MATHICSE Technical Report : Isogeometric analysis with $C^1$ hierarchical functions on planar two-patch geometries

Adaptive isogeometric methods for the solution of partial diifferential equations rely on the construction of locally refinable spline spaces. A simple and efficient way to obtain these spaces is to apply the multi-level construction of hierarchical splines, that can be used on single-patch domains or in multi-patch domains with $C^0$ continuity across the patch interfaces. Due to the benefits of higher continuity in isogeometric methods, recent works investigated the construction of spline spaces with global $C^1$ continuity on two or more patches. In this paper, we show how these approaches can be combined with the hierarchical construction to obtain global $C^1$ continuous hierarchical splines on two-patch domains. A selection of numerical examples is presented to highlight the features and effectivity of the construction.


Year:
Jan 31 2019
Publisher:
Écublens, MATHICSE
Note:
MATHICSE Technical Report Nr. 02.2019
Laboratories:




 Record created 2019-03-29, last modified 2019-06-19

Fulltext:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)