
Staged Tagless Interpreters in Dotty

Semester project, fall 2018

Benoit Knuchel (benoit.knuchel@epfl.ch)

Supervisor Nicolas Stucki (nicolas.stucki@epfl.ch)
Supervisor Aggelos Biboudis (aggelos.biboudis@epfl.ch)

Director Martin Odersky (martin.odersky@epfl.ch)

January 2019

mailto:benoit.knuchel@epfl.ch
mailto:nicolas.stucki@epfl.ch
mailto:aggelos.biboudis@epfl.ch
mailto:martin.odersky@epfl.ch

Contents

Introduction 1

1 Staged and Tagless 2

1.1 Staging . 2

1.2 Tagless . 4

2 Staged Interpreters 6

2.1 Staged interpreter . 6

2.2 Binding-time improvement . 8

3 Staged Tagless Interpreters 10

3.1 Tagless interpreter . 10

3.2 Staged tagless interpreter . 11

3.3 Partial evaluator . 11

4 Tagless Interpreters and Continuation-passing Style 14

4.1 Call-by-name . 14

4.2 Call-by-value CPS transformer . 15

4.3 State and imperative features . 16

5 Conclusion 19

i

Introduction

FIRSTLY what is an interpreter ? Basically it is a program that converts source code from

a high-level language into machine code and executes it on the go. It is a way of em-

bedding domain-specific languages into another programming language. In this project we

apply the finally tagless approach for embedding libraries in Scala for type-preserving inter-

pretation, compilation and partial evaluation. We use the new research compiler, Dotty, that

offers new features for Staging (Partial Evaluation). Conversely, note that the difference with

a compiler is that it will translate the program as a whole into machine code and then execute it.

We are interested in adding two different techniques to interpreters :

1. Tagless

2. Staging

Staging allows us to do execution-time optimization while tagless eliminates tagging over-

head. Jacques Carette, Oleg Kiselyov and Chung-chieh Shan wrote staged tagless interpreters

in OCaml and Haskell [1]. This is one of the followed papers.

The goal of this work is to port the ideas of embedding domain-specific languages using

tagless interpreters in Scala. Before, it was not possible to implement these types of interpreters

in vanilla Scala since the necessary staging capabilities arrived with Dotty.

The other paper used for this project is about multi-stage programming. It is easily readable

and helps familiarize with this paradigm [2].

The code for this project is open source1.

1https://github.com/benoitknuchel/Staged-Tagless-Interpreters-in-Dotty .

1

https://github.com/benoitknuchel/Staged-Tagless-Interpreters-in-Dotty

Part 1

Staged and Tagless

1.1 Staging

Staging uses two operations :

• Quotations, expressed as '() or '{ } for expressions and '[] for types

• Splicing, expressed as ~

Assuming that e is an expression then '(e) (of type Expr[T]) represents the typed abstract

syntax tree of e. Equivalently, if T is a type then '[T] (of type Type[T]) represents the type

structure of T. Inversely we have that ~e evaluates the expression e. Respectively for type T.

These two operations are opposite :

~′(e) = e, ~′(T) = T
′(~e) = e, ′(~T) = T

To get the result of an expression e of type Expr[T] we can call the show or run method. The

result can either be transformed into a string with e.show or can be executed with e.run.

Multi-stage Programming is a meta-programming technique. This means that it is a pro-

gramming language technology to write programs that generate programs. In this work we

consider type-safety and scope-safety as an important property during the development of

metaprograms and Multi-stage Programming offers both. For more terminology and informa-

tion refer to the chapter 4.1 of Smaragdakis et al. [3].

When code is staged, it is prepared to be executed at a later stage. It is really effective in the

presence of recursive functions: Assume a recursive program for the calculation of power. The

regular version of it, with both parameters available at runtime, will recurse during execution

and calculate the result with the normal operational semantics of the language. However, if we

know some part of the method call statically, we can partially evaluate it.

2

PART 1. STAGED AND TAGLESS

An example will make that clear :

Listing 1.1: Fast exponentiation algorithm

1 def fastExp(x: Double , n: Int): Double = {
2 if(n == 0) 1.0
3 else if(n == 1) x
4 else if(n % 2 == 0) fastExp(x*x, n/2)
5 else x*fastExp(x, n-1)
6 }
7

8 def fastExpStaged(x: Expr[Double], n: Int): Expr[Double] = {
9 if (n == 0) '(1.0)

10 else if (n == 1) x
11 else if (n % 2 == 0) '{ val y = ~x * ~x; ~fastExpStaged ('(y), n/2) }
12 else '{ ~x * ~fastExpStaged(x, n - 1) }
13 }

Listing 1.2: Fast exponentiation algorithm tests

1 def main(args: Array[String]): Unit = {
2 val e = fastExpStaged ('(5), 5)
3 println (" fastExpStaged (5,5).show : " + e.show)
4 println (" fastExpStaged (5,5).run : " + e.run)
5 }
6

7 ...

The fastExpStaged method is the staged version of fastExp. It takes as argument

x: Expr[Double] which is a Double that is staged and returns an Expr[Double]. Assume we

have that n%2 = 0, the program will evaluate the value of x and stage it back, as 5.0*5.0, to the

next recursion. Which yields as result:

Listing 1.3: Fast exponentiation algorithm results

1 fastExpStaged (5, 5).show :
2 5.0.*({
3 val y: scala.Double = 5.0.*(5.0)
4 val y$2: scala.Double = y.*(y)
5 y$2
6 })
7

8 fastExpStaged (5, 5).run : 3125.0

As we can see recursion and calls have been eliminated alongside the runtime overhead

they would incur. Meta-programming in Dotty is explained in more details in this paper [4].

3 Staged Tagless Interpreters in Dotty

PART 1. STAGED AND TAGLESS

1.2 Tagless

Tagless final is a functional pattern that has multiple advantages :

• It helps making sure that the programs we write are correct, especially the fact they are

typesafe and predictable, and in our case that the interpreter will not get stuck. Note that

it is hard to write incorrect programs since invalid states cannot even be expressed.

• It eases extensibility of the program. This problem is called the "Expression problem" [5]

and tagless-interpreters provide a solution to that. In the object oriented world, this was

rediscovered under the name "Object Algebras" oliveira_extensibility_2012

An example will make that clearer :

Listing 1.4: Two tagless interpreters

1 trait Symantics {
2 type repr[_]
3 def num(x: Int): repr[Int]
4 def add(x: repr[Int], y: repr[Int]): repr[Int]
5 }
6

7 object interpreter extends Symantics {
8 type repr[A] = A
9 def num(x: Int): repr[Int] = x

10 def add(x: repr[Int], y: repr[Int]): repr[Int] = x + y
11 }
12

13 object interpreterPrint extends Symantics {
14 type repr[A] = String
15 def num(x: Int): repr[Int] = x.toString
16 def add(x: repr[Int], y: repr[Int]): repr[Int] = x + " + " + y
17 }
18

19 object Main {
20 // import interpreter._
21 import interpreterPrint._
22

23 def main(args: Array[String]): Unit = {
24 val x = add(num(1), add(num(2), add(num (3), num(4))))
25 println(x)
26 }
27 }

This program represents two tagless interpreters. One will evaluate the expression and the

other one will pretty-print it. Note that they both extends the same trait, so nothing has to be

changed for the example : it suffices to choose which interpreter should do the work.

The main difference with a tagged interpreter is that it does not use any GADT (Generalized

Algebraic Data Type). For more information about GADT, look at figure 2.1 (enum) or at those

explanations in Haskell [6].

4 Staged Tagless Interpreters in Dotty

https://en.wikibooks.org/wiki/Haskell/GADT

PART 1. STAGED AND TAGLESS

To add a new functionality to the language we just have to define it in Symantics and

implement it in interpreter and interpreterPrint. For example if we want to add a function

that multiplies two num we just have to add three lines of code (one in Symantics, one in

interpreter, one in interpreterPrint).

As we can see it is pretty easy to compose multiple functions of the language to create

bigger ones. It will be useful when optimizing expressions with the tagless partial evaluator in

section 3.3.

The tag problem is explained in more details in section 1.1 of the paper written by Jacques

Carette, Oleg Kiselyov and Chung-chieh Shan [1].

5 Staged Tagless Interpreters in Dotty

Part 2

Staged Interpreters

We present two tag-full interpreters, one regular and one staged. This chapter presents the

first step towards tagless interpreters. We will start with a basic staged interpreter with error

handling and then greatly improve it using continuation-passing style. We define what the

language will do we use enumerations provided by Dotty as a GADT encoding of our language:

Listing 2.1: Definition of the language used in part 2

1 enum Exp {
2 case int(x: Int)
3 case Var(s: String)
4 case App(s: String , e: Exp)
5 case Add(e1: Exp , e2: Exp)
6 case Sub(e1: Exp , e2: Exp)
7 case Mul(e1: Exp , e2: Exp)
8 case Div(e1: Exp , e2: Exp)
9 case Ifz(e1: Exp , e2: Exp , e3: Exp)

10 }
11

12 enum Def {
13 case Declaration(s1: String , s2: String , e: Exp)
14 }
15

16 enum Prog {
17 case Program(list: List[Def], e: Exp)
18 }
19 ...

Consequently we can define factorial(5) as follows :

Listing 2.2: Factorial(5)

1 val factorial = Program(List(Declaration
2 ("fact", "x",
3 Ifz(Var("x"),
4 int (1),
5 Mul(Var("x"), (App("fact", Add(Var("x"), int(-1)))))))),
6 App("fact", int(5)))

2.1 Staged interpreter

The translation from OCaml to Scala is straightforward for this part. There is one thing

to note: int code in OCaml is Expr[Int] in Scala. Listings 2.3 and 2.4 show a part of this

interpreter.

6

PART 2. STAGED INTERPRETERS

Listing 2.3: The eval function in OCaml taken from [2]

1 (* eval2 : exp -> (string -> int code) -> (string -> (int -> int) code)
2 -> int code *)
3

4 let rec eval2 e env fenv =
5 match e with
6 Int i -> .<i>.
7 | Var s -> env s
8 | App (s,e2) -> .<.~(fenv s).~(eval2 e2 env fenv)>.
9 ...

10 | Div (e1,e2)-> .<.~(eval2 e1 env fenv)/ .~(eval2 e2 env fenv)>.
11 | Ifz (e1,e2,e3) -> .<if .~(eval2 e1 env fenv)=0
12 then .~(eval2 e2 env fenv)
13 else .~(eval2 e3 env fenv)>.
14 ...

Listing 2.4: The eval function in Scala

1 def eval(e: Exp , env: String => Expr[Option[Int]], fenv: String =>
2 Expr[Int => Option[Int]]): Expr[Option[Int]] = e match {
3

4 case int(x) => '(Some(~x.toExpr))
5

6 case Var(s) => env(s)
7

8 case App(s, e) => '{
9 ~eval(e, env , fenv) match {

10 case Some(x) => (~fenv(s))(x) : Option[Int]
11 case _ => None : Option[Int]
12 }
13 }
14 ...
15 case Div(e1 , e2) => '{
16 (~eval(e1, env , fenv), ~eval(e2 , env , fenv)) match {
17 case (Some(x), Some(y)) => if(y != 0) Some(x/y) : Option[Int] else←-

None : Option[Int]
18 case _ => None : Option[Int]
19 }
20 }
21 ...
22 }
23 ...

7 Staged Tagless Interpreters in Dotty

PART 2. STAGED INTERPRETERS

2.2 Binding-time improvement

Binding-time analysis are techniques that Partial Evaluators used in the past to discover

which input is known and which is not. Staging removes that complexity (we annotate the

programs with Exprs). Continuation-passing style is a technique long used for these kind of

improvements [7] even in staged programs. And again the translation is straightforward.

Listing 2.5: The eval function using CPS in OCaml taken from [2]

1 (* eval6 : exp -> (string -> int code) -> (string -> (int -> int) code)
2 -> (int code option -> ’b code) -> ’b code *)
3

4 let rec eval6 e env fenv k =
5 match e with
6 Int i -> k (Some .<i>.)
7 | Var s -> k (Some (env s))
8 | App (s,e2) -> eval6 e2 env fenv
9 (fun r -> match r with

10 Some x -> k (Some .<.~(fenv s) .~x>.)
11 | None -> k None)
12 | Add (e1,e2) -> eval6 e1 env fenv
13 (fun r ->
14 eval6 e2 env fenv
15 (fun s -> match (r,s) with
16 (Some x, Some y) ->
17 k (Some .<.~x + .~y>.)
18 | _ -> k None))
19 ...

Listing 2.6: The eval function using CPS in Scala

1 def eval[B](e: Exp , env: String => Expr[Int], fenv: String => Expr[Int ←-

=> Int], k: Option[Expr[Int]] => Expr[B]): Expr[B] = e match {
2

3 case int(x) => k(Some(x.toExpr))
4

5 case Var(s) => k(Some(env(s)))
6

7 case App(s, e) =>
8 eval(e, env , fenv ,
9 (r: Option[Expr[Int]]) => r match {

10 case Some(x) => k(Some ('{(~ fenv(s))(~x)}))
11 case _ => k(None)
12 }
13)
14

15 case Add(e1 , e2) =>
16 eval(e1, env , fenv ,
17 (r: Option[Expr[Int]]) => {

8 Staged Tagless Interpreters in Dotty

PART 2. STAGED INTERPRETERS

18 eval(e2, env , fenv ,
19 (s: Option[Expr[Int]]) => (r, s) match {
20 case (Some(x), Some(y)) => k(Some('{~x + ~y}))
21 case _ => k(None)
22 }
23)
24 }
25)
26 ...
27 }

A little comparison of the generated code by these two interpreters is needed. We will take

a simple example: Div(int(10), int(2)).

Listing 2.7: The eval function using CPS in Scala

1 scala.Tuple2.apply[scala.Option[scala.Int], scala.Option[scala.Int]](←-

scala.Some.apply[scala.Int](10), scala.Some.apply[scala.Int](2)) ←-

match {
2 case scala.Tuple2(scala.Some(x), scala.Some(y)) =>
3 if (y.!=(0)) (scala.Some.apply[scala.Int](x./(y)): scala.Option[←-

scala.Int]) else (scala.None: scala.Option[scala.Int])
4 case _ =>
5 (scala.None: scala.Option[scala.Int])
6 }

It is a lot of code just for a division and it is not easily readable. Let’s take the same example

but with the continuation-passing style implemented :

Listing 2.8: The eval function using CPS in Scala

1 if (2.==(0)) throw new java.lang.ArithmeticException () else {
2 val z: scala.Int = 10./(2)
3 z
4 }

There is not only less code but it’s clear enough to be easily readable!

9 Staged Tagless Interpreters in Dotty

Part 3

Staged Tagless Interpreters

The next embedding that we will use supports the same constructs, namely, addition,

lambda abstraction, application, booleans, integers, ... This time we use a tagless encoding to

interpret it.

Listing 3.1: Interface representing the language taken from [1]

1 module type Symantics = sig
2 type ('c, 'sv, 'dv) repr
3

4 val int : int -> ('c, 'int , 'int) repr
5 val bool : bool -> ('c, 'bool , 'bool) repr
6

7 val lam : (('c, 'sa, 'da) repr -> ('c, 'sb , 'db) repr as 'x)
8 -> ('c, 'x, 'da -> 'db) repr
9 val app : (('c, 'x, 'da -> 'db) repr

10 -> (('c, 'sa , 'da) repr) -> ('c, 'sb , 'db) repr as 'x)
11 val fix : ('x -> 'x) -> (('c, ('c, 'sa , 'da) repr ->
12 ('c, 'sb , 'db) repr ,
13 'da -> 'db) repr as 'x)
14

15 val add : ('c, 'int , 'int) repr -> ('c, 'int , 'int) repr
16 -> ('c, 'int , 'int) repr
17 val mul : ('c, 'int , 'int) repr -> ('c, 'int , 'int) repr
18 -> ('c, 'int , 'int) repr
19 val leq : ('c, 'int , 'int) repr -> ('c, 'int , 'int) repr
20 -> ('c, 'bool , 'bool) repr
21 val if_ : ('c, 'bool , 'bool) repr
22 -> (unit -> 'x) -> (unit -> 'x)
23 -> (('c, 'sa , 'da) repr as 'x)
24 end

In MetaOCaml we have an extra parameter, ’c, that in Scala is not needed (it is called

Environment Classifier). The repr is an abstract type: we use it to abstract the interpreter. It

has to be defined for each interpreter that implements this interface.

The abstract type repr defines two types: 'sv, stands for static, and 'dv, stands for dynamic.

It will be useful with the partial evaluator.

3.1 Tagless interpreter

The translation of most of the methods discussed previously was straightforward. The main

challenge was the translation of ‘fix‘, also called fix-point combinator.

10

PART 3. STAGED TAGLESS INTERPRETERS

Listing 3.2: Fix-point combinator in OCaml taken from [1]

1 let fix f = let rec self n = f self n in self

Listing 3.3: Fix-point combinator in Scala

1 override def fix[SA: Type , DA: Type , SB: Type , DB: Type]
2 (f: repr[repr[SA, DA] => repr[SB, DB], DA => DB] =>
3 repr[repr[SA, DA] => repr[SB , DB], DA => DB]):
4 repr[repr[SA, DA] => repr[SB , DB], DA => DB] =
5 (x: DA) => f(fix(f))(x)

3.2 Staged tagless interpreter

This is just a staged version of the interpreter from last section except for the fix method.

Here fix is tail recursive with as inner function let rec self n = ... in self. So in Scala

you first define the inner function as def self(n)= ... and then you call it with self(n).

Listing 3.4: Fix method staged in MetaOCaml taken from [1]

1 let fix f = .<let rec self n = .~(f .<self >.) n in self >.

Listing 3.5: Fix method staged in Scala

1 def fix[SA: Type , DA: Type , SB: Type , DB: Type]
2 (f: repr[repr[SA, DA] => repr[SB, DB], DA => DB] =>
3 repr[repr[SA, DA] => repr[SB , DB], DA => DB]):
4 repr[repr[SA, DA] => repr[SB , DB], DA => DB] =
5 '{
6 def self(n: DA): DB = {
7 ~f('(self)).apply('(n))
8 }
9 (n: DA) => self(n)

10 }

3.3 Partial evaluator

A partial evaluator will evaluate the code to do some mathematical optimization such as:

x +0 = x, x ∗0 = 0, x ∗1 = 1, x/1 = x, 0/x = 0.

There were two difficulties with the translation of this code. The first was to define repr, as

seen in Listing 3.6, in Scala. Here it is defined by a pair, StatDyn[A, B]. The first element is the

static part, which we do not have all the time so it is an Option[A]. The second element is the

dynamic part, which is staged.

11 Staged Tagless Interpreters in Dotty

PART 3. STAGED TAGLESS INTERPRETERS

Listing 3.6: The repr type in OCaml taken from [1]

1 type ’(c’,sv’,dv) repr = {st: ’sv option; dy: ’(c’,dv) code}

Listing 3.7: The repr type in Scala

1 type StatDyn[A, B] = (Option[A], Expr[B])

To be able to do the desired optimization, the code needs to be statically known : we cannot

do it if we only have the dynamic part so we are using pattern matching on the static part. We

will take the mul and div functions as examples :

Listing 3.8: mul and div optimization

1 override def mul(x: StatDyn[Double , Double],
2 y: StatDyn[Double , Double]):
3 StatDyn[Double , Double] =
4 (x._1 , y._1) match {
5 case (Some (0), Some(a)) => num (0)
6 case (Some(a), Some (0)) => num (0)
7 case (Some (1), Some(a)) => y
8 case (Some(a), Some (1)) => x
9 case _ => pdyn(evalStaged.evalStaged.mul(abstr(x), abstr(y)))

10 }
11

12 override def div(x: StatDyn[Double , Double],
13 y: StatDyn[Double , Double]):
14 StatDyn[Double , Double] =
15 (x._1 , y._1) match {
16 case (Some (0), Some(a)) => num (0)
17 case (Some(a), Some (0)) => throw new ArithmeticException
18 case (Some(a), Some (1)) => x
19 case _ => pdyn(evalStaged.evalStaged.div(abstr(x), abstr(y)))
20 }

The second difficulty was to translate the fix method, especially the self function (it is

called a partial function). It goes like this in OCaml :

Listing 3.9: Fix method in OCaml taken from [1]

1 let fix f = let fdyn = C.fix (fun x -> abstr (f (pdyn x)))
2 in let rec self = function
3 | {st = Some _} as e ->
4 app (f (lam self)) e
5 | e -> pdyn (C.app fdyn (abstr e))
6 in {st = Some self; dy = fdyn}

And it can be represented like this in Scala :

12 Staged Tagless Interpreters in Dotty

PART 3. STAGED TAGLESS INTERPRETERS

Listing 3.10: Fix method in Scala

1 override def fix[SA: Type , DA: Type , SB: Type , DB: Type]
2 (f: repr[repr[SA, DA] => repr[SB, DB], DA => DB] =>
3 repr[repr[SA, DA] => repr[SB , DB], DA => DB]):
4 repr[repr[SA, DA] => repr[SB , DB], DA => DB] = {
5

6 def fdyn: Expr[DA => DB] = evalStaged.fix((x: Expr[DA => DB]) =>
7 abstr(f(pdyn(x))))
8

9 lazy val self: StatDyn[SA, DA] => StatDyn[SB , DB] = {
10 case e @ (_: Some[_], _) => app(f(lam(self)), e)
11 case a => pdyn(evalStaged.evalStaged.app(fdyn , (abstr(a))))
12 }
13

14 (Some(self), fdyn)
15 }

Let’s compare the generated code of the staged interpreter from last section and the partial

evaluator.

1 // factorial (5)
2 val ex =
3 app(
4 fix((fact: repr[repr[Double , Double] => repr[Double , Double], ←-

Double => Double]) =>
5 (lam((n: repr[Double , Double]) => if_(leq(n, num(1)), n, mul(n, ←-

app(fact , add(n, neg(num (1))))))))
6), num (5)
7)

We have these results when using .show on the dynamic part :

1 Staged interpreter:
2 val x$3: scala.Double = 5.0
3 def self(n: scala.Double): scala.Double = {
4 val x$2: scala.Double = n
5 if (x$2 . <=(1.0)) x$2 else x$2 .*({
6 val x$1: scala.Double = x$2 .+(-1.0)
7 self(x$1)
8 })
9 }

10 self(x$3)
11

12 Partial evaluator:
13 5.0.*(4.0.*(3.0.*(2.0)))

13 Staged Tagless Interpreters in Dotty

Part 4

Tagless Interpreters and

Continuation-passing Style

4.1 Call-by-name

The object language takes the evaluation strategy of the metalanguage, in our case Scala

which is call-by-value. Here we want to decouple the evaluation strategy to get a call-by name

interpreter.

Again the difficulty here was to define repr. The name of this structure in OCaml is called a

record which do not have an equivalent as is in Scala.

Listing 4.1: repr in OCaml using a record taken from [1]

1 type ('c, 'sv, 'dv) repr = {ko: 'w. ('sv -> 'w) -> 'w)}

In CPS, k represents the continuation of the program. The interpretation of an object term

is a function mapping k to the answer returned by k. In the add example, Listing 4.3, the

interpretation has type (int -> 'w)-> 'w.

After trying out different options we found out that the easiest solution was to define it as

an abstract class.

Listing 4.2: repr in Scala as an abstract class

1 abstract class repr[SV , DV] {
2 def ko[W](k: SV => W): W
3 }

To see how to use this we will take the add method as example :

Listing 4.3: Add method in OCaml taken from [1]

1 let add e1 e2 = {ko = fun k ->
2 e1.ko (fun v1 -> e2.ko (fun v2 -> k (v1 + v2)))}

Listing 4.4: Add method in Scala

1 def add[DV](x: repr[Double , DV], y: repr[Double , DV]):
2 repr[Double , DV] =
3 new repr[Double , DV] {
4 def ko[W](k: Double => W): W =

14

PART 4. TAGLESS INTERPRETERS AND CONTINUATION-PASSING STYLE

5 x.ko((v1: Double) => y.ko((v2: Double) => k(v1 + v2)))
6 }

To show that this is really a CBN interpreter we will take an example that can only terminate

under CBN and not CBV :

Listing 4.5: (λx.1)(f i x f . f)2

1 val diverg = app(
2 lam((x: repr[Double , Double]) => num (1)),
3 app(fix((f: repr[repr[Double , Double] =>
4 repr[Double , Double], Double]) => f),
5 num (2)))

Which gives the desired result : 1.0.

4.2 Call-by-value CPS transformer

Now we want to make a program that takes as input an interpreter and transforms it into a

call-by value one.

For this part we make an exception and do a slight change in the trait Symantics : we change

type repr[_,_] to type repr[_] and keep only the second argument(we change repr[A, ←-

B], to repr[B]).

So here our interpreter will not be represented by an object but by a class that takes one

argument :

Listing 4.6: The class representing the CBV transformer in OCaml taken from [1]

1 module CPST(S: Symantics) = struct
2 ...

Listing 4.7: The class representing the CBV transformer in Scala

1 class CPSTransformer[Sym <: Symantics2 & Singleton](val S: Sym){
2 type W = Unit
3 type repr[DV] = S.repr[DV]
4 ...
5 }

The rest of the translation is direct except the fact that we have to be more precise with the

types, especially with the continuation. Let’s take again the add example :

Listing 4.8: Add method in OCaml taken from [1]

1 let add e1 e2 = S.lam (fun k -> S.app e1 (S.lam (fun v1 ->
2 S.app e2 (S.lam (fun v2 ->
3 S.app k (S.add v1 v2))))))

15 Staged Tagless Interpreters in Dotty

PART 4. TAGLESS INTERPRETERS AND CONTINUATION-PASSING STYLE

Listing 4.9: Add method in Scala

1 def add[W: Type](x: repr[(Double => W) => W],
2 y: repr[(Double => W) => W]):
3 repr[(Double => W) => W] =
4 S.lam(k =>
5 S.app(x, S.lam(v1 =>
6 S.app(y, S.lam(v2 =>
7 S.app(k, S.add(v1, v2)))))))

4.3 State and imperative features

For the last part, the interpreter is extended with imperative features. There are 3 possible

operations with a state :

1. !state : returns the current state

2. state ←− e : sets the state to e and returns the previous value

3. case e1 of x.e2 : applies e1 in the function e2 as the parameter x, note that we want to

first evaluate e1 before e2 even if e2 does not use x

Those 3 operations are represented by deref, set(e) and lapp(e2, e1). We will take an

example to make that clear. This program adds 2 to a given initial value using the new feature :

1 We write :
2 case !state of x.(state <- 2; x + !state)
3

4 as
5 val ex = lapp(deref(), (x: repr[Double , Double]) =>
6 lapp(set(num(2)), (_: repr[Double , Double]) => add(x, deref ())))

To add those features we first have to create a new trait, called SymSI, that will extend

Symantics. It defines a new type and the 3 new operations needed. The interpreter will extend

this new interface.

Listing 4.10: New trait with added imperative features

1 trait SymSI extends SymanticsTypeNotStaged {
2

3 abstract class repr[SV , DV] {
4 def ko[W](k: (SV) => (State_ST => W)): State_ST => W
5 }
6

7 type State
8 type State_ST
9

10 def lapp[SA, DA , SB , DB]
11 (arg: repr[SA, DA],
12 f: repr[SA, DA] => repr[SB, DB]): repr[SB, DB]

16 Staged Tagless Interpreters in Dotty

PART 4. TAGLESS INTERPRETERS AND CONTINUATION-PASSING STYLE

13

14 def deref (): repr[State_ST , State]
15

16 def set(a: repr[State_ST , State]): repr[State_ST , State]
17 }

Note that we will not use the new type State_ST here, we will just set it to be equal to

State. More information about the usefulness of this type can be found here [1].

The interpreter with the three additional features and a function to get the result looks like

this in OCaml :

Listing 4.11: Interpreter with imperative features in OCaml taken from [1]

1 module RCPS(ST: sig
2 type state
3 type ’c states
4 type ’(c’,sv’,dv) repr =
5 {ko: ’w. ’(sv -> ’c states -> ’w) -> ’c states -> ’w}
6 end) = struct include ST ...
7 let lapp e2 e1 = {ko = fun k ->
8 e2.ko (fun v -> (app (lam e1) {ko = fun k -> k v}).ko k)}
9 let deref () = {ko = fun k s -> k s s}

10 let set e = {ko = fun k -> e.ko (fun v s -> k s v)}
11 let get_res x = fun s0 -> x.ko (fun v s -> v) s0
12 end

And can be translated to this in Scala :

Listing 4.12: Interpreter with imperative features in Scala

1 class RCPS() extends SymSI {
2 ...
3 def lapp[SA, DA , SB , DB]
4 (arg: repr[SA, DA], f: repr[SA, DA] => repr[SB, DB]):
5 repr[SB, DB] = new repr[SB , DB] {
6 def ko[W](k: (SB) => (State_ST => W)): (State_ST => W) = {
7 arg.ko((v: SA) => app[SA, DA, SB , DB](lam[SA, DA , SB, DB](f),
8 new repr[SA, DA] {
9 def ko[W](k: (SA) => (State_ST => W)): (State_ST => W) = {

10 k(v)
11 }
12 }).ko(k))
13 }
14 }
15

16 def deref (): repr[State_ST , State] =
17 new repr[State_ST , State] {
18 def ko[W](k: State_ST => (State_ST => W)): (State_ST => W) =
19 (s: State_ST) => k(s)(s)
20 }

17 Staged Tagless Interpreters in Dotty

PART 4. TAGLESS INTERPRETERS AND CONTINUATION-PASSING STYLE

21

22 def set(e: repr[State_ST , State]): repr[State_ST , State] =
23 new repr[State_ST , State] {
24 def ko[W](k: (State_ST) => (State_ST => W)): (State_ST => W) =
25 e.ko(v => s => k(s)(v))
26 }
27

28 def getResult(x: repr[State_ST , State], init: State_ST) =
29 x.ko(v => s => v)(init)
30

31 }

More examples, especially the power and factorial functions, using these new features can

be found with the code of this project. 1.

1https://github.com/benoitknuchel/Staged-Tagless-Interpreters-in-Dotty/blob/master/
interpreters/src/main/scala/tagless/continuation_passing_style/stateImperativeFeatures/
stateImperativeFeatures.scala

18 Staged Tagless Interpreters in Dotty

https://github.com/benoitknuchel/Staged-Tagless-Interpreters-in-Dotty/blob/master/interpreters/src/main/scala/tagless/continuation_passing_style/stateImperativeFeatures/stateImperativeFeatures.scala
https://github.com/benoitknuchel/Staged-Tagless-Interpreters-in-Dotty/blob/master/interpreters/src/main/scala/tagless/continuation_passing_style/stateImperativeFeatures/stateImperativeFeatures.scala
https://github.com/benoitknuchel/Staged-Tagless-Interpreters-in-Dotty/blob/master/interpreters/src/main/scala/tagless/continuation_passing_style/stateImperativeFeatures/stateImperativeFeatures.scala

Part 5

Conclusion

This work shows the implementation of staged tagless interpreters in Dotty. This project

was based on two papers [1] [2].

The aim of this project was to test Dotty’s staging capabilities. These allowed us to imple-

ment a new family of interpreters in Scala by translating what has been done before in OCaml

and Haskell. Most of the translations are straightforward for people who know about those

languages but can be challenging for someone who never used them.

The results of the examples show that it is indeed effective, especially for the partial evalua-

tor.

The next step would be to apply this in practice with a real language. Following LIFT [8]

about generating code for high-performance GPU would be a good test.

19

Bibliography

[1] J. Carette, O. Kiselyov, and C. chieh Shan, “Finally Tagless, Partially Evaluated: Tagless

Staged Interpreters for Simpler Typed Languages”, 2008.

[2] W. Taha, “A gentle introduction to multi-stage programming”, en, no. 3016, C. Lengauer,

D. Batory, C. Consel, and M. Odersky, Eds., pp. 30–50, 2004.

[3] Y. Smaragdakis, A. Biboudis, and G. Fourtounis, “Structured program generation tech-

niques”, in Grand Timely Topics in Software Engineering, J. Cunha, J. P. Fernandes, R.

Lämmel, J. Saraiva, and V. Zaytsev, Eds., Cham: Springer International Publishing, 2017,

pp. 154–178, ISBN: 978-3-319-60074-1.

[4] N. Stucki, A. Biboudis, and M. Odersky, “A Practical Unification of Multi-stage Program-

ming and Macros”,

[5] P. Wadler, The Expression Problem, https://web.archive.org/web/20170322142231/

http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt,

Dec. 1998. (visited on 03/22/2017).

[6] “Haskell/GADT”, [Online]. Available: https://en.wikibooks.org/wiki/Haskell/

GADT.

[7] K. Nielsen and M. H. Sørensen, “Call-by-name cps-translation as a binding-time improve-

ment”, in STATIC ANALYSIS, NUMBER 983 IN LECTURE NOTES IN COMPUTER SCIENCE,

Springer-Verlag, 1995, pp. 296–313.

[8] M. Steuwer, T. Remmelg, and C. Dubach, “Lift: A Functional Data-Parallel IR for High-

Performance GPU Code Generation”, 2017. [Online]. Available: http://www.lift-

project.org/publications/2017/steuwer17LiftIR.pdf.

20

https://web.archive.org/web/20170322142231/http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://web.archive.org/web/20170322142231/http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://en.wikibooks.org/wiki/Haskell/GADT
https://en.wikibooks.org/wiki/Haskell/GADT
http://www.lift-project.org/publications/2017/steuwer17LiftIR.pdf
http://www.lift-project.org/publications/2017/steuwer17LiftIR.pdf

	Introduction
	Staged and Tagless
	Staging
	Tagless

	Staged Interpreters
	Staged interpreter
	Binding-time improvement

	Staged Tagless Interpreters
	Tagless interpreter
	Staged tagless interpreter
	Partial evaluator

	Tagless Interpreters and Continuation-passing Style
	Call-by-name
	Call-by-value CPS transformer
	State and imperative features

	Conclusion

