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Machine learning promises to accelerate materials discovery by allowing computational efficient property
predictions from a small number of reference calculations. As a result, the literature has spent a considerable
effort in designing representations that capture basic physical properties so far. In stark contrast, our work
focuses on the less-studied learning formulations in this context in order to exploit inner structures in the
prediction errors. In particular, we propose to directly optimize basic loss functions of the prediction error
metrics typically used in the literature, such as the mean absolute error or the worst case error. In some
instances, a proper choice of the loss function can directly reduce reasonably the prediction performance in
the desired metric, albeit at the cost of additional computations during training. To support this claim, we
describe the statistical learning theoretic foundations, and provide supporting numerical evidence with the
prediction of atomization energies for a database of small organic molecules.

I. INTRODUCTION

Estimating the stability of molecules and materials is
one of the most fundamental topics in computational
quantum chemistry. Traditional approach is to use the
density functional theory (DFT)1,2 to solve Schrödinger’s
equation with some approximations to make the calcula-
tion computationally feasible. However, the DFT is still
too expensive to employ in high-throughput screening of
realistic materials in an optimal way.

Recently, there is a great deal of interest in the materi-
als design using machine learning at quantum chemistry
level with existing DFT data.3–15 This research approach
has been supported with strong preliminary evidence
that we can simulate relatively large systems with thou-
sands of atoms with accurate prediction performance.

As a result, a considerable effort has gone into build-
ing machine learning models for purpose of representing
atomic data. To our knowledge, the existing literature
mainly focus on the design of kernels along with the so-
called “descriptors” or “fingerprints”, e.g., bond lengths,
bond angles, etc, to tailor machine learning procedures
to capture subtle differences in atomic environments.

In addition, several chemical environment represen-
tations have been proposed in order to improve pre-
diction accuracy. Some of the notable recent devel-
opment include, Coulomb matrices4,5, Bag of Bonds11,
representations based on Fourier series of atomic radial
distribution functions10, forces on atom12, interatomic
many body expansions13 and alchemical and structural
distribution14, constant size descriptors15 and references
therein. The resulting machine learning frameworks of-
ten use a kernel ridge regression or neural networks with
impressive prediction performance.

In this paper, we emphasize the learning formulations,
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i.e., the loss functions, which have received very little
attention in the same context. To go beyond the root
mean squared error (RMSE) metric, we provide learning
theoretic arguments to motivate loss functions to improve
predictions in the mean absolute error (MAE) and max
absolute error (MaxAE) metrics.

The metric MAE had been cited in the very early fore-
casting literature as a primary measure of performance
for forecasting models16 and has recently come to our
attention due to its robustness. MaxAE, on the other
hand, is an upper bound for both RMSE and MAE and
reflects the prediction with the highest inaccuracy.

The paper is organized as follows. Section II dis-
cusses the statistical learning perspective of the ground
state energy regression problem, including regularized
M-estimators, cross-validation method, and kernel trick.
Section III discusses the mathematical details of basic
convex optimization and numerical methods to approx-
imate a solution of our proposed novel models used in
predicting ground state energy. Finally, in section IV, we
provide concrete numerical evidence with an previously
published kernel to predict atomization energies involv-
ing a database of small organic molecules and improve
the usual kernel ridge regression (KRR) at the expense
of more computation.

Notation. The n-dimensional Euclidean space is de-
noted by Rn. The transpose and the inverse of a positive
definite matrix K are denoted by K> and K−1, respec-
tively. Given a vector x ∈ Rn, we define the `1-norm as
‖x‖1 =

∑n
i=1 |xi|; the `2-norm as ‖x‖2 =

√∑n
i=1 |xi|2;

and the `∞-norm as ‖x‖∞ = max16i6n |xi|. Finally, 〈·, ·〉
and ‖ · ‖ denote respectively generic inner product and
norm in a Hilbert space.

In the sequel, we represent the state of a molecule
by a sequence {(rk, zk)}Kk=1, where rk ∈ R3 is the po-
sition of k-th atom and zk is its atomic number. This
physical state is translated into a vector-like representa-
tion x ∈ Rn, which is usually required to be invariant
with respect to permutational, rotational and transla-
tional symmetries.17
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II. LEARNING THEORY BASICS FOR REGRESSION

This section provides a learning theoretic background
in support of the following basic claim.

Given an atomic representation, different learning for-
mulations introduce different structures in the materials
predictions. By choosing an appropriate learning formu-
lation, we can optimize the relevant prediction metric.

A. Regression for atomization energies
We consider the following learning setting. Suppose

that we observe a set of sample pairs {(xi, yi)}ni=1 of dif-
ferent molecule representations xi ∈ X ⊆ Rd with the
corresponding atomization energy yi ∈ Y ⊆ R. Based on
these data, we wish to estimate a function y = f(x) to
predict the atomization energy of new molecules. In what
follows, we show that such an important feat is possible,
given sufficient amount of train data.

The quality of a predictor is often evaluated in terms
of test errors computed over test data {(x̄j , ȳj)}Nj=1. In
practice, three following test errors will be typically in-
volved: MAE, MaxAE, and RMSE. They are defined in
the following fashion

MAE =
1

l

l∑
j=1

|f(x̄j)− ŷj | =
‖f(x̄)− ȳ‖1

l
,

MaxAE = max
j∈{1,...,l}

|f(x̄j)− ŷj | = ‖f(x̄)− ȳ‖∞,

RMSE =

√√√√1

l

l∑
j=1

|f(x̄j)− ȳj |2 =

√
‖f(x̄)− ȳ‖22

l
.

Here f(x̄) = [f(x̄1), . . . , f(x̄l)]
> and ȳ = [ȳ1, . . . , ȳl]

>.
The above metrics and their corresponding utilities are

intuitive to informed readers. For instance, RMSE metric
looks at the average prediction error in the Euclidean
distance, whereas MaxAE only takes care of the worst
case error. The metric MAE takes, on the other hand,
the spectrum and decreases the impact of outlier errors
in the average as compared to RMSE. Hence, different
applications may focus on any of these prediction metrics.

The regression framework discussed above can be cat-
egorized as a supervised learning problem. As a conse-
quence, it has strong support from statistical learning
theory18–20, which will be introduced in what follows.

B. Supervised learning
In statistical learning theory, one typically assumes

that all the elements from test data and train data are
independently and identically drawn according to an un-
known probability distribution (but one should keep in
mind that the i.i.d. assumption can be further relaxed).
The performance of the learning function is measured
in terms of the expected loss/risk with respect to a loss

function ` : R×R→ R+, see19,20 for its precise definition.
In the sequel, for ease of presentation, we simply identify
the expected risk as the test error over the following test
data {(x̄i, ȳi)}li=1, defined as

R(f) =
1

l

l∑
i=1

`(f(x̄i), ȳi). (1)

Such an argument will not cause any trouble when the
amount of test data is sufficiently large. It is easy to see
that MAE or RMSE is equivalent to R(f) with a suitable
loss function. Note that MaxAE cannot be directly linked
to (1), but in the later case, one can consider generalizing
the definition of risk.

In this setting, one natural benchmark is the function
f? that minimizes the risk, over all possible (i.e., measur-
able) functions. Often times, however, we have to restrict
our search to some hypothesis space F of functions from
Rd to R to exploit additional structures, such as smooth-
ness, in the problem or to save on computation associ-
ated with the training procedure. The canonical example
is the kernel-based linear prediction in the space of func-
tions represented as fω(x) =

∑p
j=1 ωjφj(x). Such an

approach is also supported by many examples of consis-
tent hypothesis spaces, i.e., inff∈F R(f) = R(f?).20 We
will talk about how to choose a suitable hypothesis space
in later subsections.

C. Regularized M-estimators

With the given hypothesis space, a natural idea for
finding a good predictor is to solve the expected risk min-
imization, inff∈F R(f). However, as the expected risk
cannot be known exactly, the expected risk minimization
is replaced with the empirical risk minimization.

Directly minimizing the empirical loss can lead to
an effect called overfitting, wherein we fit the training
data extremely well (i.e., with low error), yet we ob-
tain a model that produces very poor predictions on
future test data whenever the test inputs differ from
the training inputs. There exists an important solu-
tion to the overfitting phenomenon, the regularized M -
estimators21 (also referred to as the regularized empirical
risk minimizations18), i.e.,

f̂λ ∈ argmin
f∈F

{Rλn(f) := Rn(f) + λΩ(f)}. (2)

Here, λ ∈ R+ is a regularization parameter, Ω is a regu-
larizer and the empirical risk Rn(f) is defined as

Rn(f) =
1

n

n∑
i=1

`
(
f(xi), yi

)
.

The regularizer Ω imposes certain properties on the
underlying function. A very common property is the
smoothness, which is especially required for performing
atomization energies regression. Let us consider the case
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where f is represented via radial basis functions (RBFs)
{φk}k∈N, i.e.,

f(x) =
∑
k∈N

ωkφk(x).

As radial basis functions are themselves smooth, impos-
ing smoothness on f can be done by making the magni-
tude of weights ‖ω‖2 =

∑
k∈N ω

2
k decayed. Weight decay

implicitly leads to smoothness with RBF basis functions
because rapid changes in the slope of f (i.e., high curva-
ture) can only be created in RBFs by adding and sub-
tracting basis functions with large weight. If we consider
the Hilbert space governed by RBFs, the magnitude of
weights defines an Hilbertian norm in this space. This
type of regularizer is referred to as the ridge regularizer.

In this paper, we mainly focus on ridge regularizer, but
one should keep in mind that our approach is still applied
to general regularizers. In order to control the complexity
of the solution and to ensure generalizing well, the regu-
larization parameter λ needs to be tuned in practice. We
will discuss this after presenting statistical results for the
regularized M-estimators.

D. Statistical results
A key tool for analyzing statistical results for the reg-

ularized M -estimators is the error decomposition. To
introduce the error decomposition, we introduce an aux-
iliary function fλ, defined as the solution of the regular-
ized expected risk minimization,

fλ ∈ argmin
f∈F

{Rλ(f) := R(f) + λΩ(f)}.

A simple calculation shows that the excess risk of the

estimator f̂λ can be decomposed as (e.g.22)

R(f̂λ)− R(f?) 6 Esam + Eapp, (3)

where

Esam = R(f̂λ)− Rn(f̂λ) + Rn(fλ)− R(fλ),

Eapp = Rλ(fλ)− R(f?).

We provide the proof in the appendix.
The first term Esam in the above error decomposition

is a random variable depending on the train set, the func-
tion class F, and the regularized parameter λ. It is called
the sample error. It measures the effect of minimizing the
regularized empirical risk instead of the regularized ex-
pected risk. Typically, it can be controlled by a term
which is decreasing with respect to both the train size
and the regularization parameter λ.

The second term Eapp in the error decomposition above
is deterministic. It only depends on the function class F
and the regularization parameter λ. It measures how well
the solution of the regularized expected risk minimization

can be used to approximate f?. Typically, it is increasing
with respect to the regularization parameter λ.

The regularization parameter λ hence controls an im-
portant trade-off in prediction performance (i.e., gener-
alization), which has been extensively discussed in the
literature18,23. An optimal trade-off based on the best
choice of λ results in an excess risk that scales between
the inverse and the inverse square root of the number of
training data21,24,25. The following two examples provide
statistical results for the estimators given by (2) with the
square-norm penalty, considering two different settings.

Example II.1 Consider the setting of non-parametric
regression with the square loss over a reproducing kernel
Hilbert space (RKHS) F as those in26,27. It is known28

that KRR, i.e., (2) with the square-norm penalty, has the
following upper bound for the excess risk:

E[R(f̂λ)− R(f?)] .
c1
nλγ

+ c2λ
2ζ .

Here, γ ∈ [0, 1] is related to the capacity condition of F
and ζ ∈ [1/2, 1] is related to the regularity of the tar-

get function f?. The optimal error bound O(n−
2ζ

2ζ+γ ) is

achieved when λ∗ ' n−
1

2ζ+γ . The best choice of λ de-
pends on unknown distribution parameters ζ and γ. We
thus, in practice, choose the regularized parameter λ∗ by
using the cross-validation methods.

Example II.2 Consider the setting of non-parametric
classification over an RKHS F with the Hinge loss as
in24,25, or more generaly, a loss function with bounded
gradients. Via Rademacher complexity29, one can prove
that the solution of (2) with the square-norm penalty has
the following upper bound for the excess risk:

E[R(f̂λ)− R(f?)] .
c1√
nλ

+ c2λ
β .

Here, we assume that the approximation error satisfies
Eapp . λβ , for some β ∈ (0, 1]. The best attainable error

bound from the above estimates is of order O(n−
β

2β+1 ),

and it is achieved when λ∗ ' n−
1

2β+1 . Using a more
involved technique, it has been shown25 that the er-
ror bound can be further improved to O(n−α), where
α ∈ (0, 1] is a parameter depending on the data distribu-
tion and the hypothesis space F.

E. Cross-validation methods
Unfortunately, the best choice of the regularizer pa-

rameter λ depends on the data distribution, and in prac-
tice, people usually use cross-validation (CV)30 to deter-
mine it. In CV, train data are divided into K roughly
equal parts (or folds). For each k ∈ {1, . . . ,K}, k-fold
will be used as validation set. Fit the model with a can-
didate parameter λ using the remaining K − 1 folds by
a specific algorithm to approximate a solution to (2),

to obtain the corresponding predictor f̂λ. This partial
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predictor is used to compute the validation error Ek(λ)
evaluating on validation set. After K rounds, the cross-
validation error is obtained by averaging these K valida-
tion errors, i.e.,

CV(λ) =
1

K

K∑
k=1

Ek(λ),

and we choose λ∗ to minimize this cross-validation error.

F. Kernel trick

In this subsection, we discuss kernel method, a com-
mon approach for atomization energies regression. It is
based on choosing the hypothesis space F as an RKHS
generated by a kernel. The essential of the kernel trick
is to map the original representation x ∈ Rd to a repre-
sentation in a Hilbert space F, called the feature space,
by a feature map ψ : x 7→ ψ(x) in such a way that〈
f, ψ(x)

〉
= f(x) for all function f ∈ F.

In other words, we use a feature map to map the data
from the low-dimensional space into a higher (possibly
infinite) dimension space such that in this space, the pre-
dictor f can be determined by a linear expression. We
then define the kernel function K(x,x′) =

〈
ψ(x), ψ(x′)

〉
.

One can think of K as specifying similarity between in-
stances and of the feature map ψ as mapping the domain
set X into a space where these similarities are realized
as inner products. The main advantage of such a trick is
that it implements linear separators in high dimensional
feature space without having to specify points in that
space or expressing the feature map ψ explicitly.

We now return to the problem (2) and restrict it to F
to obtain

f̂λ ∈ argmin
f∈F

1

n

n∑
i=1

`
( 〈
f, ψ(xi)

〉
, yi
)

+ λΩ(f). (4)

Although F can be infinitely dimensional, solving (4)
can be translated into solving an optimization problem
in finite-dimensional setting due to the following famous
representer theorem.

Theorem II.3 (Representer theorem31) Suppose
that F is the feature space corresponding to the feature
map ψ defined on X . Then the problem (4) with ridge
regularizer possesses a solution of the following form

f̂λ(x) =

n∑
i=1

c\iK(x,xi),

where c\ = [c\1, . . . , c
\
n]> ∈ Rn.

Let us denote the training matrix by K =[
K(xi,xj)

]
16i,j6n

and the i-th row of K by Ki. From the

representer theorem and a simple calculation as shown in
the appendix, we show that solving the problem (4) with

ridge regularizer is equivalent to solving the following op-
timization in finite-dimensional Euclidean space

min
c∈Rn

1

n

n∑
i=1

`

(
c>Ki, yi

)
+
λ

2
c>Kc. (5)

Example II.4 (Two common kernels) Gaussian
kernel: K(x,x′) = exp(−‖x − x′‖22/2σ2). Laplacian
kernel: K(x,x′) = exp(−‖x − x′‖1/σ). Intuitively, the
Gaussian or Laplacian kernel sets the inner product in
the feature space between x and x′ to be zero if the
instances are far away from each other (in the original
domain) and close to 1 if they are close. The parameter
σ and the corresponding norms determine what we mean
by “close”.

G. The SOAP-Average kernel

Different kernels such as Gaussian kernel or Laplacian
kernel are widely used in materials science community
and have led to reasonable predictors. However, it is
crucial to keep in mind that the way that molecules are
represented as well as the way that the similarity be-
tween atomic configurations is measured do influence the
quality of the predictor in kernel regressions.

Smooth Overlap of Atomic Positions (SOAP)17 based
kernels32,33 have been reported among the best perform-
ing kernels for predicting electronic structure properties
of materials and molecules. As a result, we use the
SOAP-average kernel to measure the structural similar-
ity between the molecules by combining the similarity
measures of local environments here.

Within the SOAP formalism, the local environment of
the i-th atom within a molecule A, i.e., the abstract de-
scriptor of the arrangement of atoms in its vicinity, will
be denoted by XAi . The set of all atoms of species α of
molecule A is denoted by Aα. The local density of i-th
atom of species α is then constructed as the superposi-
tion of Gaussian functions of variance σ2 centered on this
atom. A cutoff distance of rc is imposed via a smooth
function to set the size of the local environment.

ραXAi
(r) =

∑
j∈Aα

exp

(
− (r− rij)

2

2σ2

)
frc(|rij |), (6)

where rij is the Euclidean distance between atom i-th
and atom j-th. The SOAP kernel is then defined as the
overlap of two local atomic neighbor densities, integrated
over the set SO(3) of all three dimensional rotations, as
follows:

k̃
(
XAi ,XBj

)
=

∫
SO(3)

∣∣∣∣∑
α

∫
R3

ραXAi
(r)ραXBj

(R̂r) dr

∣∣∣∣2 dR̂.

(7)
In practice this kernel can be computed efficiently by
first expressing the density on spherical harmonics basis
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7. The similarity measure Cij(A,B) between the local
environments XAi and XBj of the molecules A and B is
then determined by the SOAP average kernel function as

Cij(A,B) =
k̃
(
XAi ,XBj

)√
k̃
(
XAi ,XAi

)
k̃
(
XBj ,XBj

) . (8)

In order to extract a single similarity measure from the
matrix of pairwise environment similarities C(A,B), the
SOAP-average32 kernel combines the similarity informa-
tion from the local kernels into a global similarity mea-
sure, by taking average of all environment pair similarity
values after raising them to the power ζ. As the normal-
ized environment similarity values ranges between 0 and
1, 1 being identical: for value of ζ > 1, higher similarity
values naturally get higher weight in the averaged value.

Kζ(A,B) =
1

NM

N∑
i=1

M∑
j=1

Cij(A,B)ζ (9)

where, N and M is the number of atoms in molecule A
and B respectively. This kernel can be applied to both
molecules and crystals while combining a detailed and
systematic description of atomic structures with a large
degree of adaptability through its hyper-parameters.

H. Multiple kernel learning
The choice of the kernel is critical to the prediction’s

accuracy of any kernel regression model but in standard
frameworks it is left to the user. While different kernels
will lead to predictors with different qualities, all of them
can be weighted to obtain a unique kernel to be used as
the input for classical kernel-based learning algorithms
to get a much better predictor. In this framework of
multiple kernel learning problem, people find an optimal
convex combination

K =

m∑
j=1

βjKj , βj > 0,

m∑
j=1

βj = 1,

of m given kernels K1, . . . ,Km. Efficient and scalable
methods to find such optimal weights were studied inten-
sively in pieces of literature such as34–36 and references
therein.

I. Error decomposition
We demonstrate in previous subsections that a solu-

tion for the minimization problem (5) with an appropri-
ate regularization parameter λ and a suitable kernel has
a good generalization performance. In general, Problem

(5) is solved via an optimization procedure. Let f̂λ,ε be
an ε-approximated solution of (5). A similar argument
as that for (3), one can show that the statistical general-

ization error of f̂λ,ε can be estimated as

R(f̂λ,ε)− R(f?) 6 ε+ Esam + Eapp,

where

Esam = R(f̂λ,ε)− Rn(f̂λ) + Rn(fλ,ε)− R(fλ),

Eapp = Rλ(fλ)− R(f?).

The term ε is called optimization error, while the other
two terms are referred to as sample error and approxima-
tion error, respectively. Similar estimations on Esam and
Eapp as those in Subsection II D can be developed using
tools from probability theory and approximation theory,
which should be studied in the future. In the coming sec-
tion, we focus on the optimization error, i.e., we study
optimization procedures for solving (5).

III. CONVEX OPTIMIZATION OF ENERGIES
REGRESSION

A. The basics of convex optimization
Statistical learning problem of molecules’ energies re-

gression described in the previous section is modelled
generically as the following composite convex optimiza-
tion problem, considered as a sum of a data-fitting term
and an explicit penalty term,

Ψ? := min
c∈C⊂Rn

{Ψ(c) := g(c) + h(Mc)}, (10)

where C is a convex subset, M is an n×m matrix, g and
h are convex functions. In most cases, finding an exact
solution of (10) is impossible. We hence try to find one
its approximated solution, i.e., given a tolerance ε > 0,
we will design methods in order to obtain c ∈ C such
that Ψ(c)−Ψ? 6 ε.

Before reviewing efficient numerical methods to ap-
proximate an optimal solution c? of (10) as well as re-
quired assumptions on h and g in the next sections, it is
worthy to note that (10) covers the classical kernel ridge
regression. Indeed, given a kernel matrix K, due to the

representer theorem II.3, a predictor f̂λ is determined by
a regression vector c\ which is, in traditional kernel ridge
regression8, is estimated by c? defined via the following
formula

c? = (K + λIn)−1y, (KRR)

where y = [y1, . . . , yn]> is the vector of labels and In is
the n×n identity matrix. Simple calculations show that
c? is a solution to the following ridge-regularized least
square minimization problem, considered as a particular
instance of (10),

min
c∈Rn

1

2
‖Kc− y‖22 +

λ

2
c>Kc. (`2)

This optimization problem however might have more
than one solution than c?.

Being inspired by a recent interest in MAE and MaxAE
metrics within the materials science community, we seek
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new kernel-based models that could improve these met-
rics while still keep RMSE in the same order of magnitude
as (KRR). The first step is exploring in deep the inner
structure of these metrics. For instance, in the light of
the mathematical definition of MAE, we understand that
in order to adapt it, instead of using `2-loss function as
in (`2), it could be better if we use `1-loss function.

Example III.1 (Ridge `1-loss regression) Instead
of estimating c\ by (`2), we estimate it by solving the
following minimization problem:

min
c∈Rn

‖Kc− y‖1 +
λ

2
c>Kc. (`1)

Our second model deploys the `∞-norm loss function to
adapt the structure of MaxAE.

Example III.2 (Ridge `∞-loss regression)
Estimate regression coefficient c\ based on the fol-
lowing minimization problem:

min
c∈Rn

‖Kc− y‖∞ +
λ

2
c>Kc. (`∞)

Both (`1) and (`∞) lie beyond the effective regime of
methods of linear algebra and smooth optimization and
we, therefore, need deeper numerical methods to approx-
imate their solutions. Very common approaches in opti-
mization and machine learning community are first-order
methods. These methods obtain reasonable accuracy nu-
merical solutions by using only first-order oracle informa-
tion from the objective, such as gradient estimates. They
can also handle the non-smooth variants by making use
of the proximal mapping principle. Main advantages of
these methods are their scalability and nearly dimension-
independent convergence rates. Coupled with recent de-
mand for low-to-medium accuracy solutions in applica-
tions, these methods indeed provide a critical trade-off
between the complexity-per-iteration and the iteration-
convergence rate along with the ability to distribute and
parallelize computation.
Assumption 1. We assume that ∇g is Lg-Lipschitz
continuous, i.e.,

(∀c1 ∈ Rn)(∀c2 ∈ Rn) ‖∇g(c1)−∇g(c2)‖ 6 Lg‖c1−c2‖.

B. Another approach to (KRR) from optimization point
of view

As being discussed above, (KRR) is one among pos-
sibly many approaches to obtaining a solution of (`2).
However, (KRR) requires a matrix inversion operation
whose computational cost will become more expensively
when the size of the kernel increases. In order to
avoid this demanding operation, we suggest using iter-
ative methods in optimization to obtain a solution to

(`2). Because (`2) is a smooth convex optimization prob-
lem, among efficient methods to solve it are various ver-
sions of gradient descent method and stochastic gradient
method37–39 and references therein. Such generic algo-
rithmic procedures are of the following protocol:

Algorithm 1 (stochastic) Gradient method

1: Inputs: c0 ∈ Rn.
2: for k = 1, 2, . . . , N − 1 do : choose Gk ∈ Rn, a stepsize
γk ∈ (0,+∞) and update

ck+1 = ck − γkGk.

3: end for
4: return cN .

In deterministic gradient descent method, Gk =
∇Ψ(ck) while in stochastic gradient descent method, Gk

is chosen to be an unbiased estimate of ∇Ψ(ck), i.e.,
E[Gk] = ∇Ψ(ck).

C. A primal first-order method
Loss function h in general can be non-smooth as in the

case of `1-loss and `∞-loss. In these situations, sharper
efforts to deal with (10) are necessary due to the presence
of a nontrivial matrix M. However, in the case when this
matrix is identity, i.e.,

Ψ? := min
c∈Rn

{Ψ(c) := h(c) + g(c)}, (11)

where g satisfies Assumption 1, we can solve it efficiently
by different versions of proximal-gradient method.

The optimization methods, including forward-
backward, forward-backward-forward, Tseng’s method,
etc, are studied extensively in40–43 and the references
therein. These methods make use of a linear approxima-
tion of smooth g and simply including the nonsmooth
term h in an explicit fashion as follows:

ck+1 = argmin
c∈Rn

g(ck)+∇g(ck)>(c−ck)+
1

2αk
‖c−ck‖22+h(c),

(12)
with the step-size αk 6 1/Lg. The update rule in the
formal proximal-gradient method is rewritten as

ck+1 = proxαkh(ck − αk∇g(ck)), (13)

where the proximal operator is defined as

proxh(c̄) = argmin
c∈Rn

h(c) +
1

2
‖c− c̄‖22. (14)

Simply set the step-size αk = 1/Lg, the proximal gradient
method achieves the following convergence rate

Ψ(cN )−Ψ? = O
(
N−1

)
. (15)

This result is explained as follow: in order to obtain an ε-
approximated solution, we need O(ε−1) iterations. This
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rate can be upgraded to O(N−2) by making use of an
extra-momentum step and hence only O(ε−1/2) itera-
tions will be executed to get an ε-approximation solution.
The full version of this method is the following:

Algorithm 2 Fast iterative shrinkage-thresholding algo-
rithm (FISTA)44

1: Inputs: ĉ1 = c0 ∈ Rn, t1 = 1.
2: for k = 1, 2, . . . , N − 1 do

ck = proxαkh(ĉk − αk∇g(ĉk)),

tk+1 = 0.5

(
1 +

√
1 + 4t2k

)
ĉk+1 = ck +

tk − 1

tk+1

(
ck − ck−1).

3: end for
4: return cN .

Example III.3 (Proximal operators) . Given γ > 0
and c̄ ∈ Rn.

1. Proximal operator of `1-norm ‖ · ‖1: finding a solu-
tion to

argmin
c∈Rn

‖c‖1 +
1

2γ
‖c− c̄‖22

is equivalent to solving following n convex problems
in dimension 1:

min
c∈R
|c|+ 1

2γ
|c− c̄|2.

Elementary computations show that this problem
has an analytical solution given by τγ(c̄), where τ
is the shrinkage operator defined by τγ(c) = (|c̄| −
γ)+ sign(c̄).

2. Proximal operator of `∞-norm ‖ · ‖∞: finding a
solution to

ĉ = argmin
c∈Rn

‖c‖∞ +
1

2γ
‖c− c̄‖22

can be proceeded as follow:

(a) Compute c̃, the projection of γ−1c̄ onto the
unit `1-ball {‖c‖1 6 1}45.

(b) Apply43 to obtain ĉ = c̄− γc̃.

D. A primal-dual first-order method

When a non-identity matrix M is incorporated in the
nonsmooth term as in the full version of (10), proximal-
gradient methods are no longer available. In such a situa-
tion, efficient alternatives are primal-dual methods. Var-
ious references on these methods include46–48 and refer-
ences therein. These methods are basically built based

on representing h via its Fenchel conjugate function h∗,
defined as

h∗(d) = sup
c∈Rn

c>d− h(c).

Making use of Fenchel conjugation, we translate the orig-
inal composite function incorporating loss function h to-
gether with composition with a non-identity matrix M
into the dual function of h. This introduces new dual
variables in primal-dual algorithms. More specifically,

h(Mc) = sup
d∈Rn

(Mc)>d− h∗(d).

A very common primal-dual method used to construct
an approximated solution to (10) is the following:

Algorithm 3 Accelerated Primal-Dual method49

1: Inputs: c1 ∈ Rn, d1 ∈ Rn, c1ag = c1, d1
ag = d1, c̄1 = c1.

2: for k = 1, 2, . . . , N − 1 do

ckmd = (1− β−1
k )ckag + β−1

k ck,

dk+1 = proxτkh∗(dk −Mc̄k),

ck+1 = ck − ηk(∇g(ckmd) + M>dk+1),

ck+1
ag = (1− β−1

k )ckag + β−1
k ck+1,

dk+1
ag = (1− β−1

k )dkag + β−1
k dk+1,

c̄k+1 = θk(ck+1 − ck) + ck+1.

3: end for
4: return cNag and dNag.

The main drawback of primal-dual methods in com-
parison to primal methods is that these methods intro-
duce new dual variables which will increase the size of the
problem. However, due to the flexibility of these meth-
ods, they can handle very general models.

Similar to the proximal-gradient method, the primal-
dual method presented above requires the computation
of the proximal operator of Fenchel conjugate function
which can be deduced from the proximal operator of the
original function itself due to43.

Convergence’s rate: simply set βk = k+1
2 , θk = k−1

k ,

ηk = 3k
4η and τk = 1

η for η = 2Lg + 2‖M‖(N − 1) +

N
√

13(N−1)
2D̃

with D̃ > 0, the convergence rate that a

primal-dual method can achieve is

Ψ(cNag)−Ψ? = O
(
N−1

)
.

IV. NUMERICAL EXPERIMENTS

A. GDB9 data set
GDB9 dataset50 consisting of chemical representations

and the internal energies U0 (Hartree) at absolute zero
temperature of 133884 small organic molecules. We
divide this dataset into two parts: the train set con-
tains 100000 molecules and the test set contains 33884
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molecules. Using (9) with ζ ∈ {2, 3, 4}, we obtain there
learning kernels matrices K2, K3 and K4. They are then
weighted as follow

K =
256

273
K2 +

16

273
K3 +

1

273
K4.

Portions of this 100000 × 100000-matrix will be incor-
porated in regression models (KRR), (`1) and (`∞) to
predict U0 for 33884 molecules in the whole test set.

B. Computational complexity
With a given kernel matrix of size n × n, (KRR) it-

self requires the computation of the inverse of an n× n-
matrix and the multiplication of an n×n-matrix and an
n-coordinates vector. The best known overall complexity
is O(n2.373).

On the one hand, recall that both models (`1) and
(`∞) with SOAP-REMatch kernels could be solved nu-
merically by standard optimization approaches such as
Algorithm 3 and the complexity of this method is essen-
tially the computational complexity of the proximal op-
erator. For instance, since the computational complexity
of the soft-threshold is only O(n), the overall complexity
of (`1) is overall O(nN) with N is the total number of
iterations.

On the other hand, it was discussed previously that
primal-dual methods iteratively build an approximate so-
lution with the convergence rate of O(1/N).

In order to accelerate the convergence’s speed, we pro-
pose two techniques concerning models (`1) and (`∞).
These techniques allow us to apply Algorithm 3 either
on the primal problem or on the dual problem.

Preconditioning. Our main idea to replace the original
kernel matrix by a small perturbation determined by a
small parameter ρ, i.e., setting M = K + ρIn and then
making the change of the variable d = Mc to reformulate
(`1) as

min
d∈Rn

‖d− y‖1 +
λ

2
d>M−1d, (16)

and (`∞) to be

min
d∈Rn

‖d− y‖∞ +
λ

2
d>M−1d. (17)

This small value of ρ can be selected by the cross-
validation procedure. Many researchers choose to set
it to be a small number such as 10−8. The described
perturbation technique will remove the non-identity ma-
trix from the non-smooth function. As a consequence,
these new problems are solved efficiently and quickly
by FISTA (Algorithm 2) with the overall complexity
O(n2.273+nN). Thanks to the convergence rateO(1/N2)
of FISTA, our execution will converge to a solution in
predefined tolerance within a reasonably small number
of iterations N , and hence it only requires a computa-
tion cost not much more than (KRR). This observation

measured by necessary CPU times to run these models,
will be recorded in Figure 1.

Dual formulation. The preconditioning technique pre-
sented above requires a matrix inversion computation.
This operation is required even for (KRR). In order to
avoid this expensive calculation, we introduce the use of
dual formulations of (16) and (17), respectively as,

min
d∈Rn

g∗(d) +
1

2λ
d>Kd, (18)

where g∗ is the Fenchel conjugate function of either
‖ · −y‖1 for (`1) or ‖ · −y‖∞ for (`∞). These dual
formulations can be solved efficiently by FISTA. By
duality43, the original coefficient is then recovered by
cN = −λ−1dN . Because the computational complex-
ity of the proximal operator of g∗ is the same as that of
of g, the total computational complexity in these cases is
only O(nN).

C. Cross-validation

We tune the parameter λ using 10-folds cross-
validation by screening 15 values on a base-10 logarithmic
grid from 10−9 to 100. This procedure can be parallelized
in practice.

D. Simulation results

Different training sizes of 500, 1000, 5000, 10000,
25000, extracted from the train set of 100000 molecules,
are used to predict U0 using (KRR), (`1) and (`∞) for
molecules in the test set and then we compute the met-
rics: MAE, MaxAE and RMSE on test molecules. We
also record training times on a single CPU and standard
deviations which are obtained by running 10 tests with
randomly chosen varying training set data sub-selection.
Results, recorded in Figures 1-3, show that (`1) improves
significantly MAE in comparison with (KRR) while (`∞)
achieves a better MaxAE than (KRR).

Remark IV.1 We observe from FIG. 4 that CPU times
consumed by (`1) and (`∞) excess those of (KRR) as
these methods need to execute an iterative algorithm
for each value of hyper-parameters. We particularly
note that (`∞) is more computationally expensive among
three models and the reason is that it used an extra inner
loop to compute proximal operator of `∞-loss function.

V. CONCLUSIONS

We study the similarity in the structure of loss func-
tions and the corresponding statistical errors to under-
stand the impact of loss functions on these metrics. We
the present novel settings together with efficient algo-
rithms to approximate a numerical solution for molecules’
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FIG. 1. Mean absolute error on test data: learning curve
(unit: kcal/mol, 10 tests implemented on GDB9 data set).
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FIG. 2. Root mean square error on test data: learning curve
(unit: kcal/mol, 10 tests implemented on GDB9 data set).

atomization energy prediction via statistical learning the-
ory. We also describe numerical advantages of our ap-
proach with two new models: ridge `1-loss minimiza-
tion and ridge `∞-loss minimization. To the best of our
knowledge, these formulations are the first considering a
very generic point of view of the chemical machine learn-
ing from statistical learning theory. This new insight
highlights the potentials of our current research.
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APPENDIX

In this appendix, we provide the proofs for some of the
elementary inequalities in this paper.

A. Proof of (3)

We have

R(f̂λ)− R(f?)

6Rλ(f̂λ)− R(f?)

=[R(f̂λ)− Rn(f̂λ) + Rn(fλ)− R(fλ)] + [Rλn(f̂λ)− Rλn(fλ)]

+ [Rλ(fλ)− R(f?)]

6[R(f̂λ)− Rn(f̂λ) + Rn(fλ)− R(fλ)] + [Rλ(fλ)− R(f?)]

=Esam + Eapp,

where for the inequality, we used the fact that Rλn(f̂λ) 6
Rλn(fλ) since f̂λ is a solution for (2).

B. Proof for (5)

Due to the representer theorem, instead of solving opti-
mization problem (4) with respect to functions f , we find
the weights of the predictor, a vector c\ in a finite dimen-

sional space. For f̂λ(x) =
∑n
i=1 c

\
iK(x,xi), we have that

for all i,

`(f̂λ(xi), yi) = `

( n∑
j=1

c\jK(xi,xj), yi

)

= `

( n∑
j=1

c\jKij , yi

)
= `

(
(c\)>Ki, yi

)
,

and since

〈
f̂λ, ψ(x)

〉
= f̂λ(x) =

n∑
i=1

c\iK(x,xi)

=

n∑
i=1

c\i
〈
ψ(x), ψ(xi)

〉
=

〈
ψ(x),

n∑
i=1

c\iψ(xi)

〉
,

we have f̂λ =
∑n
i=1 c

\
iψ(xi) and hence,

‖f̂λ‖2 =

〈
n∑
i=1

c\iψ(xi),

n∑
i=1

c\iψ(xi)

〉

=

n∑
i,j=1

c\ic
\
j

〈
ψ(xi), ψ(xj)

〉
=

n∑
i,j=1

c\ic
\
jK(xi,xj)

= (c\)>Kc\.

The problem (4) with ridge regularizer now becomes

min
c∈Rn

1

n

n∑
i=1

`

(
c>Ki, yi

)
+
λ

2
c>Kc.


