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Abstract—Recently stakeholders in the area of multimedia
representation and transmission have been looking at plenoptic
technologies to improve immersive experience. Among these
technologies, point clouds denote a volumetric information rep-
resentation format with important applications in the entertain-
ment, automotive and geographical mapping industries. There is
some consensus that state-of-the-art solutions for efficient storage
and communication of point clouds are far from satisfactory.
This paper describes a study on point cloud quality evaluation,
conducted in the context of JPEG Pleno to help define the
test conditions of future compression proposals. A heterogeneous
set of static point clouds in terms of number of points, geo-
metric structure and represented scenarios were selected and
compressed using octree-pruning and a projection-based method,
with three different levels of degradation. The models were
comprised of both geometrical and color information and were
displayed using point sizes large enough to ensure observation of
watertight surfaces. The stimuli under assessment were presented
to the observers on 2D displays as animations, after defining
suitable camera paths to enable visualization of the models in
their entirety and realistic consumption. The experiments were
carried out in three different laboratories and the subjective
scores were used in a series of correlation studies to benchmark
objective quality metrics and assess inter-laboratory consistency.

Index Terms—quality assessment, point cloud, quality metrics
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I. INTRODUCTION

In recent years several 3D volume information represen-
tation formats, such as light fields, holography and points
clouds (PC) have been attracting interest from industry and
academia. Due to several important applications, like en-
vironment mapping in autonomous driving systems, urban
landscape mapping, virtual and augmented reality (VR/AR),
as well as the increasing availability of lower priced scanners,
PCs are becoming a first choice 3D data representation format.
However, PCs can be rather expensive in terms of storage and
transmission costs, due to the large number of points used to
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represent the imaged scene and large number of attributes (e.g.,
color, normals, etc.) recorded per point. It is thus important
to have efficient PC compression algorithms. The ISO/IEC
JTC 1/SC 29/WG1 (JPEG) committee, through the activities
of the JPEG Pleno project has created an ad-hoc group (AhG)
focused on the development of solutions for the efficient
representation of static PC. The AhG mandates include a task
to “Run subjective tests and assess performance of objective
metrics...”, which requires the definition of a suitable frame-
work to conduct PC subjective quality evaluations in order to
assemble a set of quality scores that can be used in (objective)
quality estimators evaluation and tuning. To properly define
the framework, research is needed on which PC rendering
methods, what type of displays (2D, 3D, head-mounted), and
what evaluation methodologies should be adopted.

In the literature, several studies on subjective quality as-
sessment of PCs have been conducted, based on a wide range
of different setups and protocols. In [1], a novel subjective
quality evaluation methodology was presented that can be used
to assess the difference between an original and a degraded 3D
color model. The PC degradations were applied to geometry
and color separately, using uniformly distributed noise. In [2]
and [3] interactive approaches in a desktop setup and using
a head-mounted display were proposed, respectively, in order
to subjectively assess geometry-only point clouds subject to
Gaussian noise and octree-based compression. In [4], a generic
and real-time time-varying PC codec for 3D immersive video
has been proposed, which is suitable for mixed reality appli-
cations where 3D PCs are acquired at a fast rate. Subjective
quality of the codec performance was evaluated in a mixed
reality system that combines natural PC data and computer
graphics-based 3D contents. In [5], subjective assessment
of PC denoising algorithms and evaluation of commonly
used objective quality metrics was conducted. The contents
were evaluated after applying the screened Poisson surface
reconstruction algorithm [6]. The observers rated 2D video
sequences of the models after rotations around the vertical and
the horizontal axis. In [7] and [8], PCs rendered as surfaces,
employing the same surface reconstruction technique [6], were
visualized and assessed in 2D and 3D monitors, respectively,978-1-5386-8212-8/19/$31.00 ©2019 IEEE



following a passive evaluation. In [9], subjective and objective
quality assessment of PCs degraded by compression artifacts
was performed. The most popular objective quality metrics
were benchmarked against human judgments obtained from
the subjective experiment. The degradations considered were
compression using Octree-based and graph-based methods.
In [10], a subjective evaluation campaign along with bench-
marking results of voxelized PCs subject to compression arti-
facts using the codec proposed in [4] was conducted, showing
that geometry distortions are rated more severely with respect
to color. In [11], subjective and objective quality assessment
results were presented for volumetric video compression using
the state-of-the-art MPEG Point Cloud Compression Test
Model Category 2 (TMC2). Results show that, although it has
a great effect on geometric quality metrics, the higher density
input point count does not affect the perceived quality as long
as the presentation is plausible for human viewers.

In this work, we extend the previous efforts by including
large-scale PCs in our experiment and proposing a passive
evaluation scenario through animated videos with different
navigation paths per model. The contents under assessment are
encoded using two radically different encoding approaches, at
different quality levels. The processed stimuli are displayed
using a variable point size and camera distance per model
and level of degradation, in order to result in perception of
watertight models. Finally, the state-of-the-art objective quality
metrics are benchmarked and their limitations are discussed.

II. SUBJECTIVE ASSESSMENT

In this section the design of the subjective test is described.
In particular, the procedure to prepare the contents under
assessment and the subjective evaluation methodology that was
adopted are detailed.

A. Content Preparation

In this study, a dataset of 8 static PCs was used with texture
and geometry information. In particular, 4 small-scale PCs,
namely, bumbameuboi, longdress, romanoillamp and shiva,
and 4 large-scale PCs, namely, ucl, citiusp, ipanemacut and
ramos were selected. The bumbameuboi, citiusp, ipanemacut,
ramos and romanoillamp contents can be found in [12], the
longdress model can be found in [13], the ucl in [14], while
shiva is part of [15]. In this paper, small-scale PCs can be
defined as human sized objects or smaller, with up to about 1
million points. A frontal view of the reference PCs of every
selected content are illustrated in Figure 1.

To degrade the original PCs, two different compression
schemes were employed. The first method is annotated as
octree pruning and it was implemented using the Point Cloud
Library (PCL) [16]. Octree pruning was selected to represent
artifacts occurred after regular removal of points, which are
displaced by a known maximum error. Under this type of
compression, the contents are enclosed in an octee structure.
Modifying the size of the leaf nodes, which is referred as Level
of Details (LoD), the resolution of the content is adjusted
correspondingly. For instance, by increasing the LoD, the

number of points of the compressed object naturally decreases.
The second method is a projection-based encoder implemented
in the 3DTK toolkit [17]. Different panorama resolutions and
equi-rectangular projections provided by the software were
used to encode the contents under assessment.

The models were compressed at three quality levels: high,
medium and low. Each quality level was defined based on a
percentage of remaining points after PCL compression, which
was determined per content through expert viewing. In par-
ticular, starting from the first method, different octree depths
were tested for every model. After defining the LoD that
corresponds to the desired quality level, a target percentage
of remaining points is identified. For the second method,
3DTK, a binary search tree was employed to determine the
appropriate panorama size in order to achieve the required
target percentage. The method starts with 32768x32768 pixels,
which is a limitation imposed by the OpenCV software used by
3DTK. The number of points for every reference and distorted
content, along with the octree depths that were used for octree-
pruning and the panorama resolution for the projection based
compression, can be found in Table I. The 3DTK panorama
resolution was determined to achieve similar number of points
as PCL compression for every quality level. Thus, the resulting
visual quality can be different than the target quality level.

Before encoding, the original PCs were scaled to fit in a
bounding box of size 1 and translated at the origin (0, 0, 0).
For both small-scale and large-scale contents, different point
sizes per quality level and model were used; however, the same
point size was used across one model. Moreover, different
distances between the camera and the origin of every content
were defined. Several adjustments for the combination of these
parameters (i.e., point size and camera distance) were tested,
and agreed after expert viewing, in order to result in perception
of watertight models. Finally, to account for a fair comparison
between the two encoding schemes, the same point size was
used for the two codecs per quality level and content. The
exact values that were used in our test, as specified in the
CloudCompare [18] software, are reported in Table I.

Regarding the generation of animated videos that were
consumed by the participants in order to rate the visual quality
of the models under assessment, we followed different camera
paths per type of content. In particular, for small-scale PCs, to
account for an outer inspection of the content, the camera was
rotated around the horizontal and, then, around the vertical
axis of the center of each model in steps of 1°. For large-
scale PCs, excluding ucl, the camera was rotated around the
vertical axis of the center of the object in steps of 0.5°. In every
case, the position of the camera was set so that every content
could be viewed entirely. For ucl, a navigation path through
the scenery was specified, which resulted in a more immersive
scenario of consuming a large-scale content inner at different
visualization distances. For this content, it was not possible to
find one point in space around which the camera would rotate,
in order to result in the perception of a watertight scene using
fixed point size. A total of 720 still frames of 1920x1080
resolution were captured for every stimulus. The still images



(a) bumbameuboi (b) citiusp (c) ipanemacut (d) longdress

(e) ramos (f) romanoillamp (g) shiva (h) ucl

Fig. 1. Frontal view of each point cloud.

TABLE I
COMPRESSION AND RENDERING CONFIGURATIONS

Type of content Original name Quality variations Original number of points Target % of points
Compression Rendering

PCL (8 color bits) 3DTK Point size DistanceOctree depth # of points % of points Panorama resolution # of points % of points

Sm
al

l-
sc

al
e

co
nt

en
ts

bumbameuboi

original 150379 100 - - - - - - 4 2.766365
high - 46.02 8 69197 46.02 651x651 68971 45.86 6 2.766365
medium - 18.55 7 27891 18.55 264x264 27796 18.48 7 2.766365
low - 5.47 6 8229 5.47 116x116 8151 5.42 13 2.766365

longdress

original 857966 100 - - - - - - 2 2.229018
high - 100 10 857966 100 32768x32768 844980 98.49 2 2.229018
medium - 29.64 9 254322 29.64 728x728 254380 29.65 3 2.229018
low - 7.75 8 66520 7.75 304x304 67045 7.81 4 2.229018

romanoillamp

original 1286052 100 - - - - - - 2 1.990584
high - 49.45 10 636008 49.45 3104x3104 635938 49.45 2 1.990584
medium - 21.00 9 270088 21.00 984x984 270663 21.05 3 1.990584
low - 6.00 8 77104 6.00 464x464 76141 5.92 5 1.990584

shiva

original 1010591 100 - - - - - - 1 2.625442
high - 89.12 10 900661 89.12 11648x11648 900724 89.13 1 2.625442
medium - 41.51 9 419522 41.51 2608x2608 419752 41.54 2 2.625442
low - 12.07 8 121995 12.07 824x824 122054 12.08 4 2.625442

L
ar

ge
-s

ca
le

co
nt

en
ts

citiusp

original 5929878 100 - - - - - - 1 1
high - 44.78 11 2655558 44.78 3520x3520 2658601 44.83 1 1
medium - 16.68 10 989112 16.68 1520x1520 992361 16.73 2 1
low - 4.89 9 289951 4.89 720x720 294695 4.97 4 1

ipanemacut

original 8128921 100 - - - - - - 1 1.400146
high - 60.76 11 4928736 60.76 8704x8704 4931486 60.67 1 1.400146
medium - 24.24 10 1970213 24.24 2976x2976 1962687 24.14 2 1.400146
low - 6.68 9 543214 6.68 1200x1200 546155 6.72 3 1.400146

ramos

original 64153694 100 - - - - - - 1 0.966166
high - 35.02 12 22468372 35.02 10176x10176 22490243 35.06 1 0.966166
medium - 11.66 11 7481209 11.66 4928x4928 7487043 11.67 2 0.966166
low - 3.04 10 1952746 3.04 2304x2304 1941900 3.03 3 0.966166

ucl

original 73866302 100 - - - - - - 2 N/A
high - 17.51 11 12932875 17.51 5600x5600 12900605 17.46 3 N/A
medium - 4.52 10 3339764 4.52 2560x2560 3267733 4.42 4 N/A
low - 1.12 9 826790 1.12 1280x1280 849478 1.15 9 N/A

were visually losslessly compressed (i.e., constant rate factor
equal to 17) with an H.264/AVC encoder (using FFmpeg
software), producing an animated video of 30 fps with a
total duration of 24 seconds. The background color was set
to black. Finally, the camera paths for inspection, as well
as the acquisition of still images was performed using the
CloudCompare [18] software.

B. Evaluation Methodology
The subjective experiments were conducted in 3 different

laboratories: University of Beira Interior (UBI), Covilhã, Por-
tugal, University of Coimbra, Coimbra, Portugal and Uni-
versity North (UNIN), Varaždin, Croatia. The conditions of
every test environment were adjusted to follow the ITU-R
Recommendation BT.500-13 [19]. The equipment used per

test laboratory is described in Table II. A passive subjective
methodology was applied, with the subjects visualizing the
generated video sequences in the MPV video player which
was adjusted for our needs. The participants were able to
provide their scores through a customized interface either
during, or after the completion of the playback animation.
This means, that the subjects were allowed to submit their
judgment, potentially, before the end of the animated video.

The simultaneous Double-Stimulus Impairment Scale
(DSIS) test method was adopted with 5-levels rating (1 -
very annoying, 2 - annoying, 3 - slightly annoying, 4 -
perceptible, but not annoying, 5 - imperceptible), including a
hidden reference for sanity check. Both the reference and the
degraded stimuli were simultaneously shown to the observer



TABLE II
EQUIPMENT INFORMATION PER LABORATORY.

Monitor Inches Resolution View Distance
UBI Sony OLED TV 55” 3840x2160 2.19 m

(±20 cm)
UC Sony TV 49” 3840x2160 1.8 m

KD-49X8005C (FV ±30 cm)
UNIN Sony TV 55” 3840x2160 1.5 m

KD-55x8505C (FV ±15 cm)

TABLE III
SUBJECTS INFORMATION PER LABORATORY.

Males Females Overall Year Average Outliers
span age

UBI 10 9 19 19-31 20.5 0
UC 7 8 15 18-54 26.86 0
UNIN 15 1 16 19-58 22.75 0

side-by-side, and every subject rated the visual quality of the
processed with respect to the reference stimulus, which were
clearly annotated. To avoid biases, in half of the individual
evaluations, the reference was placed on the right and the
degraded content on the left side of the screen, and vice-versa
for the rest of the evaluations. Also, particular care was given
not to present the same content type consecutively.

At the beginning of each individual evaluation, a training
session took place, in order to familiarize the subjects with the
artifacts under assessment. The shiva content was selected to
represent a small-scale, and the ipanemacut model to represent
a large-scale object; thus, they were excluded from the actual
subjective tests. The training was performed using 8 animated
video sequences. For both training contents, 3 different levels
of degradation were presented together with the original video
sequences, in order to illustrate the range of visible distortions.

An overall of 42 scores were obtained per evaluation
session, considering that each subject assessed 6 test models
degraded by 2 compression schemes at 3 distinct quality levels,
plus hidden references. An outlier detection algorithm based
on ITU-R Recommendation BT.500-13 [19] was applied to the
collected scores from every test laboratory, separately. In every
case, no outliers were found. Thus, the mean opinion scores
(MOS) and the 95% Confidence Intervals (CIs), assuming a
Student’s t-distribution were computed on every set of scores.
For this calculation, we assumed that scores follow a normal
distribution. In Table III, we report observers information, per
test laboratory.

III. RESULTS

In this section, the results of our analysis are provided. The
MOS curves are demonstrated, indicating the performance of
each codec from every test laboratory, followed by the inter-
laboratory correlations. Finally, benchmarking results of the
state-of-the-art objective quality metrics are reported.

A. Subjective Scores

The subjective scores against the quality levels are shown
in Figure 2 for each tested codec and participating laboratory,
independently. Specifically, the subjective scores obtained for
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Fig. 2. Subjective scores against quality levels per laboratory and compression
method.

the projection-based encoder (3DTK) and the octree-pruning
(PCL), are presented in the left and right plots column,
respectively. Based on observers’ opinion, the types of artifacts
that are introduced by the octree-based are preferred over
the types of artifacts that are caused by the projection-based
encoder (as implemented by the 3DTK). This result is justified
if we consider that by increasing the size of the points,
distortions that occur by an encoding scheme that leads to
regularly spaced sparser versions of the original contents, can
be compensated. On the contrary, visible distortions, such as
missing structures, or areas in a content that are presented due
to occlusions, are notably more annoying and, thus, subjects
rated them poorly.

B. Comparison between Subjective Scores from different Labs

To confirm the validity of the subjective scores that were
obtained from the participated test laboratories, we use a series
of performance indexes. In particular, the Pearson Correlation
Coefficient (PCC), the Spearman Rank Order Correlation
Coefficient (SROCC), the Root-Mean Squared Error (RMSE)
and the Outlier Ratio (OR) are computed, to measure the
linearity, monotonicity, accuracy and consistency of the results.
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Fig. 3. No fitting, Linear and Cubic fitting, for correlation evaluation between
the three laboratories results (Bold text represents the ground truth).

TABLE IV
PERFORMANCE INDEXES TO EVALUATE THE CORRELATION BETWEEN

LABORATORIES WITHOUT APPLYING ANY FITTING FUNCTION (BOLD TEXT
REPRESENTS THE GROUND TRUTH).

UBI UC UBI UNIN UC UNIN
vs vs vs vs vs vs
UC UBI UNIN UBI UNIN UC

PCC 0.981 0.981 0.982 0.982 0.981 0.981
SROCC 0.965 0.965 0.966 0.966 0.978 0.978
RMSE 0.304 0.304 0.326 0.326 0.432 0.432
OR 0.278 0.222 0.333 0.222 0.306 0.444
CE (%) 100.00 100.00 100.00 100.00 100.00 100.00
UE (%) 0.00 0.00 0.00 0.00 0.00 0.00
OE (%) 0.00 0.00 0.00 0.00 0.00 0.00
CD (%) 89.84 89.84 89.52 89.52 90.16 90.16
FR (%) 0.00 0.00 0.00 0.00 0.00 0.00
FD (%) 3.33 6.83 4.44 6.03 5.71 4.13
FT (%) 6.83 3.33 6.03 4.44 4.13 5.71

Furthermore, the Correct Estimation (CE), Under Estimation
(UE) and Over Estimation (OE) percentages are used, as
proposed in the Recommendation ITU-T P.1401 [20], to check
for statistically equivalent MOS results. Finally, the False
Ranking (FR), False Differentiation (FD), False Tie (FT)
and Correct Decision (CD) percentages were computed using
Recommendation ITU-T J.149 [21], to check for different

TABLE V
BENCHMARKING RESULTS (BOLD TEXT INDICATES THE

BEST-PERFORMING METRIC ACROSS AN INDEX).

Objective Metric PCC SROCC RMSE OR

UBI

p2point MSE 0.549 0.725 1.130 0.917
p2plane MSE 0.504 0.640 1.169 0.889
p2point Haus 0.698 0.790 0.969 0.667
p2plane Haus 0.644 0.800 1.034 0.861
PSNR-p2point MSE 0.512 0.421 1.161 0.778
PSNR-p2plane MSE 0.439 0.341 1.215 0.861
PSNR-p2point Haus 0.646 0.607 1.032 0.833
PSNR-p2plane Haus 0.647 0.592 1.032 0.778
MSE YUV 0.757 0.760 0.883 0.639
pl2plane MSE 0.310 0.196 1.286 0.889
PSNR 0.559 0.546 1.121 0.806
SSIM 0.384 0.434 1.249 0.861
MS-SSIM 0.571 0.619 1.110 0.861
VIFP 0.753 0.767 0.890 0.694

UC

p2point MSE 0.496 0.698 1.204 0.806
p2plane MSE 0.455 0.590 1.235 0.778
p2point Haus 0.632 0.786 1.075 0.722
p2plane Haus 0.566 0.777 1.143 0.861
PSNR-p2point MSE 0.480 0.378 1.216 0.750
PSNR-p2plane MSE 0.402 0.296 1.269 0.778
PSNR-p2point Haus 0.595 0.592 1.115 0.917
PSNR-p2plane Haus 0.590 0.559 1.119 0.806
MSE YUV 0.729 0.715 0.948 0.611
pl2plane MSE 0.308 0.238 1.319 0.833
PSNR 0.547 0.523 1.160 0.806
SSIM 0.356 0.425 1.296 0.861
MS-SSIM 0.550 0.598 1.158 0.833
VIFP 0.731 0.715 0.946 0.583

UNIN

p2point MSE 0.525 0.723 1.163 0.778
p2plane MSE 0.486 0.614 1.194 0.750
p2point Haus 0.609 0.744 1.084 0.722
p2plane Haus 0.553 0.760 1.138 0.750
PSNR-p2point MSE 0.494 0.423 1.188 0.694
PSNR-p2plane MSE 0.413 0.324 1.244 0.861
PSNR-p2point Haus 0.602 0.572 1.092 0.778
PSNR-p2plane Haus 0.600 0.561 1.094 0.778
MSE YUV 0.731 0.714 0.932 0.694
pl2plane MSE 0.304 0.171 1.302 0.861
PSNR 0.553 0.494 1.139 0.833
SSIM 0.345 0.380 1.283 0.861
MS-SSIM 0.538 0.567 1.152 0.833
VIFP 0.740 0.723 0.919 0.722

conclusions on data points pairs.
In Figure 3, scatter plots with the MOS obtained in the

different laboratories against every other participated labora-
tory are presented, along with every fitting function that was
applied (i.e., no-fitting, linear fitting, monotonic cubic fitting).
As can be seen, the correlation is high for every regression
model. Thus, in Table IV, the performance indexes without
applying any fitting are reported, to account for the worst case
scenario. Based on these scores, a correct estimation of 100%
is achieved among each pair combination. The correct decision
is very high with a percentage of approximately 90%, while the
false differentiation and false tie remain quite low, with false
ranking being equal to 0%. Naturally, slightly better results
are observed by applying the other two models.

C. Correlation between Subjective and Objective Scores

The subjective scores were correlated with state-of-the-art
objective metrics for quality assessment of PCs. The point-to-
point (p2point) and point-to-plane (p2plane) metrics were used
to estimate geometric distortions [22], using the Mean Squared
Error (MSE) and the Hausdorff distance as the geometric
error measure. The geometry PSNR ratio is also computed,



as defined in [22]: ratio of the max distance of nearest
neighbors divided by the squared geometric error value (MSE
or Hausdorff). The MSE on the YUV representation was also
employed to estimate the color degradations. In particular, the
default RGB was initially converted to the YUV colorspace,
following the ITU-R Recommendation BT.709-3 [23]. Then,
a weight of 6 for luma, and 1 per chroma channel were
applied [24], in order to compute a single value between a pair
of associated points. Moreover, the plane-to-plane (pl2plane)
metric [25] is employed. For every content, the normal vectors
were estimated on 10 nearest neighbors using PCL. Finally,
the projection-based metrics described in [10] were applied on
the total number of frames that formed the animated videos
which were assessed by the subjects during the experiment.

It should be noted that in order to address excessive memory
allocation issues occurred during computations of objective
quality metrics and normal estimation algorithms for two
large-scale PCs (i.e., ucl and ramos), the latter were segmented
in several smaller patches. The outputs of the objective metrics
were modified appropriately and pools of individual distortions
were obtained to accurately compute the global distortions.

To compare the objective scores against the subjective
ground truth, the performance indexes proposed in the Rec-
ommendation ITU-T P.1401 [20] are employed. Specifically,
the PCC, SROCC, RMSE and OR were issued on pairs of
MOS and predicted MOS, to measure the performance of each
metric. The predicted MOS for every objective metric, was
obtained after applying the monotonic cubic fitting function on
the objective scores. Based on our results presented in Table V,
the best-performing metrics found to be the MSE YUV, which
captures only color distortions, and the VIFP, which is a
projection-based metric, for different ground truth datasets.

IV. CONCLUSIONS

In this study, a subjective methodology for point cloud
compression quality evaluation is presented. Our methodology
successfully provides effective results for two different codecs,
showing that point removal in a regular way is less annoy-
ing to human subjects. Moreover the proposed methodology
suggests an alternative framework for passive evaluation that
reveals high correlation with objective measures. This can be
explained because in this experiment we used a variety of point
clouds regarding its size and point number, with both geometry
and color information. This is opposed to the previous exper-
iments in which point clouds have similar number of points,
or only geometry information. The reliability of the method
can be confirmed by the comparison between subjective scores
between the involved test laboratories which remains high as
well as similar correlation between subjective and objective
scores in every laboratory.
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