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The Web constitutes a valuable source of information. In recent years, it fostered the construction of large-scale knowledge bases, such as
Freebase, YAGO, and DBpedia, each storing millions of facts about society in general, and specific domains, such as politics or medicine.
The open nature of the Web, with content potentially being generated by everyone, however, leads to inaccuracies and misinformation,
such as fake news and exaggerated claims. Construction and maintenance of a knowledge base thus relies on fact checking, assessing the
credibility of facts. Due to the inherent lack of ground truth information, fact checking cannot be done in a purely automated manner, but
requires human involvement. In this paper, we propose a framework to guide users in the validation of facts, striving for a minimisation
of the invested effort. Specifically, we present a probabilistic model to identify the facts for which manual validation is most beneficial.
As a consequence, our approach yields a high quality knowledge base, even if only a sample of a collection of facts is validated. Our
experiments with three large-scale datasets demonstrate the efficiency and effectiveness of our approach, reaching levels of above 90%
precision of the knowledge base with only a third of the validation effort required by baseline techniques.

1 INTRODUCTION

Extracting factual knowledge from Web data plays an important role in various applications. For example, knowledge
bases such as Freebase [fre 2017], YAGO [yag 2017] and DBpedia [dbp 2017] rely on Wikipedia to extract entities and
their relations. These knowledge bases store millions of facts, about society in general as well as specific domains such as
politics and medicine. Facts can be stored in various formats, reaching from unstructured text segments, through formal
concepts and relations, to structured statements. In any case, extraction of factual knowledge first yields candidate facts
(aka claims), for which the credibility needs to be assessed. Given the open nature of the Web, where content is potentially
generated by everyone, fact extraction faces inaccuracies and misinformation, such as fake news and exaggerated
claims. Hence, building a knowledge base from multiple Web sources does not only require conflict resolution and data
cleansing [Dong et al. 2012], but also calls for methods to ensure the credibility of the extracted facts, especially in
domains dealing with sensitive information, such as healthcare [Mukherjee et al. 2014].

To assess the credibility of facts extracted from the Web, automated methods rely on classification [Lehmann et al.
2012] or sensitivity analysis [Wu et al. 2014]. While these methods scale to the volume of Web data, they are hampered
by the inherent ambiguity of natural language, deliberate deception, and domain-specific semantics. Consider the claims
of ‘the world population being 7.5 billion” or ‘antibiotics killing bacteria’. Both represent common-sense facts. Yet, these
facts have been generated by complex statistical and survey methods and, therefore, cannot easily be inferred from other
basic facts.

For applications that rely on accurate facts, incorporating manual feedback is the only way to overcome the limitations
of automated fact checking. However, eliciting user input is challenging due to several reasons. First, user input is
expensive (in terms of time, cost, etc.), so that a validation of all claims is infeasible, even if one relies on a large number
of users (e.g., by crowdsourcing [Hung et al. 2013]) and ignores the overhead to resolve disagreement among them.
Second, claims are not independent, but connected in a network of Web sources. An assessment of their credibility
therefore requires effective propagation of user input between correlated claims. Finally, there is a trade-off between the
precision of a knowledge base (the ratio of credible facts) and the amount of user input: The more facts are checked
manually, the higher the precision. However, user input is limited by some effort budget in most applications.

Against this background, we aim at supporting a user in the validation of facts by means of a pay-as-you-go approach.
While user input is incorporated continuously to improve the results of automatic fact checking, our ultimate goal is
to instantiate an accurate knowledge base, even if not all claims have been validated. By (i) inferring the credibility of
non-validated facts from those that have been validated, and by (ii) guiding a user in the validation process, we reduce
the amount of manual effort needed to achieve a specific level of result precision. Both steps, credibility inference and
user guidance, are interrelated. On the one hand, inference exploits mutual reinforcing relations between Web sources
and claims, which are further justified based on the user input. On the other hand, a user is guided based on the potential
effect of the validation of a claim for credibility inference.

Our contributions are summarised as follows:
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o Fact checking model: §2 proposes a model for fact checking that combines automated credibility inference with
input from a user who manually validates facts. We also formulate the problem of effort minimisation in fact
checking and introduce an iterative approach to guide a user in the validation process.

e Probabilistic credibility inference: §3 presents methods to construct a probabilistic knowledge base, to perform
incremental inference based on user input, and to construct a trusted set of facts.

e Probabilistic user guidance: §4 develops a strategy to choose the claims for which manual validation is most
beneficial, dropping traditional assumptions about the trustworthiness of Web sources. We also combine credibility
inference and user guidance in a comprehensive validation process.

Furthermore, §5 evaluates our techniques with three large-scale datasets, demonstrating their efficiency and effectiveness.
Finally, §6 discusses related work before §7 concludes the paper.

2 MODEL AND APPROACH

Setting. We model the setting of fact checking by a set of data sources S = {sq,...,sy}, a set of documents D =
{d1,...,dm}, and a set of candidate facts, or short claims, C = {c1,...,cn}. A source could be a user, a website, a news
provider, or a business entity. A document is often textual and provided by some source (e.g., a tweet, a news item, or a
forum posting). Sources, documents, and claims jointly represent a fact database, denoted by a tuple N = (S, D, C). To
construct an accurate knowledge base, the goal is to infer labels for every claim in C, where ¢; = 1 denotes that a fact ¢; is
credible, whereas ¢; = 0 represents the opposite.

User input is modelled by a fact checking function e : C — {0, 1, ©}. The label © denotes that a claim has not yet been
validated. Our work employs a probabilistic model, where P (¢ = 1) denotes the probability that claim c is credible. Then,
a probabilistic fact database is a tuple Q = (N, e, P), with e being a fact checking function and P assigning a credibility
probability to all claims.

The goal of fact checking is a deterministic assignment, a grounding function g : C — {0, 1} that assigns truth values to
all claims. It then enables the construction of an accurate knowledge base from the claims that are deemed credible.

Effort minimisation. While our objective is to instantiate a trusted set of credible facts, our work combines automated
fact checking with input from users validating claims. However, such validation is costly, in terms of user hiring cost
and time. Therefore, user input is commonly limited by an effort budget, which leads to a trade-off between validation
accuracy and invested effort.

Going beyond this trade-off, we aim at minimising the user effort invested to reach a given validation goal. We consider
fact checking as an iterative process with a user validating the credibility of a claim in each iteration. This process halts
either when reaching a validation goal or upon consumption of the available effort budget. The former relates to the
desired result quality, e.g., a threshold on the estimated credibility of the deterministic assignment. The latter defines an
upper bound for the number of validations by a user and, thus, iterations of the validation process.

Formally, for a fact database N = (S, D, C), conducting fact checking leads to a sequence of deterministic assignments
(90,91, - - - gn), termed a validation sequence. Each g; represents the assignment obtained after the i-th iteration of the
validation process. Given an effort budget b and a validation goal A, we refer to a sequence (9o, g1, - - . ,gn) as being
valid, if n < b and d, satisfies A. Let R(A, b) denote a finite set of valid validation sequences that can be created by
instantiations of the validation process. Then, a validation sequence {(go, g1, - - ., gn) € R(A, b) is minimal, if for any
validation sequence (gé,g{, . s gm) € R(A,D) it holds that n < m.

PROBLEM 1 (EFFORT MINIMISATION IN FACT CHECKING).
Let (S, D, C) be a fact database and R (A, b) a set of valid validation sequences for an effort budget b and a goal A. The
problem of effort minimisation in fact checking is the identification of a minimal sequence {go, g1, . - ., gn) € R(A,b).

As detailed above, a validation goal is commonly defined in terms of a threshold on the estimated credibility of the
deterministic assignment. However, solving Problem 1 is challenging. Claims are not independent, but subject to
mutual reinforcing relations with Web sources and documents. Consequently, the validation of one claim may affect the
probabilistic credibility assessment of other facts. Furthermore, sources that try to spread misinformation influence fact
checking and may distort the evaluation of a fact’s credibility. Finally, there is a computational challenge and finding an
optimal solution to Problem 1 quickly becomes intractable: all permutations of all subsets (of size < b) of claims would
have to be explored.
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Guided fact checking. To address the problem of effort minimisation in fact checking, we consider a process that guides
a user in the validation of claims. The general idea of the validation process is summarised as follows: User input shall be
sought solely on the ‘most promising’ unverified facts, i.e., those for which manual validation is expected to have the
largest impact on the estimated credibility of the resulting deterministic assignment.

Let Q = (N,e, P), with N = (S, D, C), be a probabilistic fact database. Then, the validation process continuously
updates a deterministic assignment g of truth values to claims by:
(1) selecting a claim ¢ for which feedback shall be sought;
(2) eliciting user input on the credibility of ¢, which is represented by the fact checking function, e(c);
(3) inferring the implications of the user input on the probabilistic fact database Q;
(4) deciding on the deterministic assignment g that captures the facts that are assumed to be credible.
To realise the above process, steps (1), (3), and (4) need to be instantiated with specific methods. An example for a
straight-forward instantiation would be a validation process that selects a claim randomly; limits the inference to the claim
for which feedback has been sought; and decides that a claim c is credible, g(c) = 1, if and only if it holds P(c) > 0.5.
In the remainder of this paper, we present methods for a more elaborated instantiation of the above process that exploit
the mutual reinforcing relations between Web sources and claims to infer the implications of user input and decide on
the deterministic assignment. Furthermore, we also show how to select the claims for which manual validation is most
beneficial.

3 PROBABILISTIC FACT CHECKING

This section presents a probabilistic model for fact checking (§3.1). Based thereon, we introduce mechanisms for
incremental inference (§3.2) and the instantiation of a deterministic assignment (§3.3).

3.1 A Probabilistic Model for Fact Checking

Sources of uncertainty. A probabilistic fact database is constructed based on sources and documents, each encoded
using a set of features, such as the frequency of updates at a source or linguistic characteristics of a document. Our model
abstracts from the specific nature of these features, but takes into account that the trustworthiness of a source and the
language quality of a document often have a strong influence on the credibility of the extracted claims. Each source si is
associated with a feature vector (fls (Sk)s---» f;flb (sg)) of mg source features. In the same vein, (fld (dj), ... ,ng (dj)yis
a vector of mp document features assigned to each document dj.

Features of sources and documents interact with each other, as well as the credibility of the extracted claims, so that we
consider the following relations between them:

e Causal relation: Claims are provided in a document by a source. Thus, a claim’s credibility depends on both
trustworthiness of the source and the language quality of the document. A claim is more likely to be credible, if it
is posted by a trustworthy source using confident and objective language. Yet, the intentions of a source, and thus
its trustworthiness, may change over different contexts and hence documents.

e Mutual relation: Causal relations are complemented by mutual relations that stem from overlapping sets of a
sources, documents, and claims. Multiple documents, potentially from multiple sources, may contain the same
claim. For example, if a source disagrees with a claim that is accepted by several sources, it shall be regarded as
not trustworthy.

To model these relations along with observed variables, we rely on a Conditional Random Field (CRF) model, see Fig. 1.
Specifically, causal relations are captured by cliques in the CRF, while mutual relations are modelled by the overlap of
cliques, which leads to the factorization of cliques to compute probability distributions.

The Conditional Random Field model. We construct a CRF as an undirected graph of random variables S, D, C for
sources, documents, and claims. There are three types of edges between vertices, those between a source and a document,
between a document and a claim, and between a source and a claim. Hence, the CRF contains cliques of a source, a
document, and a claim. Since the same claim can be provided in different documents, by the same or different sources,
any random variable can be part in multiple cliques.
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Fig. 1. A fraction of probabilistic fact database

We note that S and P are observed variables, while C represents output variables. Therefore, the model likelihood can
be expressed in the form of a conditional distribution:

1
Pr(C|ID,S$;W) = ————— i»dj, s W, 1
DS = s 1;[ | fedysi W) (M)
={ci,d;, sk

where II is the set of all possible cliques; c;,dj, s are a claim, document, and source of a clique 7, respectively;
Z(D,S;W) = Y Ilx ¢(ci,dy, sp; W) is a normalization constant to ensure that the sum of probabilities over all
configurations of C is equal to one; and W = | J,; it Wy is the set of model parameters, used to control the effects of
individual features. Using this model, we would like to compute the conditional distribution of C, given the source
features and document features. This is realised by the log-linear model (aka logistic regression) that expresses the log of
a potential function as a linear combination of associated features:

1 mp
log ¢(cirdj,sis Wee) = D wap X Iy(c) + Y wh X fP(d))
b=0 t=1

+ ) W X f ) @
t=1

where Ij,(c;) is the indicator function of the current configuration of ¢;, i.e., I (c;) equals to one, if b = ¢;, and is zero
otherwise. Hence, we have different weights for each configuration of C and Wy = {w, p, wg /- w,sw} is the set of
all weights. The above formalisation provides a simple model, in which the features of sources and documents are
discriminative indicators for the credibility of the related claims. The weights of different features further enable us to

tune their relative importance, as features vary between applications and shall be learned from labelled data.

Handling opposing claims. Different Web documents may contain the same claim with opposite stances—support or
refute it [Hasan and Ng 2014]—and a source is considered trustworthy, if it refutes an incorrect claim. A model that only
captures that a claim was mentioned in a document by a source would neglect this aspect. However, incorporating such
information explicitly would over-complicate the model, as the number of Web documents is commonly much larger than
the number of claims (see our real-world datasets in §5). We therefore tackle this challenge by introducing an opposing
variable —c for each claim c. Then, model complexity increases only slightly: C includes opposing claims, W contains a
doubled number of parameters, and any document connects only to the positive or negative variable of a claim. However,
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as ¢ and —c cannot have the same truth value, we enforce a non-equality constraint, as follows:

0 ifc=c’
Pr(c,~¢') = ) ne=e 3)
Pr(c,—c’|D,S; W) otherwise.

3.2 Incremental Inference with User Input

Using the above formalisation, we need to solve the following optimisation problem to infer model parameters:

W* = argmax log Pr(C*|D,S; W)
w

= argmax log Z prct,cYp,s;w) (@)
w cU
where CL and CU are sets of labelled and unlabelled claims, respectively. The log-likelihood optimisation is convex, since
the logarithm is a monotonically increasing function and the probability distribution is in exponential form. However, the
problem becomes intractable due to the exponential number of configurations of CU. Moreover, upon receiving new user
input, CL and CU change, so that re-computation is needed.

Against this background, we propose an incremental inference algorithm, called iCRF, which follows the view
maintenance principle [Blakeley et al. 1986]. Estimation of assignment correctness and model parameters exploits the
results of the previous iteration of the validation process, thereby avoiding re-computation. As we will show experimentally,
this does not only increase inference efficiency, but also yields a better approximation compared to random probability
estimation.

The iCRF algorithm implements the conclude function of the validation process introduced in §2. In the z-th iteration
of the process, the input is given by the fact database N and the fact checking function e,, which has been updated with
the user input received in the z-th iteration. When conducting the validation process, we always maintain the state of
the previous iteration as follows: If ¢ is the claim validated in the z-th iteration of the validation process, we rely on the
probabilistic fact database Q,—; = (N, ez—1,P,—1) to conduct the reasoning. Then, the set of unlabelled and labelled
claims is updated, Cg = Cg_l \ {¢} and Ci‘ = C£—1 U {¢}, and the algorithms returns a new probabilistic fact database
Qz =(N, ez, Pz).

In each iteration of the validation process, the iCRF algorithm adopts the Expectation-Maximization (EM) principle [Mc-
Callum et al. 2005] for inference. The choice for EM is motivated by its generally fast convergence, computationally
efficiency, and particular usefulness when the likelihood is an exponential function (i.e., maximising log-likelihood
becomes maximising a linear function). Specifically, we infer the labels of the variables CU for unlabelled claims and learn
the weight parameters W mutually. By relying on an EM-based approach, we can further naturally integrate user input on
the credibility of specific claims. This is a major advantage compared to approaches based on gradient-descent [Mukherjee
and Weikum 2015] that optimise model parameters, but do not enable the integration of user input and constraints (e.g.,
on opposing claims as introduced above).

Technically, inference is iterative and alternates between an Expectation step (E-step) and a Maximization step (M-step),
until convergence. EM-based inference is conducted in each iteration of the validation process, while each EM iteration
updates the model parameters W. Therefore, in the z-th iteration of this process, we obtain a sequence WZO R Wzl, e, WZt
of model parameters and a sequence P, PL, ..., P of credibility probabilities assigned to claims.

E-step: We estimate the credibility probabilities from the current parameter values. The first E-step of the z-th iteration
of the validation process is based on parameters WY, given as input from the previous iteration of the validation process,
ie., WZ0 = Wztj’ll, with t,_1 as the number of EM iterations in the z — 1-th iteration of the validation process. In the t-th
E-step of the z-th step of the validation process, credibility probabilities are computed as follows:

(1) Obtain a sequence of samples Q! by performing Gibbs sampling according to the conditional probability distribution:

gt (cY) = Pr(cY|ct, D, s; W)
o l_[ Pri7(e) x dleidjy s WE) - (5)
m={c;,dj, sk } €Il

We incorporate non-equality constraints (Eq. 3) into Gibbs sampling using an idea similar to [Schmidt 2009], which,
based on matrix factorisation, embeds constraints as factorised functions into the Markov chain Monte Carlo process.
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Note that Q is a sequence, as any configuration of C can appear multiple times. We weight the influence of causal
interactions (i.e., cliques) by the credibility of their contained claims, so that user input is propagated via mutual
interactions (i.e., overlaps) between the cliques.

(2) Compute the probability from the Gibbs samples, for each claim ¢ for which no user input has been received
(ez(c) = ©):

2ceqt Le=1
Pri(e) = 24L& =1 6
feo) = 25 O
For all other claims (ez(c) # ©), the probability is fixed:
1 ifez(c)=1
Pri(c) = z 7
=) {O otherwise. M

M-step: We compute the new parameter values by maximizing the expectation of log-likelihoods as a weighted average
of the probability distribution of current label estimates. That is, in the ¢-th M-step of the z-th step of the validation
process, we have:

witl = argmaXZqi(CU) log Pr(ct,cV|D,s;w") (8)
W T

This step is implemented by a L2-regularized Trust Region Newton Method [Lin et al. 2008], suited for large-scale data,
where critical information is often sparse (many feature values may be zero).
The process converges when the difference between two consecutive estimates of parameters is insignificant.

3.3 Instantiation of Deterministic Assignment
After incorporating the user input of the z-th iteration of the validation process, a deterministic assignment may be
instantiated by predicting the truth values of all claims. Since claims are not independent, we take the truth configuration
with maximal joint probability:
gZ(CU) = argmaxPr(CUlCﬁ,D,S;WZ) )
cvu

However, solving this equation is similar to solving a boolean satisfiability problem. Therefore, we may simply leverage
the most recent Gibbs sampling result Q, obtained during EM for instantiation:

gZ(CU) = arg max Z Lou_c (10)
CYU  ceq,

We break ties randomly. For validated claims, the user input is directly incorporated, i.e., g, (CF) = e, (CL).

4 USER GUIDANCE IN FACT GUIDING

Having discussed a model and techniques for (i) inference based on user input and (ii) instantiation of a deterministic
assignment, we now turn to strategies to guide a user in the validation. This section first defines a measure of uncertainty
for a probabilistic fact database (§4.1). Subsequently, we introduce two approaches to guide the selection of claims for
validation (§4.2 and §4.3), before combining them in a hybrid approach (§4.4).

4.1 Uncertainty of a Probabilistic Fact Database

The model of a probabilistic fact database, as constructed above, enables us to quantify the uncertainty related to credibility
inference in order to guide a user in the validation process. Let Q = (N, e, P), with N = (C, D, S), be a probabilistic
fact database. Recall that Q defines the likelihood of credibility of each claim, i.e., P = U.ecPr(c). Then, the overall
uncertainty of the database is computed by the Shannon entropy [Shannon 2001] over a set of claims as random variables:

He(Q) = = >\ Pr(C;W)logPr(CG;W) (1)
CeQ

where Q are all possible configurations of C. In our iCRF model, it can be computed exactly by [Reyes 2013; Reyes and
Neuhoff 2009]:
H(C;W) = o(W) - Ew[t(O)]'W (12)

Manuscript submitted to ACM



Effort-driven Fact Checking 7

where ®(W) = Y.¢ 1 ¢(ci, dy, sg; W) is called the partition function and Eyy, [¢(C)] = V®(W). Since our model is an
acyclic graph with no self statistics, the partition function is computed exactly using Ising methods [Reyes 2013], which
run in polynomial time.

We can further scale-up uncertainty computation by approximating the entropy in linear time, as follows:

He(Q) =- Z [Pr(c)log Pr(c) + (1 = Pr(c)) log(1 - Pr(c))] (13)
ceC
where the probability of each claim is obtained after the EM iterations (i.e., Eq. 6 and Eq. 7). Howeyver, this approximation
neglects the mutual dependencies between claims and, thus, potentially underestimates the effects of user input on their
credibility.

4.2 Uncertainty-driven User Guidance

A first heuristic to guide the selection of claims for validation aims at the maximal reduction in uncertainty under the
assumption of trustworthy sources. It exploits the benefit of validating a single claim using the notion of information gain
from information theory [Russell and Norvig 2003].

To capture the impact of user input on a claim c, we define a conditional variant of the entropy measure introduced
earlier. Informally, it measures the expected entropy of the probabilistic fact database under specific validation input:

He(Q | ¢) = Pr(e) x He(Q") + (1 = Pr(c)) x He(Q7) (14)
where QT = conclude(N, e’) (and Q™ = conclude(N, e’)) is constructed by the incremental learning with e’(c) = 1 (and
e’(c) = 0)and e’(c’) = e(c’) for ¢’ € (C\ {c}).

To take a decision on which claim to select, we assess the expected difference in uncertainty before and after
incorporating input for a claim. The respective change in entropy is the information gain that quantifies the potential
benefit of knowing the true value of an unknown variable [Russell and Norvig 2003], i.e., the truth value in our case:

IGc(c) = He(Q) —He(Q | ¢). s)
The information gain can guide the selection of a claim: we chose the one that is expected to maximally reduce the
uncertainty of the probabilistic fact database. This is formalized by a selection function for uncertainty-driven user

guidance:
selectc(C) = arg max IG¢(c) (16)

ceC’
where C’ C C is the set of non-validated claims. While this formulation is sound for ranking a whole set of claims,
validated claims will be ranked last (since their credibility probability is either one or zero). Also, we do not need to rank
the opposing claim —c of a claim c, as their conditional entropies in Eq. 14 will be equivalent.

4.3 Source-driven User Guidance

User guidance as introduced above assumes that sources are trustworthy—an assumption that is often violated in practice.
To tackle this issue, we model source trustworthiness by explicitly aggregating over all claims made by a source. More
precisely, the likelihood that a source is trustworthy is measured as the fraction of its claims that are considered as true in
the last EM iteration:

j
Pr(s=1) = Zeec, le=1 (17)
ICs
where Cs = {c € C|(c, s) € II} is the set of claims connected to s in the CRF model.
Then, the uncertainty of source trustworthiness values is defined as:
Hs(Q) = - Z[Pr(s) log Pr(s) + (1 — Pr(s)) log(1 — Pr(s))] (18)
s€ES
The conditional entropy when a claim c is validated is:
Hs(Qle) = Pr(c) x Hs(Q™) + (1 = Pr(c)) x Hs(Q") 19)
where, as above, Q7 = conclude(N,e’) (and Q™ = conclude(N,e’)) is constructed by the incremental learning with

e’(c) =1 (and e’(c) = 0) and e’(c”) = e(c’) for ¢’ € (C\ {c}).
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As for the case of the first heuristic, we further capture the information gain as the difference in entropy and, based
thereon, define the selection function for source-driven user guidance:

IGs(c) = Hs(Q) — Hs(Qlc) (20)
selects(C’) = argmax IGs(c) 21
ceC’

where C’ C C is the set of non-validated claims. Again, we do not need to rank opposing claims.

4.4 A Combined Approach to User Guidance

There is a trade-off between the application of the uncertainty-driven and the source-driven strategies for user guidance.
Focusing solely on the former may lead to contamination of the claims from trustworthy sources by unreliable sources.
An excessively source-driven approach, in turn, is undesirable as it may increase the overall user efforts significantly.
Therefore, we propose a dynamic weighting procedure that, in each iteration of the validation process, helps to choose
among the two strategies.

Weighting procedure. Two factors affect the choice of strategies:

Ratio of untrustworthy sources. If there is a high number of unreliable sources, the source-driven strategy is preferred.
With little user input, detection of unreliable sources is difficult, though, so that the uncertainty-driven strategy is favoured
in the beginning.

Error rate. The deterministic assignment g; captures the assignments considered to be correct in the i-th iteration of
the validation process. If g; turns out to be mostly incorrect, we have evidence of unreliable sources and, thus, favour the
source-driven strategy.

Both factors combined lead to a dynamic strategy. Initially, with little user input, the strategy is primarily chosen on
the error rate of the deterministic assignment. At later stages, the number of inferred unreliable sources becomes the
dominant factor.

The above idea is formalised based on the ratio of unreliable sources in the i-th iteration of the validation process,
which is r; = (|{s € S|Pr(s) < 0.5}])/(|S]). The error rate of the deterministic assignment is computed by comparing the
user input for claim c in the i-th iteration with the truth value that has been assigned to ¢ in g;_1, i.e., in the previous
iteration. Here, we leverage the probability P;_;(c) of the probabilistic fact database Q;—; = (N,e;_1, Pi_1), of the
previous iteration. If g;_; assigns a credibility v € {0, 1} to c, the error rate is computed as:

€i=1—Pri_1(c=v) (22)

Using the ratio of unreliable sources r; and the error rate €;, we define a normalised score for choosing the source-driven
strategy:

zi=1- e (€i(1=hi)+rih;) (23)
where h; = (i)/(|C|) is the ratio of user input. This score mediates the trade-off between the error rate ¢; and the ratio of
untrustworthy sources r; by the ratio of user input h;. When the ratio h; is small, the ratio of untrustworthy sources has
less influence and the error rate is the dominant factor. When the ratio h; is large, the ratio of unreliable sources becomes
a more dominant factor.

Validation procedure. Combining the model and inference mechanism introduced in §3 with the above strategies to
guide a user, we present our complete validation process for fact checking in Alg. 1. As long as the validation goal is not
reached and the user effort budget has not been exhausted (line 5), selection of the claim for which user input shall be
sought is done either by the source-driven or the uncertainty-driven strategy. The choice between strategies is taken by
comparing factor z; to a random number (line 7), which implements a roulette wheel selection [Goldberg 1989]. The
second step (lines 11 and 12) elicits user input for the selected claim and computes the error rate according to Eq. 22.
The third step (line 13-16) incorporates the user input. That is, we update the fact checking function e;41; infer the
implications of user input by means of function conclude, which yields a new probabilistic fact database; and decide on
the new deterministic assignment g;4+1 capturing which facts are considered credible. Further, the trustworthiness of each
source is updated and the ratio of unreliable sources r; is calculated to compute score z;4+1 (lines 18-19), which is used in
the next iteration to choose between the selection strategies.
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Algorithm 1: Validation process for fact checking

input :an probabilistic fact database, Q = (N, e, P), with N = (C, D, S),
a validation goal A, and a user effort budget b.
output :the truth assignment g.

1 e (cHO,ceC);
2 Py « conclude(N, ep);
3 go « decide(Pp);
4 i,zp < 0;
5 whilenor A A i < bdo
// (1) Selecting a claim to validate
6 x « random(0, 1);
7 if x < z; then // Choosing the source-driven strategy
8 L ¢« selects({c" €C | ei(c') =0O))
9 else // Choosing the uncertainty-driven strategy
10 L ¢« selecte(fc’ € C | ei(c') =0O))
// (2) Eliciting user input
1 Elicit user input v € {0, 1} on c;
12 €i =1-Pj_1(c =v);// Calculate error rate €;
// (3) Incorporating user input
13 eir1— (e v A ei(d),d €eC #c);
14 Qi+1 < conclude(N, ej+1);
15 gi+1 < (¢’ > decide(Pi+1), ¢’ € C, ejr1(c") = O A’ = ejy1(c), ¢/ €C, ejv1(c’) # O);
16 ie—i+1;
17 Update source trustworthiness Pr(s), Vs € S ;
18 Calculate ratio of unreliable sources r;;
o |z 1ol d),

20 return dj;

5 EVALUATION

In this section, we evaluate the proposed approach experimentally, using real-world datasets. We first discuss the
experimental setup (§5.1), before turning to an evaluation of the following aspects of our approach:

o The runtime performance of the presented approach (§5.2).

e The efficacy of our iCRF model (§5.3).

e The effectiveness of user guidance (§5.4).
Since different baselines are not applicable for all experimental setting, we defer the description of baselines to each
evaluation.

5.1 Experimental Setup

Datasets. We utilize the following datasets (see also Table 1):

o Wikipedia: This dataset contains a list of proven hoaxes and fictitious people from Wikipedia links [wik 2017]. In
total, there are 1955 sources, 3228 documents, and 157 labelled claims.

e Healthcare forum: The dataset contains 291276 claims about side-effects of drugs extracted from 2.8M documents
of 15K users on a healthcare forum (healthboards.com) [hea 2017]. We consider 529 claims that have been labelled
by health experts. The claims are part of 48083 documents from 11206 sources.

e Snopes: This dataset contains a wide range of claims from news websites, social media, e-mails, etc [sno 2017].
The credibility of these claims has been assessed by Snopes’ editors. The dataset comprises 80421 documents of
23260 sources that contain 4856 labelled claims.

Table 1. Datasets

Dataset  #Sources #Documents  #Claims

wiki 1955 3228 157
health 11206 48083 529
snopes 23260 80421 4856

For those datasets, we derive credibility scores as follows. If a source is a website, we rely on ranking scores [Ding et al.
2003]. If a source is an author, features include personal information (age, gender) and activity logs (number of posts).
Manuscript submitted to ACM
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Credibility of documents is assessed using common linguistic features such as stylistic indicators (e.g. usage of modals,
named entities, inferential conjunction) and affective indicators (e.g. sentiments, thematic words) [Olteanu et al. 2013].

In our experiments, we use the ground truth of the datasets to simulate user input. Model parameters are initialised
with a value of 0.5, following the maximum entropy principle.

Evaluation Metrics. In addition to the uncertainty of the probabilistic fact database defined in §4, we relied on the

following measures:

Relative user efforts (E;): the number of user-validated claims i relative to the number of all claims |C|, i.e., E = i/|C]|.

Precision (P;): the correctness of the deterministic assignment at each validation step. Let g* : C — {0, 1} be the correct
assignment of claim credibility. Then, the precision of the deterministic assignment g; at the i-th validation step is

l{c € C1gilc) = g* ()}
IC]
This definition of precision is different from the one in information retrieval and binary classification [Russell and
Norvig 2003]. Since the user interest is a trusted set of facts, the correctness of obtained facts shall be evaluated.
Percentage of precision improvement (R;): a normalised version of precision, measuring relative improvements to il-
lustrate the effect of user input. With Py as the initial precision, measure is defined at the i-th validation step

by

Pi=

P; — Py

1-Py

Experimental environment. Experimental results have been obtained on an Intel Core i7 system (3.4GHz, 12GB RAM).
All except the experiments on early termination (??) ran until the actual termination of the validation process.

R; =

5.2 Runtime Performance

Being based on direct user interactions, our approach relies on a good runtime performance. Therefore, a first experiment
measures the response time, denoted by At, of our approach during one iteration of Alg. 1, i.e., the waiting time of a user
after validating one claim. This includes the time to infer implications of user input and to select the next best claim to
validate.

Avg. At(s) | At(s)

1.5} Bl origin-
[Jscalable
[ TIparallel+partition

| => origin  x-x parallel+partition
2.5 = scalable : :

1.0p

0.5p

‘ ‘ ‘ 0. :
0.0—iki health snopes 20 40 60 80 100

Dataset Label Effort (%)

Fig. 2. Time vs. dataset Fig. 3. Time vs. user effort

Fig. 2 shows the observed response time, averaged over 10 runs, when using the plain algorithm (origin), with
uncertainty estimation as introduced in §4.1 (scalable), and with the computational optimisations (parallel+partition).
With larger dataset size (wiki to snopes), the response time increases. However, with computational optimisations, the
average response time stays below half a second, which enables immediate user interactions. Fig. 3 further illustrates for
the largest dataset, snopes, how the response time evolves during the validation process when averaging the response
time over equal bins of user effort. The time peaks between 40% and 60% of user effort, since at these levels, user input
enables the most conclusions on the credibility of claims.
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5.3 Efficacy of iCRF model

We now turn to the overall efficacy of our iCRF model and evaluate the estimated probabilities of credibility assignments.
Since we use probabilistic information to guide validation, the probabilities should reflect the ground truth, i.e. true values
of claims. For each claim, our iCRF model should assign a higher probability to correct credibility values than to incorrect
ones. In the experiment, we keep track of the correct assignments and their associated probabilities while varying the user
effort (0%, 20%, 40%).

Fr‘eque‘nc‘:y ‘(%) -
N 0% 7772 20% 1 40% ‘ | T
20 - ) 0.8 o
e | 0.6f D
0.2~

0.0

0 Uncertainty

0.1.234.56.7.8.91 0.0 02 04 06 08 1.0
Probability Values Precision
Fig. 4. Guidance benefits Fig. 5. Uncert. vs. prec.

Fig. 4 shows the correctness of our model via a histogram of the probability distribution over all datasets. It illustrates
how often the probability assigned to a claim falls into a specific bin. Increasing the amount of user input, the range
covering most of the correct credibility values shifts from lower probability bins to higher ones. Even with little user
effort (20%), the number of correct assignments that are assigned a value > 0.5 is very high. This highlights that user
input indeed enables better assessment of the credibility of claims.

5.4 Effectiveness of User Guidance

Relation between uncertainty and precision. We verify the underlying assumption of our approach to user guidance,
i.e., that the uncertainty of a fact database, see §4, is correlated with the precision of the deterministic assignment. In this
experiment, the uncertainty-driven guidance strategy was applied to all datasets (100 runs each), until precision reaches
1.0. Fig. 5 depicts the results in terms of precision and normalized uncertainty (i.e., uncertainty divided by the maximum
value of the run). There is a strong correlation between both measures (Pearson’s correlation coefficient is —0.8523).
Hence, uncertainty is indeed a truthful indicator of the result correctness.

Guidance strategies. Turning to the guidance strategies, we mimic the user by means of the ground-truth, until precision
reaches 1.0. We compare the proposed approach (hybrid) with two methods: random, which selects a claim randomly
for validation; and baseline, which selects the claim that is most ‘problematic’ in terms of the entropy of its probability.
Intuitively, this baseline method outperforms random selection since it targets claims that are on the edge of being
considered credible and thus the major sources of model uncertainty.

Fig. 6 shows the results for the health and snopes datasets (wiki yields similar trends). Our approach (hybrid) clearly
outperforms random selection and the baseline method. For example, using the snopes dataset, our approach leads to a
precision above 0.9 with input on only 31% of the claims, whereas the other methods require validation of at least 84%
to reach the same level of precision. Note that snopes has low initial precision due to the frequency of fake news and
rumours on news websites and social media. Yet, the resulting issues are quickly fixed with user input that eliminates
many claims that related to each other and jointly not credible.

6 RELATED WORK

Truth finding on the Web. Given a set of data items claimed by multiple sources, the truth finding (aka fact checking)
problem is to determine the true values of each claimed item [Dong and Naumann 2009]. Existing work in this space, also
Manuscript submitted to ACM



12 Tam Nguyen
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Fig. 6. Effectiveness of guiding

considers mutual reinforcing relations between sources and data items, e.g., by Bayesian models [Cong et al. 2018; Duong
etal. 2017; Hung et al. 2015, 2014b, 2018; Tran et al. 2011; Zhao et al. 2012], maximum likelihood estimation [Wang
et al. 2012], and latent credibility analysis [Pasternack and Roth 2013]. However, these techniques neglect posterior
knowledge on input and rely on domain-specific information about sources and data, such as the dependencies between
sources [Dong et al. 2010] and temporal data evolution [Dong et al. 2009].

Truth finding is also known as knowledge verification [Li et al. 2017a] and credibility analysis [Mukherjee and
Weikum 2015]. Existing automatic techniques mostly look at features of data, such as number of relevant articles,
mentions, keywords, and popularity, which are noisy and can be easily dominated by information cascades [Friggeri
etal. 2014; Li et al. 2017a]. Again, posterior knowledge on user input cannot be incorporated. Also, approaches based
on gradient-descent [Mukherjee and Weikum 2015] only optimise model parameters, but neglect external probability
constraints. Fact extraction may be performed by diverse data representations, e.g., knowledge bases [Dong et al. 2014],
web tables [Cafarella et al. 2008], semi-structured data [Etzioni et al. 2004], or free text [Banko et al. 2007]. Other work
considers co-occurrence information and evidential logs [Li et al. 2017a, 2011]. Yet, they are limited to quantitative
information and do not employ logical reasoning and semantics. For example, in [Li et al. 2017a] identifies unpopular
facts based on the number of mentions in Web data. Our work is orthogonal to all these works. First our model relies
on an abstract data representation, which is not specific to a particular domain. Second, our principles of user guidance
can be adapted for many of the aforementioned truth finding techniques, as the notion of probabilistic uncertainty is
generic [Shannon 2001].

User guidance. Guiding users or experts has been studied in data integration, data repair, crowdsourcing, and recom-
mender systems [Hung et al. 2017, 2014a; Jeffery et al. 2008; Li et al. 2017b; Parameswaran et al. 2012; Yakout et al.
2011; Yin et al. 2016a,b]. Most of this work proposes a decision theoretic framework to rank candidate data for validation
to improve the quality of a dataspace. Following this line, we rely on models from the fields of Decision Theory and
Active Learning [Rubens et al. 2015; Russell and Norvig 2003]. Despite the similarities in the applied models, our
approach differs from the aforementioned ones in several ways. First, unlike existing work that focuses on structured data
that is deterministic and traceable, we cope with Web data that is unreliable and potentially non-deterministic. Second,
existing work relies on two main sources of information (data and data provider), whereas we incorporate individual
features as well as causal and mutual relations between heterogeneous data (sources, documents, and claims). Third,
the benefit of user input depends on the application domain and, unlike the above works, our approach is tailored to the
specific characteristics of Web data.

Our setting is different from Active Learning [Settles 2010], as we do not require any training data for a user to
begin the validation process. Moreover, we incrementally incorporate user input without devising a model from scratch
upon receiving new labels. However, we note that stopping criteria for feedback processes have been studied in Active
Learning, e.g. using held-out labels [Mozafari et al. 2014] and performance estimation [Laws and Schitze 2008]. However,
these methods are applicable only for specific classifiers and do not incorporate human factors. By means of a unified
probabilistic model, we have been able to propose several criteria for early termination that turned out to be very effective.
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7 CONCLUSIONS

In this paper, we proposed an approach to overcome the limitations of existing methods for automatic and manual
fact checking. We introduced an iterative validation process, which, based on a probabilistic model, selects a claim for
which validation is most beneficial, infers the implications of the user input on the fact database as a whole, and enables
grounding of the credibility values of claims at any time. We further proposed different strategies to guide users and
presented optimisations that increase the efficiency and robustness of the validation process. Our evaluation showed that
our approach outperforms respective baselines methods significantly, saving up to 53% of user effort when striving for
90% result precision.
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