org/10.1371/
journal.pone.0049120

Hammond,	 T.	 T.,	 Springthorpe,	 D.,	 Walsh,	 R.	 E.,	 &	 Berg-Kirkpatrick,	 T.	
(2016).	Using	accelerometers	to	remotely	and	automatically	character-
ize	behavior	in	small	animals.	Journal of Experimental Biology,	219(11),	
1618–1624.	https://doi.org/10.1242/jeb.136135

He,	 H.,	 &	 Garcia,	 E.	 A.	 (2009).	 Learning	 from	 imbalanced	 data.	 IEEE 
Transactions on Knowledge and Data Engineering,	21(9),	1263–1284.

Hodge,	 S.	 J.,	 Manica,	 A.,	 Flower,	 T.	 P.,	 &	 Clutton-Brock,	 T.	 H.	 (2008).	
Determinants	 of	 reproductive	 success	 in	 dominant	 female	
meerkats.	 Journal of Animal Ecology,	 77(1),	 92–102.	 https://doi.
org/10.1111/j.1365-2656.2007.01318.x

Jordan,	N.	R.,	Cherry,	M.	I.,	&	Manser,	M.	B.	(2007).	Latrine	distribution	and	
patterns	of	use	by	wild	meerkats:	Implications	for	territory	and	mate	
defence.	Animal Behaviour,	73(4),	613–662.

Kawabe,	R.,	Kawano,	T.,	Nakano,	N.,	Yamashita,	N.,	Hiraishi,	T.,&	Naito,	
Y.	 (2003).	 Simultaneous	 measurement	 of	 swimming	 speed	 and	
tail	 beat	 activity	 of	 free-swimming	 rainbow	 trout	Oncorhynchus	
mykiss	 using	 an	 acceleration	 data-logger.	 Fisheries science,	 69(5),	
959–965.

Laich,	A.	G.,	Wilson,	R.	P.,	Quintana,	F.,	&	Shepard,	E.	L.	(2008).	Identification	
of	imperial	cormorant	Phalacrocorax	atriceps	behaviour	using	acceler-
ometers.	Endangered species research,	10,	29–37.

Lemaitre,	G.,	Nogueira,	F.,	&	Aridas,	C.	K.	(2017).	Imbalanced-	learn:	A	py-
thon	 toolbox	 to	 tackle	 the	curse	of	 imbalanced	datasets	 in	machine	
learning.	Journal of Machine Learning Research,	18(17),	1–5.

McClune,	D.	W.,	Marks,	N.	J.,	Wilson,	R.	P.,	Houghton,	J.	D.,	Montgomery,	
I.	W.,	&	McGowan,	N.	E.,	…	Scantlebury,	M.	(2014).	Tri-	axial	accelerom-
eters	quantify	behaviour	in	the	Eurasian	badger	(Meles meles):	Towards	
an	automated	interpretation	of	field	data.	Animal Biotelemetry,	2(1),	5.	
https://doi.org/10.1186/2050-3385-2-5

McGregor,	S.	J.,	Busa,	M.	A.,	Yaggie,	J.	A.,	&	Bollt,	E.	M.	(2009).	High	res-
olution	MEMS	accelerometers	to	estimate	VO2	and	compare	running	
mechanics	 between	 highly	 trained	 inter-	collegiate	 and	 untrained	
runners.	 PLoS ONE,	 4(10),	 e7355.	 https://doi.org/10.1371/journal.
pone.0007355

https://doi.org/10.5061/dryad.7q294p8
https://doi.org/10.5061/dryad.7q294p8
https://orcid.org/0000-0002-2975-6253
https://orcid.org/0000-0002-2975-6253
https://orcid.org/0000-0002-1744-1940
https://orcid.org/0000-0002-1744-1940
https://orcid.org/0000-0001-7477-2642
https://orcid.org/0000-0001-7477-2642
https://orcid.org/0000-0002-6582-5375
https://orcid.org/0000-0002-6582-5375
https://doi.org/10.1371/journal.pone.0088609
https://doi.org/10.1371/journal.pone.0088609
https://doi.org/10.5061/dryad.7q294p8
https://doi.org/10.5061/dryad.7q294p8
https://doi.org/10.1046/j.1365-2656.1999.00317.x
https://doi.org/10.1046/j.1365-2656.1999.00317.x
https://doi.org/10.1890/12-0017.1
https://doi.org/10.1016/j.ecoinf.2012.09.003
https://doi.org/10.1016/j.ecoinf.2012.09.003
https://doi.org/10.1111/j.2041-210X.2010.00057.x
https://doi.org/10.1111/j.1469-7998.2007.00377.x
https://doi.org/10.1111/j.1469-7998.2007.00377.x
https://doi.org/10.1242/jeb.048157
https://doi.org/10.1242/jeb.048157
https://doi.org/10.1371/journal.pone.0049120
https://doi.org/10.1371/journal.pone.0049120
https://doi.org/10.1242/jeb.136135
https://doi.org/10.1111/j.1365-2656.2007.01318.x
https://doi.org/10.1111/j.1365-2656.2007.01318.x
https://doi.org/10.1186/2050-3385-2-5
https://doi.org/10.1371/journal.pone.0007355
https://doi.org/10.1371/journal.pone.0007355


     |  13Methods in Ecology and EvoluonCHAKRAVARTY eT Al.

Naito,	Y.,	Bornemann,	H.,	 Takahashi,	A.,	McIntyre,	T.,	&	Plötz,	 J.	 (2010).	
Fine-	scale	feeding	behavior	of	Weddell	seals	revealed	by	a	mandible	
accelerometer.	Polar Science,	4(2),	309–316.	https://doi.org/10.1016/j.
polar.2010.05.009

Nathan,	R.,	Spiegel,	O.,	Fortmann-Roe,	S.,	Harel,	R.,	Wikelski,	M.,	&	Getz,	
W.	M.	 (2012).	Using	tri-	axial	acceleration	data	to	 identify	behavioral	
modes	of	free-	ranging	animals:	General	concepts	and	tools	illustrated	
for	griffon	vultures.	Journal of Experimental Biology,	215(6),	986–996.	
https://doi.org/10.1242/jeb.058602

Pedregosa,	,	et	al.	(2011).	Scikit-	learn:	Machine	learning	in	python.	JMLR,	
12,	2825–2830.

Resheff,	 Y.	 S.,	 Rotics,	 S.,	 Harel,	 R.,	 Spiegel,	 O.,	 &	 Nathan,	 R.	 (2014).	
AcceleRater:	A	web	application	for	supervised	learning	of	behavioral	
modes	 from	acceleration	measurements.	Movement Ecology,	2(1),	27.	
https://doi.org/10.1186/s40462-014-0027-0

Ropert-Coudert,	Y.,	Kato,	A.,	Wilson,	R.	P.,	&	Cannell,	B.	(2006).	Foraging	
strategies	and	prey	encounter	rate	of	free-	ranging	Little	Penguins.	Marine 
Biology,	149(2),	139.	https://doi.org/10.1007/s00227-005-0188-x

Ropert-Coudert,	 Y.,	 &	 Wilson,	 R.	 P.	 (2005).	 Trends	 and	 perspectives	
in	 animal-	attached	 remote	 sensing.	 Frontiers in Ecology and the 
Environment,	3(8),	437–444.	https://doi.org/10.1890/1540-9295(200
5)003[0437:TAPIAR]2.0.CO;2

Sellers,	W.	 I.,	Varley,	 J.	S.,	&	Waters,	S.	S.	 (1998).	Remote	monitoring	of	
locomotion	 using	 accelerometers:	 A	 pilot	 study.	 Folia Primatologica,	
69(Suppl.	1),	82–85.	https://doi.org/10.1159/000052700

Shepard,	 E.	 L.,	 Wilson,	 R.	 P.,	 Quintana,	 F.,	 Laich,	 A.	 G.,	 Liebsch,	 N.,	 &	
Albareda,	D.	A.,	…	Newman,	C.	(2008).	Identification	of	animal	move-
ment	 patterns	 using	 tri-	axial	 accelerometry.	 Endangered Species 
Research,	10,	47–60.	https://doi.org/10.3354/esr00084

Soltis,	 J.,	Wilson,	 R.	 P.,	 Douglas-Hamilton,	 I.,	 Vollrath,	 F.,	 King,	 L.	 E.,	 &	
Savage,	A.	(2012).	Accelerometers	in	collars	identify	behavioral	states	
in	 captive	African	elephants	 Loxodonta	 africana.	Endangered Species 
Research,	18(3),	255–263.	https://doi.org/10.3354/esr00452

Wang,	 Y.,	 Nickel,	 B.,	 Rutishauser,	 M.,	 Bryce,	 C.	 M.,	 Williams,	 T.	 M.,	
Elkaim,	G.,	 &	Wilmers,	 C.	 C.	 (2015).	Movement,	 resting,	 and	 attack	
behaviors	 of	 wild	 pumas	 are	 revealed	 by	 tri-	axial	 accelerometer	

measurements.	 Movement Ecology,	 3(1),	 2.	 https://doi.org/10.1186/
s40462-015-0030-0

Watanabe,	 S.,	 Izawa,	 M.,	 Kato,	 A.,	 Ropert-Coudert,	 Y.,	 &	 Naito,	 Y.	
(2005).	 A	 new	 technique	 for	 monitoring	 the	 detailed	 behaviour	
of	 terrestrial	 animals:	 A	 case	 study	 with	 the	 domestic	 cat.	 Applied 
Animal Behaviour Science,	 94(1),	 117–131.	 https://doi.org/10.1016/j.
applanim.2005.01.010

Watanabe,	 Y.	 Y.,	 &	 Takahashi,	 A.	 (2013).	 Linking	 animal-	borne	 video	
to	 accelerometers	 reveals	 prey	 capture	 variability.	 Proceedings of 
the National Academy of Sciences,	 110(6),	 2199–2204.	 https://doi.
org/10.1073/pnas.1216244110

Wilson,	R.	P.,	White,	C.	R.,	Quintana,	F.,	Halsey,	L.	G.,	Liebsch,	N.,	Martin,	
G.	R.,	&	Butler,	P.	J.	(2006).	Moving	towards	acceleration	for	estimates	
of	activity-	specific	metabolic	 rate	 in	 free-	living	animals:	The	case	of	
the	cormorant.	Journal of Animal Ecology,	75(5),	1081–1090.	https://doi.
org/10.1111/j.1365-2656.2006.01127.x

Yoda,	 K.,	 Naito,	 Y.,	 Sato,	 K.,	 Takahashi,	 A.,	 Nishikawa,	 J.,	 &	 Ropert-
Coudert,	Y.,	…	Le	Maho,	Y.	(2001).	A	new	technique	for	monitoring	
the	behaviour	of	free-	ranging	Adelie	penguins.	Journal of Experimental 
Biology,	204(4),	685–690.

SUPPORTING INFORMATION

Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	the	article.

How to cite this article:	Chakravarty	P,	Cozzi	G,	Ozgul	A,	
Aminian	K.	A	novel	biomechanical	approach	for	animal	
behaviour	recognition	using	accelerometers.	Methods Ecol 
Evol. 2019;00:1–13. https://doi.org/10.1111/2041-
210X.13172

https://doi.org/10.1016/j.polar.2010.05.009
https://doi.org/10.1016/j.polar.2010.05.009
https://doi.org/10.1242/jeb.058602
https://doi.org/10.1186/s40462-014-0027-0
https://doi.org/10.1007/s00227-005-0188-x
https://doi.org/10.1890/1540-9295(2005)003[0437:TAPIAR]2.0.CO;2
https://doi.org/10.1890/1540-9295(2005)003[0437:TAPIAR]2.0.CO;2
https://doi.org/10.1159/000052700
https://doi.org/10.3354/esr00084
https://doi.org/10.3354/esr00452
https://doi.org/10.1186/s40462-015-0030-0
https://doi.org/10.1186/s40462-015-0030-0
https://doi.org/10.1016/j.applanim.2005.01.010
https://doi.org/10.1016/j.applanim.2005.01.010
https://doi.org/10.1073/pnas.1216244110
https://doi.org/10.1073/pnas.1216244110
https://doi.org/10.1111/j.1365-2656.2006.01127.x
https://doi.org/10.1111/j.1365-2656.2006.01127.x
https://doi.org/10.1111/2041-210X.13172
https://doi.org/10.1111/2041-210X.13172

