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Abstract
In this thesis we consider inverse problems involving multiscale elliptic partial differential

equations. The name multiscale indicates that these models are characterized by the presence

of parameters which vary on different spatial scales (macroscopic, microscopic, mesoscopic,

etc.). The variations at the smallest scales make these equations very difficult to approximate

also when considering forward problems, since classical numerical methods require a mesh

resolution at the finest scales, hence a computational cost that is often prohibitive. For

this reason one prefers to apply homogenization or effective methods which, neglecting

what happens at the smallest scales, are able to provide accurate macroscopic solutions

to the problem. For what concerns the solution of inverse problems, we propose then a

new numerical algorithm based on homogenization techniques, model order reduction and

regularization methods.

First, we consider elliptic operators whose tensor varies on a microscopic scale. Under the

assumption that the nature of its micro structure is known, we aim at recovering a macroscopic

parameterization of the tensor from measurements originating from the full multiscale model,

using homogenization. Practical examples include multi-phase media whose constituents are

known, but their respective volume fraction is unknown. We consider the Calderón’s formula-

tion of the inverse problem. We prove that, under some regularity assumptions on the fine

scale tensor, the effective inverse problem, with observed data consisting of the homogenized

Dirichlet to Neumann (DtN) map, is also well-posed. We then solve the problem by consider-

ing finite measurements of the multiscale DtN map and using Tikhonov regularization, and

we establish a convergence result of the solution by means of G-convergence.

In a second stage, we consider a Bayesian approach which allows for uncertainty quan-

tification of the results. We prove existence and well-posedness of the effective posterior

probability measure, obtained by homogenization of the observation operator. By means of

G-convergence we characterize the discrepancy between the fine scale and the homogenized

model, and we prove convergence of the effective posterior towards the fine scale posterior

in terms of the Hellinger distance. We also propose a numerical procedure to estimate the

homogenization error statistics, which, if included in the inversion process, allow to account

for approximation errors.

Finally, we deal with multiscale inverse problems for the linear elasticity equation. In this

context we assume that the heterogeneity of the material is determined by its geometry
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Abstract

rather than by the coefficients of the equation. In particular, we consider porous media with

random perforations and, following the Bayesian approach, we solve the inverse problem

of determining the elastic properties of an hypothetical isotropic material. We prove the

existence and well-posedness of the effective posterior measure, as well as its convergence in

the fine scale limit by means of G-convergence. We conclude by describing a new probabilistic

numerical method which computes a new posterior measure that accounts for approximation

errors and reveals the uncertainty intrinsic in the numerical method.

Key words: multiscale, homogenization, heterogeneous multiscale method, reduced basis,

inverse problems, uncertainty quantification, penalization methods, Bayesian methods, prob-

abilistic numerical method, linear elasticity.
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Résumé
Dans cette thèse, nous examinons la solution de problèmes inverses pour des équations aux

dérivées partielles multi-échelles de type elliptique. Le terme multi-échelles indique que ces

modèles sont caractérisés par des paramètres présentant des variations à différentes échelles

spatiales (macroscopique, microscopique, mésoscopique, etc.). Les variations aux plus petites

échelles rendent l’approximation de ces équations difficile même dans le cas de problèmes

directs, car les méthodes numériques classiques exigent une discrétisation spatiale assez fine

pour capturer ces variations, nécessitant ainsi un coût de calcul prohibitif. Pour cette raison,

il est souvent préférable de recourir à des méthodes dites d’homogénéisation ou effectives

qui, tout en négligeant les caractéristiques du modèle aux plus fines échelles, sont capables de

fournir des solutions macroscopiques au problème. Afin de résoudre les problèmes inverses

dans le régime multi-échelles, nous proposons donc un nouvel algorithme numérique basé

sur les techniques d’homogénéisation, de bases réduites, et les méthodes de régularisation.

Premièrement, nous considérons les opérateurs elliptiques dont le tenseur présente des

variations à l’échelle microscopique. En supposant connaître la nature de sa structure micro-

scopique, notre objectif est de déterminer une paramétrisation macroscopique du tenseur à

partir d’observations provenant du modèle multi-échelles, mais en utilisant des méthodes

d’homogénéisation. Un exemple typique est fourni par les matériaux composites, dont nous

connaissons les constituants mais pas leur fraction volumétrique respective. Nous prenons en

considération le problème inverse comme formulé par Calderón. Sous certaines hypothèses

de régularité sur le tenseur multi-échelles, nous démontrons que le problème inverse ef-

fectif, où les observations sont représentées par l’opérateur Dirichlet to Neumann (DtN)

homogénéisé, est bien posé. Nous résolvons le problème en considérant un nombre fini de

mesures de l’opérateur DtN multi-échelle et en utilisant la méthode de Tikhonov pour sa

régularisation, et nous établissons un résultat de convergence pour la solution en utilisant la

G-convergence.

Dans un deuxième temps, nous considérons la méthode bayésienne qui permet de quanti-

fier l’incertitude des résultats du problème inverse. Nous montrons que la mesure effective

de probabilité a posteriori, obtenue par homogénéisation de l’opérateur d’observation, ex-

iste et est bien posée. En utilisant la G-convergence, nous caractérisons la différence entre

les modèles multi-échelle et effectif. De plus, nous démontrons la convergence entre les

deux mesures de probabilité a posteriori respectives en termes de distance de Hellinger.

Nous proposons également un schéma numérique pour estimer a priori les statistiques de
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Résumé

l’erreur d’homogénéisation, et nous observons numériquement que, si elles sont incluses

dans le processus d’inversion, ces statistiques permettent de prendre en compte les erreurs

d’approximation, qui pourraient sinon altérer les résultats.

Enfin, nous traitons des problèmes inverses multi-échelles pour l’équation de l’élasticité

linéaire, en supposant que l’hétérogénéité du matériau est déterminée par sa géométrie plutôt

que par les coefficients de l’équation. En particulier, nous considérons des materiaux poreux

avec des vides répartis aléatoirement et, en utilisant la méthode bayésienne, nous résolvons

le problème inverse pour déterminer les propriétés élastiques d’un matériau isotrope hy-

pothétique. Nous montrons que la mesure effective de probabilité a posteriori existe et est

bien posée et que, en utilisant la G-convergence, elle converge vers la mesure multi-échelle

en termes de distance de Hellinger. Nous concluons en décrivant une nouvelle méthode

numérique probabiliste permettant de calculer une nouvelle mesure effective a posteriori qui,

en tenant compte des erreurs d’approximation, permet de révéler l’incertitude inhérente à la

méthode numérique.

Mots clefs: multi-échelles, homogénéisation, méthode hétérogène multi-échelles, bases

réduites, problèmes inverses, quantification de l’incertitude, méthodes de pénalisation, méth-

odes bayésiennes, méthodes numériques probabilistes, élasticité linéaire.

vi



Contents

Acknowledgements i

Abstract iii

Résumé v

Notation xi

1 Introduction 1

1.1 Literature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Main contributions and outline of the thesis . . . . . . . . . . . . . . . . . . . . . 8

2 Homogenization and multiscale methods for elliptic equations 11

2.1 Homogenization of elliptic equations . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Finite element heterogeneous multiscale method (FE-HMM) . . . . . . . . . . . 14

2.2.1 The numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 A priori error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Approximation of the effective normal flux at the boundary . . . . . . . . 20

2.3 Reduced basis finite element heterogeneous multiscale method (RB-FE-HMM) 26

2.3.1 Parameterized micro problems and model order reduction . . . . . . . . 26

2.3.2 A priori error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Numerical method for solving multiscale inverse problems via Tikhonov regulariza-

tion 33

3.1 Stability and uniqueness results for inverse problems with parameterized tensors 34

3.2 Stability and uniqueness results for the fine scale and the effective inverse problem 36

3.3 Tikhonov regularization: multiscale and coarse grained minimizers . . . . . . . 41

3.4 Reduced basis method for the solution of the regularized multiscale inverse

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.2 A 2D affinely parameterized tensor . . . . . . . . . . . . . . . . . . . . . . 57

3.5.3 A 2D non-affinely parameterized tensor . . . . . . . . . . . . . . . . . . . 60

vii



Contents

4 Numerical method for solving multiscale inverse problems via Bayesian techniques 65

4.1 An elliptic multiscale inverse problem with finite observations . . . . . . . . . . 66

4.2 Well-posedness and convergence of the effective posterior measure . . . . . . . 68

4.2.1 Well-posedness of the effective posterior measure . . . . . . . . . . . . . 71

4.2.2 Convergence of the fine scale posterior towards the effective posterior . 75

4.3 Sampling from the effective posterior measure . . . . . . . . . . . . . . . . . . . 79

4.4 A reduced basis method for the solution of the Bayesian multiscale inverse

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.2 A 2D affinely parameterized tensor (amplitude of micro oscillations) . . 86

4.5.3 A 2D non-affinely parameterized tensor (orientation of micro oscillations) 93

4.5.4 A 2D non-affinely parameterized tensor (volume fraction of two phase

layered material) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Homogenization and multiscale methods for linear elasticity problems in random

perforated domains 97

5.1 Homogenization in random linear elasticity . . . . . . . . . . . . . . . . . . . . . 98

5.1.1 Ergodic theory and G-convergence of random tensors . . . . . . . . . . . 99

5.2 The case of random perforated domains . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Definition of random perforated domains and examples . . . . . . . . . . 103

5.2.2 Homogenization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.3 Computable approximation of the effective tensor . . . . . . . . . . . . . 114

5.3 Numerical homogenization of multiscale linear elasticity problems in random

perforated domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.1 FE-HMM in linear elasticity with random perforated domains . . . . . . 117

5.3.2 RB-FE-HMM in linear elasticity with random perforated domains . . . . 119

5.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4.1 The periodic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.4.2 The random case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Uncertainty quantification for inverse linear elastic problems in random perforated

domains 137

6.1 Setting of the Bayesian linear elastic inverse problem . . . . . . . . . . . . . . . . 138

6.2 Well-posedness and convergence of the effective posterior measure . . . . . . . 144

6.2.1 Well-posedness of the effective posterior measure . . . . . . . . . . . . . 145

6.2.2 Convergence of the effective posterior measure towards the fine scale

posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2.3 Convergence of the probabilistic effective posterior measure towards the

fine scale posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3 Probabilistic numerical method for the solution of the Bayesian linear elastic

inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

viii



Contents

6.4.1 The periodic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.4.2 The random case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7 Conclusion and outlook 165

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Bibliography 167

Curriculum Vitae 175

ix





Notation
Problem setting

d dimension of the problem, d ∈ {1,2,3}

ε fine scale size of the two-scale model, ε> 0

D macroscopic domain in Rd

Y unit cube in Rd , Y = (0,1)d

C generic constant whose value can change at any occurrence

Abbreviations
PDE partial differential equation

FE finite element

FEM finite element method

DOF degree of freedom

HMM heterogeneous multiscale method

RB reduced basis

EIM empirical interpolation method

DtN Dirichlet to Neumann

KL Karhunen-Loève

MCMC Markov chain Monte Carlo

MH Metropolis-Hastings

Common indices

mac macro

mic micro

Standard sets of numbers

N set of positive integers {1,2, . . .}

N0 set of non-negative integers {0,1,2, . . .}

Z set of integers

R set of real numbers
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Notation

Functional spaces

C k (D) k-times continuously differentiable functions D →R, 0 ≤ k ≤∞
C∞

0 (D) infinitely continuously differentiable functions D →Rwith com-

pact support on D

C k
per(Y ) subset of Y -periodic functions in C k (D)

Lp (D) the usual Lebesgue space with 1 ≤ p ≤∞
W k,p (D) the usual Sobolev space with k ∈N and p ∈ [1,∞]

H k (D) the Hilbert space W k,2(D)

H 1
0 (D) subspace of H 1(D) with a vanishing trace on ∂D

H 1
Γ(D) subspace of H 1(D) with a vanishing trace on Γ⊂ ∂D

H 1
per(Y ) closure of C∞

per(Y ) in the norm H 1(Y )

X ′ dual space of a vector space X

‖ ·‖X standard norm in any normed linear space X

〈·, ·〉X standard inner product in any inner product space X

Finite element spaces

TH a triangular or tetrahedral mesh consisting of elements K ∈TH

the mesh size H = maxK∈TH
diam(K )

P n(K ) vector space of polynomials in K of degree at most n ∈N0

Sn(D,TH ) continuous finite element space in D on mesh TH of degree n

Sn(D,TH ) = {q H ∈ H 1(D) : q H |K ∈P n(K ), ∀K ∈TH }

Vectors and matrices
Ai j coefficients of a matrix A ∈Rn×m

‖A‖F Frobenius norm of a matrix A ∈Rn×m

‖A‖∞ max norm of a matrix A ∈Rn×m

bi elements of a vector b ∈Rn

‖b‖2 Euclidean norm of a vector b ∈Rn

Symn class of n ×n real valued symmetric matrices

ei the i -th canonical basis vector in Rn

M(α,β,D) {A ∈ (L∞(D))n×n : α|b|2 ≤ A(x)b ·b ,

|A(x)b| ≤β|b| ,∀b ∈Rn , and a.e. on D}
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1 Introduction

Many applications in engineering and the sciences, such as heat conduction, geoscience

and medical imaging [36, 65], require solving inverse problems involving partial differential

equations (PDEs). In this thesis we are interested in inverse problems for PDEs that vary on a

very fine scale describing, e.g., heterogeneity of the medium. Our goal is to find a parameter

σ of a certain mathematical model, from a measurement z originating from the model itself.

The problem to solve can be represented as

given z =Gε(σ∗) ∈V , find σ ∈U such that Gε(σ) = z , (1.1)

where U and V are two Banach spaces, σ∗ is the exact solution, and Gε : U →V is referred to

as the observation or forward operator. The superscript ε emphasizes the multiscale nature

of Gε, which is assumed to be defined via a PDE whose inputs vary on a fine scale ε, much

smaller than the size of the physical domain. Assuming that the nature of the micro structure

in the model is known, we search for an unknown macroscopic parameterization of such a

fine scale structure given measurements originating from the full multiscale model. A typical

example is a multi-phase medium, whose constituents are known, but whose volume fraction

or macroscopic orientation are unknown. Another example may come from a linear elasticity

model defined on a multiscale porous medium, whose microscopic configuration is known,

but whose elastic properties such as Young’s modulus or Poisson’s ratio are unknown. In

all of the cases above, classical approaches such as the finite element method (FEM) or the

finite difference method (FDM) would require the evaluation of the forward operator on a

mesh resolving the finest scale ε. In addition, when solving inverse problems via penalization

methods [50, 86] or Bayesian sampling [64, 84, 41], the repeated solution of such high dimen-

sional problems represents a formidable computational challenge and is often not tractable in

practice. The goal of the thesis is to show how one can overcome these computational issues

for classes of multiscale problems by combining efficient inverse algorithm, coarse graining

techniques and model order reduction.
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Chapter 1. Introduction

Parameterized multiscale inverse elliptic problems. We start by introducing the following

multiscale scalar elliptic problem. Let D ⊂ Rd , d ≤ 3, be an open, bounded, connected set

with sufficiently smooth boundary ∂D , and consider the problem of finding the weak solution

uε ∈ H 1(D) such that
−∇· (Aε

σ∗∇uε) = 0 in D ,

uε = g on ∂D ,
(1.2)

where g ∈ H 1/2(∂D). The tensor Aε
σ∗ = Aε

σ∗(x), x ∈ D , belongs to the class of matrix functions

M(α,β,D), where

M(α,β,D) =
{

A ∈ (L∞(D))d×d : α|b|2 ≤ A(x)b ·b , |A(x)b| ≤β|b| ,∀b ∈Rd , and a.e. on D
}

.

The tensor Aε
σ∗ varies on a fine scale ε. In turn, the solution of (1.2) itself has variations on

the same micro scale. Moreover, the subscript σ∗ denotes the existence of a low dimensional

parameter σ∗ : D → R such that Aε
σ∗(x) = A(σ∗(x), x/ε). An example of low dimensional

parameterization of a multiscale tensor is given graphically in Figure 1.1.

The inverse problem we consider consists in recovering the coefficients of the tensor Aε
σ∗ in

D. A first rigorous formulation of this type of inverse problem (in the single scale setting)

dates back to the 1980s, and is due to Calderón [26]. In Calderón’s formulation of the inverse

problem the question is if the knowledge of the Dirichlet to Neumann (DtN) map associated

to (1.2), which is defined as the linear operator ΛAε
σ∗

: H 1/2(∂D) → H−1/2(∂D) given by

g 7→ Aε
σ∗∇uε ·ν|∂D ,

where ν denotes the exterior unit normal to ∂D, is sufficient to determine the conductivity

tensor, i.e. Aε
σ∗ , in the domain’s interior. This question gained great popularity in the recent

decades and many authors have contributed to its analysis by providing results on uniqueness,

continuity and stability of such problem [66, 85, 71, 20].

In this thesis we are mainly interested in a class of parameterized anisotropic multiscale

tensors of the form Aε
σ∗(x) = A(σ∗(x), x/ε). We assume that the map (t , x) 7→ A(t , x/ε), t ∈R, is

known and thus that only the function σ∗ : D →R has to be determined in order to recover the

full tensor Aε
σ∗ . For tensors that do not exhibit a multiscale variation, i.e., for (t , x) 7→ A(t , x),

uniqueness and stability at the boundary for the Calderón inverse problem were proved

by G. Alessandrini and R. Gaburro [16], under some regularity assumptions on the map

(t , x) 7→ A(t , x). This result is still valid for highly heterogeneous tensors, but the stability

estimate depends then on a constant that scales as O (ε−1). Homogenization theory [21, 33, 63]

guarantees the existence of an effective tensor A0
σ∗ such that (up to a subsequence) the solution

of (1.2) converges in a weak sense to a homogenized solution u0 ∈ H 1(D) satisfying the elliptic

problem
−∇· (A0

σ∗∇u0) = 0 in D ,

u0 = g on ∂D .
(1.3)

2



In this work, we show how the homogenized model (1.3) can be exploited in order to retrieve a

hidden macroscopic parameterization of Aε
σ∗ , based on observations obtained from the full

multiscale model (1.2).

Macroscopic parameter-
ization. Multiscale conductivity.

Figure 1.1: An example of a macroscopic spatial field controlling the orientation of the micro
oscillations in the multiscale conductivity. This picture is taken from a numerical experiment
in Chapter 4.

Application in linear elasticity with multiscale perforated domains. A natural extension of

parameterized multiscale inverse problems associated to the scalar elliptic model of type (1.2)

is given by inverse problems in linear elasticity with multiscale perforated domains. In this

setting the multiscale nature of the problem is due to the computational domain rather than

the elliptic operator. Given an open bounded set D ⊂ Rd , d ≤ 3, we consider a perforated

domain Dε ⊂ D, whose degree of fineness is inversely proportional to ε. We assume that Dε

is connected and that ∂D ⊂ ∂Dε. A graphic representation of this setting can be found in

Figure 1.2. Given Γ1 ⊂ ∂D , Γ2 ⊂ ∂D , such that |Γ1|,|Γ2| > 0, Γ1∩Γ2 =;, Γ1∪Γ2 = ∂D , h ∈ L2(Γ2),

we consider the linear elasticity problem

− ∂

∂x j

(
Ai j lm

∂uε
l

∂xm

)
= 0 in Dε ,

uε = 0 on Γ1 ,

Ai j lm

∂uε
l

∂xm
ν j = hi on Γ2 ,

Ai j lm

∂uε
l

∂xm
ν j = 0 on ∂Dε\∂D ,

(1.4)

for i = 1, . . . ,d , where ν is the unit outward normal at the boundary, and A = {Ai j lm}1≤i , j ,l ,m≤d ,

Ai j lm ∈ R, is a constant fourth-order tensor. Note that the Einstein summation convention

is used in (1.4). If the material is assumed to be isotropic the tensor A depends only on two

scalar coefficients, e.g., the Young’s modulus and the Poisson’s ratio. In this work we assume

that these two coefficients are unknown and we wish to estimate their values through the

3



Chapter 1. Introduction

knowledge of measurements coming from (1.4) and by employing the homogenized equation

− ∂

∂x j

(
A0

i j lm

∂u0
l

∂xm

)
= 0 in D ,

u0 = 0 on Γ1 ,

A0
i j lm

∂u0
l

∂xm
ν j = hi on Γ2 ,

(1.5)

where A0 = {A0
i j lm}1≤i , j ,l ,m≤d , A0

i j lm ∈R, is the homogenized fourth-order tensor. The prob-

lem (1.5) is defined on a much simpler geometry and is a good approximation of (1.4) in the

limit ε→ 0.

ε ε

Figure 1.2: Domain D and two examples of multiscale perforated domains, one periodic and
one random.

Tikhonov regularization of inverse problems. Having introduced the PDE models we will

use in this thesis, we now return to the more abstract setting of (1.1) and briefly outline how

homogenization techniques can enter into the solution of such problem. Consider the inverse

problem introduced in (1.1) and let G0 : U → V be the homogenized observation operator

associated to Gε. A coarse graining approach to the inverse problem (1.1) consists in solving

the problem:

given z =Gε(σ∗) ∈V , find σ ∈U such that G0(σ) = z . (1.6)

Thanks to the homogeneous nature of G0 this problem is often less computationally expensive

than solving (1.1). However, it is typical of inverse problems as (1.1) or (1.6) to be ill-posed:

their solution is neither guaranteed to exist, nor to be unique, nor to be stable with respect

to the measurement z. Moreover, when solving (1.6) additional difficulties arise from the

discrepancy between the model generating the data and the one used to reproduce them.

In what follows we focus on the solution of the homogenized inverse problem (1.6). One

approach to solve (1.6) is to consider the optimization problem of finding

arg min
σ∈U

‖z −G0(σ)‖2
V .
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However this minimization problem may possess minimizing sequences which do not con-

verge, or even exhibit multiple minima. One way to ensure uniqueness and convergence of

the solution is to consider the regularized Tikhonov minimization problem [88] which aims at

finding

arg min
σ∈W

‖z −G0(σ)‖2
V +‖σ−σ0‖2

W ,

where W is a Banach space compactly embedded into U and σ0 ∈ W . This regularization

strategy aims at producing a reasonable estimate of the quantity of interest based on the

observations available, the space W and the point σ0. However, in some cases a simple point

estimate of the unknown could not be satisfactory. Moreover, the choice of the norms ‖ ·‖W

and ‖ ·‖V and of the point σ0 are arbitrary and in many cases difficult to establish a priori.

Bayesian regularization of inverse problems. An alternative technique for regularizing the

inverse problems (1.1) and (1.6) is represented by the Bayesian approach [64, 84, 39, 40, 41].

In the Bayesian approach for inverse problems every quantity is treated as a random variable,

and the solution of the problem consists of a probability distribution over the quantity of

interest rather than a single point estimate. Let us assume that the space of the observations

is finite dimensional, i.e., V = Rn , and that the measurements are polluted by a source of

noise ζ ∈Rn whose actual value is unknown, but which is distributed accordingly to a known

probability measure. A typical example of the measurement model is given by

z =Gε(σ∗)+ζ , ζ∼N (0,Cζ) , (1.7)

where Cζ is a given covariance matrix. Hence the probability distribution of z given σ is

equal to N (Gε(σ),Cζ) for any value σ ∈U . Another essential assumption underlying Bayesian

regularization is that all our prior knowledge about the parameters of interest can be encoded

by a probability measure, the prior, which we denote by µpr. Then, Bayes’ formula yields the

probability measure of σ given the measurement z, which is denoted by µε(σ|z) and referred

to as the posterior measure, i.e., the posterior is related to the prior measure through the

Radon-Nikodym derivative

dµε(σ|z)

dµpr(σ)
∝ exp

(
−1

2
‖z −Gε(σ)‖2

Cζ

)
, (1.8)

where ‖ ·‖Cζ
is the norm induced by the scalar product

〈·, ·〉Cζ
= 〈·,C−1

ζ ·〉 .

Since the proportionality constant in (1.8) is unknown, one needs to sample from the poste-

rior measure through Markov chain Monte Carlo (MCMC) methods, which allow to obtain

a Markov chain whose stationary distribution is given by µε(σ|z). Obtaining a whole distri-

bution instead of a single point estimate as for the Tikhonov regularization, allows for the
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Chapter 1. Introduction

uncertainty quantification of the parameters of interest. However, we emphasize again that

the dependence of µε on the observation operator Gε, which depends on a fine scale ε, implies

a computational expense which in most cases could be not affordable. Hence, according to

the coarse graining approach, we sample from the posterior measure defined by

dµ0(σ|z)

dµpr(σ)
∝ exp

(
−1

2
‖z −G0(σ)‖2

Cζ

)
. (1.9)

This measure is independent of the small scale ε and can thus be approximated efficiently.

However, we emphasize that the mismatch between multiscale and homogenized models

gives rise to a source of error which can not be neglected far from the asymptotic regime ε→ 0.

Let us furthermore remark that the observation operator can not be reproduced exactly and

in practice is always replaced by an appropriate approximation (obtained by means of finite

element methods (FEMs) or finite difference methods (FDMs) for example), which yields

additional sources of errors that have to be taken into account in the inversion process. Even

if such errors would converge asymptotically to zero as we refine the approximation, they

can not be made arbitrarily small with a fixed computational budget. Thus, it can happen to

have to face approximation errors which are relatively large, and that can propagate into the

posterior measure and cause incorrect predictions. In the literature this problem has been

treated in several studies and we recognize basically two different ways of proceeding. One

approach is to try to empirically estimate the approximation error by a probability distribution

and include it in the definition of the posterior measure to account for model discrepancy

(see [28, 27]). Other works as [60, 38, 68, 12] illustrate how the use of probabilistic models

(obtained considering a random space or time discretization for example) for solving inverse

problems gives rise to a posterior measure which is more robust to failure and which better

reflects the uncertainty in the solution due to the approximate model.

1.1 Literature overview

In the following we briefly review the literature related to this thesis. In particular we give an

overview of the state-of-the-art in numerical multiscale methods and selected works which

faced multiscale inverse problems.

Finite element multiscale heterogeneous multiscale method. The approach we suggest

to solve multiscale inverse problems is based on homogenized models. Given a multiscale

problem, an explicit form of the corresponding homogenized model is usually not known

and can only be recovered at some points of the computational domain. This is the basic

idea behind the heterogeneous multiscale method (HMM) which was introduced by E and

Engquist [47] (see also [11] for a complete overview of the method). The method aims at

recovering input data of the homogenized problem by relying only on the data defining the

fine scale problem, which is achieved by solving appropriate micro problems on sampling

domains.
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1.1. Literature overview

When finite elements are used as macro and micro solvers the method goes under the name

of finite element heterogeneous multiscale method (FE-HMM). This method introduces a

macro and a micro finite element space, and given a macro quadrature formula, it proceeds

by recovering the homogenized problem only on the given macro quadrature points. It has

been applied to a large category of problems and applications, such as diffusion problems [47],

parabolic problems [10], the wave equation [13], the Stokes equation [5] and linear elasticity

problems [2, 49]. We also mention [61] for a description of the method when dealing with

elliptic problems defined on multiscale and periodic perforated domains. A priori error

estimates [1, 3, 48] guarantee theoretically the quality of the FE-HMM which makes it an

extremely attractive method for multiscale PDEs.

Reduced basis finite element heterogeneous multiscale method. The main cost of the FE-

HMM is represented by the solution of the micro problems, whose number and degrees of

freedom increase as we refine both macro and micro discretizations. It is important to remark

that such micro problems could be solved in parallel, since they are mutually independent.

However, we can further reduce the computational cost by employing reduced basis (RB)

techniques [80, 79] to obtain a small number of precomputed micro solutions which can then

be appropriately interpolated when solving the forward problem. The combination of RB and

the FE-HMM is developed in [4] for elliptic equations and in [5] for Stokes problems.

The main idea of the RB methodology is to approximate the solution of a parameter depen-

dent problem by projecting it onto a low dimensional solution space, which is spanned by

precomputed solutions of the original problem corresponding to a small set of parameter’s

values. In particular in the FE-HMM setting it is often the case that the micro problems are

parameterized by the given macro quadrature points. The RB-FE-HMM is then based on two

stages. At first, during what is called the offline stage, the method is trained on a set of different

input locations and a small number of micro functions are selected to construct the reduced

space by using a greedy algorithm. Then, this new small set of basis functions is used to obtain

fast evaluations of micro problems during the online stage.

Multiscale inverse problems. Parameterized multiscale inverse conductivity problems of

Calderón’s type have first been introduced in [54], where it is assumed that the multiscale

tensor is of the form Aε(σ∗(x), x/ε), and σ∗ : D → R has to be recovered. It is shown via

numerical experiments that numerical homogenization can be used for the considered class

of multiscale inverse problems by assuming that σ∗ is parametrized by a small number of

piecewise smooth coefficients. In Chapter 3 we generalize the applicability of the numerical

homogenization to generic scalar fields and without any formal assumptions on the map

(t , x) 7→ A(t , x/ε), (t , x) ∈ R×D. Hence, we provide a theoretical investigation of both the

model problem and the computational approach for the coarse graining strategy. We mention

also that inverse conductivity problems in the multiscale regime have been already treated

in [73]. However there the problem’s setting is different from the one we consider, as well
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Chapter 1. Introduction

as the theoretical and numerical results. Indeed the authors, given some measurements of

the fine scale solution uε, are interested in recovering the effective tensor rather than the full

multiscale tensor, and, for this reason, no use of numerical homogenization is employed. In

our setting numerical homogenization is instead necessary to retrieve the low dimensional

parameters needed to recover the full multiscale tensor. We also mention the work [43], where

a geometric framework for homogenization and inverse homogenization is introduced. The

numerical method builds on harmonic coordinate transformations which require one to solve

multiple fine scale problems over the whole domain. Again this setting differs from the one

we propose in this thesis.

1.2 Main contributions and outline of the thesis

In this thesis we develop new numerical strategies based on homogenization and model order

reduction to solve efficiently multiscale inverse problems. We consider both Tikhonov and

Bayesian regularization of inverse problems. In what follows we outline the structure of the

thesis and we highlight our main contributions.

In Chapter 2 we recall homogenization theory and numerical methods for scalar elliptic

multiscale problems. We give a detailed description of the FE-HMM and the RB-FE-HMM

which will be used later in the thesis to build the numerical method we propose. A new

numerical scheme to compute effective boundary fluxes is described, and a priori error

estimates for this method are provided. In particular, this part of the chapter is based on

results obtained in [9].

In Chapter 3 we consider parameterized multiscale inverse problems of Calderón’s type. We

assume that the multiscale tensor is locally periodic and of the form Aε
σ∗(x) = A(σ∗(x), x/ε),

where σ∗ : D →R. By assuming that the fine scale problem is well-posed in the sense of [16],

we show that the effective inverse problem, with observed data consisting of the homogenized

DtN map, is also well-posed, and we establish stability results independent of the small scale

ε. As the full DtN map is usually not available, we discuss a numerical strategy based on finite

measurements of this map. The inverse problem requires regularization to be solved, and thus

we opt for Tikhonov regularization. Moreover, by means of G-convergence we characterize the

convergence of the solution of the effective inverse problem with multiscale observations as

ε→ 0. Finally, we provide a new numerical strategy based on the HMM framework and RB

techniques for solving the inverse problem. The convergence of the discrete optimization

problem is established and various numerical results are presented to test our theoretical

findings. The content of this chapter is essentially based on [9].

Departing from the preceding chapter, where in order to ensure well-posedness we solved

the problem by means of Tikhonov regularization, we recast in Chapter 4 the problem into a

statistical framework, and develop a multiscale numerical method based on Bayesian tech-

niques. The prohibitive cost of sampling from the multiscale posterior measure, forces us to

introduce an effective forward operator and a related effective posterior measure. We give a
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rigorous Bayesian formulation of the problem, and prove the well-posedness of the effective

posterior measure, considering log-Gaussian and level set priors. We establish a link between

the effective posterior measure and the fine scale model in terms of Hellinger distance, using

G-convergence, to quantify the homogenization error introduced in this framework. The

numerical method builds on the RB-FE-HMM. Inspired by [28] we provide an offline algo-

rithm to approximate numerically the homogenization error distribution and to correct for

the model discrepancy. Numerical experiments that illustrate our multiscale inverse method

and confirm our theoretical conclusions are also presented. This chapter is based on [7].

In Chapter 5 we give a rigorous formulation of the RB-FE-HMM for solving linear elasticity

problems in multiscale perforated domains. In particular we consider random perforations. Af-

ter having derived homogenization results for our model problem, by following ideas from [24]

we describe how in practice the coefficients of the effective tensor are approximated. We pro-

vide a priori error estimates for the method and we conclude the chapter with some numerical

experiments. The content of the chapter is based on [8].

In Chapter 6 we consider inverse problems in linear elasticity with multiscale random perfo-

rated domains. We develop a method based on homogenization and Bayesian regularization.

By extending the results obtained in Chapter 4 into the context of linear elasticity, we prove

existence and well-posedness of the effective posterior measure. Using G-convergence, the

convergence of the effective posterior measure towards the fine scale posterior is established

in terms of the Hellinger distance. The numerical method is based on the RB-FE-HMM and

since the multiscale model is randomly defined, we have to deal with an additional source of

error which is inversely proportional to the size of the micro sampling domains. This error

propagates into the effective posterior often leading to overconfident and misleading predic-

tions. Therefore, we develop a probabilistic numerical method which allows to account for

the impact of the modeling error in the forward solver and which gives rise to a new effective

posterior measure which reflects the uncertainty in the approximate solution due to the nu-

merical method. This new effective posterior measure converges nonetheless asymptotically

with respect to the size of the micro domains. The content of this chapter is based on [6].

Finally we end with Chapter 7, where conclusions, future perspectives of research, and devel-

opments related to the topic of the thesis are discussed.
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2 Homogenization and multiscale meth-
ods for elliptic equations

In this chapter we recall homogenization theory and numerical methods for the approximation

of multiscale second order elliptic PDEs. Let D be an open bounded domain in Rd , d ≤ 3.

Given f ∈ H−1(D) and g ∈ H 1/2(∂D), we are interested in finding the weak solution uε ∈ H 1(D)

which solves
−∇· (Aε∇uε) = f in D ,

uε = g on ∂D ,
(2.1)

where Aε is a highly heterogeneous tensor which presents variations at a very fine scale

ε¿ 1. To ensure the well-posedness of (2.1), we assume Aε to be elliptic and bounded, i.e.,

Aε ∈ M(α,β,D), where

M(α,β,D) =
{

A ∈ (L∞(D))d×d : α|b|2 ≤ A(x)b ·b , |A(x)b| ≤β|b| ,∀b ∈Rd , and a.e. on D
}

.

For simplicity, in what follows we will always assume Aε to be symmetric and we will consider

only Dirichlet conditions at the boundary. However the results presented can be generalized

to non-symmetric tensors and other choices of boundary conditions.

Outline. The outline of the chapter is as follows. In Section 2.1 we recall homogenization

results for elliptic scalar equations. In Section 2.2 we describe the finite element heterogeneous

multiscale method (FE-HMM), and provide a priori error estimates. Moreover we introduce

a numerical method based on the FE-HMM to approximate the homogenized flux at the

boundary. We report partly the analysis of the method, which was obtained in [9]. In Section 2.3

we illustrate the reduced basis finite element heterogeneous multiscale method (RB-FE-

HMM), which combines the FE-HMM and reduced basis techniques to reduce further the

computational cost of the FE-HMM.
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Chapter 2. Homogenization and multiscale methods for elliptic equations

2.1 Homogenization of elliptic equations

Homogenization theory [21, 33, 63, 77, 87] aims at describing the asymptotic behavior of

multiscale PDEs. Concerning (2.1), it is well-known that there exists an effective tensor A0

such that the solution to problem (2.1) converges (in a weak sense) as ε→ 0 to a homogenized

solution u0, which solves the problem

−∇· (A0∇u0) = f in D ,

u0 = g on ∂D .
(2.2)

Locally periodic case. One often assumes to have scale separation between the slow and

the fast variables, i.e., the tensor can be written as

Aε(x) = A(x, x/ε) ,

where x/ε denotes the fast variable. In the case of locally periodic tensors, i.e,

Ai j (x, x/ε) = Ai j (x, y) , Ai j (x, ·) is Y -periodic, ∀x ∈ D ,∀i , j = 1, . . . ,d ,

where Y = (0,1)d denotes the domain of periodicity, it is possible to give a formal expression

for the coefficients of the homogenized matrix A0. Indeed they are defined as

A0
i j (x) =

∫
Y

A(x, y)ei · (e j −∇yχ
j )dy , ∀i , j = 1, . . . ,d . (2.3)

In (2.3), the micro functions χ j , j = 1, . . . ,d , are defined to be the unique solutions of the cell

problems: find χ j (x, ·) ∈W 1
per(Y ) such that∫

Y

A(x, y)∇yχ
j ·∇y v dy =

∫
Y

A(x, y)e j ·∇y v dy ∀v ∈W 1
per(Y ) , (2.4)

where {e j }d
j=1 is the canonical basis of Rd and

W 1
per(Y ) =

v ∈ H 1
per(Y ) :

∫
Y

v dy = 0

 ,

and H 1
per(Y ) is defined as the closure of C∞

per(Y ) for the H 1(Y )-norm (where C∞
per(Y ) denotes

the subset of C∞(Rd ) of periodic functions in Y ). We recall that the quantity

‖v‖W 1
per(Y ) = ‖∇v‖L2(Y )

defines a norm on W 1
per(Y ). From (2.3) and (2.4) one can show that the homogenized tensor

A0 is uniformly bounded and elliptic (see [33] for example). We remark that for globally
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2.1. Homogenization of elliptic equations

periodic tensors, i.e., Aε(x) = A(x/ε) = A(y) Y -periodic in the y variable, the corresponding

homogenized tensor A0 is constant on the whole domain.

For which concerns the convergence of uε towards u0 it can be shown that (see [21, 81] for

example)
uε* u0 weakly in H 1(D) ,

Aε∇uε* A0∇u0 weakly in (L2(D))d .

Extension to the non-periodic case. When considering non-periodic tensors, it is not pos-

sible to charcaterize formally the coefficients of the tensor A0 as in (2.3). However, from

the theoretical point of view we can rely on the concepts of G-convergence [83, 42] in the

symmetric case, and H-convergence [70]. Let us recall the definition of G-convergence.

Definition 2.1.1. Let {Aε}ε>0 be a sequence of symmetric matrices in M(α,β,D). We say that

{Aε}ε>0 G-converges to the symmetric matrix A0 ∈ M(α,β,D) if and only if for every function

f ∈ H−1(D), g ∈ H 1/2(∂D), the solution uε of

−∇· (Aε∇uε) = f in D ,

uε = g on ∂D ,

is such that

uε* u0 weakly in H 1(D) ,

where u0 is the unique solution of

−∇· (A0∇u0) = f in D ,

u0 = g on ∂D .

A consequence of G-convergence is the weak convergence of the flux

Aε∇uε* A0∇u0 weakly in (L2(D))d .

The G-convergence possesses the following main properties (see [33] for example).

1. The G-limit of a G-converging sequence {Aε}ε>0 in M(α,β,D) is unique.

2. Let {Aε}ε>0 and {Bε}ε>0 be two sequences of symmetric matrices in M(α,β,D) which

G-converge respectively to A0 and B 0. If for some subset X ⊂ D one has

Aε = Bε in X ∀ε> 0,
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then

A0 = B 0 in X .

3. Let {Aε}ε>0 be a sequence of symmetric matrices in M(α,β,D). Then there exists a

subsequence {Aε′}ε′>0 and a matrix A0 ∈ M(α,β,D) such that {Aε′}ε′>0 G-converges to

A0.

4. A sequence {Aε}ε>0 of symmetric matrices in M(α,β,D) G-converges if and only if all its

G-converging subsequences have the same limit.

In practice the homogenized tensor is usually not known analytically (for both the locally

periodic and non-periodic case) and therefore numerical homogenization is needed. The idea

is to approximate the values of the homogenized tensor on given locations x ∈ D by solving

appropriate cell problems such as (2.4) on sampling domains. This is the strategy behind the

FE-HMM which we will describe in next section.

2.2 Finite element heterogeneous multiscale method (FE-HMM)

Given f ∈ H−1(D) and g ∈ H 1/2(∂D), we consider the problem of finding the weak solution

uε ∈ H 1(D) such that
−∇· (Aε∇uε) = f in D ,

uε = g on ∂D .
(2.5)

If we denote uε = ůε+Rg , where ůε ∈ H 1
0 (D) and Rg is an appropriate Dirichlet lift of g , the

variational formulation of problem (2.5) reads: find ůε ∈ H 1
0 (D) such that

Bε(ůε, v) = F (v)−Bε(Rg , v) ∀v ∈ H 1
0 (D) , (2.6)

where Bε is the bilinear form defined as

Bε(v, w) =
∫
D

Aε∇v ·∇w dx ,

and F is the continuous functional

F (v) = 〈 f , v〉H−1(D),H 1
0 (D) .

Lax-Milgram theorem ensures the existence of a family of solutions {uε}ε>0, which is bounded

in H 1
0 (D) independently of ε. Trying to approximate (2.6) by means of standard numerical

techniques such as the finite element method (FEM) is prohibitive in terms of computational

cost, since they require mesh resolution at the finest scale.

The FE-HMM is a numerical homogenization method which aims at approximating the

effective solution u0 corresponding to (2.5). It has been studied extensively in the literature

14



2.2. Finite element heterogeneous multiscale method (FE-HMM)

H

xK j

K

δ
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h

T

Figure 2.1: Macro and micro domains for the FE-HMM. Micro sampling domains Kδ j located
around the quadrature nodes xK j of the macro mesh.

and we refer the reader to [1, 3, 48, 74] for more details. The method is based on a macroscopic

partition of the domain D, on which a macro quadrature formula is given. The idea is to

approximate the values of the homogenized tensor only on the given macro quadrature points

by solving PDEs on micro domains centered at the given macro quadrature points. Let us

remark that even if we consider the model problem (2.5), the method can be applied to a large

class of problems. Moreover it does not require particular structures in the oscillating tensor

such as periodicity, and relies only on input data given by the fine scale model. However, we

still assume to have scale separation between slow and fast variables so that Aε(x) = A(x, x/ε).

2.2.1 The numerical method

The FE-HMM is based on a macro finite element space Sl
0(D,TH ) defined as

Sl
0(D,TH ) =

{
v H ∈ H 1

0 (D) : v H |K ∈P l (K ) ,∀K ∈TH

}
,

where TH is a partition of D in simplicial or quadrilateral elements K of diameter HK , and

P l (K ) is the space of polynomials on K of total degree at most l if K is a simplicial element,

while if K is a quadrilateral element P l (K ) is the space of polynomials on K of degree at most

l in each variable. For the given mesh TH , we define

H = max
K∈TH

HK ,

and we allow H to be much larger than ε. We will always assume that the partition TH is

admissible and shape regular, i.e.,

• the intersection of two elements is either empty, exactly one vertex, or a common face,

and ∪K∈TH K = D ;

• ∀K ∈TH ,∃κ> 0 such that HK /ρK ≤ κ, where ρK is the diameter of the largest sphere

contained in K .
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For each element K ∈TH we consider a reference element K̂ , such that K = FK (K̂ ), where FK

is a C 1-diffeomorphism. We assume that a quadrature formula {x̂ j ,ω̂ j }J
j=1 on K̂ is given, and

that it satisfies ω̂ j > 0 and

∫
K̂

p̂(x̂)dx̂ =
J∑

j=1
ω̂ j p̂(x̂ j ) ∀p̂ ∈P l∗(K̂ ) , (2.7)

where l∗ = max{2l −2, l } if K̂ is a simplicial element, or l∗ = max{2l −1, l +1} if K̂ is a quadri-

lateral element. Note that the transformation FK induces a quadrature formula {xK j ,ωK j }J
j=1

on K , such that xK j = FK (x̂ j ) and ωK j = ω̂ j |det(∂FK )| > 0, which satisfies

∫
K

p(x)dx =
J∑

j=1
ωK j p(xK j ) ∀p ∈P l∗(K ) . (2.8)

Given the macro finite element space Sl
0(D,TH ), one could think of applying directly the finite

element method to the problem (2.2) by finding u0,H = ů0,H +Rg , where ů0,H ∈ Sl
0(D,TH ) is

the unique solution of

B0,H (ů0,H , v H ) = F (v H )−B0,H (Rg , v H ) ∀v H ∈ Sl
0(D,TH ) , (2.9)

where

B0,H (v H , w H ) = ∑
K∈TH

J∑
j=1

ωK j A0(xK j )∇v H (xK j ) ·∇w H (xK j ) , (2.10)

and Rg is a Dirichlet lift properly chosen. However, as already mentioned, the value of A0 is

usually not known. Then we introduce micro problems to evaluate the homogenized tensor

on the macro quadrature points. To do so, for each macro element K ∈TH , and for each macro

quadrature point xK j , we define a micro domain Kδ j = xK j + (−δ/2,δ/2)d , δ≥ ε. Then, for a

sampling domain Kδ j we introduce the micro finite element space

Sq (Kδ j ,Th) =
{

zh ∈W (Kδ j ) : zh |T ∈P q (T ) ,∀T ∈Th

}
,

where

W (Kδ j ) =W 1
per(Kδ j ) (2.11)

in case of periodic coupling, or

W (Kδ j ) = H 1
0 (Kδ j ) (2.12)
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for a coupling with Dirichlet boundary conditions. We define the bilinear form

BH (v H , w H ) = ∑
K∈TH

J∑
j=1

ωK j

|Kδ j |
∫

Kδ j

Aε(x)∇vh
K j

·∇wh
K j

dx , (2.13)

where vh
K j

(respectively wh
K j

) denotes the solution to the micro problem: find vh
K j

such that

vh
K j

− v H
lin, j ∈ Sq (Kδ j ,Th) and

∫
Kδ j

Aε(x)∇vh
K j

·∇zh dx = 0 ∀zh ∈ Sq (Kδ j ,Th) , (2.14)

where v H
lin, j (x) = v H (xK j )+ (x − xK j ) · ∇v H (xK j ). Finally the FE-HMM solution is given by

uH = ůH +Rg , where ůH ∈ Sl
0(D,TH ) is the unique solution of

BH (ůH , v H ) = F (v H )−BH (Rg , v H ) ∀v H ∈ Sl
0(D,TH ) .

Reformulation of the FE-HMM. The values of the homogenized tensor can be computed

during the assembly process by finding for K ∈TH , 1 ≤ j ≤ J , 1 ≤ i ≤ d , χ̂i ,h
K j

∈ Sq (Kδ j ,Th) such

that ∫
Kδ j

Aε(x)∇χ̂i ,h
K j

·∇zh dx =
∫

Kδ j

Aε(x)ei ·∇zh dx ∀zh ∈ Sq (Kδ j ,Th) . (2.15)

Once the functions χ̂i ,h
K j

have been computed, the coefficients of the numerical homogenized

tensor can be approximated as

A0,h
lm (xK j ) = 1

|Kδ j |
∫

Kδ j

Aε(x)el · (em −∇χ̂m,h
K j

)dx . (2.16)

The bilinear form (2.13) can then be rewritten in the equivalent form [4]

BH (v H , w H ) = ∑
K∈TH

J∑
j=1

ωK j A0,h(xK j )∇v H (xK j ) ·∇w H (xK j ) , (2.17)

which reminds to the bilinear form (2.10), but differs from it since the unknown value of

A0(xK j ) is replaced by its numerical approximation.

2.2.2 A priori error analysis

In this section we provide a priori estimates for the error between the exact homogenized

solution u0 of (2.2) and its approximation uH obtained by means of the FE-HMM. A complete

proof of the convergence rates is provided in [1, 3], while here we limit ourselves to reporting
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Chapter 2. Homogenization and multiscale methods for elliptic equations

the results given there.

Let us in introduce the semi-discrete bilinear form

B̃H (v H , w H ) = ∑
K∈TH

J∑
j=1

ωK j

|Kδ j |
∫

Kδ j

Aε(x)∇vK j ·∇wK j dx , (2.18)

where vK j (respectively wK j ) is the exact solution of (2.14) in the Sobolev space W (Kδ j ). Hence

we define ũH = ˜̊uH +Rg , where ˜̊uH ∈ Sl
0(D,TH ) is the unique solution of

B̃H ( ˜̊uH , v H ) = F (v H )− B̃H (Rg , v H ) ∀v H ∈ Sl
0(D,TH ) .

Note that (2.18) can be rewritten in a similar form as (2.17)

B̃H (v H , w H ) = ∑
K∈TH

J∑
j=1

ωK j Ã0(xK j )∇v H (xK j ) ·∇w H (xK j ) . (2.19)

In this case the coefficients of Ã0 are computed as in (2.16), with the difference that the micro

functions χ̂i ,h
K j

∈ Sq (Kδ j ,Th) are replaced by the exact solutions of (2.15) χ̂i
K j

∈W (Kδ j ).

Using the triangle inequality, we decompose the global error as

‖u0 −uH‖H 1(D) ≤ ‖emac‖H 1(D) +‖emod‖H 1(D) +‖emic‖H 1(D) , (2.20)

where we have used the notation

emac = u0 −u0,H , emod = u0,H − ũH , emic = ũH −uH .

Note that the function u0,H is the numerical solution obtained by applying the standard single

scale finite element method to the problem (2.2), as defined in (2.9). Hence, the macro error

emac can be bounded by using standard FEM error estimates [31]. Assume (2.7) holds and let

u0 ∈ H l+1(D) and A0
i j ∈W l+1,∞(D), 1 ≤ i , j ≤ d . Then we have that

‖u0 −uH‖H 1(D) ≤C H l +‖emod‖H 1(D) +‖emic‖H 1(D) ,

where C is a generic constant independent of H , h, ε and δ. Note that from (2.10), (2.17)

and (2.19) we get the following bounds for emod and emic:

‖emod‖H 1(D) ≤C sup
K∈TH

sup
1≤ j≤J

‖A0(xK j )− Ã0(xK j )‖F ,

‖emic‖H 1(D) ≤C sup
K∈TH

sup
1≤ j≤J

‖Ã0(xK j )− A0,h(xK j )‖F ,

where ‖·‖F is the Frobenius norm. To estimate the quantity emic we need to make necessary as-

sumptions about the regularity of χ̂i
K j

∈W (Kδ j ). In particular, we assume that χ̂i
K j

∈ H q+1(Kδ j )

18



2.2. Finite element heterogeneous multiscale method (FE-HMM)

and that

|χ̂i
K j
|H q+1(Kδ j ) ≤Cε−q

√
|Kδ j | ,

where C is a constant independent of i , j , K , ε and δ (see Remark 4.6 in [11] for a justification

of this assumption). Under these assumptions it can be proved that for both periodic and

Dirichlet coupling we have

‖emic‖H 1(D) ≤C

(
h

ε

)2q

.

Finally, explicit error estimates for the modeling error can be provided in the case of locally

periodic data, i.e.

Aε(x) = A(x, x/ε) ,

and

Ai j (x, x/ε) = Ai j (x, y) , Ai j (x, ·) is Y -periodic, ∀x ∈ D ,∀i , j = 1, . . . ,d .

By replacing Aε(x) with A(xK j , x/ε) in (2.13), (2.14) we get [48, 14]

‖emod‖H 1(D) = 0 if W (Kδ j ) =W 1
per(Kδ j ) and

δ

ε
∈N ,

‖emod‖H 1(D) ≤C
ε

δ
if W (Kδ j ) = H 1

0 (Kδ j ) and δ> ε .

Remark 2.2.1. Let us emphasize that for a given accuracy, the computational cost for solving

the micro problems is independent of ε. Let Nmac and Nmic be the degrees of freedom in each

direction for the macro domain and the micro domain respectively, so that

H =O (N−1
mac) , h =O (δN−1

mic) .

Since δ= nε, n ∈N, n > 0, we obtain

‖emic‖ ≤C h2q ,

where C is independent of ε. Then we obtain

‖u0 −uH‖H 1(D) ≤C (N−l
mac +N−2q

mic )+‖emod‖H 1(D) .

Hence, by choosing Nmac = N , Nmic = N l/2q for optimal convergence, the total complexity is

O (N d(1+l/2q) J ), where J denotes the number of sampling domains per macro element K ∈TH ,

for an accuracy of O (N−l ). Finally, we emphasize that the micro problems are independent

one from another and they can be solved in parallel. Hence the complexity of the method can

be further reduced.
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2.2.3 Approximation of the effective normal flux at the boundary

In this section we describe the numerical scheme to approximate the normal flux at the

boundary for the homogenized PDE (2.2). We will denote the flux with the help of the Dirichlet

to Neumann map associated to the tensor A0, i.e.

ΛA0 : g ∈ H 1/2(∂D) 7→ A0∇u0 ·ν|∂D ∈ H−1/2(∂D) ,

where ν denotes the exterior unit normal to ∂D. The method is based on a Galerkin pro-

jection [30], and is analyzed in detail in [78] in its classical finite element formulation. In

particular, it allows us to obtain super-convergence of the approximate flux in the L2(∂D)-

norm, and we aim at showing how such a super-convergence result can be extended in the

context of the FE-HMM. In what follows we assume D to be a polygonal domain. The method

is described and analyzed for the case of piecewise simplicial macro and micro finite elements.

Moreover we consider locally periodic tensors of the form Aε(x) = A(x, x/ε),

Ai j (x, x/ε) = Ai j (x, y) , Ai j (x, ·) is Y -periodic, ∀x ∈ D ,∀i , j = 1, . . . ,d ,

and we assume to have periodic coupling for the micro problems. Under these assumptions it

is possible to collocate the slow variable of Aε(x) at the macro quadrature points xK . Hence

the bilinear forms (2.10), (2.13), (2.18) respectively become

B0,H (v H , w H ) = ∑
K∈TH

|K |A0(xK )∇v H (xK ) ·∇w H (xK ) ,

BH (v H , w H ) = ∑
K∈TH

|K |
|Kδ|

∫
Kδ

A(xK , x/ε)∇vh
K ·∇wh

K dx ,

B̃H (v H , w H ) = ∑
K∈TH

|K |
|Kδ|

∫
Kδ

A(xK , x/ε)∇vK ·∇wK dx ,

where vK (respectively wK ) is the exact solution to the micro problem (2.14) in the space

of functions W 1
per(Kδ) with Aε(x) and Kδ j replaced by A(xK , x/ε) and Kδ respectively. Let us

introduce the following subspaces of S1(D,TH ) :

S1
c (D,TH ) = {

v H ∈ S1(D,TH ) : v H = 0 at the corners of D
}

,

S1
i (D,TH ) = {

v H ∈ S1
c (D,TH ) : v H = 0 at the interior nodes of D

}
.

Assume that the forcing term f ∈ L2(D) and that the flux is in L2(∂D). Using integration by

parts we have the following relation for the flux∫
∂D

ΛA0 g v ds = B0(u0, v)−
∫
D

f v dx ∀v ∈ H 1(D) , (2.21)
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2.2. Finite element heterogeneous multiscale method (FE-HMM)

where

B0(v, w) =
∫
D

A0∇v ·∇w dx .

Let us denote by S1(∂D,TH ) the finite dimensional space of functions which are restrictions

to the boundary of functions living in S1
c (D,TH ). Hence by following [30, 78] we define the

numerical flux by constructing a functionΛH
A0,h g ∈ S1(∂D,TH ) such that∫

∂D

ΛH
A0,h g v H ds = BH (uH , v H )−

∫
D

f v H dx ∀v H ∈ S1
c (D,TH ) , (2.22)

where the value of the flux at the corners of D is assumed to be known, as specified by direct

calculations from the given Dirichlet conditions. Let us remark that uH has already been

computed, and so solving (2.22) reduces to solving a linear system whose unknowns are the

values of the flux on the nodes of ∂D, except for the corners. To obtain an error estimate for

the approximate flux, we recall the following inverse inequality, which relates the functions in

S1
i (D,TH ) to their traces on ∂D .

Lemma 2.2.2. Let X = X (D,TH ) denote a strip of elements in TH , with each element having at

least one vertex on ∂D, and let v H ∈ S1
i (D,TH ). Then

‖∇v H‖L2(X ) ≤C H−1/2‖v H‖L2(∂D) .

Lemma 2.2.3 (See [78]). Consider a quasi-uniform family of macroscopic triangulations

{TH }H>0. Let the solution u0 of the effective problem be in H 3(D), f ∈ H 2(D), A0 ∈ (W 2,∞(D))d×d .

Let v H ∈ S1
i (D,TH ). Then

|B0(u0, v H )−B0,H (u0,H , v H )| ≤C H 3/2(‖u0‖H 3(D) +‖ f ‖H 2(D))‖v H‖L2(∂D) .

Let I HΛA0 g be the linear interpolation of ΛA0 g on ∂D .

Lemma 2.2.4. Let v H ∈ S1
i (D,TH ). Then the following interpolation error estimate holds:

〈ΛA0 g −I HΛA0 g , v H 〉L2(∂D) ≤C H 3/2‖u0‖H 3(D)‖v H‖L2(∂D) .

Proof. A complete proof of this result is given in [78]. It is a consequence of the Bramble-

Hilbert lemma, which yields

‖ΛA0 g −I HΛA0 g‖L2(∂D) ≤C H 3/2‖ΛA0 g‖H 3/2(∂D) .

Following [78], we can then obtain the following theorem, which establishes convergence

rates for the numerical flux in the L2(∂D)-norm.
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Theorem 2.2.5. Consider a quasi-uniform family of macroscopic triangulations {TH }H>0.

Assume that the coupling between macro and micro meshes satisfies H =O (h/ε), and that the

micro sampling domain has size δ= nε, where n ∈N, n > 0. Let the solution u0 of the effective

problem be in H 3(D) and A0 ∈ (W 2,∞(D))d×d . Then the approximate boundary flux computed

by means of (2.22) satisfies

‖ΛA0 g −ΛH
A0,h g‖L2(∂D) ≤C

(
H 3/2 +

(
h

ε

)3/2
)

,

where C is a constant independent on H, h, and ε.

Proof. Subtracting (2.22) from (2.21), we obtain

〈ΛA0 g −ΛH
A0,h g , v H 〉L2(∂D) = B0(u0, v H )−BH (uH , v H ) ∀v H ∈ S1

c (D,TH ) . (2.23)

Since for each function v H ∈ S1
c (D,TH ), there exist two functions w H ∈ S1

0(D,TH ) and zH ∈
S1

i (D,TH ) such that v H = w H + zH , and hence (2.23) can be rewritten as

〈ΛA0 g −ΛH
A0,h g , v H 〉L2(∂D) = I1 + I2 + I3 ,

where

I1 = B0(u0, zH )−B0,H (u0,H , zH ) ,

I2 = B0,H (u0,H , zH )− B̃H (ũH , zH ) ,

I3 = B̃H (ũH , zH )−BH (uH , zH ) .

From Lemma 2.2.3 we have that

|I1| ≤C H 3/2‖zH‖L2(∂D) .

On the other hand, it is well-known [1, 3] that

|I3| ≤C

(
h

ε

)2

‖∇uH‖L2(D)‖∇zH‖L2(D) ,

where C is a constant which is independent of δ and xK . The term I2 captures the modeling

error, which vanishes under the assumptions that the locally periodic tensor admits explicit

scale separation between slow and fast variables, that the slow variable is collocated at the

quadrature point, and that δ= nε, with n ∈N, n > 0. Hence, from the bounds for I1 and I3,

and using the fact that I2 = 0 together with Lemma 2.2.2, we obtain that

〈ΛA0 g −ΛH
A0,h g , zH 〉L2(∂D) ≤C

(
H 3/2 +

(
h

ε

)2

H−1/2
)
‖zH‖L2(∂D) ∀zH ∈ S1

i (D,TH ) .
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We note that

〈ΛA0 g −ΛH
A0,h g , zH 〉L2(∂D) =〈ΛA0 g −I HΛA0 g , zH 〉L2(∂D)

+〈I HΛA0 g −ΛH
A0,h g , zH 〉L2(∂D) ,

where I H is the linear interpolation operator which appears in Lemma 2.2.4. Then

〈I HΛA0 g −ΛH
A0,h g , zH 〉L2(∂D) =〈ΛA0 g −ΛH

A0,h g , zH 〉L2(∂D)

+〈I HΛA0 g −ΛA0 g , zH 〉L2(∂D) .

By choosing zH =I HΛA0 g −ΛH
A0,h g , thus we obtain that

‖I HΛA0 g −ΛH
A0,h g‖L2(∂D) ≤C

(
H 3/2 +

(
h

ε

)2

H−1/2
)

.

Finally from the triangle inequality and the fact that H =O (h/ε) we conclude that

‖ΛA0 g −ΛH
A0,h g‖L2(∂D) ≤C

(
H 3/2 +

(
h

ε

)3/2
)

. (2.24)

Remark 2.2.6. Again we emphasize that the computational cost for solving the micro prob-

lems is independent of ε, since the size of the micro domain δ≥ ε is proportional to ε. Let

Nmac and Nmic be the degrees of freedom in one direction for the macro domain and the micro

domain, respectively. Then (2.24) can be rewritten as

‖ΛA0 g −ΛH
A0,h g‖L2(∂D) ≤C

(
N−3/2

mac +N−3/2
mic

)
.

Hence, by choosing Nmac = Nmic = N for optimal convergence, the total complexity is O (N 2d )

for an accuracy of O (N−3/2).

Numerical experiments. We perform some numerical experiments to test the convergence

of the method and to observe how the micro error affects the approximate flux. We consider

the elliptic problem
−∇· (Aε∇uε) = 0 in D ,

uε = g on ∂D .

The domain D is defined as

D = {x = (x1, x2) : 0 < x1, x2 < 1} ,

while

g = sin(π(x1 +x2)) .
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We perform two numerical tests for two different choices of Aε. In the first experiment we

consider the locally periodic tensor

A11(x, x/ε) = (16(x2
1 −x1)(x2

2 −x2)+1)
(
cos2

(
2π

x1

ε

)
+1

)
,

A22(x, x/ε) = (16(x2
1 −x1)(x2

2 −x2)+1)
(
sin

(
2π

x2

ε

)
+2

)
,

A12(x, x/ε) = A21(x, x/ε) = 0.

We compute the approximate flux on the boundary nodes by means of the FE-HMM. We solve

the problem for different choices of H and h/ε. To compute the error we use a reference

solution computed with H = h/ε = 1/64. The size of the micro domain is such that δ = ε.

Numerical results are shown in Table 2.1 and Figure 2.2.

H = 1/4 H = 1/8 H = 1/16 H = 1/32 H = 1/64
h/ε= 1/4 3.0276 1.0388 0.5654 0.4689 0.4485
h/ε= 1/8 2.6499 0.7069 0.1962 0.0715 0.0469
h/ε= 1/16 2.6154 0.6803 0.1700 0.0395 0.0093
h/ε= 1/32 2.6086 0.6751 0.1653 0.0346 0.0019
h/ε= 1/64 2.6069 0.6738 0.1642 0.0335

Table 2.1: First experiment, error ‖ΛA0 g −ΛH
A0,h g‖L2(∂D) for different choices of H and h/ε

(δ= ε, ‖ΛA0 g‖L2(∂D) = 11.2655).
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Figure 2.2: First experiment, convergence of the error ‖ΛA0 g −ΛH
A0,h g‖L2(∂D) with respect to

macro and micro discretizations (δ= ε).
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In the second experiment we consider the same setting, changing the tensor to

A11(x, x/ε) =
(√(

x2
1 + sin

(
2π

x1

ε

)
+1.2

)(
x1x2 + sin

(
4π

x1

ε

)
+1.5

))−1

,

A22(x, x/ε) =
((

x1x2 + sin
(
5π

x2

ε

)
+1.2

)(
x2

2 cos
(
2π

x2

ε

)
+x1 +1.5

))−1
,

A12(x, x/ε) = A21(x, x/ε) = 0.

As shown in Tables 2.1 and 2.2 and Figures 2.2 and 2.3, in both experiments the error converges

quadratically as we decrease both H and h/ε. In particular, for the problems considered, the

global error seems to depend more on the macro mesh. For the micro error we can observe

quadratic convergence only for smaller values of H , while for larger values the micro error

saturates due to the dominant macro error. This emphasizes that a simultaneous refinement of

micro and macro meshes is needed for convergence. Finally, let us mention that the quadratic

convergence was observed also in [30] for the FEM formulation of the method, suggesting that

the error estimate obtained in [78] may not be sharp.

H = 1/4 H = 1/8 H = 1/16 H = 1/32 H = 1/64
h/ε= 1/4 0.6143 0.1900 0.0956 0.0845 0.0841
h/ε= 1/8 0.5818 0.1613 0.0488 0.0251 0.0222
h/ε= 1/16 0.5743 0.1563 0.0420 0.0131 0.0080
h/ε= 1/32 0.5714 0.1545 0.0402 0.0096 0.0016
h/ε= 1/64 0.5707 0.1541 0.0399 0.0092

Table 2.2: Second experiment, error ‖ΛA0 g −ΛH
A0,h g‖L2(∂D) for different choices of H and h/ε

(δ= ε, ‖ΛA0 g‖L2(∂D) = 2.8920).
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Figure 2.3: Second experiment, convergence of the error ‖ΛA0 g −ΛH
A0,h g‖L2(∂D) with respect to

macro and micro discretizations (δ= ε).

25



Chapter 2. Homogenization and multiscale methods for elliptic equations

2.3 Reduced basis finite element heterogeneous multiscale method

(RB-FE-HMM)

The FE-HMM introduced in the previous section is able to provide effective solutions to the

problem (2.5) at a cost which is independent of ε which is already a great improvement with

respect to classical FEMs. However, the repeated computation of micro problems for each

macro element and each macro quadrature point, whose number and size increase as we

refine both the macro and the micro meshes for an appropriate approximation of the effective

solution, is still computationally very expensive. These cell problems vary on each macro

element and are parameterized by the macro quadrature point. We note that the presence of

repeated solutions of parameterized PDEs is the natural environment where to apply some

model order reduction techniques. Hence, we combine reduced basis techniques with the

FE-HMM, to design a new efficient method which drastically reduces the computational effort,

by avoiding the repeated solutions of a large number of cell problems. The method goes under

the name of reduced basis finite element heterogeneous multiscale method (RB-FE-HMM)

and for a detailed analysis of the method we refer to [4].

2.3.1 Parameterized micro problems and model order reduction

Let us start with the following reformulation of the FE-HMM where we map the micro prob-

lems (2.15) into the reference cell Y = (0,1)d . For each macro element K ∈TH and each macro

quadrature point xK j we can map the sampling domain Kδ j into the reference domain Y

through x =GxK j
(y) = xK j +δ(y −1/2). Hence for K ∈TH , 1 ≤ j ≤ J , 1 ≤ i ≤ d , we consider the

solution χi ,ĥ
K j

∈ Sq (Y ,Tĥ), where ĥ = h/δ, such that

∫
Y

AxK j
(y)∇χi ,ĥ

K j
·∇z ĥ dy =

∫
Y

AxK j
(y)ei ·∇z ĥ dy ∀z ĥ ∈ Sq (Y ,Tĥ) , (2.25)

where we have used the notation AxK j
(y) = Aε(GxK j

(y)). Note that the coefficients of the

numerical homogenized tensor can be approximated now as

A0,h
lm (xK j ) =

∫
Y

AxK j
(y)el · (em −∇χm,ĥ

K j
)dy .

Having to solve (2.25) for each macro quadrature point can be prohibitively expensive. How-

ever, given this parameterization of the micro solutions, we can think now to apply model

order reduction techniques to speed up the computation of the effective macroscopic tensor.

The main idea is the following: instead of computing the micro solutions in each macro

element at the given macro quadrature points, we select a small number of carefully precom-

puted micro solutions to construct a small subspace of functions living in Sq (Y ,Tĥ). This

is called the offline stage. Then in the online stage each micro solution is obtained as linear

combination of the precomputed micro functions.
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Figure 2.4: Representation of the first three iterations of the offline stage in the RB-FE-HMM.
The training points are randomly distributed into the computational domain.

The offline stage. The variational problem (2.25) is parameterized by the macro variable

xK j ∈ D and the index i , 1 ≤ i ≤ d . Therefore we define the space of parameters as Ξ =
D × {1, . . . ,d}. Given an element ξ= (x, i ) ∈Ξ, we denote the corresponding micro function as

χĥ
ξ

which satisfies the variational equation (2.25) associated to the mapping Gx , i.e.,

b(χĥ
ξ , z ĥ ;ξ) = f (z ĥ ;ξ) ∀z ĥ ∈ Sq (Y ,Tĥ) ,

where

b(z ĥ , w ĥ ;ξ) =
∫
Y

Ax (y)∇z ĥ ·∇w ĥ dy ,

and

f (z ĥ ;ξ) =
∫
Y

Ax (y)ei ·∇z ĥ dy .

In the offline stage, using a greedy procedure which will be described later in the section, we

construct a reduced space of precomputed micro functions denoted by

SN (Y ) = span
{
ψĥ

1 , . . . ,ψĥ
N

}
,

where N ¿ dim(Sq (Y ,Tĥ)). Then, during the online stage, the problem (2.25) is projected and

solved into the functions space SN (Y ). For each ξ ∈Ξwe obtain a RB approximation of χĥ
ξ

by

searching for χN
ξ
∈ SN (Y ) such that

b(χN
ξ ,ψĥ

n ;ξ) = f (ψĥ
n ;ξ) ∀n = 1, . . . , N .
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Before describing the greedy algorithm to identify the N reduced basis, we remark that a

crucial assumption to deal efficiently with the problem is that the tensor Ax (y) = Aε(Gx (y)) is

available in the affine form

Ax (y) =
Q∑

q=1
Θq (x)Aq (y) , ∀y ∈ Y , (2.26)

where Θq : D → R. If Ax (y) is not directly available in the affine form (2.26), the empirical

interpolation method (EIM) [57] can be applied to obtain an affine approximation of Ax (y) of

the type

AM
x (y) =

M∑
m=1

ϕm(x)pm(y) .

The idea of EIM is to approximate Ax (y) by a linear combination of snapshots {pm(y)}M
m=1.

For an arbitrary x ∈ D , the approximation of Ax is based on the interpolation points {ym}M
m=1,

ym ∈ Y . The interpolation points and the snapshots are determined offline using a greedy

algorithm controlled by an a posteriori error estimate. We refer to [57] for a detailed description

of the method. In the online stage, given x ∈ D, Ax (y) is approximated numerically by the

following steps.

1. Evaluate Ax (y) at the interpolation points {ym}M
m=1.

2. Solve the M ×M linear system

M∑
m=1

ϕm(x)pm(ym) = Ax (ym)

to determine the coefficients {ϕm(x)}M
m=1.

The affine representation of the tensor is necessary to perform an efficient a posteriori error

estimate during the offline stage while adding new basis functions to the reduced space. We

refer to [80] for more details, while here we limit ourselves to a brief description of the main

ideas. For a given ξ ∈Ξ, let

êN
ξ =χN

ξ −χĥ
ξ .

From (2.25) follows the identity

b(êN
ξ , z ĥ ;ξ) = b(χN

ξ , z ĥ ;ξ)− f (z ĥ ;ξ) ∀z ĥ ∈ Sq (Y ,Tĥ) .

Hence by Riesz’s theorem we know the existence of a unique eN
ξ ∈ Sq (Y ,Tĥ) such that

〈eN
ξ , z ĥ〉W (Y ) = b(êN

ξ , z ĥ ;ξ) ∀z ĥ ∈ Sq (Y ,Tĥ) , (2.27)
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where 〈·, ·〉W (Y ), defined as

〈z, w〉W (Y ) =
∫
Y

∇z ·∇w dy ,

denotes the inner product in the space W (Y ) corresponding to (2.11) or (2.12). The error

estimate eN
ξ can be computed by solving (2.27). This can be done very efficiently thanks to

the affine representation of the tensor Ax (y), since it allows to decompose the right hand side

of (2.27), which is parameter dependent, into several bilinear forms which are independent of

x and i , and therefore can be precomputed. Finally the a posteriori error estimate is defined as

∆N
ξ =

‖eN
ξ ‖W (Y )p
αLB

,

where αLB is a lower bound for the coercivity constant of the bilinear form b(·, ·; ·).

In what follows we briefly list the several steps to perform the greedy offline stage. Input

parameters are NTrain (the size of the training set), tolRB (a prescribed tolerance used as

stopping criterion), and NRB (the maximum number of reduced basis functions allowed).

1. Randomly define (by a Monte Carlo method for example) the training set ΞTrain ⊂Ξ

ΞTrain = {ξn = (xn , in) : 1 ≤ n ≤ NTrain , xn ∈ D ,1 ≤ in ≤ d} .

2. Select randomly one element from ΞTrain, i.e. ξ1, and compute χĥ
ξ1

such that

b(χĥ
ξ1

, z ĥ ;ξ1) = f (z ĥ ;ξ1) ∀z ĥ ∈ Sq (Y ,Tĥ) .

Set

ψĥ
1 =

χĥ
ξ1

‖χĥ
ξ1
‖W (Y )

,

and initialize the space as S1(Y ) = span
{
ψĥ

1

}
.

3. For 2 ≤ j ≤ NRB perform the following steps.

(a) For each ξn ∈ΞTrain compute the corresponding micro function χ j−1
ξn

∈ S j−1(Y ) by

solving

b(χ j−1
ξn

,ψĥ
k ;ξn) = f (ψĥ

k ;ξn) ∀k = 1, . . . , j −1,

and the corresponding residual ∆ j−1
ξn

.
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(b) Select the new reduced basis by choosing

ξ j = max
ξn∈ΞTrain

∆
j−1
ξn

.

(c) If (∆ j−1
ξ j

)2 < tolRB the algorithm ends, otherwise compute χĥ
ξ j

such that

b(χĥ
ξ j

, z ĥ ;ξ j ) = f (z ĥ ;ξ j ) ∀z ĥ ∈ Sq (Y ,Tĥ) .

Set

ψĥ
j =

R ĥ
j

‖R ĥ
j ‖W (Y )

,

where

R ĥ
j =χĥ

ξ j
−

j−1∑
k=1

〈χĥ
ξ j

,ψĥ
k 〉W (Y )ψ

ĥ
k .

(d) S j (Y ) = S j−1(Y )∪ span
{
ψĥ

j

}
.

The online stage. Having computed the reduced space SN (Y ), we can now introduce a new

macro bilinear form similar to (2.17) which reads

BH ,RB(v H , w H ) = ∑
K∈TH

J∑
j=1

ωK j A0,N (xK j )∇v H (xK j ) ·∇w H (xK j ) , (2.28)

where

A0,N
lm (xK j ) =

∫
Y

AxK j
(y)el · (em −∇χm,N

K j
)dy ,

and χm,N
K j

is the solution of (2.25) in the reduced space SN (Y ). Thanks to the affine represen-

tation of the tensor Ax (y), computing each micro solution online reduces in solving a N ×N

linear system leading to a significant saving of computational effort. During the online stage

indeed, given a new ξ= (x, i ) ∈Ξ we need to solve the problem of finding χN
ξ
∈ SN (Y ) such

that ∫
Y

Ax (y)∇χN
ξ ·∇ψĥ

n dy =
∫
Y

Ax (y)ei ·∇ψĥ
n dy ∀n = 1, . . . , N . (2.29)
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The function χN
ξ

can be represented as

χN
ξ =

N∑
n=1

anψ
ĥ
n ,

where an ∈R, 1 ≤ n ≤ N . Thanks to the affine representation of Ax (y) solving (2.29) reduces in

finding (a1, . . . , aN )> ∈RN such that

Q∑
q=1

N∑
n=1

Θq (x)an

∫
Y

Aq (y)∇ψĥ
n ·∇ψĥ

n′ dy =
Q∑

q=1
Θq (x)

∫
Y

Aq (y)ei ·∇ψĥ
n′ dy ∀n′ = 1, . . . , N ,

(2.30)

where the integrals in (2.30) are parameter independent and can then be precomputed. Finally

the effective macro solution to the problem (2.5), computed by means of the RB-FE-HMM, is

given by uH ,RB = ůH ,RB +Rg , where ůH ,RB ∈ Sl
0(D,TH ) satisfies

BH ,RB(ůH ,RB, v H ) = F (v H )−BH ,RB(Rg , v H ) ∀v H ∈ Sl
0(D,TH ) .

2.3.2 A priori error analysis

The reduced basis method approximates the solution manifold

M (Y ,Tĥ) =
{
χĥ
ξ ,ξ ∈Ξ

}
,

with linear subspaces of Sq (Y ,Tĥ) of dimension N . The approximability of M (Y ,Tĥ) is

described by what is referred to as the Kolmogorov N -width of M (Y ,Tĥ) defined as

dN (M ) = inf
SN∈Sq

dim(SN )=N

sup
χĥ
ξ
∈M

dist(χĥ
ξ ,SN ) ,

where

dist(χĥ
ξ ,SN ) = min

χN
ξ′∈SN

‖χĥ
ξ −χN

ξ′ ‖W (Y ) .

In [22] it is proved that for coercive problems, there exists γ ∈ (0,1] such that:

1. If there are two constants C1 , a > 0 such that dN (M ) ≤C1N−a ∀N ≥ 0, then

dist(χĥ
ξ ,SN ) ≤C1C2N−a ,

where C2 depends of γ and a only.
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2. If there are C1 , a ,b > 0 such that dN (M ) ≤C1 exp(−bN a) ∀N ≥ 0, then

dist(χĥ
ξ ,SN ) ≤C1C2 exp(−cN a/(a+1)) ,

where C2 and c depend on γ and a only.

We are interested in the error due to the reduced basis approach with respect to N . Similarly

to (2.20), the error between the exact homogenized solution u0 and its approximation uH ,RB

obtained by means of the RB-FE-HMM can be decomposed as

‖u0 −uH ,RB‖H 1(D) ≤ ‖emac‖H 1(D) +‖emod‖H 1(D) +‖emic‖H 1(D) +‖eRB‖H 1(D) .

The results obtained in Section 2.2.2 for emac, emod and emic are still valid, and to give a

complete a priori error estimate for the RB-FE-HMM we need to consider the new error term

eRB = uH −uH ,RB. From (2.17) and (2.28) we obtain that

‖eRB‖H 1(D) ≤C sup
K∈TH

sup
1≤ j≤J

‖A0,h(xK j )− A0,N (xK j )‖F ,

which can in turn be bounded by the decay of the Kolmogorov N -width of M (Y ,Tĥ). We can

not give a priori estimate of the Kolmogorov N -width of the micro solutions manifold. However

if it is decaying exponentially, so it will do the error due to the reduced basis approach.
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3 Numerical method for solving multi-
scale inverse problems via Tikhonov
regularization
In this chapter we consider inverse conductivity problems for multiscale scalar elliptic partial

differential equations. Let D ⊂Rd , d ≤ 3, be an open, bounded, connected set with sufficiently

smooth boundary ∂D and consider the problem of finding the weak solution uε ∈ H 1(D) to

−∇· (Aε
σ∗∇uε) = 0 in D ,

uε = g on ∂D ,
(3.1)

where g ∈ H 1/2(∂D), and Aε
σ∗ ∈ M(α,β,D) is defined as

Aε
σ∗(x) = A(σ∗(x), x/ε) ,

where σ∗ : D →R and

Ai j (σ∗(x), x/ε) = Ai j (σ∗(x), y) , Ai j (σ∗(x), ·) is Y -periodic,

∀x ∈ D , ∀i , j = 1, . . . ,d . The tensor Aε
σ∗ is a highly oscillatory anisotropic tensor which varies

on a microscopic scale ε, and which is parameterized by a scalar functionσ∗ : D →R. Moreover

we assume Aε
σ∗ to be symmetric.

In Chapter 2 we have introduced homogenization theory and multiscale methods to obtain in

an efficient way effective macroscopic solutions to PDEs of the type as (3.1).

Now, we treat the inverse problem of determining Aε
σ∗ from the knowledge of the Dirichlet to

Neumann (DtN) map associated to the boundary value problem (3.1). The DtN map is defined

as the linear operator ΛAε
σ∗

: H 1/2(∂D) → H−1/2(∂D) given by

g 7→ Aε
σ∗∇uε ·ν|∂D ,

where ν denotes the exterior unit normal to ∂D , and uε solves (3.1). The assumption we make

is that the map (t , x) 7→ A(t , x/ε), t ∈ R, x ∈ D, is known and σ∗ has to be determined. Stan-

dard numerical approaches (such as FEM) for solving such problem would require multiple
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evaluations of the model (3.1) with mesh resolution at the finest scale. Then, solving the

inverse problem for small ε represents a formidable computational challenge and is often

not tractable. Hence, in this chapter we propose a coarse graining strategy which relies on

numerical homogenization and model order reduction to overcome this computational issue.

Outline. The outline of the chapter is as follows. In Section 3.1 we recall briefly results of

uniqueness and stability for the class of inverse problems that we consider. In Section 3.2,

assuming that the fine scale inverse problem is well-posed, we prove that the effective inverse

problem, with observed data consisting of the homogenized Dirichlet to Neumann map,

is also well-posed. In Section 3.3 we establish a convergence result for the solution to the

inverse problem in the context of Tikhonov regularization. In Section 3.4 we describe how

the multiscale inverse problem is solved numerically, and we provide a convergence analysis

of the discrete solution of the inverse problem. In Section 3.5 we present some numerical

results to test our theoretical findings and illustrate the viability of our numerical method. The

content of this chapter is essentially taken from [9].

3.1 Stability and uniqueness results for inverse problems with pa-

rameterized tensors

Let D be an open bounded set in Rd . We consider a multiscale tensor Aε
σ∗ of the form Aε

σ∗(x) =
A(σ∗(x), x/ε), where σ∗ : D →R is a scalar function with range in [σ−,σ+]. The problem we

are interested in is to recover Aε
σ∗ from measurements of the Dirichlet to Neumann map. The

inverse conductivity problem was first introduced by Calderón [26], while inverse conductivity

problems for special anisotropic tensors of the form Aσ∗(x) = A(σ∗(x), x) are analyzed in

details in [16]. In particular in [16] results on uniqueness and stability at the boundary for the

inverse problem are proved in the case where some prior knowledge on the map (t , x) 7→ A(t , x)

is assumed. The goal of this section is to recall such preliminary results, which will be then

used to establish similar results for our problem of interest.

In [16] it is required that the tensor A(t , x), t ∈ [σ−,σ+], x ∈ D , belongs to some special class of

matrix functions that we recall below. In what follows we will use the norms

‖A‖Lp (D) =
 ∫

D

d∑
i=1

d∑
j=1

|Ai j (x)|p dx

1/p

, 1 ≤ p <∞ ,

‖A‖L∞(D) = max
1≤i , j≤d

esssup
x∈D

|Ai j (x)| , p =∞ .

for a matrix A(x) = {Ai j (x)}1≤i , j≤d , x ∈ D .

Definition 3.1.1 (Definition 2.2 in [16]). Given p > d , α,β,E1 > 0, and denoting by Symd the

class of d ×d real valued symmetric matrices, we say that A : [σ−,σ+]×D → Symd belongs to

H if the following conditions hold for all t ∈ [σ−,σ+].

34



3.1. Stability and uniqueness results for inverse problems with parameterized tensors

1. A ∈W 1,p ([σ−,σ+]×D,Symd ).

2. ∂t A ∈W 1,p ([σ−,σ+]×D,Symd ).

3. esssup
t∈[σ−,σ+]

(‖A(t , ·)‖Lp (D) +‖∇x A(t , ·)‖Lp (D) +‖∂t A(t , ·)‖Lp (D) +‖∂t∇x A(t , ·)‖Lp (D))

≤ E1 .

4. Condition of uniform ellipticity:

α|b|2 ≤ A(t , x)b ·b , |A(t , x)b| ≤β|b|, for a.e. x ∈ D

and ∀t ∈ [σ−,σ+], b ∈Rd .

5. Condition of monotonicity with respect to the variable t :

∂t A(t , x)b ·b ≥ E−1
1 |b|2, for a.e. x ∈ D

and ∀t ∈ [σ−,σ+] ,b ∈Rd .

In [16] the following stability result at the boundary for the unknown function σ∗ has been

shown, in the case where Aσ∗(x) = A(σ∗(x), x), σ∗ ∈W 1,p (D), A(·, ·) ∈H .

Theorem 3.1.2 (See Theorem 2.1 in [16]). Given p > d, let D be a bounded domain with

Lipschitz boundary. Given E > 0, let σ1, σ2 satisfy

σ− ≤σ1(x) ,σ2(x) ≤σ+ for every x ∈ D , (3.2)

and

‖σ1‖W 1,p (D) ,‖σ2‖W 1,p (D) ≤ E . (3.3)

Let Aσ1 (x) = A(σ1(x), x), Aσ2 (x) = A(σ2(x), x), and A(·, ·) ∈H . Then we have

‖Aσ1 − Aσ2‖L∞(∂D) ≤C‖ΛAσ1
−ΛAσ2

‖L (H 1/2(∂D),H−1/2(∂D)) ,

where C depends on σ−, σ+, E, E1, p, and D.

A uniqueness result is also provided in [16].

Theorem 3.1.3 (See Theorem 2.4 in [16]). Given E > 0, let σ1 and σ2 be two scalar functions

satisfying (3.2) and (3.3) with p =∞, and A(·, ·) ∈H . Moreover, assume A ∈W 1,∞([σ−,σ+]×
D,Symd ). In addition, suppose that D can be partitioned into a finite number of Lipschitz

domains {D j }N
j=1 such that σ1 −σ2 is analytic on each D j . If

ΛA(σ1(x),x) =ΛA(σ2(x),x)

then we have

A(σ1(x), x) = A(σ2(x), x) in D.
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The same results hold for matrix functions of the type Aε
σ∗(x) = A(σ∗(x), x/ε) for fixed ε.

However, in this case the constant E1 in Definition 3.1.1 scales as 1/ε, and therefore, as ε→ 0,

such results may become useless. Moreover, in numerical experiments, when ε is very small,

trying to solve the problem numerically by using an approximation of (3.1) as model for

inversion is prohibitive in terms of computational cost, and therefore a different strategy is

preferred. Then the motivation for a coarse graining approach, which we obtain by using the

framework of homogenization, becomes clear.

3.2 Stability and uniqueness results for the fine scale and the effec-

tive inverse problem

In Definition 3.1.1 we have listed the regularity properties that the map (t , x) 7→ A(t , x/ε) has

to satisfy to ensure stability and uniqueness of the inverse problem. However, we already

mentioned that for the class of problems we are interested in, results obtained in [16] are

dependent on ε, and a new strategy based on homogenization is preferred. As first step we

want to analyze under which conditions on (t , x) 7→ A(t , x/ε) the map t 7→ A0(t) satisfies the

regularity properties to ensure stability and uniqueness for the homogenized inverse problem.

First, let us introduce as a corollary of Theorems 3.1.2 and 3.1.3 the conditions that t 7→ A0(t )

must satisfy to ensure stability and uniqueness.

Corollary 3.2.1. Given α,β,E2 > 0 and p > d, let us consider a d ×d symmetric matrix valued

function t 7→ A(t ), t ∈ [σ−,σ+], satisfying the following conditions.

|∂t A(t )|+ |∂2
t A(t )| ≤ E2 , ∀t ∈ [σ−,σ+] . (3.4)

α|b|2 ≤ A(t )b ·b , |A(t )b| ≤β|b| , ∀t ∈ [σ−,σ+] ,b ∈Rd . (3.5)

∂t A(t )b ·b ≥ E−1
2 |b|2 , ∀t ∈ [σ−,σ+] ,b ∈Rd . (3.6)

Let σ1 and σ2 be two scalar functions satisfying (3.2) and (3.3). Let Aσ1 (x) = A(σ1(x)) and

Aσ2 (x) = A(σ2(x)). Then we have the following results.

1. The following estimate holds:

‖Aσ1 − Aσ2‖L∞(∂D) ≤C‖ΛAσ1
−ΛAσ2

‖L (H 1/2(∂D),H−1/2(∂D)) ,

where C depends on σ−, σ+, E, E2, p, and D.

2. Let σ1 and σ2 satisfy (3.2) and (3.3) with p = ∞. In addition, suppose that D can be

partitioned into a finite number of Lipschitz domains {D j }N
j=1 such thatσ1−σ2 is analytic

on each D j . If

ΛA(σ1(x)) =ΛA(σ2(x))
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then we have

A(σ1(x)) = A(σ2(x)) in D .

We also mention the following lemma, which establishes a regularity result for the solutions of

the cell problems with respect to the variable t [15].

Lemma 3.2.2. Assume that A(t , x/ε) is uniformly elliptic and the map t 7→ A(t , x/ε) is of class

C 1([σ−,σ+]). Let x/ε= y, y ∈ Y = (0,1)d . Consider the micro functions χ j
t , j = 1, . . . ,d, unique

solutions of the following problem: find χ j
t ∈W 1

per(Y ) such that∫
Y

A(t , y)∇χ j
t ·∇v dy =

∫
Y

A(t , y)e j ·∇v dy ∀v ∈W 1
per(Y ) . (3.7)

Then the map t ∈ [σ−,σ+] 7→χ
j
t ∈W 1

per(Y ) is of class C 1([σ−,σ+]) and satisfies

∂tχ
j
t =φ j

t , ∂t∇χ j
t =∇φ j

t , (3.8)

where φ j
t ∈W 1

per(Y ) satisfies∫
Y

A(t , y)∇φ j
t ·∇v dy =

∫
Y

∂t A(t , y)(e j −∇χ j
t ) ·∇v dy ∀v ∈W 1

per(Y ) . (3.9)

Proof. Consider problem (3.7) for the tensors A(t , y) and A(t +∆t , y). We have that∫
Y

A(t , y)(∇χ j
t+∆t −∇χ j

t ) ·∇v dy

=
∫
Y

(A(t +∆t , y)− A(t , y))(e j −∇χ j
t+∆t ) ·∇v dy ∀v ∈W 1

per(Y ) . (3.10)

From Lax-Milgram theorem and the fact that t 7→ A(t , y) is of class C 1([σ−,σ+]), we obtain that

‖χ j
t+∆t −χ

j
t ‖H 1(Y ) → 0 as∆t → 0. Now consider the identity (3.10), divide it by∆t , and subtract

equation (3.9). We obtain

1

∆t

∫
Y

A(t , y)(∇χ j
t+∆t −∇χ j

t ) ·∇v dy −
∫
Y

A(t , y)∇φ j
t ·∇v dy

= 1

∆t

∫
Y

(A(t +∆t , y)− A(t , y))(e j −∇χ j
t+∆t ) ·∇v dy −

∫
Y

∂t A(t , y)(e j −∇χ j
t ) ·∇v dy .

By taking the limit ∆t → 0 we obtain (3.8).

Then we can establish the following theorem.
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Theorem 3.2.3. Let x/ε= y, y ∈ Y = (0,1)d . Given α,β,E1 > 0, p > d, consider the class of d ×d

symmetric matrix functions (t , y) 7→ A(t , y), where Ai j is Y -periodic, ∀i , j = 1, . . . ,d, t ∈ [σ−,σ+].

Assume that A satisfies the following conditions.

A ∈W 1,∞([σ−,σ+]×Y ,Symd ) , ∂t A ∈W 1,∞([σ−,σ+]×Y ,Symd ) , (3.11)

‖A‖L∞([σ−,σ+];L∞(Y )) +‖∂t A‖L∞([σ−,σ+];L∞(Y )) +‖∂2
t A‖L∞([σ−,σ+];L∞(Y )) ≤ E1 , (3.12)

α|b|2 ≤ A(t , y)b ·b , |A(x)b| ≤β|b|, for a.e. y ∈ Y and ∀t ∈ [σ−,σ+], b ∈Rd .

∂t A(t , y)b ·b ≥ E−1
1 |b|2, for a.e. y ∈ Y and ∀t ∈ [σ−,σ+] ,b ∈Rd . (3.13)

Then the homogenized map t 7→ A0(t ) satisfies (3.4)-(3.6).

Proof. We start by showing (3.4). Note that the homogenized coefficients can be rewritten in

the form

A0
i j (t ) =

∫
Y

A(t , y)(e j −∇χ j
t ) · (ei −∇χi

t )dy . (3.14)

Differentiating (3.14) with respect to the variable t , we obtain after a straightforward calcula-

tion

∂t A0
i j (t ) =

∫
Y

(∂t A(t , y))(e j −∇χ j
t ) · (ei −∇χi

t )dy . (3.15)

Then from Hölder’s inequality we get

esssup
t∈[σ−,σ+]

|∂t A0
i j (t )|

≤ esssup
t∈[σ−,σ+]

‖∂t A(t , ·)‖L∞(Y )‖e j −∇χ j
t ‖L2(Y )‖ei −∇χi

t )‖L2(Y ) ,

and by using Lax-Milgram theorem, the triangle inequality, and (3.12) we obtain

esssup
t∈[σ−,σ+]

|∂t A0
i j (t )|

≤ esssup
t∈[σ−,σ+]

‖∂t A(t , ·)‖L∞(Y )(1+α−1‖A(t , ·) ·e j‖L∞(Y ))(1+α−1‖A(t , ·) ·ei‖L∞(Y ))

≤ E1(1+α−1E1)2 =C1 .
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Now, let t , s ∈ [σ−,σ+]. From (3.15) and Hölder’s inequality we have

|∂t A0
i j (t )−∂t A0

i j (s)|
≤ ‖∂t A(t , ·)−∂t A(s, ·)‖L∞(Y )‖e j −∇χ j

t ‖L2(Y )‖ei −∇χi
t‖L2(Y )

+‖∂t A(s, ·)‖L∞(Y )‖∇(χ j
t −χ j

s )‖L2(Y )‖ei −∇χi
t‖L2(Y )

+‖∂t A(s, ·)‖L∞(Y )‖e j −χ j
s ‖L2(Y )‖∇(χi

t −χi
s)‖L2(Y ) .

Now, from the weak definition of the solution of the micro problems, we derive for each

i = 1, . . . ,d , s, t ∈ [σ−,σ+], ∀v ∈W 1
per(Y )∫

Y

A(t , y)∇(χi
t −χi

s) ·∇v dy =
∫
Y

(A(t , y)− A(s, y))ei ·∇v dy

+
∫
Y

(A(s, y)− A(t , y))∇χi
s ·∇v dy .

By choosing v =χi
t −χi

s , using Hölder’s inequality and (3.12) we obtain

‖∇(χi
t −χi

s)‖L2(Y ) ≤α−1‖∂t A‖L∞([σ−,σ+];L∞(Y ))(1+α−1‖A(s, ·)ei‖L∞(Y ))|t − s|
≤α−1E1(1+α−1E1)|t − s|
=C2|t − s| .

Using this latter result and (3.12) gives

|∂t A0
i j (t )−∂t A0

i j (s)| ≤ (C1 +2E1(1+α−1E1)C2)|t − s|
=C1(1+2α−1E1)|t − s| =C3|t − s| ,

and (3.4) follows.

The condition of uniform ellipticity, namely

α|b|2 ≤ A0(t )b ·b , |A0(t )b| ≤β|b| , for a.e. t ∈ [σ−,σ+] ,b ∈Rd ,

follows from a well-known property of the homogenized tensor (see for example Theorem 6.1

in [33]).

Finally we show that the condition of monotonicity with respect to the variable t holds. From

(3.15), by using the notation ϕi = (ei −∇χi
t ), i = 1, . . . ,d , we have that

∂t A0
i j (t ) =

∫
Y

∂t A(t , y)ϕ j ·ϕi dy .
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Since ∂t A(t , y) is symmetric, ∂t A0(t ) is also symmetric. Then, given b ∈Rd ,

∂t A0(t )b ·b = b>∂t A0(t )b

=
∫
Y

d∑
j=1

d∑
i=1

biϕ
i >∂t A(t , y)b jϕ

j dy

=
∫
Y

(
d∑

i=1
biϕ

i

)>
∂t A(t , y)

(
d∑

i=1
biϕ

i

)
dy

≥ E−1
1

∫
Y

∣∣∣∣∣ d∑
i=1

biϕ
i

∣∣∣∣∣
2

dy ≥ 0, for any b ∈Rd .

In particular this inequality implies that

∂t A0(t )b ·b > 0, for any b ∈Rd , b 6= 0, (3.16)

as can be shown by contradiction using a simple argument. Indeed, if this was not true, one

would have some b 6= 0 such that∣∣∣∣∣ d∑
i=1

biϕ
i

∣∣∣∣∣=
∣∣∣∣∣ d∑
i=1

bi (ei −∇χi
t )

∣∣∣∣∣= 0.

This means that

d∑
i=1

bi (yi −χi
t ) = constant,

and then

d∑
i=1

bi yi =
d∑

i=1
biχ

i
t +constant,

which is impossible since the right hand side is periodic by definition and b 6= 0. From (3.16)

we easily derive (3.6), and the proof is complete.

Theorem 3.2.3 shows that under appropriate regularity assumptions on (t , x) 7→ A(t , x/ε), the

homogenized real valued tensor t 7→ A0(t ) satisfies the assumptions of Corollary 3.2.1. Hence,

we established stability and uniqueness for the inverse conductivity problem in the case where

the measurements at the boundary consist of the homogenized Dirichlet to Neumann map.

However, as already mentioned in the introduction to this chapter, this is not the case we

are interested in, since we aim at solving the inverse problem when the data consist of the

multiscale Dirichlet to Neumann map ΛAε
σ∗

. Moreover, in real experiments we do not have

full knowledge of the map ΛAε
σ∗

. Indeed, we would have to know the results of all possible

boundary measurements for any Dirichlet boundary condition g , which is impossible. In

practice, we consider a set of L experiments, described by a finite set of Dirichlet conditions
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{gl }L
l=1 ∈ H 1/2(∂D), and for each of them we measure the corresponding boundary flux. Let us

define

U = {
σ ∈W 1,∞(D) : σ− ≤σ(x) ≤σ+}

,

Uad = {
σ ∈U : ‖σ‖W 1,∞(D) ≤ E ,E > 0

}
.

Then we would like to solve the following minimization problem

inf
σ∈Uad

L∑
l=1

‖ΛAε
σ∗

gl −ΛA0
σ

gl‖2
H−1/2(∂D) ,

subject to
−∇· (A0

σ∇u0) = 0 in D ,

u0 = gl on ∂D ,
(3.17)

where A0
σ(x) = A0(σ(x)) is the homogenized tensor corresponding to Aε

σ(x) = A(σ(x), x/ε).

It is important to remark that G-convergence of A(σ∗(x), x/ε) to A0(σ∗(x)) does not imply

convergence of the corresponding fluxes at the boundary in the H−1/2(∂D)-norm, but only

weak* convergence, as stated in the following lemma.

Lemma 3.2.4. Let us consider a sequence of symmetric tensors {Aε
σ}ε>0 in M(α,β,D) which G-

converges to A0
σ ∈ M(α,β,D) as ε→ 0. Then {ΛAε

σ
g }ε>0 converges weakly* toΛA0

σ
g in H−1/2(∂D)

for all g ∈ H 1/2(∂D) as ε→ 0.

Proof. From the definition of G-convergence we have that, for any ψ ∈ H 1(D),∫
D

(Aε
σ∇uε− A0

σ∇u0) ·∇ψdx → 0 as ε→ 0.

Then, using integration by parts, we obtain that

〈ΛAε
σ

g −ΛA0
σ

g ,ψ〉H−1/2(∂D),H 1/2(∂D) → 0 as ε→ 0,

for each g ,ψ ∈ H 1/2(∂D). Then

ΛAε
σ

g *ΛA0
σ

g weakly* in H−1/2(∂D) .

3.3 Tikhonov regularization: multiscale and coarse grained mini-

mizers

Due to the difficulties of working with fractional-order Sobolev spaces when performing

numerical experiments, we will consider the L2(∂D)-norm to evaluate the distance between

data and numerical results produced by the homogenized model.
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Assumption 3.3.1. We assume that the boundary conditions gl of problem (3.17) satisfy

gl ∈ H 3/2(∂D) for l = 1, . . . ,L and that the corresponding solution u0(σ, ·) ∈ H 2(D) for any

σ ∈U .

LetΦε : U →R be defined as

Φε(σ) =
L∑

l=1
‖ΛAε

σ∗
gl −ΛA0

σ
gl‖2

L2(∂D) ,

and let us consider the minimization problem

Φε = inf
σ∈Uad

Φε(σ) . (3.18)

Since Uad is a closed, convex and bounded set in W 1,∞(D), it is possible to prove that any

minimizing sequence {σεn}n>0 for (3.18) contains a subsequence which weakly converges in

H 1(D) to σε, for which we have Φε =Φε(σε). This follows from the fact that H 1(D) embeds

compactly into Lr (D), r < ∞ in two dimensions, r < 6 in three dimensions, and that Φε :

U →R+ is continuous with respect to the Lr (D)-norm. This continuity result is stated in the

Lemma 3.3.3. Before proving such a lemma, let us recall Meyer’s theorem on regularity of

elliptic problems.

Theorem 3.3.2 (N. G. Meyers, 1963, [69, 55]). Let D ∈Rd be a bounded open set, with a Lipschitz

continuous boundary. Let A ∈ M(α,β,D). There exists a constant q1 > 2, depending on d, D, α,

and β only, such that if u is the unique weak solution of

−∇· (A∇u) = f in D ,

u = g on ∂D ,

and f ∈W −1,q ′
(D), g ∈W 1/q,q (∂D), 1/q ′+1/q = 1, q ∈ [2, q1), then u ∈W 1,q (D) and there exists

a constant C1, depending on d, D, α, β, and q only, such that

‖u‖W 1,q (D) ≤C1(‖Rg‖W 1,q (D) +‖ f ‖W −1,q′ (D)) ,

where Rg denotes the extension of g onto W 1,q (D).

Lemma 3.3.3. Let A0(·) ∈ W 1,∞([σ−,σ+],Symd ) and satisfy (3.4)-(3.5). If a sequence {σn}n>0

in U converges to some σ ∈U in Lr (D), r ≥ 1, then the sequence {ΛA0
σn

g }n>0 converges toΛA0
σ

g

in H−1/2(∂D). Under Assumption 3.3.1, the sequence {ΛA0
σn

g }n>0 converges to ΛA0
σ

g in L2(∂D).

Proof. It follows from the weak formulation of u0(σn) and u0(σ) that, ∀v ∈ H 1
0 (D), we have∫

D

(A0
σ∇u0(σ)− A0

σn
∇u0(σn)) ·∇v dx = 0.

42



3.3. Tikhonov regularization: multiscale and coarse grained minimizers

Then ∫
D

A0
σn

(∇u0(σ)−∇u0(σn)) ·∇v dx =
∫
D

(A0
σn

− A0
σ)∇u0

σ ·∇v dx .

By choosing v = u0(σ)−u0(σn) ∈ H 1
0 (D), and using Hölder’s inequality, we obtain

‖∇u0(σ)−∇u0(σn)‖L2(D) ≤α−1C1‖A0
σ− A0

σn
‖Lp (D)‖Rg‖W 1,q (D)

≤α−1C1E1‖σ−σn‖Lp (D)‖Rg‖W 1,q (D)

≤C2‖σ−σn‖Lp (D) ,

(3.19)

where q ∈ [2, q1), C1 comes from Theorem 3.3.2, and p satisfies 1/p +1/q = 1/2. We then set

w = A0
σ∇u0(σ)− A0

σn
∇u0(σn) and obtain∫

D

|w |2 dx =
∫
D

A0
σn

(∇u0(σ)−∇u0(σn)) ·w dx

+
∫
D

(A0
σ− A0

σn
)∇u0(σ) ·w dx

≤‖A0
σn
‖L∞(D)‖∇u0(σ)−∇u0(σn)‖L2(D)‖w‖L2(D)

+‖A0
σ− A0

σn
‖Lp (D)‖∇u0(σ)‖Lq (D)‖w‖L2(D) ,

and hence, by using (3.19) we get

‖A0
σ∇u0(σ)− A0

σn
∇u0(σn)‖L2(D) ≤ (E1 +α)C2‖σ−σn‖Lp (D)

≤C4‖σ−σn‖Lp (D) .
(3.20)

Observing that w ∈ H(D,div) and using the continuity of the map w ∈ H(D,div) 7→ w ·ν ∈
H−1/2(∂D), we can finally conclude that

‖ΛA0
σ

g −ΛA0
σn

g‖H−1/2(∂D) ≤C3C4‖σ−σn‖Lp (D) .

The desired assertion follows immediately if r ≥ p. Otherwise, if r < p, we can exploit the

L∞(D) bound of the set U , i.e., for any σ ∈U we have∫
D

|σ|p dx ≤ (σ+)p−r
∫
D

|σ|r dx .

Assume u0 ∈ H 2(D). Then, due to the regularity assumptions on A0(t ), the admissible set U ,

and u0, we have that the sequence {A0
σn
∇u0(σn)}n>0 is uniformly bounded in (H 1(D))d . Then,

there exists a subsequence {A0
σn′∇u0(σn′)}n′>0 such that

A0
σn′∇u0(σn′)* q weakly in (H 1(D))d
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for some q ∈ (H 1(D))d , and hence

A0
σn′∇u0(σn′) → q strongly in (L2(D))d .

But from (3.20) all subsequences {A0
σn′∇u0(σn′)}n′>0 must converge to the same limit, hence

A0
σn
∇u0(σn)* A0

σ∇u0(σ) weakly in (H 1(D))d ,

hence

A0
σn
∇u0(σn) ·ν* A0

σ∇u0(σ) ·ν weakly in H 1/2(∂D) ,

or

ΛA0
σn

g *ΛA0
σ

g weakly in H 1/2(∂D) .

Finally, the compact injection H 1/2(∂D) ⊂ L2(∂D) yields

A0
σn
∇u0(σn) ·ν→ A0

σ∇u0(σ) ·ν strongly in L2(∂D) ,

or

ΛA0
σn

g →ΛA0
σ

g strongly in L2(∂D) .

Let us return to the problem (3.18). In numerical experiments we may prefer to adopt indirect

methods to ensure stability of the inverse problem instead of directly imposing a constraint

during the minimization procedure. Among the possible methods to regularize inverse prob-

lems, we choose Tikhonov regularization (see for example [50, 53]). Tikhonov regularization

ensures well-posedness by adding to the cost functional a convex variational penalty, so that

the new minimization problem reads

Ψε = inf
σ∈U

Ψε(σ) , (3.21)

where

Ψε(σ) =Φε(σ)+γR(σ) ,

where γ is the regularization parameter, and R is the penalty term. Such penalty term induces

a priori knowledge on expected conductivity. In what follows we consider R(σ) = ‖σ−σ0‖2
H 1(D)

,

whereσ0 is a prior guess ofσ∗. The regularization parameter controls the trade-off between the

Φε and R , and has to be properly chosen. The choice of γ represents a problem of considerable

interest and will affect how much oscillation is allowed in any minimizing sequence. As the
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regularization parameter γ varies, we obtain different regularized solutions having properties

that vary with γ. However, how to choose γ is not the main subject of study of this particular

work. For the sake of completeness we mention that several methods have been proposed

in the literature, such as the Morozov’s discrepancy principle [64, 82] or the L-curve method

[58, 59]. Let us introduce the functional Ψ0 : U →R, such that

Ψ0 = inf
σ∈U

Ψ0(σ) , (3.22)

where

Ψ0(σ) =Φ0(σ)+γ‖σ−σ0‖2
H 1(D) ,

and

Φ0(σ) =
L∑

l=1
‖ΛA0

σ∗
gl −ΛA0

σ
gl‖2

L2(∂D) .

Remark 3.3.4. From the non-negativity ofΨε(σ) andΨ0(σ), it follows thatΨε(U ) andΨ0(U )

are subsets of R+, and therefore there exist minimizing sequences {σεn}n>0 and {σ0
n}n>0 such

that

Ψε = liminf
n→∞ Ψε(σεn) = inf

σ∈U
Ψε(σ) ,

Ψ0 = liminf
n→∞ Ψ0(σ0

n) = inf
σ∈U

Ψ0(σ) .

The following lemma is an adaptation of a classical result in non-linear Tikhonov regularization

theory (see [52] for example).

Lemma 3.3.5. Under Assumption 3.3.1 consider a minimizing sequence {σ0
n}n>0 for (3.22).

Then it contains a weakly convergent subsequence in H 1(D) with limit σ0 ∈U which attains

the infimum, i.e., Ψ0 =Ψ0(σ0).

Proof. The set U is a non-empty closed convex subset of H 1(D), hence sequentially weakly

closed. From the minimizing property of {σ0
n}n>0 and the non-negativity of Φ0(σ) it follows

that {σ0
n}n>0 is bounded in H 1(D). Indeed if this is not the case, there exists a subsequence

{σ0
n′}n′>0 such that ‖σ0

n′‖H 1(D) →∞ as n′ →∞, hence

Ψ0(σ0
n′) ≥ γ‖σ0

n′ −σ0‖2
H 1(D) →∞ ,

and therefore Ψ0 = ∞. Then {σ0
n}n>0 admits a subsequence {σ0

n′}n′>0 such that σ0
n′ * σ0

weakly in H 1(D). SinceΦ0 : Lr (D)∩U →R+ is continuous (Lemma 3.3.3) and the H 1(D)-norm
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is weakly lower semi-continuous we have that

Ψ0(σ0) ≤ liminf
n′→∞

Ψ0(σ0
n′) =Ψ0 .

Since Ψ0(σ0) ≥Ψ0, the result follows.

Using the same arguments, we can prove the following lemma.

Lemma 3.3.6. Consider uε(σ∗) ∈ H 2(D) for each gl , l = 1, . . . ,L. Under Assumption 3.3.1

consider a minimizing sequence {σεn}n>0 for (3.21). Then it contains a weakly convergent

subsequence in H 1(D) with limit σε ∈U which attains the infimum, i.e., Ψε =Ψε(σε).

We now state the main result, which quantifies (in a weak sense) the link between the min-

imization problem (3.21) involving the fine scale Dirichlet to Neumann map ΛAε
σ∗

and the

homogenized mapΛA0
σ

, and problem (3.22) involving only homogenized maps.

Theorem 3.3.7. Let the assumptions of Theorem 3.2.3 and Assumption 3.3.1 hold. Consider the

sequence of minimization problems of type (3.21) for ε→ 0. Then the sequence of minimizers

{σε}ε>0, such thatΨε =Ψε(σε) for all ε> 0, contains a weakly convergent subsequence {σε
′
}ε′>0

in H 1(D) with limit σ ∈U which attains the infimum, i.e.,Ψ0 =Ψ0(σ). Moreover any weakly

convergent subsequence {σε
′
}ε′>0 in H 1(D) with limit σ ∈U satisfies Ψ0 =Ψ0(σ).

Proof. The minimizing property of {σε}ε>0 and the non-negativity of Φε(σ) imply that the

sequence {σε}ε>0 is bounded in H 1(D). Indeed we have that for each ε> 0, Ψε(σε) is bounded

byΨε(σ∗), which is in turn bounded with respect to ε. From calculations similar to those in

the proof of Lemma 3.3.3 we obtain

Ψε(σ∗) =
L∑

l=1
‖ΛAε

σ∗
gl −ΛA0

σ∗
gl‖2

L2(∂D) +γ‖σ∗−σ0‖2
H 1(D)

≤
L∑

l=1
2β2‖gl‖2

H 3/2(∂D) +γ‖σ∗−σ0‖2
H 1(D) . (3.23)

Then {σε}ε>0 admits a subsequence {σε
′
}ε′>0 which converges weakly in H 1(D) to some σ ∈U .

For any subsequence {σε
′
}ε′>0 which converges weakly in H 1(D) to some σ ∈U we have that

Ψε′(σε
′
) ≤Ψε′(σ0) ∀ε′ > 0. (3.24)

Moreover, for each σ ∈U and ε> 0 the following identity holds:

Ψε(σ) =Φε(σ∗)+Φ0(σ)+γ‖σ−σ0‖2
H 1(D)

+2
L∑

l=1
〈ΛAε

σ∗
gl −ΛA0

σ∗
gl ,ΛA0

σ∗
gl −ΛA0

σ
gl 〉L2(∂D) .

(3.25)
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Inserting (3.25) into (3.24), we obtain

Ψ0(σε
′
) ≤Ψ0(σ0)+2

L∑
l=1

〈ΛAε′
σ∗

gl −ΛA0
σ∗

gl ,ΛA0

σε
′ gl −ΛA0

σ0
gl 〉L2(∂D) .

From Lemma 3.3.3 and the weak lower semi-continuity of the H 1(D)-norm we have that

Ψ0(σ) ≤ liminf
ε′→0

Ψ0(σε
′
)

≤ liminf
ε′→0

(
Ψ0(σ0)+2

L∑
l=1

〈ΛAε′
σ∗

gl −ΛA0
σ∗

gl ,ΛA0

σε
′ gl −ΛA0

σ0
gl 〉L2(∂D)

)
≤Ψ0(σ0)

+ limsup
ε′→0

2
L∑

l=1
〈ΛAε′

σ∗
gl −ΛA0

σ∗
gl ,ΛA0

σε
′ gl 〉L2(∂D)

+ limsup
ε′→0

2
L∑

l=1
〈ΛAε′

σ∗
gl −ΛA0

σ∗
gl ,−ΛA0

σ0
gl 〉L2(∂D) .

Using G-convergence of A(σ∗(x), x/ε) to A0(σ∗(x)), we obtain that

Ψ0(σ) ≤Ψ0(σ0)

+ limsup
ε′→0

2
L∑

l=1
〈ΛAε′

σ∗
gl −ΛA0

σ∗
gl ,ΛA0

σε
′ gl 〉L2(∂D)

≤Ψ0(σ0)

+ limsup
ε′→0

2
L∑

l=1
〈ΛAε′

σ∗
gl −ΛA0

σ∗
gl ,ΛA0

σ
gl 〉L2(∂D)

+ limsup
ε′→0

2
L∑

l=1
〈ΛAε′

σ∗
gl −ΛA0

σ∗
gl ,ΛA0

σε
′ gl −ΛA0

σ
gl 〉L2(∂D)

≤Ψ0(σ0)

+ limsup
ε′→0

4
L∑

l=1
β‖gl‖H 3/2(∂D)‖ΛA0

σε
′ gl −ΛA0

σ
gl‖L2(∂D)

=Ψ0(σ0) =Ψ0 .

Since Ψ0(σ) ≥Ψ0, the result follows.

As a consequence we then have thatΨ0(σε) →Ψ0(σ0) up to a subsequence when ε→ 0. Hence

we have established a link between the solutions to the multiscale problem (3.21) and the

solutions to the coarse grained minimization problem (3.22).

47



Chapter 3. Numerical method for solving multiscale inverse problems via Tikhonov
regularization

3.4 Reduced basis method for the solution of the regularized multi-

scale inverse problem

This section is devoted to illustrating how the problem (3.21) is solved numerically. The

multiscale method we define is based on the numerical homogenization methods introduced

in the previous chapter (FE-HMM and RB-FE-HMM) and a suitable optimization scheme.

Given σ ∈U , we have to be able to evaluate numerically Ψε(σ), and hence the following steps

are required.

1. Solve for 1 ≤ l ≤ L
−∇· (A0

σ∇u0) = 0 in D ,

u0 = gl on ∂D ,
(3.26)

where A0
σ is the homogenized tensor corresponding to the locally periodic tensor

Aε
σ(x) = A(σ(x), x/ε).

2. Compute the normal fluxes at the boundary ΛA0
σ

gl for 1 ≤ l ≤ L.

FE-HMM setting. In the FE-HMM framework, we discretize the domain by using simplicial

elements, and we approximate both macro and micro finite element spaces with piecewise

linear polynomials. Hence we introduce

S1
0(D,TH ) = {

v H ∈ H 1
0 (D) : v H |K ∈P 1(K ) ,∀K ∈TH

}
,

where TH is a partition of D in simplicial elements K of diameter HK , and P 1(K ) is the space

of linear polynomials on K . For each macro element, an approximation of the homogenized

tensor on each integration point xK is needed. Such approximation is obtained by solving

a micro problem defined on the sampling domains Kδ = xK + (−δ/2,δ/2)d , with δ≥ ε. For a

sampling domain Kδ we define a micro finite element space

S1(Kδ,Th) =
{

zh ∈W 1
per(Kδ) : zh |T ∈P 1(T ) ,∀T ∈Th

}
,

where

W 1
per(Kδ) =

z ∈ H 1
per(Kδ) :

∫
Kδ

z dx = 0

 .

Let uH
l be the approximate solution to the effective PDE (3.26) for some l . It is computed by

finding uH
l = ůH

l +Rgl , where ůH
l ∈ S1

0(D,TH ) satisfies

BH (ůH
l , v H ) =−BH (Rgl , v H ) ∀v H ∈ S1

0(D,TH ) ,
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where Rgl is a suitable Dirichlet lift of gl , and

BH (v H , w H ) = ∑
K∈TH

|K |
|Kδ|

∫
Kδ

A(σ(xK ), x/ε)∇vh
K ·∇wh

K dx . (3.27)

In (3.27) vh
K (respectively wh

K ) denotes the solution to the micro problem: find vh
K such that

vh
K − v H ∈ S1(Kδ,Th) and∫

Kδ

A(σ(xK ), x/ε)∇vh
K ·∇zh dx = 0 ∀zh ∈ S1(Kδ,Th) . (3.28)

Note that since the multiscale tensor is assumed to be locally periodic and admits explicit scale

separation, the slow variable of the tensor Aε
σ(x) has been collocated at the macro quadrature

point in (3.27), (3.28), so that the modeling error vanishes. Let

S1
c (D,TH ) = {

v H ∈ S1(D,TH ) : v H = 0 at the corners of D
}

,

and S1(∂D,TH ) the finite dimensional space of functions which are restrictions to the bound-

ary of functions living in S1
c (D,TH ). The numerical flux is computed by constructing a function

ΛH
A0,h
σ

gl ∈ S1(∂D,TH ) such that

∫
∂D

ΛH
A0,h
σ

gl v H ds = BH (uH , v H ) ∀v H ∈ S1
c (D,TH ) ,

where the value of the flux at the corners of D is assumed to be known, as specified by direct

calculations from the given Dirichlet conditions. Let

U H = {
σH ∈ S1(D,TH ) : σ− ≤σH ≤σ+}

be the admissible set for the discrete solution to the inverse problem, where

S1(D,TH ) = {
v H ∈ H 1(D) : v H |K ∈P 1(K ) ,∀K ∈TH

}
.

Given the set of boundary values

gl 1 ≤ l ≤ L ,

the discrete minimization problem reads as follows: find σε,H ∈U H such that

Ψε
H ,h(σε,H ) = inf

σH∈U H

Ψε
H ,h(σH ) , (3.29)
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where

Ψε
H ,h(σH ) =

L∑
l=1

‖ΛAε
σ∗

gl −ΛH
A0,h

σH

gl‖2
L2(∂D) +γ‖σH −σ0‖2

H 1(D)

=ΦεH ,h(σH )+γ‖σH −σ0‖2
H 1(D) .

Optimization scheme. The minimization problem is solved by means of the interior point

algorithm (see for example [25]). Let NH be the number of macro DOFs associated to the finite

element space S1(D,TH ). The unknown variable σH can be then represented as

σH (x) =
NH∑
i=1

σiϕi (x) , (3.30)

where σ = (σ1, . . . ,σNh )> ∈ RNH is the vector containing the unknown coefficients, and ϕi ,

1 ≤ i ≤ NH , are the Lagrange basis functions for the space S1(D,TH ). The minimization

problem (3.29) can be then rewritten in the equivalent form

inf
σ∈RNH

Ψε
H ,h(σH ) such that c(σ) ≤ 0, (3.31)

where c(σ) = (c1(σ),c2(σ)), c1,c2 :RNH →RNH are defined as

c1(σ) =σ−−σ , c2(σ) =σ−σ+ .

Following [25] we consider the approximate minimization problem

inf
σ∈RNH ,s∈RM

Ψε
H ,h(σH )−µ

M∑
i=1

ln(si ) such that c(σ)+s = 0, (3.32)

where M = 2NH is the number of inequality constraints in (3.31). The logarithmic term is

referred to as barrier function, the coefficient µ> 0 is the barrier parameter, and the variable

s = (s1, . . . , sM )> is assumed to be larger than zero, so that ln(si ) remains bounded ∀i , 1 ≤ i ≤ M .

We have transformed the inequality constrained problem (3.31) into an equality constrained

problem. Note that if we let µ→ 0 the solution of problem (3.32) should converge to the

solution of problem (3.31). The idea is then to solve problem (3.32) for a sequence of barrier

parameters {µ1 , . . . ,µN }, so that µn > µn+1 ∀n, µN = 0. To characterize the solution of (3.32)

we introduce the corresponding Lagrangian

L (σ,s,λ) =Ψε
H ,h(σH )−µ

M∑
i=1

ln(si )+λ>(c(σ)+s) ,
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whereλ ∈RM is the vector of Lagrange multipliers. The Karush-Kuhn-Tucker (KKT) optimality

conditions for the problem (3.32) lead to solving the following system of equations

∇σL (σ,s,λ) =∇σΨε
H ,h(σH )+ J c

σ(σ)>λ= 0,

∇sL (σ,s,λ) =−µdiag(s)−1e+λ= 0,

∇λL (σ,s,λ) = c(σ)+s = 0,

where J c
σ is the Jacobian matrix of c computed with respect to σ, and e = (1, . . . ,1)> ∈ RM . A

Newton iteration on the KKT conditions leads to the following linear system∇
2
σσL (σk ,λold) 0 (J c

σ(σk ))>

0 µdiag(sk )−2 I

J c
σ(σk ) I 0


 ∆σ

∆s

λnew

=

−∇σΨ
ε
H ,h(σH

k )

µdiag(sk )−1e

−c(σk )−sk

 ,

(σk+1,sk+1) = (σk +∆σ,sk +∆s), where ∇2
σσL denotes the Hessian matrix of L with respect to

the variable σ. In order to measure the optimality conditions we introduce the merit function

F (σ,s;µ) = max{‖∇σL (σ,s,λ)‖2 ,‖∇sL (σ,s,λ)‖2 ,‖∇λL (σ,s,λ)‖2} .

Then, given a starting point (σ0 ,s0), a sequence of barrier parameters {µ1 , . . . ,µN }, so that

µn >µn+1 ∀n, µN = 0, and corresponding tolerances {tolµ1 , . . . , tolµN }, tolµn > tolµn+1 ∀n, the

algorithm is given by the following steps.

1. For 1 ≤ n ≤ N perform the following operations.

(a) Starting from σ0 ∈RNH , s0 ∈RM , use Newton to find σ ∈RNH , s ∈RM such that

F (σ,s;µn) ≤ tolµn .

(b) Set σ0 =σ, s0 = s.

2. Set σε =σ.

Finally accordingly to (3.29) and (3.30) we define the discrete solution to the inverse problem

as

σε,H (x) =
NH∑
i=1

σεiϕi (x) ,

where σε = (σε1 , . . . ,σεNH
)> ∈RNH .

Convergence analysis with respect to macro and micro discretization. The set U H is finite

dimensional and uniformly bounded. Thus the existence of a minimizer σε,H ∈U H to the

discrete optimization problem (3.29) is ensured for any H > 0 by compactness and continuity

of Ψε
H ,h . One question we would like to answer, is whether the sequence {σε,H }H>0 of discrete
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solutions converges to a minimizer σε of the continuous problem as we refine the mesh. To

this end we first state a discrete analogue of Lemma 3.3.3.

Lemma 3.4.1. Suppose the assumptions of Theorem 2.2.5 and Lemma 3.3.3 hold, and let the

sequence {σH }H>0 in U H ⊂ U converge in Lr (D), r ≥ 1, to some σ ∈ U as H → 0. Then the

sequence of approximations {ΛH
A0,h

σH

g }H>0 converges to ΛA0
σ

g in L2(∂D) as H → 0.

Proof. The desired assertion easily follows from Lemma 3.3.3 and the estimate (2.24).

Now, thanks to Lemma 3.4.1 we can state the convergence of the discrete approximate so-

lutions {σε,H }H>0. Let σε be a solution of the regularized inverse problem in the infinite

dimension, so that

Ψε(σε) = inf
σ∈U

Ψε(σ) , (3.33)

where

Ψε(σ) =
L∑

l=1
‖ΛAε

σ∗
gl −ΛA0

σ
gl‖2

L2(∂D) +γ‖σ−σ0‖2
H 1(D)

=Φε(σ)+γ‖σ−σ0‖2
H 1(D) .

Theorem 3.4.2. Suppose the assumptions of Theorem 2.2.5 hold, and consider the sequence

of minimization problems of type (3.29) for H → 0. The sequence of minimizers {σε,H }H>0

contains a subsequence that converges weakly in H 1(D) to a minimizer σ̂ε of problem (3.33) as

H → 0.

Proof. Our proof is inspired from [56]. Here we briefly sketch the main steps to obtain the

desired result. Let I H =U →U H be the linear interpolation operator. We start by noting that

the minimizing properties of {σε,H }H>0 imply that for each H ,h > 0, Ψε
H ,h(σε,H ) is bounded

by Ψε
H ,h(I Hσε), which, thanks to (3.23) is in turn bounded independently of H and h. Then,

{σε,H }H>0 admits a subsequence {σε,H ′
}H ′>0 which weakly converges to some σ̂ε in H 1(D). It

remains now to show that σ̂ε is indeed a minimizer of problem (3.33). Since C∞(D) is dense

in H 1(D), we have that for any σ ∈U there exists a sequence {σn}n>0 in C∞(D)∩U such that

lim
n→∞‖σn −σ‖H 1(D) = 0. (3.34)

The minimizing properties of {σε,H ′
}H ′>0 imply that

Ψε
H ′,h(σε,H ′

) ≤Ψε
H ′,h(I Hσn) ∀n > 0.

Letting H ′ → 0, we obtain from the approximation properties of I H and Lemma 3.4.1 that

Ψε(σ̂ε) ≤Ψε(σn) ∀n > 0.

52
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By letting n →∞, we deduce from (3.34) and Lemma 3.3.3 that

Ψε(σ̂ε) ≤Ψε(σ) ∀σ ∈U ,

and the desired assertion follows.

Model order reduction. Having to solve (3.29) requires a large number of evaluations of the

function Ψε
H ,h , and so multiple computations of micro solutions, for each macro element and

each macro quadrature point. If we map each micro problem into the reference cell Y = (0,1)d

through x =GxK (y) = xK +δ(y −1/2), with δ= nε, n ∈N, n > 0, we can define an alternative

version of (3.27) as

BH (v H , w H ) = ∑
K∈TH

|K |A0,h(σ(xK ))∇v H (xK ) ·∇w H (xK ) ,

where

A0,h
i j (σ(xK )) =

∫
Y

A(σ(xK ), y)ei · (e j −∇χ j ,ĥ
K )dy ,

where ĥ = h/δ, and χ j ,ĥ
K ∈ S1(Y ,Tĥ) is the solution of∫

Y

A(σ(xK ), y)∇χ j ,ĥ
K ·∇z ĥ dy =

∫
Y

A(σ(xK ), y)e j ·∇z ĥ dy ∀z ĥ ∈ S1(Y ,Tĥ) . (3.35)

We note that each micro solution χ j ,ĥ
K is parameterized by the value of σ(xK ), and so, in the

spirit of Section 2.3, we build during an offline stage a reduced space of precomputed micro

functions, to perform fast evaluations of the micro problems when solving the inverse problem

online. Similarly to Section 2.3 we define the space of parameters as Ξ= [σ−,σ+]× {1 , . . . ,d}.

Given an element ξ= (t , i ) ∈Ξ, the corresponding micro solution is denoted by χĥ
ξ

and satisfies

b(χĥ
ξ , z ĥ ;ξ) = f (z ĥ ;ξ) ∀z ĥ ∈ S1(Y ,Tĥ) ,

where

b(z ĥ , ŵ ĥ ;ξ) =
∫
Y

A(t , y)∇z ĥ ·∇ŵ ĥ dy ,

and

f (z ĥ ;ξ) =
∫
Y

A(t , y)ei ·∇z ĥ dy .

53



Chapter 3. Numerical method for solving multiscale inverse problems via Tikhonov
regularization

Then starting from a training set randomly defined

ΞTrain = {
ξn = (tn , in) : 1 ≤ n ≤ NTrain , tn ∈ [σ−,σ+] ,1 ≤ in ≤ d

}
,

we perform the greedy offline stage described in Section 2.3 to build the reduced space

SN (Y ) = span
{
ψĥ

1 , . . . ,ψĥ
N

}
.

We make the assumption that the tensor A(t , y) is available in the affine form

A(t , y) =
Q∑

q=1
Θq (t )Aq (y) , ∀y ∈ Y ,

where Θq :R→R. Otherwise, we apply the empirical interpolation method to obtain an affine

approximation of A(t , y). Once the offline stage is concluded, we can define the new macro

bilinear form

BH ,RB(v H , w H ) = ∑
K∈TH

A0,N (σ(xK ))∇v H (xK ) ·∇w H (xK ) ,

where

A0,N
i j (σ(xK )) =

∫
Y

A(σ(xK ), y)ei · (e j −∇χ j ,N
K )dy ,

and χ j ,N
K is the solution of (3.35) computed on the reduced space SN (Y ). Hence the approxi-

mated macro solution of problem (3.26) computed by means of the RB-FE-HMM is given by

uH ,RB
l = ůH ,RB

l +Rgl , where ůH ,RB
l ∈ S1

0(D,TH ) satisfies

BH ,RB(ůH ,RB
l , v H ) =−BH ,RB(Rgl , v H ) ∀v H ∈ S1

0(D,TH ) ,

where Rgl is a Dirichlet lift of gl properly chosen. The corresponding normal flux at the

boundary is given by ΛH
A0,N
σ

gl ∈ S1(∂D,TH ) such that

∫
∂D

ΛH
A0,N
σ

gl v H ds = BH ,RB(uH ,RB
l , v H ) ∀v H ∈ S1

c (D,TH ) .

Remark 3.4.3. In the RB-FE-HMM framework the discrete inverse problem we need to solve

is

Ψε
H ,N (σε,H ) = inf

σH∈U H

Ψε
H ,N (σH ) (3.36)
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where

Ψε
H ,N (σH ) =

L∑
l=1

‖ΛAε
σ∗

gl −ΛH
A0,N

σH

gl‖2
L2(∂D) +γ‖σH −σ0‖2

H 1(D)

=ΦεH ,N (σH )+γ‖σH −σ0‖2
H 1(D) .

The convergence results established in Lemma 3.4.1 and Theorem 3.4.2 still hold. In the

convergence analysis we need to take into account the error due to the model order reduc-

tion. This error is based on the distance between the reduced space SN (Y ) and the space

S1(Y ,Tĥ). Such distance can be quantified by means of the notion of Kolmogorov N -width

(see Chapter 2).

Summary of the multiscale method to solve the inverse problem. The numerical method

to solve the discrete inverse problem (3.36) can be summarized as follows.

1. During the offline stage construct a reduced space of micro functions SN (Y ).

2. For each new guess σH ∈ U H in order to evaluate Ψε
H ,N (σH ) while performing the

interior point algorithm, for 1 ≤ l ≤ L we do the following operations.

(a) Find uH ,RB
l = ůH ,RB

l +Rgl , where ůH ,RB
l ∈ S1

0(D,TH ) satisfies

BH ,RB(ůH ,RB
l , v H ) =−BH ,RB(Rgl , v H ) ∀v H ∈ S1

0(D,TH ) ,

where Rgl is a Dirichlet lift of gl properly chosen, and

BH ,RB(v H , w H ) = ∑
K∈TH

A0,N (σH (xK ))∇v H (xK ) ·∇w H (xK ) ,

where

A0,N
i j (σH (xK )) =

∫
Y

A(σH (xK ), y)ei · (e j −∇χ j ,N
K )dy ,

and χ j ,N
K is a micro solution computed on the reduced space SN (Y ).

(b) Find ΛH
A0,N

σH

gl ∈ S1(∂D,TH ) such that

∫
∂D

ΛH
A0,N

σH

gl v H ds = BH ,RB(uH ,RB
l , v H ) ∀v H ∈ S1

c (D,TH ) .

3.5 Numerical experiments

In this section we present numerical experiments that illustrate the behavior of the proposed

numerical method for solving inverse problems. We first explain how we define the Dirichlet
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conditions {gl }L
l=1 and how we collect multiscale observations. Then, we solve the inverse

problem for two different types of macroscopic parameterizations: an affine parameterization

which controls the amplitude of the micro oscillations characterizing Aε
σ∗ , and a non-affine

parameterization controlling their orientation. In particular, for the first parameterization, we

perform different numerical tests to observe the sensitivity of the results with respect to the

several parameters involved (γ, ε, H , L) and assess our theoretical findings. For the second

parameterization, we fix the values of such parameters and we report the solution obtained by

means of the proposed algorithm for solving multiscale inverse problems. To conclude, we

remark that the forward homogenized problem is computed by means of the RB-FE-HMM,

and the offline stage is performed for the following choice of the parameters: h/ε= 1/64, δ= ε,

tolRB = 10−11, where tolRB is the prescribed tolerance used as stopping criterion for the greedy

process we use to select the micro basis functions.

3.5.1 Setup

The setup of the numerical experiments is as follows. The domain D is defined as

D = {x = (x1, x2) : 0 < x1, x2 < 1} .

We then compute the multiscale fluxes Λhobs

Aε
σ∗

gl for different Dirichlet conditions {gl }L
l=1 by

means of FEM, using a mesh size hobs ¿ ε. In particular we take {gl }L
l=1 = {

√
λlϕl }L

l=1, where

{(λl ,ϕl )}L
l=1 are the L eigenpairs corresponding to the smallest L eigenvalues of the one di-

mensional discrete Laplacian operator. Each gl is then interpolated on the boundary ∂D to

define the respective Dirichlet condition. This procedure ensures that the functions {gl }L
l=1 are

smooth and orthonormal, so that each contribution is independent from the others. Moreover

‖∇gl‖L2(∂D) <C , where C is a constant independent of L. In Figure 3.1 the first five gl functions

are shown.

0 0.5 1
-0.15

-0.1

-0.05

0

0.05

0.1

Figure 3.1: First five Dirichlet conditions used for the numerical experiments.
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3.5.2 A 2D affinely parameterized tensor

For the first parameterization we consider a tensor Aε
σ∗ given by

A11(σ∗(x), x/ε) =σ∗(x)
(
cos2

(
2π

x1

ε

)
+1

)
+cos2

(
2π

x2

ε

)
,

A22(σ∗(x), x/ε) =σ∗(x)
(
sin

(
2π

x2

ε

)
+2

)
+cos2

(
2π

x1

ε

)
,

A12(σ∗(x), x/ε) = A21(σ∗(x), x/ε) = 0,

where

σ∗(x) = 16(x2
1 −x1)(x2

2 −x2)+1.

For this first set of numerical experiments σ∗ is a simple smooth parabola, and its profile,

together with that of Aε
σ∗ , is shown in Figure 3.2.

σ∗(x). A11(σ∗(x), x/ε). A22(σ∗(x), x/ε).

Figure 3.2: The true field σ∗ and the two components A11(σ∗(x), x/ε) and A22(σ∗(x), x/ε) of
the multiscale tensor (ε= 1/8).

Sensitivity with respect to γ. We start by observing how the solution to the problem

Ψε
H ,N (σε,H ) = inf

σH∈U H

Ψε
H ,N (σH )

= inf
σH∈U H

L∑
l=1

‖Λhobs

Aε
σ∗

gl −I hobsΛH
A0,N

σH

gl‖2
L2(∂D) +γ‖σH −σ0‖2

H 1(D) ,

behaves as we vary the regularization parameter γ, where I hobsΛH
A0,N

σH

gl is the linear extension

ofΛH
A0,N

σH

gl on S1(∂D,Thobs ). We set σ0 = 1, while σ− and σ+ are chosen to be equal to 0.5 and

2.5 respectively. We fix ε = 1/64, H = 1/16, L = 20, and we solve the problem for different

values of γ. The optimization problem is solved by means of the interior point method, with

initial guess equal to σ0. The relative error we obtain is shown in Figure 3.3 for different norms

and different values of γ. As it can been observed, the approximated solutions we obtain have

different properties which vary with the regularization parameter γ. The larger is γ, the more
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regularized is the inverse problem. Thus, if γ is too large, the solution is too regularized, and it

can be far from the true scalar field we want to retrieve. On the other hand, when γ becomes

too small, the problem becomes more unstable, and many more oscillations are allowed in

the reconstructed scalar field. For our problem we observe that the L2(D)-error is minimum

when γ ∈ [2.5×10−4,5×10−4].

10
-4

10
-2

10
-2

10
-1

10
0

10
1

Figure 3.3: Error behavior with respect to the regularization parameter γ.

Convergence with respect to ε. In this other numerical test we set γ= 5×10−4, and we verify

the statement of Theorem 3.3.7. Moreover, we check the convergence of the approximated

solution towards σ0,H , which is the approximated solution of the discrete version of prob-

lem (3.22). Other parameters such as H and L are the same as in the previous numerical

test. From Figure 3.4 we can see that the error |Ψ0
H ,N (σ0,H )−Ψ0

H ,N (σε,H )| converges to zero as

ε→ 0, as expected from Theorem 3.3.7. Relative errors between σ0,H and σε,H are also shown

in Figure 3.4 for both L2(D)- and H 1(D)-norms. We can observe convergence of σε,H to σ0,H

as ε→ 0, in agreement with Theorem 3.3.7. For relatively large values of ε, namely ε> H , the

error we obtain is relatively large and no convergence is observed. This is due to the fact that,

since ε> H , the approximate homogenized flux, which approximates at best the multiscale

flux, is capable of capturing its typical oscillations. Hence, such oscillations will affect the

retrieved solution as well.

Convergence with respect to H . To verify convergence with respect to discretization, we

fix γ= 5×10−4, ε= 1/64, L = 20 and use the discrete minimizer σε,H obtained on the finest

discretization as reference solution. In Figure 3.5 we show the numerical errors obtained, and

the picture agrees with what is stated in Theorem 3.4.2.
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Figure 3.4: Error convergence as ε→ 0.
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Figure 3.5: Error convergence as H → 0.

Sensitivity with respect to L. Finally we let vary the number L of different Dirichlet con-

ditions used to define the inverse problem, and check if a larger value of L leads to a better

approximated solution. For this experiment γ= 5×10−4, ε= 1/64, H = 1/16, while we allow

L to vary between 1 and 20. We can observe in Figure 3.6 that the relative error between

the exact function σ∗ and our approximation decreases as L becomes larger. However, it is

also important to mention that as L increases, we should decrease H since the functions gl

becomes more and more oscillating as L →∞, and therefore we need a small mesh size to

approximate them well. This could also be the reason why the H (D)1-error increases for the

last larger values of L.

Finally in Figure 3.7 we show the conductivity tensor we retrieve with ε= 1/64, γ= 5×10−4,

H = 1/16, L = 20. It is important to remark that the results showed in Figure 3.2 are obtained

for ε= 1/64 (hence we obtain σε,H , ε= 1/64). However, in order to visualize the results well
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Figure 3.6: Error behavior with respect of the number of Dirichlet conditions L.

and compare the profile of the multiscale tensor with the one shown in Figure 3.2, we plot

A(σε,H (x), x/ε′), where ε′ = 1/8. We can see a good agreement between our solution shown in

Figure 3.7 and the true tensor shown in Figure 3.2.

σε,H (x). A11(σε,H (x), x/ε′). A22(σε,H (x), x/ε′).

Figure 3.7: The approximated solution σε,H and the two components A11(σε,H , x/ε′) and
A22(σε,H , x/ε′) of the multiscale tensor (H = 1/16, ε= 1/64, ε′ = 1/8).

3.5.3 A 2D non-affinely parameterized tensor

For the second experiment we consider a non-affine parameterization of the multiscale tensor.

In this case the function σ∗ controls the orientation of the oscillations of the full tensor Aε
σ∗ ,
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which is defined as follows,

A11(σ∗(x), x/ε) = 4

(
sin

(
2πe1>Qx

ε

)
+1.5

)
,

A22(σ∗(x), x/ε) = 4

(
cos

(
2πe1>Qx

ε

)
+1.5

)
,

A12(σ∗(x), x/ε) = A21(σ∗(x), x/ε) = 0,

where Q =Q(σ∗(x)) is a rotation matrix depending on σ∗ and is defined as

Q =
(

cos(2πσ∗(x)) sin(2πσ∗(x))

−sin(2πσ∗(x)) cos(2πσ∗(x))

)
,

with

σ∗(x) = 1.05+0.15x1 .

Let us remark that for this parameterization the monotonicity assumption (3.13) in Theo-

rem 3.2.3 does not hold. However, Theorem 3.3.7 and Theorem 3.4.2 are still valid. The exact

function σ∗, and the components of Aε
σ∗ are shown in Figure 3.8, for ε= 1/8. For solving the

σ∗(x). A11(σ∗(x), x/ε). A22(σ∗(x), x/ε).

Figure 3.8: The true field σ∗ and the two components A11(σ∗(x), x/ε) and A22(σ∗(x), x/ε) of
the multiscale tensor for the non-affine parameterization (ε= 1/8).

problem we set ε= 1/64, H = 1/16, L = 8, σ− = 1, σ+ = 1.25, σ0 = 1.05. For this experiment we

slightly modify the regularization term. The exact field we want to retrieve changes only with

respect to the variable x1. Then we assume to know this qualitative property of the unknown

and we define the regularization term such that variations with respect to the x2 direction are

more penalized than variations with respect to the x1 direction. Observe that

‖σ−σ0‖2
H 1(D) = ‖σ−σ0‖2

L2(D) +‖∂x1 (σ−σ0)‖2
L2(D) +‖∂x2 (σ−σ0)‖2

L2(D) . (3.37)

Then, instead of multiplying the three addends on the right hand side of (3.37) by the same

parameter γ, we use different weights for each of the three addends. The new penalty term is
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then defined as

γ1‖σ−σ0‖2
L2(D) +γ2‖∂x1 (σ−σ0)‖2

L2(D) +γ3‖∂x2 (σ−σ0)‖2
L2(D) ,

and for the experiment we are considering we adopt γ1 = 0.1, γ2 = 0.1, γ3 = 4. Let us remark

that all the theoretical conclusions are still valid under this regularization term, since it

represents a norm equivalent to the H 1(D)-norm. As the parameterization is non-affine,

in the offline stage we apply the empirical interpolation method (EIM) to obtain an affine

approximation of the tensor, using tolEIM = 10−14, where tolEIM is a prescribed tolerance used

as stopping criterion for the a posteriori error control in the EIM algorithm. In Figure 3.9

we show convergence of the residuals in the EIM approximation, and for the reduced basis

approximation. In total we get 21 affine terms for Aε
11, and 20 affine terms for Aε

22, while the

reduced space is spanned by N = 47 precomputed micro solutions. Therefore for each new

value of the unknown, approximating the new homogenized tensor at a macro quadrature

point reduces in solving a 47×47 linear system instead of a 4096×4096 linear system, leading to

a great saving of computational time. In Figure 3.10 we show the approximated solution we get
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Figure 3.9: Residuals for the a posteriori error control in the offline stage.

using our proposed method. Again we note that we show the conductivity tensor we retrieve

when ε = 1/64 (hence we obtain σε,H , ε = 1/64). However, in order to better visualize the

results and compare the profile of the multiscale tensor to the one shown in Figure 3.8, we plot

A(σε,H (x), x/ε′), where ε′ = 1/8. We can notice that the orientation of the micro oscillations

is well captured for most part of the computational domain. As an additional measure of

accuracy we also mention that the relative error between the two corresponding homogenized

tensors, i.e., A0(σ∗) and A0(σε,H ), is about 6%.
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σε,H (x). A11(σε,H (x), x/ε′). A22(σε,H (x), x/ε′).

Figure 3.10: The approximated solution σε,H and the two components A11(σε,H , x/ε′) and
A22(σε,H , x/ε′) of the multiscale tensor for the non-affine parameterization (H = 1/16, ε= 1/64,
ε′ = 1/8).
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4 Numerical method for solving multi-
scale inverse problems via Bayesian
techniques
In Chapter 4 we consider the same class of parameterized multiscale inverse problems treated

in the preceding chapter, but we recast them into a statistical framework, and develop an

efficient multiscale numerical method based on homogenization and Bayesian techniques.

We still deal with elliptic inverse problems for a class of parameterized multiscale symmetric

tensors Aε
σ∗ of the form

Aε
σ∗(x) = A(σ∗(x), x/ε) ,

where σ∗ : D →R and

Ai j (σ∗(x), x/ε) = Ai j (σ∗(x), y) , Ai j (σ∗(x), ·) is Y -periodic,

∀x ∈ D , ∀i , j = 1, . . . ,d .

Given the PDE
−∇· (Aε

σ∗∇uε) = 0 in D ,

uε = g on ∂D ,
(4.1)

and assuming that the map (t , x) 7→ A(t , x/ε) is known, the goal is to determine the macro-

scopic parameterization σ∗ : D →R based on the knowledge of the Dirichlet to Neumann map

ΛAε
σ∗

: H 1/2(∂D) → H−1/2(∂D) defined as

g 7→ Aε
σ∗∇uε ·ν|∂D , (4.2)

whereνdenotes the exterior unit normal to ∂D . Since standard numerical techniques which re-

quire mesh resolution at the finest scale are not appropriate to approximate (4.1), we describe

a coarse graining strategy based on numerical homogenization and model order reduction.

Moreover, in order to ensure well-posedness, we solve the problem following the Bayesian

approach.
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Outline. The outline of the chapter is as follows. In Section 4.1 we describe our setting for

the inverse problem and we recall some useful tools for the Bayesian approach to inverse

problems. Our main results are presented in Section 4.2. We state some preliminary results

on well-posedness of the posterior measure and we introduce two types of prior measures

that we will use throughout the work. Hence, we prove existence and well-posedness of

the effective posterior, and establish the convergence of the Hellinger distance between the

effective posterior and the posterior measure based on the full fine scale model. In Section 4.3

we give a brief survey on the algorithm used to sample from the posterior distribution, which is

based on Markov chain Monte Carlo (MCMC) methods. In Section 4.4 we explain how to solve

the problem numerically by means of RB-FE-HMM. Numerical experiments that illustrate our

multiscale inverse method and confirm our theoretical findings are presented in Section 4.5.

The content of this chapter is essentially taken from [7].

4.1 An elliptic multiscale inverse problem with finite observations

Let D be an open and bounded set in Rd . We consider a class of parameterized multiscale

locally periodic tensors of the type Aε
σ∗(x) = A(σ∗(x), x/ε), where σ∗ : D → R. Given g ∈

H 1/2(∂D), our aim is to recover Aε
σ∗ from measurements originating from the model

−∇· (Aε
σ∗ ·∇uε) = 0 in D ,

u0 = g on ∂D .

Our unknown is represented by σ∗, while we assume to know the map (t , y) 7→ A(t , y), t ∈R,

y ∈ Y , where y = x/ε, y ∈ Y = (0,1)d and Y is the periodicity cell. In this chapter we will

consider the family of parameterized tensors (t , y) 7→ A(t , y) such that, for any 0 <σ− <σ+ <
∞, t 7→ A(t , y) is of class C 1([σ−,σ+]) and there exist α[σ−,σ+],β[σ−,σ+] > 0 such that

α[σ−,σ+]|b|2 ≤ A(t , y)b ·b , |A(t , y)b| ≤β[σ−,σ+]|b| , for a.e. y ∈ Y and ∀t ∈ [σ−,σ+], b ∈Rd .

(4.3)

Hence, we say that a macroscopic function σ : D → R will be admissible if there exist two

constants σ− and σ+, 0 <σ− <σ+ <∞, such that

σ− ≤σ(x) ≤σ+ ∀x ∈ D .

In what follows we will denote as U the set of all such functions. We consider J ∈N boundary

portions of ∂D, and we denote them as Γ j ⊂ ∂D, j = 1, . . . , J , Γi ∩Γ j = ; for i 6= j . These

portions of the boundary represent the locations at which the measurements are carried out.

Moreover, the same experiment is reproduced for L ∈ N different Dirichlet data, which we

denote by gl , l = 1, . . . ,L. Hence we have J ×L observations. Then, we may introduce the
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forward operator F ε : U →RJL , F ε(σ) = vec({ f εj l (σ)}1≤ j≤J
1≤l≤L

),

f εj l (σ) = 〈ΛAε
σ

gl ,φ j 〉H−1/2(∂D),H 1/2(∂D) , j = 1, . . . , J , l = 1, . . . ,L , (4.4)

whereΛAε
σ

is the Dirichlet to Neumann map (4.2) associated to the tensor Aε
σ(x) = A(σ(x), x/ε),

and φ j ∈ H 1/2(∂D) such that supp(φ j ) ⊆ Γ j for all j = 1, . . . , J . In the following setting, we

D

Γ j

Figure 4.1: Picture representing the computational domain D and the boundary portions Γ j

used to compute the observations.

assume to dispose of a finite number of observations, corrupted by some noise, so that

z = F ε(σ∗)+ζ , ζ∼N (0,Cζ) , (4.5)

where Cζ is a given covariance matrix. Based on these measurements we would like to recover

σ∗. Let X be a Banach space, and P some map P : θ ∈ X 7→σ ∈U . The introduction of X and

P will be useful later on to build different kind of prior measures on the admissible set U .

Introducing this abstract framework is also useful to perform a rigorous analysis about the

validity of our approach, which will be carried out in Section 4.2. Let us define the potential

functionΦε : X ×RJL →R, which measures the distance between the observed data and the

values produced by the observation model for some θ ∈ X as

Φε(θ, z) = 1

2
‖z −Gε(θ)‖2

Cζ
(4.6)

= 1

2
〈z −Gε(θ), z −Gε(θ)〉Cζ

= 1

2
(z −Gε(θ))>C−1

ζ (z −Gε(θ)) ,

where Gε = F ε◦P . Simply trying to minimize (4.6) leads to an ill-posed problem. To ensure well-

posedness we may add some regularization term (e.g. Tikhonov regularization) or recast the

problem into a statistical framework, where all the quantities involved are treated as random

variables (Bayesian approach). Differently from standard regularization techniques, which

produce as solution a single point estimate of the unknown, with the statistical approach the

solution is represented by a probability measure, so called the posterior probability measure.

The posterior measure can then be used to infer about the parameter values and quantify their

uncertainties. In Bayesian theory, it is assumed that all the prior information we dispose about

the unknown we are seeking for, can be described by what is called the prior measure, which
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we denote here as µpr. Using (4.5) and applying Bayes’ formula we obtain that the posterior

measure of θ given z, denoted by µε(θ|z), is related to µpr through the Radon-Nikodym

derivative

dµε(θ|z)

dµpr(θ)
∝ exp(−Φε(θ, z)) . (4.7)

Unfortunately trying to explore µε(θ|z) via sampling techniques as Markov chain Monte Carlo

(MCMC) methods is infeasible, due to the high computational effort needed to evaluate the

model Gε even for few realizations of θ ∈ X . Hence, to drastically reduce the computational

cost, we combine the inverse problem with a coarse graining strategy.

Using homogenization theory, we may introduce the operator F 0 : U →RJL , defined as F 0(σ) =
vec({ f 0

j l (σ)}1≤ j≤J
1≤l≤L

),

f 0
j l (σ) = 〈ΛA0

σ
gl ,φ j 〉H−1/2(∂D),H 1/2(∂D) , j = 1, . . . , J , l = 1, . . . ,L ,

where ΛA0
σ

is the Dirichlet to Neumann map associated to the tensor A0
σ, the homogenized

tensor corresponding to Aε
σ. Then, we can define a new potential function Φ0 : X ×RJL →R as

Φ0(θ, z) = 1

2
‖z −G0(θ)‖2

Cζ
, (4.8)

where G0 : F 0 ◦P , and P is a map such that P : X → U . As for the full fine scale model, we

can invoke Bayes’ formula to define a posterior measure µ0(θ|z) associated to the potential

function (4.8) which satisfies

dµ0(θ|z)

dµpr(θ)
∝ exp(−Φ0(θ, z)) . (4.9)

We note that this new measure is much easier to explore via sampling techniques since the

homogenized forward model F 0 : U →RJL can be approximated efficiently and independently

of ε.

4.2 Well-posedness and convergence of the effective posterior mea-

sure

We recall some theoretical results about existence and well-posedness of the posterior measure.

It is important to underline that existence and well-posedness of the posterior measure

is typically determined from continuity properties of the forward operator entering in the

definition of the potential function. Then, it is necessary to build prior measures such that

every proposal lies in the function space on which the continuity properties of the forward

operator are satisfied. Hence, some analysis on regularity properties of the forward operator

is needed. This is carried on in what follows. We assume to have a prior Gaussian measure
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µpr =N (θpr,Cpr) defined on a Banach space X , such thatµpr(X ) = 1. Letµ0(θ|z) be a posterior

measure that we assume as in Section 4.1 to satisfy

dµ0(θ|z)

dµpr(θ)
= 1

C 0(z)
exp(−Φ0(θ, z)) , (4.10)

where Φ0(θ, z) is the potential defined in (4.8) and C 0(z) is the normalization constant

C 0(z) =
∫
X

exp(−Φ0(θ, z))µpr(dθ) ,

so that µ0(θ|z) is actually a probability measure.

Definition 4.2.1. Let µ1 and µ2 be two probability measures on a Banach space X . Assume

that µ1 and µ2 are both absolutely continuous with respect to a common reference measure µ,

defined on the same measure space. Then the Hellinger distance between µ1 and µ2 is defined

as

d 2
Hell(µ

1,µ2) = 1

2

∫
X

(√
dµ1

dµ
−

√
dµ2

dµ

)2

dµ .

The next theorem gives sufficient conditions on Φ0 : X ×RJL → R and µpr for the posterior

measure defined in (4.10) to be well-defined. We refer to [84] and [41] for a complete overview

of the Bayesian approach to inverse problems. For a rigorous Bayesian formulation of the

inverse conductivity problem, known also as electrical impedance tomography (EIT), we also

mention [46].

Theorem 4.2.2 (See [84] or [41]). Assume that µpr is a Gaussian measure on the Banach space

X such that µpr(X ) = 1. In addition, assume that the functionΦ0 : X ×RJL →R and the measure

µpr satisfy the following properties:

1. For every r > 0 there is a K = K (r ) such that for all θ ∈ X and for all z ∈ RJL such that

max{‖θ‖X ,‖z‖Cζ
} < r

0 ≤Φ0(θ, z) ≤ K .

2. For any fixed z ∈RJL the function Φ0(·, z) : X →R is continuous µpr-almost surely.

3. For z1, z2 ∈RJL with max{‖z1‖Cζ
,‖z2‖Cζ

} < r and for every θ ∈ X , there is M = M(r,‖θ‖X ),

M :R+×R+ →R+, monotonic non-decreasing, such that

|Φ0(θ, z1)−Φ0(θ, z2)| ≤ M(r,‖θ‖X )‖z1 − z2‖Cζ
.

Then the posterior measure µ0 given by (4.10) is a well-defined probability measure.

69



Chapter 4. Numerical method for solving multiscale inverse problems via Bayesian
techniques

4. Moreover, if

M(r,‖ ·‖X ) ∈ L2
µpr

(X ) ,

then µ0 is Lipschitz in the data z, with respect to the Hellinger distance: if µ0(θ|z1) and

µ0(θ|z2) are two measures corresponding to data z1 and z2, then there is a constant

C =C (r ) > 0 such that, for all z1, z2 with max{‖z1‖Cζ
,‖z‖Cζ

} < r ,

dHel l (µ0(θ|z1),µ0(θ|z2)) ≤C‖z1 − z2‖Cζ
.

We consider the case where µpr is a Gaussian probability measure on the Banach space

X = C 0(D), and we will show that the assumptions of Theorem 4.2.2 are satisfied by µpr

and Φ0 given in (4.8), with G0 = F 0 ◦P , where P : θ ∈ C 0(D) 7→ σ ∈U is some map such that

if ‖θ− θn‖L∞(D) → 0, then P (θn) → P (θ) either uniformly or in measure. In particular, we

consider two different definitions of P , which we denote by P1 and P2, described in what

follows.

Log-Gaussian prior. The map P1 is simply defined as P1(θ) = exp(θ). We note that for any

σ= exp(θ), θ ∈C 0(D), we have that

exp(−‖θ‖L∞(D)) ≤σ(x) ≤ exp(‖θ‖L∞(D)) ∀x ∈ D .

Hence P1 does map into the admissible set U . In the conditions (4.3) we can take σ− =
exp(−‖θ‖L∞(D)) and σ+ = exp(‖θ‖L∞(D)). We can hence note that the quantities α−1

[σ−,σ+] and

β[σ−,σ+] can be described as monotonic non-decreasing functions of ‖θ‖L∞(D), and we will use

the notation

α[σ−,σ+] =α‖θ‖L∞(D)
, β[σ−,σ+] =β‖θ‖L∞(D)

. (4.11)

Finally, we remark that from continuity of P1 we see that if θ ∈C 0(D) and {θn}n>0 is a sequence

in C 0(D) such that ‖θ−θn‖L∞(D) → 0, then ‖P1(θ)−P1(θn)‖L∞(D) → 0. Let us also remark that

since θ is distributed according to a Gaussian measure, P1(θ) is distributed according to a

log-Gaussian measure.

Level set prior. The map P2, which in [62] is referred to as level set prior, is defined instead

in the following way. Let n ∈N and fix constants −∞= c0 < . . . < cn =∞. Given θ : D →R, we

define Di ⊆ D as

Di = {x ∈ D : ci−1 ≤ θ(x) < ci } , i = 1, . . . ,n ,
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so that D =∪n
i=1D i and Di ∩D j =; for i 6= j . Let us also define the level sets

D0
i = D i ∩D i+1 = {x ∈ D : θ(x) = ci } , i = 1 . . . ,n −1.

Now given some strictly positive functions f1, . . . , fn ∈C 0(D), we define the map P2 : C 0(D) →U

as

P2(θ) =
n∑

i=1
fi 1Di .

In particular we will consider fi which are constant on D. Hence, each σ = P2(θ) will be

uniformly bounded below and above, and so also the quantities α[σ−,σ+] and β[σ−,σ+] are

uniformly bounded with respect to θ. For the continuity of the map P2, we have the following

proposition given in [62] (we denote by |D j | the measure of D j ).

Proposition 4.2.3 (See Proposition 2.6 and Proposition 2.8 in [62]). Let {θn}n>0 ⊂C 0(D) con-

verge to some θ ∈C 0(D) uniformly. Then {P2(θn)}n>0 converges to P2(θ) in Lq (D), 1 ≤ q <∞,

if and only if |D0
i | = 0 for all i = 1, . . . ,n−1. Let µpr be a Gaussian probability measure on C 0(D)

and let θ ∼µpr. Then |D0
i | = 0 µpr-almost surely for i = 1, . . . ,n −1.

4.2.1 Well-posedness of the effective posterior measure

In what follows we study the continuity of the forward operator G0 : C 0(D) →RJL .

Lemma 4.2.4. Let x/ε = y, y ∈ Y = (0,1)d . Consider the class of d × d symmetric matrix

functions (t , y) 7→ A(t , y), where Ai j (t , ·) is Y -periodic, ∀i , j = 1, . . . ,d, t ∈ [σ−,σ+], 0 < σ− <
σ+ <∞. Assume that the map t 7→ A(t , y) is of class C 1([σ−,σ+]) and that there exist α[σ−,σ+]

and β[σ−,σ+] > 0 such that (4.3) holds. Then the homogenized map t 7→ A0(t ) satisfies

α[σ−,σ+]|b|2 ≤ A0(t )b ·b , |A0(t )b| ≤β[σ−,σ+]|b| , ∀t ∈ [σ−,σ+] ,b ∈Rd , (4.12)

and there exists a constant E[σ−,σ+] > 0 such that

|∂t A(t )| ≤ E[σ−,σ+] , ∀t ∈ [σ−,σ+] . (4.13)

Proof. The statement of the lemma is contained in what stated by Theorem 3.2.3. Therefore

see Theorem 3.2.3 for the proof.

Lemma 4.2.5. Let the assumptions of Lemma 4.2.4 be satisfied. Let σ ∈U and the sequence

{σn}n>0 in U be such that:

1. Either {σn}n>0 converges to σ uniformly.

2. Or {σn}n>0 converges to σ in the Lebesgue measure and there exist σ− and σ+, with

0 <σ− <σ+ <∞, such that σ− ≤σn(x) ≤σ+ for all x ∈ D and for all n > 0.

Then the sequence {ΛA0
σn

g }n>0 converges to ΛA0
σ

g in H−1/2(∂D).
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Proof. The first part of the result has been proved in Lemma 3.3.3. For convenience we briefly

recall the arguments. Let us define w = A0
σ∇u0(σ)− A0

σn
∇(σn). Observing that w ∈ H(D,div)

and using the continuity of the map w ∈ H(D,div) 7→ w ·ν ∈ H−1/2(∂D) we know that

‖w ·ν‖H−1/2(∂D) ≤ ‖w‖L2(D) .

Note that if {σn}n>0 converges toσ ∈U uniformly, then we have that there existσ− andσ+ such

that for every n sufficiently large σ− ≤ σn(x) ≤ σ+ ∀x ∈ D, and so α[σ−,σ+], β[σ−,σ+], E[σ−,σ+]

are uniformly bounded with respect to n. The same is true for sequences converging in the

Lebesgue measure since they are uniformly bounded by assumption. Hence in what follows we

will just refer to such quantities as α, β, E . Using Cauchy-Schwarz inequality and (4.13)-(4.12)

we obtain ∫
D

|w |2 dx =
∫
D

A0
σn

(∇u0(σ)−∇u0(σn)) ·w dx

+
∫
D

(A0
σ− A0

σn
)∇u0(σ) ·w dx

≤β‖∇u0(σ)−∇u0(σn)‖L2(D)‖w‖L2(D)

+E

∫
D

|σ−σn |2|∇u0(σ)|2 dx

1/2

‖w‖L2(D) . (4.14)

It follows from the weak formulation of u0(σ) and u0(σn) that, for all v ∈ H 1
0 (D), we have that∫

D

(A0
σ∇u0(σ)− A0

σn
∇u0(σn)) ·∇v dx = 0.

Then ∫
D

A0
σ(∇u0(σ)−∇u0(σn)) ·∇v dx =

∫
D

(A0
σn

− A0
σ)∇u0(σn) ·∇v dx ∀v ∈ H 1

0 (D) .

By choosing v = u0(σ)−u0(σn) ∈ H 1
0 (D), using Cauchy-Schwarz inequality, (4.13) and (4.12),

we obtain

‖∇u0(σ)−∇u0(σn)‖L2(D) ≤α−1E

∫
D

|σ−σn |2|∇u0(σn)|2 dx

1/2

. (4.15)

Inserting (4.15) into (4.14) we obtain

‖w‖L2(D) ≤ E(1+α−1β)

∫
D

|σ−σn |2|∇u0(σ)|2 dx

1/2

, (4.16)
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and by using Holder’s inequality and Lax-Milgram we finally obtain

‖w‖L2(D) ≤ E(1+α−1β)‖σ−σn‖L∞(D)‖∇u0(σ)‖L2(D)

≤ Eα−1β(1+α−1β)‖g‖H 1/2(∂D)‖σ−σn‖L∞(D) . (4.17)

Now, if ‖σ−σn‖L∞(D) → 0 the result follows from (4.17). On the other hand if |σ−σn | → 0

in measure, since |D| <∞ and ∇u0(σ) ∈ (L2(D))d , we have also that the integrand of (4.16)

|σ−σn |2|∇u0(σ)|2 → 0 in measure (see Corollary 2.2.6 in [23] for example). Now, since |σ−σn |
is uniformly bounded by assumptions, the whole integrand is bounded by a scalar multiple of

|∇u0(σ)|2. Therefore by applying the Lebesgue’s dominated convergence theorem, we obtain

that |σ−σn |2|∇u0(σ)|2 → 0 in L1(D), and the result follows.

Remark 4.2.6. The Lebesgue’s dominated convergence theorem is stated for sequences con-

verging almost everywhere. However, convergence almost everywhere can be replaced in this

case by convergence in measure, since |D| <∞.

By using the results given in Lemma 4.2.4 and Lemma 4.2.5 we can deduce the following

lemma that establishes the continuity of the effective forward operator F 0 : U →RJL .

Lemma 4.2.7. Let the assumptions of Lemma 4.2.5 be satisfied. Then the sequence {F 0(σn)}n>0

converges to F 0(σ).

Proof. We have that

‖F 0(σ)−F 0(σn)‖Cζ
≤C

J∑
j=1

L∑
l=1

|〈(ΛA0
σ
−ΛA0

σn
)gl ,φ j 〉H−1/2(∂D),H 1/2(∂D)|

≤C sup
l

‖(ΛA0
σ
−ΛA0

σn
)gl‖H−1/2(∂D) sup

j
‖φ j‖H 1/2(∂D) ,

and the result follows from Lemma 4.2.5.

Hence, we can establish that the posterior measure (4.10) based on the potential functionΦ0

is well-defined and Lipschitz continuous in the data with respect to the Hellinger distance.

Theorem 4.2.8. Let the assumptions of Lemma 4.2.4 be satisfied. Letµpr be a Gaussian probabil-

ity measure on C 0(D), and let P : θ ∈C 0(D) 7→σ ∈U be defined as P1 or P2 previously introduced.

Then, the functionΦ0 : C 0(D)×RJL →R defined in (4.8), with G0 = F 0◦P : C 0(D) →RJL , satisfies

assumptions 1-3 of Theorem 4.2.2. In case where P = P2 also assumption 4 of Theorem 4.2.2 is

satisfied. In the case where P = P1, assumption 4 holds if

β2
‖·‖L∞(D)

α−1
‖·‖L∞(D)

∈ L2
µpr

(C 0(D)) . (4.18)
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Proof. Let σ be an admissible functions in U . We have that

‖F 0(σ)‖Cζ
≤C

J∑
j=1

L∑
l=1

|〈ΛA0
σ

gl ,φ j 〉H−1/2(∂D),H 1/2(∂D)|

≤C sup
l

‖ΛA0
σ

gl‖H−1/2(∂D)‖sup
j

‖φ j‖H 1/2(∂D)

≤Cβ2
[σ−,σ+]α

−1
[σ−,σ+] sup

l
‖gl‖H 1/2(∂D)

≤Cβ2
[σ−,σ+]α

−1
[σ−,σ+] .

In case where P = P1 then σ= exp(θ), where θ ∈C 0(D), and β2
[σ−,σ+]α

−1
[σ−,σ+] is a positive and

monotonic non-decreasing functions of ‖θ‖L∞(D) (see (4.11)). Thus we obtain

‖G0(θ)‖Cζ
≤β2

‖θ‖L∞(D)
α−1
‖θ‖L∞(D)

.

If P = P2, ‖G0(θ)‖Cζ
is bounded by a constant ∀θ ∈ C 0(D) since P2 is uniformly bounded.

Using the triangle inequality we have that

Φ0(θ, z) ≤C (‖z‖2
Cζ

+‖G0(θ)‖2
Cζ

) ,

and therefore assumption 1 follows. To fulfill assumption 3 we note that we have

|Φ0(θ, z1)−Φ0(θ, z2)| = 1

2
|〈z1 + z2 −2G0(θ), z1 − z2〉Cζ

|
≤C (‖z1‖Cζ

+‖z2‖Cζ
+2‖G0(θ)‖Cζ

)‖z1 − z2‖Cζ
.

Let r such that max{‖z1‖Cζ
,‖z2‖Cζ

} < r . Hence we obtain

|Φ0(θ, z1)−Φ0(θ, z2)| ≤C (2r +2‖G0(θ)‖Cζ
)‖z1 − z2‖Cζ

≤ M(r,‖θ‖L∞(D))‖z1 − z2‖Cζ
,

with

M(r,‖θ‖L∞(D)) =C (2r +2‖G0(θ)‖Cζ
) .

If P = P2, M(r,‖θ‖L∞(D)) is positive and monotonic non-decreasing, and uniformly bounded

with respect to ‖θ‖L∞(D). Hence, assumptions 3 and 4 follow. In the case P = P1 we have that

M(r,‖θ‖L∞(D)) =C (2r +2β2
‖θ‖L∞(D)

α−1
‖θ‖L∞(D)

) .

We note that M(r,‖θ‖L∞(D)) is positive and monotonic non-decreasing, hence assumption 3

follows. Moreover if

β2
‖·‖L∞(D)

α−1
‖·‖L∞(D)

∈ L2
µpr

(C 0(D)) ,
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then

M(r,‖ ·‖L∞(D)) ∈ L2
µpr

(C 0(D)) .

It remains to show that assumption 2 is also satisfied. Assume that P = P1. If ‖θ−θn‖L∞(D) → 0

then P (θn) → P (θ) uniformly. Then by Lemma 4.2.7 we have that G0 = F 0 ◦P is continuous at

θ. Assume now P = P2. If ‖θ−θn‖L∞(D) → 0, then by Proposition 4.2.3 P (θn) → P (θ) in Lq (D),

1 ≤ q <∞, at the points where the level sets have measure zero. However since we are assuming

θ ∼µpr and µpr is a Gaussian probability measure on C 0(D), it follows from Proposition 4.2.3

that θ has µpr-almost surely this property. Finally since P2(θn(x)) is uniformly bounded for

all x ∈ D and all n > 0, by Lemma 4.2.5 we have that assumption 2 is satisfied also in the case

where P = P2.

Remark 4.2.9. The result in Lemma 4.2.7 can be proved in a similar way also for the sequence

{ΛAε
σn

g }n>0. It can also be proved that when P = P1 also for Gε(θ) we have that

‖Gε(θ)‖Cζ
≤Cβ2

‖θ‖L∞(D)
α−1
‖θ‖L∞(D)

,

while when P = P2, ‖Gε(θ)‖Cζ
is bounded by a constant independent of θ. Hence, under the

assumptions of Theorem 4.2.8 the posterior measure (4.7) based on the potential function

Φε is also well-defined and Lipschitz continuous in the data with respect to the Hellinger

distance.

4.2.2 Convergence of the fine scale posterior towards the effective posterior

Before moving to the numerical aspects of the problem, an investigation of the validity of our

approach is necessary. First we observe that (4.5) can be rewritten as

z = F 0(σ∗)+ζε(σ∗)+ζ , ζ∼N (0,Cζ) , (4.19)

where

ζε(σ∗) = F ε(σ∗)−F 0(σ∗) .

The quantity ζε(σ∗) represents the homogenization error capturing the mismatch between

the full multiscale model and the homogenized one. In particular, (4.19) suggests that the

observed data originating from the full multiscale model can be seen as data originating

from the homogenized model, which are affected by two sources of errors: the noise and

the homogenization error. Both sources of errors can affect our predictions and we must

take them into account when solving inverse problems to obtain good approximations of the

unknown, especially when ε is relatively large. For the homogenization error we can show that

we have in our case that ζε(σ) → 0 as ε→ 0 for every σ ∈U , as stated in the following theorem.

Theorem 4.2.10. Let σ be a function in U and let {Aε
σ}ε>0 be a sequence of symmetric matrices
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in M(α[σ−,σ+],β[σ−,σ+],D) which G-converges to the matrix A0
σ ∈ M(α[σ−,σ+],β[σ−,σ+],D), and

let ζε(σ) = vec({ζ̃εj l (σ)}1≤ j≤J
1≤l≤L

), where

ζ̃εj l (σ) = 〈(ΛAε
σ
−ΛA0

σ
)gl ,φ j 〉H−1/2(∂D),H 1/2(∂D) , j = 1, . . . , J , l = 1, . . . ,L ,

where Γ j ⊂ ∂D for all j = 1, . . . ,L, Γi ∩Γ j =; for i 6= j , and φ j , gl ∈ H 1/2(∂D) for all j = 1, . . . , J ,

supp(φ j ) ⊆ Γ j for all j = 1, . . . , J . Then ‖ζε(σ)‖Cζ
→ 0 as ε→ 0.

Proof. We have that for arbitrary j and l and ∀σ ∈U

ζ̃εj l (σ) = 〈(ΛAε
σ
−ΛA0

σ
)gl ,φ j 〉H−1/2(∂D),H 1/2(∂D) .

Using integration by parts we have that

ζ̃εj l (σ) =
∫
D

(Aε
σ∇uε− A0

σ∇u0) ·∇φ̃ j dx , (4.20)

where φ̃ j is some function in H 1(D) whose trace is φ j . From G-convergence of Aε
σ to A0

σ we

know that (4.20) converges to zero as ε→ 0.

Theorem 4.2.11. Let µε and µ0 be defined as in (4.7) and (4.9) respectively. Let the assumptions

of Theorem 4.2.8 be satisfied, together with (4.18). Then we have that

lim
ε→0

dHell(µ
0,µε) = 0.

Proof. From the definition of the Hellinger distance we have that

2d 2
Hell(µ

0,µε) =
∫

C 0(D)

(√
dµ0

dµpr
−

√
dµε

dµpr

)2

µpr(dθ)

=
∫

C 0(D)

(
1p
C 0

exp

(
−1

2
Φ0(θ, z)

)
− 1p

Cε
exp

(
−1

2
Φε(θ, z)

))2

µpr(dθ) , (4.21)

where C 0 and Cε are the two normalization constants such that µ0(θ|z) and µε(θ|z) are proba-

bility measures, i.e.,

C 0 =
∫

C 0(D)

exp(−Φ0(θ, z))µpr(dθ) , Cε =
∫

C 0(D)

exp(−Φε(θ, z))µpr(dθ) .
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Let us notice that

|C 0 −Cε| ≤
∫

C 0(D)

∣∣exp(−Φ0(θ, z))−exp(−Φε(θ, z))
∣∣µpr(dθ)

≤
∫

C 0(D)

∣∣Φ0(θ, z)−Φε(θ, z)
∣∣µpr(dθ) . (4.22)

From (4.21) we get that

2d 2
Hell(µ

0,µε) ≤ I1 + I2 ,

where

I1 = 1

C 0

∫
C 0(D)

(
exp

(
−1

2
Φ0(θ, z)

)
−exp

(
−1

2
Φε(θ, z)

))2

µpr(dθ) ,

I2 =
(

1p
C 0

− 1p
Cε

)2

Cε .

We have that

I1 ≤ 1

4C 0

∫
C 0(D)

(Φ0(θ, z)−Φε(θ, z))2µpr(dθ) ,

and

I2 ≤ 1

4
max

{
(C 0)−3, (Cε)−3} (C 0 −Cε)2

≤C
∫

C 0(D)

(Φ0(θ, z)−Φε(θ, z))2µpr(dθ) ,

where we have used (4.22). Using the definition of Φ0 and Φε we find

2d 2
Hell(µ

0,µε) ≤C
∫

C 0(D)

(Φ0(θ, z)−Φε(θ, z))2µpr(dθ)

≤C
∫

C 0(D)

(2‖z‖Cζ
+‖G0(θ)‖Cζ

+‖Gε(θ)‖Cζ
)2‖G0(θ)−Gε(θ)‖2

Cζ
µpr(dθ) .

From Theorem 4.2.10 we have that lim
ε→0

‖G0(θ)−Gε(θ)‖Cζ
= 0. We also have that (see Theo-

rem 4.2.8) if P = P1, then ‖G0(θ)‖Cζ
(respectively ‖Gε(θ)‖Cζ

) is bounded by some scalar mul-

tiple of β2
‖θ‖L∞(D)

α−1
‖θ‖L∞(D)

which is square integrable with respect to µpr. Otherwise if P = P2

both ‖G0(θ)‖Cζ
and ‖Gε(θ)‖Cζ

are bounded by a constant since P2 is uniformly bounded, and

again square integrability follows. Then by the Lebesgue’s dominated convergence theorem it

follows that dHell(µ
0,µε) → 0 as ε→ 0.
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Offline approximation of the homogenization error distribution. The interpretation of

the result is that when ε is small we can neglect the homogenization error, since it will be close

to zero, and we do not need to take into account its probability distribution in the inversion

process. However, for larger values of ε, the mismatch between the observations and the data

produced by the homogenized model might not be negligible, and using the coarse graining

approach without taking into account the homogenization error distribution may lead to bad

predictions. In order to avoid that, we can correct the likelihood function, by approximating

the probability distribution of the homogenization error. In [28] a strategy for approximating

the first two moments of the distribution of the discretization error caused by FEM is proposed.

Hence, by following [28], we derive an algorithm which aims at approximating the mean ζ
ε

and the covariance Cζε of the homogenization error distribution. Given the prior measure µpr

on C 0(D), the map P : C 0(D) →U , and a sample size M , the numerical procedure is given by

the following steps.

1. Draw from the prior measure a sample of realizations S = {θ1, . . . ,θM }.

2. For 1 ≤ i ≤ M compute

ζεi =Gε(θi )−G0(θi ) = F ε(P (θi ))−F 0(P (θi )) .

3. ζ
ε = 1

M

∑M
i=1 ζ

ε
i .

4. Cζε =
1

M

∑M
i=1(ζ

ε−ζεi )(ζ
ε−ζεi )>.

We assume a Gaussian distribution for the homogenization error, so that ζε ∼N (ζ
ε
,Cζε) for

all σ, and we can rewrite (4.19) as

z = F 0(σ∗)+ζ∗ , ζ∗ ∼N (ζ
ε
,Cζ+Cζε) . (4.23)

We emphasize that the homogenization error distribution is approximated offline. Only M

evaluations of the full multiscale model are needed. Hence, we use this approximation to

modify the potential function as in (4.24), and sample from the posterior by evaluating only

the coarse homogenized model. We note that in (4.23) to apply the Bayesian framework for

inverse problem, we still assume the independence of ζ∗ and θ, despite the introduction of

the homogenization error in ζ∗. Nevertheless, the practical uselfulness of such algorithm has

been shown in numerous works (see [19, 28]). Then, we may define the new likelihood as

Φ0(θ, z) = 1

2
‖z −G0(θ)‖2

Cζ+Cζε
, (4.24)

where z = z −ζε. Note that conclusions about existence and well-posedness of the posterior

measure are still valid under this definition of the potential function, which is equivalent to

the one in (4.8), apart from the fact that observations z are shifted by ζ
ε
, and the covariance

matrix is given by Cζ+Cζε .
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4.3 Sampling from the effective posterior measure

The output of the Bayesian approach consists in the posterior measure. However, in prac-

tice numerical sampling is needed to approximate the distribution, in order to obtain some

meaningful information (such as expected value and variance of the unknown, or confi-

dence intervals). We consider as prior a Gaussian measure µpr =N (θpr,Cpr) on the Hilbert

space L2(D). The random variable θ ∼N (θpr,Cpr) can be written using the Karhunen-Loève

expansion as

θ(x) = θpr(x)+
∞∑

k=1

√
λkηkϕk (x) ,

where {ϕk ,λk }∞k=1 is an orthonormal set of eigenfunctions and eigenvalues of Cpr, and {ηk }∞k=1
is an i.i.d. sequence with η1 ∼ N (0,1). Since we defined the push forward maps as Pi :

C 0(D) → U , i = 1,2, we may ask which condition the prior measure has to satisfy so that

each sample from µpr is in C 0(D). For the Matérn covariance operator that we will use in the

numerical examples, we will ensure that draws from N (θpr,Cpr) are continuous (see Section

4.5.1).

In numerical experiments to reduce the dimension of the unknown we use a truncated

Karhunen-Loève expansion

θK (x) = θpr(x)+
K∑

k=1

√
λkηkϕk (x) ,

where {ϕk ,λk }K
k=1 is the orthonormal set of eigenfunctions and eigenvalues of Cpr correspond-

ing to the K largest eigenvalues. The unknown parameter is then parameterized by the K

coefficients {ηk }K
k=1, which are a priori i.i.d. as N (0,1). In what follows, we will denote some-

times the unknown parameter as θK
η to emphasize its dependence on η= (η1 , . . . ,ηK )>. Hence,

the inverse problem consists in approximating the posterior distribution of the K coefficients

by sampling from the posterior density π0(η|z) which is given by

π0(η|z) ∝ exp

(
−1

2
‖z −G0(θK

η )‖2
Cζ

− 1

2
‖θK
η −θpr‖2

Cpr

)
, (4.25)

where ‖ ·‖Cpr is the norm induced by the scalar product

〈·, ·〉Cpr = 〈C−1/2
pr (·),C−1/2

pr (·)〉L2(D) ,

and for any θ ∈ L2(D) and any α ∈Rwe have that

Cα
pr(θ) =

∞∑
k=1

λαk 〈θ,ϕk〉L2(D)ϕk .
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It easy to obtain that (4.25) reduces to

π0(η|z) ∝ exp

(
−1

2
‖z −G0(θK

η )‖2
Cζ

− 1

2
η>η

)
. (4.26)

To sample from the posterior density we employ the Markov chain Monte Carlo (MCMC) tech-

niques. Many algorithms belonging to the family of MCMC sampling methods are available in

the literature. We decide to use the Metropolis-Hastings (MH) algorithm, which we illustrate

just below. With this approach, at each iteration we generate a new candidate η ∈RK from a

proposal density q(η j ,η), q :RK ×RK →R+, where η j is the current value of the variable. This

new candidate is accepted with probability

a(η j ,η) = min

{
1,
π0(η|z)q(η,η j )

π0(η j |z)q(η j ,η)

}
. (4.27)

Otherwise, the candidate is rejected and the chain remains at the current position η j . Note

that if the proposal density is symmetric, i.e. q(η j ,η) = q(η,η j ), (4.27) reduces to

a(η j ,η) = min

{
1,
π0(η|z)

π0(η j |z)

}
.

In our experiments we consider the random walk proposal distribution to explore the density.

Then

q(η j ,η) = 1√
(2πs2)K

exp

(
− 1

2s2 (η−η j )>(η−η j )

)
, (4.28)

which is symmetric, and leads to the following algorithm. Given the target distribution π0(η|z),

a starting point η1 ∈ RK , a desired number of samples Nsample, and a symmetric proposal

density N (0, s2I ), we perform the following steps.

1. Set j = 1, S =η1.

2. For 2 ≤ j ≤ Nsample perform the following operations.

(a) η=η j + sw , w ∼N (0, I ).

(b) a(η j ,η) = min

{
1,
π0(η|z)

π0(η j |z)

}
.

(c) Draw u ∼U ([0,1]), and if a(η j ,η) > u accept η and set η j+1 =η. Otherwise reject

the proposed step and set η j+1 =η j .

(d) S =S ∪η j+1.

3. Return S .

The approximation of the target distribution improves as the number of samples Nsample

increases, and asymptotic convergence is guaranteed as Nsample →∞ under certain regularity

properties of the target distribution and the proposal density. Therefore, the results may be

strongly dependent on the number of samples required, but also on the proposal density. In
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particular, it is a difficult task to establish when a sample is large enough. At the same time,

another general issue for the MH algorithm is the choice of s in (4.28), whose magnitude affects

the speed at which the posterior distribution is explored and the number of rejected realiza-

tions. We can easily deduce that if s is too small, the probability distribution will be explored

very slowly, and we might need a large number of samples to have a good approximation. On

the other hand, if s is larger we may explore the distribution faster, but at each iteration the

probability to have to reject a new realization will be higher. In particular, multiple rejections

of some candidate are undesirable, since they may increase the autocorrelation between the

realized paths, and reduce the efficiency of the algorithm. To find an optimal value for s we

could perform some pilot simulations for different values of s, and hence observe for which

value we have a good sampling of the target distribution.

4.4 A reduced basis method for the solution of the Bayesian multi-

scale inverse problem

In order to sample from the posterior density defined in (4.26), we need an efficient numerical

method to compute G0(θK
η ), where η is a proposed step by the MH algorithm. Let us recall

that G0 = F 0 ◦P , where P : C 0(D) →U is one of the maps introduced in Section 4.2. Then, the

following operations are required.

1. Solve for 1 ≤ l ≤ L
−∇· (A0

σ∇u0) = 0 in D ,

u0 = gl on ∂D ,
(4.29)

where σ= P (θK
η ), and A0

σ is the homogenized tensor corresponding to the locally peri-

odic tensor Aε
σ(x) = A(σ(x), x/ε).

2. Compute the normal fluxes at the boundary ΛA0
σ

gl for 1 ≤ l ≤ L, and evaluate F 0(σ).

To do so we rely on RB-FE-HMM which has been extensively described in Chapter 2. As for

the Tikhonov inverse problem, we choose to use macro and micro piecewise linear simplicial

elements. In this setting the RB-FE-HMM for parameterized PDEs of type (4.29) has been

discussed in Section 3.4.

Convergence analysis. It is interesting to analyze how the numerical error intrinsic in the

forward model affects the numerical posterior. To this end we will assume the forward model

is approximated using FE-HMM (no model order reduction). In this case the numerical flux is

given by ΛH
A0,h
σ

gl ∈ S1(∂D,TH ) where

∫
∂D
ΛH

A0,h
σ

gl v H ds = BH (uH
l , v H ) ∀v H ∈ S1

c (D,TH ) .

81



Chapter 4. Numerical method for solving multiscale inverse problems via Bayesian
techniques

Hence, we define the operator F H ,h : U →RJL , F H ,h(σ) = vec({ f H ,h
j l (σ)}1≤ j≤J

1≤l≤L
),

f H ,h
j l (σ) = 〈ΛH

Ah
σ

gl ,φ j 〉H−1/2(∂D),H 1/2(∂D) , j = 1, . . . , J , l = 1, . . . ,L ,

and the corresponding potential functionΦH ,h : C 0(D)×RJL →R given by

ΦH ,h(θ, z) = 1

2
‖z −G H ,h(θ)‖2

Cζ
,

where G H ,h : F H ,h ◦P , and P is one of the map introduced in Section 4.2. We denote by

µH ,h(θ|z) the numerical posterior given by

dµH ,h(θ|z)

dµpr(θ)
∝ exp(−ΦH ,h(θ, z)) . (4.30)

The following theorem establishes the convergence rate of the numerical posterior towards

the true posterior µ0(θ|z) in the Hellinger metric. In particular, the rate is the same as the one

for the error in the approximated forward model. Since convergence rates for the forward

model are available only in the case where σ ∈W 1,∞(D), we assume in what follows that each

draw from the prior µpr is in W 1,∞(D), and that P : θ 7→σ is P1(·) = exp(·).

Theorem 4.4.1. Let µ0 and µH ,h be defined as in (4.10) and (4.30) respectively. Let the assump-

tions of Theorem 4.2.8 be satisfied together with (4.18). Assume that A0(P (θ(·))) ∈W 1,∞(D,Symd ),

and P (θ) = P1(θ) = exp(θ). Furthermore, assume that µpr(W 1,∞(D)) = 1, and that u0 ∈ H 2(D)

for each l = 1, . . . ,L. Then we have that

dHell(µ
0,µH ,h) ≤C

(
H +

(
h

ε

)2)
,

where C is a constant independent of H, h, and ε.

Proof. From the definition of the Hellinger distance we have that

2d 2
Hell(µ

0,µH ,h) =
∫

W 1,∞(D)

(√
dµ0

dµpr
−

√
dµH ,h

dµpr

)2

µpr(dθ)

=
∫

W 1,∞(D)

(
1p
C 0

exp

(
−1

2
Φ0(θ, z)

)
− 1√

C H ,h
exp

(
−1

2
ΦH ,h(θ, z)

))2

µpr(dθ) ,

where C 0 and C H ,h are the two normalization constants such that µ0(θ|z) and µH ,h(θ|z) are

probability measures, i.e.,

C 0 =
∫

W 1,∞(D)

exp(−Φ0(θ, z))µpr(dθ) , C H ,h =
∫

W 1,∞(D)

exp(−ΦH ,h(θ, z))µpr(dθ) .
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By computations similar to the ones in the proof of Theorem 4.2.11 we obtain that

2d 2
Hell(µ

0,µH ,h) ≤C
∫

W 1,∞(D)

(Φ0(θ, z)−ΦH ,h(θ, z))2µpr(dθ)

≤C
∫

W 1,∞(D)

(2‖z‖Cζ
+‖G0(θ)‖Cζ

+‖G H ,h(θ)‖Cζ
)2‖G0(θ)−G H ,h(θ)‖2

Cζ
µpr(dθ) .

(4.31)

We know that (see Theorem 4.2.8) if P = P1, ‖G0(θ)‖Cζ
and ‖G H ,h(θ)‖Cζ

are bounded by some

scalar multiple of β2
‖θ‖L∞(D)

α−1
‖θ‖L∞(D)

, which is square integrable with respect to µpr. Moreover,

we also have that

‖G0(θ)−G H ,h(θ)‖Cζ
≤C

J∑
j=1

L∑
l=1

|〈(ΛA0
P1(θ)

−ΛH
A0,h

P1(θ)

)gl ,φ j 〉H−1/2(∂D),H 1/2(∂D) .

Using integration by parts together with Cauchy-Schwarz inequality we get

‖G0(θ)−G H ,h(θ)‖Cζ
≤C sup

l
‖A0(P1(θ))∇u0 − A0,h(P1(θ))∇uH‖L2(D) sup

j
‖∇φ̃ j‖L2(D) ,

where φ̃ j is some function in H 1(D) whose trace is φ j . Using standard FE-HMM a priori error

estimates (see [1] for example) we obtain

‖G0(θ)−G H ,h(θ)‖Cζ
≤C

(
H +

(
h

ε

)2)
, (4.32)

where C is independent of H , h, and ε. Hence, using (4.31) and (4.32) together with the

Lebesgue’s dominated convergence theorem the result follows.

Corollary 4.4.2. Let A0(P (θ(·))) ∈ W 2,∞(D,Symd ), P (θ) = P1(θ) = exp(θ), µpr(W 2,∞(D)) = 1,

and u0 ∈ H 3(D) for each l = 1, . . . ,L. Then, we can establish a faster convergence rate for the

Hellinger distance between the two measures by using the error estimate for the L2(∂D)-norm of

the boundary flux obtained in [9], namely

dHell(µ
0,µH ,h) ≤C

(
H 3/2 +

(
h

ε

)3/2
)

.

Remark 4.4.3. If the forward model is approximated by means of the RB-FE-HMM, the

error due to the micro discretization is usally negligible as the reduced space is built with

precomputed micro functions computed on a very fine discretization. However, a new error

enters into the estimate, namely the error due to the model order reduction. This error is

based on the distance between the reduced space SN (Y ) and S1(Y ,Tĥ). Such distance can be

quantified by means of the notion of Kolmogorov N -width (see Chapter 2).
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Summary of the numerical scheme. Let us give a brief summary of the numerical scheme.

We denote by TH the macro triangulation, and as NH the number of macro DOFs. In

the discrete setting, the prior measure µpr = N (θpr,Cpr) is replaced by N (θH
pr,C H

pr), where

θH
pr =I Hθpr, I H is the linear interpolation operator, and C H

pr ∈ RNH×NH is a symmetric pos-

itive matrix which approximate the covariance operator Cpr. We denote by {ϕH
k ,λH

k }NH

k=1 the

orthonormal set of eigenvectors and eigenvalues of C H
pr. Each θH ∼N (θH

pr,C H
pr) can be then

represented as

θH (x) = θH
pr(x)+

NH∑
k=1

√
λH

k ηkϕ
H
k (x) ,

where {ηk }NH

k=1 is an i.i.d. sequence with η1 ∼N (0,1). If we truncate the KL expansion at the K

largest eigenvalues we obtain

θH ,K (x) = θH
pr(x)+

K∑
k=1

√
λH

k ηkϕ
H
k (x) .

In what follows, we will use the notation θH ,K
η to emphasize the dependence on the vector

η= (η1 , . . . ,ηK )>. Given the perturbed observations z ∈RJL , the numerical scheme for solving

the Bayesian multiscale inverse problem can be then summarized as follows.

1. Compute in an offline stage a reduced space of micro functions SN (Y ) as described in

Section 3.4.

2. Compute in an offline stage the set {ϕH
k ,λH

k }K
k=1 of eigenvectors and eigenvalues of the

prior covariance C H
pr, so that for a point η ∈RK we have that

θH ,K
η (x) = θH

pr(x)+
K∑

k=1

√
λH

k ηkϕ
H
k (x) .

3. Sample online from the posterior distribution using the MH algorithm. In particular, for

a new realization η ∈RK , in order to evaluate π0(z|η), for 1 ≤ l ≤ L the following steps

are required.

(a) Find uH ,RB
l = ůH ,RB

l +Rgl , where ůH ,RB
l ∈ S1

0(D,TH ) satisfies

BH ,RB(ůH ,RB
l , v H ) =−BH ,RB(Rgl , v H ) ∀v H ∈ S1

0(D,TH ) ,

where Rgl is a Dirichlet lift of gl properly chosen, and

BH ,RB(v H , w H ) = ∑
K∈TH

A0,N (σ(xK ))∇v H (xK ) ·∇w H (xK ) ,

where

A0,N
i j (σ(xK )) =

∫
Y

A(σ(xK ), y)ei · (e j −∇χ j ,N
K )dy ,
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4.5. Numerical experiments

where σ = P (θH ,K
η ), P : C 0(D) →U is one of the maps introduced in Section 4.2,

and χ j ,N
K is a micro solution computed on the reduced space SN (Y ).

(b) Find ΛH
A0,N
σ

gl ∈ S1(∂D,TH ) such that

∫
∂D

ΛH
A0,N
σ

gl v H ds = BH ,RB(uH ,RB
l , v H ) ∀v H ∈ S1

c (D,TH ) .

4.5 Numerical experiments

In this section we will present some numerical experiments to illustrate our multiscale

Bayesian algorithm for inverse problems. We start by explaining how observed data are

collected. We then solve the inverse problem for different macroscopic parameterizations. At

first, we consider an affine parameterization of the form Aε(x) =σ∗(x)Bε(x) =σ∗(x)B(x/ε),

so that the function σ∗ controls the amplitude of the characteristic micro oscillations. Let

us point out that, for this choice, we have that A0(x) =σ∗(x)B 0, and thus the use of reduced

basis methods for solving the forward problem is not required. This simple problem allows

us to perform numerous tests to quantify the sensitivity of the method with respect to the

several parameters involved in the approximation, such as ε, the size of the microscopic

oscillations, K , the number of terms in the truncated Karhunen-Loève expansion, and L, the

number Dirichlet data. Then, we will consider two different non-affine macroscopic param-

eterizations, one controlling the orientation of the micro oscillations, the other the volume

fraction of a hypothetical layered material. For these problems, we make the following choice

of parameters for the RB-FE-HMM offline stage: h/ε= 1/64, δ= ε, tolRB = 10−11, where tolRB

is a prescribed tolerance used as stopping criterion for the greedy algorithm employed to

select the reduced basis functions.

4.5.1 Setup

The computational domain is the unit square

D = {x = (x1, x2) : 0 < x1, x2 < 1} .

We approximate the solution to problem (4.1) by means of the finite element method (FEM)

using a very fine discretization hobs ¿ ε. The forward homogenized problem is instead

computed using a macro mesh size H = 1/64. The problem is solved for different Dirichlet

conditions {gl }L
l=1. In particular we take {gl }L

l=1 = {
√
λlϕl }L

l=1, where {(λl ,ϕl )}L
l=1 are the L

eigenpairs corresponding to the L smallest eigenvalues associated to the one dimensional

discrete Laplacian operator. Each gl is then projected on the boundary ∂D to define the

corresponding Dirichlet condition. This procedure ensures that the functions {gl }L
l=1 are

smooth and orthonormal, so that each experiment contributes differently one from another.

Moreover ‖∇gl‖L2(∂D) < C , where C is a constant independent of L. Finally, we consider
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J = 12 boundary portions Γ j ⊂ ∂D , three for each side of the computational domain as shown

in Figure 4.1. Each Γ j has length equal to 0.2. The functions φ j appearing in (4.4) are hat

functions with supp(φ j ) = Γ j , and which take value one at the midpoint of each Γ j . Once

the observed data have been computed, they are perturbed by the noise given by ζ= 10−4w ,

w ∼ N (0, I ). Let pi and p j be two nodes of the macro triangulation TH , and let NH the

total number of nodes defining TH . Note that NH = H−2. The covariance matrix in the prior

measure µpr =N (θH
pr,C H

pr) is then C H
pr ∈RNH×NH defined as

(C H
pr)i j = γexp

(
−‖pi −p j‖2

λ

)
, γ,λ ∈R+ , (4.33)

while the prior mean is θH
pr = I Hθpr, where θpr is some function in C 0(D). We set different

values for γ,λ and θpr, depending on the macroscopic parameterization we want to retrieve.

In particular, λ> 0 is a correlation length that describes how the values at different positions

of the functions supported by the prior measure are related, while γ > 0 is the amplitude

scaling factor. Let us point out that the covariance matrix C H
pr belongs to the family of Matérn

covariances. In particular, we have that each draw from N (θH
pr,C H

pr) with C H
pr defined as

in (4.33) is a.s. s-Hölder continuous with 0 < s < 1/2 for θH
pr sufficiently regular (see [72] for

more details).

4.5.2 A 2D affinely parameterized tensor (amplitude of micro oscillations)

In this first set of numerical experiments we consider the tensor Aε
σ∗ given by

A11(σ∗(x), x/ε) =σ∗(x)

(
cos2

(
2πx1

ε

)
+1

)
,

A22(σ∗(x), x/ε) =σ∗(x)

(
sin

(
2πx2

ε

)
+2

)
,

A12(σ∗(x), x/ε) = A21(σ∗(x), x/ε) = 0,

where

σ∗(x) = 1.3+0.31D̃1
−0.41D̃2

,

and
D̃1 =

{
x = (x1, x2) : (x1 −5/16)2 + (x2 −11/16)2 ≤ 0.025

}
,

D̃2 =
{

x = (x1, x2) : (x1 −11/16)2 + (x2 −5/16)2 ≤ 0.025
}

.

The task of the problem is to retrieve the function σ∗, which is shown together with the

component Aε
11 of the tensor, ε= 1/64, in Figure 4.2.

Sensitivity with respect to ε. We start by studying how different choices of ε can affect our

predictions. The computations are reported in Figure 4.4. We briefly describe the setting.
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σ∗. Aε
11 ,ε= 1/64.

Figure 4.2: Representation of the true spatial field σ∗ and the first component of the highly
oscillating tensor for the problem considered in Section 4.5.2.

We compute numerically by means of a resolved FEM synthetic observations for different

values of ε= {1/4,1/8,1/16,1/8,1/64}, for L = 6 different Dirichlet conditions. We consider a

truncated Karhunen-Loève expansion with K = 60. The only assumption we make on σ∗ is

the one of σ∗ be positive. hence we consider a log-Gaussian prior for this first set of numerical

tests. We remark that the condition (4.18) holds under the choice made for (t , y) 7→ A(t , y).

The prior measure µpr on θ ∈C 0(D) is N (θH
pr,C H

pr), with θpr = log1.3 and C H
pr defined in (4.33)

with γ = 0.05 and λ = 0.5. In particular, the choice of θpr = log1.3 is such that the resulting

log-Gaussian distribution on the admissible set U has median 1.3. We then push each draw θ

into the admissible set through the function P1 : θ 7→ exp(θ). Example of realizations from the

log-Gaussian prior are shown in Figure 4.3. We draw then 2×105 samples from the posterior

Figure 4.3: Four samples from the prior density used in the problem considered in Sec-
tion 4.5.2.

distribution (4.26) using the MH algorithm. The parameter s is set to 0.01. The starting

point is η1 = 0 ∈ RK . With this choice of the parameters we obtain an acceptance rate of

about 27% for all choices of ε. In Figure 4.4 we plot for each ε the quantities P1(E[θH ,K ]),

E[P1(θH ,K )], and the variance Var[P1(θH ,K )]. The first quantity is produced by computing first

the mean on the Banach space C 0(D) and then pushing it into the admissible set U through

P1 : C 0(D) →U . Moreover, we also show the approximation of the posterior density for the

first three coefficients in the truncated Karhunen-Loève expansion. We can observe that as ε

gets smaller, these densities stabilize and converge to the same posterior. We notice that with

ε= 1/4 we get inaccurate predictions about the quantity of interest, while already with ε= 1/8

the approximation of the posterior mean is in good agreement with Figure 4.2. The source of

error for large ε comes from the discrepancy between the multiscale model from where the
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observations are obtained and the homogenized model used for solving the inverse problem.

Approximation of the homogenization error distribution. As seen in Figure 4.4 for large

values of ε the homogenization error (the discrepancy between the fine scale and the homog-

enized problems) pollutes the posterior prediction. Therefore, we perform again the same

experiment for ε = 1/4, but taking into account the homogenization error as described in

Section 4.2.2. We approximate the homogenization error distribution, by computing its mean

and covariance offline as explained in Section 4.2.2, and we include these quantities into

the posterior density definition according to (4.24). We perform the experiment for various

number of sample sizes M to approximate the homogenization error distribution, namely

M = {5,10,20}. The parameters such as K and L are identical to the previous numerical test.

Numerical results are shown in Figure 4.5. In particular we can observe how already with

M = 5 we can manage to significantly improve the results reported in Figure 4.4 for ε= 1/4.

Sensitivity with respect to L (number of Dirichlet data). Next, we investigate the sensitivity

of the approximated solution with respect to the parameter L, denoting the number of different

Dirichlet conditions used to produce the observations. The setting is the same as in the

previous numerical experiments, except that ε is fixed and equal to 1/64, while L = {2,4,6}.

Numerical results are shown in Figure 4.6. We notice that for L = 2 the variance is significantly

larger than for L = 4 or L = 6, which indicates more uncertainty about the approximated

solution. This is also visible from the approximation of the posterior density obtained for the

three first coefficients of the Karhunen-Loève expansion.

Sensitivity with respect to K (number of terms in the truncated KL expansion). Finally,

we examine how the size of the truncated Karhunen-Loève expansion affects our predictions.

We perform experiments for K = {10,20,30,40,50,60}, while L and ε are fixed, set to 6 and

1/64 respectively. The results shown in Figure 4.7 illustrate that by increasing the number of

eigenvalues/eigenfunctions we obtain a better sampling of the quantity of interest. However

we note that for smaller K , a coarser mesh can be used for the forward discrete problem,

leading to a significant saving of the computational cost. Hence, we suggest the possibility of

investigating the implementation of a Metropolis-Hastings algorithm on multiple levels, with

an approximation of the distribution of the lowest modes on a coarse mesh, while performing

fewer samples for the highest modes on a finer mesh to guarantee a proper sample of the

posterior density, as described in [44].
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Figure 4.4: Comparison of numerical approximations of the posterior density for the prob-
lem considered in Section 4.5.2, obtained with different values of ε. From left to right the
plotted quantities are P1(E[θH ,K ]), E[P1(θH ,K )], Var[P1(θH ,K )], and the posterior density of
the three first coefficients of the truncated Karhunen-Loève expansion, corresponding to
ε= {1/4,1/8,1/16,1/32,1/64}. The length scale ε decreases from the top to the bottom. The
other parameters are H = 1/64, L = 6, K = 60.
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Figure 4.5: Comparison of numerical approximations of the posterior density for the problem
considered in Section 4.5.2 obtained with ε= 1/4, for different values of M , the sample size
used to approximate the homogenization error distribution. From left to right the plotted
quantities are P1(E[θH ,K ]), E[P1(θH ,K )], Var[P1(θH ,K )], and the posterior density of the three
first coefficients of the truncated Karhunen-Loève expansion. The value of M is 5 in the first
row, 10 in the second one, and 20 in the third row. The other parameters are H = 1/64, L = 6,
K = 60.
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Figure 4.6: Comparison of numerical approximations of the posterior density for the problem
considered in Section 4.5.2 obtained for different values of L, the number of Dirichlet data.
From left to right the plotted quantities are P1(E[θH ,K ]), E[P1(θH ,K )], Var[P1(θH ,K )], and the
posterior density of the three first coefficients of the truncated Karhunen-Loève expansion.
In the first row L = 2, in the second one L = 4. For L = 6 see last row in Figure 4.4. The other
parameters are H = 1/64, ε= 1/64, K = 60.
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Figure 4.7: Comparison of numerical approximations of the posterior density for the problem
considered in Section 4.5.2 obtained for different values of K , the number of coefficients
in the truncated Karhunen-Loève expansion. From left to right the plotted quantities are
P1(E[θH ,K ]), E[P1(θH ,K )], Var[P1(θH ,K )], and the posterior density of the three first coefficients
of the truncated Karhunen-Loève expansion, corresponding to K = {10,20,30,40,50}. The
parameter K increases from the top to the bottom. For K = 60 see last row in Figure 4.4. The
other parameters are H = 1/64, ε= 1/64, L = 6.
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4.5.3 A 2D non-affinely parameterized tensor (orientation of micro oscillations)

Now we consider the case where the function σ∗ controls the angle of the oscillations which

characterize the full tensor Aε
σ∗ . The tensor is defined as

A11(σ∗(x), x/ε) = sin

(
4πe1>Qx

ε

)
+1.5,

A22(σ∗(x), x/ε) = cos2

(
2πe2>Qx

ε

)
+1,

A12(σ∗(x), x/ε) = A21(σ∗(x), x/ε) = 0,

(4.34)

where Q =Q(σ∗(x)) is a rotation matrix depending on σ∗ : D →R

Q(σ∗(x)) =
(

cos(2πσ∗(x)) sin(2πσ∗(x))

−sin(2πσ∗(x)) cos(2πσ∗(x))

)
, (4.35)

and

σ∗(x) = a +b1D̃ , D̃ ⊂ D , a,b ∈R .

We consider the case where D̃ is the circle defined as

D̃ = {
x = (x1, x2) : (x1 −1/3)2 + (x2 −1/3)2 ≤ 0.05

}
.

In Figure 4.8 we show the function σ∗ and the first component of the tensor Aε
11. From (4.34),

σ∗. Aε
11 ,ε= 1/64.

Figure 4.8: Representation of the true spatial field σ∗ and the first component of the highly os-
cillating tensor for the non-affine case considered in Section 4.5.3 (orientation of oscillations).

(4.35) it can be observed that different values of a and b for σ∗ can lead to the same rotation

of the oscillations, and in general to the same tensor Aε
σ∗ . To ensure uniqueness we assume

to know a priori the values of a and b. We take a = 1 and b = 0.25. Our task is thus to recover

the region D̃ ⊂ D. To do so, we consider a level set prior for the unknown, defined using the

function P2 : C 0(D) →U introduced in Section 4.2. The prior measure on C 0(D) is defined as

in (4.33) with θpr = 1, γ= 0.025, and λ= 0.5. Hence, we apply the map P2 to each draw from
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µpr to obtain a level set sample, i.e.,

P2(θ) = 11D1 +1.251D2 ,

where

D1 = {x ∈ D : −∞< θ(x) ≤ 1} , D2 = {x ∈ D : 1 < θ(x) <∞} ,

so that D = D1 ∪D2, D1 ∩D2 =;. Four examples of draws from the level set prior are reported

in Figure 4.9. We obtain data for ε = 1/64 and we approximate the homogenization error

Figure 4.9: Four samples from the level set prior used in the problem considered in Sec-
tion 4.5.3.

distribution as described in Section 4.2.2 using M = 20. The parameters K and L are set to

60 and 6 respectively. Then, we approximate the posterior by using the MH algorithm by

drawing 4×105 samples using s = 0.02. For this choice of the parameters, we get an acceptance

ratio during the sampling of about 73%. In Figure 4.10 we plot the quantities P2(E[θH ,K ]),

E[P2(θH ,K )], and Var[P2(θH ,K )]. In particular P2(E[θH ,K ]) preserves the binary field property

of the admissible set, while the estimate E[P2(θH ,K )] gives a better understanding of the

uncertainty across the interface where the discontinuity takes place. This uncertainty is also

reflected by the plot of the variance Var[P2(θH ,K )]. The numerical results show good agreement

with Figure 4.8.
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Figure 4.10: Numerical results for the non-affine parameterization considered in Sec-
tion 4.5.3 (orientation of oscillations). From left to right the plotted quantities are P2(E[θH ,K ]),
E[P2(θH ,K )], Var[P2(θH ,K )], and the posterior density of the three first coefficients of the trun-
cated Karhunen-Loève expansion. The values of the parameters are H = 1/64, ε = 1/64,
M = 20, L = 6, K = 60.

94



4.5. Numerical experiments

4.5.4 A 2D non-affinely parameterized tensor (volume fraction of two phase lay-
ered material)

We conclude the numerical experiments by considering the case where Aε
σ∗ represents the

conductivity of a hypothetical two phase layered material. In this case the macroscopic

function σ∗ : D → [0,1] determines the volume fraction of each component. Then tensor is

defined as

A11(σ∗(x), x/ε) = A22(σ∗(x), x/ε) =
2 if 0 ≤ (x2 mod ε)/ε<σ∗(x)

1 if σ∗(x) ≤ (x2 mod ε)/ε< 1,

A12(σ∗(x), x/ε) = A21(σ∗(x), x/ε) = 0.

(4.36)

We consider the case where σ∗ is defined as

σ∗(x) =
n∑

i=1
ci 1D̃i

, D̃i ⊂ D ,ci ∈ [0,1] ,

D̃i ∩ D̃ j =; for i 6= j , ∪n
i=1D̃i = D. Again, we assume to know a priori the values {ci }n

i=1 that

the function σ∗ can take, and our goal is to recover the different regions {D̃i }n
i=1. We note that

knowing the range of possible values for σ∗ allows us to efficiently use the RB method and in

particular the EIM algorithm. For our problem we set n = 4, c1 = 0.8,c2 = 0.6,c3 = 0.4,c4 = 0.2,

and we make the following choice for the sets {D̃i }4
i=1:

D̃1 = {x = (x1, x2) : 0 ≤ x1 ≤ 0.25} ,

D̃2 = {x = (x1, x2) : 0.25 < x1 ≤ 0.5} ,

D̃3 = {x = (x1, x2) : 0.5 < x1 ≤ 0.75} ,

D̃4 = {x = (x1, x2) : 0.75 < x1 ≤ 1} .

The true fieldσ∗ and the first component of the multiscale tensor are shown in Figure 4.11. We

σ∗. Aε
11 ,ε= 1/64.

Figure 4.11: Representation of the true spatial field σ∗ and the first component of the highly
oscillating tensor for the non-affine case considered in Section 4.5.4 (volume fraction).

consider for this last numerical experiment a macro discretization with mesh size H = 1/32,

and a level set prior. The Gaussian prior measure µpr on C 0(D) is the same used in the
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previous numerical tests, with θpr = 0.5, γ = 0.05, λ = 0.5. The function P2 : C 0(D) → U , is

instead defined as

P2(θ) = c11D1 + c21D2 + c31D3 + c41D4 ,

where
D1 = {x ∈ D : 0.6 < θ(x) <∞} ,

D2 = {x ∈ D : 0.4 < θ(x) ≤ 0.6} ,

D3 = {x ∈ D : 0.2 < θ(x) ≤ 0.4} ,

D4 = {x ∈ D : −∞< θ(x) ≤ 0.2} .

Four samples from the considered level set prior are shown in Figure 4.12. To solve the

Figure 4.12: Four samples from the level set prior used in the problem considered in Sec-
tion 4.5.4.

problem the observations are obtained for ε= 1/64. The homogenization error distribution is

approximated offline as described in Section 4.2.2 using M = 20. The parameter K and L are

set to 60 and 6 respectively. We draw 4×105 samples from the posterior distribution using the

MH algorithm with s = 0.01, which leads to an acceptance ratio of 44%. The numerical results

are shown in Figure 4.13, and are in good agreement with Figure 4.11.

-4 -2 0 2 4
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1

2

3
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5

Figure 4.13: Numerical results for the non-affine parameterization considered in Section 4.5.4
(volume fraction). From left to right the plotted quantities are P2(E[θH ,K ]), E[P2(θH ,K )],
Var[P2(θH ,K )], and the posterior density of the three first coefficients of the truncated
Karhunen-Loève expansion. H = 1/32, ε= 1/64, M = 20, L = 6, K = 60
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5 Homogenization and multiscale meth-
ods for linear elasticity problems in
random perforated domains
In this chapter we consider homogenization in linear elasticity with random porous media. We

review the theory of homogenization in the context of linear elasticity with random perforated

domains, and we give a rigorous formulation of the RB-FE-HMM in this setting, providing

a priori error estimates. Extension and analysis of the FE-HMM in the context of linear

elasticity appeared first in [2], while in [49] some numerical experiments are presented in

order to verify numerically the theoretical findings given in [2]. In both [2] and [49] only

problems in linear elasticity with multiscale periodic tensors are considered, while problems

in perforated domains are not addressed. Extension of the FE-HMM for scalar valued elliptic

problems in periodic perforated domains is presented in [61], while in [5] the use of the

RB-FE-HMM for solving the Stokes problem in periodic porous media is described. Hence,

to the best of our knowledge, studies on the use of the FE-HMM for solving linear elasticity

problems in perforated (periodic and random) domains are not available in the literature,

and are presented in this chapter. In addition, we combine the FE-HMM with reduced basis

techniques to speed up the overall computational time. Finally, let us point out that we adopt

the Einstein summation convention, i.e., we sum over repeated indices.

Outline. The outline of the chapter is as follows. In Section 5.1 we start by recalling some

preliminary definitions and results on homogenization of random tensors in linear elasticity.

In Section 5.2 we define random perforated domains in Rd , and we provide practical examples.

We derive then homogenization results in linear elasticity with random perforated domains,

and explain how in practice the coefficients of the effective tensor are approximated. In Sec-

tion 5.3 we describe the FE-HMM and the RB-FE-HMM in the context of linear elasticity with

random perforated domains. We derive stability results and provide a priori error estimates for

the numerical methods. Finally, in Section 5.4 we conclude with some numerical experiments

to assert our theoretical findings. The contents of this chapter are essentially taken from [8].
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Chapter 5. Homogenization and multiscale methods for linear elasticity problems in
random perforated domains

5.1 Homogenization in random linear elasticity

Homogenization of elliptic operators in perforated random domains is related to the theory

of homogenization of elliptic operators with random coefficients. The literature treating

homogenization of random structures is vast. Some foundational works can be found in

[67, 76, 89, 63]. Let D be an open bounded set in Rd , d ≤ 3. Let Γ1 ⊂ ∂D and Γ2 ⊂ ∂D be two

disjoint sets with positive measure such that Γ1∪Γ2 = ∂D , and consider the problem of finding

uε = (uε
1 , . . . ,uε

d ) such that, given f ∈ (L2(D))d and h ∈ (L2(Γ2))d , it satisfies

− ∂

∂x j

(
Aε

i j lm

∂uε
l

∂xm

)
= fi in D ,

uε = 0 on Γ1 ,

Aε
i j lm

∂uε
l

∂xm
ν j = hi on Γ2 ,

(5.1)

for i = 1, . . . ,d , where ν= (ν1 , . . . ,νd ) is the unit outward normal at the boundary. We assume

that the fourth-order tensor Aε(x) = {Aε
i j lm(x)}1≤i , j ,l ,m≤d , Aε

i j lm ∈ L∞(D), Aε(x) = A(x/ε) =
A(y), y = x/ε, is statistically stationary with respect to the spatial variable y ∈Rd , or equiva-

lently that it is a particular realization of a stationary random field. Moreover it is assumed

that

Aε
i j lm = Aε

j i lm = Aε
lmi j for any i , j , l ,m = 1, . . . ,d , (5.2)

α‖m‖2
F ≤ Aεm ·m for any symmetric d ×d matrix m , (5.3)

‖Aεm‖F ≤β‖m‖F for any symmetric d ×d matrix m , (5.4)

where α,β> 0 and for any d ×d symmetric matrices m, m̃ we have that

Aεm = {(Aε
i j lmmlm)i j }1≤i , j≤d , Aεm : m̃ = Aε

i j lmml mm̃i j .

We introduce the strain tensor e and the stress tensor σ defined as

e(uε) = {ei j (uε)}1≤i , j≤d , ei j (uε) = 1

2

(
∂uε

i

∂x j
+
∂uε

j

∂xi

)
,

σ(uε) = {σi j (uε)}1≤i , j≤d , σi j (uε) = Aε
i j lm

∂uε
l

∂xm
.

The space of admissible weak solutions for the problem (5.1) is represented by (H 1
Γ1

(D))d ,

which is a Hilbert space for the norm

‖v‖H 1(D) =
 d∑

i , j=1

∫
D

(
∂vi

∂x j

)2

dx +
d∑

i=1

∫
D

v2
i dx

1/2

.
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5.1. Homogenization in random linear elasticity

The weak formulation of problem (5.1) reads: find uε ∈ (H 1
Γ1

(D))d such that

Bε(uε,v) = F (v) ∀v ∈ (H 1
Γ1

(D))d , (5.5)

where

Bε(v,w) =
∫
D

Aε(x)e(v) : e(w)dx ,

and

F (v) =
∫
D

f ·vdx +
∫
Γ2

h ·vds .

From the Korn’s inequality

‖∇v‖L2(D) ≤C

 ∫
D

|e(v)|2 dx

1/2

,

which holds ∀v ∈ (H 1
Γ1

(D))d , and Lax-Milgram theorem we obtain existence and uniqueness

of the solution of (5.5) and the a priori estimate

‖uε‖H 1(D) ≤C (‖f‖L2(D) +‖h‖L2(Γ2)) .

For a complete review of homogenization in linear elasticity with tensors with random co-

efficients we mention [63]. Hence, we briefly report some notions presented in [63], before

considering the case of perforated random domains.

5.1.1 Ergodic theory and G-convergence of random tensors

As mentioned, we assume that Aε(x) = A(x/ε) = A(y), y = x/ε, is statistically stationary with

respect to the spatial variable y ∈ Rd . We start by defining stationary random fields. Let

(Ω,Σ,µ) be a probability space. Assume that for each x ∈Rd a random variable w(x) is given.

Then the family of random variables w(x) = w(x,ω), ω ∈Ω, assumed to be defined on the

same probability space (Ω,Σ,µ), defines a random process on Rd which is called a random

field. The random field is said to be stationary if, for any set of points {x1 , . . . , xk } and any

h ∈ Rd , the distribution of the vector {w(x1 +h) , . . . , w(xk +h)} does not depend on h. For

an arbitrary random variable v(ω), we define w(x,ω) = v(Tx (ω)), where Tx :Ω→Ω is a map

parameterized by x ∈Rd which preserves the measure µ on Ω. Then it follows that w(x,ω) is a

stationary random field.

Dynamical systems on probability spaces. We define Tx : Ω→Ω, x ∈ Rd , as a dynamical

system possessing the following properties.
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1. T0 = Id, Tx1+x2 = Tx1 Tx2 , ∀x1 , x2 ∈Rd .

2. The mapping Tx :Ω→Ω preserves the measure µ onΩ, i.e. µ(Tx (F )) =µ(F ), ∀x ∈Rd ,

∀F ∈Σ.

3. For any measurable function f (ω), ω ∈Ω, the function f (Tx (ω)) defined on Ω×Rd is

also measurable.

Given the dynamical system Tx :Ω→Ω, we can introduce a wide class of random fields. Let f

a measurable function defined on Ω. For a fixed ω ∈Ω we say that the function f (Tx (ω)) of

argument x ∈Rd is a realization of f .

Ergodic theory. Next, we introduce the concept of ergodicity. A measurable function f is

said invariant under Tx if f (Tx (ω)) = f (ω) for any x ∈Rd almost everywhere in Ω. Then, the

dynamical system Tx is said ergodic if all the invariant functions under Tx are constant almost

everywhere inΩ. An equivalent definition is that Tx is ergodic if for any invariant subset F ∈Σ
under Tx , we have µ(F ) = 1 or µ(F ) = 0, where F is invariant under Tx if F = Tx (F ) for any

x ∈Rd . Let us emphasize that homogenization results remain valid for non-ergodic maps. The

ergodicity assumption on Tx allows to simplify the calculations, and therefore in what follows

we will always assume Tx to be an ergodic dynamical system.

An important tool of ergodic theory is the Birkhoff’s ergodic theorem, which, for a measurable

function f onΩ, establishes the equivalence between the average of f computed on the events

spaceΩ, and the average of a particular realization f (Tx (ω)) computed on the space Rd , while

ω ∈Ω is fixed. In order to give a rigorous formulation of the theorem, let us introduce the

notion of mean value for a function defined in Rd . Let f ∈ L1
loc(Rd ). We denote the mean value

of f as M( f ) which is given by

lim
ε→0

∫
K

f (x/ε)dx = |K |M( f ) , (5.6)

for any Lebesgue measurable set K ⊂Rd . Under some additional assumptions, the mean value

of a function can be also expressed in terms of weak convergence. It suffices to take a family

of functions f (x/ε) which is bounded in Lp
loc(Rd ), p ≥ 1. Hence, from the definition of weak

convergence we have that as ε→ 0

f (x/ε)*M( f ) weakly in Lp
loc(Rd ) (5.7)

if and only if

lim
ε→0

∫
Rd

f (x/ε)ϕdx =
∫
Rd

M( f )ϕdx ∀ϕ ∈ Lp ′

loc(Rd ) ,

where 1/p ′ = 1− 1/p. The result follows from (5.6) and the fact that linear combinations

of characteristic functions of the sets K ⊂ Rd are dense in Lp ′

loc(Rd ). We can now state the

100



5.1. Homogenization in random linear elasticity

Birkhoff’s ergodic theorem. For more details see for example [45].

Theorem 5.1.1 (Birkhoff’s ergodic theorem). Let f ∈ Lp (Ω), p ≥ 1. Then for almost all ω ∈Ω
the realization f (Tx (ω)) possesses a mean value in the sense of (5.7), i.e.,

f (Tx/ε(ω))*M( f ) weakly in Lp
loc(Rd ) .

Moreover, the mean value M( f (Tx (ω)), considered as a function of ω, is invariant under Tx , i.e.,∫
Ω

f (ω)dµ=
∫
Ω

M( f (Tx (ω))dµ .

In particular, if the dynamical system Tx is ergodic, then

M( f (Tx (ω))) =
∫
Ω

f (ω)dµ for almost all ω ∈Ω .

Homogenization with random tensors. In order to formulate homogenization results in

linear elasticity with random tensors, we introduce some spaces of functions defined on

the probability space (Ω,Σ,µ). We say that a symmetric tensor field v(x) = {vi j (x)}1≤i , j ,≤d ,

v ∈ (L2
loc(Rd ))d×d , is a potential tensor field if it admits a representation of the form v = e(u),

for some vector field u ∈ (H 1
loc(Rd ))d . On the other hand, a symmetric tensor field v is said to

be a solenoidal if ∫
Rd

v : e(ϕ)dx = 0 ∀ϕ ∈ (C∞
0 (Rd ))d , (5.8)

where (C∞
0 (Rd ))d is the space of vector fields which are infinitely differentiable and which

have compact support in Rd . Note that (5.8) is equivalent to the condition

∂

∂x j
vi j = 0 ∀i = 1, . . . ,d .

Now, a symmetric random tensor v(ω) = {vi j (ω)}1≤i , j≤d , v ∈ (L2(Ω))d×d , is said to be potential

(resp. solenoidal), if almost all its realizations v(Tx (ω)) are potential (resp. solenoidal) tensor

fields on Rd . We denote by V 2
pot(Ω) (resp. V 2

sol(Ω)) the space of all potential (resp. solenoidal)

symmetric matrices having zero mean value. The two spaces are complete and mutually

orthogonal. It can be shown [63] that the space L2(Ω,Symd ) consisting of d ×d real valued

symmetric matrix functions can be decomposed as

L2(Ω,Symd ) =V 2
pot(Ω)⊕V 2

sol(Ω)⊕Symd ,

where Symd denotes the class of d ×d real valued symmetric matrices.
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G-convergence in linear elasticity. Theory of G-convergence in linear elasticity is similar to

the one for elliptic scalar PDEs. Here we recall the definition of G-convergence for fourth-order

tensor valued functions.

Definition 5.1.2. Let Aε and A0 be two tensors satisfying (5.2), (5.3), (5.4) in a domain D ⊂Rd .

We say that the sequence {Aε}ε>0 G-converges to the tensor A0 in D if and only if for any

f ∈ (H−1(D))d and any g ∈ (H 1/2(∂D))d the solution uε of

− ∂

∂x j

(
Aε

i j lm

∂uε
l

∂xm

)
= fi in D ,

uε = g on ∂D ,

∀i = 1, . . . ,d , is such that

uε*u0 weakly in (H 1(D))d ,

where u0 is the unique solution of

− ∂

∂x j

(
A0

i j lm

∂u0
l

∂xm

)
= fi in D ,

u0 = g on ∂D ,

∀i = 1, . . . ,d . A consequence of G-convergence is the weak convergence of the stresses

σ(uε) = Aεe(uε)*σ(u0) = A0e(u0) weakly in (L2(D))d×d .

Properties such as uniqueness of the G-limit, locality and compactness results we mentioned

for elliptic scalar PDEs in Chapter 2 extend also to the case of linear elasticity problems. The

following theorem is proved in [63].

Theorem 5.1.3. Let A = A(ω) be a measurable tensor valued function defined in Ω and satisfy-

ing (5.2), (5.3), (5.4). Set

Aε(x) = A(x/ε) = A(y), A(y) = A(Ty (ω)) .

Then there exists a tensor A0, independent of x and ω, such that Aε G-converges to A0 in any

domain D ⊂Rd . For any m ∈ Symd , the tensor A0 is defined by

m : A0m = inf
v∈V 2

pot(Ω)

∫
Ω

(m + v) : A(m + v)dµ .

Remark 5.1.4. The same results of convergence can also be extended to the case of sequences

of locally periodic tensors. We refer to [75] for a complete review on homogenization in

elasticity problems.
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5.2. The case of random perforated domains

5.2 The case of random perforated domains

Let (Ω,Σ,µ) be a probability space and Tx : Ω→ Ω, x ∈ Rd , a dynamical system as defined

in Section 5.1. Let us fix a measurable set F ∈ Σ and ω ∈ Ω. The random stationary set

Q =Q(ω) ⊂Rd is obtained from F and it is given by

Q(ω) =
{

x ∈Rd : Tx (ω) ∈F
}

.

Its density or concentration is defined as the mean value of its characteristic function. Theo-

rem 5.1.1 shows that the density of Q exists for almost all ω ∈Ω and it is equal to µ(F ). Let D

be an open bounded set in Rd . We define the set Qε homothetic to Q with ratio ε as

Qε =
{

x ∈Rd : x/ε ∈Q
}

.

By removing the set D ∩Qε from D we obtain a perforated domain which we call Dε, whose

degree of fineness is inversely proportional to ε. Note that, as it is defined, Dε could be not

connected. Moreover, it could exhibit a fine grained boundary. Hence, in what follows we

make the additional assumptions that Dε is connected and that ∂D ⊂ ∂Dε. Let Γ1 ⊂ ∂D and

Γ2 ⊂ ∂D be two disjoint sets with positive measure such that Γ1 ∪Γ2 = ∂D. The goal of this

section is to provide homogenization results for the problem of finding the weak solution

uε = (uε
1 , . . . ,uε

d ) ∈ (H 1
Γ1

(Dε))d such that, given f ∈ (L2(D))d and h ∈ (L2(Γ2))d , it satisfies

− ∂

∂x j

(
Ai j lm

∂uε
l

∂xm

)
= fi in Dε ,

uε = 0 on Γ1 ,

Ai j lm

∂uε
l

∂xm
ν j = hi on Γ2 ,

Ai j lm

∂uε
l

∂xm
ν j = 0 on ∂Dε\∂D ,

(5.9)

for i = 1, . . . ,d , where ν = (ν1 , . . . ,νd ) is the unit outward normal at the boundary, and

A(x) = {Ai j lm(x)}1≤i , j ,l ,m≤d is a fourth-order tensor. We assume Ai j lm ∈ L∞(D) and that

it satisfies (5.2), (5.3), (5.4). Note that in the definition of problem (5.9) we assume to have

homogeneous Neumann boundary conditions on the boundary delimited by the inner holes.

The problem of homogenization for PDEs in perforated domains (periodic and random) has

been studied by several authors and for different types of boundary conditions on the inner

holes. Some foundational works can be found in [35, 34, 37, 29, 32, 89].

5.2.1 Definition of random perforated domains and examples

In what follows, using ideas from [17], some practical examples of random sets in Rd are

provided.
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ε

Figure 5.1: Set Dε with periodic spherical holes of constant radius.

Example 1: periodic spheres in Rd . As first example we consider the simple periodic set of

spherical holes with constant radius, as depicted in Figure 5.1. We set the probability space as

(Ω,Σ,µ) = (Y ,B(Y ),Leb),

where Y = (0,1)d , B(Y ) is the Borel σ-algebra on Y , and Leb is the Lebesgue measure. We

define the dynamical system Tx :Ω→Ω, x ∈Rd as

Tx (ω) = x +ω−bx +ωc ,

where for any x ∈Rd , bxc is the vector whose elements are the greatest integers less or equal

to the corresponding elements of x. It is easy to observe that Tx satisfies the three properties

characterizing the dynamical system defined in Section 5.1. Given a radius r > 0, chosen

so that the ball centered in Y is contained in Y , i.e. 0 < r < 1/2, let us define the function

f :Ω→R,

f (ω) = |ω−1/2e|/r ,

where e = (1, . . . ,1)> ∈Rd . Hence we define the subset F ∈Σ as

F = {
ω ∈Ω : f (ω) ≤ 1

}
.

Therefore given ω ∈Ω we obtain the set Q =Q(ω) as

Q(ω) =
{

x ∈Rd : Tx (ω) ∈F
}

,

consisting of Y -periodic and disjoint spherical sets, whose radius is r . In Figure 5.1 we plot

the domain Dε = D\(D ∩Qε), where

Qε =
{

x ∈Rd : x/ε ∈Q
}

,

obtained for D = (0,1)2, r = 1/4, ε= 1/5.

Example 2: ellipses in R2 with random axes and angle of rotation. In this second example

we consider the random set depicted in Figure 5.2, consisting of ellipses in R2, whose minor
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5.2. The case of random perforated domains

and major axes and angle of rotation are random variables. We denote by Ia = [a−, a+] ⊂R the

ε

Figure 5.2: Set Dε with ellipses whose axes and angle of rotation are random.

set of admissible values for the minor axis, Ib = [b−,b+] ⊂R the set of admissible values for the

major axis, and Iθ = [0,θ] ⊂R the set of rotation angles. Then, we introduce three probability

spaces defined as

(Ia ,B(Ia),U (Ia)) ,

(Ib ,B(Ib),U (Ib)) ,

(Iθ,B(Iθ),U (Iθ)) ,

where B(Ia) (resp. B(Ib), B(Iθ)) is the Borel σ-algebra on Ia (resp. Ib , Iθ), and U (Ia) (resp.

U (Ib), U (Iθ)) the uniform probability measure on Ia (resp. Ib , Iθ). Let us then define the

space

(S,Σs ,µs) =⊗z∈Z2 (Ia × Ib × Iθ,B(Ia)⊗B(Ib)⊗B(Iθ),U (Ia)×U (Ib)×U (Iθ)) ,

where Σs is the product σ-algebra, and µs is the product measure. Finally we define the space

(Ω,Σ,µ) as

(Ω,Σ,µ) = (S,Σs ,µs)⊗ (Y ,B(Y ),Leb),

where Y = (0,1)2. Then each element ω ∈Ω is defined as

ω= (s, y) = ({sz }z∈Z2 , y) , sz = (az ,bz ,θz )> ∈ Ia × Ib × Iθ , y ∈ Y .

We define the dynamical system Tx :Ω→Ω as

Tx (ω) = Tx (s, y)

= Tx ({sz }z∈Z2 , y)

= ({sz+bx+yc}z∈Z2 , x + y −bx + yc) .

We remark that Tx satisfies the three properties characterizing a dynamical system defined in

Section 5.1. Let us define the function f̃ : Ia × Ib × Iθ×Y →R as

f̃ (sz , y) = ((y1 −1/2)cos(θz )− (y2 −1/2)sin(θz ))2

a2
z

+ ((y1 −1/2)sin(θz )+ (y2 −1/2)cos(θz ))2

b2
z

.
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Hence we define the function f :Ω→R as

f (ω) = f̃ (s0, y) , for ω= (s, y) = ({sz }z∈Z2 , y) ,

so that

f (Tx (ω)) = f (Tx (s, y))

= f ({sz+bx+yc}z∈Z2 , x + y −bx + yc)

= f̃ (sbx+yc, x + y −bx + yc) .

Then we define the subset F ∈Σ as

F = {
ω ∈Ω : f (ω) ≤ 1

}
.

Finally given ω ∈Ω we obtain the set Q =Q(ω) as

Q(ω) = {
x ∈R2 : Tx (ω) ∈F

}
,

consisting of disjoint ellipses in R2, whose axes and angle of rotation are randomly defined.

In Figure 5.2 we plot the domain Dε obtained for D = (0,1)d , Ia = Ib = [1/8,3/8], Iθ = [0,π],

ε= 1/5.

5.2.2 Homogenization results

We can now illustrate homogenization results for the problem (5.9). In what follows we will

assume the fourth-order tensor to be constant, i.e., A = {Ai j lm}1≤i , j ,l ,m≤d , Ai j lm ∈R. Extension

to the case where A is a tensor valued function with Ai j lm ∈ L∞(D), can be obtained using

two-scale convergence techniques for example [18]. The proof of the homogenization results

is done following the lines of the proof of Theroem 8.1 in [63], where homogenization of the

Poisson’s equation in random perforated domains is considered. We consider the problem

− ∂

∂x j

(
Aρ

i j lm

∂uε
l

∂xm

)
= fi in D ,

uε = 0 on Γ1 ,

Aρ

i j lm

∂uε
l

∂xm
ν j = hi on Γ2 ,

(5.10)

for i = 1, . . . ,d , where the fourth-order tensor Aρ is defined as

Aρ(x) =
{

A x ∈Rd \Qε ,

ρI x ∈Qε ,

where ρ > 0, I = δi lδ j mei ⊗ e j ⊗ el ⊗ em is the fourth-order identity tensor, so that Im = m,

m ∈ Symd . Note that problem (5.10) is related to (5.9) in the sense that it is dependent of
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the random stationary set Qε. However, (5.10) corresponds to a linear elasticity problem

with random coefficients defined on the whole domain D (which is not perforated) and can

therefore be treated using the theory illustrated in Section 5.1. Let us denote by A0,ρ the

homogenized tensor corresponding to Aρ . From Theorem 5.1.3 for any m ∈ Symd we have

that

m : A0,ρm = inf
v∈V 2

pot(Ω)

∫
Ω

(m + v) : Aρ(m + v)dµ

= inf
v∈V 2

pot(Ω)

 ∫
Ω\F

(m + v) : A(m + v)dµ+ρ
∫
F

|m + v |2 dµ

 .

If we consider the sequence {A0,ρ}ρ>0, we can verify that the limit lim
ρ→0

A0,ρ exists and it is given

by

lim
ρ→0

A0,ρ = A0 , (5.11)

where A0 satisfies

m : A0m = inf
v∈V 2

pot(Ω)

∫
Ω\F

(m + v) : A(m + v)dµ . (5.12)

Indeed we have that

m : A0,ρm = inf
v∈V 2

pot(Ω)

 ∫
Ω\F

(m + v) : A(m + v)dµ+ρ
∫
F

|m + v |2 dµ


≥ inf

v∈V 2
pot(Ω)

∫
Ω\F

(m + v) : A(m + v)dµ+ inf
v∈V 2

pot(Ω)
ρ

∫
F

|m + v |2 dµ

≥ m : A0m +C1ρ ,

hence

liminf
ρ→0

(
m : A0,ρm

)≥ m : A0m . (5.13)

On the other hand, by taking v ∈ V 2
pot(Ω) in (5.12) such that the infimum is attained within

τ> 0, we have that

m : A0,ρm ≤
∫

Ω\F

(m + v) : A(m + v)dµ+ρ
∫
F

|m + v |2 dµ

≤ inf
v∈V 2

pot(Ω)

∫
Ω\F

(m + v) : A(m + v)dµ+τ+C2ρ

= m : A0m +τ+C2ρ .
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Hence,

limsup
ρ→0

(
m : A0,ρm

)≤ m : A0m +τ .

Since τ can be chosen arbitrarily small, and in view of (5.13), we have that (5.11) and (5.12)

hold.

Hence, we can state the main theorem which defines the weak limit of the solution to prob-

lem (5.9). Let us recall that for a probability space (Ω,Σ,µ) we denote by F an element of Σ,

and as Tx :Ω→Ω, x ∈ Rd , a dynamical system. Moreover, we denote by Q = Q(ω) ⊂ Rd the

random stationary set obtained from F as

Q(ω) =
{

x ∈Rd : Tx (ω) ∈F
}

,

and as Qε its homothetic transformation with ratio ε. We assume that

θ =µ(Ω\F ) > 0,

Rd \Q(ω) is open and connected for almost all ω ∈Ω .

We note also that from Theorem 5.1.1 we have that

1Rd \Qε *

∫
Ω

1Ω\F dµ=µ(Ω\F ) = θ weakly in L2
loc(Rd ) , (5.14)

where 1Rd \Qε is the characteristic function of the set Rd \Qε. Finally, if D is an open bounded

set in Rd , we define Dε = D\(D ∩Qε) to be the random perforated domain obtained from D.

In what follows we will need this lemma given in [63].

Lemma 5.2.1. Let v = v(ω) be a function such that

v ∈ L2(Ω) , v |F = 0,
∫
Ω

v(ω)dµ= 0.

Let vε(x) = v(Ty (ω)), where y = x/ε, and assume that {ϕε}ε>0 is a sequence of functions such

that ϕε ∈C∞
0 (D) and

limsup
ε→0

‖ϕε‖H 1(Dε) <∞ .

Then

lim
ε→0

∫
D

vεϕεdx = 0.
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Theorem 5.2.2. Let {ûε}ε>0, ûε ∈ (C∞(D))d , be a sequence of functions such that

{1Rd \Qε ûε}ε>0 , {1Rd \Qε Ae(ûε)}ε>0 ,

are bounded in (L2(D))d and (L2(D))d×d respectively, where 1Rd \Qε is the characteristic function

of the set Rd \Qε, and A = {Ai j lm}1≤i , j ,l ,m≤d , Ai j lm ∈ R, satisfies (5.2), (5.3), (5.4). Let Γ1 ⊂ ∂D

andΓ2 ⊂ ∂D be two disjoint sets with positive measure such thatΓ1∪Γ2 = ∂D. Given f ∈ (L2(D))d ,

h ∈ (L2(Γ2))d , assume that ûε satisfies

Bε(ûε,v) = Fε(v) ∀v ∈ (C∞
Γ1

(D))d , (5.15)

where

Bε(v,w) =
∫

Dε

Ae(v) : e(w)dx ,

and

Fε(v) =
∫

Dε

f ·vdx +
∫
Γ2

h ·vds ,

and (C∞
Γ1

(D))d is the space of infinitely differentiable functions from D to Rd which vanish

on Γ1. Let us denote the weak limit of {1Rd \Qε ûε}ε>0 in (L2(D))d as θu0, and the weak limit of

{1Rd \Qε Ae(ûε)}ε>0 in (L2(D))d×d as p0. Then we have that p0 = A0e(u0), where A0 is indepen-

dent of x and ω and given by (5.12), and u0 is the unique solution in (H 1(D))d which satisfies

− ∂

∂x j

(
A0

i j lm

∂u0
l

∂xm

)
= θ fi in D ,

u0 = 0 on Γ1 ,

A0
i j lm

∂u0
l

∂xm
ν j = hi on Γ2 ,

(5.16)

for i = 1, . . . ,d, where θ =µ(Ω\F ).

Proof. The proof is adapted from the proof of Theorem 8.1 in [63], where a similar convergence

result is established for the Poisson’s equation. We first write (5.12) as

m : A0m = inf
v∈X

∫
Ω\F

(m + v) : A(m + v)dµ , (5.17)

where X denotes the closure in L2(Ω\F ) of V 2
pot(Ω) and m ∈ Symd . The solution of the

variational problem (5.17) is unique and satisfies the problem of finding v ∈ X such that∫
Ω\F

A(m + v) : w dµ= 0 ∀w ∈V 2
pot(Ω) . (5.18)
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From (5.8) this implies that the matrix

q = A(m + v)′ ∈ (L2
sol(Ω))d×d ,

where (m + v)′ denotes the zero extension of m + v to the whole domainΩ. Let v ∈ X be the

solution to the problem (5.18). We have that

m : A0m =
∫

Ω\F

(m + v) : A(m + v)dµ

=
∫

Ω\F

m : A(m + v)dµ+
∫

Ω\F

v : A(m + v)dµ

=
∫
Ω

m : q dµ+0

= m :
∫
Ω

q dµ ,

and then

A0m =
∫
Ω

q dµ .

From the definition of the space X we have that for each v ∈ X there exists a sequence {vδ}δ>0

in V 2
pot(Ω) such that

lim
δ→0

∫
Ω\F

|v − vδ|2 dµ= 0.

For a typical point ω ∈Ω, let us set

vε(x) = v(Ty (ω)) ,

vε,δ(x) = vδ(Ty (ω)) ,

qε(x) = A(m + v(Ty (ω)))′ ,

where we have used the change of variable y = x/ε. Note that vε is defined only on Rd \Qε,

since v is the solution of (5.17). By construction we have that

∇× vε,δ = 0, lim
δ→0

lim
ε→0

∫
Dε

|vε− vε,δ|2 dx = 0, (5.19)

qε|Qε = 0,
∂

∂x j
qεi j = 0 in Rd ,∀i = 1, . . . ,d , (5.20)

qε*
∫
Ω

q dµ= A0m weakly in (L2(D))d×d .
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Let pε = 1Rd \Qε Ae(ûε) so that (5.15) can be rewritten as∫
D

pε : e(v)dx =
∫
D

1Rd \Qεf ·vdx +
∫
Γ2

h ·vds ∀v ∈ (C∞
Γ1

(D))d . (5.21)

Taking the limit ε→ 0 in (5.21) and using (5.14) we obtain∫
D

p0 : e(v)dx =
∫
D

θf ·vdx +
∫
Γ2

h ·vds ∀v ∈ (C∞
Γ1

(D))d .

In order to obtain (5.16), it remains to show that p0 = A0e(u0). To do so let us define

zε = pε : (m + vε)′ ,

where (m+vε)′ is the zero extension of m+vε to the whole Rd . Note that due to the symmetry

of A we have that

zε = pε : (m + vε)′

= 1Rd \Qε Ae(ûε) : (m + vε)′

= 1Rd \Qεe(ûε) : 1Rd \Qε A(m + vε)′

= 1Rd \Qεe(ûε) : qε . (5.22)

In what follows we prove that

lim
ε→0

∫
D

ϕzεdx =
∫
D

ϕp0 : m dx =
∫
D

ϕA0e(u0) : m dx ∀ϕ ∈C∞
0 (D) , (5.23)

where C∞
0 (D) is the space of functions which are infinitely differentiable and have compact

support in D. Since C∞
0 (D) is dense in L2(D) and any matrix function in L2(D,Symd ) can be

represented as a linear combination of matrix functions φm, φ ∈ L2(D), m ∈ Symd , the two

identities in (5.23) imply the assertion of Theorem 5.2.2. Let us start by noticing that∫
D

ϕzεdx = I ε1 + I ε2 + I ε3 ,

where

I ε1 =
∫
D

ϕpε : m dx ,

I ε2 =
∫
D

ϕpε : vε,δdx ,

I ε3 =
∫
D

ϕpε : ((vε)′− vε,δ)dx ,
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and (vε)′ is the zero extension of vε to the whole D. Since pε* p0 weakly in (L2(D))d×d we

have that

lim
ε→0

I ε1 =
∫
D

ϕp0 : m dx .

Let us consider vε,δ for a fixed δ> 0. Let us recall that vε,δ(x) = vδ(Ty (ω)), y = x/ε, for a typical

point ω ∈ Ω, and that vδ ∈ V 2
pot(Ω). Therefore vε,δ is a potential tensor field in Rd , and by

Theorem 5.1.1

vε,δ*

∫
Ω

vδdµ= 0 weakly in (L2
loc(Rd ))d×d .

Since vε,δ is a potential tensor field, there exists a vector field wε such that vε,δ = e(wε). In

particular, we can choose wε such that ∫
D̃

wεdx = 0,

where D̃ is a set containing D . Then from Poincaré inequality and Korn’s inequality we obtain

that

‖wε‖L2(D̃) ≤C‖∇wε‖L2(D̃) ≤C‖e(wε)‖L2(D̃) ,

and hence the sequence {wε}ε>0 is bounded in (H 1(D̃))d . By definition wε * 0 weakly in

(H 1(D̃))d , and hence by Sobolev embedding theorem

lim
ε→0

‖wε‖L2(D̃) = 0. (5.24)

Thus

I ε2 =
∫
D

ϕpε : e(wε)dx

=
∫
D

pε : e(ϕwε)dx − 1

2

∫
D

pε : (wε(∇ϕ)>+∇ϕ(wε)>)dx

=
∫
D

f ·ϕwεdx +
∫
Γ2

h ·ϕwεds − 1

2

∫
D

pε : (wε(∇ϕ)>+∇ϕ(wε)>)dx ,

which, because of (5.24), converges to zero as ε→ 0. Finally we have that

I ε3 =
∫

Dε

ϕpε : (vε− vε,δ)dx

≤ ‖ϕ‖L∞(Dε)‖pε‖L2(Dε)‖vε− vε,δ‖L2(Dε)

≤C‖vε− vε,δ‖L2(Dε) ,
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and thus by (5.19)

lim
δ→0

lim
ε→0

I ε3 = 0.

Hence, the first identity in (5.23) is proved. Note that from (5.22) we have that∫
D

ϕzεdx =
∫
D

ϕ1Rd \Qεe(ûε) : qεdx

=
∫

Dε

ϕe(ûε) : qεdx .

Using integration by parts, by (5.20) and the fact that ϕ= 0 on ∂D , we have that∫
D

ϕzεdx =−
∫

Dε

qεûε ·∇ϕdx

=−
∫
D

qε1Rd \Qε ûε ·∇ϕdx ,

for any ϕ ∈C∞
0 (D). Hence we have

−
∫
D

qε1Rd \Qε ûε ·∇ϕdx =−
∫
D

θ−1 A0m 1Rd \Qε ûε ·∇ϕdx −
∫
D

(qε−θ−1 A0m)1Rd \Qε ûε ·∇ϕdx .

Passing to the limit as ε→ 0, we get

lim
ε→0

∫
D

ϕzεdx =−
∫
D

A0m u0 ·∇ϕdx − lim
ε→0

∫
D

1Rd \Qε(qε−θ−1 A0m)ûε ·∇ϕdx .

By assumption,

ûε
i
∂ϕ

∂x j
∈C∞

0 (D) , ∀i , j = 1, . . . ,d .

Moreover by noticing that 1Ω\F q = q , from Theorem 5.1.1 we have that∫
Ω

1Ω\F (q(ω)−θ−1 A0m)dµ= 0.

Therefore, by Lemma 5.2.1 we can conclude that

lim
ε→0

∫
D

1Rd \Qε(qε−θ−1 A0m)ûε ·∇ϕdx = 0.

113



Chapter 5. Homogenization and multiscale methods for linear elasticity problems in
random perforated domains

Hence, we have obtained that∫
D

ϕp0 : m dx =−
∫
D

A0m u0 ·∇ϕdx

=
∫
D

ϕe(u0) : A0m dx

=
∫
D

ϕA0e(u0) : m dx ,

which concludes the proof.

Remark 5.2.3. In case of more complex boundary conditions, as non-homogeneous Dirichlet

or periodic, the assertion of Theorem 5.2.2 is still valid. For example if ûε = g on Γ1, g ∈
(H 1/2(Γ1))d , then Theorem 5.2.2 still holds and u0 = g on Γ1. See [63] for example.

Remark 5.2.4. It is possible to verify that the assumptions of Theorem 5.2.2 hold for the

problem (5.9) using Korn’s inequality and a method based on extension properties [51, 63, 35].

Using extension properties we obtain that the weak solution uε to (5.9) is bounded in the norm

‖ ·‖H 1(Dε) uniformly with respect to ε, and that there exists an extension ûε such that

‖ûε‖H 1(D) ≤C ,

where C is independent of ε. Hence we can extract a subsequence {ûε}ε>0 which admits a

weak limit in (H 1(D))d . Note that the sequence of extensions {1Rd \Qε ûε}ε>0 converges to θu0

weakly in (L2(D))d . Hence, given the sequence of weak solutions {uε}ε>0, we can conclude by

straightforward calculations that there exists a sequence of extensions {ûε}ε>0 such that

ûε*u0 weakly in (H 1(D))d .

5.2.3 Computable approximation of the effective tensor

Theorem 5.2.2 establishes that the problem (5.9) admits an effective PDE which is given

by (5.16), where the homogenized tensor is defined by (5.12). However, (5.12) is stated in an

abstract space and does not allow for a direct computational procedure. In [24] the authors

deal with the problem of approximating the coefficients of a homogenized tensor correspond-

ing to a multiscale tensor with random coefficients. They use a cut-off technique, where the

homogenized coefficients are computed by solving PDEs on bounded domains in Rd of size δ.

Moreover, convergence of the approximation error as δ→∞ is established for different types

of boundary conditions. The goal of this section is to extend these results in the context of

linear elasticity with multiscale random perforated domains.

Let us consider the problem (5.9). In what follows we come back to the initial hypothesis where

A is a tensor valued function, i.e., A(x) = {Ai j lm(x)}1≤i , j ,l ,m≤d , Ai j lm ∈ L∞(D). Given x ∈ Rd ,

we are interested in finding an approximation of the homogenized tensor A0(x). We introduce
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the two sets Xδ = (0,δ)d , and X ε
δ
= Xδ\(Xδ∩Qε). Note that X ε

δ
⊂Rd \Qε is a random perforated

domain of size δ, whose degree of fineness is inversely proportional to ε. We assume that X ε
δ

is connected and does not exhibit a fine grained boundary, i.e., ∂Xδ ⊂ ∂X ε
δ

. Let Y = (0,1)d . We

map Xδ into Y through the change of variable x = δy . We denote by Y δ the transformation of

X ε
δ

through the same change of variable, i.e.

Y δ = {
y ∈ Y : δy ∈ X ε

δ

}
.

Let us introduce the functions space (W (Y δ))d which, in case of periodic coupling, is defined

as

(W (Y δ))d = (W 1
per(Y δ))d =

z ∈ (H 1
per(Y δ))d :

∫
Y δ

zi dy = 0, i = 1, . . . ,d

 ,

where (H 1
per(Y δ))d is the closure of (C∞

per(Y ))d for the H 1(Y δ)-norm. We recall that the quantity

‖z‖W 1
per(Y δ) =

 ∫
Y δ

|e(z)|2 dy

1/2

defines a norm for (W 1
per(Y δ))d . Otherwise in case of Dirichlet coupling we set

(W (Y δ))d = (H 1
∂Y (Y δ))d ,

where (H 1
∂Y (Y δ))d denotes the space of functions in (H 1(Y δ))d which vanish on ∂Y but not

necessarily on the boundary of the interior holes. Let χδ,l m(x, ·) ∈ (W (Y δ))d be the unique

solution to∫
Y δ

A(x)ey (χδ,lm) : ey (z)dy =−
∫

Y δ

A(x)ey (I l m) : ey (z)dy ∀z ∈ (W (Y δ))d , (5.25)

where I lm = {I l m
p }1≤p≤d is a function given by

I lm
p = ymδpl , δpl is the Kronecker symbol .

Note that problem (5.25) is well-posed. Well-posedness is obtained by using extension proper-

ties (see Remark 5.2.4), Lax-Milgram theorem and Korn’s inequality, i.e.,

‖∇z‖L2(Y δ) ≤C

 ∫
Y δ

|ey (z)|2 dy

1/2

.
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We approximate the coefficients of the homogenized tensor as

Ã0
i j lm(x) =

∫
Y δ

A(x)ey (χδ,lm + I lm) : ey (I i j )dy . (5.26)

Let wδ,lm =χδ,lm + I l m , hence

Ã0
i j lm(x) =

∫
Y δ

A(x)ey (wδ,lm) : ey (I i j )dy .

Note that wδ,lm satisfies wδ,lm − I lm ∈ (W (Y δ))d ,∫
Y δ

A(x)ey (wδ,lm) : ey (z)dy = 0 ∀z ∈ (W (Y δ))d .

Theorem 5.2.5. Consider an open bounded domain D ⊂Rd , d ≤ 3. Consider the problem (5.9),

where A(x) = {Ai j lm(x)}1≤i , j ,l ,m≤d , Ai j lm ∈ L∞(D), and A satisfies (5.2), (5.3), (5.4). Let x ∈ D,

and consider the tensor Ã0(x) defined by (5.26). Then Ã0(x) → A0(x) a.s. as δ→∞, where A0(x)

is the value in x of the homogenized tensor associated to problem (5.9).

Proof. Let us consider the case where (W (Y δ))d = (W 1
per(Y δ))d . The problems (5.25) are well-

posed and the solutions χδ,lm are bounded in (H 1(Y δ))d independently of δ for almost all

ω ∈Ω, and so are the functions wδ,lm . Let us denote by (wδ,l m)′ and (ey (wδ,l m))′ the zero

extensions in Y of wδ,lm and ey (wδ,l m) respectively. Hence the sequences {(wδ,l m)′}δ>0 and

{A(ey (wδ,l m))′}δ>0 are bounded in (L2(Y ))d and (L2(Y ))d×d respectively, and therefore admit

a.s. a weak limit. Let us denote by θw∞,lm and p∞ their weak limits. From Theorem 5.2.2

we have that p∞ = A0(x)ey (w∞,l m) where w∞,l m satisfies the problem: find w∞,l m such that

w∞,l m − I l m ∈ (W 1
per(Y ))d and∫

Y

A0(x)ey (w∞,l m) : ey (z)dy = 0 ∀z ∈ (W 1
per(Y ))d . (5.27)

Note that (5.27) is equivalent in finding χ∞,lm ∈ (W 1
per(Y ))d such that∫

Y

A0(x)ey (χ∞,lm) : ey (z)dy =−
∫
Y

A0(x)ey (I lm) : ey (z)dy ∀z ∈ (W 1
per(Y ))d . (5.28)

The problem (5.28) is well-posed, and the solution χ∞,lm is unique. In particular, the only
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χ∞,lm ∈ (W 1
per(Y ))d such that (5.28) is satisfied is χ∞,lm = 0. We have then that

lim
δ→∞

Ã0
i j lm(x) = lim

δ→∞

∫
Y δ

A(x)ey (wδ,l m) : ey (I i j )dy

= lim
δ→∞

∫
Y

A(x)(ey (wδ,l m))′ : ey (I i j )dy

=
∫
Y

A0(x)ey (w∞,l m) : ey (I i j )dy

=
∫
Y

A0(x)ey (χ∞,lm + I lm) : ey (I i j )dy

= A0
i j lm(x) .

This complete the proof in the case where (W (Y δ))d = (W 1
per(Y δ))d . The assertion of Theo-

rem 5.2.5 in the case of Dirichlet coupling can be proved in a similar way.

5.3 Numerical homogenization of multiscale linear elasticity prob-

lems in random perforated domains

This section is devoted to illustrating the numerical procedure to approximate the solution

of problem (5.16) by relying only on data defining the fine scale problem. We recall that the

analysis of the HMM in periodic perforated domains has been addressed in [61]. We extend

the FE-HMM defined in Chapter 2 to the context of linear elasticity with random perforated

domains. This is carried out in the first part of this section. Later we will apply model order

reduction to speed up the computational procedure. In what follows we will take (5.9) as a

model problem and hence we will describe and analyze the numerical method for mixed

boundary conditions.

5.3.1 FE-HMM in linear elasticity with random perforated domains

To describe the FE-HMM and the RB-FE-HMM in the context of linear elasticity we follow the

framework introduced in Chapter 2. Let us consider the problem (5.9) and assume that D is a

convex polygon. Let us define the macro finite element space

Sl
Γ1

(D,TH ) =
{

vH ∈ (H 1
Γ1

(D))d : vH |K ∈ (P l (K ))d ,∀K ∈TH

}
,

where TH is a partition of D in simplicial or quadrilateral elements K of diameter HK , and

(P l (K ))d is the space of polynomial vector fields on K of total degree at most l if K is a simpli-

cial element. Otherwise, if K is a quadrilateral element, (P l (K ))d is the space of polynomial
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vector fields of degree at most l in each variable. For a given TH we define

H = max
K∈TH

HK ,

and we allow HK to be much larger than ε. As for the scalar elliptic case, we assume TH to

be admissible and shape regular. Assume that on each macro element K ∈TH a quadrature

formula {xK j ,ωK j }J
j=1 satisfying (2.8) is given. In order to evaluate the effective tensor, which

is unknown at the macro quadrature points xK j , the solution of micro problems is required.

For each macro element K ∈TH , and for each macro quadrature point xK j , we define a micro

domain K ε
δ j

= Kδ j \(Kδ j ∩Qε), where Kδ j = xK j + (−δ/2,δ/2)d , and δ≥ ε. As usual, we assume

that for each K ∈TH and for each xK j , K ε
δ j

is connected and does not exhibit a fine grained

boundary. Hence for a micro domain K ε
δ j

we consider the micro finite element space

Sq (K ε
δ j

,Th) =
{

zh ∈ (W (K ε
δ j

))d : zh |T ∈ (P q (T ))d ,∀T ∈Th

}
,

where

(W (K ε
δ j

))d = (W 1
per(K ε

δ j
))d

in case of periodic coupling, or

(W (K ε
δ j

))d = (H 1
∂Kδ j

(K ε
δ j

))d

for Dirichlet coupling. We introduce the bilinear form

BH (vH ,wH ) = ∑
K∈TH

J∑
j=1

ωK j

|Kδ j |
∫

K ε
δ j

A(x)e(vh
K j

) : e(wh
K j

)dx , (5.29)

where vh
K j

(respectively wh
K j

) denotes the solution to the micro problem: find vh
K j

such that

vh
K j

−vH
lin, j ∈ Sq (K ε

δ j
,Th) and

∫
K ε
δ j

A(x)e(vh
K j

) : e(zh)dx = 0 ∀zh ∈ Sq (K ε
δ j

,Th) ,

where vH
lin, j (x) = vH (xK j )+ (x −xK j )e(vH )K j , where e(vH )K j = e(vH )(xK j ). Finally, the FE-HMM

solution to problem (5.9) is given by uH ∈ Sl
Γ1

(D,TH ) such that

BH (uH ,vH ) = F (vH ) ∀vH ∈ Sl
Γ1

(D,TH ) ,
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where

F (vH ) =
∫
D

θf ·vH dx +
∫
Γ2

h ·vH ds .

Reformulation of the FE-HMM. As for the scalar elliptic problem, we can think of comput-

ing the values of the homogenized tensor during the assembly process. For each K ∈TH and

each xK j , we consider the micro problem of finding χ̂lm,h
K j

∈ Sq (K ε
δ j

,Th) such that

∫
K ε
δ j

A(x)e(χ̂lm,h
K j

) : e(zh)dx =−
∫

K ε
δ j

A(x)e(I lm) : e(zh)dx ∀zh ∈ Sq (K ε
δ j

,Th) , (5.30)

where I lm
p = xmδpl and δpl is the Kronecker symbol. By solving (5.30) we can then approxi-

mate the coefficients of the homogenized tensor as

A0,h
i j lm(xK j ) = 1

|Kδ j |
∫

K ε
δ j

A(x)e(χ̂lm,h
K j

+ I lm) : e(I i j )dx . (5.31)

Thus, we have an equivalent expression for (5.29) which reads

BH (vH ,wH ) = ∑
K∈TH

J∑
j=1

ωK j A0,h(xK j )e(vH )K j : e(wH )K j .

Having to solve (5.30) for each K ∈ TH , and for each xK j , represents the bottleneck for the

FE-HMM. To speed up the algorithm, as for the elliptic scalar problem, we employ model

order reduction techniques to build a reduced space of micro functions which allows for

fast solutions of (5.30). The procedure is similar to the one described in Section 2.3, and is

illustrated in the next section.

5.3.2 RB-FE-HMM in linear elasticity with random perforated domains

We can note from (5.30) that each micro solution is parameterized by the macro quadrature

point xK j and the indices l ,m, 1 ≤ l ,m ≤ d . In particular, the micro problem (5.30) is defined

so that for each xK j a different micro domain K ε
δ j

is considered. Hence, (5.30) does not allow

directly for model order reduction, since in our case to build a reduced space of solutions it

is necessary that the micro functions are defined on the same domain. Hence, we consider

a generic reference perforated random domain K ε
δ
= Kδ\(Kδ∩Qε), where for example Kδ =

(−δ/2,δ/2)d . We give then a different formulation of the FE-HMM based on the bilinear form

B H (vH ,wH ) = ∑
K∈TH

J∑
j=1

ωK j A
0,h

(xK j )e(vH )K j : e(wH )K j , (5.32)
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where

A
0,h
i j lm(xK j ) = 1

|Kδ|
∫

K ε
δ

A(xK j +x)e(χlm,h
K j

+ I lm) : e(I i j )dx , (5.33)

and χlm,h
K j

∈ Sq (K ε
δ

,Th) solves

∫
K ε
δ

A(xK j +x)e(χl m,h
K j

) : e(zh)dx =−
∫

K ε
δ

A(xK j +x)e(I lm) : e(zh)dx ∀zh ∈ Sq (K ε
δ ,Th) . (5.34)

Note that Theorem 5.2.5 implies that (5.31) and (5.33) converge to the same value as δ→∞.

We denote by uH ∈ Sl
Γ1

(D,TH ) the solution to

B H (uH ,vH ) = F (vH ) ∀vH ∈ Sl
Γ1

(D,TH ) .

Note that by (5.34) all the micro problems are defined on the same micro domain. However,

each solution depends on the macro quadrature point xK j , so the solution of multiple micro

problems is still required.

Parameterized micro problems. We map Kδ into Y = (0,1)d through the change of variable

x = δ(y −1/2). We denote by Y δ the transformation of K ε
δ

under the same change of variable.

Hence, for each K ∈TH and each xK j , we consider the problem of finding χlm,ĥ
K j

∈ Sq (Y δ,Tĥ)

such that∫
Y δ

AxK j
(y)e(χl m,ĥ

K j
) : e(zĥ)dy =−

∫
Y δ

AxK j
(y)e(I l m) : e(zĥ)dy ∀zĥ ∈ Sq (Y δ,Tĥ) , (5.35)

where I lm
p = ymδpl , δpl is the Kronecker symbol and ĥ = h/δ. Note that we have used the

notation AxK j
(y) = A(GxK j

(y)), x =GxK j
(y) = xK j +δ(y −1/2). Consequently we approximate

the coefficients of the homogenized tensor as

A
0,h
i j lm(xK j ) =

∫
Y δ

AxK j
(y)e(χlm,ĥ

K j
+ I lm) : e(I i j )dy .

We assemble a reduced space of micro functions by using a greedy procedure. We define

the space of parameters Ξ = D × {1, . . . ,d}2. Given an element ξ = (x, l ,m) ∈ Ξ, we denote

the corresponding micro function as χĥ
ξ

which satisfies the weak problem of finding χĥ
ξ
∈

Sq (Y δ,Tĥ) such that

bδ(χĥ
ξ ,zĥ ;ξ) = fδ(zĥ ;ξ) ∀zĥ ∈ Sq (Y δ,Tĥ) , (5.36)
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where

bδ(zĥ ,wĥ ;ξ) =
∫

Y δ

Ax (y)e(zĥ) : e(wĥ)dy ,

and

fδ(zĥ ;ξ) =−bδ(I l m ,zĥ ;ξ) .

Offline stage. In the offline stage we build the reduced space of micro functions

SN (Y δ) = span
{
ψĥ

1 , . . . ,ψĥ
N

}
,

where N ¿ dim(Sq (Y δ,Tĥ)). Hence, given the reduced space SN (Y δ) and a ξ ∈ Ξ we can

obtain a RB approximation of the problem (5.36) by finding χN
ξ
∈ SN (Y δ) such that

bδ(χN
ξ ,ψĥ

i ;ξ) = fδ(ψĥ
i ;ξ) ∀ i = 1, . . . , N . (5.37)

As in Section 2.3, we remark that an affine representation of the tensor Ax (y) such as

Ax (y) =
Q∑

q=1
Θq (x)Aq (y) ∀y ∈ Y ,

whereΘq : D →R, is necessary for the efficiency of the method, otherwise we can appeal to the

empirical interpolation method (EIM). Indeed, thanks to the affine representation of Ax (y), it

is possible to perform fast estimations of the a posteriori error. For a given ξ ∈Ξ, let us define

the error

êN
ξ =χN

ξ −χĥ
ξ ,

where χN
ξ

is the solution of (5.37), and χĥ
ξ

is the solution of (5.36). From (5.36) we have that

bδ(êN
ξ ,zĥ ;ξ) = bδ(χN

ξ ,zĥ ;ξ)+ fδ(zĥ ;ξ) ∀zĥ ∈ Sq (Y δ,Tĥ) ,

and hence by Riesz’s theorem we know the existence of a unique eN
ξ ∈ Sq (Y δ,Tĥ) such that

〈eN
ξ ,zĥ〉W (Y δ) = bδ(êN

ξ ,zĥ ;ξ) ∀zĥ ∈ Sq (Y δ,Tĥ) , (5.38)

where 〈·, ·〉W (Y δ), defined as

〈z,w〉W (Y δ) =
∫

Y δ

e(z) : e(w)dy ,
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denotes the inner product in the space (W (Y δ))d . We remark that the error estimate eN
ξ can

be computed very efficiently, since the affine representation of the tensor Ax (y) allows to

decompose the right hand side of (5.38) into several parameter independent bilinear forms,

which can be precomputed. Finally, the a posteriori error estimate is defined as

∆N
ξ =

‖eN
ξ ‖W (Y δ)p
αLB

,

where αLB is a lower bound for the coercivity constant of the bilinear form bδ(·, ·; ·).

Next, we summarize the list of operations to perform the greedy offline stage. Input parameters

are NTrain (the size of the training set), tolRB (a prescribed tolerance used as stopping criterion),

and NRB (the maximum number of reduced basis functions allowed).

1. Randomly define (by a Monte Carlo method for example) the training set ΞTrain ⊂Ξ

ΞTrain = {ξi = (xi , li ,mi ) : 1 ≤ i ≤ NTrain , xi ∈ D ,1 ≤ li ,mi ≤ d} .

2. Select randomly one element from ΞTrain, i.e. ξ1, and compute χĥ
ξ1

such that

bδ(χĥ
ξ1

,zĥ ;ξ1) =− fδ(zĥ ;ξ1) ∀zĥ ∈ Sq (Y δ,Tĥ) .

Set

ψĥ
1 =

χĥ
ξ1

‖χĥ
ξ1
‖W (Y δ)

,

and initialize the space as S1(Y δ) = span
{
ψĥ

1

}
.

3. For 2 ≤ j ≤ NRB perform the following steps.

(a) For each ξi ∈ΞTrain compute the corresponding micro function χ j−1
ξi

∈ S j−1(Y δ) by

solving

bδ(χ j−1
ξi

,ψĥ
k ;ξi ) =− fδ(ψĥ

k ;ξi ) ∀k = 1, . . . , j −1,

and the corresponding residual ∆ j−1
ξi

.

(b) Select the new reduced basis by choosing

ξ j = max
ξi∈ΞTrain

∆
j−1
ξi

.

(c) If (∆ j−1
ξ j

)2 < tolRB the algorithm ends, otherwise compute χĥ
ξ j

such that

bδ(χĥ
ξ j

,zĥ ;ξ j ) =− fδ(zĥ ;ξ j ) ∀zĥ ∈ Sq (Y δ,Tĥ) .
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Set

ψĥ
j =

R ĥ
j

‖R ĥ
j ‖W (Y δ)

,

where

R ĥ
j =χĥ

ξ j
−

j−1∑
k=1

〈χĥ
ξ j

,ψĥ
k 〉W (Y δ)ψ

ĥ
k .

(d) S j (Y δ) = S j−1(Y δ)∪ span
{
ψĥ

j

}
.

Online stage. Based on the reduced space SN (Y δ), we define the new macro bilinear form

BH ,RB(vH ,wH ) = ∑
K∈TH

J∑
j=1

ωK j A0,N (xK j )e(vH )K j : e(wH )K j , (5.39)

where

A0,N
i j lm =

∫
Y δ

AxK j
(y)e(χlm,N

K j
+ I lm) : e(I i j )dy ,

and χlm,N
K j

is the solution of (5.35) computed in the reduced space SN (Y δ). In particular given

ξ= (x, l ,m) ∈Ξ, we look for χN
ξ
∈ SN (Y δ) such that∫

Y δ

Ax (y)e(χN
ξ ) : e(ψĥ

i )dy =−
∫

Y δ

Ax (y)e(I l m) : e(ψĥ
i )dy ∀ i = 1, . . . , N . (5.40)

Note that χN
ξ

can be represented as

χN
ξ =

N∑
i=1

aiψ
ĥ
i ,

where ai ∈R, 1 ≤ i ≤ N . Thanks to the affine representation of the tensor Ax (y), solving (5.40)

is equal to finding (a1 , . . . , aN )> ∈RN such that

Q∑
q=1

N∑
i=1

Θq (x)ai

∫
Y δ

Aq (y)e(ψĥ
i ) : e(ψĥ

i ′)dy =−
Q∑

q=1

∫
Y δ

Aq (y)e(I lm) : e(ψĥ
i ′)dy ∀ i ′ = 1, . . . , N ,

(5.41)
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where the integrals in (5.41) are parameter independent and then can be precomputed. Finally,

we retrieve the macro solution by finding uH ,RB ∈ Sl
Γ1

(D,TH ) such that

BH ,RB(uH ,RB,vH ) = F (vH ) ∀vH ∈ Sl
Γ1

(D,TH ) .

A priori error analysis. We give a priori error estimates for the error between the exact

homogenized solution to (5.16), i.e. u0, and its numerical approximation uH ,RB obtained by

means of the RB-FE-HMM. We decompose the global error into four different parts, and we

consider each source of error separately. Let us consider u0,H which is the FEM approximation

of problem (5.16), under the assumption that we know the exact homogenized tensor. The

FEM approximation is defined as the unique u0,H ∈ Sl
Γ1

(D,TH ) such that

B0,H (u0,H ,vH ) = F (vH ) ∀vH ∈ Sl
Γ1

(D,TH ) ,

where

B0,H (vH ,wH ) = ∑
K∈TH

J∑
j=1

ωK j A0(xK j )e(vH )K j : e(wH )K j . (5.42)

Let us introduce also the bilinear form

B̃H (vH ,wH ) = ∑
K∈TH

J∑
j=1

ωK j Ã0(xK j )e(vH )K j : e(wH )K j , (5.43)

where the coefficients of Ã0 are computed as in (5.33) with the difference that the micro

functions χlm,h
K j

solving (5.34) are replaced by the exact solutions χl m
K j

∈ (W (K ε
δ

))d . The corre-

sponding macro solution is ũH ∈ Sl
Γ1

(D,TH ) such that

B̃H (ũH ,vH ) = F (vH ) ∀vH ∈ Sl
Γ1

(D,TH ) .

Using the triangle inequality we split the global error as

‖u0 −uH ,RB‖H 1(D) ≤ ‖emac‖H 1(D) +‖emod‖H 1(D) +‖emic‖H 1(D) +‖eRB‖H 1(D) ,

where

emac = u0 −u0,H , emod = u0,H − ũH , emic = ũH −uH , eRB = uH −uH ,RB .

The macro error emac can be bounded using standard FEM error estimates. By assuming

u0 ∈ (H l+1(D))d and A0
i j lm ∈W l+1,∞(D), 1 ≤ i , j , l ,m ≤ d , we obtain that

‖u0 −uH ,RB‖H 1(D) ≤C H l +‖emod‖H 1(D) +‖emic‖H 1(D) +‖eRB‖H 1(D) ,
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where C is a generic constant independent of H , h, ε and δ. Moreover from (5.32), (5.39),

(5.42), (5.43) and the well-posedness of problem (5.16), we obtain the following bounds for

emod, emic, and eRB:

‖emod‖H 1(D) ≤C sup
K∈TH

sup
1≤ j≤J

sup
1≤l ,m,s,t≤d

|A0
lmst (xK j )− Ã0

l mst (xK j )| ,

‖emic‖H 1(D) ≤C sup
K∈TH

sup
1≤ j≤J

sup
1≤l ,m,s,t≤d

|Ã0
lmst (xK j )− A

0,h
lmst (xK j )| ,

‖eRB‖H 1(D) ≤C sup
K∈TH

sup
1≤ j≤J

sup
1≤l ,m,s,t≤d

|A0,h
lmst (xK j )− A0,N

lmst (xK j )| .

To estimate emic some sufficient regularity of the micro solutions χlm
K j

is required. In particular

we assume that χlm
K j

∈ (H q+1(K ε
δ

))d and that

|χl m
K j

|H q+1(K ε
δ

) ≤Cε−q
√

|Kδ| ,

where C is independent of K , j , ε and δ (see Remark 4.6 in [11] for a justification of this

assumption). Then, for both periodic and Dirichlet coupling it can be proved that

‖emic‖H 1(D) ≤C

(
h

ε

)2q

.

The quantity eRB can be bounded by the decay of the Kolmogorov N -width of M (Y δ,Tĥ)

(see Section 2.3.2). A priori error estimates of the Kolmogorov N -with of the micro solutions

manifold are not available in general. However, exponential decay is often observed in practice.

For what concerns the modeling error emod, if the perforated domain is periodic and the slow

variable of the tensor A is collocated at the macro quadrature points, following [1, 48] we get

‖emod‖H 1(D) = 0 if (W (K ε
δ))d = (W 1

per(K ε
δ))d and

δ

ε
∈N ,

‖emod‖H 1(D) ≤C
ε

δ
if (W (K ε

δ))d = (H 1
∂Kδ

(K ε
δ))d and δ> ε .

On the other hand, explicit error estimates for the case of random perforated domains are not

available. However, we can rely on Theorem 5.2.5 to conclude that, if we collocate the slow

variable of the tensor at the macro quadrature points, we have that

‖emod‖H 1(D) → 0 a.s. as δ→∞ .

5.4 Numerical experiments

In this last section we present some numerical experiments to verify the theoretical findings

about our proposed numerical method and demonstrate its efficiency. We consider a three

dimensional beam with length l1 = 500mm, height l2 = 100mm, and thickness l2 = 10mm.

We assume the material under plane stress condition, so that a two dimensional model is
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l1

l2

h

Figure 5.3: Geometry and boundary conditions for the numerical experiment.

considered. We apply a vertical load on the upper edge equal to h = (0,−50)N/mm2, while the

displacement on left edge of the beam is constrained to zero, as sketched in Figure 5.3. We

consider an orthotropic fourth-order tensor, so that

A1111 = E1

1−ν12ν21
,

A1122 = E1ν21

1−ν12ν21
,

A2222 = E2

1−ν12ν21
,

A1212 =G12 ,

A1112 = A2212 = 0,

where Ei is the Young’s modulus along the axis i , νi j is the Poisson’s ratio that corresponds

to a contraction in direction j when an extension is applied in direction i , and Gi j is the

shear modulus in direction j on the plane whose normal is in direction i . We let these elastic

properties vary with respect to the space variable x as

E1(x) = 100000+ 1

2
x2

1 +50x2 [N/mm2] ,

E2(x) = 40000+2x2
2 +

1

2
x1x2 [N/mm2] ,

ν12(x) = 0.3,

ν21(x) = E2(x)

E1(x)
ν12(x) ,

G12(x) = 50000+ 1

2
x1x2 [N/mm2] .

5.4.1 The periodic case

We start by considering the case where the beam exhibits circular holes which appear periodi-

cally in the medium, as sketched in Figure 5.3. The set Q =Q(ω) is obtained by following the

description of the first example of random set given in Section 5.2.1 by using as radius r = 1/4.
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Figure 5.4: Micro reference cell for the periodic perforated domain.

Hence the multiscale random set is obtained by considering the homothetic transformation

of Q with ratio ε. The perforated reference cell looks like the one depicted in Figure 5.4. We fix

δ= ε. Note that for this choice of δ the modeling error vanishes, since we are considering a

periodic medium and we collocate the tensor at the macro quadrature points. We perform

some numerical experiments to observe how the error behaves accordingly to the macro and

the micro discretization considered, and the number of reduced basis functions used in the

online stage. In particular, we use piecewise linear simplicial elements for both macro and

micro finite element spaces. The numerical error can be decomposed as

‖u0 −uH ,RB‖H 1(D) ≤ ‖emac‖H 1(D) +‖emic‖H 1(D) +‖eRB‖H 1(D) ,

where

emac = u0 −u0,H ,

emic = u0,H −uH ,

eRB = uH −uH ,RB .

Since we do not dispose of the functions u0, u0,H , uH , we approximate them as follows (see

also Table 5.1 for a summary).

1. uH is approximated using the RB-FE-HMM with the complete reduced space SNmax (Y δ),

where Nmax = 52, but with the same macro and micro mesh used to compute uH ,RB.

2. u0,H is approximated using the RB-FE-HMM with the complete reduced space SNmax (Y δ),

where Nmax = 52, the finest micro mesh containing approximately 10000 micro elements,

but with the same macro mesh used to compute uH ,RB.

3. u0 is approximated using the RB-FE-HMM with the complete reduced space SNmax (Y δ),

where Nmax = 52, the finest micro mesh containing approximately 10000 micro elements,

and the finest macro mesh containing 40960 macro elements.

Periodic case: coarse micro mesh and small RB space. We perform a first experiment

where we compute the solution uH ,RB for four different macro discretizations, which are

structured triangulations of the geometry depicted in Figure 5.3, possessing respectively 160,

640, 2560, and 10240 macro elements, while we adopt as micro mesh the one depicted in
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uH ,RB u0 u0,H uH

El smac (El smac)max El smac El smac

El smic (El smic)max (El smic)max El smic

N Nmax Nmax Nmax

Table 5.1: Details about how the different functions u0, u0,H , uH are computed. Given a macro
(resp. micro) discretization we denote by El smac (resp. El smic) the corresponding number
of macro (resp. micro) elements. In particular (El smac)max = 40960, (El smic)max ≈ 10000,
Nmax = 52.

Figure 5.5, which possesses approximately 150 micro elements. The micro problems are solved

online by using a reduced space consisting of only N = 5 basis functions. In Figure 5.5 we

show the decay of the a posteriori error estimate as we increase N . The relative errors for both

L2(D)-norm and H 1(D)-seminorm are shown in Figure 5.6. We can observe how the micro

error becomes soon dominant, while the one due to the reduced basis approach is already

small, even with only N = 5 basis function.

0 20 40 60
10

-6

10
-4

10
-2

10
0

Figure 5.5: Micro triangulation used for the first numerical experiment, and decay of the a
posteriori error estimate.

Periodic case: refined micro mesh and small RB space. We perform the same numerical

experiment, but this time we use a finer micro discretization, which possesses approximately

600 micro elements, depicted in Figure 5.7 together with the decay of the a posteriori error

estimate due to the reduced basis approach. In particular we can observe that the decay of the

reduced basis error is not affected by the finer discretization. The number of reduced basis

functions used in the online stage is still equal to 5. Numerical errors are shown in Figure 5.8.

We can observe that the micro error decreases, but is still the main reason for saturation of the

global error.
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Figure 5.6: L2(D)-norm and H 1(D)-seminorm of relative errors for El smic ≈ 150 and N = 5.
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Figure 5.7: Micro triangulation used for the second numerical experiment, and decay of the a
posteriori error estimate.

Periodic case: highly refined micro mesh and small RB space. We refine further the micro

discretization, so composed now by approximately 2500 triangles, as depicted in Figure 5.9.

For N = 5 reduced basis for the online computation, we can observe in Figure 5.10 how now

the micro error has a magnitude comparable to the one associated to the reduced basis error.

In particular, we have no saturation of the global error. Finally, in Figure 5.11 we show

the horizontal and the vertical displacement obtained by means of the RB-FE-HMM, using

the finest macro and micro meshes (40960 macro elements and approximately 10000 micro

elements), and a reduced space consisting of 52 basis functions. In Figure 5.12 instead we

show the stresses σ11, σ22, σ12 together with the deformed geometry.
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Figure 5.8: L2(D)-norm and H 1(D)-seminorm of the relative errors for El smic ≈ 600 and N = 5.
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Figure 5.9: Micro triangulation used for the third numerical experiment, and decay of the a
posteriori error estimate.

5.4.2 The random case

Now we consider the case of random perforated domains. We assume that the holes are ellipses

in R2, whose axes and angle of rotation are random variables. The construction of the random

domain Q(ω) is described in the second example of Section 5.2.1. In particular, we assume

the major and the minor axes are uniformly distributed in the interval [1/8,3/8], while each

ellipse can rotate of an angle uniformly distributed between 0 and π. Once Q is assembled

we consider its homothetic transformation with ratio ε to define the multiscale medium.

Since we are no more in the periodic framework, we have to deal with an additional source of

error when approximating the homogenized solution u0. We have described in Section 5.2.3

how to approximate the homogenized tensor for perforated random domains, and we have
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Figure 5.10: L2(D)-norm and H 1(D)-seminorm of the relative errors for El smic ≈ 2500 and
N = 5.

Horizontal displacement [mm]. Vertical displacement [mm].

Figure 5.11: Displacement uH ,RB obtained with the finest macro and micro meshes, and
reduced space of 52 basis functions.

σ11 [N/mm2]. σ22 [N/mm2].

σ12 [N/mm2].

Figure 5.12: Stresses σi j obtained with the finest macro and micro meshes, and reduced space
of 52 basis functions.
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δ= ε. δ= 3ε. δ= 5ε.

Figure 5.13: Sample of micro domains for different values of δ.

proved that the approximation improves as the micro cell’s size δ→∞. We consider then

three different micro reference cells for δ = {ε ,3ε ,5ε}, and we observe how the numerical

error behaves as δ increases. To this end, we will consider a relatively fine micro mesh, and

a large number of reduced basis functions, so that the dominant numerical error will be the

modeling error proportional to δ. Let us denote by uH ,RB the approximated homogenized

solution obtained by means of the RB-FE-HMM. The global error can be decomposed as

‖u0 −uH ,RB‖H 1(D) ≤ ‖emac‖H 1(D) +‖emod‖H 1(D) +‖emic‖H 1(D) +‖eRB‖H 1(D) ,

where

emac = u0 −u0,H ,

emod = u0,H − ũH ,

emic = ũH −uH ,

eRB = uH −uH ,RB .

From Section 5.2.3 we know that ‖emod‖H 1(D) should converge to zero a.s. as δ → ∞. In

Figure 5.13 are shown three samples of micro domains for δ= {ε,3ε,5ε}.

Since we do not dispose of the functions u0, u0,H , ũH , uH we approximate them as follows

(see also Table 5.2 for a summary).

1. uH is approximated using the RB-FE-HMM with the same δ used to compute uH ,RB.

The complete reduced space SNmax (Y δ) for the particular choice of δ is used, while the

same macro and micro meshes used to compute uH ,RB are employed.

2. ũH is approximated using the RB-FE-HMM with the same δ used to compute uH ,RB. The

complete reduced space SNmax (Y δ) for the particular choice of δ is used, while the same

macro mesh used to compute uH ,RB is employed. The micro discretization is given by

the finest mesh for the particular choice of δ, i.e., the micro mesh possesses the highest

ratio (approximately equal to 5000) between the number of micro elements and (δ/ε)2.

3. u0,H is approximated using the RB-FE-HMM with the highest δ (δmax = 7ε). The com-

plete reduced space SNmax (Y δ) for the choice δ = δmax is used, while the same macro
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mesh used to compute uH ,RB is employed. The micro discretization is given by the

finest mesh for the choice δ = δmax, i.e., the micro mesh possesses the highest ratio

(approximately equal to 5000) between the number of micro elements and (δ/ε)2.

4. u0 is approximated using the RB-FE-HMM with the highest δ (δmax = 7ε). The com-

plete reduced space SNmax (Y δ) for the choice δ= δmax is used. The finest macro mesh

containing 40960 macro elements is employed. The micro discretization is given by

the finest mesh for the choice δ= δmax, i.e., the micro mesh possesses the highest ratio

(approximately equal to 5000) between the number of micro elements and (δ/ε)2.

uH ,RB u0 u0,H ũH uH

El smac (El smac)max El smac El smac El smac

δ δmax δmax δ δ(
El smic

(δ/ε)2

) (
El smic

(δ/ε)2

)
max

(
El smic

(δ/ε)2

)
max

(
El smic

(δ/ε)2

)
max

(
El smic

(δ/ε)2

)
N Nmax Nmax Nmax Nmax

Table 5.2: Details about how the different functions u0, u0,H , ũH , uH are computed. Given
a macro (resp. micro) discretization we denote by El smac (resp. El smic) the correspond-
ing number of macro (resp. micro) elements. In particular (El smac)max = 40960, δmax = 7ε,
(El smic/(δ/ε)2)max ≈ 5000, 56 ≤ Nmax ≤ 59 depending on δ.

Fine micro mesh, large RB space, δ= ε. We start by setting δ= ε. We solve the problem for

different macro discretizations. In particular the same structured grids used in the preceding

periodic case are considered. On the other side, the number of micro elements and the

number of reduced basis functions are fixed. In Figure 5.14 we show the micro mesh used for

this numerical test and the decay of the a posteriori reduced basis error estimate computed

during the offline stage. The micro mesh possesses about 1000 micro elements, while the

number of reduced basis is fixed to 25. The numerical errors are reported in Figure 5.15 for

both the L2(D)-norm and the H 1(D)-seminorm. We can observe that δ= ε does not represent

a good choice. The value of emod is too large, and we do not get convergence as we increase

the number of macro elements.

Fine micro mesh, large RB space, δ = 3ε. We redo the experiment with δ = 3ε. The ratio

between the number of micro elements and (δ/ε)2 is approximately the same as the one used

for δ= ε, so that the contribution of the micro error to the global error is comparable to the

one obtained in the preceding experiment. The number of reduced basis is still equal to 25.

In Figure 5.16 we show the micro mesh and the decay of the a posteriori reduced basis error

estimate. The numerical errors are reported in Figure 5.17 for both the L2(D)-norm and the

H 1(D)-seminorm. This time we can observe convergence of the global error as we increase

the number of macro elements. The modeling error is indeed lower than the one observed for

δ= 3ε. However, it is still the main reason for the saturation of the global error.
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Figure 5.14: Micro triangulation used for the numerical experiment with random perforated
domain (δ= ε), and decay of the a posteriori error estimate.

10
2

10
4

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
-8

10
-6

10
-4

10
-2

10
0

Figure 5.15: L2(D)-norm and H 1(D)-seminorm of the relative errors for δ= ε.

Fine micro mesh, large RB space, δ= 5ε. Finally, we select δ= 5ε. In Figure 5.18 we show

the micro mesh and the decay of the a posteriori reduced basis error estimate. Again the

ratio between the number of micro elements and (δ/ε)2 is approximately the same as the

one used in the previous numerical tests, and the number of reduced basis function is set

to 25. The numerical errors are reported in Figure 5.19 for both the L2(D)-norm and the

H 1(D)-seminorm. We now observe that the error due to δ is not anymore the main cause for

saturation of the global error since its magnitude is smaller than the micro error.
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Figure 5.16: Micro triangulation used for the numerical experiment with random perforated
domain (δ= 3ε), and decay of the a posteriori error estimate.
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Figure 5.17: L2(D)-norm and H 1(D)-seminorm of the relative errors for δ= 3ε.
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Figure 5.18: Micro triangulation used for the numerical experiment with random perforated
domain (δ= 5ε), and decay of the a posteriori error estimate.
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Figure 5.19: L2(D)-norm and H 1(D)-seminorm of the relative errors for δ= 5ε.
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6 Uncertainty quantification for inverse
linear elastic problems in random
perforated domains
In this chapter we consider the problem of determining elastic properties of materials which

exhibit high heterogeneity. In particular we look at random multiscale perforated domains,

and we want to recover the elastic properties characterizing the material from measurements

of the displacement uε, by using an efficient and coarse graining approach based on Bayesian

analysis, homogenization and model order reduction. In the preceding chapter we have

described how different sources of error affect our forward model: the geometry discretization,

the number of reduced basis functions, the size of the micro sampling domains. All these

errors converge asymptotically to zero as we refine the forward model. However, when solving

inverse problems, one typically needs multiple evaluations of the forward model, and therefore

highly accurate models are usually not appropriate for this scope. On the other hand, the

numerical errors propagate into the numerical posterior, and if relatively large they can lead

to overconfident or misleading predictions. In what follows we are mostly concerned with

the effect of the size of the micro sampling domain, i.e., the modeling error. We develop a

probabilistic numerical method which allows us to account for the impact of the error in the

forward solver, and gives rise to a posterior distribution which is more robust to numerical

errors and reveals the uncertainty in the approximate solution due to the numerical method.

Moreover, asymptotic convergence with respect to the size of the micro domain is preserved.

Finally, let us point out that we adopt the Einstein summation convention, i.e., we sum over

repeated indices.

Outline. The outline of the chapter is as follows. In Section 6.1 we describe the setting

of the inverse elastic problem that we will consider through the chapter. Section 6.2 is de-

voted to studying the validity of our approach. We prove existence and well-posedness of the

probabilistc effective posterior probability measure, and we provide convergence results. In

Section 6.3 we describe the numerical algorithm used to solve the inverse problem. In Sec-

tion 6.4 we illustrate through some numerical tests the efficiency of the suggested probabilistic

approach. The content of this chapter is essentially taken from [6].
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6.1 Setting of the Bayesian linear elastic inverse problem

Model problem. Let us recall the definition of multiscale random perforated domains in

Rd . Let (Ω,Σ,µ) a probability space and Tx :Ω→Ω, x ∈Rd , a dynamical system satisfying the

following properties.

1. T0 = Id, Tx1+x2 = Tx1 Tx2 , ∀x1 , x2 ∈Rd .

2. The mapping Tx :Ω→Ω preserves the measure µ onΩ, i.e. µ(Tx (F )) =µ(F ), ∀x ∈Rd ,

∀F ∈Σ.

3. For any measurable function f (ω), ω ∈Ω, the function f (Tx (ω)) defined on Ω×Rd is

also measurable.

Let us fix a measurable set F ∈ Σ and ω ∈Ω. We obtain a random stationary set Q(ω) ⊂ Rd

from F by setting

Q(ω) =
{

x ∈Rd : Tx (ω) ∈F
}

.

We then define the set Qε homothetic to Q with ratio ε as

Qε =
{

x ∈Rd : x/ε ∈Q
}

.

Given D ⊂ Rd , we set Dε = D\(D ∩Qε), and we assume that Dε is connected for almost all

ω ∈ Ω and such that ∂D ⊂ ∂Dε. Let Γ1 ⊂ ∂D, Γ2 ⊂ ∂D, such that |Γ1|,|Γ2| > 0, Γ1 ∩Γ2 = ;,

Γ1 ∪Γ2 = ∂D . Given h ∈ L2(Γ2), consider the linear elasticity problem

− ∂

∂x j

(
Ai j lm

∂uε
l

∂xm

)
= 0 in Dε ,

uε = 0 on Γ1 ,

Ai j lm

∂uε
l

∂xm
ν j = hi on Γ2 ,

Ai j lm

∂uε
l

∂xm
ν j = 0 on ∂Dε\∂D ,

(6.1)

for i = 1, . . . ,d , where ν is the unit outward normal at the boundary, and A = {Ai j lm}1≤i , j ,l ,m≤d ,

Ai j lm ∈R, is a constant fourth-order tensor which satisfies

Ai j lm = A j i lm = Almi j for any i , j , l ,m = 1, . . . ,d . (6.2)

Based on observations of the displacement uε, our goal is to retrieve A. Throughout this

chapter we will assume that the considered material is isotropic. Hence the coefficients of A

can be characterized as function of only two scalar parameters, e.g. the Young’s modulus E
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and the Poisson’s ratio ν, as follows:

Ai j lm(E ,ν) = E(1−ν)

(1+ν)(1−2ν)
, i = j = l = m ,

Ai j lm(E ,ν) = Eν

(1+ν)(1−2ν)
, i = j , l = m, i 6= l ,

Ai j lm(E ,ν) = E

2(1+ν)
, i = l , j = m, i 6= j .

(6.3)

All the other coefficients are zero. In what follows, we will denote by η the vector of unknown

parameters we want to determine, e.g. η= (E ,ν) for our setting. Moreover, η∗ = (E∗,ν∗) will

denote the exact value of the unknown parameters. Let us note that for any η= (E ,ν) such

that 0 < E and −1 < ν< 0.5, we have that there exist two positive constants αη and βη such

that the following two conditions hold:

αη‖m‖2
F ≤ A(η)m : m ∀m ∈ Symd , (6.4)

‖A(η)m‖F ≤βη‖m‖F ∀m ∈ Symd , (6.5)

where for any d ×d symmetric matrices m, m̃ we have that

Am = {(Ai j lmmlm)i j }1≤i , j≤d , Am : m̃ = Ai j lmmlmm̃i j .

The admissible set of parameters is hence defined as a subset of R2 given by

U = {
η= (E ,ν) ∈R2 : 0 < E ,ν− ≤ ν≤ ν+}

, (6.6)

with −1 < ν− < ν+ < 0.5. Let us remark that all the theoretical arguments and algorithms we

will present throughout this chapter can be extended to the case of more complex situations,

e.g. orthotropic or anisotropic materials, or to the case where the unknown A is varying in

space. Let us introduce the strain tensor e and the stress tensor σ defined as

e(uε) = {ei j (uε)}1≤i , j≤d , ei j (uε) = 1

2

(
∂uε

i

∂x j
+
∂uε

j

∂xi

)
,

σ(uε) = {σi j (uε)}1≤i , j≤d , σi j (uε) = Ai j lm

∂uε
l

∂xm
.

For anyη ∈U the parameterized problem (6.1) admits an unique weak solution uε ∈ (H 1
Γ1

(Dε))d

which satisfies

Bε(uε,v;η) = F (v) ∀v ∈ (H 1
Γ1

(Dε))d , (6.7)

where

Bε(v,w;η) =
∫

Dε

A(η)e(v) : e(w)dx ,
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and

F (v) =
∫
Γ2

h ·vds .

Bayesian setting. According to the Bayesian approach, let us introduce the prior probability

density πpr which reflects our prior knowledge about the two parameters of interest. Since

E > 0 and ν ∈ [ν−,ν+], we consider the case where the prior probability measure, denoted as

µpr, is given by the combination of a log-Gaussian distribution for the Young’s modulus E , and

a uniform distribution for the Poisson’s ratio ν. In particular, we take the unknown vector to

be θ = (k,ν) ∈ V , with k ∼ N (k,σk ), ν ∼ U ([ν−,ν+]), and E = exp(k). Hence we denote the

map (k,ν) ∈V 7→ (exp(k),ν) ∈U as P , and we write η= P (θ). The probability density for the

random variable θ = (k,ν) reads

πpr(θ) = 1

σk
p

2π
exp

(
− (k −k)2

2σ2
k

)
1

ν+−ν− 1[ν−,ν+](ν) . (6.8)

Moreover by noticing that

exp(−|k|) ≤ exp(k) ≤ exp(|k|) ∀k ∈R ,

and using the fact that any admissible ν is uniformly bounded, we have that for any η =
(exp(k),ν) there exists a constant c such that

αη ≤ c−1 exp(−|k|) , βη ≤ c exp(|k|) . (6.9)

We take as observations the average displacement measured at J ∈N different locations along

Γ2. Then we may introduce the forward operator Gε : V →RJd defined as

Gε(θ) = vec({g εi j (θ)}1≤i≤d
1≤ j≤J

) , (6.10)

with

g εi j (θ) =
∫
S j

uε
i (P (θ))ds ,

where uε
i (P (θ)) is the i component of the solution to (6.7) with η= P (θ), and S j ⊂ Γ2, Si ∩S j =

; if i 6= j . In the following setting we denote the measurements as z and, according to the

Bayesian approach to inverse problems, we assume that they are corrupted by some Gaussian

noise, so that

z =Gε(θ∗)+ζ , ζ∼N (0,Cζ) , (6.11)
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where θ∗ = (log(E∗),ν∗), and Cζ is the covariance matrix of the multivariate normal distribu-

tion of the noise. We denote by Φε : V ×RJd → R the potential or likelihood function which

measures the distance between the measured values and the values produced by the forward

model defined for any θ ∈V , as

Φε(θ, z) = 1

2
‖z −Gε(θ)‖2

Cζ

= 1

2
〈z −Gε(θ), z −Gε(θ)〉Cζ

,

= 1

2
(z −Gε(θ))>C−1

ζ (z −Gε(θ)) .

Bayes’ theorem yields the posterior probability density of θ given the measurements z, which

reads

πε(θ|z) = 1

Cε(z)
exp(−Φε(θ, z))πpr(θ) , (6.12)

where Cε(z) is the normalization constant and is given by

Cε(z) =
∫
R2

exp(−Φε(θ, z))µpr(dθ) .

Classical results in Bayesian analysis ensure that the posterior distribution πε(θ|z) converges

to the Dirac distribution δ(θ−θ∗) in the small noise limit [84]. Note that the relation (6.12)

can be rewritten also in terms of probability measures using the Radon-Nikodym derivative

dµε(θ|z)

dµpr(θ)
= 1

Cε(z)
exp(−Φε(θ, z)) . (6.13)

In general, the posterior distribution is not available in closed form, hence it is necessary

to approximate it using sampling techniques such as Markov chain Monte Carlo (MCMC)

methods. To do so, with the help of a numerical solver, the forward model Gε has to be

evaluated multiple times for different realizations of the parameters of interest, and the results

have to be compared with the observed data to determine which values are the more plausible.

We can then see that standard numerical techniques such as the finite element methods

(FEMs) are not suited for our problem, since they require mesh resolution at the smallest scale

ε and their computational cost becomes prohibitive in the limit ε→ 0. To overcome this issue,

an alternative way of approximating Gε is required. Let uε be the weak solution of (6.1) with

A = A(η), for some η ∈U . From homogenization theory [63, 35] (see also Theorem 5.2.2 and

Remark 5.2.4) we know that there exists an extension of uε in the whole domain D that admits

a.s. a weak limit u0 ∈ (H 1
Γ1

(D))d which solves the problem

B0(u0,v;η) = F (v) ∀v ∈ (H 1
Γ1

(D))d ,
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where

B0(v,w;η) =
∫
D

A0(η)e(v) : e(w)dx ,

and A0(η), the effective or homogenized tensor corresponding to A(η), has constant coeffi-

cients, is positive definite, and is non-random. Hence we may introduce the homogenized

forward operator G0 : V →RJd ,

G0(θ) = vec({g 0
i j (θ)}1≤i≤d

1≤ j≤J
) , (6.14)

with

g 0
i j (θ) =

∫
S j

u0
i (P (θ))ds .

Hence a new potential functionΦ0 : V ×RJd →R can be defined as

Φ0(θ, z) = 1

2
‖z −G0(θ)‖2

Cζ
.

Finally, as for the full fine scale model, using the Bayes’ formula we can define the effective

posterior probability density π0(θ|z) which is given by

π0(θ|z) = 1

C 0(z)
exp(−Φ0(θ, z))πpr(θ) , (6.15)

with

C 0(z) =
∫
R2

exp(−Φ0(θ, z))µpr(dθ) .

Also in this case it is possible to rewrite (6.15) in terms of probability measures as

dµ0(θ|z)

dµpr(θ)
= 1

C 0(z)
exp(−Φ0(θ, z)) . (6.16)

This new posterior is much more easier to explore via sampling techniques since the homog-

enized problem can be approximated numerically at a cost independent of ε. However, in

practice it is difficult to deal directly with the effective posterior (6.15) since the homogenized

tensor is usually not known and has to be approximated. Following Chapter 5 we can approxi-

mate its coefficients by solving micro problems on a bounded domain Xδ ⊂Rd of size δ≥ ε.

We define Xδ = (0,δ)d and X ε
δ

(ω) = Xδ\(Xδ∩Qε(ω)), and we assume that X ε
δ

is connected

and that ∂Xδ ⊂ X ε
δ

. Using the change of variable x = δy , we map Xδ and X ε
δ

into Y = (0,1)d

and Y δ(ω) ⊂ Y respectively. Let us introduce the functions space (W (Y δ))d which, in case of
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periodic coupling, is defined as

(W (Y δ))d = (W 1
per(Y δ))d =

z ∈ (H 1
per(Y δ))d :

∫
Y δ

zi dy = 0 i = 1, . . . ,d

 ,

where (H 1
per(Y δ))d is the closure of (C∞

per(Y ))d for the H 1(Y δ)-norm. Otherwise in case of

Dirichlet coupling we set

(W (Y δ))d = (H 1
∂Y (Y δ))d .

Hence we look for χδ,lm ∈ (W (Y δ))d which is the unique solution to∫
Y δ

A(η)e(χδ,lm) : e(z)dy =−
∫

Y δ

A(η)e(I lm) : e(z)dy ∀z ∈ (W (Y δ))d , (6.17)

where I lm = {I l m
p }1≤p≤d is a function given by

I lm
p = ymδpl , δpl is the Kronecker symbol .

The problem (6.17) admits an unique solution bounded in (H 1(Y δ))d uniformly with respect

to δ for almost all ω ∈ Ω (we refer to [63] for a complete overview on homogenization in

perforated random domains). Then we approximate the coefficients of the homogenized

tensor as

Ã0
i j lm(η) =

∫
Y δ

A(η)e(χδ,lm + I lm) : e(I i j )dy . (6.18)

In the previous chapter we have shown that Ã0(η) converges to A0(η) a.s. as δ→ ∞. The

tensor Ã0 is positive definite and satisfies (6.2), (6.4), (6.5). However its value, in contrast to

A0, is not deterministic but is a random variable depending on the particular realization of X ε
δ

(or equivalently Y δ). Given (6.18) we define the forward operator

G̃0,δ(θ) = vec({g̃ 0,δ
i j (θ)}1≤i≤d

1≤ j≤J
) , (6.19)

with

g̃ 0,δ
i j (θ) =

∫
S j

ũ0
i (P (θ))ds ,

where ũ0 ∈ (H 1
Γ1

(D))d denotes the unique solution to

B̃0(ũ0,v;η) = F (v) ∀v ∈ (H 1
Γ1

(D))d , (6.20)
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where η= P (θ) and

B̃0(v,w;η) =
∫
D

Ã0(η)e(v) : e(w)dx .

The corresponding potential function is denoted by Φ̃0,δ and it is defined as

Φ̃0,δ(θ, z) = 1

2
‖z −G̃0,δ(θ)‖2

Cζ
. (6.21)

Finally, as for the full fine scale model, using the Bayes’ formula, we can define an effective

posterior probability density π̃0,δ(θ|z) which is given by

π̃0,δ(θ|z) = 1

C̃ 0,δ(z)
exp(−Φ̃0,δ(θ, z))πpr(θ) , (6.22)

where C̃ 0,δ(z) is the normalization constant and is given by

C̃ 0,δ(z) =
∫
R2

exp(−Φ̃0,δ(θ, z))µpr(dθ) .

Note that the relation (6.22) can be rewritten also in terms of probability measures as

dµ̃0,δ(θ|z)

dµpr(θ)
= 1

C̃ 0,δ(z)
exp(−Φ̃0,δ(θ, z)) . (6.23)

We remark that since Ã0 is a random variable (it depends on the realization of X ε
δ

(ω)), also the

forward operator G̃0,δ is random, as well as the functional Φ̃0,δ, and consequently the measure

µ̃0,δ too. Hence in what follows we will refer sometimes to µ̃0,δ as a random measure.

6.2 Well-posedness and convergence of the effective posterior mea-

sure

In this section we discuss existence and well-posedness of the effective posterior measure

(6.23). Existence and well-posedness are determined from continuity properties of the likeli-

hood function as established by the following theorem which is an adaptation of Theorem 4.2.2

to our problem.

Theorem 6.2.1 (See [84] or [41]). Assume that µpr is a measure on V such that µpr(V ) = 1. In

addition, assume that the random function Φ̃0,δ : V ×RJd →R and the probability measure µpr

satisfy the following properties for almost all ω ∈Ω and ∀δ> 0:

1. For every r > 0 there is a K = K (r ) such that for all θ ∈ V and for all z ∈ RJd such that

max{‖θ‖2,‖z‖Cζ
} < r

0 ≤ Φ̃0,δ(θ, z) ≤ K .
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2. For any fixed z ∈RJd the function Φ̃0,δ(·, z) : V →R is continuous µpr-almost surely.

3. For z1, z2 ∈ RJd with max{‖z1‖Cζ
,‖z2‖Cζ

} < r and for every θ ∈ V , there exists M =
M(r,‖θ‖2), M :R+×R+ →R+, monotonic non-decreasing, such that

|Φ̃0,δ(θ, z1)− Φ̃0,δ(θ, z2)| ≤ M(r,‖θ‖2)‖z1 − z2‖Cζ
.

Then the posterior measure µ̃0,δ given by (6.23) is a well-defined probability measure for

almost all ω ∈Ω and ∀δ> 0.

4. Moreover, if

M(r,‖ ·‖2) ∈ L2
µpr

(V ) ,

then µ̃0,δ is Lipschitz in the data z, with respect to the Hellinger distance, for almost allω ∈
Ω and ∀δ> 0: if µ̃0,δ(θ|z1) and µ̃0,δ(θ|z2) are two measures corresponding to data z1 and

z2, then there is a constant C =C (r ) > 0 such that, for all z1, z2 with max{‖z1‖Cζ
,‖z‖Cζ

} <
r ,

dHell(µ̃
0,δ(θ|z1), µ̃0,δ(θ|z2)) ≤C‖z1 − z2‖Cζ

.

6.2.1 Well-posedness of the effective posterior measure

Consider a fourth-order tensor A which depends on a parameter t ∈R (the parameter t could

represent the Young’s modulus E or the Poisson’s ratio ν). The following lemma establishes a

regularity result for the solutions of the cell problems (6.17) with respect to the variable t . It is

an extension of Lemma 3.2.2 to the context of linear elasticity.

Lemma 6.2.2. Let t 7→ A(t) be of class C 1(T ), where T is a subset of R, and assume that A(t)

satisfies (6.2), (6.4), (6.5), ∀t ∈ T . Consider the micro functions χδ,lm
t unique solutions of: find

χδ,l m
t ∈ (W (Y δ))d such that∫

Y δ

A(t )e(χδ,lm
t ) : e(z)dy =−

∫
Y δ

A(t )e(I l m) : e(z)dy ∀z ∈ (W (Y δ))d . (6.24)

Then the map t ∈ T 7→χδ,lm
t ∈ (W (Y δ))d is of class C 1(T ) and satisfies

∂tχ
δ,l m
t =φδ,lm

t , ∂t e(χδ,l m
t ) = e(φδ,lm

t ) (6.25)

where φδ,l m
t ∈ (W (Y δ))d satisfies∫

Y δ

A(t )e(φδ,l m
t ) : e(z)dy =−

∫
Y δ

∂t A(t )e(χδ,lm
t + I lm) : e(z)dy ∀z ∈ (W (Y δ))d . (6.26)

Proof. Consider the problem (6.24) for the tensors A(t ) and A(t +∆t ), and denote the corre-
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sponding solutions as χδ,lm
t and χδ,l m

t+∆t . We have that ∀z ∈ (W 1(Y δ))d

∫
Y δ

A(t )e(χδ,lm
t+∆t −χδ,lm

t ) : e(z)dy =
∫

Y δ

(A(t )− A(t +∆t ))e(χδ,lm
t+∆t + I l m) : e(z)dy . (6.27)

Using Korn’s inequality and the fact that t 7→ A(t) is of class C 1(T ), we obtain that ‖χδ,l m
t+∆t −

χδ,l m
t ‖H 1(Y δ) → 0 as ∆t → 0. Now consider the identity (6.27), divide it by ∆t , and subtract

equation (6.26). We obtain

1

∆t

∫
Y δ

A(t )e(χδ,lm
t+∆t −χδ,lm

t ) : e(z)dy −
∫

Y δ

A(t )e(φδ,lm
t ) : e(z)dy

= 1

∆t

∫
Y δ

(A(t )− A(t +∆t ))e(χδ,l m
t+∆t + I lm) : e(z)dy +

∫
Y δ

∂t A(t )e(χδ,lm
t + I lm) : e(z)dy .

By taking the limit ∆t → 0 we deduce (6.25).

Lemma 6.2.3. Let t 7→ A(t) be of class C 1(T ), where T is a subset of R. Let s ∈ T and assume

that there exist two positive constants αs and βs such that

αs‖m‖2
F ≤ A(s)m : m ∀m ∈ Symd ,

‖A(s)m‖F ≤βs‖m‖F ∀m ∈ Symd .

Then for almost all ω ∈Ω and ∀δ> 0

αs‖m‖2
F ≤ Ã0,δ(s)m : m ∀m ∈ Symd , (6.28)

‖Ã0,δ(s)m‖F ≤βs‖m‖F ∀m ∈ Symd , , (6.29)

and there exists a constant γs > 0 such that

‖Ã0,δ(s)‖F +‖∂t Ã0,δ(s)‖F ≤ γs . (6.30)

Proof. The conditions (6.28) and (6.29) are classical results in homogenization theory (see

[33] for example). The components of the approximated homogenized tensor satisfy

Ã0
i j lm(s) =

∫
Y δ

A(s)e(χδ,lm
s + I lm) : e(χδ,i j

s + I i j )dy . (6.31)

The functions χδ,lm
s solve (6.24) with t = s and are bounded in (H 1(Y δ))d uniformly with

respect to δ for almost all ω ∈Ω. Moreover, differentiating with respect to t , and using (6.26)

we have that

∂t Ã0
i j lm(s) =

∫
Y δ

∂t A(s)e(χδ,lm
s + I lm) : e(χδ,i j

s + I i j )dy ,

146



6.2. Well-posedness and convergence of the effective posterior measure

and therefore (6.30) follows.

We can next state the following corollary which establishes an analogous result to the one

given in Lemma 6.2.3, but which is adapted to our particular case of interest.

Corollary 6.2.4. Let η= (E ,ν) ∈U , where U is defined as in (6.6). Let A(η) be defined as in (6.3).

Then there exist αη, βη, γη such that the tensor Ã0(η) defined in (6.18) satisfies for almost all

ω ∈Ω and ∀δ> 0

αη‖m‖2
F ≤ Ã0,δ(η)m : m ∀m ∈ Symd ,

‖Ã0,δ(η)m‖F ≤βη‖m‖F ∀m ∈ Symd ,

‖Ã0,δ(η)‖F +‖∂E Ã0,δ(η)‖F +‖∂ν Ã0,δ(η)‖F ≤ γη .

The following Lemma provides a regularity result for the solution ũ0 to problem (6.20) with

respect to the parameter η.

Lemma 6.2.5. Let the assumptions of Corollary 6.2.4 be satisfied. Let {ηn}n>0 = {(En ,νn)}n>0

be a sequence in U such that converges to some η= (E ,ν) ∈U . Then for almost all ω ∈Ω and

∀δ> 0 we have that the sequence {ũ0(ηn)}n>0 converges to ũ0(η) in H 1(D).

Proof. From (6.20) we have that∫
D

Ã0(η)e(ũ0(η)− ũ0(ηn)) : e(v)dx

=
∫
D

(Ã0(ηn)− Ã0(η))e(ũ0(ηn)) : e(v)dx

∀v ∈ (H 1
Γ1

(D))d . Since ηn converges to η, we have that for n sufficiently large the quantities

αηn
, βηn

, γηn
are uniformly bounded with respect to n. Hence we will denote such quantities

simply as α, β and γ. Taking v = ũ0(η)− ũ0(ηn) and using Korn’s inequality we obtain

‖ũ0(η)− ũ0(ηn)‖H 1(D)

≤α−1‖ũ0(ηn)‖H 1(D)‖Ã0(ηn)− Ã0(η)‖F .

Let {ηn}n>0 = {(E ,νn)}n>0. We then obtain using Corollary 6.2.4

‖ũ0(η)− ũ0(ηn)‖H 1(D)

≤α−1‖ũ0(ηn)‖H 1(D)‖Ã0(ηn)− Ã0(η)+ Ã0(η)− Ã0(η)‖F

≤Cα−2(‖Ã0(ηn)− Ã0(η)‖F +‖Ã0(η)− Ã0(η)‖F)

≤Cα−2γ(|E1 −E2|+ |ν1 −ν2|)
≤Cα−2γ‖η−ηn‖2 , (6.32)
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and the desired result follows.

Finally, we can now prove that the likelihood function Φ̃0,δ : V ×RJd →R given in (6.21) and the

probability measure µpr associated to the density (6.8) satisfy the conditions of Theorem 6.2.1.

Lemma 6.2.6. Let the assumptions of Corollary 6.2.4 be satisfied. Letµpr be the prior probability

measure associated to the probability density (6.8). Then function Φ̃0,δ : V ×RJd →R defined

in (6.21) satisfies for almost all ω ∈Ω and ∀δ> 0 the assumptions 1-4 of Theorem 6.2.1.

Proof. For any η= P (θ) ∈U we have that

‖G̃0,δ(θ)‖Cζ
≤C

J∑
j=1

d∑
i=1

∫
S j

|ũ0
i (P (θ))|ds

≤C‖ũ0(η)‖L2(∂D)

≤Cα−1
η

≤C exp(‖θ‖2) ,

where we have used (6.9) and the fact that |k| ≤ ‖θ‖2 for any θ = (k,ν) ∈V . From the triangle

inequality we have that

Φ̃0,δ(θ, z) ≤ 1

2
(‖z‖2

Cζ
+‖G̃0,δ(θ)‖2

Cζ
) ,

and therefore the first assumption of Theorem 6.2.1 is satisfied. The second assumption of

Theorem 6.2.1 can be verified by using Lemma 6.2.5. Indeed for any θ1 ∈ V and θ2 ∈ V we

have that

|Φ̃0,δ(θ1, z)− Φ̃0,δ(θ2, z)| = 1

2
|〈G̃0,δ(θ1)+G̃0,δ(θ2)−2z,G̃0,δ(θ1)−G̃0,δ(θ2)〉Cζ

|

and assumption 2 follows from continuity of G̃0,δ at θ ∈V . Finally, given two measurements

z1, z2 ∈RJd , we have that

|Φ̃0,δ(θ, z1)− Φ̃0,δ(θ, z2)| = 1

2
|〈z1 + z2 −2G̃0,δ(θ), z1 − z2)〉Cζ

|
≤C (‖z1‖Cζ

+‖z2‖Cζ
+2G̃0,δ(θ))‖z1 − z2‖Cζ

.

Let r such that max{‖z1‖Cζ
,‖z2‖Cζ

} < r . Hence we obtain

|Φ̃0,δ(θ, z1)− Φ̃0,δ(θ, z2)| ≤C (2r +2G̃0,δ(θ))‖z1 − z2‖Cζ

≤ M(r,‖θ‖2)‖z1 − z2‖Cζ
,

with

M(r,‖θ‖2) =C (2r +2exp(‖θ‖2)) .
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We note that M(r,‖θ‖2) is positive, monotonic non-decreasing, and satisfies M(r,‖ · ‖2) ∈
L2
µpr

(V ), hence assumptions 3 and 4 of Theorem 6.2.1 follow.

Remark 6.2.7. Using similar arguments as in the proof of Lemma 6.2.6 it can be shown that

the posterior measures µε and µ0, based on the potential functions Φε and Φ0 respectively,

are also well-defined and Lipschitz in the data.

6.2.2 Convergence of the effective posterior measure towards the fine scale pos-
terior

We note that the observations (6.11) can be rewritten as

z = G̃0,δ(θ∗)+ζε(θ∗)+ζδ(θ∗)+ζ ,

where

ζ∼N (0,Cζ) , ζε(θ∗) =Gε(θ∗)−G0(θ∗) , ζδ(θ∗) =G0(θ∗)−G̃0,δ(θ∗) .

The quantity ζε represents the error due to the mismatch between the full multiscale model

and the homogenized one. The quantity ζδ quantifies the error between the homogenized

model and its approximation obtained by homogenization on a sampling domain of size δ.

For both errors we can show that they converge to zero when ε→ 0 and δ→∞ respectively.

Lemma 6.2.8. Let Gε : U →RJd and G0 : U →RJd be defined as in (6.10) and (6.14), respectively.

Let ζε(θ) =Gε(θ)−G0(θ). Then we have

lim
ε→0

‖ζε(θ)‖Cζ
= 0 a.s. ∀θ ∈U .

Proof. For any θ ∈V we have that

‖ζε(θ)‖Cζ
≤C

J∑
j=1

d∑
i=1

∫
S j

|uε
i (P (θ))−u0

i (P (θ))|ds

≤C‖uε(P (θ))−u0(P (θ))‖L2(∂D) .

From homogenization theory [63, 35] we know that there exists an extension ûε of uε into D

such that

ûε*u0 a.s. weakly in (H 1(D))d ∀P (θ) ∈U .

Therefore by compactness we have that

ûε→ u0 a.s. strongly in (L2(∂D))d ∀η ∈U .

Since ûε = uε on ∂D , the result follows.
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Lemma 6.2.9. Let G0 : V →RJd and G̃0,δ : V →RJd defined as in (6.14) and (6.19), respectively.

Let ζδ(θ) =G0(θ)−G̃0,δ(θ). Then we have

lim
δ→∞

‖ζδ(θ)‖Cζ
= 0 a.s. ∀θ ∈U .

Proof. For any θ ∈V we have that

‖ζδ(θ)‖Cζ
≤C

J∑
j=1

d∑
i=1

∫
S j

|u0
i (P (θ))− ũ0

i (P (θ))|ds

≤C‖u0(P (θ))− ũ0(P (θ))‖L2(∂D)

≤C‖u0(P (θ))− ũ0(P (θ))‖H 1(D) .

We know that Ã0(P (θ)) → A0(P (θ)) a.s. as δ → ∞. This implies that ũ0(P (θ)) → u0(P (θ))

strongly in (H 1(D))d a.s. as δ→∞, and hence the desired result follows.

Lemma 6.2.10. Let µε and µ0 be defined as in (6.13) and (6.16), respectively. Let the assump-

tions of Lemma 6.2.6 be satisfied. Then we have

lim
ε→0

dHell(µ
ε,µ0) = 0 a.s.

Proof. From the definition of the Hellinger distance we have that

2d 2
Hell(µ

ε,µ0) =
∫
R2

(√
dµε

dµpr
−

√
dµ0

dµpr

)2

µpr(dθ)

=
∫
R2

(
1p
Cε

exp

(
−1

2
Φε(θ, z)

)
− 1p

C 0
exp

(
−1

2
Φ0(θ, z)

))2

µpr(dθ) , (6.33)

where Cε and C 0 are the two normalization constants such that µε(θ|z) and µ0(θ|z) are

probability measures, i.e.,

Cε =
∫
R2

exp(−Φε(θ, z))µpr(dθ) , C 0 =
∫
R2

exp(−Φ0(θ, z))µpr(dθ) .

Let us notice that

|Cε−C 0| ≤
∫
R2

∣∣exp(−Φε(θ, z))−exp(−Φ0(θ, z))
∣∣µpr(dθ)

≤
∫
R2

∣∣Φε(θ, z)−Φ0(θ, z)
∣∣µpr(dθ) . (6.34)
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From (6.33) we get that

2d 2
Hell(µ

ε,µ0) ≤ I1 + I2 ,

where

I1 = 1

C 0

∫
R2

(
exp

(
−1

2
Φε(θ, z)

)
−exp

(
−1

2
Φ0(θ, z)

))2

µpr(dθ) ,

I2 =
(

1p
Cε

− 1p
C 0

)2

Cε.

We have that

I1 ≤ 1

4C 0

∫
R2

(Φε(θ, z)−Φ0(θ, z))2µpr(dθ) ,

and

I2 ≤ 1

4
max

{
(Cε)−3, (C 0)−3} (Cε−C 0)2

≤C
∫
R2

(Φε(θ, z)−Φ0(θ, z))2µpr(dθ) ,

where we have used (6.34). Using the definition of Φε and Φ0 we find

2d 2
Hell(µ

ε,µ0) ≤C
∫
R2

(Φε(θ, z)−Φ0(θ, z))2µpr(dθ)

≤C
∫
R2

(2‖z‖Cζ
+‖G0(θ)‖Cζ

+‖Gε(θ)‖Cζ
)2‖Gε(θ)−G0(θ)‖2

Cζ
µpr(dθ) .

From Lemma 6.2.8 we have that a.s. lim
ε→0

‖Gε(θ)−G0(θ)‖Cζ
= 0. We also have (see Lemma 6.2.6

and Remark 6.2.7) that for any θ ∈V both ‖G0(θ)‖Cζ
and ‖Gε(θ)‖Cζ

are bounded by some scalar

multiple of exp(‖θ‖2). Since exp(‖ · ‖2) ∈ L2
µpr

(V ), by the Lebesgue’s dominated convergence

theorem, it follows that dHell(µ
ε,µ0) → 0 a.s. as ε→ 0.

The following lemma establishes the convergence between µ0 and the random measure µ̃0,δ.

Lemma 6.2.11. Let µ0 and µ̃0,δ be defined as in (6.16) and (6.23), respectively. Let the assump-

tions of Lemma 6.2.6 be satisfied. Then we have

lim
δ→∞

dHell(µ
0, µ̃0,δ) = 0 a.s.
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Proof. From the definition of the Hellinger distance we have that

2d 2
Hell(µ

0, µ̃0,δ) =
∫
R2

(√
dµ0

dµpr
−

√
dµ̃0,δ

dµpr

)2

µpr(dθ)

=
∫
R2

(
1p
C 0

exp

(
−1

2
Φ0(θ, z)

)
− 1√

C̃ 0,δ
exp

(
−1

2
Φ̃0,δ(θ, z)

))2

µpr(dθ) ,

where C 0 and C̃ 0,δ are the two normalization constants such that µ0(θ|z) and µ̃0,δ(θ|z) are

probability measures. Using arguments similar to the ones employed in the proof of Lemma

6.2.10 we obtain that

2d 2
Hell(µ

0, µ̃0,δ) ≤C
∫
R2

(2‖z‖Cζ
+‖G̃0,δ(θ)‖Cζ

+‖G0(θ)‖Cζ
)2‖G0(θ)−G̃0,δ(θ)‖2

Cζ
µpr(dθ) .

From Lemma 6.2.9 we have that lim
δ→∞

‖G0(θ)− G̃0,δ(θ)‖Cζ
= 0 a.s. We also have (see Lemma

6.2.6 and Remark 6.2.7) that for any θ ∈ V both ‖G0(θ)‖Cζ
and ‖G̃0,δ(θ)‖Cζ

are bounded by

some scalar multiple of exp(‖θ‖2). Since exp(‖ · ‖2) ∈ L2
µpr

(V ), by the Lebesgue’s dominated

convergence theorem, it follows that dHell(µ
0, µ̃0,δ) → 0 a.s. as δ→∞.

Finally, we can establish convergence between the fine scale posterior µε and the random

measure µ̃0,δ.

Theorem 6.2.12. Let µε and µ̃0,δ be defined as in (6.13) and (6.23), respectively. Let the assump-

tions of Lemma 6.2.6 be satisfied. Then we have

lim
ε→0

lim
δ→∞

dHell(µ
ε, µ̃0,δ) = 0 a.s. ,

lim
δ→∞

lim
ε→0

dHell(µ
ε, µ̃0,δ) = 0 a.s.

Proof. Using the triangle inequality we get

lim
ε→0

lim
δ→∞

dHell(µ
ε, µ̃0,δ) ≤ lim

ε→0
dHell(µ

ε,µ0)+ lim
δ→∞

dHell(µ
0, µ̃0,δ) .

Note that the same holds by changing the order of the limits of the left hand side, i.e.,

lim
δ→∞

lim
ε→0

dHell(µ
ε, µ̃0,δ) ≤ lim

ε→0
dHell(µ

ε,µ0)+ lim
δ→∞

dHell(µ
0, µ̃0,δ) .

The assertion of the lemma follows from Lemma 6.2.10 and Lemma 6.2.11.
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6.2.3 Convergence of the probabilistic effective posterior measure towards the
fine scale posterior

We have proved that if we let δ→ ∞ the random measure µ̃0,δ concentrates towards the

effective measure µ0, which in turn is a good approximation of µε when ε¿ 1. However, in

practice it is infeasible to let δ→∞ in numerical experiments. Indeed, trying to approximate

the density µ̃0,δ for large values of δ requires a computational cost comparable to the one

needed for approximating the measure µε. On the other hand, if δ is too small, our method

could be biased due to the excessively large modeling error, and therefore lead to misleading

predictions, as we will illustrate with some numerical experiments. To overcome this issue

and account for the impact of the modeling error, we then propose a probabilistic numerical

method which aims at approximating the expected probability density π0,δ with respect to

the measure µ, where µ is the measure of the probability space (Ω,Σ,µ) used to construct the

random set Qε(ω). The expected probability density π0,δ is defined as

π0,δ(θ|z) = Eµ[π̃0,δ(θ|z)] . (6.35)

We denote the probability measure associated to π0,δ as µ0,δ which satisfies

dµ0,δ(θ|z)

dµpr(θ)
= Eµ

[
1

C̃ 0,δ(z)
exp(−Φ̃0,δ(θ, z))

]
. (6.36)

We remark that the expected measure µ0,δ is not a random measure, but represents a deter-

ministic approximation of the measure µ0. Moreover, as we will illustrate in the numerical

experiments, it allows to better quantify the uncertainty due to the intrinsic modeling error

caused by the truncation of the micro domain. Finally, it is important to remark that conver-

gence results established for the random measure µ̃0,δ are valid also for the measure µ0,δ as

stated by what follows.

Lemma 6.2.13. Let µ0 and µ0,δ be defined as in (6.16) and (6.36), respectively. Then we have

lim
δ→∞

dHell(µ
0,µ0,δ) = 0.

Proof. From the definition of the Hellinger distance, Jensen’s inequality and Fubini’s theorem
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we have that

d 2
Hell(µ

0,µ0,δ) =
∫
R2

(√
π0 −

√
π0,δ

)2

µpr(dθ)

=
∫
R2

(√
π0 −

√
Eµ[π̃0,δ]

)2

µpr(dθ)

≤
∫
R2

Eµ

[(√
π0 −

√
π̃0,δ

)2
]
µpr(dθ)

= Eµ
 ∫
R2

(√
π0 −

√
π̃0,δ

)2
µpr(dθ)


= Eµ[d 2

Hell(µ
0, µ̃0,δ)] .

We note that dHell(µ
0, µ̃0,δ) is itself a random variable depending on the particular realization

of the random perforated micro domain X ε
δ

. As established in Lemma 6.2.11 the random

variable dHell(µ
0, µ̃0,δ) converges to 0 a.s., and it is bounded by 1 by definition. Hence we also

have that Eµ[d 2
Hell(µ

0, µ̃0,δ)] → 0 as δ→∞, and the proof is complete.

We conclude this section with the following theorem which establishes the convergence

between µε and µ0,δ.

Theorem 6.2.14. Let µε and µ0,δ be defined as in (6.13) and (6.36), respectively. Then we have

lim
ε→0

lim
δ→∞

dHell(µ
ε,µ0,δ) = 0 a.s. ,

lim
δ→∞

lim
ε→0

dHell(µ
ε,µ0,δ) = 0 a.s.

Proof. The result follows from Lemma 6.2.10, Lemma 6.2.13 and the triangle inequality.

6.3 Probabilistic numerical method for the solution of the Bayesian

linear elastic inverse problem

In this section we discuss the numerical solution of a Bayesian linear elastic inverse problem in

random perforated domains by means of a probabilistic numerical method. We approximate

the density (6.35) by the Monte Carlo method, i.e.,

π0,δ
MC(θ|z) = 1

R

R∑
i=1

π̃0,δ
i (θ|z) , (6.37)

where each π̃0,δ
i is a probability density defined as in (6.22) for a typical realization of the micro

random perforated domain X ε
δ,i , i = 1, . . . ,R . We then combine all the samples together to ob-

tain a representation of the density (6.35), as illustrated by the following algorithm. Inputs are
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the target distribution π0,δ(θ|z), a starting point θ1 ∈V , a desired number of samples Nsample

in the Metropolis-Hastings routine, the number R in the Monte Carlo approximation (6.37),

and a symmetric proposal density N (0, s2I ).

1. Draw R realizations of the sampling domain {X ε
δ,i }R

i=1.

2. Set S =;.

3. For 1 ≤ i ≤ R do the following.

(a) Set k = 1, Si = θ1.

(b) For 2 ≤ k ≤ Nsample perform the following steps.

i. θ = θk + sw , w ∼N (0, I ).

ii. a(θk ,θ) = min

{
1,
π̃0,δ

i (θ|z)

π̃0,δ
i (θk |z)

}
.

iii. Draw u ∼U ([0,1]), and if a(θk ,θ) > u accept θ and set θk+1 = θ. Otherwise

reject the proposed step and set θk+1 = θk .

iv. Si =Si ∪θk+1.

(c) S =S ∪Si .

4. Return S .

Numerical approximation of the forward model. Given a typical realization of the micro

domain X ε
δ
= Xδ\(Xδ∩Qε), Xδ = (0,δ)d , to sample from the posterior density π̃0,δ we need an

efficient numerical algorithm to evaluate the forward operator G̃0,δ :R2 →RJd . Let us consider

macro and micro finite element spaces involving only piecewise linear simplicial elements

and periodic coupling. The macro finite element space is defined as

S1
Γ1

=
{

vH ∈ (H 1
Γ1

(D))d : vH |K ∈ (P 1(K ))d ,∀K ∈TH

}
,

where TH is a triangulation of the domain in simplicial elements K and (P 1(K ))d is the space

of linear polynomial vector fields on K . Since we have assumed the tensor A to be constant on

the whole domain, the corresponding homogenized tensor is constant too, and therefore its

value does not have to be computed for all the macro quadrature points, but only once. Hence

for the micro domain X ε
δ

we we consider the micro finite element space

S1(X ε
δ ,Th) =

{
zh ∈ (W 1

per(X ε
δ))d : zh ∈ (P 1(T ))d ,∀T ∈Th

}
.

We map the domain X ε
δ

into Y δ ⊂ (0,1)d using the change of variable x = δy . Given θ ∈V we

introduce the parameterized bilinear form

BH (vH ,wH ;η) = ∑
K∈TH

|K |A0,h(η)e(vH )K : e(wH )K , (6.38)
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where η= P (θ), and

A0,h
i j lm(η) =

∫
Y δ

A(η)e(χlm,ĥ
η + I lm) : e(I i j )dy ,

and χlm,ĥ
η ∈ S1(Y δ,Tĥ), ĥ = h/δ, is the solution of∫

Y δ

A(η)e(χlm,ĥ
η ) : e(zĥ)dy =−

∫
Y δ

A(η)e(I lm) : e(zĥ)dy ∀zĥ ∈ S1(Y δ,Tĥ) , (6.39)

where I lm
p = ymδpl , and δpl is the Kronecker symbol. Finally, we can evaluate the forward

model by computing uH ∈ S1
Γ1

(D,TH ) such that

BH (uH ,vH ;η) = F (vH ) ∀vH ∈ S1
Γ1

(D,TH ) . (6.40)

Model order reduction. The Metropolis-Hastings algorithm requires the solution of (6.40)

multiple times for different values of η. For every new value of η a new micro problem of

type (6.39) has to be solved, whose computational cost increases as we refine the micro mesh

and increaseδ. Hence, despite being independent of ε, solving the inverse problem using (6.40)

as forward model is still computationally very expensive. To speed up the algorithm we

exploit the parametrization of the micro problems to build a reduced space of precomputed

micro functions which enables us to perform fast evaluation of (6.40) at a cost which is

independent of δ and h. We define the space of parameters Ξ=U × {1 , . . . ,d}2, and for a given

ξ= (η, l ,m) ∈Ξwe denote the corresponding micro solution as χĥ
ξ
∈ S1(Y δ,Tĥ) which satisfies

bδ(χĥ
ξ ,zĥ ;ξ) = fδ(zĥ ;ξ) ∀zĥ ∈ S1(Y δ,Tĥ) ,

where

bδ(zĥ ,ŵh ;ξ) =
∫

Y δ

A(η)e(zĥ) : e(ŵĥ)dy ,

and

fδ(zĥ ,ξ) =−bδ(I lm ,zĥ ;ξ) .

Following the algorithm described in Chapter 5, we randomly define a training set

ΞTrain = {
ξn = (ηn , ln ,mn) : 1 ≤ n ≤ NTrain ,ηn ∈U ,1 ≤ ln ,mn ≤ d

}
,

and perform a greedy offline stage to build the reduced space

SN (Y δ) = span
{
ψĥ

1 , . . . ,ψĥ
N

}
.
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Thus we introduce the parameterized macro bilinear form defined upon the reduced space

BH ,RB(vH ,wH ;η) = ∑
K∈TH

A0,N (η)e(vH )K : e(wH )K ,

where

A0,N
i j lm(η) =

∫
Y δ

A(η)e(χlm,N
η + I lm) : e(I i j )dy , (6.41)

and χlm,N
η is the solution of (6.39) computed in the reduced space SN (Y δ). Hence we compute

the solution uH ,RB ∈ S1
Γ1

(D,TH ) by solving

BH ,RB(uH ,RB,vH ;η) = F (vH ) ∀vH ∈ S1
Γ1

(D,TH ) . (6.42)

Summary of the probabilistic method. Given the noisy observation z ∈RJd , the probabilis-

tic numerical method for solving the multiscale Bayesian linear elastic inverse problem in

random perforated media can be summarized as follows.

1. Draw randomly (for example by using a Monte Carlo method) R realizations of the micro

domains {X ε
δ,i }R

i=1.

2. Set S =;.

3. For 1 ≤ i ≤ R do the following.

(a) Perform an offline stage to construct the reduced space SN (Y δ
i ), where Y δ

i ⊂ Y =
(0,1)d is the perforated reference domain corresponding to X ε

δ,i .

(b) By using the Metropolis-Hastings algorithm draw the sample Si from the posterior

π̃0,δ
i corresponding to the micro domain realization X ε

δ,i . In particular, given a new

point θ ∈V , to evaluate π̃0,δ
i (η|z), compute (6.41) and solve(6.42) with η= P (θ).

(c) S =S ∪Si .

4. Return S .

6.4 Numerical experiments

In this section we present some numerical experiments to verify our theoretical findings and

illustrate the efficiency of our proposed method. The domain D is the two dimensional unit

square

D = {x = (x1, x2) : 0 < x1, x2 < 1} .

We define two different configurations of multiscale perforated domain. In particular, in the

first test we consider a periodic perforated domain (no modeling error), and in the second
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experiment a random perforated domain (presence of modeling error). The model problem

reads

− ∂

∂x j

(
Ai j lm

∂uε
l

∂xm

)
= 0 in Dε ,

uε = 0 on Γ1 ,

Ai j lm

∂uε
l

∂xm
ν j = hi on Γ2 ,

Ai j lm

∂uε
l

∂xm
ν j = 0 on ∂Dε\∂D ,

(6.43)

for i = 1, . . . ,d , where

Γ1 =
{

x = (x1, x2) ∈R2 : x2 = 0,0 ≤ x1 ≤ 1
}

,

Γ2 = ∂D\Γ1 ,

and where the function h is defined as

h =
(0,−1) if 0 ≤ x1 ≤ 1 and x2 = 1,

(0,0) elsewhere.

The exact value of the unknown is η∗ = (E∗,ν∗) = (7.3,0.35). We define the observations

according to (6.11), with J = 30 and {S j }J
j=1 equally spaced boundary portions on Γ2, each of

length 0.05, as depicted in Figure 6.1 and Figure 6.4. We compute synthetic observations by

means of FEM, using a mesh size much smaller than ε. We then corrupt these observations

with an additive source of zero-mean Gaussian noise ζ∼N (0,Cζ), where the covariance is

defined as Cζ = 10−8I which leads to a mean error on the data of about 5% for the horizontal

displacement, and of about 1% for the vertical displacement. The density of the prior is

defined as in (6.8) with k = 0, σk = 1, ν− = 0, ν+ = 0.5.

6.4.1 The periodic case

In this first numerical test we consider the case of multiscale periodic perforated domains.

The holes are circles whose centers are distributed periodically with equal spacing ε, and

whose radii are chosen so that πr 2/ε2 = 0.2. The domain is depicted in Figure 6.1 for the

choice ε= 1/5. Since the medium is periodic there is no modeling error due to the truncation

of the micro domain and therefore there is no need to perform Monte Carlo iterations over

the Metropolis-Hastings algorithm, i.e. no need for a probabilistic method. We approximate

the homogenized model with a structured macro triangulation with mesh size H = 1/64

(4096 macro DOFs). The micro reference cell depicted in Figure 6.2 is discretized using a

triangulation composed of 5209 micro DOFs. In the offline stage we compute the reduced

space of micro functions by fixing 10−4 as tolerance for the control of the a posteriori error,

which yields a reduced space consisting of 9 basis functions. The Bayesian inverse problem
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ε

h

Γ1

Figure 6.1: Scheme of the model problem from where the data are obtained (periodic case).

Figure 6.2: Micro reference cell for the periodic perforated domain.

is solved for different choices of ε, namely ε= {1/5,1/10,1/20,1/50}, to verify the theoretical

result given in Lemma 6.2.10. The effective posterior is approximated by drawing a sample

of 10000 realizations using Metropolis-Hastings, where a Gaussian proposal with standard

deviation equal to 0.001 is employed. Once samples from the effective posterior are collected

we push them in U through P : θ 7→η, in order to approximate the posterior for the unknown

η. Results are shown in Figure 6.3. It is possible to observe how, according to Lemma 6.2.10,

the effective posterior moves towards the exact values of E and ν as ε gets smaller.

Homogenization error. We recall that the observation can be rewritten as

z = G̃0,δ(θ∗)+ζε(θ∗)+ζδ(θ∗)+ζ ,

where

ζ∼N (0,Cζ) , ζε(θ∗) =Gε(θ∗)−G0(θ∗) , ζδ(θ∗) =G0(θ∗)−G̃0,δ(θ∗) .

Let ζ∗(θ) = ζε(θ)+ ζδ(θ), θ ∈ V . At a fixed scale, if ε is relatively large, we can correct the

posterior by including the distribution of the homogenization and the modeling error (see

[28, 7]). Given the prior measure µpr and a sample size M , the numerical procedure is given by

the following steps.

1. Draw from the prior measure a sample of realizations S = {θ1, . . . ,θM }.
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2. For 1 ≤ i ≤ M compute

ζ∗i =Gε(θi )−G̃0,δ(θi ) .

3. ζ
∗ = 1

M

∑M
i=1 ζ

∗
i .

4. Cζ∗ =
1

M

∑M
i=1(ζ

∗−ζ∗i )(ζ
∗−ζ∗i )>.

Since the homogenized model G0 is replaced by G̃0,δ, this scheme actually approximates

the mean and the covariance of an approximation error given by the combination of both

the homogenization and the modeling error. However, in the periodic setting the modeling

error vanishes, and thus the algorithm computes only the statistics corresponding to the

homogenization error. We assume a Gaussian distribution for ζ∗, so that ζ∗ ∼N (ζ
∗

,Cζ∗), for

all θ ∈V . Then, we may define the new likelihood as

Φ̃0,δ(θ, z) = 1

2
‖z −G̃0,δ(θ)‖2

Cζ+Cζ∗ ,

where z = z −ζ∗. Note that conclusions about existence and well-posedness of the posterior

measure are still valid under this definition of the potential function. We remark that the cost

of this offline stage depends on ε, and becomes prohibitive as ε→ 0. On the other hand, for

small values of ε, the homogenization error vanishes (see Figure 6.3) and can be neglected.

Let us finally remark that for relatively large values of ε, it would be possible to solve the

inverse problem simply using FEM and reduced basis. Indeed, this approach would require

an offline stage whose computational cost is comparable to the one needed to obtain the

homogenization error distribution. However, this would be true only for this particular inverse

problem, where the quantity of interest is represented by a few scalar parameters. In more

complicated problems, where the quantity of interest is given for example by scalar fields,

homogenization becomes necessary.

6.4.2 The random case

We consider now the case of random perforated domains, where we wish to observe how the

size of the micro domains affects the solution of the inverse problem. In this experiment, holes

are given by ellipses which are periodically distributed as the circles in the previous test, but

whose axes and angle of rotation are random variables. Both axes are uniformly distributed in

the interval [r /2,3r /2], where πr 2/ε2 = 0.2, and the angle is uniformly distributed between 0

and π. An illustration of the resulting random set is depicted in Figure 6.4 for ε= 1/5. Let us

start by fixing ε= 1/50. Due to the choice of ε, the homogenization error is negligible, and we

study how different choices of δ, the size of the micro domain, can affect our predictions. The

macro domain is discretized with the same degree of refinement as in the periodic case, i.e.,

with a structured triangulation of mesh size H = 1/64. We then consider three different values

of δ, δ = {ε ,3ε ,5ε}. For each value of δ we draw R = 100 realizations of the micro domain
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Figure 6.3: On the left, the convergence of the posterior distribution as ε→ 0 in the periodic
setting is plotted. On the right, we compare the posterior distribution obtained for ε= 1/10,
with and without the approximation of the homogenization error statistics. For approximating
the homogenization error distribution the sample size M is set equal to 100.

ε

h

Γ1

Figure 6.4: Scheme of the model problem from where the data are obtained (random case).
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δ= ε. δ= 3ε. δ= 5ε.

Figure 6.5: Three micro domains for different values of δ.

{X ε
δ,i }R

i=1. Each micro domain is mapped to the corresponding reference micro domain Y δ
i .

In Figure 6.5 we show three typical realizations of the micro domain Y δ
i , one for each value

of δ. Each micro domain Y δ
i is discretized with a triangulation composed of approximately

5000× (δ/ε)2 micro DOFs. Each X ε
δ,i yields a different posterior π̃0,δ

i . We compare the results

obtained using the probabilistic numerical method, which approximates the density π0,δ as

π0,δ
MC(θ|z) = 1

R

R∑
i=1

π̃0,δ
i (θ|z) ,

with the results predicted by a single posterior π̃0,δ
i chosen at random. In the offline stage we

assemble a reduced space of micro functions for each Y δ
i , δ= {ε ,3ε ,5ε}, 1 ≤ i ≤ R, choosing

the tolerance 10−4 for the stopping criterion. For each Y δ
i we obtain a reduced space whose size

is comprised between 9 and 12, independently of δ. In Figure 6.6 we show the results. We first

sample from the random posterior π̃0,δ
i with δ= {ε ,3ε ,5ε} and i = 1. We draw 2000 samples

employing the Metropolis-Hastings algorithm with a Gaussian proposal whose standard

deviation is equal to 0.001. Hence, we push the samples into the space U to observe the

random posterior of the unknown η. From the left picture of Figure 6.6, we can observe that

none of these densities manages to identify the exact values of the unknowns, as the modeling

error is so large that the posterior distributions are overconfident on incorrect values. This

is a common outcome when the mismatch between the model used to obtain the data and

the forward model used to reproduce them is higher than the noise in the measurements.

Moreover, also convergence with respect to δ is not clear. On the right picture of Figure 6.6 we

show the results obtained using the probabilistic method. We sample fromπ0,δ
MC, by performing

R = 100 independent parallel runs of the Metropolis-Hastings, each providing a sample of 2000

realizations. We note how the expected posterior densities better reflect the uncertainty due to

the modeling error. Convergence with respect to δ is now clearly seen, since as δ increases the

expected posterior concentrates on the exact values of the unknown parameters. Moreover, the

posterior variances are larger than the ones obtained without using the probabilistic method,

and provide a better quantification of the modeling error in the approximated forward model.

Finally, using the same parameters, we repeat the same experiment for ε= 1/10. The results,

depicted in Figure 6.7, are similar to the ones obtained for ε= 1/50 (compare with Figure 6.6).

However, even though the posterior measure obtained with the probabilistic method reflects
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Figure 6.6: Comparison between the random effective posterior, which is obtained by perform-
ing a single run of the Metropolis-Hastings algorithm (left figure), and the expected effective
posterior obtained with the probabilistic method (right figure). For this experiment ε= 1/50.
The second distribution provides better quantification of the uncertainty due to the modeling
error.

the uncertainty due to the modeling error, it seems to converge to a distribution which does

not contain the exact value of the quantity of interest. This negative outcome may be due

to the larger value of the homogenization error. The probabilistic method indeed accounts

only for the modeling error which is intrinsic in the numerical approximation, but not for the

homogenization error which is due to the discrepancy between the forward model and the

data. Nevertheless, for the chosen value of ε, it may be preferable to approximate offline the

approximation error distribution as described for the periodic setting, and perform only one

run of the Metropolis-Hastings algorithm instead of using the probabilistic method. Results are

shown in Figure 6.8. We see that the offline strategy is able to correct for both homogenization

and modeling error. Let us emphasize that this type of correction becomes computationally

expensive as ε→ 0.
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Figure 6.7: Comparison between the random effective posterior, which is obtained by perform-
ing a single run of the Metropolis-Hastings algorithm (left figure), and the expected effective
posterior obtained with the probabilistic method (right figure). For this experiment ε= 1/10.
The second distribution provides better quantification of the uncertainty due to the modeling
error.
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Figure 6.8: The random effective posterior, obtained by performing a single run of the
Metropolis-Hastings algorithm, with (right figure) and without (left figure) the approximation
of the homogenization error statistics. For this experiment ε= 1/10.
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7.1 Conclusion

In this thesis we have considered inverse problems for multiscale elliptic partial differential

equations. Since in this context classical forward solvers require mesh resolution at the finest

scale, we suggested a coarse graining method based on homogenization which is independent

of the small scale of the original model.

In the first part of the thesis, we considered elliptic scalar problems where our goal was to

recover the full fine scale tensor under the assumption that its microscopic structure of the fine

scale tensor is known to us but its macroscopic behavior is unknown. Practical examples in-

clude multi-phase media, whose constituents are known, but their respective volume fraction

or macroscopic orientation are unknown. We considered the inverse conductivity problem

as formulated by Calderón and we showed that if the fine scale problem is well-posed, then

the effective inverse problem, with observed data consisting of the homogenized DtN map, is

also well-posed. Considering finite measurements of the DtN map, we solved the problem

by means of Tikhonov regularization and we established a convergence result of the solution

of the effective inverse problem with multiscale observations by means of G-convergence.

The numerical strategy we proposed is based on numerical homogenization and model order

reduction. Finally, we illustrated with several numerical experiments the efficiency of our

scheme.

In the second part of the thesis, we introduced a new numerical method based on Bayesian

analysis and numerical homogenization. We proved the existence and well-posedness of the

effective posterior measure obtained by homogenization of the forward operator. By means of

G-convergence we showed that the fine scale posterior measure converges to the homogenized

posterior measure. At fixed size of the microstructure, we discussed a procedure to account

for the homogenization error. We also proposed an efficient algorithm to sample from the

posterior measure combining numerical homogenization and reduced basis techniques.

Several numerical examples illustrating the efficiency of the proposed method and confirming

our theoretical findings were also given.
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Finally, we considered multiscale inverse problems in linear elasticity. In this setting we

assumed that the multiscale nature of the problem was determined by the domain’s geometry

rather than by the coefficients of the equation. Hence, we considered multiscale porous

domains and we allowed for random perforations. We introduced a new forward solver for

this problem based on numerical homogenization and reduced basis techniques, and we

provided a priori error estimates. We solved the inverse problem following the Bayesian

approach. We proved existence and well-posedness of the effective posterior measure, as

well as its convergence in the fine scale limit by means of G-convergence. Moreover, we

introduced a new probabilistic numerical method which allows to define a new posterior

measure accounting for the modeling error due to the (random) approximation of the effective

elastic tensor.

7.2 Outlook

The strategy we proposed for solving elliptic multiscale inverse problems, based on general

theory of homogenization, can be seen as foundation for many possible extensions and

interesting applications. We could consider for example to extend the method to parabolic

problems, fluid dynamics or wave equations. Considering the wave equation would let us

deal with applications in seismic analysis or medical imaging which are of crucial interest

nowadays. We also mention possible extensions to problems defined on multiple scales,

since not every application could fit in the two-scale framework. Last but not least a deeper

investigation on the behavior of the model discrepancy between the fine scale model and

homogenized model could be carried on, for a better understanding of how to account for

approximation errors in the inversion process. It is likely that in certain cases, the assumption

on the homogenization error being Gaussian could be proved to be true.
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