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Abstract

Accurate 𝑞-profile reconstruction is of importance for the development of advanced scenarios,
but continues to be a challenge in tokamak research. To constrain the 𝑞-profile in the plasma centre
the Motional Stark Effect diagnostic (MSE) is often used, however achieving routine measurements
with the required accuracy proves to be difficult in many devices. We present a novel approach
to obtain accurate estimates of the 𝑞-profile using an observer based approach. The observer
combines MSE measurements with model-based prediction of the system. For this the plasma
transport simulator RAPTOR is coupled with a fixed boundary equilibrium solver to create a
model-based prediction of the MSE measurements. An Extended Kalman Filter (EKF) is used to
merge profile evolution predictions from the RAPTOR code with measurements. Using synthetic
data we demonstrate accurate 𝑞-profile estimations in situations where the model is purposely
disturbed and only erroneous MSE measurements are available. For shots at ASDEX Upgrade
we show that by constraining RAPTOR with MSE measurements, the evolution of the model’s
𝑞-profile is in close proximity to reference profiles of reconstructed equilibria from an integrated
diagnostic suite. 1



1 Introduction

Of the available concepts for nuclear fusion reactors, the most matured one is the Tokamak. It
confines the plasma by a helical magnetic field which is created by external coils and a current
running through the plasma. The externally applied toroidal component of the magnetic field is
known, however the field components generated by the plasma current are difficult to measure and
manipulate. Tailoring the plasma’s current density profile 𝐽 , or its derived quantity, the 𝑞-factor
𝑞 = 𝑑Φ/𝑑𝜓, with toroidal magnetic flux Φ and poloidal magnetic flux 𝜓, is essential for plasma
stability and performance [1].

Unfortunately, no direct measurement of 𝑞 (or 𝐽) is available. The plasma equilibrium, specifically
the distribution of poloidal flux 𝜓(R,Z) and the free functions 𝑝′(𝜓), 𝐹𝐹 ′(𝜓), are estimated
using (real-time) equilibrium reconstruction codes that solve the 2D Grad-Shafranov equation,
a two-dimensional, nonlinear, elliptic partial differential equation describing the force balance in
the plasma [2, 3]. This process usually involves parametrising the internal profiles and solving a
least-square problem constrained by internal and external measurements of the plasma. External
measurements are magnetic probes, flux loops and Rogowski coils, internal measurements are
for example temperature and density measurements. By using magnetic probes, the plasma
equilibrium can be reconstructed with good accuracy at the plasma boundary, however in
order to constrain the internal current distribution, knowledge of the internal magnetic field is
required. In the plasma centre, Grad-Shafranov solvers are typically constrained by measurements
from the Motional Stark Effect (MSE) diagnostic [4] or polarimetric measurements [5]. MSE
systems locally measure the polarisation angle 𝛾 of light emitted by externally injected neutral
particles, which is aligned with respect to the magnetic field. A continuous challenge of the MSE
diagnostic is to record data with sufficient accuracy for a good 𝑞-profile reconstruction. For a
precise reconstruction, for example to accurately resolve the evolution of the central safety factor
during sawtooth events, a measurement accuracy of 0.1∘ on a millisecond timescale is required [6, 7].

In this article we propose a novel way to use a model-based observer to obtain accurate esti-
mates of the magnetic pitch angles. This approach results in higher quality estimates than can
be achieved by using only measurement or model data and can also complement situations where
direct measurements from MSE are not available. The observer combines MSE measurements with
model-based prediction of the system for better estimates of the state of the system. This provides:
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∙ a check of the measurement quality (or the simulation quality),

∙ better estimates of the state of the model by combining the real and predicted measurement,

∙ a real-time capable filtering solution,

∙ a constraint on the 𝑞-profile by the model in cases where MSE data is not available,

∙ a correction of the model in case of model mismatch.

As a physics model describing the process, we use the poloidal flux diffusion equation and electron
transport equation [8], implemented in the RAPTOR code [9].

A recently developed approach, similar to the one described in this paper, is implemented in the
IDE code [10, 11]. In this approach, a Bayesian approach is used to merge diagnostic measurements
related to the core current density with a one-step-ahead prediction based on the poloidal flux
diffusion equation. Important differences between both approaches are that RAPTOR is capable
to run in real-time and the physics model in IDE only includes the poloidal flux diffusion equation,
while the kinetic core profiles are obtained from a Bayesian reconstruction using several diagnostics
for individual time slices. The approach of combining RAPTOR with an Extended Kalman Filter
contains a predictive model for the electron temperature (with future versions including also ion
temperature and particle transport equations [12]), allowing the EKF approach to be applied to
reconstruct all the core profiles. At the same time, it is important to realise the similarities between
the Bayesian approach of IDE and the Kalman Filter approach in this paper. Indeed, it can be
shown that the Kalman Filter can be written as a special case of a Bayesian estimator assuming the
noise is Gaussian [13]. The great advantage of Kalman Filter above more general Bayesian recon-
struction is its speed, which allows real-time implementation. In previous work [14], RAPTOR has
been used on TCV to estimate the core electron temperature and 𝑞-profile, constrained by measure-
ments of core density and temperature. The code is also used at AUG [15], JET [12] and ITER [16].

In this work, we show for the first time that RAPTOR can be constrained by MSE measurements
to accurately model the 𝑞-profile evolution. A prediction of 𝛾 is not possible from the state of the
model (RAPTOR) alone, but requires knowledge of the 2D magnetic field structure. To be able
to calculate 𝛾, RAPTOR has been coupled to a Grad-Shafranov solver (CHEASE [17]) in a self
consistent way, which ensures that the geometry-dependent terms that enter the current diffusion
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equation (CDE) evolve consistently with the 2D equilibrium, and at the same time the equilibrium
is correctly constrained by the 𝑞-profile from the CDE. This coupling allows a fast and accurate
calculation of 𝛾 from the current density profile given by the CDE in combination with the plasma
equilibrium.
In the future we want to couple RAPTOR to a real-time capable equilibrium solver for real-time
𝑞-profile prediction and control. Then, instead of constraining the GS solver by RAPTOR’s
𝑞-profile, the filtered polarisation angle would be used as a constraint to ensure consistent 𝑞-profiles
between RAPTOR and the equilibrium solver.

The remainder of this article is structured as follows:
Section 2 introduces the EKF, followed by a description of the RAPTOR code and a brief outline
of the MSE diagnostic and the difficulties present at the ASDEX Upgrade Tokamak. In section 3
the EKF is first tested on a virtual MSE diagnostic, where 𝛾 is calculated from the model, and
lastly the EKF is used to constrain RAPTOR’s 𝑞-profile with MSE measurements from ASDEX
Upgrade. The conclusions are presented in section 4.
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2 Methology

2.1 Extended Kalman Filter

To provide the best estimate of the state of a system, an Extended Kalman Filter (EKF) can be
used to filter real measurements with model predicted measurements of the system. The EKF, the
non-linear extension of the Kalman Filter (which is used for systems described by linear ODE’s), has
been described in literature extensively [18]. The EKF has the advantage that it not only takes the
measurement and model into account, but it is also recursive, fast and can handle asynchronous
measurements. Only the main concepts of the EKF algorithm are outlined here, the interested
reader is referred to [18, 19] for a more detailed description.
The EKF algorithm is illustrated in figure 2.1. For every time step 𝑘, the EKF algorithm consists
of 4 steps. Our notation follows the one of Simon [18], the hat denotes a predicted quantity from
the model and the subset, e.g. 𝑘|𝑘 − 1, denotes that the quantity is evaluated for time 𝑘, taking
into account the history of the quantity up to time 𝑘 − 1.

Step 1: The EKF uses a model of the system in the form of a nonlinear ODE 𝑥𝑘 =
𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1), where 𝑥𝑘 describes the state of the system, 𝑢 are inputs to the model and
𝑤 is the noise vector of the state. First, the partial derivatives of the model function are calculated

𝐹𝑘−1 = 𝜕𝑓𝑘−1
𝜕𝑥

⃒⃒⃒⃒
𝑥̂𝑘−1

, (2.1)

𝐺𝑘−1 = 𝜕𝑓𝑘−1
𝜕𝑤

⃒⃒⃒⃒
𝑥̂𝑘−1

. (2.2)

(2.3)

Step 2: Predict the state estimate and estimation-error covariance matrix:

𝑥̂𝑘|𝑘−1 = 𝑓(𝑥̂𝑘−1, 𝑢𝑘−1, 0), (2.4)

Σ𝑘|𝑘−1 = 𝐹𝑘−1Σ𝑘−1𝐹
𝑇
𝑘−1 +𝐺𝑘−1𝑄𝑘−1𝐺

𝑇
𝑘−1. (2.5)

Here, Σ is the estimation-error covariance matrix and 𝑄𝑘 is the covariance matrix of the model.
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Step 3: Calculate the partial derivatives of the predicted measurement function 𝑦𝑘 = ℎ(𝑥̂𝑘, 𝑣):

𝐻𝑘 = 𝜕ℎ𝑘

𝜕𝑥

⃒⃒⃒⃒
𝑥̂𝑘|𝑘−1

, (2.6)

𝑀𝑘 = 𝜕ℎ𝑘

𝜕𝑣

⃒⃒⃒⃒
𝑥̂𝑘|𝑘−1

, (2.7)

with 𝑣 being the noise vector of the measurement.

Step 4: Update the state and error covariance estimate:

𝐿𝑘 = Σ𝑘|𝑘−1𝐻
𝑇
𝑘

(︁
𝐻𝑘Σ𝑘|𝑘−1𝐻

𝑇
𝑘 +𝑀𝑘𝑅𝑘𝑀

𝑇
𝑘

)︁−1
, (2.8)

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐿𝑘

(︁
𝑦𝑘 − ℎ𝑘(𝑥̂𝑘|𝑘−1)

)︁
, (2.9)

Σ𝑘|𝑘 = (𝐼 − 𝐿𝑘𝐻𝑘) Σ𝑘|𝑘−1, (2.10)

where 𝐿𝑘 is the so called Kalman gain and 𝑦𝑘 the real measurement of the system.
For a smooth initialisation of the EKF, the Kalman gain is multiplied with a time dependent
function:

𝐿′
𝑘 = 𝐿𝑘 · exp (−0.12 · (𝑡− 𝑡0)) , (2.11)

where 𝑡0 is the first active time step of the observer and the factor 0.12 was chosen to provide a
smooth initialisation.
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Figure 2.1: Overview of the Extended Kalman Filter: The predictive model (RAPTOR) sim-
ulates the state of the system from which the measurement (polarisation angles 𝛾) is predicted.
In combination with the real measurement the EKF updates the state to obtain an improved
estimate.

The system is described by the current diffusion equation and heat transport equations, imple-
mented by the transport simulator RAPTOR. The state of the model 𝑥̂ is a representation of
the poloidal flux 𝜓 and the electron temperature 𝑇𝑒, from which various plasma parameters -
for this article most importantly the safety factor 𝑞 - can be derived. As measurements 𝑦𝑘, the
polarisation angle measurements from the MSE diagnostic are used. The model, measurement and
measurement prediction, will be explained in the following sections.

A central quantity for the EKF algorithm are the noises of the state and measurement, 𝑤𝑘 and 𝑣𝑘

respectively, from whose covariance matrices the Kalman Gain 𝐿𝑘 is calculated (equation 2.8). The
covariance matrices are essential for the performance of the EKF. They determine the weighting
of the model, or measurement, and are used to tune the EKF.
The process covariance matrix 𝑄𝑘 of the model has previously been defined in [19]. It is designed
to enforce a high correlation between neighbouring spatial points based on physical and numerical
consideration of the problem.
The covariance matrix of the measurement is a diagonal matrix containing the square of the stan-
dard deviation of each measurement channel as diagonal entries. It is described in more detail in
section 2.3.
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2.2 Plasma evolution model: RAPTOR

The observer is based on a model of the system (the tokamak), which provides estimates of the
state of the system from which the expected measurement can be derived. The system is modelled
by the transport simulator RAPTOR. This faster than real-time capable code solves the coupled 1D
poloidal flux (𝜓), electron- and ion- temperature (𝑇𝑒, 𝑇𝑖) equations, as well as particle transport
equations for electrons and multiple ion species [12]. For the present work, we solve only the
equations for 𝜓 (equation 2.12) and 𝑇𝑒 (equation 2.13).

𝜎||

(︃
𝜕𝜓

𝜕𝑡

⃒⃒⃒⃒
𝜌

− 𝜌Φ̇𝑏

2Φ𝑏

𝜕𝜓

𝜕𝜌

)︃
= 𝐹 2

16𝜋2𝜇0Φ2
𝑏𝜌

𝜕

𝜕𝜌

[︂
𝑔2𝑔3
𝜌

𝜕𝜓

𝜕𝜌

]︂
− 𝐵0

2Φ𝑏𝜌
𝑉 ′

𝜌 (𝑗aux + 𝑗bs) (2.12)

In equation 2.12, 𝜎|| is the neoclassical conductivity, 𝑗aux is the non-inductive driven current by
auxiliary systems, 𝑗bs the bootstrap current, and 𝑔2, 𝑔3, 𝐹 , 𝑉 ′

𝜌 define the geometry of the simulation
and are calculated from magnetic equilibria.
The electron energy transport equation is written as:

3
2
(︁
𝑉 ′

𝜌

)︁−5/3
(︃
𝜕

𝜕𝑡

⃒⃒⃒⃒
𝜌

− Φ̇𝑏

2Φ𝑏

𝜕

𝜕𝜌
𝜌

)︃[︂(︁
𝑉 ′

𝜌

)︁5/3
𝑛𝑒𝑇𝑒

]︂

+ 1
𝑉 ′

𝜌

𝜕

𝜕𝜌

(︃
− 𝑔1
𝑉 ′

𝜌

𝑛𝑒𝜒𝑒
𝑇𝑒

𝜕𝜌
+ 5

2𝑇𝑒Γ𝑒𝑔0

)︃
= 𝑃𝑒 (2.13)

With electron temperature, density, thermal diffusivity, convective flux 𝑇𝑒, 𝑛𝑒, 𝜒𝑒, Γ𝑒 and geometric
terms 𝑔0, 𝑔1. 𝑃𝑒 denotes the sum of the power density sources and sinks. Φ𝑏, 𝜌 =

√︁
Φ/Φedge, and

𝐵0 are the toroidal flux enclosed by the LCFS, the normalised square root of the toroidal flux and
toroidal magnetic field at the magnetic axis, respectively. The particle flux Γ𝑒 is neglected in this
work.
Equation 2.12 and 2.13 follow the notation of [12], where a detailed description of the individual
terms is provided.

The equations are solved on a radial grid corresponding to the normalised toroidal flux and are
depending on the plasma and flux surface shape.
The thermal transport coefficient 𝜒𝑒 is provided by a gradient based empirical transport model [15]
with free parameters tuned to match the temperature profiles calculated by the IDE code. The
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equilibrium calculated by IDE is taken as reference for this analysis.

2.3 MSE diagnostic

Equilibrium solvers reconstruct the magnetic equilibrium in the plasma by solving the Grad-
Shafranov equation, constrained by various measurements. As a constraint for the current density
in the plasma centre, the Motional Stark Effect (short MSE) diagnostic is commonly used. It
provides a measure for the local magnetic pitch angle 𝛾𝑚, the angle between 𝐵𝜑 and 𝐵𝜃. The MSE
diagnostic measures the light emitted by neutral particles, which are injected into the plasma.
Typically, the radiation of the particles injected by the neutral beam injectors is analysed. Due
to the Stark effect the emitted light is polarised relative to the magnetic field; measurements
of the polarisation angle 𝛾 can be linked to the pitch angle of the magnetic field projected in
a plane perpendicular to the diagnostic’s line of sight [4]. The MSE diagnostic at AUG can
measure the polarisation angles at 8 different radial positions, with up to two channels per radius.
The diagnostic measures the radiation of the Balmer-𝛼 line, which, due to the Stark effect, is
degenerate into a total of 9 lines with different polarisations. The lines can be grouped in two
components: 𝜋- and 𝜎-lines, which are polarised perpendicular and parallel to the electric field
vector. The setup at AUG allows simultaneous measurement of both spectral components at
similar radial and vertical positions [20–22].

The configuration of the MSE channels for the shot analysed in this article is shown in figure 2.2.
6 channels of the diagnostic are configured to record the 𝜎 lines of the stark spectrum and 2 the
𝜋 emission. The measurement location of the 𝜋 channels are in proximity to the 𝜎 channels. In a
shot with high quality MSE data, the relationship 𝜎𝑛 ≈ 𝜋𝑛 − 90∘ holds, where 𝑛 = 1, 2 refers to
one of the two channel pairs marked in purple in figure 2.2.
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Figure 2.2: Poloidal plane, CHEASE flux surfaces and corresponding toroidal 𝜌 values. Plotted
are the spatial locations of the MSE channels and contour lines of constant 𝜌 intersecting the
MSE channels. Note that the values of 𝜌 are subject to change during the shot, shown is the
reconstructed grid for 𝑡 = 3.7 s, shot #33134. The 𝑞-profile cannot be constrained by MSE
signals in the vicinity of the plasma edge. No MSE channels are available here, however 𝑞95 is
constrained by the total plasma current.

A challenge at AUG is the contamination of the recorded signal with background polarised light,
originating from reflections on the inner metallic wall of the device. This background polarised
light can render the recorded signals unusable in discharges where the line averaged central electron
densities exceeds ⟨𝑛𝑒⟩ ' 5 · 1019 [22] (a shot-by-shot analysis is required to determine the quality
of the MSE signal). One extreme example of a contaminated measurement is shown in figure
2.3: The diagnostic was configured to record five 𝜋 − 𝜎 measurement pairs simultaneously, which
should display a 90∘ difference. During the shot, this can only be observed within the first 1.7 s,
after which the density is increased and the lines begin to diverge [22], rendering the measurement
unusable*.

*For completeness we like to mention that similar problems have been reported at Alcator C-Mod, where as a
solution the MSE polychromator has been developed [23]. The MSE polychromator measures the 𝜋 + 𝜎 emission
as well as the background polarisation in wavebands close to the measurement wavelengths for every channel. The
polarisation angles are than corrected by subtraction of the background.

10



1 1.5 2 2.5 3

t [s]

20

30

40

 [
°
]  + 90

°

Figure 2.3: Example of the high-noise contaminated MSE measurements, recorded in AUG shot
#31313 (adapted from [22]).

The simultaneous measurement of 𝜋 and 𝜎 lines is used to derive a time-varying estimate of the
variance of each MSE measurement: The measurement covariance matrix 𝑅𝑘, required by the EKF
(equation 2.8), is calculated from the two available 𝜋− 𝜎 pairs (see figure 2.2) by calculating their
time averaged difference:

Δ𝛾(𝑡) = 1
2

2∑︁
𝑛=1

⃒⃒⃒(︁
𝛾𝜎

𝑛 − (𝛾𝜋
𝑛 − 90∘)

)︁⃒⃒⃒
(2.14)

≡ 1
2ΔΓ, (2.15)

where the overline denotes that for each time 𝑡, ΔΓ is averaged over the previous 20 ms (the
averaging window was chosen to provide statistically relevant results for simulations where the
time step is one millisecond, but proved to work well in simulations with a time step of 5 ms).
The diagonal elements of the covariance matrix, corresponding to the covariances of the individual
MSE channels, are then 𝑅𝑘 = (Δ𝛾)2.

2.4 Measurement prediction

The EKF requires the calculations of the predicted measurement from the model. The polarisation
angle is calculated by

𝛾 = tan−1
(︃
𝑎0𝐵𝑧 + 𝑎1𝐵𝑟 + 𝑎2𝐵𝜑

𝑎3𝐵𝑧 + 𝑎4𝐵𝑟 + 𝑎5𝐵𝜑

)︃
, (2.16)

where the 𝑎𝑖 are known device specific geometric coefficients, that depend on the setup of the MSE
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diagnostic. 𝐵𝑧(𝑟, 𝑧) and 𝐵𝑟(𝑟, 𝑧) are the vertical and radial components of the poloidal magnetic
field 𝐵𝜃, and 𝐵𝜑(𝑟, 𝑧) is the toroidal magnetic field at the measurement location 𝑟, 𝑧†.
From equation 2.16 it is clear that 𝛾 cannot be derived from the RAPTOR state alone, since
RAPTOR calculates 1D profiles and does not reconstruct the 2D equilibrium. The plasma equilib-
rium, constrained by RAPTOR’s 𝑞-profile, must be calculated in order to calculate the predicted
measurement. Then, by rewriting the poloidal magnetic field as

𝐵𝜃 = 𝑒𝜑 × (2𝜋𝑅)−1𝑞−1∇Φ, (2.17)

the polarisation angle can be calculated by using Φ = ΦEQ (i.e. the toroidal flux is obtained
from the plasma equilibrium) and 𝑞 = 𝑞RAPTOR. The required coupling between RAPTOR and a
equilibrium solver is described next.

2.5 Coupling between RAPTOR and CHEASE

The RAPTOR code does not evolve the plasma geometry, but instead assumes it to be fixed
throughout the simulation. A time dependent coupling between RAPTOR and an equilibrium
reconstruction code is required to calculate the spatial distribution of magnetic fields required
to estimate 𝛾 locally. This requires constraining an equilibrium solver with RAPTOR’s 𝑞-profile
and updating geometry terms in the transport equations from the calculated equilibrium before
continuing the iteration of the transport equations. In practice this can be achieved by constraining
both codes with the same MSE angles. Since the flux surface shape and Φ changes slowly compared
to 𝜓, and thus 𝑞, updates of the plasma equilibrium are not required with every iteration of the
CDE.
For the presented analysis, RAPTOR has been coupled to CHEASE [17], a fixed-boundary
equilibrium solver, which solves the GS equation using specified boundary conditions and internal
profiles. The last-closed flux surface and magnetic fields are used as inputs by CHEASE and are
directly provided by RAPTOR. The pressure profile in terms of normalised toroidal flux 𝑝(𝜌)
can also be used as input profile. The use of 𝜌 allows a direct coupling with RAPTOR, since it
is RAPTOR’s radial coordinate, and is less sensitive to changes in the 𝑞-profiles. This requires
CHEASE to transform internally to profiles with respect to the poloidal flux, a solution of the GS

†Note that equation 2.16 is a reduced form which neglects contributions from electric fields, which can lead to
high uncertainties in advanced plasma scenarios [24]. The radial electric fields cannot be obtained from RAPTOR.
For improved accuracy 𝐸𝑟 can be estimated from ion pressure profiles and toroidal and poloidal velocities [25].
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equation. Another new option has recently been introduced in CHEASE, namely to provide the
𝑞(𝜌) profile as input [26]. In this case CHEASE computes the current density profile 𝐼*, related
to 𝑗𝜑, such as to match the input 𝑞-profile and iterates until convergence (see equation 50 in [26]).
This usually leads to a finite current density at the plasma boundary which can be reduced by
slightly modifying the radial derivative of 𝑞 near the edge. This is sometimes used to study the
sensitivity of plasma stability on the edge current density, for example, but it is not needed for
this routine since the 𝐼*(𝑞target) matching performed by CHEASE provides the target 𝑞-profile
without unphysical edge surface currents. Also, CHEASE can use the previous equilibrium as an
initial guess which will significantly accelerate the equilibrium calculation.

The implementation allows dynamic updates of the geometry at arbitrary time steps of the simu-
lation; it is illustrated in figure 2.4. The implemented coupling calculates the plasma equilibrium
based on RAPTOR’s 𝑞- and pressure profiles every 𝑛-th RAPTOR iteration ‡. The equilibrium
update frequency is chosen by the user. Too few updates can cause jumps in the calculated polar-
isation angle, a high update frequency leads to long simulation times. For the presented work it
was found sufficient to update the equilibrium every 5th RAPTOR time step.
From the calculated equilibrium, the geometry, i.e. the shape of the poloidal flux surfaces as well
as the toroidal flux they enclose (in detail terms 𝑔1, 𝑔2, 𝑔3, 𝑉 ′ and 𝐹 in equation 2.12, 2.13) are
calculated and updated in RAPTOR before the iteration of the transport equations is continued.
This asynchronous implementation allows for a fast and accurate calculation of the polarisation
angle, which can be used in offline and real-time simulations alike.

‡Technically CHEASE was constraint by the parallel current density 𝑗|| and 𝑝, which is computational easier and
available from RAPTOR. We verified that constraining CHEASE with 𝑗|| or 𝑞 results in similar results.
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Figure 2.4: Flow diagram of the implemented coupling between RAPTOR and CHEASE.

The importance of the equilibrium update is shown figure 2.5. Here, RAPTOR was run twice
with identical simulation parameters, however, in one case the geometry was prescribed and fixed
throughout the simulation, and in the second case the geometry terms were updated during the
simulation.
The geometry updates do not change the 𝑞-profile evolution, but result in corrections of 𝛾 of
multiple degrees, essential for a sensitive analysis.
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Figure 2.5: RAPTOR simulations with and without equilibrium update: Top: 𝑞 values for
different 𝜌 values. Bottom: calculated 𝛾. No simulation parameters were changed resulting in
the equal evolution of 𝑞. The a priori calculated geometry ( ) is based on equilibria from IDE
which were loaded in half-second intervals. This is manifested in step-wise changes in 𝛾. In the
coupled simulation ( ) the geometry is updated every 5th simulation step.
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3 Implementation of the MSE observer

3.1 EKF tuning using synthetic data

The MSE observer is implemented and the performance is evaluated with synthetic data. The
aim is to test and validate the implementation and investigate the effect of various settings of
the EKF. For this, artificial MSE measurements are generated by simulating an AUG shot with
RAPTOR, used in purely predictive mode, as in [15]. Matching plasma equilibria are calculated
with CHEASE. From the simulation result and equilibria, the expected polarisation angles are
calculated as described in section 2.4 and 2.5. This simulation and synthetic diagnostic are as-
sumed to correspond to the true evolution of the plasma profiles (𝑞, 𝑇𝑒, ...) and corresponding true
measurements, i.e. the nominal case.
A normal distributed random noise with standard deviation of Δ𝛾 = 0.5∘ is added to the polarisa-
tion angles to simulate the effect of measurement noise. This noise level is arbitrarily chosen and
approximately 5 times higher than the acceptable error margins on MSE signals. Furthermore, the
model used by the EKF is perturbed with respect to the nominal simulation: Firstly, the 𝑞-profile
used to initialise the simulation at t0 = 1.5 s is elevated, see figure 3.1 (d) and 3.2 at t0. Addi-
tionally, the electron temperature transport coefficient is reduced by 30%, which yields a higher
temperature, higher conductivity and correspondingly different 𝑞-profile evolution.

The input to the EKF are the perturbed simulation and noisy polarisation angles. The 𝑞-profile is
evaluated to verify that the EKF is able to provide a good estimate of the nominal 𝑞-profile.
The time evolution of various quantities of the nominal and observer simulation are shown in figure
3.1. The model mismatch due to the reduced transport is clearly visible in the central electron
temperature evolution in figure 3.1 c). For the observer case, the initially perturbed 𝑞-profile, figure
3.1 d), converges within ≈ 80 ms to the 𝑞-profile of the nominal simulation, only a slight mismatch
is visible at the 𝑞 values towards the plasma centre, which is the most affected by the reduced heat
transport.
The innovation sequence I = 𝑧𝑘 −ℎ(𝑥̂𝑘|𝑘−1), the difference between measured and model predicted
MSE data, shown in fig. 3.1 e), is expected to be zero mean if the underlying system is linear. For
the non-linear case it still serves as an indication on the performance of the EKF. In the analysed
scenario I does not converge to a zero mean, but stays close to zero. This implies that a constant
correction from the observer on the 𝑞-profile is required. Contradictory to [19], no disturbance
estimation is required due to the relatively large timescales of the current diffusion time.
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Figure 3.1: Summary of the MSE observer results using synthetic MSE data (based on AUG shot
#33134 ). a) Plasma current and aux. power. b) calculated polarisation angle without ( ) and
with 0.5∘ noise ( ). c) central electron temperature of the nominal and perturbed simulation.
d) comparison of the 𝑞-value evolution at 𝜌 = 0, 0.2, 0.4, 0.6 between the nominal simulation,
perturbed simulation and MSE observer. e) Innovation sequence, the difference between measured
and model predicted MSE data.

The 𝑞-profile of the nominal and perturbed simulation as well as the observer results are compared
for various time steps in figure 3.2.
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after the begin of the simulation. The model of the observer is the perturbed simulation, input
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The observer corrects the perturbed 𝑞-profile to closely approximate the nominal case. The differ-
ence in 𝑞 for each time step between the nominal case and the observer/perturbed case is calculated
using the standard deviation figure of merit [27, 28]

𝜎(𝑡) =
√︃∫︁ 1

𝜌=0
𝑑𝜌 (𝑞obs,pert − 𝑞nom)2/

√︃∫︁ 1

𝜌=0
𝑑𝜌 𝑞2

𝑛𝑜𝑚. (3.1)

Averaged over all times 𝑡 > 75 ms, 𝜎 nom|obs = 0.02 (between the nominal and observer simulation)
is very low compared to 𝜎 nom|pert = 0.19 (between the nominal and perturbed case).
The convergence time depends on the choice of the covariance matrix, which is used to tune the
EKF. To illustrate the influence of the model covariance, figure 3.3 shows the innovation sequence
for varying 𝜎𝐽 , the value of the diagonal elements of the model covariance matrix 𝑄𝑘 (see equation
2.5). Decreasing covariance results in an increase convergence time. Tuning of the covariance
(matrix) is crucial for the operation of the EKF.
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Figure 3.3: The convergence of the EKF, measured by the innovation sequence I, can be tuned
by the covariance 𝜎𝐽 .

3.2 𝑞-profile reconstruction of AUG discharge

After the initial verification using synthetic measurements, the 𝑞-profile of a full AUG discharge is
reconstructed using the MSE observer. A shot with low noise MSE signals is analysed, for which a
reference equilibria (reconstructed by MSE constrained IDE [11]) is available. IDE is a GS solver,
which, apart from being constrained by the measurements, also evolves the poloidal flux diffusion
equation in-between consecutive equilibria reconstructions. The evolved current density profile is
used to constrain the next equilibrium solution. The goal of this analysis is for the observer to
obtain a 𝑞-profile comparable with the IDE reference. For the analysis, RAPTOR’s heat transport
model, non-inductive current density deposition profiles from ECRH and NBI as well as the non-
inductive driven currents have been tuned to approximate IDE estimates. The density profiles are
fixed to match IDE. A comparison between IDE and the RAPTOR simulation without the EKF
is shown in figure 3.4. Here, 𝑞edge matches well due to the constraints at the plasma boundary,
however, in the plasma centre, RAPTOR diverges from the reference.
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and RAPTOR (crosses). c), d): Electron and ion temperature at different 𝜌. e) 𝑞-value evolution
at different 𝜌. Temperature and 𝑞-values are plotted for 𝜌 = 0, 0.2, 0.6, 0.8. Note that the shot is
not sawtoothing and that due to the high uncertainty of the 𝑞-profile reconstruction around the
magnetic axis no assessment can be made whether 𝑞0 drops below one.

The MSE observer is run with the same RAPTOR configuration used to create figure 3.4 and
the measured polarisation angles of shot #33134. The goal of the analysis is to obtain a 𝑞-profile
matching the IDE analysis. The safety factor evolution of the MSE observer is shown in figure
3.5. The observer is active between 1.2 s − 7 s, the time during which MSE measurements are
available.

The 𝑞-profile evolution estimated by the MSE observer is in good agreement with the IDE refer-
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ence. Only in the vicinity of the magnetic axis, where the difference between the pure RAPTOR
simulation and IDE is highest, a significant deviation from the IDE reference is notable. At the
plasma edge, a match in 𝑞 between RAPTOR and IDE is guaranteed by the boundary conditions.
.

Figure 3.5: 𝑞-profile evolution at 𝜌 = 0, 0.2, 0.6, 0.8. Compared are three cases: RAPTOR
without MSE, the reference IDE solution and the observer result. The times where the observer
is inactive are shaded in red, here no MSE measurements are available. The RAPTOR time
resolution is 5ms; every 35th time step is plotted for improved visibility.

The 𝑞-profiles are compared in figure 3.6 at four times. The 𝑞-values in the vicinity of the magnetic
axis differ by Δ𝑞 ≈ 1 between the RAPTOR simulation without MSE and IDE. The MSE observer
corrects the 𝑞-profile significantly. To compare the correction, the standard deviation figure of
merit (see equation 3.1) is calculated. Since the observer only corrects the 𝑞-profile in the plasma
centre, the integral in equation 3.1 is evaluated like

∫︀ 0.7
𝜌=0 (for larger values of 𝜌, no MSE channels

are available and the observer result matches the RAPTOR simulation without MSE.). As it was
previously done, the resulting 𝜎(𝑡) are averaged over all times. We find a significant improvement
from 𝜎 OBS|IDE = 0.05 (difference between observer and IDE reference), compared to 𝜎 RAP|IDE =
0.19 (disabled observer and IDE reference).
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Figure 3.6: 𝑞-profile comparison between the nominal simulation ( ), IDE ( ) and MSE
observer ( ). Due to the high number of constraints, IDE is able to resolve the plasma edge
more accurately than RAPTOR, leading to the divergence of 𝑞 for 𝜌 > 0.8.

Observer behaviour at signal loss
Lastly, the behaviour of the MSE observer after the loss of the MSE signal is analysed. The
previous scenario is repeated, but the MSE input to the observer is cut at 𝑡 = 5 s. The resulting
time evolution of 𝑞 is shown in figure 3.7. Immediately after the loss of the measurement signals,
the 𝑞-profile of the observer begins to converge towards the non MSE-constrained case.
An advantage of using the MSE observer is the constant availability of polarisation angles which
can be passed to a (real-time) Grad-Shafranov solver. In the worst case, i.e. no valid measurements
are available, the 𝑞-profile is predicted solely by the model, whose information of the transport in
the plasma can greatly enhance the equilibrium reconstruction. In other words: with the approach
described in this article almost any GS solver can easily be constrained by the evolution of the
poloidal flux calculated by RAPTOR.
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Figure 3.7: 𝑞-profile evolution at 𝜌 = 0, 0.2, 0.6, 0.8. At 𝑡 = 5 s the measurement input to the
observer is disabled and the simulation continues without being constraint by MSE measurements.
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4 Conclusion & outlook

In this article we have shown that RAPTOR can be constrained by polarisation angle measure-
ments to provide an improved estimation of the 𝑞-profile. The implemented observer is able to
accurately estimate the 𝑞-profile in simulations where both the measurement and model have been
perturbed. Furthermore, it was shown, that in shots where reliable MSE data is available, the
MSE observer constrains RAPTOR’s 𝑞-profile to match reference equilibria with minimal offsets.
The MSE diagnostic at ASDEX Upgrade suffers from parasitic polarised reflections from the
metallic walls, which can render the diagnostic unusable in several scenarios. Due to the setup of
the MSE system, which can simultaneously measure 𝜋 and 𝜎 emission at the same radial location,
an (real-time capable) estimate of the measurement quality is obtained. With this, the observer
continuously updates the covariance matrices and it can provide estimates of the polarisation
angle measurements to a GS solver in any discharge scenario, even if physical measurements are
unavailable.

While the work presented here uses the CHEASE equilibrium code, which is fixed-boundary
solver and not capable to run in real-time, this approach can readily be ported to a real-time
capable equilibrium code such as LIUQE [29] or JANET [30]. Then, instead of using RAPTOR’s
𝑞-profile, the filtered polarisation angles can be used to constrain the 𝑞-profile of the equilibrium
reconstruction. In principle, this allows any Grad-Shafranov solver to be constrained by the
current diffusion, heat and particle transport between consecutive equilibria reconstruction by
coupling it to RAPTOR via a virtual MSE diagnostic. The only requirement is that the GS solver
can be constrained by MSE measurements.

In the future we plan to implement the observer in AUG’s real-time control system, where the
RAPTOR code is already implemented, a real-time capable MSE diagnostic is installed and the
real-time equilibrium reconstruction code JANET [30] are readily available. For this, the observer
must be converted to a Simulink model prior to execution in RT and the corrected MSE signals
from the observer passed to JANET, which is already capable of MSE constrained equilibrium
reconstruction. Once implemented, a model-based 𝑞-profile controller can be designed, similar to
the already implemented electron temperature controller at ASDEX-Upgrade [31], or a plasma
profile controller developed for ITER [32]. The RAPTOR code has no constraint on the plasma
scenario and can be used to model (and control) monotonic and advanced (e.g. reversed shear)
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𝑞-profiles, using real-time estimates of the driven current from codes such as RT-TORBEAM for
electron cyclotron heating [33, 34] and RABBIT for NBI [35]. In advanced scenarios, it is important
to follow and control the 𝑞-profile evolution close to the magnetic axis. Here, small uncertainties
on the MSE signal can lead to large uncertainties in the 𝑞-profile reconstruction. The model-based
approach can help to gain more accurate insight and control in advanced scenarios. To reduce
uncertainties, a central DCN polarimetry channel [36] could possibly be added to the observer, this
is however currently not planned.
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