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Low-rank updates and divide-and-conquer methods for

quadratic matrix equations

Daniel Kressner∗ Patrick Kürschner† Stefano Massei‡

Abstract

In this work, we consider two types of large-scale quadratic matrix equations: Continuous-
time algebraic Riccati equations, which play a central role in optimal and robust control, and
unilateral quadratic matrix equations, which arise from stochastic processes on 2D lattices
and vibrating systems. We propose a simple and fast way to update the solution to such
matrix equations under low-rank modifications of the coefficients. Based on this procedure,
we develop a divide-and-conquer method for quadratic matrix equations with coefficients that
feature a specific type of hierarchical low-rank structure, which includes banded matrices.
This generalizes earlier work on linear matrix equations. Numerical experiments indicate the
advantages of our newly proposed method versus iterative schemes combined with hierarchical
low-rank arithmetic.

1 Introduction

This paper is concerned with numerical algorithms for treating two types of quadratic matrix
equations with large-scale, data-sparse coefficients.

Type 1: CARE. A continuous-time algebraic Riccati equation (CARE) takes the form

A∗XE + E∗XA− E∗XFXE +Q = 0, (1)

where A,E, F,Q are real n× n matrices, such that E is invertible and F,Q are symmetric positive
semi-definite. Motivated by its central role in robust and optimal control [8,31,35,42,44], this class
of equations has been widely studied in the literature; see, e.g., [6, 11, 15]. A solution X to (1) is
called stabilizing if the so called closed-loop matrix A−FXE is stable, that is, all its eigenvalues are
contained in the open left half plane. Mild conditions on the coefficients (see, e.g., [15, Sec. 2.2.2])
ensure the existence, uniqueness, and symmetric positive semi-definiteness of such a stabilizing
solution X.

We consider the case when n is large and F has low rank, that is, F = BB∗ for some matrix
B ∈ Rn×m with m� n. This is a common assumption in linear-quadratic optimal control problems,
where m corresponds to the number of inputs [10, 11]. However, we do not impose low rank on Q,
which allows for having a large number of outputs in control problems, e.g., when observing the
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state directly. To simplify the exposition, we will focus the discussion mostly on the case E = I;
the extension to general invertible E will be explained in Section 3.2.1.

For F = 0, the equation (1) becomes linear and is called Lyapunov equation. A low-rank
updating procedure for such linear matrix equations has been proposed recently in [30]. In this
work, we extend this procedure to CARE. More specifically, assuming that X0 satisfies a reference
CARE

A∗0X0 +X0A0 −X0F0X0 +Q0 = 0, (2)

we aim at computing a correction δX such that X := X0 + δX solves the modified CARE

A∗X +XA−XFX +Q = 0, (3)

with
A := A0 + δA, F := F0 + δF, Q := Q0 + δQ, with δA, δF , δQ of low rank.

Subtracting (2) from (3) yields

(A− FX0)∗δX + δX(A− FX0)− δXFδX + Q̂ = 0. (4)

The modified constant term Q̂ := δQ+ δA∗X0 +X0δA−X0δFX0 satisfies

rk(Q̂) ≤ rk(δQ) + 2rk(δA) + rk(δF ),

where rk(·) denotes the rank of a matrix. Hence, independently of the rank of Q0, the constant term
of the CARE (4) is guaranteed to have low rank. Note that most algorithms for large-scale Riccati
equations [7, 10, 11, 46, 47] assume the constant term to be of low rank which, in turn, may render
them unsuitable for solving (3). In contrast, the formulation (4) is well suited for such methods,
returning an approximation of δX in the form of a symmetric low-rank factorization.

Type 2: UQME. A unilateral quadratic matrix equation (UQME) takes the form

AX2 +BX + C = 0, (5)

with A,B,C ∈ Rn×n. The spectrum of a solution to (5) corresponds to a subset of the 2n eigenvalues
of the matrix polynomial

ϕ(λ) := λ2A+ λB + C. (6)

Instances of equation (5) arise in overdamped systems in structural mechanics [24] and are at the
core of the matrix analytic method for quasi-birth–death (QBD) stochastic processes [13].

A typical situation in applications is that the eigenvalues of ϕ(λ) are separated by the unit circle
into two subsets of cardinality n:

|λ1| 6 . . . |λn| 6 1 6 |λn+1| 6 . . . 6 |λ2n|, |λn| < |λn+1|, (7)

and it is of interest to compute the minimal solution of (5), that is, the solution X associated with
λ1, . . . , λn. Note that some of the eigenvalues are allowed to be infinite.

(7) implies that the matrix X is the only power bounded solution of (5); this uniquely identify
the matrix-geometric property [13] of certain QBD processes. (7) also guarantees the quadratic con-
vergence of the cyclic reduction algorithm for computing X [18, Theorem 9]. The minimal solution
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can be constructed as X = V diag(λ1, . . . , λn)V −1 if the matrix V containing the eigenvectors as-
sociated with λ1, . . . , λn is invertible [29]. This property is usually met in practice and in the QBD
setting it can be ensured via the probabilistic interpretation of the minimal solution [34, Section
6.2].

We assume that the minimal solution exists and that (7) holds for a reference equation

A0X
2
0 +B0X0 + C0 = 0, (8)

as well as for the modified equation

(A0 + δA)(X0 + δX)2 + (B0 + δB)(X0 + δX) + (C0 + δC) = 0, (9)

where δA, δB and δC are given low-rank matrices.
Denoting A := A0 + δA,B := B0 + δB,C := C0 + δC and subtracting (8) from (9) yields the

following equation for the correction δX:

AδX2 + (AX0 +B)δX +AδXX0 + Ĉ = 0, (10)

where Ĉ := δAX2
0 + δBX0 + δC has rank bounded by rk(δA) + rk(δB) + rk(δC). Note that equa-

tion (10) is not a UQME. Nevertheless, as will be seen in Section 2, there is still a correspondence
between the solutions of (10) and an appropriately chosen eigenvalue problem. Similarly as for

CARE, the low rank of Ĉ will allow us to devise an efficient numerical method for (10).

Quadratic matrix equations with hierarchical low-rank structure. In the second part of
the paper we focus on quadratic equations with coefficients that feature hierarchically low-rank
structure. More specifically, the coefficients of a CARE (1) or a UQME (5) are assumed to be
hierarchically off-diagonal low-rank (HODLR) matrices [2,27]. This framework aligns well with the
low-rank updates discussed above, because HODLR matrices are block diagonalized by a low-rank
perturbation and, in turn, the corresponding reference equations (2) and (8) decouple into two
equations of smaller size. Applying this idea recursively results in a divide-and-conquer method
for solving UQMEs with HODLR coefficients and CAREs with a low-rank quadratic term and all
other coefficients in the HODLR format.

Existing fast algorithms that address such (and more general) scenarios are based on combining
a matrix iteration with fast arithmetic in hierarchical low-rank format. For CAREs, a combination
of the sign function iteration with hierarchical matrices has been proposed in [3, 23]. For UQMEs,
a combination based on cyclic reduction has been proposed in [16, 17]. As pointed out in [30],
a disadvantage of these strategies is that they exploit the structure only indirectly and rely on
repeated recompression during the iteration, which may constitute a computational bottleneck.

Outline. The rest of this paper is organized as follows. In Section 2, we study the correction
equations (4) and (10), with a particular focus on providing intuition why one can expect their
solutions to admit good low-rank approximations. Section 3 is concerned with numerical methods
for obtaining such low-rank approximations. While a variety of large-scale solution methods have
been recently developed for (4), the equation (10) is non-standard and requires the development of
a novel large-scale solver, which may be of independent interest. Section 4 utilizes these solvers to
derive divide-and-conquer methods for CARE and UQME featuring HODLR matrix coefficients.
Finally, Section 5 highlights several applications of these divide-and-conquer methods and provides
numerical evidence of their effectiveness.
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2 Analysis of the correction equations

The purpose of this section is to study properties of the correction matrix δX, which satisfies one
of the two correction equations, (4) or (10).

2.1 Existence and low-rank approximability

A necessary requirement of most solvers for large-scale matrix equations to perform well is that the
solution admits good low-rank approximations. This property can sometimes be verified a priori by
showing that the singular values exhibit a strong decay. In the following we first recall such results
for linear matrix equations and then use them to shed some insight on the low-rank approximability
of δX.

Singular value decay for linear matrix equations Let us consider the so called Sylvester
equation

AX +XB = Q

with the coefficients A,B,Q ∈ Rn×n such that the spectra of A and −B are disjoint, and Q has rank
k � n. Moreover, let Rh,h denotes the set of rational functions with numerator and denominator
degrees at most h.

In [5], it is shown that for every r ∈ Rh,h there exists a matrix X̃ of rank at most kh such

that X − X̃ = r(A)Xr(−B)−1, provided that the right-hand side is well defined. Using that the
(kh+ 1)th singular value, denoted by σkh+1(·), governs the 2-norm error of the best approximation
by a matrix of rank at most kh, one obtains

σkh+1(X) ≤ ‖r(A)‖2‖r(−B)−1‖2‖X‖2.

Combined with norm estimates for rational matrix functions, this leads to the following theorem.

Theorem 2.1 (Theorem 2.1 in [5]). Consider the Sylvester equation AX + XB = Q, with Q of
rank k, and let E and F be disjoint compact sets in the complex plane.

(i) If E,F contain the numerical ranges of A and −B, respectively, then

σkh+1(X)

‖X‖2
6 KC min

r∈Rh,h

maxE |r(z)|
minF |r(z)|

,

where KC = 1 if A,B are normal matrices and 1 ≤ KC ≤ (1 +
√

2)2 otherwise.

(ii) If A,B are diagonalizable and E,F contain the spectra of A and −B, respectively, then

σkh+1(X)

‖X‖2
6 κeig(A)κeig(B) min

r∈Rh,h

maxE |r(z)|
minF |r(z)|

where κeig(·) denotes the 2-norm condition number of the eigenvector matrix.

The quantities Zh(E,F ) := minr∈Rh,h

maxE |r(z)|
minF |r(z)| are known in the literature as Zolotarev num-

bers. When E and F are well separated one can expect that Zh(E,F ) decreases rapidly, as h
increases, and quickly reaches the level of machine precision. Explicit bounds showing exponential
decay have been established for various configurations of E and F , including disjoint real intervals
and circles [5, 48].
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CARE. The existence and uniqueness of a stabilizing solution to the correction equation (4)
follows immediately from the observation that the closed-loop matrices of CARE (3) and CARE (4)
are identical:

(A− FX0)− FδX = A− FX.

This yields the following lemma.

Lemma 2.2. Let X0 be a solution of (2). Then the correction equation (4) has a unique stabilizing
solution δX if and only if the modified equation (3) has a unique stabilizing solution X.

To study the low-rank approximability of δX, let us first assume that A is stable. By rearrang-
ing (4), we get

A∗δX + δXA = −Q̂+ δXF (δX +X0) +X0FδX.

Hence, δX satisfies a Lyapunov equation with the rank of the right-hand side bounded by 2rk(F )+

rk(Q̂). If, additionally, the numerical range of A is contained in the open left half plane then the
first part of Theorem 2.1 can be applied to yield singular value bounds for δX. Alternatively, the
second part can be applied under the milder assumption that A is diagonalizable.

If A is not stable, we rearrange (4) as

(A− FX)∗δX + δX(A− FX) = −Q̂− δXFδX.

As the closed loop matrix A − FX is stable and the rank of the right-hand side is bounded by
rk(F )+rk(Q̂), Theorem 2.1 applies under the assumptions stated above with A replaced by A−FX.
One should note, however, that the obtained bounds are somewhat implicit because they involves
the numerical range or the eigenvector conditioning of A−FX, quantities that are hard to estimate
a priori. If more information is available for the closed loop matrix A − FX̃ associated with a
stabilizing initial guess X̃, one can instead work with the equation

(A− FX̃)∗δX + δX(A− FX̃) = −Q̂+ δXFδX − 2δX̃FδX̃,

where δX̃ := X̃ −X0.

UQME. Solutions of the correction equation (10) are intimately related to the matrix pencil[
X0 I

−Ĉ −(AX0 +B)

]
− λ

[
I 0
0 A

]
. (11)

In fact, a direct computation shows that δX solves (10) if and only if[
X0 I

−Ĉ −(AX0 +B)

] [
I
δX

]
=

[
I 0
0 A

] [
I
δX

]
X. (12)

For simplicity, let us assume that A is invertible. Then the eigenvalues of (11) coincide with the
eigenvalues of the matrix [

X0 I

−A−1Ĉ −(X0 +A−1B)

]
.
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By a similarity transformation,[
I 0
δX I

]−1 [
X0 I

−A−1Ĉ −(X0 +A−1B)

] [
I 0
δX I

]
=

[
X I
0 −(X +A−1B)

]
. (13)

Because X = X0 + δX is a solution of (5), the quadratic matrix polynomial ϕ(λ) defined in (6)
admits the factorization

λ2A+ λB + C = (λA+AX +B)(λI −X) = A−1(λI +X +A−1B)(λI −X).

Together with (13), this shows that the eigenvalues of the pencil (11) coincide with the eigenvalues
of ϕ(λ). In particular, if X0 and X are the minimal solutions of (8) and (5), respectively, then the
spectra of X0 and −(X + A−1B) are separated by the unit circle. By rearranging (9), δX can be
viewed as the solution of a Sylvester equation with these coefficients and low-rank right hand side:

(X +A−1B)δX + δXX0 = −A−1Ĉ. (14)

This indicates good low-rank approximability of δX.

3 Low-rank updates

In Section 1 we already described the basic procedure for updating the solution X0 of a reference
CARE or UQME. This requires solving correction equations of the form (4) or (10), respectively.
In the following, we discuss how to solve these correction equations efficiently .

3.1 Projection subspaces

According to the discussion in Section 2.1, one may expect that the solutions of (4) and (10) admit
good low-rank approximations. A common strategy for obtaining such approximate solutions is to
project these matrix equations to a pair of subspaces. To be more specific, let U, V ∈ Rn×t contain
orthonormal bases of t-dimensional subspaces U ,V ⊂ Rn. Then we consider approximate solutions
of the form X̃ := UY V ∗, where Y ∈ Rt×t is obtained from solving a compressed matrix equation.

The choice of the projection subspaces U ,V is key to obtaining good approximations. In the
context of matrix equations, rational Krylov subspaces [41] are a popular and effective choice.

Definition 3.1. Let A ∈ Rn×n, U0 ∈ Rn×k, k < n, and ξ ∈ Ct. The vector space

RKt(A,U0, ξ) := range
{[
U0, (A− ξ1I)−1U0, . . . ,

( t−1∏
j=1

(A− ξjI)−1
)
U0

]}
is called rational Krylov subspace with respect to (A,U0, ξ).

A good choice of shift parameters ξj is crucial and we will discuss our choices for CARE and
UQME below.
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3.2 Low-rank solution of correction equation for CARE

To describe our approach for approximating the solution of (4), let us define Acorr := A−FX0 and
suppose that the low-rank updates of the coefficients are given in factorized, symmetry-preserving
form:

δA = UAV
∗
A, δQ = UQDQU

∗
Q, δF = UFDFU

∗
F ,

with UA, VA ∈ Rn×rk(δA), UQ ∈ Rn×rk(δQ), UF ∈ Rn×rk(δF ), and symmetric matrices DQ ∈
Rrk(δQ)×rk(δQ), DF ∈ Rrk(δF )×rk(δF ). This allows us to write the right-hand side of (4) in factorized

form Q̂ = UDU∗ as well, with

U := [UQ, VA, X0UA, X0UF ], D = diag

(
DQ,

[
0 Irk(UA)

Irk(UA)
0

]
, DF

)
, (15)

where diag denotes a block diagonal matrix with the blocks determined by the arguments. The
correction equation (4) now reads as

A∗corrδX + δXAcorr − δXFδX + Q̂ = 0. (16)

It is recommended to perform an optional preprocessing step that aims at reducing the rank
of Q̂ further. For this purpose, we compute a thin QR factorization U = QURU followed by a
(reordered) spectral decomposition

RUDR
∗
U =

[
S1 S2

] [Λ1 0
0 Λ2

] [
S1 S2

]∗
,

such that the diagonal matrix Λ2 contains all eigenvalues of magnitude smaller than a prescribed
tolerance τσ. Discarding these eigenvalues results in the reduced-rank approximation Q̂ ≈ UDU∗

with U ← QUS1 and D ← Λ1.
For a large-scale CARE of the form (16), with both Q̂ and F = BB∗ of low rank, various

numerical methods have been proposed [6,7,10,11,46,47]. In the following, we focus on the rational
Krylov subspace method (RKSM) [46, 47], but other solvers could be used as well. While these

algorithms usually assume Q̂ to be positive semi-definite, their extension to possibly indefinite Q̂
poses no major obstacle; see also the discussion in [33]. RKSM constructs an approximate solution
of the form δXt = VtY V

∗
t , where Vt contains an orthonormal basis of a rational Krylov subspace

RKt(A∗corr, U, ξ). The small matrix Y is determined via a Galerkin condition, which comes down to
solving the compressed CARE

Ã∗corrY + Y Ãcorr − Y F̃Y + ŨDŨ∗ = 0, Ãcorr := V ∗t AcorrVt, F̃ := V ∗t FVt, Ũ := V ∗t U.

for a stabilizing solution Y which can be addressed by direct algorithms for small, dense CAREs [9].
Note that the indefinite inhomogeneities ŨDŨ∗ are not an issue for the existence of such stabilizing
solution which will then be also indefinite, see, e.g., [50]. In practice it can happen that the
Hamiltonian matrix associated to the compressed CARE has eigenvalue close to the imaginary
axis which can result in inaccurate solutions Y . For refining the accuracy of Y we apply a defect
correction strategy similar to [37] given by (at most) 2 steps of a Newton’s method.

Algorithm 1 gives a basic illustration of this method. We refer to the relevant literature [22,
46, 47] for implementation details and only comment on some critical steps. For selecting the shift
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Algorithm 1 RKSM for (4) with Q = UDU∗ and F = BB∗

1: procedure Low rank CARE(Acorr, B, U , D)
2: V1 = v1 = orth(U) . Orthonormalize U by thin QR decomposition
3: for t = 1, 2, . . . do
4: Ã∗corr ← V ∗t AcorrVt, B̃ ← V ∗t B, Ũ ← V ∗t U
5: Y ←Dense CARE(Ãcorr, B̃, ŨDŨ

∗)
6: if converged then return δXt = VtY V

∗
t

7: Obtain next shift ξt.
8: Solve (Acorr − ξtI)∗ṽ = vt for ṽ.
9: ṽ ← ṽ − Vt(V ∗t ṽ), vt+1 = orth(ṽ), Vt+1 = [Vt, vt+1]

10: end for
11: end procedure

parameters in line 7 we employ the adaptive procedure from [22,46,47]. This may result in complex
shifts or, more precisely, in complex conjugate pairs of shifts. The increased cost of working in
complex arithmetic can be largely reduced by using an appropriate implementation, see, e.g., [40],
which also returns a real approximation δXt. The shifted linear systems in line 7 involve the matrix
(Acorr − ξtI)∗ = (A− ξtI −FX0)−1. If A is sparse, such a system can be solved, e.g., by combining
a sparse direct solver for A− ξtI with the Sherman-Morrison-Woodbury formula to incorporate the
low-rank modification FX0. If A is a HODLR matrix then A− ξtI − FX0 is a HODLR matrix as
well and solvers for HODLR matrices can be used. Algorithm 1 is terminated once the residual is
sufficiently small, that is, ‖Rt‖2 = ‖A∗corrδXt + δXtA

∗
corr − δXtFδXt + UDU∗‖2 6 τcare for some

prescribed tolerance τcare > 0. An efficient way of computing the residual norm ‖Rt‖2 is described
in [46]. After termination, it is recommended to perform an optional post-processing step, which
aims at reducing the rank of δXt, analogous to the rank-reducing procedure for Q̂ described above.

3.2.1 Extension to generalized CAREs

In this section, we briefly discuss the extension of our low-rank update procedure to the generalized
CARE (GCARE), see (1). The reference and modified equation take the form

A∗0X0E0 + E∗0X0A0 − E∗0X0F0X0E0 +Q0 = 0, (17)

(A0 + δA)∗(X0 + δX)(E0 + δE)∗ + (E0 + δE)∗(X0 + δX)(A0 + δA)

− (E0 + δE)∗(X0 + δX)(F0 + δF )(X0 + δX)(E0 + δE) + (Q0 + δQ) = 0,
(18)

where δA, δE, δF and δQ are of low rank, and both E = E0 + δE as well as E0 are invertible. By
subtracting (17) from (18), we find that δX solves

(A− EX0F )∗δXE + E∗δX(A− EX0F )− E∗δXFδXE + Q̂ = 0 (19)

where Q̂ := δQ+ δA∗X0E + E∗X0δA− E∗X0δFX0E + δE∗X0δFX0E0 + E∗X0δFX0δE satisfies
rkQ̂ 6 rk(Q) + 2rk(δA) + 2rk(δF ) + min{rk(δF ), rk(δE)}. Similarly as in (15), we can write

Q̂ = UDU∗ with

U := [UQ, VA, E
∗X0UA, E

∗
0X0UF , VE(U∗EX0)UF ],

D = D̂∗ = diag

(
DQ,

[
0 Irk(UA)

Irk(UA)
0

]
, DF ,

[
0 Irk(UE)

Irk(UE)
Irk(UE)

])
.
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where δE = UEV
∗
E with UE , VE ∈ Rn×rk(δE). Again, an optional rank-reducing step for Q̂ is

recommended. By implicitly working on the equivalent CARE defined by the coefficients E−1(A−
EX0F ), F , E−∗Q̂E−1, Algorithm 1 extends with minor modifications to (19). We refer to [11,46,47]
for further details.

3.3 Low-rank solution of correction equation for UQME

The correction equation (10) features a constant coefficient that has low rank. However, unlike in
the case of CARE, we are not aware of existing large-scale solvers tailored to this situation, neither
for UQME nor for the modified form (10). For example, a fast cyclic reduction iteration proposed
in [14] requires both the quadratic and the constant coefficient (that is, the matrices A and C in
(5)) to be of low rank.

In the following, we develop a novel subspace projection method, largely inspired by the existing
techniques for CARE described above.

We first discuss the choice of subspaces for our method and consider the Sylvester equation (14)
for this purpose. In principle, subspace projection methods for Sylvester equations are well un-
derstood, but the coefficients of (14) involve the matrix X, which depends on the unknown δX.
Solely for the purpose of choosing the subspaces, we replace X with the reference solution X0 and
consider

(X0 +A−1B)δX + δXX0 = −A−1Ĉ (20)

instead. Again, we assume that the low-rank updates are given in factorized form: δA = UAV
∗
A, δB =

UBV
∗
B and δC = UCV

∗
C . Then, the right-hand sides of (14) and (20) can be written as A−1Ĉ = UV ∗

with
U = [A−1UA, A

−1UB , A
−1UC ], V = [(X∗0 )2VA, X

∗
0VB , VC ]. (21)

As for CARE, it is recommended to apply a preprocessing step aiming at reducing the rank of
UV ∗. Existing solver for Sylvester equations [46] suggest the use of rational Krylov subspaces with
coefficient matrices X0 + A−1B, X∗0 and starting vectors U , V in order to solve (20). Specifically,
we choose

Ut := RK2t(X0 +A−1B,U,±1t), Vt := RK2t(X
∗
0 , V,±1t), (22)

where ±1t = [1,−1, . . . , 1,−1]∗ ∈ R2t. This particular choice of shift parameters corresponds to
the extended Krylov subspace [45] for Sylvester equations, adapted to the case in which the spectra
of the coefficients are separated by the unit circle instead of the imaginary line. Indeed, we replaced
0 and ∞, the usual choice in the extended Krylov method, with T (0) = −1 and T (∞) = 1 where
T (z) := − 1+z

1−z is the Cayley transform.
Suppose now that Ut, Vt contain orthonormal bases of the subspaces defined in (22). To construct

an approximate solution δXt = UtY V
∗
t of the original equation (14), we impose a Galerkin condition

with respect to the tensorized space Ut ⊗ Vt. This implies that the small matrix Y satisfies the
non-symmetric algebraic Riccati equation

Y F̃Y + ÃY + Y D̃ = Q̃,

Ã = U∗t (X0 +A−1B)Vt, F̃ = V ∗t Ut, D̃ = V ∗t X
∗
0Vt, Q̃ = U∗t UV

∗Vt.
(23)
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This compressed equation is solved by the structured doubling algorithm (SDA) [15, 25], see also
Algorithm 2. If the projected Hamiltonian [

Ã −F̃
−Q̃ −D̃

]
(24)

has an eigenvalue splitting with respect to the unit disc and both equation (23) and its dual

equation (the one obtained interchanging F̃ and Q̃) admit a minimal solution, then SDA converges
quadratically to the minimal solution of (23) [15, Theorem 5.4].

Algorithm 2 Structured doubling algorithm for (23)

1: procedure SDA NARE(Ã, D̃, F̃ , Q̃)

2:

[
S11 S12

S21 S22

]
←

[
I F̃

0 −Ã

]−1 [
D̃ 0

−Q̃ I

]
3: E ← S11, G = −S12, P = −S21, F = S22

4: for t = 1, 2, . . . do
5: if converged then return P
6: G̃ ← I −G · P, P̃ ← I − P ·G
7: E1 ← E−1G̃, F1 ← F−1P̃
8: G ← G+ E1 ·G · F, P ← P + F1 · P · E
9: E ← E1 · E, F ← F1 · F ;

10: end for
11: end procedure

The whole procedure for solving (14) is summarized in Algorithm 3. A few remarks concerning

Algorithm 3 Extended Krylov subspace method for (14)

1: procedure Low rank UQME corr(A,B,X0, U, V )
. U, V ∈ Rn×r defined as in (21) or pre-processed by a rank-reducing step

2: Â← X0 +A−1B
3: U1 = orth([(Â+ I)−1U, (Â− I)−1U ]), V1 = orth([V, (X∗0 + I)−1V, (X∗0 − I)−1V ])])
4: for t = 1, 2, . . . do
5: Ã← U∗t ÂVt, D̃ ← U∗t X

∗
0V
∗Vt, F̃ ← V ∗t Ut, Q̃← U∗t UV

∗Vt
6: Y ← SDA NARE(Ã, D̃, F̃ , Q̃)
7: if converged then return δXt := UtY V

∗
t

8: Partition Ut = [U (0), U (+), U (−)] such that U (+), U (−) ∈ Rn×n
9: Partition Vt = [V (0), V (+), V (−)] such that V (+), V (−) ∈ Rn×n

10: Ũ = [(Â+ I)−1U (+), (Â− I)−1U (−)], Ṽ = [(X∗0 + I)−1V (+), (X∗0 − I)−1V (−)]

11: Ũ ← Ũ − UtU∗t Ũ , Ũ = orth(Ũ), Ut+1 = [Ut, Ũ ]

12: Ṽ ← Ṽ − VtV ∗t Ṽ , Ṽ = orth(Ṽ ), Vt+1 = [Vt, Ṽ ]
13: end for
14: end procedure

the implementation of Algorithms 2 and 3:

10



• Algorithm 2 is stopped either when min{‖E‖1, ‖F‖1} < 10−13 or when a maximum of 30
iterations is reached. If the projected Hamiltonian (24) has the desired splitting of eigenvalues
with respect to the unit circle then Algorithm 2 converges quadratically and is therefore likely
to match the convergence condition within 30 iterations. Otherwise, we move on and consider
the next (enlarged) extended Krylov subspaces.

• We rely on the rktoolbox [12] for executing the rational block Arnoldi processes that return
the orthonormal bases Ut and Vt. We remark that the compressed matrices in line 5 of
Algorithm 3 do not need to be computed explicitly; they can be obtained from the rational
Krylov decomposition by adding an artificial final step with an infinite shift, see [26, page 74]
and [4].

• The number of iterations t in Algorithm 3 is chosen adaptively to ensure that the relation

‖δX2
t + (X0 +A−1B)δXt + δXtX0 +A−1Ĉ‖2 6 τuqme (25)

is satisfied for some tolerance τuqme. The artificial final step with an infinite shift mentioned
above allows this relation to be verified efficiently, see [28,45].

• For applying (Â ± I)−1, (X∗0 ± I)−1, LU factorizations of Â ± I and X∗0 ± I are computed
once before starting the rational block Arnoldi process.

• After termination of Algorithm 3, it is – once again – recommended to perform an optional
post-processing step that aims at reducing the rank of δXt.

4 Divide-and-conquer methods

Having an efficient procedure for performing low-rank updates at hand allows us to design divide-
and-conquer methods for quadratic matrix equations with rank structured coefficients. For example,
suppose that the coefficients of the CARE (3) admit the decompositions

A = A0 + δA, F = F0 + δF, Q = Q0 + δQ, (26)

where A0, F0, Q0 are block diagonal matrices of the same shape and δA, δF, δQ have low rank.
This allows us to split (3) into the correction equation (4), which we solve with Algorithm 1, and
the two smaller, decoupled equations associated with the diagonal blocks of A0, F0, Q0. If these
diagonal blocks again admit a decomposition of the form (26), we recursively repeat the splitting.
The described strategy easily adapts to the UMQE (9).

The storage and manipulation of the low-rank corrections on the various levels of the recursion
requires to work with a suitable format, such as the HODLR format.

4.1 HODLR matrices

A HODLR matrix A ∈ Rn×n admits block partition

A =

[
A11 A12

A21 A22

]
, (27)

11



where A12, A21 have low rank and A11, A22 are square matrices that again take the form (27). This
splitting is continued recursively until the diagonal blocks reach a certain minimal block size nmin.
Usually, the partitioning is chosen such that A11, A22 have nearly equal sizes. Banded matrices are
an important special case of HODLR matrices.

We say that A has HODLR rank k if k is the smallest integer such that the ranks of A21 and
A12 in (27) are bounded by k at all levels of the recursion. If k remains small then A can be stored
efficiently by replacing each off-diagonal block with its low-rank factors. The only dense blocks that
need to be stored are the diagonal blocks at the lowest level, see Figure 1. In turn, the storage of
a HODLR matrix requires O(kn log n) memory.

Figure 1: Image taken from [30] describing the HODLR format for different recursion depths.

4.2 Divide-and-conquer in the HODLR format

For a CARE (3) with HODLR matrices A,Q and a low-rank matrix F = BB∗, a divide-and-conquer
method can be derived along the lines of the linear case discussed in [30]. Consider

A =
[
A11 0
0 A22

]
+
[

0 U1V
∗
2

U1V
∗
2 0

]
=
[
A11 0
0 A22

]
+ UAV

∗
A, UA =

[
U1

U2

]
, VA =

[
V1

V2

]
(28a)

and likewise, by exploiting symmetry and low-rank structure for Q and F , the splittings

Q =
[
Q11 0
0 Q22

]
+
[

0 U1U
∗
2

U2U
∗
1 0

]
=
[
Q11 0
0 Q22

]
+ UQDQU

∗
Q, UQ =

[
U1

U2

]
, DQ = [ 0 II 0 ] , (28b)

F = BB∗ =
[
B1

B2

] [
B1

B2

]∗
= UFU

∗
F + UFDFUF , UF =

[
B1

B2

]
, DF = [ 0 II 0 ] . (28c)

The diagonal blocks Aii, Qii, i = 1, 2 are again HODLR matrices (with the recursion depth reduced
by one). After recursively solving the CAREs associated with the diagonal blocks, a low-rank
approximation to the solution of the correction equation (4) is obtained with Algorithm 1. The
resulting procedure is summarized in Algorithm 4. As highlighted in the pseudo-code, it is strongly
recommended to reduce the ranks of UDU∗ in line 9 and of X0 + δX in line 11. Algorithm 4
requires the equations associated with the diagonal blocks to admit a unique stabilizing solution at
all levels of the recursion.

The divide-and-conquer method for a UQME with HODLR matrix coefficients is derived in
an analogous manner. The only substantial changes are that the equations associated with the
diagonal blocks are solved by cyclic reduction [18], see Algorithm 5. The resulting procedure is
summarized in Algorithm 6. This algorithm requires that the matrix polynomials associated with
the diagonal blocks — λ2Ajj +λBjj +Cjj for j = 1, 2 — maintain the splitting property (7), at all
levels of the recursion. Similarly as in Algorithm 4, compression is recommended in lines 9 and 11
of Algorithm 6.
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Algorithm 4 Divide-and-conquer method for CARE with HODLR coefficients

1: procedure D&C CARE(A,B,Q) . Solve A∗X +XA−XBBTX +Q = 0
2: if A is a dense matrix then
3: return Dense CARE(A,B,Q)
4: else
5: Decompose

A =

[
A11 0
0 A22

]
+ UAV

∗
A, F = UFU

∗
F + UFDFU

∗
F , Q =

[
Q11 0

0 Q22

]
+ UQDQU

∗
Q

with UA, VA, UF , DF , UQ, DQ defined as in (28).
6: X11 ← D&C CARE(A11, B1, Q11)
7: X22 ← D&C CARE(A22, B2, Q22)

8: Set X0 ←
[
X11 0

0 X22

]
9: Set U = [UQ, VA, X0UA, X0UF ] and D as in (15). . Compression is recommended

10: δX ← low rank CARE(A− (X0B)B∗, B, U,D) . Algorithm 1
11: return X0 + δX . Compression is recommended
12: end if
13: end procedure

Algorithm 5 Cyclic reduction for UQME

1: procedure Dense CR(A,B,C) . Solve AX2 +BX + C = 0

2: A(0) ← A, B(0) ← B, B̂(0) ← B, C(0) ← C
3: for t = 0, 1, . . . do
4: if converged then return −(B̂(t))−1B
5: A(t+1) ← −A(t)(B(t))−1A(t)

6: B(t+1) ← B(t) − C(t)(B(t))−1A(t) −A(t)(B(t))−1C(t)

7: B̂(t+1) ← B̂(t) − C(t)(B(t))−1A(t)

8: C(t+1) ← −C(t)(B(t))−1C(t).
9: end for

10: end procedure
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Algorithm 6 Divide-and-conquer method for UQME with HODLR coefficients

1: procedure D&C UQME(A,B,C) . Solve AX2 +BX + C = 0
2: if A is a dense matrix then
3: return Dense CR(A,B,C)
4: else
5: Decompose

A =

[
A11 0
0 A22

]
+ UAV

∗
A, B =

[
B11 0
0 B22

]
+ UBV

∗
B , C =

[
C11 0
0 C22

]
+ UCV

∗
C .

6: X11 ← D&C UQME(A11, B11, C11)
7: X22 ← D&C UQME(A22, B22, C22)

8: Set X0 ←
[
X11 0

0 X22

]
9: Set U = [A−1UA, A

−1UB , A
−1UC ] and V = [(X∗0 )2VA, X

∗
0VB , VC ]

10: δX ← Low rank UQME corr(A,B,X0, U, V )
11: return X0 + δX
12: end if
13: end procedure

4.2.1 Complexity of divide-and-conquer in the HODLR format

The complexity of Algorithms 4 and 6 critically depends on the convergence of the projection meth-
ods (Algorithms 1 and 3, respectively) used for solving the correction equations. To a milder extent,
it also depends on the numerical methods used for solving the small dense equations associated with
the diagonal blocks on the lowest level of the recursion. In order to provide some insights of the
computational cost we make the following simplifying assumptions:

(i) Algorithm 1 and Algorithm 3 converge in a constant number of iterations;

(ii) solving the dense (unstructured) equations has complexity O(n3);

(iii) the matrix Q in CARE has rank k;

(iv) all involved HODLR matrices have HODLR rank k and have a regular partition, that is,
n = 2pnmin and the splitting (27) always generates equally sized diagonal blocks;

(v) the compressions in Algorithm 4 and Algorithm 6 is not performed.

Under the assumptions stated above, the LU decomposition of an n × n HODLR matrix requires
O(k2n log2(n)) operations, while performing forward or backward substitution with a vector is
O(kn log(n)). A matrix-vector product is O(kn log(n)) and all involved matrix-matrix operations
are at most O(k2n log2(n)), see, e.g., [27].

CARE. Let Ccare(n, k) denote the complexity of Algorithm 4. Assumption (i) implies that the
cost of Algorithm 1, called at Line 10, is O(k2n log2(n)), because it is dominated by the cost of
solving (shifted) linear systems with the matrix Acorr. Assumption (i) also implies that X0, see
Line 8, has HODLR rank O(k log(n)). Because UA and UF each have 2k columns, the matrix
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multiplications X0UA and X0UF at Line 9 require O(k2n log2(n)) operations. Finally, thanks to
assumption (ii) we have

Ccare(n, k) =

{
O(n3min) if n = nmin,

O(k2n log2(n)) + 2Ccare(n2 , k) otherwise.
(29)

Applying the master theorem [20] to (29) yields Ccare(n, k) = O(k2n log3(n)).

UQME. Let Cuqme(n, k) denote the complexity of Algorithm 6. Analogously to CARE, Assump-
tion (i) implies that Algorithm 1 requires O(k2n log(n)2) operations and that X0 at Line 8 has
HODLR rank O(k log(n)). Therefore, the complexity of Line 9 is given by the one of solving O(k)
linear systems, that is, O(k2n log2(n)). In turn, the recurrence relation for Cuqme(n, k) is identical
with (29) and hence Cuqme(n, k) = O(k2n log3(n)).

5 Numerical results

We now proceed to verify the numerical performance of the divide-and-conquer methods, Algo-
rithms 4 and 6 from Section 4. Our methods are compared with state-of-the-art iterative algorithms
for solving quadratic matrix equations:

• structure preserving doubling algorithm (SDA) for CARE [19],

• cyclic reduction (CR) for UQME [18] (Algorithm 5).

Both algorithms are well suited for coefficients with hierarchical low-rank structures; we have im-
plemented in HODLR arithmetic using the hm-toolbox [36]. As indicated in the description of
the algorithms, we apply recompression with the threshold τσ = 10−12 in order to keep the ranks
under control. Unless stated otherwise, we set the minimal block-size to nmin = 256 for the repre-
sentation in the HODLR format. The parameters τcare, τuqme used in Algorithm 4 and Algorithm 6,
respectively, for stopping the low-rank iterative solver have been set to 10−8.

All experiments have been performed on a Laptop with a dual-core Intel Core i7-7500U 2.70 GHz
CPU, 256KB of level 2 cache, and 16 GB of RAM. The algorithms are implemented in MATLAB
and tested under MATLAB2017a, with MKL BLAS version 11.2.3 utilizing both cores.

5.1 Results for CARE

We will use the following three examples to test the performance of Algorithm 4 for CARE.

Example 5.1. This is an academic example of arbitrary size n: A = tridiag(1,−2, 1), that is, A
is a tridiagonal matrix with −2 on the diagonal and 1 on the sub- and supdiagonal. The matrix
B ∈ Rn×2 is random with normally distributed entries, Q = Q0 + (0.1− θ)I, where Q0 is a random
symmetric tridiagonal matrix also with normally distributed entries, and θ ∈ R is the smallest
eigenvalue of Q0.

Example 5.2. This example is taken from [30, Example 3.2 and Section 5.6]:

A =
[
0 M
I −I

]
, M = 1

4 tridiag(1,−2, 1)− 1
2 (e1e

T
1 + ene

T
n ), B = 1

4 [en+1,−e2n], Q = In,
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Algorithm 4 SDA
n Time Res HODLR rank Time Res HODLR rank

1,024 2.06 4.41 · 10−11 55 6.11 1.17 · 10−10 55
2,048 4.02 1.00 · 10−10 58 21.36 1.82 · 10−9 59
4,096 8.33 5.85 · 10−10 67 65.42 1.42 · 10−9 67
8,192 18.27 5.62 · 10−9 67 226 1.33 · 10−8 67
16,384 39.71 1.02 · 10−8 74 670.17 7.44 · 10−8 76
32,768 84.1 5.56 · 10−8 73 2,023.8 2.33 · 10−6 62

Table 1: Execution times (in seconds) and residuals for the divide-and-conquer method and SDA
applied to the CARE from Example 5.1.

where ej denotes the jth unit vector of appropriate length. Since A is unstable, we use an initial
stabilizing solution X0 := Z0Z

∗
0 , Z0 = 8

[−en e1
−en e1

]
and consider the stabilized CARE given by

Ã := A−X∗0BB∗ and Q̃ := Q−X∗0BB∗X∗0 +A∗X0 +X0A. Because of the structure of B and Z0,
Ã is still sparse. All matrices are scaled by ‖A‖2 and, to acquire a banded structure, reordered by
a perfect shuffle permutation.

Example 5.3. This example is carex18 from the CARE benchmark collection [1] with tridiagonal
A and E, B ∈ Rn, but we set Q := In.

All matrices have been converted into the HODLR format using the hmtoolbox. However, for
the fast solution of the linear systems in Algorithm 1 we invoke the original sparse matrices A and
E and call a sparse direct solver via MATLAB’s “backslash”. The results — compared to those
of SDA — are summarized in the Tables 1–3, where Res = ‖A∗X + XA−XBB∗X + Q‖2/‖X‖2.
The reported computing times for both methods clearly reveal that the divide-and-conquer method
requires substantially less time than SDA while achieving a similar or even better level of accuracy
at the same time. Most of the time in SDA was spent in the numerous HODLR matrix-matrix
multiplications and the associated recompression steps after each multiplication.

For the largest matrices from Example 5.1, n = 32 768, we have profiled the computing time
spent at the different stages of the divide-and-conquer method. Solving dense CAREs for the
diagonal blocks at the lowest level of recursion consumed about 30% of the total time, while about
50% was spent on solving the correction equation, CARE (4), by RKSM (Algorithm 1). About 15%
of the time was spent on performing the update X0 + δX (line 11 in Algorithm 4). The work spent
on rank compressions was negligible; it consumed less than 1% of the total time. Within RKSM,
orthonormalization within the Arnoldi method and the solution of the compressed CAREs were
the most time consuming steps (totaling approximately 40% of the time spent on RKSM), followed
by the procedure for shift generation (15%). Due to the sparse, banded structure of A, the linear
system solves consumed only a very small fraction (about 3%). We note that the time for solving
the correction equation (4) could potentially be reduced by employing a different low-rank solver for
CAREs. A good candidate for such a solver is the recently proposed RADI method [7]1, which does
not rely on Galerkin projections and, hence, does not require solving compressed CAREs. We also
investigated the effect of reducing the block size nmin from 256 to 128. As expected, this decreased
the fraction of computing time spent on diagonal blocks from 30% to 10% but, due to the higher

1Preliminary results suggest that replacing Algorithm 1 with RADI reduces the time by 10% on average over all
used sizes n.
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Algorithm 4 SDA
n Time Res HODLR rank Time Res HODLR rank

1,024 1.44 2.34 · 10−10 10 3.15 9.54 · 10−14 5
2,048 2.74 1.23 · 10−11 9 7.76 2.54 · 10−13 5
4,096 5.5 8.03 · 10−12 10 20.43 2.80 · 10−13 4
8,192 11.2 7.51 · 10−13 10 52.07 2.88 · 10−13 4
16,384 22.21 8.82 · 10−13 10 131.18 2.89 · 10−13 3
32,768 44.47 1.56 · 10−13 9 312.57 2.89 · 10−13 3

Table 2: Execution times (in seconds) and residuals for the divide-and-conquer method and SDA
applied to the CARE from Example 5.2.

Algorithm 4
n Time Res HODLR rank

1,024 7.54 1.20 · 10−7 23
2,048 15.01 3.02 · 10−8 27
4,096 29.74 7.58 · 10−9 28
8,192 62.01 1.90 · 10−9 31
16,384 128.99 4.74 · 10−10 28
32,768 263.61 1.19 · 10−10 27

Table 3: Execution times (in seconds) and residuals for the divide-and-conquer method and SDA
applied to the CARE from Example 5.3.

number of occurrences, increased part spent on solving the correction CAREs to about 67%. This
resulted in a negligible change in the overall time for Algorithm 4 compared to nmin = 256.

5.2 Results for UQMEs from QBD processes

QBD processes are discrete-time stochastic processes with a two-dimensional discrete state space.
The variables of the state space are called level and phase; the transition — at each time step —
with respect to the level coordinate has at most unit length. We consider models whose state space
is isomorphic to N× {0, . . . , n− 1}, that is, we have infinite levels and a finite number of possible
phases. Moreover, we assume that the process is level independent, i.e. the transition probability
depends on the variation of the level but not on its current value.

Computing the stationary distribution of a level independent QBD process amounts to solving a
UQME with coefficients corresponding to (possibly shifted) sub-blocks of its transition probability
matrix [13]. More specifically, the coefficients of the UQME AX2 +BX+C = 0 have the properties
that A,B+I, C ∈ Rn×n are non-negative and A+B+C+I is stochastic, that is, each row sums to
one. As the following lemma shows, these properties imply — under some mild additional conditions
— the eigenvalue splitting property (7) on every level of recursion in the divide-and-conquer method.

Lemma 5.4. Suppose that A,B,C have the properties stated above and that ϕ(λ) has only one
eigenvalue on the unit circle, the simple eigenvalue 1. For some index set J ⊆ {1, . . . , n}, let
AJ , BJ , CJ denote the corresponding principal submatrices of A,B,C. Assume that BJ is invertible
and B−1J (AJ + CJ) is irreducible. Then ϕJ(λ) := λ2AJ + λBJ + CJ has the splitting property (7).
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Proof. For the moment, let us assume that AJ + BJ + CJ + I is substochastic, that is, (AJ +
BJ + CJ + I)e � e, where e denotes the vector of all ones and the inequality is understood
componentwise. We aim at utilizing the following consequence of Rouché’s theorem for matrix-
valued functions [38, Theorem 3.2]: if

‖(λBJ)−1(λ2AJ + CJ)‖ < 1, ∀|λ| = 1, (30)

holds for an induced norm ‖·‖ then ϕJ(z) has exactly k eigenvalues (counting multiplicities) in the
open unit disc and k eigenvalues with modulus greater than 1, where k denotes the cardinality of
J . This implies the result of the lemma.

Setting ψ(λ) := −B−1J (λAJ + λ−1CJ), the condition (30) clearly holds if we can show that the
spectral radius ρ(ψ(λ)) is less than 1 for every λ on the unit circle. Note that |λAJ + λ−1CJ | ≤
AJ +CJ because AJ , CJ are non-negative. Combined with the fact that −BJ is an M-matrix, which
implies −B−1J > 0, and the monotonicity of the spectral radius, we obtain

ρ(ψ(λ)) ≤ ρ(|ψ(λ)|) = ρ(| −B−1J (λAJ + λ−1CJ)|) ≤ ρ(−B−1J (AJ + CJ)) = ρ(ψ(1)).

Using −B−1J > 0 we also have

(AJ +BJ + CJ + I)e � e =⇒ (AJ + CJ)e � −BJe =⇒ ψ(1)e � e.

In particular, the matrix ψ(1) is irreducible and substochastic, and by the Perron Frobenius theorem
[43, Theorem 1.5] it has spectral radius strictly less than 1.

It remains to consider the case when AJ + BJ + CJ + I is stochastic. Note that, under this
assumption also the matrix ψ(1) is stochastic. Obviously, the statement of the lemma holds when
AJ = 0 and CJ = 0, so we assume AJ + CJ 6= 0 from now on. Assuming J = {1, . . . , k} after a
suitable reordering, we can partition

ϕ(λ) =

[
ϕJ(λ) 0
? ?

]
and hence an eigenvalue of ϕJ(λ) is also an eigenvalue of ϕ(λ).

Let us consider the perturbed matrix polynomial ϕJ,ε(λ) := λ2(AJ − εEA) + λBJ + (CJ − εEC)
for ε > 0 and Boolean matrices EA, EC with the sparsity pattern of A and C, respectively. Because
of AJ + CJ 6= 0, the matrix AJ − εEA + BJ + CJ − εEC + I is substochastic for ε sufficiently
close to 0. Using again Rouché’s theorem, this ensures that ϕJ,ε(λ) has the property (7). By
continuity, the eigenvalue functions of ϕJ,ε(λ) do not cross the unit circle as ε → 0 and, in turn,
ϕJ(λ) = limε→0 ϕJ,ε(λ) has n eigenvalues inside or on the unit circle and n eigenvalues outside or
on the unit circle. Because the simple eigenvalue 1 is the only eigenvalue of ϕ(λ) on the unit circle
and the same property holds for ϕJ(λ), this completes the proof.

We remark that the eigenvalue assumption on ϕ(λ) in Lemma 5.4 can be relaxed to the assump-
tion that 1 is a simple eigenvalue (admitting possibly other eigenvalues on the unit circle), provided
that B−1J (AJ + CJ) is primitive and AJ ◦ CJ 6= 0, where ◦ indicates the componentwise product.

Often, the probabilistic model requires bounded transitions in the phase coordinate as well.
This translates into a band structure in the matrices A,B and C. For example, in the case of
double QBD processes (DQBD) [39] the coefficients are all tridiagonal, see also Figure 2. We test
Algorithm 6 on instances of DQBD with increasing size n. In particular, we choose the entries of the
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Figure 2: Transitions of a double quasi-birth-death process on N× {0, . . . n− 1}.

Algorithm 6 CR
n Time Res HODLR rank Time Res HODLR rank

1,024 1.84 6.45 · 10−9 15 3 7.04 · 10−9 20
2,048 3.2 3.83 · 10−9 16 10.37 4.31 · 10−9 18
4,096 8.68 5.08 · 10−9 17 23.55 6.82 · 10−9 21
8,192 22.27 5.18 · 10−9 18 68.16 3.87 · 10−9 20
16,384 55.54 6.10 · 10−9 18 160.28 5.54 · 10−9 22
32,768 137.09 6.67 · 10−9 18 429.2 8.61 · 10−9 22

Table 4: Execution times (in seconds) and residuals for the divide-and conquer-method and cyclic
reduction applied to the example from Section 5.2.

3 central diagonals of A,B and C randomly from a uniform distribution on [0, 1]. We divide each
row of the three matrices by the corresponding entry in (A+B+C)e, in order to make A+B+C
row stochastic. Finally, we subtract the identity matrix from B:

A =


a
(0)
1 a

(1)
1

a
(−1)
1

. . .
. . .

. . .
. . . a

(1)
n−1

a
(−1)
n−1 a

(0)
n

 , B =


b
(0)
1 b

(1)
1

b
(−1)
1

. . .
. . .

. . .
. . . b

(1)
n−1

b
(−1)
n−1 b

(0)
n

− I,

C =


c
(0)
1 c

(1)
1

c
(−1)
1

. . .
. . .

. . .
. . . c

(1)
n−1

c
(−1)
n−1 c

(0)
n

 .
In Table 4 we compare the performance of Algorithm 6 with the method in [16] that combines

cyclic reduction — Algorithm 5 — with HODLR arithmetic. Both methods can handle large values
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Algorithm 6 CR
n Time Res HODLR rank Time Res HODLR rank

1,024 0.48 7.76 · 10−9 2 0.61 2.38 · 10−8 4
2,048 1.2 7.76 · 10−9 2 1.28 2.38 · 10−8 4
4,096 2.95 7.76 · 10−9 2 2.97 2.38 · 10−8 4
8,192 7.18 7.76 · 10−9 2 6.95 2.38 · 10−8 4
16,384 18.05 7.76 · 10−9 2 14.75 2.38 · 10−8 4
32,768 41.14 7.76 · 10−9 2 34.57 2.38 · 10−8 4

Table 5: Execution times (in seconds) and residuals for the divide-and-conquer method and cyclic
reduction applied to the example from Section 5.3.

for n and return solutions of comparable accuracy, measured in terms of Res := ‖AX2 +BX+C‖2.
However, the divide-and-conquer method provides a significant speed up; it is about 3 times faster
than the competitor for n > 4096.

5.3 Results for UQMEs from damped mass-spring system

Another application of UQME is the solution of the quadratic eigenvalue problem (λ2A+λB+C)v =
0, arising in the analysis of damped structural systems and vibration problems [21, 29, 32]. After
having determined the solution X of (5), the quadratic eigenvalue problem reduces to two linear
eigenvalue problems: the one associated with X and the generalized eigenproblem (AX + B)v =
−λAv.

We repeat the experiments from Section 5.2 for the UQME associated with a quadratic eigen-
value problem from a damped mass spring system considered in [49, Example 2]. The n × n
coefficients of the UQME are given by

A = I, B =


20 −10
−10 30 −10

. . .
. . .

. . .

−10 30 −10
−10 20

 , C =


15 −5
−5 15 −5

. . .
. . .

. . .

−5 15 −5
−5 15

 .

The results reported in Table 5 confirm the good scalability and accuracy of both methods. The
solution exhibits a very low HODLR rank and cyclic reduction needs only 2–3 iterations to converge.
As a consequence, cyclic reduction is faster than Algorithm 6 on larger instances of this example.

6 Conclusions

We have proposed novel Krylov subspace methods for updating the solution of continuous-time
algebraic Riccati equations and unilateral quadratic matrix equations whose coefficients are subject
to low-rank modifications. We have provided theoretical insights into the low-rank and stabil-
ity properties of the solutions to the involved correction equations. This has led us to design
novel divide-and-conquer methods for quadratic equations with large-scale coefficients featuring
hierarchical low-rank structures. Our methods have linear polylogarithmic complexity and often
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outperform existing techniques, sometimes significantly. The applications highlighted in this work
include quasi-birth–death processes and damped mass-spring systems.
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[7] P. Benner, Z. Bujanović, P. Kürschner, and J. Saak. RADI: A low-rank ADI-type algorithm
for large scale algebraic Riccati equations. Numer. Math., 138(2):301–330, 2018.

[8] P. Benner, R. Byers, V. Mehrmann, and H. Xu. Robust numerical methods for robust control.
Technical Report 06-2004, Institut für Mathematik, TU Berlin, 2004.
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