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Abstract— Water as a medium poses a number of challenges
for robots, limiting the progress of research in underwater
robotics vis-a-vis ground or aerial robotics. The primary chal-
lenges are satellite based positioning and radio communication
being unusable due to high attenuation of electromagnetic
waves in water. We have developed miniature, agile, easy to
carry and deploy Autonomous Underwater Vehicles (AUVs)
equipped with a suite of sensors for underwater environmental
sensing. We previously demonstrated adaptive sampling and
feature tracking, and gathered data from a lake for limnological
research, with the AUV performing inertial navigation. In this
paper, we demonstrate a new underwater acoustic positioning
system, which allows on-board estimation of AUV position.
Our system uses absolute time information from GNSS for
initial clock synchronization and uses one-way-travel-time for
range measurements, which makes it scalable in the number
of robots. It is easily deployable and does not rely on any
installed infrastructure in the environment. We describe various
hardware and software components of our system, and present
results from experiments in Lake Geneva.

I. INTRODUCTION

The opacity of water to electromagnetic waves limits
remote sensing for measuring physical or biological param-
eters below the surface of water bodies. The underwater
domain therefore has many applications for autonomous
robots carrying in-situ sensing payloads to capture spatio-
temporal phenomena. Not only does the use of robots scale
better than static sensing nodes in terms of spatial coverage
[1]], but robots can also specifically target regions of higher
interest for gathering data [2], [3]], [1]. However, underwa-
ter environments pose a number of challenges, including
unavailability of satellite-based positioning. Further, water
bodies have few visually distinct features away from the
bottom and the water is often turbid, making it difficult
or even impossible to rely on vision as a navigation aid.
We previously presented our work on autonomous feature
tracing and adaptive sampling in a lake with an Autonomous
Underwater Vehicle (AUV), for gathering dense limnological
measurements from specific regions of interest [4]. The AUV
had no external position reference (except for a depth sen-
sor) for underwater localization, and essentially performed
inertial navigation. In this paper, we present an acoustic
localization system to aid such data gathering missions. An
accurate on-board position estimation enables the AUV to
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Fig. 1: The Vertex AUV with its sensor suite in the front, protected by a
white cage. The AUV is about 70 cm long, weighs 7 kg, and can be carried
and deployed easily by one person.

accurately follow a pre-planned trajectory. It also provides an
accurate geo-reference for each environmental measurement,
improving the quality of the data collected by the AUV.

For our work, we used the Vertex AUV [3]], shown in
Fig. [T} a platform developed in our laboratory and currently
manufactured and commercialized by Hydromea S.Aﬂ It is
small enough to be easily deployed and retrieved by one
person, and was designed for distributed, cooperative multi-
AUV sensing. In contrast with many large size commercial
AUVs, its small size makes it suitable for deployment
in lakes, where large ships with cranes are generally not
available. Yet, its small size (0.7 m in length) also introduces
further challenges. Commercially available navigation hard-
ware such as a SONAR or a Doppler Velocity Log (DVL)
are not only expensive, but are also incompatible with the
Vertex AUV due to their size.

A number of approaches that use acoustic signals trans-
mitted by a beacon for computing range or bearing have
been proposed for AUV navigation. Knowing the position
of multiple transmitting beacons, it is possible to triangulate
the position of the AUV [6]]. For the case where the beacon
locations are not known (but they are known to be fixed), an
approach similar to Simultaneous Localization and Mapping
(SLAM) can be used, where the beacons and the AUV
are simultaneously localized [7]]. Becker et al. [8] propose
a similar approach using bearing-only measurements from
a single beacon with known depth but unknown position.
This approach requires multiple receivers to estimate bearing
from time difference of arrival at the receivers. If acoustic
communication is available, the beacons can transmit their
own position. Munafo et al. in [9]] encode transmission time
information within the signal used for computing range and
bearing. Their method relaxes the need for synchronized
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clocks or two-way signal exchange for calculating range.
This approach relies on beacons being already installed,
doing which can be expensive and time consuming. Other
methods include matching measured geophysical properties
to apriori maps [10], and SLAM-like approaches using a
SONAR [[L1]] or vision [12]. They either need apriori infor-
mation about the environment or require expensive and large
equipment such as a SONAR, which cannot be integrated
with a miniature AUV. Further, visual SLAM based methods
work only in clear, shallow water or close to the bottom.
Other approaches to underwater navigation exist that do not
rely on acoustic beacon systems or SONAR. Hegrenaes et
al. in [13] use a Doppler velocity log (DVL) water-track
measurements together with sea current estimates for im-
proved mid-water (away from bottom or surface) navigation.
Song et al. also use a similar method, with local current
measurements with an acoustic Doppler current profiler
(ADCP) combined with ocean current maps preloaded onto
an AUV [14].

More recently, Rypkema et al. [[15] presented a localization
system that uses an Ultra-Short Base Line (USBL) receiver
array mounted on an AUV and a single acoustic transmitter.
Their approach is similar to the one proposed by us, in that
it uses one-way travel time for ranging. On the Vertex AUV,
the environmental sensing payload is mounted in the front of
the AUV as shown in Fig.[I} in order to prevent the thrusters
from disturbing the medium before a measurement is taken.
This leaves limited space for installing a USBL array for
range-and-bearing measurements.

We propose an acoustic ranging based navigation sys-
tem that consists of surface-side and AUV-side acoustic
transceiver devices. Both use similar hardware but the
surface-side devices are additionally equipped with a radio
and satellite positioning receivers and are deployed either
close to the shore or off-shore. Both kinds of transceiver
devices can send and receive acoustic signals, and calculate
the range to a transmitter based on time-of-flight of sound
in water. However, in this experiment, we use the surface
devices exclusively as transmitting beacons, and the AUVs
as passive receivers. The proposed system is easy to deploy,
does not require any installed hardware in the environment,
which will allow us to rapidly set up environmental sampling
missions in new environments. The system is scalable in
the number of robots, making it suitable for multi-AUV
operations. Additionally, we do not rely on expensive clocks
(such as chip scale atomic clocks) for time synchronization,
but instead use inexpensive crystal oscillators coupled with
timing information from the Global Navigation Satellite
System (GNSS) receivers.

We introduce the relevant AUV subsystems and other
equipment used in our system in Section [lIl In the following
Section (M), we present our approach towards developing
and deploying the acoustic navigation system. We show
results gathered with real-world experiments in Section [[V]
Finally, we highlight the importance of acoustic navigation
for underwater sampling applications and discuss possibili-
ties for improving the proposed system.

(b) Surface beacon

(a) AUV acoustic system
Fig. 2: Acoustic transceivers used on surface and on the AUV. In this paper,
we use the surface transceivers exclusively as beacons and AUV transceiver
as a passive receiver.

II. RELEVANT EQUIPMENT AND AUV SUBSYSTEMS

A. On-board Navigation

An Extended Kalman Filter (EKF) framework is used
for navigation, which fuses sensor measurements with a
comprehensive model of the dynamics of the AUV. The
dynamics model takes into account the rotational speed of
the propellers, inertia of the AUV, as well as the effect of
buoyancy and viscous drag on the body of the AUV. The EKF
is complemented by a GNSS position fix whenever the AUV
is on the surface. In the absence of any external positioning
reference, the AUV is effectively performing dead reckoning,
aided by the compass for its heading, an Inertial Measure-
ment Unit (IMU) for attitude, a dynamic model for velocity,
and a depth sensor. However, with dead reckoning, the error
in the estimated position can increase without bound. Range
measurements from the acoustic system can be integrated
into the position estimate within the EKF framework, which
will help bound the position error.

Acoustic range measurements are subject to multi-path
reflections, echoes and noise in the hydrophone signal itself.
Clearly, the error in range measurements cannot be accu-
rately modeled with a Gaussian distribution. Therefore, per-
forming an acoustic range update within an EKF framework
is not appropriate on a theoretical level because it inherently
assumes a Gaussian error model. Despite that, it works well
in practice and offers a number of advantages such as low
computational cost and simple implementation, which make
it suitable for a real-time system.

B. AUV acoustic subsystem

The acoustic subsystem consists of two piezoelectric
transducers, one for transmitting an acoustic signal and
the other that acts as an acoustic receiver. These trans-
ducers are respectively connected to the digital-to-analog
and analog-to-digital converter modules of a microcontroller
with appropriate amplification stages. The microcontroller
samples the acoustic signal, measures the time of flight and
computes the range, and transmits this information to the
navigation module over a serial link. All the electronics and
the transducers are molded into a separate waterproof and
pressure-proof casing which is attached to the AUV hull, as
shown in Fig. 2a] In this paper, we only use the receiving
transducer, and the AUVs do not transmit any acoustic signal.



Fig. 3: An ASV, which can carry the surface beacons or serve as surrogates
for the AUVs for various experiments.

C. Surface beacons

The surface acoustic devices, shown in Fig. @have simi-
lar hardware as the acoustic subsystem on the AUV described
in the previous section, except that they are additionally
equipped with their own GNSS receiver and a radio module
for communication with the base station. They also have
multi-channel input for connecting to a hydrophone array,
for future implementation of bearing-based tracking methods
(which will require AUVs to be transmitting). These devices
can be deployed from the shore, or mounted on a surface
vehicle or a boat and deployed at any point in a water body.
For the experiments described in this paper, we use them as
beacons that transmit an acoustic signal. They do not receive
any signal since the AUV is not transmitting.

D. Autonomous surface vehicles

We have a number of small, lightweight (about 1 m in
length and 1 kg in weight) Autonomous Surface Vehicles
(ASVs), shown in Fig. EL which are remote-controlled boats
outfitted with an autopilot. The surface acoustic beacons are
mounted on these vehicles for off-shore deployment, with
the acoustic transceivers and the autopilot sharing the radio
and GNSS receiver modules. Due to wind and waves, it is
difficult to deploy static but unanchored off-shore beacons.
The ASVs instead can actively hold a specified position, so
that the AUVs can receive acoustic pings from beacons at
known locations. Future implementation of acoustic-based
communication will enable the beacons to broadcast their
position, eliminating the need for keeping the beacons static.

The ASVs can also follow a pre-planned trajectory, and
can be used as surrogates for AUVs for testing and experi-
mentation.

III. METHODOLOGY
A. Surface beacon deployment

We deployed one beacon from the shore in Lake Geneva,
and another mounted on an ASV, as shown schematically
in Fig. ] The ASV was programmed to hold a specific
position. Once the beacons are deployed, their positions are
transmitted to the AUV before it dives. Since the AUV is
equipped with a depth sensor, position estimation reduces
to a two-dimensional problem. Given that the initial posi-
tion of the AUV is known from GNSS before launch and
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Fig. 4: One beacon is deployed from the shore and another mounted on
an ASV. The two surface beacons transmit alternatively following a fixed
schedule based on absolute time, and use the GNSS PPS to trigger playback
of an acoustic pulse. The AUV uses absolute time to identify the current
transmitter and computes time of flight.
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incremental inertial updates are available, in most benign
configurations, two beacons are sufficient to fully estimate
the AUV position. We can tune the accuracy of the system
by altering the relative location of the two (or more) beacons.

B. Clock and time synchronization

For computing range from one-way travel time and for
scheduling transmissions from multiple beacons, we need all
the beacons and the AUV to have synchronized clocks. We
do that at two levels. First, we use the timing pulse emitted
per second (PPS) by the Ublox M8N GNSS receiver module,
which has an accuracy of the order of 10 ns, to tune the
speed of the clock and eliminate the clock drift. This helps
in accurate measurement of time of arrival of the ranging
pulse, as explained in the next section. Second, we use the
absolute time information received from the GNSS module
to set the wall-clock time. The absolute time solution has an
error of the order of 10 ms. To mitigate that, we first set the
wall-clock time to the GNSS time solution, and then round it
off to the next full second at the PPS trigger. With a known
transmission schedule and synchronized clocks, each device
knows the identity of the current and previous transmitter.

The AUV clock is synchronized while it is on surface, but
the clock drifts when underwater. For this reason, the AUV
is equipped with an crystal oscillator of higher accuracy and
temperature compensation. It has a clock drift of 0.3 ppm,
which translates to a range measurement error of less than
1 m over 1 hour. This error is insignificant compared to the
accumulated error in purely inertial positioning. Nonetheless,
this clock drift can be reset with GNSS reception during the
periodic resurfacing of the AUV.

C. One-way travel time and transmission scheduling

Our system is based on one-way travel time for ranging,
where only the surface beacons transmit and the AUVs
are passive receivers. This has the advantage of scalability,
since any number of AUVs can receive the ranging pulse
transmitted by a beacon. We use the PPS signal, which is
fed to an interrupt pin, to trigger playback of a pre-recorded
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Fig. 5: Range measured using one-way travel time by a receiver to two
beacons that transmit according to a prearranged schedule. Range computed
by GNSS positions is shown for comparison. The receiver associates each
range measurement to the correct transmitter beacon using absolute time
information from GNSS.

maximum length sequence (MLS) pulse through the beacon
transducer. The receiver then measures the time between its
own PPS trigger and the acoustic pulse reception to compute
time of flight. We assume constant velocity of sound in the
region of operation during the length of the experiment.
Since only one of the surface beacons can transmit at a
time in order to avoid interference, we need to schedule
their transmission. We use the PPS signal to trigger the
transmission on either of the two beacons every full second
of the clock. While this places a maximum limit on the range
that can be measured by our system, it can be increased if
necessary by altering the transmission schedule. We schedule
the transmissions for each beacon based on absolute time,
and this schedule is known to all devices prior to a mission.
Fig. [5] shows that the receiver can correctly identify the
transmitting beacon for each range measurement.

D. Position updates with acoustic range

We integrate the acoustic range measurements with the
AUV position within the existing EKF framework. In two
dimensions, given the prior position of the AUV, & and
covariance 3, and a beacon located at POSition Xpeacon, OUr
measurement function is

h(X) = ||X - Xbeacon”- (1)

On receiving a range measurement 7, the posterior position
and covariance is obtained using the regular Kalman update
equations,

= T4 Kgin(r — h(Z)), 2)
— KginH)2, 3)

where H is the Jacobian of h(x), and the Kalman gain is
computed as

Kgain = SHT [HEHT + o—r} - )

Note that the bracketed expression is a scalar and hence there
is no matrix inversion involved, which makes this update
computationally inexpensive.
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Fig. 6: FFT of the ranging signal and the motor-induced noise of AUV
and ASVs. The ranging signal is a pre-recorded MLS sequence that is sent
through a piezo, which has resonance in the 35-45 kHz range.

Fig. 7: Factor graph for smoothing the trajectory estimated by EKF, which
fuses odometry and acoustic range measurements. x,, are vehicle positions,
connected in a chain by odometry factors. b1 and bo are beacon positions,
which are connected to vehicle positions by range measurement factors.

E. Signal filtering and outlier rejection

The mechanical noise of the motors is also picked up
by the acoustic receiver, which generates spurious range
measurements. A Fourier transform of the motor noise shows
the presence of frequencies beyond the 70 kHz range for
the AUV, and sub 30 kHz range for ASVs. While we use
an MLS signal as the ranging pulse which contains a wide
range of frequencies, the transmitters have a resonance in
the 35-45 kHz range. Therefore, the ranging pulse is band-
limited. A band pass filter with a lower and upper cut-off
frequencies of 30 kHz and 50 kHz respectively effectively
removes the motor induced disturbance.

Echoes and reflected signal arrivals result in outlier range
measurements. These errors are exacerbated especially when
operating in shallow water bodies or close to the shore, as is
the case for the experiments presented in this paper. Using
the dynamics model of the AUV combined with the past
range measurements, such outliers can be rejected. More
specifically, using the current position estimate (which is a
function of the dynamics model) and the range measurement
model, a likelihood function for range measurements is
formulated. Then, range measurements with likelihood less
than a set threshold are classified as outliers. Usually, outliers
with a large error are easily rejected since they have a low
likelihood. However, occasional outliers with small errors
may be difficult or even impossible to eliminate.

FE. Post-processing

While the EKF is computationally efficient for on-board
fusion of acoustic range measurements, each update is per-
formed by marginalizing out the previous state estimates and
measurements. This sometimes results in discontinuities in
the estimated trajectory when acoustic range updates are
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Fig. 9: Trajectories estimated by EKF by fusing inertial estimates and acousti

©

¢ range measurements. In the top row, raw range measurements (after outlier

rejection) are compared with range computed from the EKF solution. Plot (a) shows an experiment with a single beacon. The colored crosses on the plot
indicate the starting point of the mission. In (b), a virtual beacon with simulated range measurements is added to the data logged during the mission in (a).
This helps in experimenting with beacon placement and studying its impact on navigation accuracy. (c) shows an experiment with two beacons, the range
measurements from which are used by a receiving vehicle to perform online real-time position estimation. Ground truth trajectory obtained from GNSS is

shown in all the three plots.

performed with erroneous range measurements. However,
in post processing, we can use the odometry information
(control inputs and inertial measurements) logged by the
vehicle together with the set of all range measurements
to optimize over the whole trajectory. To do so, we rep-
resent the vehicle positions, odometry updates and range
measurements as a factor graph, as shown schematically
in Fig. |7} In the factor graph formulation, consecutive ve-
hicle positions are related through odometry factors, while
external measurements are represented by their respective
measurement factors. Essentially, a factor graph represents
the joint distribution P(Z,¥s,...%,|21, 22, ... ), where Z;
are vehicle positions and z; are any measurements. Our
goal is to estimate the collection of vehicle positions over
the entire trajectory. We assume that the first position of
the vehicle is known from GNSS reception on the surface,
and hence is added as a prior constraint. We then perform
a Maximum A-Posteriori (MAP) inference over the factor
graph using the GTSAM library [16].

IV. EXPERIMENTS AND RESULTS

We performed a number of experiments with one and two
surface beacons in a shallow area of Lake Geneva, close to
a boat pier. The first beacon was deployed from the shore,
and the second was mounted on an ASV and deployed off-
shore. The ASV was programmed to hold a static position.
Errors in localization due to position-holding inaccuracy of
the ASV were not accounted for. The depth in the area was

between 2-10 m, and the experiments were performed in low
wind and current conditions.

In order to be able to use GNSS position as ground-
truth for validation of the proposed system, we mounted
the acoustic receiver on a second surface vehicle. This ASV
served as a proxy for the AUV, and did not use the GNSS
position for navigation. It was simultaneously performing
inertial position estimation, as well as fusing acoustic range
measurements into its inertial estimate using an EKF. The
inertial estimates and the EKF output were both logged.

A. Acoustic navigation

To begin with, we deployed a single transmitting beacon
emitting a ranging pulse once every 2 s. The estimated
trajectory of the robot is shown in Fig. Pa The quality
of the position estimate in this case will depend on the
position and direction of motion of the vehicle relative to
the beacon. In order to experiment with various placements
for the second beacon, we added a virtual beacon and
simulated range measurements in post-processing using data
from the aforementioned mission. Fig. [9b] shows an instance
of a simulated beacon experiment. As expected, adding
an additional beacon or increasing the relative separation
between the beacons improves the position estimate. We
use the GNSS positions as ground truth and compute the
RMS error in the estimated trajectory. The error for one
and two beacons and various relative beacon placements is
summarized in Table [l We then deployed two real beacons
and repeated the experiment, with the beacons transmitting



Method / Baseline Trajectory RMS

error [m]
Inertial (Fig. [9a] and [9b) 4.26
Single beacon (Fig. [9a)) 2.90
Real+virtual / 30 m (Fig. [9b]) 2.16

Real+virtual / 45 m (plot not shown) | 2.00
Real+virtual / 60 m (plot not shown) | 1.87
Inertial (Fig.[9¢|) 6.90
Two beacons / 16 m (Fig. [9¢)) 2.10

TABLE I: RMS error over the trajectory for purely inertial navigation and
acoustic range based navigation. For the case where two beacons are used,
the inter-beacon distance is mentioned.
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Fig. 10: Raw range measurements with outliers or spurious range measure-
ments (caused by motor noise) and range measurements that are accepted
for fusion using EKF.

their ranging pulse every alternate second. Fig. [9c| shows the
estimated trajectory from this experiment.

B. Outliers and range errors

Fig. [T0] shows a plot of raw range measurements and the
measurements that were accepted for fusion with the EKF
into the position estimate. In practice, outliers with a large
error are easily rejected since they have a low likelihood.
However, outliers with smaller errors have a larger potential
to influence the state estimate. While range measurements
help bound the absolute error in the robot trajectory, outlier
range measurements result in discontinuities and jumps in
the estimated trajectory. There are a number of methods to
address these in post-processing.

C. Factor graph smoothing

Offline factor graph smoothing is performed on the esti-
mated trajectory using the GTSAM library, as explained in
Section [III-F and the result is shown in Fig. [IT} This results
in a smooth and consistent trajectory estimate, and therefore
provides consistent geo-referencing for data gathered during
sampling missions.

V. CONCLUSION

We presented an acoustic navigation system for AUVs to
aid environmental sampling missions in lakes and coastal
areas. Our goal was to provide the AUVs with an external
positioning reference so as to bound the error in estimated
position. This is necessary in order to follow a pre-planned
trajectory as well as to correctly geo-reference environmental
measurements. The acoustic navigation system presented
in this paper is easy to deploy and does not require any
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Fig. 11: Factor graph smoothing is applied offline in post processing to the
trajectory estimated by EKF.

equipment to be installed in the environment. This is a
necessary feature to facilitate quick measurement missions
in new environments. Further, our system is scalable in the
number of vehicles since the vehicles are passive receivers of
acoustic ranging signals. We demonstrated our system with
experiments in a real-world environment. The experiments
presented in this paper were conducted in shallow water
close to the shore of Lake Geneva, which is a challenging
environment for acoustic-based localization methods. We
used a likelihood-threshold based method to reject outlier
range measurements.

A number of improvements to the proposed system are
planned in future. Statistical outlier rejection methods are
more robust, but they introduce a delay in range updates
since they use new range measurements to identify outliers
in the past. However, it is possible to perform a delayed
correction of the position estimate. We are exploring online,
incremental smoothing methods to address the problem of
discontinuities and jumps in the estimated trajectory.
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