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Abstract

A lot of activity is currently going on to replace the SNMP management architecture with a
solution better suited to managing modern IP networks and systems. New candidates include
Management by Delegation, active networks, and Web-based management. In this exercise,
the management community runs the risk of throwing the baby out with the bath water by
focusing too much on a few well-known problems exhibited by SNMP (e.g., its poor
scalability) and neglecting most of its other characteristics, including those that contributed
to its success (e.g., the reasons why it is simple). One way to avoid this is to explicitly capture
the experience gained in the management of IP networks and systems with SNMP. In this
paper, we make one step in this direction by studying the SNMP management architecture
through a software engineer’s eyes: we identify in SNMP some of the fundamental
architectural and design patterns defined in the literature. Patterns are schematic, proven
solutions to recurring problems. By characterizing the current management architecture in
terms of patterns, we help retain the strengths of SNMP-based management in future
management architectures. We also make it easier for new software engineers to move to
network and systems management by characterizing this application domain in standard
pattern terms, as opposed to using the jargon understood solely by the SNMP community.

Keywords: Patterns, Network Management, Systems Management, SNMP.

1. Introduction

For a decade, the management of IP networks and systems has been based on the Simple
Management Protocol (SNMP) and variants of the SNMP management architecture (v1, v2c, an
Yet, because of SNMP’s technical shortcomings and because of the way the SNMP mark
historically evolved, SNMP-based management has recently been seriously questioned
approaches have been proposed, including Management by Delegation, active network
Web-based management [7]. Although technically different, most of these approaches sh
common standpoint: management applications should no longer use domain-specific techno
such as the SNMP protocol. Instead, they should be considered as standard distributed appli
for which the software-engineering community has many solutions and tools to offer.

Before discarding SNMP and specifying a new management architecture, it is important to
lessons from it, identify its strengths and weaknesses, and characterize it in terms th
comprehensible to the entire software-engineering community (particularly new engineers)
1
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contribution to this objective was to study SNMP-based management with a patterns perspecti
Why use patterns for that purpose? In our view, they are one of the best tools currently offered
software-engineering community. In the late 1990s, they became a popular and successful m
providing reusability in software engineering. They enable software engineers to capture and p
software-development experience without the need for code (unlike object-oriented framework
instance); and consequently, they allow for a better design:

“Ideally, in real life, we should go through an analysis-design-implementation-use cycle,
learn from our mistakes, and then do it right: redesign properly and reimplement. Patterns
help design properly in the first place [3].”

Architectural patterns are coarser grained than design patterns. In general, design patterns ar
oriented and describe proven solutions to recurring design problems at the class or object
Architectural patterns are not paradigm specific; they capture proven solutions to recu
composition problems of software entities. These entities can range from groups of modu
packages to single procedures or functions—the former being more typical than the latter.

By studying the SNMP management architecture and protocol with a software engineer’s persp
we identified ten patterns in the context of SNMP: theFacadeand theWrapper Facade, theLayers,
theAdapter, theProxy, theBridge, theWhole-Partand theComposite, theIterator, and theMediator
[13]. To do so, we studied the architectural and design patterns published by Buschmannet al. [2],
Gammaet al. [4], and Schmidtet al. [12]. We limited our scope to these three compendia beca
they are well known in the software-engineering community, particularly Gammaet al., and because
a comprehensive study of the literature has become prohibitive (see the huge number of pattern
by Rising [10]). Note that we generalized some of the identified patterns, because implementat
SNMP-compliant managers and agents are generally not object-oriented, and neither the
management architecture nor the SNMP protocol are.

2. Facade and Wrapper Facade

TheFacadepattern [4] provides a unified interface to a set of interfaces in a subsystem. An exa
is depicted in Fig. 1.

Fig. 1. Facade (adapted from [4])
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A Facade class can shield the client of a subsystem from its internals. As long as theFacade
interface remains stable, the subsystem can be reorganized without breaking its clients. Anoth
of a Facade class is to offer a less complex, but also less powerful, interface as an alternati
working directly with the constituent classes. Consider for example a development subs
consisting of scanners, parsers, code generators, etc. Many of its clients probably only w
translate from high-level language X to machine code Y. TheFacade class can offer a method
compileFromXtoY() that accepts a handle to the source code, takes care of all interme
compilation steps, and returns a handle to the binary.

The Wrapper Facadedesign pattern [12] provides concise, robust, portable, maintainable,
cohesive class interfaces (note the plural) that encapsulate low-level functions and data struct
WrapperFacade class is typically intended to provide an object-oriented interface to a subsy
that is not object oriented (see Fig. 2).

In the context of SNMP, a useful application of theWrapper Facadeis the interface between an
object-oriented manager and a procedural application layer. For reasons of efficiency (or a
legacy), many protocols of the TCP/IP stack1 are implemented in C. And even though Java (throu
the Java Native Interface) and C++ both allow a programmer to directly invoke C functions, an S
manager should not do so. Instead, for all the reasons given in the short definition above (concis
robustness, etc.), we should introduce one or several classes in order to separate the protocol
manager.

TheFacadeandWrapper Facadepatterns can be very useful for layered architectures in which
layers feature a service access point. The SNMP layer (all the layers in the TCP/IP stack, as a
of fact) is no exception. It has to provide its clients with a well-defined interface, regardless of
many classes, functions, etc. were used to implement it. It is the task of theFacade class to support
this interface and shield the clients from implementation details, if the implementation of the lay
object-oriented. If it is not, theWrapper Facade is the pattern of choice.

3. Layers

TheLayersarchitectural pattern [2] helps structure applications that can be broken down into gr
of subtasks, whereby each group of subtasks operates at a specific level of abstraction. This pa
depicted in Fig. 3.

Fig. 2. Wrapper Facade [12]

1. The so-calledTCP/IP stackdoes not only include the Internet Protocol (IP) and the Transmission Control Prot
(TCP), but also other protocols such as the User Datagram Protocol (UDP), the Internet Control Message P
(ICMP), the Simple Network Management Protocol (SNMP), etc.
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A well-known example of theLayerspattern is the Open Systems Interconnection (OSI) seven-la
model defined by the International Organization for Standardization (ISO). Together, the applic
presentation, session, transport, network, data-link, and physical layers provide a rich
communication facilities. Yet, each layer depends solely on the one below it and provides se
only to the one above it through its service access point. The communication facilities can be ch
by replacing one or more layers (e.g., a connection-oriented transport layer instead
connectionless).

Sometimes, a layer does not provide any functionality of its own. Its sole purpose can be to ab
from lower layers to make the entire system more stable or portable (e.g., a hardware abst
layer). This issue is also addressed by theFacadeandWrapper Facadepatterns. Or the layer adapt
the one below it, that is, it acts as anAdapter1.

Note that the layers do not have to be shielded by incorporating a unified interface as long as
(N+1) does not depend on layer (N-1) or lower (see Fig. 4). A layer is shielded if its clients per
it as an atomic unit; it is unshielded if its clients can see inside.

In the context of SNMP, the TCP/IP stack is an incarnation of theLayerspattern. SNMP is located at
the application layer, where it provides services to its clients (SNMP managers and SNMP a
and uses services provided by UDP at the transport layer. UDP uses services provided by IP
internet layer, etc.

Another occurrence of theLayerspattern in the SNMP world are the managed nodes. According
Rose [11], any managed node can be conceptualized as containing three components: “usefu
which performs the functions desired by the user; management instrumentation, which interac
the implementation of the managed node; and a management protocol, which permits the mon
and control of the managed node.

Fig. 3. Layers [2]

1. Patterns having similar intents or structures are not the exception. There are situations where multiple pattern
depending on the viewpoint taken. When the differences become philosophical rather than technical, they usu
not matter in practice.
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Layers vs. Wrapper Facade

Unlike theWrapper Facadepattern, which we can choose to apply or not to apply in the contex
SNMP, theLayerspattern is implicit in SNMP—although we are still free to choose whether to ap
theLayers patternwithin the application layer, the manager, or the agent.

Note that theLayerspattern does not specify what the different layers consist of, whereas theWrapper
Facadepattern would have noraison d’êtrewithout the object-oriented and procedural parts. No
also that theWrapper Facadepattern can be considered as a special case of theLayerspattern, with
an intermediate layer shielding a higher, object-oriented layer from a lower, procedural layer.

4. Adapter

TheAdapterpattern [4] converts the interface of a pre-existing class into another interface tha
clients expect1. It enables the implementation (and thus the functionality) of the class to be reu
even if the interface of the class is not known by the potential client.

For instance, a class providing encryption and decryption may feature a method with the follo
signature:
crypt(bool flag, int[] plainText, int[] cipherText)

Fig. 4. Shielded and Unshielded Layers

1. In a strongly typed language like Java, theAdapterpattern is even necessary in case the interface expected by the cl
is contained in the interface of the pre-existing class, but the types differ.

Component 2Component 1

Layer N+1

Component BComponent A

Layer N

Layer N-1
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whereas its client expects it to have methods such as:
encrypt(int[] plainText, int[] cipherText)
decrypt(int[] cipherText, int[] plainText)
Instead of reimplementing the functionality, a new class can simply forwardencrypt() and
decrypt() requests by invokingcrypt() , setting the flag, and ordering the argumen
accordingly. Methods returning a value also need to transform the replies when necessary.

Gammaet al. [4] discuss two versions of theAdapterpattern: theObject Adapter(see Fig. 5) and the
Class Adapter(see Fig. 6). TheObject Adapterrealizes the adaptation by using object compositio
theClass Adapterachieves it by using multiple inheritance (e.g., in C++) or single implementa
inheritance with multiple interface inheritance (e.g., in Java).

From a conceptual point of view, theObject Adaptercan be seen in networks with proxy agent
When a managed node hosts an agent that is not SNMP-compliant, a proxy agent needs to t
manager requests. The proxy agent thus takes on the role of theAdapter object, and the manage
corresponds to theClient and the agent to theAdaptee . As these three entities are located o
different network nodes (not to mention in different address spaces), information between them
exchanged through direct method invocations but through the network. Note that theProxypattern is
not suitable for this particular situation (see Section 5).

Fig. 5. Object Adapter (adapted from [4])

Fig. 6. Class Adapter (adapted from [4])
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When an agent issues a notification, the proxy agent also needs to translate it before forwardi
the manager. The proxy agent thus behaves as a two-way adapter [4], as depicted in Fig. 7.

5. Proxy

TheProxypattern [2, 4] makes the client of an object communicate with a representative rathe
with the object itself. Such a representative can serve many purposes determined by its pr
post-processing of requests. For transparency reasons, it is important that theProxy and the
Original  classes have the same interface (see Fig. 8).

Because of its name and because it acts as an intermediary, aProxy object may seem to correspon
to a proxy agent in SNMP. In general, though, this is wrong! TheProxy class has the same interfac
as theOriginal , whereas a proxy agent and the agent it represents may not have the same int

Fig. 7. SNMP Adapter

Fig. 8. Proxy (adapted from [2])
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ParticularProxypatterns are theRemote Proxy, theVirtual Proxy, theProtection Proxy, theCache
Proxy, the Synchronization Proxy, the Counting Proxy, and theFirewall Proxy [2, 4]. The most
interesting to network and systems management are theProtection Proxy and theFirewall Proxy.

In theProtection Proxypattern [2], aProxy object controls access to theOriginal . It checks the
access rights of aClient whenever a service is requested. A proxy agent can do the same fo
agent that is not security aware, but is able to communicate in an SNMP-compliant way. For ins
an SNMPset request coming from an unauthorized manager would be discarded by the prote
agent, whereas one from an authorized manager would be forwarded to the protected agent, p
after removing the request’s authentication tag.

In theFirewall Proxypattern [2], a proxy process protects an internal trusted network from an exte
untrusted network. It represents server processes that communicate with a potentially
environment in order to protect against attacks—typically to avoid the disclosure of sen
information or the misuse of network resources. Firewalls are relevant to network and sy
management insofar as the manager and an agent need not be on the same side with respe
firewall (e.g., when managing a small subsidiary across a wide-area network link).

6. Bridge

The Bridge pattern [4] decouples an abstraction from its implementation so that the two can
independently. It is depicted in Fig. 9. One of its benefits is that changes in the implementation
abstraction have no impact on clients. TheBridge unleashes its full power when there are seve
variants of theRefinedAbstraction  andConcreteImp  classes.

For example, let us assume that theAbstraction provides the building blocks to draw differen
kinds of windows (document windows, dialog boxes, etc.). EveryRefinedAbstraction
corresponds to one such kind and is implemented in terms ofAbstraction ’s services. A variant
of ConcreteImp corresponds to a certain look-and-feel. By changing theimp reference, we can
easily give a new look-and-feel to an existing kind of window. TheBridgesaves us from having to
designNumberOfRefinements x NumberOfImplementations classes, i.e., we only have to
designNumberOfRefinements  + NumberOfImplementations  classes.

Fig. 9. Bridge (adapted from [4])

Client Abstraction
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Implementor

operationImp()

imp.operationImp()

RefinedAbstraction
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operationImp()

ConcreteImpA
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8



of
ase,
ement

unit.

a

By applying the Bridge, the management application can use different logs (variants
RefinedAbstraction ) without having to worry about the type of persistent storage (datab
spread-sheet, etc.) that actually underlies their implementation. In particular, the manag
application becomes independent of a specific vendor’s database system.

7. Whole-Part and Composite

TheWhole-Partpattern [2] helps with the composition of objects that together form a semantic
A Whole class (see Fig. 10) encapsulates its constituentPart ’s, organizes their collaboration, and
provides a common interface to its functionality. TheWhole preventsClient ’s from accessing
these constituentPart ’s directly.

In addition to simply managing homogeneous or heterogeneousPart ’s, the Whole class may
exhibit different behaviors depending on itsPart ’s (e.g., a molecule consisting of atoms in
simulation program). Buschmannet al.[2] call thisemergent behavior.

Fig. 10. Whole-Part (adapted from [2])

Fig. 11. Composite (adapted from [4])
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The Compositepattern [4] (see Fig. 11) is only applicable to whole-part hierarchies in which
Whole ’s and thePart ’s can be treated uniformly. By using recursive composition, clients do
have to make a distinction betweenWhole ’s andPart ’s. As a matter of fact, as long as they do no
compose objects themselves, they do not even have to know whether the object they interact
aComposite  or aLeaf , because they only depend on theComponent  interface.

SNMPv1 does not support distributed management, and SNMPv2’s support was broken [7
SNMPv3 allows for some kind of hierarchical management [7]. The idea is to divide networks
subnetworks. Top-level managers manage these subnetworks by delegating management to m
managers (see Fig. 12).

Conceptually, theClient in theWhole-Partpattern therefore corresponds to the top-level mana
in SNMP, theWhole  to the mid-level manager, and thePart ’s to the agents.

In practice, distributed network and systems management today usually relies on proprietary sc
because manager-to-manager interactions are still not fully specified in SNMP. This may cha
the future, thanks to the work of the IETF DISMAN Working Group.

8. Iterator

The Iterator pattern [4] provides a way to access sequentially the elements of an aggregate
without exposing its underlying structure. This technique is depicted in Fig. 13.

Containers such as lists and trees often need to be traversed. By making anIterator object
responsible for access and traversal of the container, different kinds of traversal (e.g., forwa
backward) can be supported without clogging up the container’s interface, and several travers
be pending on the same container (one traversal per iterator). Furthermore, by defining inte
common to all containers and iterators, the dynamic type of the container can easily be chang
later time, and methods need not depend on it.

SNMP managers can iterate over agent MIBs (usingget-next or get-bulk ) to perform an
SNMP walk (that is, retrieving an entire MIB by starting at its root), or to discover all the interfa
of a node (MIB-II’s Interfaces subgroup).

At first sight, this seems to have nothing to do with theIterator pattern. There is noIterator object
between the manager and an agent MIB, and we know in advance that SNMP MIBs have
structure. But if we apply theIterator pattern at the manager, we make the manager more reusab

Fig. 12. Hierarchical Network and Systems Management

Agent AgentAgent

Agent Agent

Top-level
Manager

Mid-level
Manager
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it does not depend on a specific MIB structure. At least, we get a cleaner design by separating th
of the manager from the part (namely theIterator ) that knows how SNMP MIBs are represente
But the manager could also use MIBs that provideIterator ’s of their own without having to make
major changes. One such change can consist in applying theAdapterpattern when theIterator
interface we designed and the one the new MIB provides do not match.

9. Mediator

The Mediator pattern [4] promotes loose coupling by keeping objects from referring to each o
explicitly. It is depicted in Fig. 14.

The state of an object sometimes depends on the state of other objects, e.g., GUI (Graphic
Interface) elements within a dialog box. When one such object changes state (e.g., when th
checks off a check box), dependent objects may have to change their state as a consequen
enabling a text field). By applying theMediator pattern,ConcreteColleague ’s (whose states

Fig. 13. Iterator (adapted from [4])

Fig. 14. Mediator (adapted from [4])
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isDone()
currentItem()

Client

return new ConcreteIterator(this)
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depend on each other) only need to inform theMediator object when their states change. Th
Mediator  object then changes the states of otherConcreteColleague ’s as needed.

From a conceptual viewpoint, the manager mediates between network nodes that depend o
other, as an agent may notify the manager about an event that causes the manager to change
of other nodes. Nevertheless, note that some nodes change their state in a coordinated fashion
the intervention of the manager. For example, routers exchange and update their routing tables
themselves.

Another application of theMediatorpattern in SNMP-based management is within the network m
GUI. For instance, when an icon representing a router changes its state (e.g., represented by
to “down”, the mapMediator object must change the state of all network nodes that can only
reached through that router to “unreachable” or “undetermined”.

10. Related Work

In the past, several papers already presented the application of patterns to networking techno
e.g. protocols [5] and telecommunication systems [1, 8]. One defined new patterns related to t
of GUIs in network management [6]. But to the best of our knowledge, this article is the first atte
to identify patterns in SNMP-based management at large.

11. Conclusion

By characterizing SNMP-based management in terms of patterns, we met two goals. First, p
allow us to stress and document the strengths and weaknesses of SNMP. By formalizin
know-how, we make it less likely that the same design mistakes remain in the next manag
architecture for the IP world, and that good design solutions in SNMP be replaced with p
solutions. Second, patterns give software engineers a description of a domain (network and s
management) they may not be familiar with, in a language (patterns) they feel comfortable wit
doing so, we reduce the learning phase for software engineers moving to network and sy
management, and we favor reusability by considering a management application as a st
distributed application.

For future work, it would be interesting to study patterns in Web-based management and
networks, to compare them with those used in SNMP-based management, and to learn some
for future management architectures. Another direction that we intend to investigate is to defin
patterns specific to integrated management—that is, the integration of network, systems, appli
service, and policy management.
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