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The effort to understand the universe

is one of the very few things that lifts

human life a little above the level of farce,

and gives it some of the grace of tragedy.

— S. Weinberg
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Abstract

We develop new analytic methods to accurately describe the formation of cosmic

large-scale structure. These methods are based on the path integral formalism

and allow one to efficiently address a number of long-standing problems in the

field.

We describe the non-linear evolution of the baryon acoustic oscillations (BAO)

in the distribution of matter. We argue for the need for resummation of large

infrared (IR) enhanced contributions from bulk flows. We show how this can

be done via a systematic resummation of Feynman diagrams guided by well-

defined power counting rules. We formulate IR resummation both in real and

redshift spaces. For the latter we develop a new method that maps cosmological

correlation functions from real to redshift space and retains their IR finiteness.

Our results agree well with the N-body simulation data at the BAO scales.

This establishes IR resummation within our approach as a robust and complete

procedure and provides a consistent theoretical model for the BAO feature in

the statistics of matter and biased tracers in real and redshift spaces.

Eventually, we perform a non-perturbative calculation of the 1-point probabil-

ity distribution function (PDF) for the spherically-averaged matter density field.

We evaluate the PDF in the saddle-point approximation and show how it fac-

torizes into an exponent given by a spherically symmetric saddle-point solution

and a prefactor produced by fluctuations. The prefactor splits into a monopole

contribution which is evaluated exactly, and a factor corresponding to aspherical

fluctuations. The latter is crucial for the consistency of the calculation: ne-

glecting it would make the PDF incompatible with translational invariance. We

compute the aspherical prefactor using a combination of analytic and numerical

techniques, identify the sensitivity to the short-scale physics and argue that it

must be properly renormalized. Finally, we compare our result with N-body

simulation data and find an excellent agreement.



v

Keywords: cosmology, large-scale structure, IR resummation, baryon acoustic

oscillations, power spectrum, redshift space distortions, bias, probability distri-

bution function, spherical collapse, renormalization



Résumé

Nous développons de nouvelles méthodes analytiques pour décrire fidèlement la

formation des structures cosmiques à grande échelle. Notre approche est basée

sur un formalisme d’intégrale de chemin et permet de résoudre efficacement de

nombreuses questions de ce domaine.

Nous décrivons l’évolution non-linéaire des oscillations acoustiques des baryons

dans la distribution de matière. Nous discutons de la nécessité de la sommation

de grandes contributions infrarouge provenant des flux de masse. Nous montrons

comment cela peut être fait via une sommation systématique des diagrammes de

Feynman guidée par des règles de comptage des puissances bien définies. Nous

formulons cette sommation infrarouge dans les espaces réel ainsi que redshift.

Pour ce dernier, nous développons une nouvelle méthode qui relie les fonctions

de corrélation cosmologique de l’espace réel à l’espace redshift et conserve le car-

actère fini des contributions infrarouges. Nos résultats concordent bien avec les

données issus de simulations à N-corps aux échelles des oscillations acoustiques

des baryons. Nous montrons comment cette nouvelle approche de la sommation

infrarouge offre une procédure robuste et auto-cohérente. Cela fournit également

un modèle théorique complet pour caractériser les oscillations acoustiques des

baryons à partir des statistiques de la matière et des traceurs biaisés dans les

espaces réel et redshift.

Enfin, nous effectuons un calcul non-perturbatif de la fonction de distribu-

tion à un point de la moyenne sphérique du champ de densité de la matière. Nous

évaluons cette fonction de distribution dans l’approximation du point d’équilibre

et montrons comment elle se factorise en un exposant, qui est donné par une so-

lution de selle à symétrie sphérique et un préfacteur produit par les fluctuations.

Ce préfacteur se divise en une contribution monopolaire évaluée exactement,

et un facteur associé aux fluctuations asphériques. Cette dernière contribu-

tion est cruciale pour la cohérence du calcul: la négliger rendrait la fonction

de distribution incompatible avec l’invariance par translation. Nous calculons ce
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préfacteur asphérique en utilisant une combinaison de techniques analytiques et

numériques, et identifions le rôle joué par la physique des petites échelles ainsi

que l’importance de la renormaliser correctement. Enfin, nous comparons nos

résultats avec des données de simulations à N-corps et trouvons un excellent

accord.

Mots clés: cosmologie, structure à grande échelle, sommation infrarouge, os-

cillations acoustiques des baryons, spectre de puissance, distorsions de l’espace

redshift, biais, fonction de distribution, effondrement sphérique, renormalisation
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Chapter 1

Introduction

1.1 General remarks

Cosmology is one of the most exciting and quickly advancing frontiers of modern

physics. The progress in this field is driven by precise astrophysical observations,

which have already initiated a revolution in our understanding of Nature. These

observations have firmly established the standard cosmological model, implying

the existence of new physical phenomena: dark matter, dark energy, and infla-

tion. On the other hand, the precise nature of these phenomena is yet to be

elucidated.

Dark matter is a substance analogous to ordinary matter in many ways, but

not interacting with light, which makes it invisible to us. As of now, one can

only be certain that dark matter interacts gravitationally. The evidence for

dark matter has been found in many independent observations: galaxy cluster

kinematics, gravitational lensing, galaxy rotation curves, structure formation,

anisotropy patterns of the temperature of the cosmic microwave background

(CMB). Despite all this evidence, the nature of dark matter remains one of the

most challenging open questions in modern physics. The simplest model that

fits all the observational data1 is the so-called ‘cold dark matter’ (CDM), which

consists of heavy particles that are singlets under the Standard Model gauge

group and have a very weak, if any, self-interaction.

Unlike dark matter, the properties of dark energy are quite exotic. In partic-

ular, it must have negative pressure. This pressure is required to explain the

1It should be mentioned that there are so-called short-scale CDM problems, e.g. ‘core vs.
cusp’, ‘missing satellites’, ‘too-big-to-fail’ etc. However, at the moment it is not clear if they
are really drawbacks of the CDM model or artifacts of numerical simulations.
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accelerated expansion of the universe, which has been independently inferred

from the type Ia supernovae, galaxy clusters, baryon acoustic oscillations and

the CMB. The simplest model for dark energy is the so-called cosmological con-

stant, a constant term Λ in the right hand side of the Einstein general relativity

equations. However, this solution has a serious drawback as there is no mech-

anism that would robustly explain the smallness of the cosmological constant

and its stability against quantum corrections (this issue is known as ‘the cosmo-

logical constant problem’ [12]). Despite this problem, the cosmological constant

is very successful at the phenomenological level and, along with the dark mat-

ter discussed above, underlies the minimal standard cosmological model dubbed

ΛCDM (Λ-Cold Dark Matter).

Another phenomenon supported by recent observations is cosmic inflation. His-

torically, the theory of the hot big bang did not have any natural explanation for

the small spatial curvature observed in our universe. Besides, there were issues

with the properties of the initial fluctuations that evolved into the observed inho-

mogeneities in the CMB temperature and matter distribution. Namely, the hot

big bang theory could not account for the observed smallness of fluctuations and

their correlation at scales that exceeded the size of causal patches in the past.

Moreover, the hot big bang theory did not have a mechanism that would pro-

duce such fluctuations and could not explain their flat (frequency-independent)

spectrum, suggested by observations. These issues were resolved in the theory

of cosmic inflation, which suggests that the universe has undergone a period

of accelerated expansion prior to the hot big bang evolution. This expansion

has smoothed out the spatial curvature of the universe and stretched out initial

causally-connected patches to tremendous sizes. Moreover, during inflation the

fluctuations of quantum fields, whose existence is guaranteed by the uncertainty

principle of quantum mechanics, have become classical and turned into inho-

mogeneities of classical fields sourcing primordial fluctuations. In this setup the

smallness of the fluctuations is a consequence of the scale separation between the

characteristic densities of the universe at inflation (. (1016 GeV)4) and quan-

tum gravity (. (1019 GeV)4). In turn, the observed (approximate) flatness of

the initial spectrum is a direct consequence of an exponentially fast growth of the

universe during inflation. As inflation is characterized by extreme densities that

could be as high as (1016 GeV)4, the fluctuations generated at this stage pro-

vide us with a unique opportunity to probe these energy scales via cosmological

observations.

Apart from exotic phenomena like dark energy or inflation, cosmology can also

give us new knowledge about elementary particles that are commonly studied at
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accelerators. An important example is the neutrino. In the renormalizable part

of the Standard Model for particle physics the neutrinos are similar to the other

leptons (electron, muon, τ -lepton), but have zero mass and couple to other par-

ticle only via the weak interactions. On the other hand, the observed oscillation

of neutrino flavors implies that neutrinos must have non-vanishing masses. Due

to this reason the neutrinos have become a textbook example of new physics

beyond the Standard Model. Remarkably, the scale of an effective operator pro-

ducing the neutrino mass in the Standard Model (the Weinberg operator) has

the same order of magnitude as the typical scale of inflation, which might in-

dicate a profound relation between the two phenomena. Neutrino masses also

have a sizable effect on cosmology. Despite the fact that neutrinos interact with

ordinary matter quite weakly, their gravitational interaction is non-negligible,

and leaves a peculiar imprint on the CMB temperature fluctuations and cosmic

matter distribution. By constraining these effects one is able to bound the neu-

trino mass from above an order of magnitude tighter than from the reactor and

accelerator experiments [13].

The bulk of our recent progress in cosmology has been due to the CMB observa-

tions. Impressive as they are, CMB measurements are fundamentally limited in

the amount of information due to the fact that this information is gathered from

a two-dimensional celestial sphere. On the other hand, the distribution of mat-

ter on cosmological scales, called large-scale structure (LSS), provides us with a

three-dimensional data volume (one additional dimensional is given by redshift).

Potentially, this helps us get access to a much bigger number of Fourier modes,

which may eventually reduce measurement errors on fundamental cosmological

parameters. Thus, one can expect LSS to become the leading cosmological probe

in future.

Typically, the most common LSS observables are different kinds of tracers: galax-

ies, galaxy clusters, Lyman-α forest absorption lines, gravitational lensing field

etc. These objects are called tracers because they trace the distribution of mat-

ter, most of which consists of dark matter. The distribution of matter and tracers

is not random. Moreover, it reflects the dynamics of our universe, along with

its composition and initial conditions set prior to the hot big-bang evolution.

In particular, measurements of baryon acoustic oscillations (to be described in

detail shorty) provide us with information on the expansion rate of the universe,

its geometry, the properties of dark matter and dark energy. Another example

is the effect of massive neutrinos. They suppress matter density fluctuations at

scales smaller than ∼ 100 Mpc, which is a detectable effect that potentially will

allow one to measure the sum of neutrino masses.
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At the moment, there are several LSS surveys already in operation, e.g. SDSS2,

DES3, and many more will be available in the future, e.g. the Euclid satellite4

(launch in 2020), DESI5 (start in 2019), LSST6 (start in 2023). These surveys

will cover immense ranges of distances, which contain new information on the

fundamental properties of the universe. However, harvesting this information

will not be an easy task and will require a precise theoretical understanding of

self-gravitating systems in the non-linear regime along with efficient techniques

to analyze data in order to extract fundamental properties of nature from the

observed signals. The most straightforward approach to this problem relies on

current computer power to produce realistic N-body simulations. Despite signif-

icant progress over recent years, reaching a sub percent accuracy in these sim-

ulations still remins computationally expensive [14]. This makes desirable the

development of (semi-)analytic approaches to LSS. Being perhaps less powerful

than N-body simulations in the description of the standard ΛCDM cosmology,

analytic approaches provide us with a large flexibility in going beyond it and a

deep insight in the relevance of different physical processes, along with efficient

ways of extracting the relevant cosmological information.

This thesis is devoted to the precision methods that ameliorate our theoretical

understanding of large-scale structure. The main difficulty in describing LSS are

non-linear effects of gravitational clustering. The density and velocity of matter

rapidly grow with time as a consequence of gravitational attraction and their

distribution becomes very non-Gaussian. On the other hand, the characteristic

densities on largest scales (only a few times smaller than the cosmic horizon)

remain small, which suggests that non-linear clustering may be captured within

perturbation theory over the matter density contrast.

Standard perturbation theory (SPT) of LSS formation [15] is one of the most

popular perturbative techniques. It consists of two main steps: first, one ex-

presses the dark matter density and velocity fields at a given time as a power

series of the initial conditions, assuming a perfect pressureless fluid. Next, one

performs the ensemble average using the statistical distribution at the initial

time when the system is well within the linear regime. The initial distribution

is often taken to be Gaussian7, as motivated by the constraints coming from the

2https://www.sdss.org
3https://www.darkenergysurvey.org
4https://www.euclid-ec.org
5https://www.desi.lbl.gov
6https://www.lsst.org
7It is worth stressing that the precise form of the distribution should be provided by the

theory describing the generation of primordial fluctuations. Disentangling the primordial non-
Gaussianity from the secondary one induced by non-linear dynamics constitutes one of the goals
of the LSS studies.

https://www.sdss.org
https://www.darkenergysurvey.org
https://www.euclid-ec.org
https://www.desi.lbl.gov
https://www.lsst.org
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cosmic microwave background measurements. This framework leads to a loop

expansion for non-linear corrections to cosmological correlation functions and

has provided numerous insights into their properties.

SPT calculations are complicated by several effects, which have recently attracted

significant attention. They can be attributed to the sensitivity of the SPT frame-

work to infrared (IR) and ultraviolet (UV) modes. The coupling between dif-

ferent scales is a generic consequence of non-linear dynamics. It generates large

contributions both from very small (IR) and very large (UV) wavenumbers in

SPT loop integrals. These contributions are somewhat loosely referred to as

“IR/UV divergences” even for ΛCDM, where the integrals actually converge.

Qualitatively the appearance of IR divergences in SPT stems from the use of the

initial distribution to evaluate quantities at late times. This introduces non-local

time dependence to large displacements of fluid particles caused by large scale

bulk flows. It is well known that the IR divergences cancel out in equal-time

correlators upon summing over all sub-diagrams at a fixed order in perturbation

theory [16]. This cancellation has been formally proven for leading IR diver-

gences to all orders of perturbation theory [17] and can be traced back to the

equivalence principle [18, 19]. Recently, the cancellation has been proven also

for subleading IR divergences showing up for the first time at 2 loops [20–24].

Still, the presence of spurious IR divergences greatly complicates numerical cal-

culations8 and obscures the analysis of physical effects produced by large scale

bulk flows. The latter, though finite, have a strong impact on the features in the

cosmological correlation functions [26]. In particular, a resummation of physi-

cal IR contributions is essential for an accurate description of baryon acoustic

oscillations (BAO) in the power spectrum [26–29].

Another problem is related to the unphysical sensitivity of SPT to short-scale

(UV) modes. This sensitivity arises because the perfect fluid hydrodynami-

cal description breaks down at short scales. This problem has been addressed

within the effective field theory of large scale structure [30, 31] that captures

the departures from Eulerian hydrodynamics by introducing so-called UV coun-

terterms, which are to be fixed from data or N -body simulations, see [32, 33].

The counterterms proliferate when going to shorter scales and exhibit non-local

time-dependence, which complicates the renormalization at high loop order [34]

and compromises predictability of the theory.

8IR-safe integrands have been constructed in [20, 21] for 2 loops and in [25] for an arbitrary
L-loop order.
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Perturbation theory has given us many insights into non-linear clustering, how-

ever, there are questions which can be rigorously addressed only beyond per-

turbative calculations, e.g. one-halo corrections, the halo mass function, the

distribution of the non-linear density field, etc. This thesis covers both pertur-

bative and non-perturbative results. It is devoted to two particularly interesting

questions: accurate description of baryon acoustic oscillations and counts-in-cells

statistics.

Baryon acoustic oscillations are plasma waves that were propagating in the uni-

verse prior to recombination. After recombination baryons decoupled from pho-

tons and formed a single fluid with dark matter. This way BAO got imprinted

in the spatial distribution of matter. The characteristic scale of the BAO is con-

stant across redshifts, hence it provides us with a powerful ‘standard ruler’ that

helps elucidate the evolution of the universe. However, the BAO pattern in the

distribution of galaxies gets distorted by non-linear effects of bulk flows. These

effects are studied in the first part of the thesis. The main outcome of this study

is the development of a rigorous and systematic procedure for the resummation

of IR-enhanced contributions that alter the BAO, so - called IR resummation.

The second part of the thesis is devoted to the counts-in cells statistics. The

counts-in-cells method amounts to splitting the matter density field into spheri-

cal cells in position space and taking an average of this field inside each cell. The

distribution of cells over the relevant variable reveals statistical properties of the

underlying field. In this thesis we will compute the 1-point probability distribu-

tion function (PDF) of finding a certain average matter density in a sphere of a

given fixed radius r∗. The deviation of this spherically-averaged density from the

mean density of the universe need not be small, hence the desired PDF cannot

be calculated within perturbation theory. The goal is to derive the PDF from

first principles and figure out its dependence on cosmological parameters and

initial conditions.

Below we give more detail on the questions addressed in the thesis. For conve-

nience, each topic will be discussed in a separate section.

1.2 Introduction to part I

Part I of this thesis is dedicated to baryon acoustic oscillations.

The BAO are one of the most powerful tools of precision cosmology. The BAO

pattern has been observed across various redshifts in the 2-point correlation
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function of the distribution of galaxies (see [35, 36] for the first measurements

and [37, 38] for recent ones), Lyα forest absorption [39, 40], quasars [6, 41],

and voids [42, 43]. Recently, the BAO signal has also been detected in the 3-

point correlation function [44–46]. The significance of the BAO measurements

for cosmology calls for improving the analytic understanding of the BAO feature

in the non-linear regime and robustly controlling the theoretical uncertainty.

Since the characteristic scale of the BAO (rBAO ∼ 110 Mpc/h) is much larger

than the non-linear scale 1/kNL ∼ 10 Mpc/h, one could a priori expect that

the non-linear evolution of the BAO should be well captured by lowest-order

perturbative corrections. Nevertheless, it has been observed long ago that the

leading non-linear correction computed in SPT fails to reproduce the behavior

seen in N-body simulations or data. The source of this disagreement is the non-

linear coupling of the BAO to the bulk flows. Qualitatively, bulk flows move

the pairs of tracers that used to be at separations rBAO to larger or smaller

distances, which degrades their spatial correlation and thus reduces the observed

BAO signature. This effect is more severe in redshift space where the apparent

separation of tracers along the line-of-sight is additionally altered by peculiar

velocities. Besides, the BAO signal is further deformed by non-linear bias.

In Eulerian perturbation theory, the coupling between a mode with wavenumber

k to bulk motions is enhanced as k/q, with q � k being the wavelength of a large-

scale fluctuation. For equal-time correlation functions, the equivalence principle

implies that this infrared (IR) enhancement largely cancels out when summing all

perturbative contributions at a fixed order in perturbation theory [17, 18, 20, 22–

24]. However, the cancellation is incomplete if the matter power spectrum has

a feature that oscillates with characteristic frequency kosc = 1/rBAO . q � k

[28, 29].

Several approaches have been put forward to deal with these effects. Most of

the damping of the BAO is produced by Lagrangian displacements of matter.

Thus, the process of erasing the BAO signal can be undone by reversing tracers’

trajectories and moving them back to their initial Lagrangian positions. This

method, called reconstruction [47–53], has become a standard tool in the BAO

data analysis. Typically, reconstruction is used to increase the signal in measure-

ments of the BAO scale obtained upon marginalizing over the broad-band shape

and amplitude of the underlying correlation function (or power spectrum), see

e.g. [54, 55]. On the other hand, full shape measurements without reconstruction

reveal the rich cosmological information encoded in the entire power spectrum,
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see e.g. [56–59]. In particular, the full shape measurements yield constrains on

structure growth rate through redshift-space distortions [60, 61].

The interpretation of the full shape BAO measurements relies on theoretical

modeling based on perturbation theory. Following early works on the subject

[26, 27, 62, 63], it has been realized how the physical effects of bulk flows can

be resummed to all orders in perturbation theory [28, 64–66], and how this

procedure, called IR-resummation, is related to the equivalence principle [29, 67].

The analysis was also extended to the power spectrum of biased tracers in redshift

space [68–70].

In the references mentioned above IR resummation was performed for the power

spectrum at leading order in the soft corrections. Generalization of these results

to arbitrary n-point correlation functions and subleading soft corrections along

with a robust estimation of the theoretical error remain open problems. To

confidently solve these problems one has to develop a systematic framework for

IR resummation that would allow one to go to an arbitrary order of precision in

a controllable way. Besides, it is desirable that this method has a diagrammatic

representation similar to that of the procedure to eliminate IR divergences in

gauge theory and gravity amplitudes.

In the first part of the thesis, we introduce a systematic approach to describe

non-linear effects on the BAO feature in equal-time correlation functions based

on time-sliced perturbation theory (TSPT) [1]. TSPT is a proposal to describe

the statistical properties of the large-scale structure based on the evolution of

the distribution function, as opposed to SPT where the individual field variables

are evolved. A major advantage of this description is that it eliminates spuri-

ous IR contributions from the beginning, and therefore allows for a transparent

description of the physical effects of bulk motion on the BAO feature.

We will also show that TSPT provides one with a convenient framework to study

redshift space distortions. The key observation is that the coordinate transfor-

mation relating real and redshift spaces can be seen as a free 1-dimensional fluid

flow. We introduce a fictitious time, over which this flow evolves, and study

the evolution of statistical properties of the flow along the lines of TSPT. This

auxiliary time will be loosely referred to as ‘redshift time’. In this picture the

initial redshift time slice corresponds to real space, the final one to redshift space.

Using this scheme, the redshift space statistical cumulants can be easily obtained

from their real space counterparts.
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We also discuss how to incorporate bias into our framework. In the case of

deterministic bias the tracers’ density is a function of the matter density field and

thus it is not a statistically independent variable. Such variables are naturally

described in TSPT as composite operators. We will show how the correlation

functions of biased tracers can be obtained within TSPT and discuss the effect

of IR resummation on them.

Our method gives an alternative way to compute equal-time correlation functions

of cosmological fields in redshift space that explicitly retains their IR safety. This

property helps us identify the physical IR-enhanced contributions and resum

them in a systematic and controllable way, which provides us with a powerful

tool to explore the non-linear BAO physics both in real and redshift spaces. Our

main result is a systematic technique to identify and resum enhanced infrared

contributions affecting the BAO feature. It admits a simple diagrammatic repre-

sentation within TSPT and allows one to compute higher-order corrections and

IR resumm arbitrary n-point functions in a systematic way.

Part I is organized as follows. In Chapter 2 we outline the basic formalism.

Chapter 3 is devoted to IR resummation in real space. In Sec. 3.2 we describe

how to identify the enhanced IR-effects and establish the power counting rules.

The resummation of LO contributions is performed in Sec. 3.3 for the power

spectrum and bispectrum. In Sec. 3.4 we extend the resummation to diagrams

with loops of short modes. Next-to-leading IR contributions are resummed in

Sec. 3.5 and a concise formula for the resummed correlation functions is derived.

In Sec. 3.6 we discuss the practical implementation of our procedure, compare

our result to N -body data and discuss the BAO shift. Section 3.7 is devoted

to conclusions and discussion of future directions. Appendices B.1—D contain

details of the calculations.

Chapter 4 is dedicated to IR resummation in redshift space. In Section 4.1 we

review the standard approach to redshift space distortions. In Section 4.2 we

introduce a new redshift space mapping by means of the 1D flow analogy. In

Section 4.3 we construct the redshift-space probability distribution function and

the corresponding TSPT generating functional. In Section 4.4 we discuss the

IR resummation of matter correlation functions in redshift space. In Section 4.5

we include bias in our IR resummation procedure. In Section 4.6 we describe

how to practically evaluate IR resummed power spectra and bispectra at leading

and next-to-leading order. Section 4.7 is devoted to a quantitative analysis of

our results and their comparison to N-body data. Section 4.8 draws conclusions

and points future directions. Appendix E is devoted to some useful expressions
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for the bias and RSD kernels. In Appendix F we discuss possible simplifications

of the redshift-space IR-resummed integrands that make them convenient for

numerical evaluation.

1.3 Introduction to part II

In the second part of the thesis we will present a non-perturbative calculation for

the probability distribution function of the spherically-averaged matter density

field.

The counts-in-cells statistics are one of the classic observables in LSS. The distri-

bution of galaxies in 2-dimensional angular cells on the sky was first measured by

E. Hubble [71], who noticed that it is close to log-normal. For the total matter

density this has been recently tested in [72, 73]. The log-normal distribution was

also suggested as a model for the 1-point PDF in the case of three-dimensional

cells [74] and has been quite successful in describing both N-body simulations

[75, 76] and observational data [77, 78]. However, as pointed out in [79, 80], this

success appears to be accidental and is due to the specific shape of the power

spectrum at mildly non-linear scales. Recent high-accuracy N-body simulations

performed in [81] revealed significant deviations of the measured PDF from the

log-normal fit.

Pioneering calculations of the counts-in-cells PDF from first principles were per-

formed in Refs. [79, 82] using insights from perturbation theory. This study

was extended beyond perturbation theory in Refs. [83–85], where it was argued

that the most probable dynamics producing a given overdensity in a spherical

cell respects the symmetry of the problem, i.e. it is given by spherical collapse.

Recently, these calculations were revisited in the context of the Large Deviation

Principle (LDP) [86]. In particular, Ref. [87] introduced the logarithmic den-

sity transformation to avoid certain problems associated with the application

of LDP directly to the density PDF [88]. This formalism has been applied to

joint PDF of densities in two cells [89–91] and to biased tracers [92]. An alter-

native approach to the counts-in-cells statistics developed in [93–95] is based on

the Lagrangian-space description of LSS. Ref. [96] recently derived 1-point PDF

in a toy model of (1 + 1) dimensional universe. Counts-in-cells statistics were

suggested as promising probes of primordial non-Gaussianity [97, 98] and as a

suitable tool to analyze the future 21 cm intensity mapping data [99].
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We will use the path-integral approach to counts-in-cells pioneered in [85, 97].

In this approach the calculation of the 1-point PDF closely resembles a calcula-

tion of instanton effects in quantum field theory (QFT). Following Part I of this

thesis, we introduce a formal parameter characterizing the overall amplitude of

the matter power spectrum and argue that it plays a role of the coupling con-

stant in the theory. When the coupling is small, the path integral defining the

1-point PDF can be evaluated in the saddle-point (‘semiclassical’) approxima-

tion. Thereby the PDF factorizes into the exponential part given by the leading

saddle-point configuration and a prefactor coming from integration over small

fluctuations around the saddle-point solution. We confirm the assertion [85] that

the saddle-point configuration corresponds to the spherically symmetric dynam-

ics. In this way we recover the well-known result [85–87, 94, 95] for the leading

exponential part of the PDF. Our key result is computation of the prefactor due

to aspherical perturbations around the spherical collapse which has not been

done in the previous works. We will demonstrate that this ‘aspherical prefactor’

is crucial for the consistency of the saddle-point calculation. In particular, it is

required to ensure that the mean value of the density contrast vanishes.

In the QFT analogy, evaluation of the aspherical prefactor amounts to a 1-loop

computation in a non-trivial background. As such, it is instructive in several

respects. First, it shows how the vanishing of the mean density contrast is re-

lated to the translational invariance of the theory, spontaneously broken by the

position of the cell. Second, the sector of dipole perturbations exhibits ‘IR di-

vergences’ at intermediate steps of the calculation associated to large bulk flows.

We show that the equivalence principle ensures cancellation of these divergences.

We devise a procedure to isolate the IR-enhanced contributions and cancel them

analytically, prior to any numerical evaluation. Finally, the contributions of high

multipoles are sensitive to short-distance dynamics and must be renormalized.

Unfortunately, it is impossible to unambiguously fix the renormalization proce-

dure from first principles. We isolate the ‘UV-divergent’ part of the prefactor

and consider two models for its renormalization, differing by the dependence of

the corresponding counterterm on the density contrast. Both models use as in-

put the value of the counterterm for the 1-loop power spectrum, and thus do not

introduce any new fitting parameters. We suggest to use the difference between

the two models as an estimate of the theoretical uncertainty introduced by renor-

malization. This uncertainty is less than percent in the range of moderate cell

densities, ρcell/ρuniv ∈ [0.5, 2], where ρuniv is the average density of the universe,

and degrades to 30% for extreme values ρcell/ρuniv = 0.1 or ρcell/ρuniv = 10 at

z = 0.
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To verify our approach we ran a suite of N-body simulations9 using the FastPM

code [100]. The numerical studies are performed for the following cosmology: a

flat ΛCDM with Ωm = 0.26, Ωb = 0.044, h = 0.72, ns = 0.96, Gaussian initial

conditions, σ8 = 0.794. This is the same choice as in Ref. [91] which used the

counts-in-cells distribution extracted from the Horizon run 4 simulation [101]; it

facilitates a direct comparison between our results and those of [91].

The predictions of our method are found to be in complete agreement with

the results of N-body simulations. First, the 1-point PDF clearly exhibits the

semiclassical scaling. The aspherical prefactor extracted from the N-body data

shows a very weak dependence on redshift or the radius of the cell, as predicted

by theory. Second, the data fall inside the range spanned by our theoretical

uncertainty. Remarkably, one of the counterterm models matches the data within

the accuracy of the simulations throughout the whole range of available densities,

ρcell/ρuniv ∈ [0.1, 10], at all redshifts and for different cell radii.

Part II of the thesis is organized as follows. In Sec. 5.1 we introduce the path inte-

gral representation of the 1-point PDF, identify its saddle point and demonstrate

the factorization of the PDF into the leading exponent and prefactor. We evalu-

ate the leading exponential part. In Sec. 5.2 we evaluate explicitly the prefactor

due to spherically symmetric perturbations and discuss the general properties

of the aspherical prefactor. We compare the theoretical expectations with the

prefactor extracted from the N-body data and provide simple fitting formulas

for it. The rest of part II is devoted to the calculation of the aspherical prefactor

from first principles. In Sec. 6.1 we compute the aspherical prefactor at small

values of the density contrast using perturbation theory. In Sec. 6.2 we derive

the set of equations describing the prefactor in the non-perturbative regime of

large density contrasts and present an algorithm for its numerical evaluation. In

Sec. 6.3 we modify the algorithm for the sector of dipole perturbations in order

to explicitly factor out and cancel the IR-enhanced contributions. In Sec. 6.4

we compute the contributions of high multipoles using the Wentzel–Kramers–

Brillouin (WKB) approximation. In Sec. 6.5 we present our numerical results for

the aspherical prefactor, discuss the contribution of short-distance physics and

its renormalization. Section 7 contains a summary of our results and discussion.

Several appendices contain supplementary material. Appendix A summarizes

our conventions. In Appendix G we review the dynamics of spherical collapse in

Einstein–de Sitter (EdS) and ΛCDM universes. Appendix H contains details of

our numerical procedure. In Appendix I we comment on the log-normal model

9The details of the simulations are described in Appendix B of the original paper [9].
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for the counts-in-cells statistics. Some other additional material relevant for the

calculation of the aspherical prefactor can be found in the appendices of the

original paper Ref. [9].

Finally, Chapter 8 discusses main results of the thesis and draws conclusions.



Part I

Non-linear evolution of baryon

acoustic oscillations and

IR resummation



Chapter 2

Overview of time-sliced

perturbation theory for

large-scale structure

In this section we give a brief review of TSPT for matter in real space [1]. We

are interested in the correlation functions of the overdensity field δ = (ρ− ρ̄)/ρ̄

and the velocity divergence field Θ ∝ ∇ · v, whose time-evolution is governed by

the continuity and Euler equations for the peculiar flow velocity v,

∂δ

∂τ
+∇ · [(1 + δ)v] = 0 , (2.1a)

∂v

∂τ
+Hv + (v · ∇)v = −∇φ , (2.1b)

where ∇2φ = 3
2H

2Ωmδ and H = aH. Here τ is conformal time and Ωm is the

matter density fraction. It is well-known [15] that in the case of an Einstein–de

Sitter universe these equations can be cast in a form free from any explicit time

dependence by introducing the time parameter η = lnD, where D is the linear

growth factor, and appropriately rescaling the velocity divergence

Θ = −∇ · v
Hf

(2.2)

with f = d lnD/d ln a. For the realistic ΛCDM cosmology, the substitution (2.2)

into (2.1) leaves a mild residual time dependence which, however, has little effect

on the dynamics. Following conventional practice we will neglect this explicit

time dependence in the equations of motion, but keep the factor f when it

appears in redshift space quantities.
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The linear growth factor D plays the role of the expansion parameter in TSPT.

In order to emphasize this, and in analogy to notation used in quantum field

theory, we denote it by

g(η) ≡ eη = D(z) . (2.3)

In Fourier space Eqs. (2.1) can be rewritten as1

∂ηδk −Θk =

∫
q1

∫
q2

(2π)3δ
(3)
D (k− q12)α(q1,q2)Θq1δq2 ,

∂ηΘk +
1

2
Θk −

3

2
δk =

∫
q1

∫
q2

(2π)3δ
(3)
D (k− q12)β(q1,q2)Θq1Θq2 ,

(2.4)

with non-linear kernels

α(k1,k2) ≡ (k1 + k2) · k1

k2
1

, β(k1,k2) ≡ (k1 + k2)2(k1 · k2)

2k2
1k

2
2

. (2.5)

In this thesis we will use the notation

q1...n = q1 + q2 + ...+ qn . (2.6)

The initial distribution of the density and velocity fields is Gaussian, i.e. it is

fully characterized by a two-point cumulant, called the power spectrum,

〈δkδk′〉 = 〈ΘkΘk′〉 = (2π)3δ
(3)
D (k + k′)P (k) at η → −∞. (2.7)

The main idea of the TSPT approach is to substitute the time evolution of δ

and Θ by that of their time dependent probability distribution functional. This

idea is particularly useful when one is only interested in equal time correlation

functions. For adiabatic initial conditions only one of the two fields is statistically

independent. We choose it to be the velocity divergence field Θ and denote its

probability distribution functional by P[Θ; η]. At any moment in time, the field

δ can be expressed in terms of Θ as

δk = δ[Θ; η,k] ≡
∞∑
n=1

1

n!

∫
q1

...

∫
qn

K(r)
n (q1, ...,qn)(2π)3 δ

(3)
D (k−q1...n)

n∏
j=1

Θ(η,qj) ,

(2.8)

withK
(r)
1 = 1. In what follows we will use the superscript (r) to denote quantities

defined in usual position space, which is also called ‘real space’ as opposed to

redshift space, for which we will use the superscript (s).

1Our conventions are discussed in Appendix A.
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Equation (2.8) can be used to eliminate the density field from Eq. (2.1) and

obtain a closed equation for the velocity divergence,

∂ηΘ(η,k) = I[Θ] ≡
∞∑
n=1

1

n!

∫
q1...qn

I(r)
n (q1, ...,qn) (2π)3δ

(3)
D (k−q1...n)

n∏
j=1

Θ(η,qj) ,

(2.9)

with I
(r)
1 ≡ 1 corresponding to the growing mode in the perfect fluid approx-

imation. The kernels K
(r)
n and I

(r)
n are found recursively using the relations,

K
(r)
2 (k1,k2) =

4

7

(
1− (k1 · k2)2

k2
1k

2
2

)
, (2.10a)

I
(r)
2 (k1,k2) = 2β(k1,k2) +

3

2
K

(r)
2 (k1,k2) , (2.10b)

K(r)
n (k1, ...,kn) =

2

2n+ 3

[ n∑
i=1

α
(
ki,

∑
1≤j≤n,j 6=i

kj

)
K

(r)
n−1(k1, ..., ǩi, ...,kn)

−
∑

1≤i<j≤n
I

(r)
2 (ki,kj)K

(r)
n−1(ki + kj ,k1, ..., ǩi, ..., ǩj , ...,kn)

− 3

2

n−1∑
p=3

1

p!(n− p)!
∑
σ

K(r)
p

(
kσ(1), ...,kσ(p)

)
K

(r)
n−p+1

( p∑
l=1

kσ(l),kσ(p+1), ...,kσ(n)

)]
,

(2.10c)

I(r)
n (k1, ...,kn) =

3

2
K(r)
n (k1, ...,kn) , n ≥ 3 . (2.10d)

Equal-time correlation functions for Θ and δ can be obtained by taking functional

derivatives with respect to the external sources J and Jδ, respectively, of the

following partition function,

Z[J, Jδ; η] =

∫
[DΘ] P[Θ; η] exp

{∫
k

ΘkJ(−k) +

∫
k
δ[Θ; η,k]Jδ(−k)

}
. (2.11)

The probability density functional satisfies the Liouiville equation which reflects

the conservation of probability,

∂

∂η
P[Θ; η] +

∫
k

δ

δΘ(k)
(I[Θ; η]P[Θ; η]) = 0 . (2.12)

In perturbation theory one can represent (logarithm of) P[Θ; η] as a power series

in Θ,

P[Θ; η] = N−1 exp

{
−
∞∑
n=1

1

n!

∫
k1...kn

Γ(r) tot
n (η; k1, ...,kn)

n∏
j=1

Θkj

}
, (2.13)
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where N is a normalization factor. Substituting this representation into (2.12)

and using Eq. (2.9) we obtain the following chain of equations on the vertices,

∂ηΓ
(r) tot
n (η; k1, ...,kn) +

n∑
m=1

1

m!(n−m)!

∑
σ

I(r)
m (η; k1, ...,km)

× Γ
(r) tot
n−m+1(η;

m∑
l=1

kσ(l),kσ(m+1), ...,kσ(n)) = (2π)3δ
(3)
D (k1...n)

∫
p
I

(r)
n+1(η; p,k1, ...,kn) .

(2.14)

It is convenient to decompose the solution of these equations into two pieces:

Γ(r) tot
n = Γ(r)

n + C(r)
n , (2.15)

where Γ
(r)
n is the solution of the homogeneous equations (2.14) with the initial

conditions reflecting the initial statistical distribution, and C
(r)
n is the solution of

the inhomogeneous equations with vanishing initial conditions. The Γ
(r)
n vertices

have the physical meaning of 1-particle irreducible tree-level correlators with

amputated external propagators, and C
(r)
n are counterterms, whose role is to

cancel divergences in the loop corrections [1].

For the Gaussian initial conditions the time-dependence of the vertices Γ
(r)
n fac-

torizes,

Γ(r)
n = (2π)3δ

(3)
D (k1...n)

Γ̄
′(r)
n

g2(η)
, (2.16)

where the time-independent kernels Γ̄
′(r)
n are given by

Γ̄
′(r)
2 (k1,k2) =

1

P̄ (k1)
, (2.17a)

Γ̄′(r)n (k1, ...,kn) = − 1

n− 2

∑
1≤i<j≤n

I
(r)
2 (ki,kj)Γ̄

(r)
n−1(ki+kj ,k1, ..., ǩi, ..., ǩj , ...,kn)

− 3

2(n− 2)

n−1∑
p=3

1

p!(n− p)!
∑
σ

K(r)
p

(
kσ(1), ...,kσ(p)

)
× Γ̄

(r)
n−p+1

( p∑
l=1

kσ(l),kσ(p+1), ...,kσ(n)

)
, n ≥ 3 .

(2.17b)

Note that the Gaussian part of the integral (2.11), given by (2.17), is the seed

in the recursion relations (2.17b) so the Γ̄n vertices can be seen as functionals of

the initial power spectrum P̄ (k). The counterterms C
(r)
n do not depend on time
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k
= g2(η)P̄ (k),

k1

k2

k3

= −g−2(η)
Γ̄

(r)
3 (k1,k2,k3)

3!

k
= −C(r)

1 (k),
k

q1

q2

=
K

(r)
2 (q1,q2)

2!
(2π)3δ

(3)
D

(
k−

2∑
i=1

qi

)

Figure 2.1: Example of TSPT Feynman rules.

and are given by:

C(r)
n (k1, ...,kn) =

1

n

[
(2π)3δ

(3)
D (k1...n)

∫
p
I

(r)
n+1(p,k1, ...,kn)

−
n∑
p=2

1

p!(n− p)!
∑
σ

I(r)
p

(
kσ(1), ...,kσ(p)

)
C

(r)
n−p+1

( p∑
l=1

kσ(l),kσ(p+1), ...,kσ(n)

)]
.

(2.18a)

The TSPT perturbative expansion is organized by expanding the generating

functional (2.11) over the Gaussian part of P, which is equivalent to an expansion

in the coupling constant g(η). This calculation can be represented as a sum

of Feynman diagrams, whose first elements are summarized in Fig. 2.1: Γ2 is

represented by a line (propagator), the different elements Γn (with n > 2) and

Cn correspond to vertices, and Kn are depicted as vertices with an extra arrow.

To compute an n-point correlation function of the velocity divergence Θ one

needs to draw all diagrams with n external legs. For the correlators of the

density field δ one has to add diagrams with external arrows.
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IR resummation in real space

In this chapter we will discuss IR resummation only in real space and for com-

pactness omit superscripts (r) in all the quantities.

The main idea of TSPT is to disentangle time-evolution from statistical ensemble

averaging. In a first step, the probability distribution P for the perturbations

is evolved from the initial time to a finite redshift and expressed in terms of an

expansion in powers of the density- and velocity divergence field at this redshift.

In a second step, the statistical averages are computed perturbatively. The

latter step can be conveniently represented by a diagrammatic series, where the

quadratic cumulant represents a propagator, and the higher cumulants — n-

point vertices Γn. In [1] it has been shown that these vertices are IR safe, i.e.

free from spurious enhancements ∝ k/q when any of the wavenumbers become

small.

In order to identify enhanced contributions related to the BAO, we split the ini-

tial power spectrum into a smooth (‘non-wiggly’) component Pnw and an oscil-

latory (‘wiggly’) contribution Pw. Then the TSPT three-point vertex expanded

for q � k and to first order in Pw is given by

Γ3(k, q, q′)→ δ
(3)
D (k + q + q′)

k · q
q2

(
Pw(|k + q|)− Pw(k)

Pnw(k)2

)
. (3.1)

In the limit q → 0 the difference of the two power spectra in the numerator goes

to zero and cancels the 1/q enhancement from the vertex, as required by the

equivalence principle. However, as emphasized in [29], the Taylor expansion of

Pw(|k + q|) becomes unreliable for kosc . q � k. This means that non-linear

corrections to the correlation functions at scale k receive large corrections from

IR modes q within this range. Note that Eq. (3.1) has a counterpart in standard
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perturbation theory. Indeed, taking the IR limit of the one-loop integrals, q � k,

where q is a loop momentum, one finds

P1-loop(k) =Plin(k)

+

∫
|q|�k

(k · q)2

q4
Plin(|k + q|)Plin(q)︸ ︷︷ ︸
P22

−
∫
|q|�k

(k · q)2

q4
Plin(k)Plin(q)︸ ︷︷ ︸

P13

.

(3.2)

First, one sees that if the linear power spectrum were a simple power-law, the

two contributions above would cancel from O(q−2) down to O(q0) correction

in the integrand. This is the famous IR-cancellation between the individual

SPT diagrams related to the equivalence principle. However, since the linear

power spectrum does oscillate with frequency kosc, a naive Taylor expansion of

Plin(|k + q|) would yield a somewhat useless power series of q/kosc ≥ 1. Hence,

because of the BAO, we cannot fully eliminate the IR enhancement in the one-

loop term and have to always retain the whole finite difference of the wiggly

power spectrum Pw(|k + q|)−Pw(k) in (3.2). This is precisely what is meant by

‘incompleteness’ of IR cancellation in the presence of the BAO feature.

In this Chapter we identify the IR-enhanced contributions for all Γn vertices, and

establish a power counting scheme to compute corrections to the most enhanced

terms. The leading contributions to the oscillatory part of the power spectrum

are given by a set of ‘daisy’ diagrams, and their resummation is represented

diagrammatically in the following form (see Sec. 3.3 for details),

P IR res,LO
w (η; k) = +

Γ̄w4
(3.3)

+

Γ̄w6
+

Γ̄w8
+ + ...

This diagrammatic representation is straightforwardly extended to IR-enhanced

contributions into higher correlation functions.

At leading order (LO) for the power spectrum the resummation reproduces the
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Figure 3.1: Matter two-point correlation function ξ(x) at redshift z = 0.
The thin (thick) blue solid line shows the infrared-resummed result obtained in
TSPT at leading order (next-to-leading order). At BAO scales the perturbative
expansion within the TSPT framework converges well and agrees with N -body
results from large-scale numerical simulations [101] (red dot-dashed line). For
comparison, we also show the linear (black dashed) and SPT 1-loop (black

dotted) results.

result found in [29], which consists in a broadening of the BAO peak. Us-

ing TSPT we systematically compute next-to leading order (NLO) corrections.

Apart from being quantitatively important in order to achieve good agreement

with the results of large-scale N -body simulations at BAO scales, these NLO con-

tributions are crucial for a reliable determination of the shift of the BAO peak.

Furthermore, they are sensitive to the non-dipole corrections and consequently

capture deviations from the Zel’dovich approximation (ZA). This may also be

helpful to assess potential biases introduced in BAO reconstruction, which often

uses the Zel’dovich approximation for backwards evolution. Our numerical re-

sults for the matter correlation function ξ(x) at redshift z = 0 are summarized

in Fig. 3.1, where we compare the TSPT results at LO and NLO with N -body

data, and also show the naive SPT 1-loop result for comparison. It is worth

noting that the results are obtained from first principles without adjusting any

free parameters.

3.1 TSPT and wiggly-smooth decomposition

In this section we first briefly remind the basic elements of the TSPT approach

to large-scale structure formation (see [1] for a detailed presentation) and then
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discuss our strategy to identify IR enhanced effects on the BAO peak by decom-

posing the matter power spectrum as well as the TSPT vertices into smooth and

oscillatory components.

3.1.1 TSPT in terms of wiggly and smooth elements

The initial power spectrum that sources the different elements of TSPT can be

decomposed into a smooth (non-wiggly) part (with the maximum at k = keq ∼
0.02h/Mpc corresponding to the matter-radiation equality) and an oscillatory

part (or wiggly power spectrum) that describes the impact of the BAO,

Plin(η, k) = g(η)2P̄ (k) = g(η)2
(
P̄nw(k) + λP̄w(k)

)
. (3.4)

Here we have factored out the time-dependence given by the growth factor

g = D(z) and introduced a book-keeping parameter λ to count the powers of P̄w

in various expressions. As for the vertices, the bar denotes the time-independent

power spectra. The amplitude of the wiggly power spectrum is suppressed com-

pared to that of the smooth power spectrum in a realistic cosmological model.

Its value can be estimated as [102] (see also [103]),

P̄w
P̄nw

= O

(
e−(ηrec−ηeq) Ωb

Ωm

)
∼ 0.05 . (3.5)

The wiggly power spectrum P̄w can be parametrized as [102, 103],

P̄w(k) ∝ sin (k/kosc) exp
[
−(k/kSilk)

2
]
T (k) , (3.6)

where 1/kosc ' 110 Mpc/h, the Silk damping scale is kSilk ∼ 0.2 h/Mpc and

T (k) is the dark matter transfer function which is slowly varying1 with k. For

our numerical analysis we do not use (3.6), but extract the wiggly part by fitting

a smooth multi-parameter template to the linear power spectrum for a given

cosmological model. The details of this procedure are outlined in Appendix B of

[3]. The corresponding (time-independent) ratio Pw/Pnw is shown by the solid

curve in Fig. 3.2 for the case of the reference cosmological model used later on.

Notice that this ratio vanishes both at low and high wavenumbers.

To check that the results do not depend on the precise prescription for separating

the total power spectrum into smooth and wiggly components, we have also

used an alternative decomposition with Pw/Pnw depicted by the dashed curve in

Fig. 3.2. This decomposition was obtained by constructing splines that smoothly

1It tends to 1 at k < keq and behaves as ln k/k2 at higher k.
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Figure 3.2: Ratio of oscillatory (wiggly) part Pw of the linear power spectrum
to the smooth part Pnw obtained using two separation prescriptions. The
ΛCDM cosmological parameters have been chosen as in [101]. The solid curve
corresponds to the decomposition used in numerical computations in Sec. 3.6.

The alternative decomposition (dashed curve) is used for cross-checks.

interpolate the linear power spectrum in between the BAO wiggles. We find

that the difference in the final results for the total power spectrum and the

correlation function obtained using the two forms of Pw are at the sub-percent

level, below the uncertainties introduced by other approximations. This is to be

expected: the ambiguity in the wiggly-smooth decomposition is relevant at large

scales, k . 0.03h/Mpc, which are essentially unaffected by the non-linear IR

dynamics. As will become clear later, in the physical observables at these scales

the smooth and wiggly components are simply summed back, and the ambiguity

disappears. Similarly, an overall vertical off-set between the two curves in Fig. 3.2

at k & 0.1h/Mpc does not contribute into the BAO feature.

The decomposition (3.4) can be extended to all the Γ̄n vertices, since they are

functionals of the initial power spectrum. Let us start with Γ̄2 from (2.17a),

Γ̄′2(k,−k) =
1

P̄ (k)
=

1

P̄nw(k)
− λ P̄w(k)

P̄ 2
nw(k)

+O(λ2)

≡ Γ̄′nw2 (k,−k) + λ Γ̄′w2 (k,−k) +O(λ2) .

(3.7)

Given that the vertex Γ̄′2 generates all the higher vertices by the recursion relation

(2.17b), one can introduce a similar decomposition for all the Γ̄′n vertices

Γ̄′n = Γ̄′nwn + λ Γ̄′wn +O(λ2) . (3.8)

The Γ̄′wn (Γ̄′nwn ) vertices are computed using Γ̄′w2 (Γ̄′nw2 ) as an input in (2.17b).

The decomposition (3.8) can be introduced back in the partition function (2.13).
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k
= g2(η)P̄w(k) ,

k1

k2

k3

= − g−2(η)

3!
Γ̄w3 (k1,k2,k3) ,

k
= g2(η)P̄nw(k) ,

k1

k2

k3

= − g−2(η)

3!
Γ̄nw3 (k1,k2,k3) .

Figure 3.3: Example of Feynman rules for wiggly and smooth elements.

Since the Cn and Kn kernels are not functionals of the linear power spectrum [1]

(see also Appendix B.1), they are not subject to the wiggly-smooth decomposi-

tion. The leading order O(λ0) corresponds to the smooth correlation functions.

The O(λ) results include the wiggly contribution. In terms of diagrams, they

can be summarized in the form of a new wiggly propagator g2Pw (represented

by a wiggly line) and by wiggly vertices Γ′wn (represented by a dashed circle),

see Fig. 3.3. We use small dots to depict the smooth vertices and straight lines

to represent the smooth power spectrum. The terms O(λ2) are quadratic in Pw

and will be neglected.

The graphs with the wiggly elements are loosely referred to as wiggly graphs. For

instance, the tree-level wiggly bispectrum is given by the following four wiggly

graphs2,

〈Θη(k1)Θη(k2)Θη(k3)〉tree
w = + + +

(3.10)

= −λg4(η)

 3∏
i=1

P̄nw(ki) Γ̄w3 (k1,k2,k3) +

3∑
j=1

P̄w(kj)

3∏
i=1,
i 6=j

P̄nw(ki) Γ̄nw3 (k1,k2,k3)

 .

2 In terms of SPT kernels the result of (3.10) can be rewritten as

〈Θ(k1)Θ(k2)Θ(k3)〉tree
w

= 2λg4(η)G2(k1,k2)(P̄w(k1)P̄nw(k2) + P̄w(k2)P̄nw(k1)) + permutations .
(3.9)
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To obtain the matter density bispectrum one has to add to the previous expres-

sion six more graphs with the vertex K2,

∆〈δ(k1)δ(k2)δ(k3)〉tree
w = + permutations (3.11)

=− λg4(η)

3∑
i<j=1

(P̄w(kj)P̄nw(ki) + P̄nw(kj)P̄w(ki)) K2(ki,kj) (2π)3δ
(3)
D

(∑
l

kl
)
.

In what follows we set λ = 1 whenever there is no possible confusion.

3.2 IR enhanced diagrams and power counting

One of the advantages of the TSPT approach is that all of its building blocks are

free of spurious infrared enhancements. In particular, the Γ̄n vertices are finite in

the limit {q} → 0, where {q} is any subset of the arguments of Γ̄n [1]. In contrast,

within SPT individual vertices have poles in q which cancel only after summing

all contributions at a given order. Nevertheless, as mentioned previously, for a

linear power spectrum with an oscillatory behavior the cancellation of enhanced

terms is incomplete for q & kosc. In this section we show how to extract these

enhanced contributions within TSPT and then discuss power counting rules.

These are helpful to organize the resummation of enhanced contributions, and

later on to develop a perturbative expansion for taking sub-leading corrections

to the resummed result into account.

3.2.1 IR enhanced vertices

We consider a TSPT n-point vertex Γ̄n(k1, . . .kn) evaluated with arguments ki

that have magnitudes given schematically by two different scales: a hard scale

denoted by k and a soft scale denoted by q, with

q/k � 1 . (3.12)

Let us first analyze the three-point vertex Γ̄′w3 . Using (2.17b) we find,

Γ̄′w3 (k,−k−q,q) = I2(k,q)
P̄w(|k + q|)
P̄ 2
nw(|k + q|)

+I2(−k−q,q)
P̄w(k)

P̄ 2
nw(k)

+I2(−k−q,k)
P̄w(q)

P̄ 2
nw(q)

,

(3.13)

where I2 is given in (2.10b). In the limit (3.12) the rightmost term in (3.13)

is smaller than O(q/k) and will be neglected in what follows. The other terms
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provide an expression of the form

Γ̄′w3 (k,−k− q,q) =
k · q
q2

(
P̄w(|k + q|)− P̄w(k)

P̄nw(k)2

)
+O

(
(q/k)0

)
, (3.14)

where we have used that the derivatives of the smooth component scale as 1/k

and expanded P̄nw(|k + q|) = P̄nw(k) + O(q/k). In contrast, we kept the finite

difference for the wiggly component that varies substantially for q & kosc.

It is convenient to use compact notations by introducing the linear operator

Dq[P̄w(k)] =
k · q
q2

(
P̄w(|k + q|)− P̄w(k)

)
=

k · q
q2

(
eq·∇k′ − 1

)
P̄w(k′)

∣∣∣
k′=k

.

(3.15)

This operator will play a central role in the following, and therefore we elaborate

on some of its properties. Consider first its action on a purely oscillatory function

eik/kosc , where we are interested in the case k � kosc. Expanding the exponent

in the small parameter q/k we obtain,

Dq[eik/kosc ] ≈ k · q
q2

(
eiq cos(k,q)/kosc − 1

)
eik/kosc , (3.16)

where we introduced cos(k,q) = k·q
kq . For q & kosc the expression in the brackets

is of order one, whereas the prefactor is enhanced by k/q. On the other hand, if

q � kosc, Eq. (3.16) reduces to

Dq[eik/kosc ] ≈ ik

kosc
cos2(k,q) eik/kosc , (3.17)

so that the enhancement is given by k/kosc. In a more realistic case the wig-

gly power spectrum can be viewed as an oscillating function that is modulated

by a smooth envelope, Pw(k) ∼ fenv(k)ei(k/kosc+ϕ)+c.c. with3 ∇fenv(k) ∼
O(1/k)fenv(k). For example, the parametrization (3.6) is of this form. Inserting

this parameterization into (3.15) one observes that the derivatives acting on the

envelope are suppressed compared to those acting on the oscillating part. They

must be taken into account only when looking at the sub-leading corrections.

We conclude that

Dq[P̄w(k)] ∼ O(ε−1)P̄w(k) , (3.18)

3Strictly speaking, due to existence of the Silk damping, ∇fenv(k) ∼
O
(

max(1/k, 1/kSilk)
)
fenv(k). However, we use the simpler estimate from above since

in practice we do not consider values of k that are parametrically larger than kSilk.
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where we introduced the small parameter

ε ≡ max (q/k, kosc/k) . (3.19)

As we are going to see shortly, the enhancement by 1/ε is the reason why the

naive SPT loop expansion breaks down for the BAO. The sub-leading corrections

coming from the derivatives of the envelope and higher terms in the expansion

of the oscillating part correspond to contributions of order ε0 (or higher powers

of ε) that are suppressed relative to the leading 1/ε enhancement. This will be

important to establish systematic power counting rules.

It turns out to be useful to extend the action of Dq to any wiggly element. This

is done by recalling that the latter are linear expressions in Pw with smooth

k-dependent coefficients. Then, by definition, Dq acts on any occurrence of Pw

according to (3.15), leaving the smooth coefficients intact. For example,

Dq[Γ̄′w3 (k1,k2,k3)]
∣∣∣
k3=−k1−k2

≡
(
Dq[P̄w(k1)]

P̄ 2
nw(k1)

I2(k2,k3) + perm.

) ∣∣∣∣
k3=−k1−k2

,

(3.20)

and similarly for other Γ̄′wn . Note that an immediate consequence of this definition

is that Dq commutes with itself,

Dq1Dq2Γ̄′wn = Dq2Dq1Γ̄′wn (3.21)

The result (3.14) for the 3-point vertex can be generalized by induction to arbi-

trary n-point vertices with m hard wavenumbers ki and n−m wavenumbers qj

going uniformly to zero. In Appendix B we prove the following formula,

Γ̄′wn

(
k1, ...,km−

n−m∑
j=1

qj ,q1, ...,qn−m

)
= (−1)n−m

n−m∏
j=1

Dqj

 [Γ̄′wm (k1, ...,km)]×
(
1+O(ε)

)
,

(3.22)

where km = −
∑m−1

i=1 ki due to momentum conservation. Note that the leading

IR enhancement ∝ (1/ε)n−m is equal to the number of soft arguments. The

maximal enhancement happens for the case of n− 2 soft wavenumbers where we

have

Γ̄′wn

(
k,−k−

n−2∑
i=1

qi,q1, ...,qn−2

)
= (−1)n−2

(
n−2∏
i=1

Dqi

)
[Γ′w2 (k,−k)]×

(
1 +O(ε)

)
= (−1)n−1

[
n−2∏
i=1

(k · qi)
q2
i

(eqi·∇k′ − 1)

]
P̄w(k′)

P̄ 2
nw(k)

∣∣∣
k′=k

×
(
1 +O(ε)

)
,

(3.23)
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which scales as O(ε−n+2). Clearly, the sensitivity of the vertices Γ̄′wn to the large

parameter 1/ε grows with n. In the subsequent sections we show how these large

enhancement factors can be resummed within a systematic approach.

3.2.2 Leading diagrams and power counting rules

Consider a loop diagram containing a wiggly TSPT vertex Γwn with m external

legs and (n − m) legs attached to the loops. As we saw above, this vertex is

enhanced by powers 1/ε in the limit where its arguments qj flowing in the loops

become soft compared to the external wavenumbers ki. In order to extract the

corresponding enhancement of the loop diagrams, we split all loop integrations

into a soft part with q < kS and a hard part with q > kS . The scale kS is in

principle arbitrary, and observables do not depend on it when computed exactly.

Nevertheless, this splitting allows us to separately treat the IR and UV parts

of loop integrations, and resum the large IR loops. Any residual dependence on

kS should be taken as an estimate of the theoretical uncertainty, that should

become smaller and smaller when computing at higher orders. In practice, the

BAO feature is mostly affected by the modes with q between kosc and kSilk,

so the range kosc < kS < kSilk can be expected to lead to good convergence

properties. We will return to the choice of kS in Sec. 3.6.

To account for the IR enhancement, we identify the expansion parameter with

(cf. (3.19))

ε =
〈q〉
k
, (3.24)

where kosc < 〈q〉 < kS is the characteristic scale giving the dominant contribu-

tions into the IR loop integrals. As will become clear below by inspection of the

eventual expressions (3.29), (3.71) for the IR enhanced loops, the integrand in

them peaks roughly at the maximum of the smooth power spectrum implying

〈q〉 ∼ keq.

In addition to ε, the relevant parameter that controls the loop expansion is given

by the variance of the input linear power spectrum. The latter is dominated by

the smooth component Pnw. Due to the splitting into an IR (‘soft’) and UV

(‘hard’) parts we can discriminate two variances

σ2
S ≡ g2

∫
q<kS

d3q

(2π)3
P̄nw(q) , (3.25)

σ2
h ≡ g2

∫
q>kS

d3q

(2π)3
P̄nw(q) . (3.26)
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For example, for a realistic ΛCDM model one has σ2
S ∼ 0.16g2 (recall that

g ≡ D(z)) for the choice kS = 0.1h/Mpc, whereas σ2
h is formally UV divergent.

In practice, the hard part of the loop corrections remains finite due to additional

suppression of the actual integrands in the UV. Still, these corrections are UV

dominated and their reliable calculation requires proper renormalization of the

contribution due to very short modes. On the other hand, while the importance

of the UV counterterms increases for high wavenumbers and at higher orders of

the perturbation theory, they contribute only at a percent level to the hard one-

loop corrections to the power spectrum at the BAO performed in this Chapter.

The latter corrections are well-behaved and are of order few×10% at z = 0. We

postpone the study of the UV counterterms in TSPT for future work and focus

in this Chapter on the IR loops. σ2
h will be used in what follows as a formal

counting parameter for the number of hard loops.

Although σ2
S seems to be rather small, we will now argue that soft loops are

enhanced by a factor 1/ε2 ∼ O(10) for the wiggly observables. Therefore they

are proportional to the product σ2
S×1/ε2 which is O(1) at low redshift, implying

that the corresponding soft loops need to be resummed. Consider, for example,

1-loop corrections to the wiggly ΘΘ power spectrum, given by the following

TSPT diagrams,

P 1−loop
w,ΘΘ (η; k) =

Γ̄nw3 Γ̄nw3
+

Γ̄nw4

+
Γ̄nw3 Γ̄nw3

+
Γ̄nw4

+
Γ̄w3 Γ̄nw3

+
Γ̄w4

. (3.27)

The loop integration in each diagram can be either hard, q > kS , in which case

the diagrams are counted at order σ2
h, or soft, q < kS , and are of order σ2

S . Only

the soft contributions can be IR enhanced, so we focus on them for the moment.

The diagrams in the first line of (3.27) are never IR-enhanced, i.e. they are at

most of order ε0×σ2
S , because they do not contain a wiggly vertex. On the other

hand, the diagrams with the wiggly vertices do receive any IR enhancement. The

first diagram in the second line contains Γw3 and is according to (3.23), (3.18) of

order 1/ε × σ2
S . The last diagram contains Γw4 , and using (3.23), (3.18) we find

that it is of order 1/ε2×σ2
S and thus is the most IR-enhanced one-loop diagram.

At leading order in ε it is given by
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Γ̄w4

=
g2

2

∫
|q|≤kS

P̄nw(q)DqD−qPw(η; k) ≡ −g2SPw(η; k) , (3.28)

where in the last step we defined the operator S which can be written as

S Pw(η; k) =

∫
|q|≤kS

P̄nw(q)
(k · q)2

q4

(
1− cosh (q · ∇k′)

)
Pw(η; k′)

∣∣∣
k′=k

(3.29)

In terms of our power counting

S Pw(η; k) ∼ O(1/ε2 × σ2
S) Pw(η; k) . (3.30)

As discussed previously, the product 1/ε2 × σ2
S can be of O(1) at low redshift

and therefore this one-loop contribution can be comparable to the linear wiggly

spectrum.

In order to identify and eventually resum such terms we now discuss how to

determine the order of an arbitrary L-loop diagram in our power counting. This is

valid for any n-point correlation function, with external wavenumbers ki around

the BAO scale, kSilk & ki � kS , kosc. Given a TSPT diagram with L loops (i.e.

scaling as g2L), one must

1. choose for each propagator and each vertex whether it is smooth or wiggly.

Since we are interested in diagrams that contain one power of Pw, at most

one element (either propagator or vertex) can be wiggly. To obtain the

full answer, one eventually needs to sum over all possibilities to choose a

vertex or propagator to be the wiggly one.

2. assign each loop to be either hard (q > kS) or soft (q < kS). Formally,

this can be done by splitting the linear input spectrum into two parts as

Plin(q) = θ(q − kS)Plin(q) + θ(kS − q)Plin(q), and calling a loop hard if all

propagators and vertices along the loop contain only power spectra of the

former type4. The number of hard loops is denoted by Lh and the number

of soft loops by Ls. Trivially L = Lh +Ls, and the diagram contributes at

order (σ2
S)Ls × (σ2

h)Lh . Again, to obtain the full answer, one needs to sum

over all assignments eventually.

3. count the number of soft lines that are attached to the wiggly vertex. We

call this number l. According to (3.23), the IR-enhancement is 1/εl.

4 Strictly speaking, the splitting into hard and soft contributions is only necessary for the
loops that contain a wiggly vertex. For other loops, since σ2

S + σ2
h ≈ σ2

h in a realistic case, it is
effectively irrelevant whether we make this split or not.
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The order in our power counting of a contribution characterized by the numbers

(Lh, Ls, l) is therefore given by5

O
(

(σ2
S)Ls × (σ2

h)Lh × 1/εl
)
. (3.31)

If a diagram contains no wiggly vertex then l = 0 and no IR-enhancement occurs.

The most IR-enhanced contributions have the largest value of l. As a single loop

cannot contain more than two lines attached to the same vertex, we have the

inequality l ≤ 2Ls. This means that the most IR enhanced contributions are of

order (σ2
S/ε

2)Ls × (σ2
h)Lh . As argued before σ2

S/ε
2 is O(1) at low redshift and

therefore it is desirable to resum all diagrams with the maximal enhancement

l = 2Ls. This is the subject of the next section.

3.3 Resummation of leading infrared effects

Here we perform the resummation of dominant IR enhanced diagrams contribut-

ing into wiggly observables. We start with the power spectrum, then consider

the bispectrum and outline the generalization to higher n-point functions. We

work at the order (σ2
h)0, i.e. neglecting the hard loop corrections. The task of

taking them into account is postponed till Sec. 3.4.

3.3.1 Power spectrum

The most IR-enhanced contributions correspond to diagrams with l = 2Ls and

Lh = 0, i.e. all loops are soft and they contain a wiggly vertex to which l = 2Ls

soft lines are attached. At one-loop, the most IR enhanced diagram is the tadpole

diagram (3.28) with Ls = 1 soft loop and l = 2 soft lines attached to Γ̄w4 (the

two lines that belong to the loop). At two-loop, Ls = 2, the most IR-enhanced

diagram should contain a wiggly vertex with l = 4 soft lines attached to it. In

addition, the IR enhancement can only occur if also a hard momentum flows

through the wiggly vertex. For Lh = 0 this can only be the external momentum.

Therefore, the most IR-enhanced diagram has to contain a wiggly vertex Γ̄w6 with

four soft arguments attached to loops and two hard arguments that correspond

to the two external legs. The only possibility that remains is a single diagram,

given by a double-tadpole. Analogously, at higher loop orders, the most IR-

enhanced diagrams are obtained by attaching more and more loops to the wiggly

5To be more precise, this provides an upper estimate for the magnitude of the contribution.
Specific terms can be further suppressed, as will be seen below.
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vertex in the center. The first few diagrams that contribute to the wiggly part

of the power spectrum are shown in Eq. (3.3). It is natural to call them daisy

diagrams. Note that the leading IR-enhanced contributions are the same for the

density and velocity power spectra. Indeed, within TSPT the δ power spectrum

is obtained from that of Θ by adding diagrams with the kernels Kn (see Sec. 2).

These kernels do not depend on the wiggly power spectrum and are therefore

not subject to IR enhancement. Consequently, diagrams involving Kn kernels

give subdominant contributions at each loop order.

The daisy diagram with L loops, all of which are soft (i.e. Ls = L), is given by

PL−loop,LOw (η; k) = − 1

(2L+ 2)!
· (2L+ 2)(2L+ 1)(2L− 1)!!

×
L∏
i=1

[∫
|qi|≤kS

g2P̄nw(qi)

]
g4P̄nw(k)2g−2Γ̄′w,LO2L+2 (k,−k,q1,−q1, ...,qL,−qL) .

(3.32)

The symmetry factor in this formula arises as follows: there are (2L+2)(2L+1)

ways to choose the two external legs, and (2L − 1) · (2L − 3) · . . . · 1 ways to

connect all the remaining lines into the loops. Making use of (3.23), one obtains

PL−loop,LOw (η; k) =
1

L!

L∏
i=1

[
g2

2

∫
|qi|≤kS

P̄nw(qi)DqiD−qi

]
Pw(η; k)

=
(−g2(η)S)L

L!
Pw(η; k) ,

(3.33)

where the operator S has been defined in (3.28). The sum over all daisy graphs

gives the leading-order IR-resummed wiggly power spectrum

P IR res,LO
w (η, k) =

∞∑
L=0

PL−loop,LOw (η; k) = e−g
2(η)SPw(η; k) . (3.34)

We see that the operator S exponentiates.

The total power spectrum is obtained by adding the smooth part which, to the

required order of accuracy, can be taken at tree level. This yields,

P IR res,LO = Pnw(η; k) + e−g
2(η)SPw(η; k) . (3.35)

Let us stress again that this expression holds both for the density and velocity

divergence power spectra. Moreover, it is the same in the full hydrodynamics

(called ‘exact dynamics (ED)’ in the LSS literature) and ZA as the expansion

(3.23) used in the derivation is valid in both cases. The difference between ED
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and ZA and between δ and Θ appears for higher correlators and for the power

spectrum beyond the leading order.

3.3.2 Bispectrum and other n-point correlation functions

In this section we extend the resummation procedure of the IR-enhanced loop

contributions to the wiggly part of higher order correlation functions. We first

discuss the bispectrum and then general n-point correlation functions.

The wiggly part of the tree-level bispectrum for the velocity divergence field is

given by the four graphs (3.10), whereas for the density bispectrum one has to add

the graphs (3.11). At one loop order, and assuming all external wavenumbers are

hard, the most IR-enhanced contributions are obtained by ‘dressing’ the wiggly

vertices and propagators in (3.10), (3.11) with a soft loop (q < kS) attached to

the wiggly vertex,

B1−loop,LO
w,δδδ (η; k1,k2,k3) = (3.36)

k1

k2

k3

q

Γ̄w5
+

k1

k2

k3

q

Γ̄nw3

Γ̄w4

+
k1

k2

k3

q

K2

Γ̄w4

+ perm.

Within our power counting, these diagrams contribute at order σ2
L × 1/ε2 com-

pared to the tree-level bispectrum. Using a similar reasoning as for the power

spectrum, one finds that at higher loop orders the most IR-enhanced corrections

are given by daisy diagrams obtained by attaching more soft loops to the wig-

gly vertices appearing in each diagram in (3.36). Parametrically, these L-loop

diagrams scale as

BL−loop,LO
w,δδδ ∼ (σ2

L/ε
2)LBtree

w,δδδ , (3.37)

and thus need to be resummed.

The daisy diagrams centered on the propagator (like the second and third terms

in (3.36)) are essentially the same as those appearing in the calculation of

the power spectrum from the previous subsection. They are evaluated using

Eq. (3.32) and their resummation leads to the replacement of the external wig-

gly propagators in the tree level expression,

P̄w 7→ e−g
2S P̄w . (3.38)
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A new type of contributions comes from one-particle-irreducible (1PI) diagrams

with soft loops dressing the 3-point vertex (like the first diagram in (3.36)). In

view of future uses, let us consider the general case of a wiggly vertex with n

hard wavenumbers dressed by L soft loops,

V L−loop
w,n =

•

q1

•

•

qL
kn

kn−1

•

k2

k1

Γ̄wn+2L

•

•

=
1

(n+ 2L)!
· (2L+ n)...(2L+ 1) · (2L− 1)!!

×
L∏
i=1

[∫
|qi|≤kS

g2P̄nw(qi)

]
g−2Γ̄′wn+2L(k1, ...,kn,q1,−q1, ...,qL,−qL)

(3.39)

Using Eq. (3.22) we obtain for the leading IR-enhanced part,

V L−loop,LO
w,n =

(−g2S)L

L!
g−2Γ̄′wn (k1, ...,kn) . (3.40)

Clearly, resummation of these diagrams results in the substitution of the wiggly

vertex,

Γ̄′wn (k1, ...,kn) 7→ exp
{
−g2S

}
Γ̄′wn (k1, ...,kn) . (3.41)

Combining all terms together, one obtains the resummed bispectrum,

BIR res,LO
w,δδδ (η; k1,k2,k3) =− g4(η)δ(3)

(∑
l

kl
)[ 3∏

i=1

P̄nw(ki) e
−g2(η)S Γ̄′w3 (k1,k2,k3)

+

3∑
j=1

e−g
2(η)S P̄w(kj)

3∏
i=1
i 6=j

P̄nw(ki) Γ̄′nw3 (k1,k2,k3)

+

3∑
i<j=1

e−g
2(η)S(P̄w(kj)P̄nw(ki) + P̄nw(kj)P̄w(ki)

)
K2(ki,kj)

]
=e−g

2(η)SBtree
w,δδδ(η; k1,k2,k3) .

(3.42)

Recall that in the last expression the operator e−g
2S should be understood as

acting on every occurrence of Pw in the tree-level expression for the bispectrum.

In terms of the SPT kernels, Eq. (3.42) can be rearranged into a somewhat
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simpler form,

BIR res,LO
w,δδδ (η; k1,k2,k3) = 2

3∑
i<j=1

F2(ki,kj)e
−g2(η)S (Pw(η; kj)Pnw(η; ki) + i↔ j) .

(3.43)

The total bispectrum is obtained by adding to this expression the smooth tree-

level part.

The above result extends to any equal-time n-point correlation functions Cn(k1, ...,kn)

of δ or Θ with hard external legs. Namely, the IR resummation at LO amounts

to simply substituting the wiggly part of the linear spectrum, Pw, that enters

via wiggly vertices and propagators within the TSPT tree-level calculation, by

the resummed expression e−g
2SPw. This can be summarized in the following

compact form,

CIR res,LO
n (k1, ...,kn) = Ctreen

[
Pnw + e−g

2SPw
]
(k1, ...,kn) , (3.44)

where Ctreen is understood as a functional of the linear power spectrum. Note

that, since the tree-level n-point correlation functions, when summed over all

perturbative contributions, coincide in SPT and in TSPT, one can equivalently

use the replacement (3.38) in the usual SPT computations. However, the clear

diagrammatic representation as daisy resummation is only possible within TSPT.

In addition, TSPT allows to systematically compute corrections to the LO re-

summation presented above.

3.4 Taking into account hard loops

So far, we have considered and resummed the contributions that in the power-

counting scheme of Sec. 3.2.2 are of order (σ2
h)0× (σ2

S×1/ε2)Ls . We now discuss

corrections to this result. One can discriminate two types of corrections:

(1) Soft diagrams with non-maximal IR enhancement, characterized by l =

2Ls − 1 (see Eq. (3.31)), as well as the subleading terms in the diagrams

considered in Sec. 3.3. These contributions are suppressed by one power of

ε relative to the leading order.

(2) Diagrams with one hard loop, Lh = 1, and otherwise maximal IR enhance-

ment l = 2Ls. These diagrams are suppressed by one factor of σ2
h relative

to the leading order.



IR resummation in real space 37

We refer to these two types of contributions as NLOs and NLOh, respectively.

When combined, they constitute the total NLO correction. In this section we

analyze the contributions of the second type, while NLOs corrections will be

included in the next section.

We start from the ‘hard’ 1-loop contribution to the wiggly matter power spec-

trum6,

P 1−loop
w,δδ (η; k)

∣∣∣
hard

=
Γ̄nw4

+
Γ̄nw3 Γ̄nw3

+
Γ̄nw3 K2

+

C2

+
K3

+
Γ̄nw4

+
Γ̄nw3 Γ̄nw3

+
K2 K2

+
K3

+
Γ̄nw3 K2

+

Γ̄w4
+

Γ̄w3 Γ̄nw3
+

Γ̄w3 K2

(3.45)

where the wavenumber p running in the loop is taken to be above the separation

scale kS , p > kS . Note the appearance of a diagram with the counterterm C2

in the second line. Similarly to the case of the tree-level bispectrum, all wiggly

elements in these graphs can be dressed with soft daisies producing contributions

of order

σ2
h × (σ2

S × 1/ε2)Ls . (3.46)

Resummation of these contributions proceeds in a straightforward manner using

the general expressions (3.39), (3.40) and yields,

P IR res,NLOh
w,δδ (η; k) = e−g

2(η)SP 1−loop
w,δδ (η; k)

∣∣∣
hard

, (3.47)

where the r.h.s stands for the 1-loop diagrams (3.45) computed using the wiggly

power spectrum e−g
2SPw instead of the linear power spectrum Pw as an input.

6For the Θ power spectrum one simply omits the diagrams containing the kernels Kn.
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Two comments are in order. First, the diagrams in the third and fourth lines

in (3.45), as well as their descendants obtained by dressing with daisies, contain

a wiggly element inside the loop. This implies that the integrand of the cor-

responding loop integral is oscillating leading to cancellation between positive

and negative contributions. As a result, the corresponding diagrams are further

suppressed compared to the naive estimate (3.46). In fact, the suppression is for-

mally exponential, as follows from the general formula for the Fourier transform

of a smooth function,∫
[dp] sin(p/kosc)fsmooth(p/k) ∼ e−k/kosc ∼ e−1/ε .

From the viewpoint of our power-counting scheme, these contributions are ‘non-

perturbative’ and can be included or neglected without changing the accuracy

of the perturbative calculation. We prefer to keep them as it allows us to write

the result of IR resummation in the compact form (3.47).

Second, a careful reader might have noticed that the contributions discussed so

far, namely those obtained by the daisy dressing of (3.45), do not exhaust all

possible diagrams that formally would be of order (3.46) by the power-counting

rules of Sec. 3.2.2. The remaining diagrams fall into two categories. First, there

are diagrams where a hard line closes on a wiggly vertex, which is in its turn

attached to the external legs via a soft loop; a two-loop example is given by

q

p

Γ̄nw4

Γ̄w4
. (3.48)

However, these diagrams necessarily contain a wiggly vertex inside a hard loop

and thus, according to the previous discussion, are exponentially suppressed.

They can be safely neglected. Another set of extra diagrams is given by the

graphs where a hard loop is attached to a smooth propagator that belongs itself

to a soft loop. For example, at two-loop order these are
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q

p

Γ̄w4

Γ̄nw4

+
q

C2

Γ̄w4

+
q

p

Γ̄w4

(3.49)

=
g2

2

∫
|q|≤kS

P 1−loop
nw,ΘΘ(q)

∣∣∣
hard
DqD−qPw(η; k) .

The subdiagrams attached to the soft loop combine into the hard part of the one-

loop correction to the smooth velocity divergence power spectrum P 1−loop
nw,ΘΘ(η; q),

see [1]. As before, the ‘hard part’ means that the loop integration in P 1−loop
nw,ΘΘ(q) is

restricted to p > kS . This correction could be viewed as a loop-correction to the

operator S suggesting to substitute the smooth power spectrum in S by Ps 7→
Pnw +P 1−loop

nw,ΘΘ

∣∣∣
hard

. While it is tempting to do this replacement, we refrain from

this step for two reasons. First, this would correspond to a partial resummation

of hard loops, and therefore goes against the rigorous expansion in our power

counting parameters. Second, and more importantly, the hard loop corrections to

the power spectrum are universally suppressed as q2/k2
S at soft momenta q � kS

due to the well-known decoupling of long and short modes [104, 105] (see also

[106]). This suppression essentially removes the IR enhancement of the operator

DqD−q in (3.49), so that the term (3.49) is suppressed by 〈q〉2/k2
S compared

to the contributions resummed in (3.47). Here 〈q〉 is the characteristic IR scale

which, as discussed in Sec. 3.2.2, is of order keq. Therefore, the contribution

(3.49) is small as long as keq � kS . In the real universe the hierarchy between

kS and keq cannot be too large. Nevertheless, we have checked numerically that

for the standard ΛCDM and the realistic range of values kS ∼ O(0.1h/Mpc), the

contribution (3.49) is quantitatively unimportant. In what follows we neglect

the diagrams with hard loops inside soft ones.

The expression (3.47) can be cast in a more convenient form by the following

steps. Let us add and subtract the soft part of the one-loop diagrams,

P IR res,NLOh
w,δδ =e−g

2SP 1−loop
w,δδ

∣∣∣
hard

+ e−g
2SP 1−loop

w,δδ

∣∣∣
soft
− e−g

2SP 1−loop
w,δδ

∣∣∣
soft

=e−g
2SP 1−loop

w,δδ + e−g
2Sg2SPw ,

(3.50)

where in the last line P 1−loop
w,δδ stands for the total one-loop correction and we used

Eq. (3.28) to express the leading soft-loop contribution. Combining this with the

one-loop correction to the smooth power spectrum and the LO expression (3.35)
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we obtain the final expression for the power spectrum with NLOh corrections

included,

P IR res,LO+NLOh
δδ = Pnw + (1 + g2S)e−g

2SPw +P 1−loop
δδ

[
Pnw + e−g

2SPw
]
. (3.51)

Here P 1−loop
δδ is understood as the functional of the input linear power spectrum;

the latter has been modified by the IR resummation. Note the appearance of

the term g2Se−g2SPw in the ‘tree-level’ part of the expression (3.51) that is

important to avoid double counting of the soft contributions.

The formula (3.51) can be straightforwardly generalized to other n-point func-

tions, both of density and velocity divergence. We give here the final result

without derivation,

CIR res,LO+NLOh
n = Ctreen

[
Pnw + (1 + g2S)e−g

2SPw
]

+ C1−loop
n

[
Pnw + e−g

2SPw
]
.

(3.52)

Moreover, it is possible to include higher hard loops, i.e. corrections of order σ2Lh
h

with Lh ≥ 2. Let us do it for the power spectrum7. Repeating the arguments

that led to Eq. (3.47), one finds at the NNLOh order,

P IR res,NNLOh
w = e−g

2SP 2−loop
w

∣∣∣
hh
, (3.53)

where the 2-loop contribution on the r.h.s. is ‘double-hard’, i.e. the integration

in both loops run over p > kS . This is equivalently written in the form,

P IR res,NNLOh
w = e−g

2SP 2−loop
w − e−g

2SP 2−loop
w

∣∣∣
hs
− e−g

2SP 2−loop
w

∣∣∣
ss
, (3.54)

where the first term contains the total 2-loop contribution, whereas the second

and third terms are ‘hard-soft’ and ‘soft-soft’ respectively. Next, we use the

relations valid at the leading soft order,

P 2−loop
w

∣∣∣
ss

=
g4S2

2
Pw , (3.55a)

P 2−loop
w

∣∣∣
hs

= −g2SP 1−loop
w

∣∣∣
h

= −g2SP 1−loop
w − g4S2Pw , (3.55b)

where to obtain the last expression in (3.55b) we have again added and subtracted

the soft one-loop contribution. Combining everything together and with the

7The derivation does not depend on the type of the power spectrum (δδ, ΘΘ or Θδ) so we
do not specify it explicitly.
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NLOh expression (3.51) we arrive at a compact formula,

P IR res,LO+NLOh+NNLOh =Pnw +

(
1 + g2S +

g4S2

2

)
e−g

2SPw

+P 1−loop[Pnw + (1 + g2S)e−g
2SPw

]
+ P 2−loop[Pnw + e−g

2SPw
]
.

(3.56)

Its extension to other correlation functions and to higher orders in hard loops

can be done by proceeding analogously.

The expressions (3.51), (3.52), (3.56) do not take into account subleading soft

corrections. These are formally of order ε and thus can be expected to be sig-

nificant as in the real universe the latter parameter is not small, ε ∼ 0.2 ÷ 0.3.

Therefore the next section is devoted to a detailed computation of these cor-

rections. Notably, we will find that the dominant NLOs corrections are already

captured by the one-loop term in (3.51) for the power spectrum, such that it

works remarkably well. Still, it is important to properly assess the NLOs contri-

butions because they are required for a reliable determination of the shift of the

BAO peak, as discussed in Sec. 3.6.4.

3.5 Resummation of infrared effects at next-to lead-

ing order

Here we discuss corrections to the power spectrum that are suppressed by one

power of ε relative to the leading order IR resummed results discussed previously.

There are two possibilities to obtain such corrections: (a) On the one hand,

one can consider the same daisy diagrams, i.e. with maximal IR enhancement

l = 2Ls, but take into account the first sub-leading correction in the expansion of

the wiggly vertex (3.23). (b) On the other hand, one can consider new diagrams

with l = 2Ls−1. All diagrams that contribute at O(ε) to the velocity divergence

power spectrum at increasing number of loops are given by
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P IR res,LO+NLOs
w,ΘΘ (η; k) =

k
+

Γ̄w4
+

Γ̄w3 Γ̄nw3

+
Γ̄w6

+
Γ̄w5 Γ̄nw3

+
Γ̄w5

Γ̄nw3

+

Γ̄w8

+ Γ̄w7

Γ̄nw3

+
Γ̄w7

Γ̄nw3

+ ... .

(3.57)

Here all loops are soft, i.e. integrated over wavenumbers below kS . The daisy

diagrams containing the vertices Γ̄w4 , Γ̄
w
6 , Γ̄

w
8 . . . at 1, 2, 3-loop, and so on, belong

to the category (a). The diagrams containing Γ̄w3 , Γ̄
w
5 , Γ̄

w
7 . . . at 1, 2, 3-loop, and

so on, have l = 1, 3, 5, . . . , and therefore belong to category (b). All diagrams in

category (b) are related to two new diagrams: the fish (last diagram in the first

line) and oyster (last diagram in the second line). All higher-loop diagrams of

type (b) are obtained by dressing the wiggly vertex contained in these diagrams

with daisy loops, such as e.g. the middle diagram in the second line and the last

two diagrams in the last line. The matter power spectrum includes in addition

at O(ε) the dressed fish diagram with the vertex K2,

P IR res,LO+NLOs
w,δδ (η, k) = P IR res,LO+NLOs

w,ΘΘ (η, k)

+

Γ̄w3

K2
+

Γ̄w5

K2
+ ... .

(3.58)

We first consider the diagrams of type (b). Dressing of the fish diagrams simply

leads to the already familiar replacement (3.38). We do not need these contribu-

tions explicitly, as our eventual goal is to combine them with the hard corrections

(3.47) to form the total fish diagrams evaluated using the modified wiggly power

spectrum (3.38).
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For the oyster diagram, a straightforward evaluation using the expansion (3.22)

for Γ̄w5 and the exact expression for Γ̄nw3 yields,

δP 1−loop
w,oyster

∣∣∣
soft
≡

Γ̄w5

Γ̄nw3 ∣∣∣∣∣
soft

= g6(Sa + 2κSb)P̄w(k) , (3.59)

where we introduced the operators,

SaP̄w(k) =2

∫
|q|,|q′|≤kS

P̄nw(q)P̄nw(q′)
(k · q)2(k · q′)(q · q′)

q4q′4
sinh(q·∇)

(
1− cosh(q′·∇)

)
P̄w(k) ,

(3.60a)

SbP̄w(k) =
6

7

∫
|q|,|q′|≤kS

P̄nw(q)P̄nw(q′) sin2(q,q′)

× (k · q)(k · q′)(k · (q + q′))

q2q′2(q + q′)2
sinh(q·∇)

(
1− cosh(q′·∇)

)
P̄w(k) ,

(3.60b)

and κ = 1 (κ = 0) in ED (ZA). The dressing of the wiggly vertex by daisies

again leads to the replacement (3.38) in this formula,

δP IR res,NLOs
w,oyster = g6

(
Sa + 2κSb

)
e−g

2S P̄w(k) . (3.61)

Next, we turn to the contributions of type (a), i.e. daisy diagrams expanded to

the NLOs order. Remarkably, these also can be resummed. To see this, we need

the first corrections in ε to Eq. (3.23). The latter are derived in Appendix B.3

with the result,

Γ̄′w,LO+NLO
n

(
k,−k−

n−2∑
i=1

qi,q1, ..,qn−2

)

= (−1)n−1

n−2∏
i=1

Dqi +
n−2∑
j=1

Eqj
n−2∏
i=1
i 6=j

Dqi +
n−2∑

j1,j2=1
j1<j2

Fqj1qj2

n−2∏
i=1

i 6=j1,j2

Dqi

 P̄w(k)

P̄ 2
nw(k)

,

(3.62)

where Eq and Fq1q2 are new finite-difference operators acting on P̄w that are de-

fined in (B.18) and (B.21). Inserting this expression into Eq. (3.32) and summing

over the number of loops L we obtain,

δP IR res,LO+NLOs
w,daisy =

(
g2 + g4Sc − g6Sa − g6κSb

)
e−g

2S P̄w(k) , (3.63)
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where

ScP̄w(k) =
1

2

∫
|q|≤kS

P̄nw(q)
(
EqD−q + E−qDq + Fq,−q

)
P̄w(k) , (3.64)

and we used the relation

1

2

∫
|q|,|q|′≤kS

P̄nw(q)P̄nw(q′)Fq,q′D−qD−q′ = −(Sa + κSb) . (3.65)

It is desirable to connect the expression (3.63) to the one-loop daisy graph com-

puted using the modified linear power spectrum,

δP 1−loop,LO+NLOs
w,daisy [Pnw + e−g

2SPw] . (3.66)

One may be tempted to compute this by simply making the replacement (3.38)

in the NLO expression (B.20) for the vertex function Γ̄′w4 . However, this would

produce a mistake at the NLOs order. The reason is that the operator S depends

on the hard wavenumber k (see Eq. (3.29)). When Γ̄′w4 is evaluated with the new

wiggly power spectrum e−g
2S P̄w, the operator S gets shifted,

S
∣∣
k
7→ S

∣∣
k±q = S

∣∣
k
±∆S

∣∣
q
.

The correct expression for the vertex taking this shift into account is derived in

Appendix B.3, see Eq. (B.29). Using it to evaluate the loop we obtain,

δP 1−loop,LO+NLOs
w,daisy [Pnw + e−g

2SPw]
∣∣∣
soft

=
(
− g4S + g4Sc − g6Sa

)
e−g

2S P̄w(k) .

(3.67)

This should be compared with (3.63). We have

δP IR res,LO+NLOs
w,daisy =g2(1 + g2S)e−g

2S P̄w + δP 1−loop,LO+NLOs
w,daisy [Pnw + e−g

2SPw]
∣∣∣
soft

− g6κSbe−g2S P̄w .

(3.68)

Notice that the operators Sa, Sc have dropped out of this relation.

We are now ready to combine all NLO contributions together. These include

the resummed hard loops (3.47), soft fish diagrams, the contribution of the soft

oyster diagram (3.61), and the resummed daisies (3.68). Adding to them the
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smooth part we obtain,

P IR res,LO+NLO
w =Pnw + (1 + g2S)e−g

2SPw + P 1−loop[Pnw + e−g
2SPw]

+ g4(Sa + κSb)e−g2SPw .
(3.69)

This is our final result for the full NLO power spectrum. At face value, it differs

from the NLOh formula (3.51) only by the last term. However, we emphasize that

now all subleading IR corrections have been consistently included. In particular,

the one-loop contribution differs for ZA and ED as well as for density and velocity

correlators at the NLOs order. The last term scales as g4 compared to the leading

piece. This reflects that it receives contributions only starting from 2-loops.

Nevertheless, at face value this term is of order O(ε) in our power counting and

therefore must be retained. Still, we will find below that it accidentally happens

to be numerically small due to the specific shape of the matter power spectrum

in our universe.

3.6 Practical implementation and comparison with

other methods

In this section we first discuss how the IR resummed power spectrum obtained

in TSPT can be evaluated in practice, and then compare to other analytic ap-

proaches as well as to N -body data. In the last part we discuss the predictions

for the shift of the BAO peak.

3.6.1 Evaluation of IR resummed power spectrum

After decomposing the linear power spectrum P lin(z, k) = D(z)2
(
Pnw(k) +

Pw(k)
)

into smooth and oscillating (wiggly) contributions8, we need to evaluate

the derivative operator S defined in (3.29), that describes the IR enhancement.

This is done using

∇α1 · · · ∇α2nPw(k) = (−1)n
k̂α1 · · · k̂α2n

k2n
osc

Pw(k)
(
1 +O(ε)

)
,

where ε is the small expansion parameter related to IR enhancement defined in

(3.19) and k̂ = k/k. Recall that kosc = h/(110 Mpc) is the scale setting the

8 In this section we adopt the conventional notations and denote the growth factor g 7→ D(z)
and the linear power spectra at z = 0 simply by P̄s(w)(k) 7→ Ps(w)(k).
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Figure 3.4: Dependence of the BAO damping factor Σ2 on the separation
scale kS . Dashed curves show the limiting cases discussed in the text.

period of the BAO oscillations. A straightforward computation yields

SPw(k) = k2Σ2Pw(k)×
(
1 +O(ε)

)
, (3.70)

with

Σ2 ≡ 4π

3

∫ kS

0

dq

(2π)3
Pnw(q)

[
1− j0

(
q

kosc

)
+ 2j2

(
q

kosc

)]
, (3.71)

where jn are spherical Bessel functions and kS is the (a priori arbitrary) sepa-

ration scale of long and short modes, that has been introduced in order to treat

the perturbative expansion in the two regimes separately. Since the exact result

for the power spectrum and other observables is independent of kS , any residual

dependence on it can be taken as an estimate of the perturbative uncertainty.

The IR resummed power spectrum at leading order following from (3.35) is given

by

P IR res,LO(z, k) = D(z)2
(
Pnw(k) + e−k

2D(z)2Σ2
Pw(z)

)
, (3.72)

where the first term corresponds to the smooth part of the linear spectrum. The

leading effect of IR enhanced loop contributions is an exponential damping of

the oscillatory part of the spectrum.

Let us now discuss the choice of kS . By inspection of the integrand in (3.71)

we find that it peaks at q ∼ 0.03h/Mpc, but gives significant contribution

into the integral up to wavenumbers q ∼ 0.2h/Mpc. This is corroborated

by the numerical evaluation of the damping factor Σ2 as a function of kS ;

the result is shown in Fig. 3.4 for a realistic ΛCDM model. For very small
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values of the IR separation scale kS . kosc it approaches the limiting form

Σ2 → 2π/5
∫ kS

0 dq q2Pnw(q)/k2
osc/(2π)3, while for large kS � kosc it asymptotes

to a constant Σ2 → σ2
v ≡ 4π/3

∫∞
0 dq Pnw(q)/(2π)3. It is desirable to take kS

as large as possible to include more IR contributions and minimize the depen-

dence of the damping factor on kS . On the other hand, kS cannot be taken too

large as the previous analysis relies on the IR expansions which are valid for

q � k. As a compromise, we consider several values of kS around the BAO scale

kBAO ∼ 0.1h/Mpc. We are going to see that the dependence of our results on

the precise choice of kS in this range is very mild.

At NLO, the IR resummed power spectrum (3.69) can be written in the form9

P IR res,LO+NLO(z, k) = D(z)2
(
Ps(k) +

(
1 + k2D(z)2Σ2

)
e−k

2D(z)2Σ2
Pw(k)

)
+D(z)4P 1−loop[Pnw + e−k

2D(z)2Σ2
Pw]

+D(z)6e−k
2D(z)2Σ2

(Sa+κSb)Pw(k) ,

(3.73)

where κ = 1 in ED (κ = 0 in ZA). The first term in the second line of (3.73)

corresponds to the standard one-loop result, but computed with the LO IR

resummed power spectrum, instead of the linear one. As was demonstrated in

[1], the sum over all one-loop diagrams in TSPT agrees with the SPT result.

Therefore, in practice, one can use the usual expression P 1−loop = P22 + 2P13,

however evaluating the loop integrals P22 and P13 with the input spectrum (3.72)

instead of the linear spectrum.

Finally, the finite-difference operators in the last term can be evaluated similarly

to S. After somewhat lengthy but straightforward calculation, we obtain

SaPw(k) =
8π

5
kosck

3Σ2

∫ kS

0

qdq

(2π)3
Pnw(q)

[
3j1

(
q

kosc

)
− 2j3

(
q

kosc

)]
dPw(k)

dk

≡k3Σ2
a

dPw(k)

dk
, (3.74a)

SbPw(k) =− (4π)2 k2
osck

3

∫ kS

0

dqdq′

(2π)6
Pnw(q)Pnw(q′)h

(
q′

kosc
,
q

kosc

)
dPw(k)

dk

≡k3Σ2
b

dPw(k)

dk
, (3.74b)

9 Since we are keeping NLO terms, one should in principle keep also the first sub-leading
corrections in the evaluation of the derivative operator in (3.70). However, it turns out that
this correction cancels in (3.73) at NLO precision. The simplest way to see this is to go back
to Eqs. (3.63), (3.67) and substitute in them the expansion (3.70) keeping track of the O(ε)
terms. By comparing the resulting expressions one finds that the relation (3.68) holds with
NLO precision if S is everywhere replaced by k2Σ2. As all other contributions comprising
(3.69) do not contain an O(1) part, the replacement S 7→ k2Σ2 in them is also justified leading
to (3.73).
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with

h(x, y) =
3

7

(
h1(x, y) + h2(x, y) + h2(y, x)

)
. (3.75)

The functions h1,2(x, y) are given in App. C. The result (3.73) is valid for both

density, velocity and cross power spectra when using the appropriate expressions

for the one-loop correction. In addition, one can obtain the result in ZA by using

the corresponding one-loop expression with kernels computed in ZA and setting

κ = 0.

An important comment is in order. Naively, we expected the corrections NLO

soft corrections to scale as

ε× (σ2
S × 1/ε2)Ls , (3.76)

in which case they should have O(ε) ∼ keq/k ∼ 10% effect. However, in contra-

diction to this expectation, a direct numerical evaluation of contributions (3.74)

shows that they only have a sub-percent effect at the BAO scales. We now argue

that the smallness of the NLO soft corrections is a consequence of the specific

shape of the linear power spectrum in the ΛCDM cosmology. From Eq. (3.74) one

observes that the integrands of the LO and NLO soft contributions are different,

so that the estimate (3.76) should be properly written as

(σ2
S,NLO × 1/ε)× (σ2

S,LO × 1/ε2)Ls−1 . (3.77)

Here σ2
S,LO receives contributions from momenta kosc . q . kS and is saturated

in the vicinity of the maximum of the power spectrum at q ∼ keq > kosc. It is

indeed of the order10 (3.25). On the other hand, the integrand in the subleading

soft loop corrections (c.f. (D.7)) schematically has the form,

(σ2
S,NLO × 1/ε) ∝ g2

∫
q<kS

d3q

(2π)3

(q · k)

q2
P̄nw(q)

(
1− ei

q·k̂
kosc

)
∼ g2k

∫ kS

0

dq

(2π)3
qP̄nw(q)

[
j1

(
q

kosc

)]
,

(3.78)

where j1 is the spherical Bessel function. The integral is effectively cut at q ∼
kosc, before the linear power spectrum reaches its maximum. Recalling that in

this region the ΛCDM power spectrum behaves as P̄nw(q) ∝ q, we find that

σ2
S,NLO/σ

2
S,LO ∼ (kosc/keq)

3 ∼ 0.1 . (3.79)

10Essentially, σ2
S,LO coincides with k2

eqΣ
2, where Σ2 is the BAO damping factor given in

Eq. (3.71). Its numerical value is plotted in Fig. 3.4.
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This leads to additional numerical suppression of the NLO soft corrections.

Qualitatively, the result (3.79) can be understood as follows. The NLO soft

corrections are responsible for the shift of the BAO peak. This shift can be seen

as shrinking of the BAO scale in an overdense region that locally behaves as a

universe with positive spatial curvature [107]. Hence, the shift is sensitive only to

the curvature of this “universe”, which is generated by modes with wavelengths

bigger than rBAO. Thus, the NLO soft contributions should be saturated at kosc.

On the other hand, the damping of the BAO feature (which is produced by LO

soft corrections) is affected by modes with wavelengths down to the width of the

BAO peak [29]. Thus, the LO soft corrections should include contributions from

wavenumbers q � kosc.

Note that in a hypothetical universe with keq � kosc the situation would be

different, with σ2
S,NLO being of the same order as σ2

S,LO. The power-counting

rules of Sec. 3.2.2 are formulated in full generality and do not rely on the precise

shape of the linear power spectrum.

The upshot of our discussion is that in the ΛCDM cosmology the soft NLO

corrections are numerically suppressed and can be neglected for many purposes,

e.g. if one is interested in the full-shape measurements of the power spectrum or

the 2-point correlation function. On the other hand, we will see shortly that the

NLO soft corrections are important for an accurate determination of the shift of

the BAO peak.

Finally, the IR resummed result for the bispectrum is given at leading order in

ε and σ2
h by (see Eq. (3.43))

BIR res;LO
δδδ (z; k1,k2,k3) = Btree

s,δδδ(z; k1,k2,k3)

+ 2D(z)4
3∑

i<j=1

F2(ki,kj)
(

e−k
2
jD(z)2Σ2

Pw(kj)Ps(ki) + i↔ j
)
,

(3.80)

where Btree
s,δδδ(z; k1,k2,k3) is the tree-level result for the smooth part, as obtained

also in SPT, and F2(ki,kj) is the usual SPT kernel [15]. IR resummation again

corresponds to a damping of the oscillating contributions.
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3.6.2 Comparison with other approaches

Let us now compare our results to other approaches existing in the literature.

From a phenomenological viewpoint, it is well-known that an exponential damp-

ing factor applied to the oscillating component of the power spectrum gives a

reasonable description of the BAO peak in the measured two- and also three-

point correlation functions, see e.g. [44] and references therein. Therefore, the

aim of perturbative descriptions is to derive this behavior from first principles,

identify effects that go beyond a simple damping, and give a definite quantitative

prediction as well as an estimate of the theoretical error.

There exist many schemes to derive non-linear corrections to the BAO peak

within cosmological perturbation theory, here we focus on a few of them. In [27],

the RPT formalism [62] was used to obtain a formula of the form.

P (z, k) = G2(z, k)Plin(k) + PMC(z, k) , (3.81)

where G(z, k) is the propagator and PMC is the part due to the mode cou-

pling. The propagator describes how a perturbation evolves over time and is

not a Galilean invariant quantity. As such, it contains IR enhanced contribu-

tions corresponding to the translation of inhomogeneities by large-scale flows.

When resummed at the leading order, these contributions produce an exponen-

tial damping factor at high k,

G2(z, k) = D(z)2 exp[−k2D(z)2σ2
v ], (3.82)

with

σ2
v ≡ 4π/3

∫ ∞
0

dqPlin(q)/(2π)3 (3.83)

In the RPT-based approach this form of the propagator is substituted into (3.81).

A similar result is derived in the Lagrangian picture in [63, 108]. Notice that the

exponential damping in this case applies to the whole linear power spectrum,

including both wiggly and smooth parts. Further developments of this idea have

been proposed in [109].

While being successful on a phenomenological level, this approach is quite dif-

ferent from ours. In RPT, there is no clear parametric dependence that would

single out the resummed set of contributions. In particular, for a smooth power

spectrum the contributions resummed in (3.82) are of the same order as those

comprising PMC , and actually cancel with them [17, 18, 20, 22–24] as required
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by the equivalence principle. On the other hand, our approach is based on well-

defined power-counting rules formulated directly for the perturbative expansion

of equal-time correlation functions. As a result, we obtain a damping only of

the oscillating part of the power spectrum, in line with the expected cancellation

of IR enhancement for the smooth part. A simple modification of (3.82) that

fixes this issue can be obtained by applying the exponential damping only on the

wiggly power spectrum,

P (z, k) = Pnw(k) + e−k
2D2(z)σ2

vPw(k) . (3.84)

However, the damping factor from our expression (3.71) has a different structure

from the rms velocity displacement (3.83). The latter is enhanced at very low q,

whereas the modes with q � kosc should not affect the BAO feature as dictated

by the equivalence principle.

Another model for the non-linear damping was put forward in Refs. [26, 103],

P (z, k) = Pnw(k) + e−k
2D2(z)Σ2

∞Pw(k) ,

Σ2
∞ ≡

4π

3

∫ ∞
0

dq

(2π)3
P (q)

[
1− j0

(
q

kosc

)
+ 2j2

(
q

kosc

)]
.

(3.85)

This model explicitly takes into account the fact that bulk flows significantly

affect only the wiggly part of the power spectrum. On the other hand, the

damping factor in (3.85) is slightly different from ours, see Eq. (3.71). Although

both factors (3.71) and (3.85) have the same integrand, the integral in (3.85)

is evaluated up to kS = ∞. In contrast to the RPT-based models discussed

above, the integrand of (3.85) tends to zero in the IR, which is consistent with

the physical expectations based on the equivalence principle. On the other hand,

the choice of kS =∞ contradicts the logic that only long-wavelength modes have

to be resummed and should be contrasted with our expressions which explicitly

reflect this argument. Indeed, only for the soft modes with q � k the mode

coupling affecting the BAO is enhanced.

As shown in Fig. 3.4, the numerical value of our damping factor appears to be

quite close to both (3.83) and (3.85) for the ΛCDM cosmology. It was already

pointed out in [29] that if our universe had more power at large scales, q .

kosc, the damping factor (3.71) would be notably different11 from σ2
v . On the

other hand, if there were more power at short scales, using (3.85) one would

significantly overdamp the BAO signal.

11 It would be interesting to understand if this can account for the discrepancy between σ2
v

and the actual damping factor found in simulations of a toy cosmological model with a bigger
kosc in [110].
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To conclude on the comparison with approaches (3.82) and (3.85), we emphasize

that when taking the NLO corrections into account our result (3.73) cannot

be described anymore by a simple exponential damping of the overall power

spectrum or its wiggly part.

Ref. [29] proposed a description of the IR enhanced effects on the BAO peak

motivated by consistency relations between the bispectrum and the power spec-

trum based on the equivalence principle. This approach is related to the earlier

perturbative framework developed in [28]. At leading order, our result (3.72)

coincides with the results of [29] when choosing kS = k/2. The agreement

essentially extends to the corrections produced by hard loops (see Sec. 3.4).

Subleading soft corrections were not considered in [29]. TSPT gives a simple

diagrammatic description of IR enhancement and provides a tool to systemati-

cally derive, scrutinize and extend the results found in [29]. In particular, the

subleading soft corrections computed in the present work and entering in (3.73)

capture the shift of the BAO peak, as we will see below, and the power counting

allows in principle to go beyond NLO in a systematic way. Furthermore, the IR

resummation in TSPT readily generalizes beyond the power spectra and applies

to any n-point correlation functions.

3.6.3 Comparison with N-body data

We consider a ΛCDM model with cosmological parameters matching those of the

Horizon simulation [101]. The linear power spectrum is obtained from the CLASS

code [111] and decomposed into smooth and oscillating components as described

in Sec. 3.1.1.
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Figure 3.5: Infra-red resummed matter correlation function at LO obtained
in TSPT for three different values of the IR separation scale kS , and two
different redshifts (left: z = 0, right: z = 0.375). Also shown is the linear result
(dashed) and the result of the Horizon Run 2 large-scale N -body simulation

[101]. We use 1/kosc = 110 Mpc/h.
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In the following we show results for the correlation function, because it exhibits

a clear separation between the BAO peak and the small-distance part of the cor-

relations, and allows to visualize the effects on the BAO feature in a transparent

way. The matter correlation function is related to the power spectrum as

ξ(x, z) =
4π

x

∫ ∞
0

dk

(2π)3
kP (k, z) sin(kx) . (3.86)

In Fig. 3.5, we show the leading-order IR resummed result for three different

choices of kS (blue solid lines). The damping of the BAO oscillations described

by Σ corresponds to a broadening of the BAO peak in real space and gives

already a relatively good description of the N -body result shown by the red

dashed line [101], especially when compared to the linear prediction (thin dashed

line). Nevertheless, there are some differences, and the dependence on kS is not

negligible.

We now turn to the NLO result. The comparison of the matter correlation

function obtained using (3.73) with the N -body data is shown in Fig. 3.6. One

observes that the agreement is considerably improved compared to the LO. Fur-

thermore, the dependence on the separation scale kS is reduced. This is an

important consistency check, because the dependence on kS vanishes in prin-

ciple in the exact result. Thus, any residual dependence on kS can be taken

as an estimate of the perturbative uncertainty, and it is reassuring that this

uncertainty is reduced when going from LO to NLO.

We conclude that the systematic IR resummation gives a very accurate descrip-

tion of the correlation function at BAO scales. The residual discrepancies at

shorter distances visible in Fig. 3.6 are expected due to several effects. The vari-

ance due to the finite boxsize, and the finite resolution of the N -body data leads

to an uncertainty of several percent12. In addition, the correlation function is

sensitive to the UV physics which has been left beyond the scope of our present

study.

In Fig. 3.7 we show the ratio of the NLO result to the correlation function ob-

tained in the Zel’dovich approximation13. The differences are around 5% in the

12Ref. [101] does not give error bars for the simulation data points. An estimate of the
statistical variance using the number of available modes in the simulation as well as the finite
resolution suggests that the uncertainty is at the few percent level in the range of scales relevant
for BAO. This level of accuracy is also consistent with the difference between the correlation
function extracted from Horizon Run 2 (L = 7.2Gpc/h, N = 60003) versus Horizon Run 3
(L = 10.8Gpc/h, N = 72103) data presented in [101].

13Here by the Zel’dovich approximation we mean the leading order of Lagrangian perturbation
theory. The 2-point correlation function in ZA was computed with the publicly available code
ZelCa [112].
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Figure 3.6: Same as Fig. 3.5, but showing the infra-red resummed matter
correlation function obtained in TSPT at next-to-leading order (blue lines)
compared to the Horizon Run 2 N -body data (red line). Note that the three

lines for the three values of kS are almost indistinguishable.
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Figure 3.7: The correlation function computed in TSPT at NLO normalized
to the correlation function in the Zel’dovich approximation (blue curves). We
also show the correlation functions of the Horizon Run 2 and 3 [101] divided

by the Zel’dovich approximation (red curves).

BAO range, and therefore our results are broadly consistent with ZA, as ex-

pected. Nevertheless, the differences are larger than the ultimate precision that

is desired to match future surveys. The ratio between the N-body correlation

function and the one obtained in ZA is also shown on the same plot by the red

line. The TSPT result agrees with the N-body data somewhat better than ZA

in the BAO peak region, though the error range of the N-body data does not

allow at the moment to clearly discriminate between the two. As discussed be-

fore, the TSPT framework can be systematically extended to NNLO, and further

corrections from UV modes can be incorporated, which is left for future work.

Finally, we have compared the results for the correlation function computed

using the full NLO formula (3.73) and its reduced version without the last term

containing the operators Sa, Sb. The relative difference ∆ξ/ξ at z = 0 does not
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exceed 0.5%. Given the strong dependence of the omitted term on the growth

factor and hence its quick decrease with redshift, one concludes that this term

is negligible for all practical purposes.

3.6.4 Shift of the BAO peak

A valuable piece of information provided by the BAO peak is its position as

a function of redshift that can be used as a standard ruler to infer cosmologi-

cal parameters and probe possible alternatives to ΛCDM (see [113] for a recent

discussion in the context of modified gravity). The upcoming surveys aim at

measuring this quantity with sub-percent accuracy [114]. Therefore, it is impor-

tant to assess how non-linear dynamics offsets the BAO peak as compared to the

linear prediction.

For concreteness we focus on the position of the maximum of the BAO peak

which we denote by xBAO. There are two effects that contribute to its shift with

respect to the linear result xlinBAO. First, the damping of the wiggly component in

the power spectrum, which occurs already at leading order of the IR resumma-

tion, shifts the maximum because the correlation function ξ(x) is not symmetric.

Second, at NLO the interactions of the modes in the BAO region with soft modes

shift the phase of the BAO. This, in turn, translates into an additional shift of

the peak in position space. Let us discuss these two contributions one by one.

It is convenient to decompose the correlation function into a smooth component

and a component that describes the BAO peak,

ξ(x) = ξnw(x) + ξw(x) , (3.87)

that are inherited from the decomposition of the power spectrum into smooth

and wiggly parts. In the region of the peak these two contributions are of the

same order with ξw being a factor of a few larger than ξnw. At the linear level,

the condition for the maximum of the peak reads,

0 =

∫
dk k2Pw(k) cos

(
kxlinBAO

)
− 1

xlinBAO

∫
dk kPw(k) sin

(
kxlinBAO

)
+
xlinBAO

4π
ξ′nw(xlinBAO) .

(3.88)

To obtain analytic estimates we represent the wiggly power spectrum as a prod-

uct of the oscillating part and a smooth envelope (cf. Eq. (3.6)),

Pw(k) = fenv(k) sin(k/kosc) . (3.89)
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This implies that the position of the peak is close to xlinBAO ≈ k−1
osc. In what

follows we seek the corrections to this relation. Writing

xlinBAO = k−1
osc + δxlin

and treating the product k δxlin as small we obtain from (3.88)

δxlin = −kosc
∫
dk kfenv(k)− (2πk2

osc)
−1ξ′nw(k−1

osc)∫
dk k3fenv(k)

, (3.90)

where we have neglected the integrals of rapidly oscillating functions. In partic-

ular, we have used the relation∫
dk kfenv sin2(k/kosc) =

∫
dk kfenv

1− cos(k/kosc)

2
≈ 1

2

∫
dk kfenv(k) .

If instead of the linear power spectrum, we consider the LO expression (3.72)

with damped wiggly component, we obtain the position of the corresponding

peak as

xLOBAO = k−1
osc + δxLO ,

where δxLO is given by the expression (3.90), but with fenv replaced by fenv(k)e−k
2D(z)2Σ2

.

One concludes that the shift of the LO peak relative to the linear one is

∆xLO

xBAO
≡ δxLO − δxlin

xBAO
=k2

osc

[ ∫
dk kfenv(k)∫
dk k3fenv(k)

−
∫
dk kfenv(k)e−k

2D(z)2Σ2∫
dk k3fenv(k)e−k2D(z)2Σ2

]
− ξ′nw(k−1

osc)

2π

[
1∫

dk k3fenv(k)
− 1∫

dk k3fenv(k)e−k2D(z)2Σ2

]
.

(3.91)

The two contributions in this formula are of the same order (kosc/k)2, where

k ∼ 0.1h/Mpc is the characteristic range of wavenumbers corresponding to BAO.

At z = 0 we have
∆xLO

xBAO
∼ −1%. (3.92)

We see that this LO shift is quite significant. It is worth emphasizing that it is

exclusively due to the damping of BAO by large IR effects. The damping is the

same in ED and ZA. Therefore ∆xLO is expected to be removed by the BAO

reconstruction procedure which essentially uses the ZA to evolve the density field

backward in time. To understand if this procedure can leave any residual shift

we have to go to the next-to-leading order.
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Writing the correlation function as ξ = ξLO + ξNLO one easily derives the addi-

tional shift of the peak induced by the second term,

∆xNLO

xBAO
= − (ξNLO)′

x(ξLO)′′

∣∣∣∣
x=xBAO

. (3.93)

One can check that the contribution of the smooth correlation function into this

expression is negligible, so that one can safely replace in it ξ 7→ ξw.

We evaluate the LO and NLO contributions into the correlation function numer-

ically using Eqs. (3.72), (3.73) for the power spectrum. The shift of the peak is

then computed either directly by comparing the full correlation function to that

at LO, or using (3.93). The results of this evaluation are presented in Table 3.1

(second and third columns). We consider three choices of the separation scale kS

bounding the IR region. Modulo some scatter introduced by the kS dependence,

kS , h/Mpc
∆xNLO/xBAO

Full Eq. (3.93) Eq. (3.98)

0.05 −0.38% −0.43% −0.46%

0.1 −0.41% −0.45% −0.40%

0.2 −0.45% −0.50% −0.32%

Table 3.1: Shift of the BAO peak at redshift z = 0 for three values of the
separation scale kS . First column: full NLO result. Second column: evaluation

using Eq. (3.93). Third column: analytic estimate Eq. (3.99).

our estimate for the NLO shift is around 0.4%. This lies in the ballpark of the

estimates obtained using different approaches [27, 107, 110, 115, 116] and agrees

well with the value of the so-called ‘physical’ shift [27, 115] measured in the

simulations [48, 116, 117]. While we expect that the NLO shift considered here

agrees essentially with the ‘physical’ shift, the precise relation is not completely

clear to us and we leave the task of understanding it for future work.

It is instructive to derive an analytic estimate for ∆xNLO. It is shown in Ap-

pendix D that the NLO wiggly power spectrum has the form,

P IR res,NLO
w (z, k) = D(z)4e−k

2D(z)2Σ2

(
H(k)Pw(k) + S(z, k)

dPw(k)

dk

)
. (3.94)

The first term in brackets receives contributions both from hard and soft modes,

whereas the second term is exclusively due to soft modes with wavenumbers

q . kosc. It describes a phase shift of the wiggly component of the power

spectrum. The precise form of the function H(k) is not relevant to us; it is only
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important that it depends smoothly on its argument. For S(z, k) we find,

S(z, k) = s k +
(
Σ2
Silk + κD(z)2Σ2

b

)
k3 , (3.95)

where Σ2
b is defined in (3.74b). The other two coefficients are related to the

density variance at the scale kosc,

s ∼ σ2(kosc) ≡
∫ kosc

0

dq

(2π)3
q2Ps(q) , Σ2

Silk ∼ σ2(kosc)/k
2
Silk , (3.96)

where in the last formula kSilk ∼ 0.2h/Mpc is the Silk damping scale. The

detailed expressions are given in Appendix D. It is worth to point out that the

formula for s is different in ED and ZA, as well as for the density and velocity

divergence power spectra. Notice also the presence of the coefficient κ in (3.95)

that discriminates between ZA (κ = 0) and ED (κ = 1).

Next, we substitute (3.94) into (3.93) which yields,

∆xNLO

xBAO
= koscD(z)2

∫
dk k2 cos(k/kosc)

[
H(k)Pw(k) + S(z, k)dPwdk

]
e−k

2D(z)2Σ2∫
dk k3 sin(k/kosc)Pw(k)e−k2D(z)2Σ2 .

(3.97)

Recalling the form (3.89) of Pw one observes that the integral involving the first

term in the numerator contains a rapidly oscillating function and thus gives a

negligible contribution. In the second term we integrate by parts. Neglecting

again integrals of rapidly oscillating functions and using (3.95) we arrive at

∆xNLO

xBAO
= D(z)2 s+D(z)2

(
Σ2
Silk+κD(z)2Σ2

b

)∫ dk k5Pwe
−k2D(z)2Σ2

sin(k/kosc)∫
dk k3Pwe−k2D(z)2Σ2 sin(k/kosc)

.

(3.98)

For realistic power spectra the ratio of integrals in the second term is of order

0.02 [h/Mpc]2 at z = 0. It is worth noting that numerically the second term

gives a subdominant contribution, so approximately one can write,

∆xNLO

xBAO
≈ D(z)2 s . (3.99)

Still, we prefer to use the complete expression (3.98). Evaluating various contri-

butions entering into it using the expressions from Appendix D and Eq. (3.74b)

we obtain the estimates for the shift listed in the fourth column of Table 3.1.

They are in reasonable agreement with the values obtained by the direct numer-

ical evaluation of the correlation function.
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As already mentioned before, the values of s and κ are different in ED and ZA.

Consequently, the BAO shift computed in ZA is somewhat lower than in ED:

(∆xNLO/xBAO)ZA ' −(0.28÷ 0.22)% ,

depending on the choice of kS . Thus, while the ZA gives a rather accurate

description of the BAO broadening, it underestimates the BAO shift. The dif-

ference is expected since the terms responsible for the BAO shift originate from

the non-dipole parts of the interaction vertices, which are different in ZA and in

ED. One concludes that, in principle, the BAO reconstruction based on ZA is

expected to leave a small residual shift of order 0.1%. However, this discrepancy

is likely to be too small to have any significant effect on the determination of the

BAO peak position.

Let us make a cautious remark. Although the above analysis provides a qualita-

tive understanding of the origin of the BAO shift, as well as a trustable estimate

of its order of magnitude, the concrete numbers listed in Table 3.1 should be

taken with a grain of salt. They are smaller than the typical percent accuracy of

our calculations, which calls for a re-assessment of various approximations made

in their derivation. Also a realistic calculation of the BAO shift must include the

effect of the bias [107, 110, 118], which makes a O(1) correction to the leading

result and hence is more important than the two-loop contributions that we kept

in (3.98). We leave the study of these issues for future work.

Before closing this section, let us mention that the term proportional to k3 in

(3.95) generates also a distortion of the BAO peak that tends to make it more

asymmetric. However, in ΛCDM this effect is subdominant compared to the

initial asymmetry of the peak present already at the linear level and amplified by

various other terms in the NLO power spectrum. Still, the different contributions

are not completely degenerate and it would be interesting to understand the

impact of non-linear distortion on an accurate description of the BAO data.

3.7 Conclusions and outlook

In this work we have developed a systematic approach to describe the non-linear

evolution of the feature imprinted in the matter correlation functions by baryon

acoustic oscillations. We have provided a theoretical framework to efficiently re-

sum corrections arising from non-linear interactions with long-wavelength modes

that are particularly enhanced for the baryon acoustic feature.
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Our approach is based on the framework of TSPT, that provides a perturbative

description of structure formation manifestly free from spurious infrared diver-

gences. Besides, it is based on an Eulerian description and therefore its practical

implementation does not suffer from the complications arising in Lagrangian per-

turbation theory. These features make TSPT a convenient framework to discuss

the effect of bulk flows on the BAO feature. We have first developed a formalism

to isolate IR enhanced effects by splitting the TSPT propagators and vertices

into smooth and oscillating (wiggly) contributions. Next, we identified the IR

enhanced loop contributions, taking modes below an (a priori arbitrary) sepa-

ration scale kS into account. These have a simple diagrammatic representation,

with the dominant diagrams corresponding to daisy graphs. Finally, we have

shown that within TSPT one can develop a modified perturbative expansion in

which the large IR effects are resummed to all orders, and we computed next-to

leading corrections including loops with hard wavenumbers as well as subleading

contributions of the soft loops. Our leading IR resummed result agrees with

that obtained in [29] using the symmetry arguments. TSPT provides a useful

framework to systematically extend this result to higher n-point functions and

compute relevant corrections in a controlled way.

Our analysis provides a simple prescription for practical evaluation of the re-

summed correlation functions. At the leading order, it amounts to replacing the

linear power spectrum in all calculations by the spectrum with damped wiggly

component. This essentially remains true upon inclusion of hard loops, whereas

the subleading soft loops introduce new terms. Our result for the IR resummed

power spectrum with inclusion of all next-to-leading corrections is given in (3.73).

It describes the non-linear evolution of the BAO peak with sub-percent accuracy,

when compared to large-scale N -body simulations. Although we found that the

soft NLO corrections are rather small, they are important to capture the shift

in the position of the peak maximum.

The residual dependence of our results on the artificial separation scale kS pro-

vides an estimate of the theoretical error, similar to analogous scale-dependencies

in quantum field theory computations. At LO our result for the two-point corre-

lation function close to the BAO peak exhibits a dependence on this scale at the

level of several percent, when varying kS in the plausible range (0.05÷0.2)h/Mpc.

As expected, the scale-dependence is reduced in the NLO result and is well below

the percent level close to the BAO peak. The theoretical error estimated in this

way is consistent with the agreement with N -body data, except for short scales

sensitive to the UV effects that were not considered in this Chapter.
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Our results suggest several directions for future research. First, one can use the

systematic TSPT approach to investigate the effects on the BAO peak in cos-

mological models beyond ΛCDM. As examples we mention inclusion of neutrino

masses or modifications of gravity. In particular, the NLO corrections affecting

the BAO shift are sensitive to non-dipole corrections to the non-linear evolu-

tion that are not protected by the equivalence principle, and therefore can be

particularly sensitive to modifications of the dynamics. Second, it will be very

interesting to study in detail the BAO feature in the three-point function. Fi-

nally, the TSPT framework can also be used to address the contributions of UV

modes that influence correlation functions at shorter distances.



Chapter 4

IR resummation in redshift

space

4.1 Review of standard redshift space mapping

Peculiar velocities alter the apparent picture of clustering along the line-of-sight

and lead to the so-called redshift-space distortions (RSD) [119–122]. RSD break

the full rotation symmetry of cosmological correlation functions down to a little

group of azimuthal rotations along the line-of-sight. Qualitatively, one can dis-

tinguish two main effects. At large scales, galaxies in redshift space appear to be

closer along-the-line of sight due to mutually directed infall velocities, which is

observed as an enhancement of the amplitude of fluctuations in this direction. At

small scales, the velocity dispersion in virialized halos elongate structures along

the line-of-sight, which is known as the “fingers of God” effect [119, 120, 123].

This elongation washes out observed structures and results in a suppression of

apparent short-scale power in the line-of-sight direction.

In what follows we will work in the plane-parallel (flat sky) approximation valid

for separations between points in redshift space much smaller than the distances

from these points to the observer. This approximation is justified for mildly

non-linear scales ∼ 100 Mpc/h typical for perturbation theory considerations.

In the plane-parallel regime the relation between the real space coordinate x and

the redshift space coordinate s is inferred using Hubble’s law,

s = x + ẑ
v

(r)
z (τ,x)

H
, (4.1)
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whereH is the conformal Hubble parameter, ẑ is the unit vector along the line-of-

sight, v
(r)
z (τ,x) is the projection of the peculiar velocity field on the line-of-sight

and τ is conformal time. Following the standard convention, we will denote real

space quantities by the superscript (r), whereas their redshift space counterparts

will be denoted by (s).

The redshift space matter density in the Eulerian picture is obtained via

(1 + δ(s)(τ, s))d3s = (1 + δ(r)(τ,x))d3x , (4.2)

which is dictated by the conservation of mass. In Fourier space the above equa-

tion can be rewritten as

δ(s)(τ,k) = δ(r)(τ,k) +

∫
d3x e−ik·x

(
e−ikzv

(r)
z (τ,x)/H − 1

)(
1 + δ(r)(τ,x)

)
. (4.3)

In the Eulerian standard perturbation theory (SPT) [15] the velocity field is fully

characterized by its suitably normalized divergence Θ(r),

v
(r)
i = −fH∂iΘ

(r)

∆
, (4.4)

where we introduced the logarithmic growth rate f defined as

f(τ) =
d lnD

d ln a
, (4.5)

D(τ) is the linear theory growth factor and a(τ) is the scale factor. In what

follows we will also use the rescaled time variable η ≡ lnD.

Working within SPT, one Taylor expands the exponent containing the velocity

field in Eq. (4.3). Next, one uses the SPT expansion for the real space density

δ(r)(η,k) =
∞∑
n=1

D(η)n
∫
q1...qn

(2π)3δ
(3)
D (k− q1...n)Fn(q1, ...,qn)δ0(q1)...δ0(qn) ,

(4.6)

and an analogous expansion for the velocity divergence Θ(r) with the Gn kernels,

instead of Fn. This allows one to obtain the formal expression

δ(s)(η,k) =

∞∑
n=1

D(η)n
∫
q1,...,qn

(2π)3δ
(3)
D (k− q1...n)Zn(q1, ...,qn)δ0(q1)...δ0(qn) ,

(4.7)

where Zn kernels now contain RSD contributions. Expressions for a first few of

them are given in Appendix E. Various correlators of the redshift density field are



IR resummation in redshift space 64

computed using the statistical distribution of the initial density field δ0, which

is typically assumed to be Gaussian.

In a matter dominated universe, the linear growth factor coincides with the

scale factor, D(τ) = a(τ), so that f(τ) = 1 and the kernels Fn in (4.6) are time-

independent. This is no longer true in the presence of cosmological constant or

dark energy. Still, it is known that the use of (4.6) with the time-independent

kernels Fn together with the correct growth factor D(τ) provides an accurate

approximation to the exact SPT expression for the density in the real space

[124]. This is known as the Einstein–de Sitter (EdS) approximation. Following

the common practice, we will adopt it this dissertation; corrections to it can, in

principle, be taken into account perturbatively. Notice that we do not assume

any simplifications in the redshift space mapping (4.3), so that the redshift space

kernels Zn explicitly contain the factors f(τ) with the full time dependence.

A notorious drawback of SPT is spurious IR sensitivity that arises due to ho-

mogeneous translations of small-scale density fluctuations by soft modes. Tech-

nically, the sensitivity of the density field to large-scale translations is encoded

in the poles of the kernels Fn, Gn at low momenta. The presence of these poles

translates into an IR divergence of SPT loop diagrams composed out of Fn or

Gn kernels.

The situation becomes worse in redshift space. The exponent of the velocity

field in Eq. (4.3) produces new poles compared to those already present in real

space, which brings in new spurious IR enhanced terms and further complicates

the calculations. The way to avoid these difficulties is to work directly in terms

of equal-time correlation functions which are protected from IR divergences by

the equivalence principle. This is precisely the core idea of TSPT. In order to

realize this program and explicitly retain IR-safety in redshift space one has

to perform a mapping from real to redshift space at the level of equal-time

correlation functions. We introduce such a mapping in the next section.

4.2 Redshift space transformation as a 1D fluid flow

In this section we present a new mapping procedure that allows us to obtain

redshift space correlators directly from real space ones. The core observation is

that Eq. (4.1) can be equivalently rewritten in the form

s = x + ẑ v(r)
z (x)T , (4.8)
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where T ≡ 1/H. Now assume that the parameter T ranges from 0 to 1/H. Then

Eq. (4.8) turns into an equation describing a flow of particles with Lagrangian

coordinates x along the z-axis with initial velocity v
(r)
z (x). The parameter T

plays a role of time in the fictitious dynamics described by Eq. (4.8). This

fictitious dynamics can be described in the Eulerian picture upon introducing

the density δ(s) and velocity v(s) of this flow. If we set the initial conditions

v(s)
∣∣∣
T =0

= v(r)(η,x) ,

δ(s)
∣∣∣
T =0

= δ(r)(η,x) ,
(4.9)

then the value of δ(s) at T = 1/H will give us the redshift space density, while

v(s)(T = 1/H, s) will have the meaning of the fluid velocity at a given position in

redshift space. Note that only orthogonal to the line-of-sight components of this

velocity can, in principle, be observed, so the physical relevance of this quantity

is not clear. However, it appears convenient to use this variable in intermediate

steps when computing the density correlators.

There are no external forces in our fictitious evolution, thus the velocity is con-

served along the flow:

Dv(s),i

DT
= ∂T v

(s),i + v(s)
z ∂zv

(s),i = 0 . (4.10)

This equation conserves vorticity. In real-space Eulerian perturbation theory the

velocity field is longitudinal. Then the initial conditions (4.9) imply that v(s) is

longitudinal as well, i.e.

v
(s)
i = −fH∂iΘ

(s)

∆
. (4.11)

It is convenient to rescale our auxiliary time as

T → F = fT H with F ∈ [0, f ] . (4.12)

In this case the equation of motion for the velocity divergence obtained from

(4.10) takes a very simple form independent of cosmology,

∂FΘ(s)(F , s; e) = ∂i

(
∂i∂zΘ

(s)

∆

∂zΘ
(s)

∆

)
, (4.13)

where we have emphasized that in this equation Θ(s) depends parametrically on

the cosmic time e.
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Since Eq. (4.8) describes a simple Lagrangian flow of particles, its density current

j(s) = (1 + δ(s))v(s)

is conserved, which implies the continuity equation:

∂T δ
(s) + ∂z[v

(s)
z (1 + δ(s))] = 0 . (4.14)

Collecting together Eqs. (4.13) and (4.14) and switching to Fourier space we

obtain the final system

∂Fδ
(s)
k −

k2
z

k2
Θ

(s)
k =

∫
q1,q2

δ(3)(k− q12)α(s)(q1,q2)Θ
(s)
q1 δ

(s)
q2 ,

∂FΘ
(s)
k =

∫
q1,q2

δ(3)(k− q12)β(s)(q1,q2)Θ
(s)
q1 Θ

(s)
q2 ,

(4.15)

where

α(s)(q1,q2) ≡ q1,z(q1,z + q2,z)

q2
1

, β(s)(q1,q2) ≡ (q1 + q2)2q1zq2z

2q2
1q

2
2

. (4.16)

Note that the system of equations (4.15) contains a closed equation for the

velocity divergence field and in this respect is quite similar to the Zel’dovich

approximation in the Eulerian picture.

4.3 TSPT partition function and vertices

Our next step is to build a generating functional which produces the correlation

functions of the Θ(s) field1. This can be done by applying the ideas of TSPT

to the system (4.15). A detailed description of the TSPT framework is given in

Ref. [1] for a generic system, here we only outline the main steps. Some details

on the TSPT in real space are given in 2.

The PDF of the velocity divergence field undergoes certain evolution in the

auxiliary time F . The initial distribution is given by the PDF in real space and

the final one corresponds to the PDF in redshift space that we are looking for.

In order to describe this evolution, consider the TSPT generating functional at

a finite slice of the redshift time F :

Z[J ;F ] =

∫
DΘ(s) P[Θ(s);F ] exp

{∫
k

Θ
(s)
k J(−k)

}
, (4.17)

1We will discuss the density field δ(s) in the next subsection.
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where the PDF P is perturbatively expanded as

P[Θ(s);F ] = exp

−
∞∑
n=1

1

n!

∫
q1,...,qn

Γ(s) tot
n (F ; k1, ...,kn)

n∏
j=1

Θ
(s)
qj

 (4.18)

Conservation of probability under the change of redshift time implies

D [Θ(s) + δΘ(s)] P[Θ(s) + δΘ(s);F + δF ] = D [Θ(s)] P[Θ(s);F ] . (4.19)

This leads to the following evolution equations for the TSPT vertices Γ
tot (s)
n :

∂FΓ(s) tot
n (F ; k1, ...,kn)

+

n∑
m=1

1

(n−m)!m!

∑
σ

I(s)
m (kσ(1), ...,kσ(m)) Γ

(s) tot
n−m+1

(
F ;

m∑
l=1

kσ(l),kσ(m+1), ...,kσ(n)

)
= (2π)3δ

(3)
D

(
n∑
i=1

ki

)∫
p
I

(s)
n+1(F ; p,k1, ...,kn) ,

(4.20)

where in the second line the sum runs over all permutations σ of n indices and

I
(s)
m are the kernels determining the dynamical evolution of field Θ(s):

∂FΘ
(s)
k =

∞∑
n=1

1

n!

∫
q1,...,qn

(2π)3δ
(3)
D (k− q1...n)I(s)

n (q1, ...,qn)Θ
(s)
q1 ...Θ

(s)
qn . (4.21)

In the case of the system (4.15) we simply have I
(s)
2 = 2βz with all other kernels

vanishing. In particular, I
(s)
1 = 0, in contrast to I

(r)
1 =1 in real space, which

makes the structure of solution to (4.20) somewhat different from the case of

real-space TSPT [1] (see also Chapter 2).

It is convenient to split the solution of Eq. (4.20) into the solution of the homo-

geneous equation Γ
(s)
n and ‘counterterms’ C

(s)
n sourced by the singular r.h.s. The

corresponding initial conditions are

Γ(s)
n

∣∣∣
F=0

= Γ(r)
n , C(s)

n

∣∣∣
F=0

= C(r)
n , (4.22)

where Γ
(r)
n and C

(r)
n are TSPT vertices in real space. Their structure is discussed

in Chapter 2. In particular, for Gaussian initial conditions and in Einstein-de

Sitter approximation (which we adopt in this Chapter), the counterterms C
(r)
n

are time independent, whereas the time dependence of Γ
(r)
n factorizes (here we
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are talking about the dependence on the physical time e),

Γ(r)
n =

Γ̄
(r)
n

g2(η)
. (4.23)

In this expression g(η) is the linear growth factor as defined in Eq. (2.3).

The equations for the Γ
(s)
n vertices take the following form:

∂FΓ(s)
n (F ; k1, ...,kn) +

n∑
i<j

I
(s)
2 (ki,kj)Γ

(s)
n−1(F ; k1, ..., ǩi, ..., ǩj , ...,ki + kj) = 0 ,

(4.24)

where ǩj means that kj is not included in the arguments of Γ
(s)
n−1. Let us start

with the first non-trivial vertex Γ2. We have:

∂FΓ
(s)
2 = 0 , ⇒ Γ

(s)
2 = Γ

(r)
2 = (2π)3 δ

(3)
D (k′ + k)

g2P̄ (k)
, (4.25)

where P̄ (k) is the linear power spectrum at e = 0 and we have used Eq. (2.17a)

in the last equality. Note that the inverse of Γ
(s)
2 gives the linear power spectrum

of Θ(s). From (4.25) we conclude that the latter coincides with the linear power

spectrum of matter overdensities g2(η)P̄ (k). For n ≥ 3 we consider the Ansatz,

Γ(s)
n =

n−2∑
l=0

Γ
(s)
n, l F

l . (4.26)

Plugging it into Eq. (4.24) leads to the following recursion relation

Γ
(s)
n, l = −1

l

n∑
i<j

I
(s)
2 (ki,kj)Γ

(s)
n−1, l−1(k1, ..., ǩi, ..., ǩj , ...,ki + kj) , (4.27)

with the initial condition for l = 0,

Γ
(s)
n, 0 = Γ(r)

n . (4.28)

The recursion relation (4.27) allows us to obtain all redshift space velocity ver-

tices from the real space ones (given in Chapter 2). Since the redshift space

vertices are sourced by the real space ones through the linear recursion rela-

tion Eq. (4.27), in the case of Gaussian initial conditions they inherit factorized

dependence on the coupling constant g(η) given by (4.23). Another important

property of the RSD vertices is that they are IR safe. The proof essentially re-

peats the proof of IR safety of the standard TSPT vertices given in Ref. [1] and

we do not present it here.
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The singular counterterms C
(s)
n satisfy the following equations,

∂FC
(s)
1 (F ; k) = (2π)3δ(3) (k)

∫
p
I

(s)
2 (p,k) ,

∂FC
(s)
n (F ; k1, ...,kn)+

∑
i<j

I
(s)
2 (ki,kj)C

(s)
n−1(F ; k1, ..., ǩi, ..., ǩj , ...ki+kj) = 0 , n > 1.

(4.29)

Using the Ansatz C
(s)
n =

∑n
l=0C

(s)
n, l F

l, we find the recursion relations similar to

Eq. (4.27),

C
(s)
1,1 = (2π)3δ(3) (k)

∫
p
I

(s)
2 (p,k) ,

C
(s)
n, l = −1

l

∑
i<j

I
(s)
2 (ki,kj)C

(s)
n−1, l−1(k1, ..., ǩi, ..., ǩj , ...,ki + kj) , n > 1 ,

(4.30)

with C
(s)
n, 0 = C

(r)
n . Note that the Cn counterterms appear already in the perfect

fluid description. Their structure is totally fixed by the relevant equations of

motion.

4.3.1 Density field as a composite operator

In cosmological perturbation theory with adiabatic initial conditions there is only

one statistically independent field which can appear as the integration variable in

the generating functional. For studies of the IR structure it appears convenient

to choose the velocity field, as we did above. In this subsection we express the

redshift density field in terms of Θ(s) as a composite operator. We focus on the

matter density for the time being. Biased tracers will be studied in Sec. 4.5. We

introduce the Ansatz,

δ
(s)
k =

∞∑
n=1

1

n!

∫
q1,...,qn

(2π)3δ
(3)
D (k− q1...n)K(s)

n (F ; q1, ...,qn)Θ
(s)
q1 ...Θ

(s)
qn . (4.31)
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k
= g2(η)P̄ (k),

k1

k2

k3

= −g−2(η)
Γ̄

(s)
3 (k1,k2,k3)

3!

k
= −C(s)

1 (k),
k

q1

q2

=
K

(s)
2 (q1,q2)

2!
(2π)3δ

(3)
D

(
k− q12

)

Figure 4.1: Examples of TSPT Feynman rules in redshift space.

Plugging (4.31) into the equations of motion (4.15), we obtain

∂FK
(s)
1 (k1) =

k2
z

k2
,

∂FK
(s)
n (k1, ...,kn) =

n∑
i=1

K
(s)
n−1(k1, ..., ǩi, ...,kn)α(s)

ki,
∑
j 6=i

kj


− 2

n∑
i<j

K
(s)
n−1(k1, ..., ǩi, ..., ǩj , ...,kn,ki + kj)β

(s) (ki,kj) , n > 1 .

(4.32)

The kernels K
(s)
n satisfy the following initial conditions:

K(s)
n

∣∣∣
F=0

= K(r)
n , (4.33)

where K
(r)
n are TSPT kernels relating the density and velocity field in real space

(see Chapter 2). The first two kernels read,

K
(s)
1 (k1) = 1 +

k2
z

k2
f ,

K
(s)
2 (k1,k2) = K

(r)
2 (k1,k2) +

{
k2

1z

k2
1

+
k2

2z

k2
2

− 2
(k1 · k2)k1zk2z

k2
1k

2
2

}
f ,

(4.34)

where we have made the substitution F → f in the final expressions. Proceeding

along the lines of Ref. [1] one can easily prove that the kernels K
(s)
n are IR safe.
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4.3.2 Feynman rules

The TSPT perturbative expansion is produced by expanding the PDF P in the

generating functional (4.17) over its Gaussian part, which is equivalent to an

expansion in the coupling constant g(η). This calculation can be represented as

a sum of Feynman diagrams. Our redshift space mapping does not produce new

diagrammatic elements, thus we can use the same Feynman rules as in real space,

see Ref. [1]. The first elements of the perturbative expansion in redshift space are

shown in Fig. 4.1: the linear power spectrum (inverse of Γ
(s)
2 ) is represented by

a line (propagator), the different elements Γ
(s)
n (with n > 2) and C

(s)
n correspond

to vertices, and K
(s)
n are depicted as vertices with an extra arrow. To compute

an n-point correlation function of the velocity divergence Θ(s) one needs to draw

all diagrams with n external legs. For the correlators of the density field δ(s) one

has to add diagrams with external arrows (composite operators) and multiply

each external line with momentum k by a factor K
(s)
1 (k). For instance, at linear

order we have the following expression for the correlator of the δ(s) field,

P (s)
mm(η; k) =

K
(s)
1 K

(s)
1

= (K
(s)
1 (k))2g2P̄ (k) =

(
1 + f(η)

k2
z

k2

)2

g2(η)P̄ (k) ,

(4.35)

which reproduces the famous Kaiser formula [121].

4.4 IR resummation

The absence of spurious IR enhancement of loop integrals in TSPT allows one

to easily extract the physical IR effects responsible for deforming the BAO pat-

tern in redshift space. In this section we work out the ingredients necessary for

systematic IR resummation along the lines of Chapter 3: perform the decompo-

sition of the redshift space vertices into ‘wiggly’ and ‘smooth’ parts, introduce

power counting rules, identify the leading IR contributions, and resum them. In

this section we will be discussing only the redshift space quantities and omit the

superscript (s) on TSPT vertices to simplify notations. In all vertices and ker-

nels we set F → f . We also introduce primed notations for quantities stripped

of the momentum delta functions, e.g.,

Γ(s)
n (k1, ...,kn) = (2π)3δ

(3)
D (k1...n) Γ′(s)n (k1, ...,kn) . (4.36)
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4.4.1 Wiggly-smooth decomposition

As in the previous Chapter, we decompose the linear matter power spectrum

into an oscillating (wiggly) component corresponding to BAO and a smooth

(non-wiggly) part,

P̄ (k) = P̄nw(k) + P̄w(k) . (4.37)

The period of oscillations of P̄w is set by kosc = r−1
BAO ∼ 9 · 10−3h/Mpc. Interac-

tion with long-wavelength modes differently affects these two components leading

to exponential damping of the wiggly part in the non-linear power spectrum. In

principle, the decomposition (4.37) is not unique; two possible algorithms are

described above. In practice, the two algorithms lead to essentially identical

results in real space and we expect this to be true also with inclusion of RSD.

Since the TSPT vertices Γ̄n depend on the linear power spectrum, the decom-

position (4.37) produces a similar decomposition of vertices,

Γ̄n = Γ̄nwn + Γ̄wn . (4.38)

Here Γ̄wn is of order O(P̄w/P̄nw) and one can neglect terms O(P̄ 2
w/P̄

2
nw) as they

produce sub-percent corrections. The counterterms Cn and kernels Kn are not

subject to wiggly-smooth decomposition as they are not functionals of the initial

power spectrum. Their momentum dependence is purely smooth. Throughout

this Chapter we will use the same graphic representation for the redshift-space

propagators and vertices as in Chapter 3, see Fig. 3.3.

4.4.2 IR-enhanced diagrams and power counting

Consider a TSPT n-point vertex Γ̄n(k1, ...,kn) whose arguments ki may belong

to two different domains: either the soft one, denoted by q, or the hard one,

denoted by k, with

q � k . (4.39)

Let us first take a look at the wiggly three-point vertex Γ̄′w3 (k1,k2,k3). From

Eq. (4.27) it is found to be

Γ̄′w3 (k,q,−k−q)=J2(k,q)
P̄w(|k+q|)
P̄ 2
nw(|k+q|)

+J2(−k−q,q)
P̄w(k)

P̄ 2
nw(k)

+J2(k,−k−q)
P̄w(q)

P̄ 2
nw(q)

,

(4.40)
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where we have defined

J2(k1,k2) ≡ (k1 + k2)2

k2
1k

2
2

(
(k1 · k2) + fk1,zk2,z

)
. (4.41)

In the limit (4.39) the rightmost term in Eq. (4.40) is negligibly small, while the

other two terms yield the expression

Γ̄′w3 (k,q,−k− q) =
(k · q) + fkzqz

q2

P̄w(|k + q|)− P̄w(k)

P̄ 2
nw(k)

+O(1) . (4.42)

Here we have Taylor expanded the smooth power spectrum P̄nw(|k + q|) =

P̄nw(k) +O(q/k). We observe that at

kosc < q � k (4.43)

the first term is enhanced by O(k/q). For yet softer q � kosc, one can write,

P̄w(|k + q|)− P̄w(k) ≈ (k · q)

k

dP̄w
dk

. (4.44)

Taking into account that dP̄w/dk ∼ P̄w/kosc, we see that the enhancement of

(4.42) becomes O(k/kosc). Note that despite the enhancement, the vertex (4.42)

remains finite in the limit q → 0, in line with the IR safety of the TSPT expansion

discussed in Sec. 4.3. The situation here is completely analogous to the one we

had in real space: for general values of q in the range (4.43) the expansion

(4.44) does not provide a good approximation to the finite difference on the

l.h.s. Indeed, the latter oscillates with the period q ∼ 2πkosc, whereas the r.h.s.

of (4.44) is linear in q. As we want to include the range (4.43) in our analysis, we

work in what follows with the representation (4.42), where the finite difference

of the wiggly power spectra is kept explicitly.

The enhanced contribution (4.42) can be written in a compact form by intro-

ducing a linear operator D(s)
q acting on the wiggly power spectrum,

D(s)
q [P̄w(k)] =

(k · q) + fkzqz
q2

(
P̄w(|k + q|)− P̄w(k)

)
=
Pabkaqb

q2
(eq·∇k′ − 1)P̄w(k′)

∣∣∣
k′=k

,

(4.45)

where

Pab ≡ δab + fẑaẑb . (4.46)
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This operator has the following properties. First, it scales as

D(s)
q [P̄w] = O(1/ε)P̄w , (4.47)

where ε ∼ q/k. Second, this operator commutes with itself and in any expression

acts only on occurrences of P̄w, leaving the smooth components intact. It is a

simple generalization of the operator D(r)
q which controls the IR enhancement in

real space and is obtained from D(s)
q by replacing Pab with the Kronecker symbol

δab (see Chapter 2).

In Appendix B.4 we prove that the expression (4.42) generalizes to an arbitrary

n-point vertex with m hard momenta ki and n−m soft momenta qj uniformly

going to zero,

Γ̄′wn

(
k1, ...,km −

n−m∑
i=1

qi,q1, ...,qn−m

)

= (−1)n−m

n−m∏
j=1

D(s)
qj

[Γ̄′wm (k1, ...,km)
]

(1 +O(ε)) .

(4.48)

The leading IR enhancement of this vertex is O(ε−n+m), and the maximum is

achieved for n− 2 soft wavenumbers,

Γ̄′wn

(
k, − k−

n−2∑
i=1

qi,q1, ...,qn−2

)
= (−1)n−2

n−2∏
j=1

D(s)
qj

 Γ̄′w2 (k,−k)(1 +O(ε))

= (−1)n−1

n−2∏
j=1

Pabkaqbj
q2
j

(eqj ·∇k − 1)

 P̄w(k′)

P̄ 2
nw(k)

∣∣∣∣∣
k′=k

(1 +O(ε)) .

(4.49)

On the other hand, it is straightforward to verify that the smooth vertices do

not receive IR enhancements as their arguments go to zero, in line with the fact

that bulk flows have significant effect only on wiggly correlation functions.

We now discuss the power counting rules that will help us identify IR enhanced

diagrams. These rules are completely similar to those discussed in Section 3.2,

where the reader can find further details. Owing to Eq. (4.48), the resummation

procedure is totally analogous to the one discussed in Chapter 3, with the only

difference that we have to substitute the real-space operator D(r)
q , kernels and

vertices with their redshift-space counterparts.

It is instructive to consider the leading IR correction to the matter power spec-

trum at one loop. It is given by the following graph:



IR resummation in redshift space 75

Γ̄w4

=
g4

2
K2

1 (k)

∫
|q|<kS

P̄nw(q)D(s)
q D(s)

−qP̄w(k) ≡ −g4K2
1S(s)[P̄w] ,

(4.50)

where in the last equality we defined a new linear operator S(s) acting on the

wiggly power spectrum,

S(s)[P̄w] = PabPcdkakc
∫
|q|<kS

P̄nw(q)
qbqd

q4

(
1− cosh (q · ∇k′)

)
P̄w(k′)

∣∣∣
k′=k

.

(4.51)

Within our power counting rules,

g2S(s)[P̄w] ∼ O(1/ε2 × σ2
S) P̄w . (4.52)

As discussed previously, the product 1/ε2 × σ2
S is O(1) at low redshifts and

therefore this one-loop contribution is of the same order as the linear wiggly

power spectrum, which points to the need for IR resummation.

The key observation is that the structure of IR enhancement in redshift space

vertices is same as that of the real space ones. Hence, in the case of redshift

space one can use exactly the same power counting rules as in real space, see

Sec. 3.2.2.

4.4.3 IR resummation at leading order

Let us first consider the density power spectrum. The leading-order derivation

will be analogous to the real space one, yet we present it here for the sake of self-

containment of this Chapter. As in the case of real space, the most IR-enhanced

contributions correspond to l = 2L and Lh = 0. Resummation of these daisy
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diagrams is graphically represented as follows,

P (s) IR res,LO
mm,w (η; k) = +

Γ̄w4
(4.53)

+

Γ̄w6
+

Γ̄w8
+ + ...

Using Eq. (4.48) we find that the L-th contribution here has the form,

g2K2
1 (k)P̄ 2

nw(k)
1

L!

[
g2

2

∫
|q|<kS

P̄nw(q)D(s)
q D(s)

−q

]L
Γ̄′w2 (k,−k)

= g2K2
1 (k) · 1

L!

(
− g2S(s)

)L
P̄w(k) ,

(4.54)

up to ε–suppressed corrections. As we have already shown, summing the series

(4.53) leads to the exponentiation of the operator (4.51), which we have already

encountered at one loop order, i.e.

P (s) IR res,LO
mm (η; k) = g2K2

1

(
P̄nw + e−g

2S(s)
P̄w
)
, (4.55)

where we have also added the smooth part which is unaffected by IR resum-

mation. The time dependence of the resummed power spectrum comes from its

explicit dependence on g(η), as well as implicitly through the dependence of the

kernel K1 and the operator S(s) on f(η). The practical method to evaluate the

exponential operator appearing in (4.55) will be discussed in Sec. 4.6.

Similarly, one can show by following the arguments of Chapter 3 that IR resum-

mation of an arbitrary n-point function at the leading order (LO) amounts to

simply substituting the wiggly part of the linear spectrum, P̄w by its resummed

version e−g
2S(s)

P̄w in all tree-level diagrams. This can be summarized in the

following compact form,

C(s) IR res,LO
n (k1, ...,kn) = C(s) tree

n

[
P̄nw + e−g

2S(s)
P̄w
]
(k1, ...,kn) , (4.56)

where Ctreen should be understood as a functional of the linear power spectrum.

Note that the leading IR-enhanced contributions are essentially the same for
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velocity and density correlators.

4.4.4 Next-to-leading order corrections and hard loops

There are two different types of next-to-leading order corrections to the above

results:

(1) Soft diagrams with non-maximal IR enhancement, characterized by l =

2Ls− 1 (see Eq. (3.31)), as well as subleading terms in the daisy diagrams

considered above. Formally, these contributions are suppressed by one

power of ε relative to the leading order.

(2) Diagrams with one hard loop, Lh = 1, and otherwise maximal IR enhance-

ment l = 2Ls. These diagrams are suppressed by one factor of σ2
h relative

to the leading order.

Let us first discuss the corrections of the first type. Their resummation for

the matter power spectrum in real space was performed in Chapter 3, where

it was shown that they have only a sub percent effect. We argued that this is

a consequence of the specific shape of the matter power spectrum. The same

should be true for redshift space, as our argument only appealed to the shape of

the ΛCDM power spectrum and the structure of mode coupling which is similar

in real and redshift spaces. We leave the analysis of the modifications due to

redshift space and bias for future work. We point out that, albeit small, these

corrections are necessary for a robust estimation of the shift of the BAO peak.

We now focus on contributions with one hard loop and maximal IR enhancement.

These contributions scale as

σ2
h × (σ2

S × 1/ε2)Ls (4.57)

and their resummation proceeds in a straightforward manner along the lines of

Chapter 3. The key observation is that due to Eq. (4.48) the redshift space

vertices have the same factorization property as the real space vertices, see

Eq. (3.39). Thus, dressing hard-loop diagrams with soft loops results in the

simple replacement of the wiggly power spectrum appearing in propagators and

vertices with its resummed version. For instance, the IR-resummed matter power

spectrum at NLO reads

P (s) IR res,LO+NLO
mm = g2K2

1

[
P̄nw+(1+g2S(s))e−g

2S(s)
P̄w
]
+P (s) 1−loop

mm

[
P̄nw+e−g

2S(s)
P̄w
]
,

(4.58)
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where P
(s) 1−loop
mm is the one-loop contribution understood as a functional of the

linear power spectrum2. The above formula has a simple meaning: one has to use

the leading order IR-resummed linear power spectrum as an input in the 1-loop

calculation and correct the tree-level result in order to avoid double-counting.

We emphasize that Eq. (4.58) is not a phenomenological model but an outcome of

the rigorous resummation of IR-enhanced corrections at order (4.57). The result

(4.58) can be easily generalized to higher-order statistics, i.e. for an arbitrary

n−point function one obtains

C(s) IR res,LO+NLO
n = C(s) tree

n

[
P̄nw+(1+g2S(s))e−g

2S(s)
P̄w
]
+C(s) 1−loop

n

[
P̄nw+e−g

2S(s)
P̄w
]
.

(4.59)

Further, it is possible to include higher order hard loop corrections, i.e. to resum

the graphs that scale as (σ2
h)2 × (σ2

S × 1/ε2)Ls . For the power spectrum the net

result reads

P (s),IR res, LO+NLO+NNLO
mm = g2K2

1

[
P̄nw +

(
1 + g2S(s) +

1

2

(
g2S(s)

)2)
e−g

2S(s)
P̄w

]
+ P (s) 1−loop

mm

[
P̄nw + (1 + g2S(s))e−g

2S(s)
P̄w
]

+ P (s) 2−loop
mm [P̄nw + e−g

2S(s)
P̄w] .

(4.60)

Generalization to other correlation functions and higher hard-loop orders is

straightforward.

4.5 Bias

Bias is the relation between the density of observed tracers (e.g. galaxies, halos,

etc.) and the density of the underlying matter field [125–130], see [131] for a

recent comprehensive review. This relation can be written involving the matter

density field at the initial (Lagrangian biasing) or final (Eulerian biasing) time

slice. As TSPT is formulated in terms of Eulerian fields at a finite time slice,

in what follows we adopt the Eulerian biasing scheme. As long as perturbative

treatment is valid, it is possible to describe deterministic bias as a local in time

and space operator expansion [129, 131],

δ
(r)
h (τ,x) =

∑
n

∑
O(n)

bO(n)(τ)O(n)(τ,x) (4.61)

2Formally, P
(s) 1−loop
mm should contain only the hard part of the loop. However, it is conve-

nient to extend it to include soft momenta. This introduces a difference of order of soft NLO
corrections which, as we argued, are numerically small.
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where δ
(r)
h stands for the density contrast of biased tracers in real space and

O(n) are operators constructed out of the density field to the n’th power, i.e.

O(n) ∼ O(δn). The coefficients bO(n) are called bias parameters; in general,

they are functions of time. The first sum runs over orders in perturbation the-

ory, and the second sum runs over all independent operators at a given order.

Note that in general the bias expansion should also include stochastic (noise)

contributions, generated by small-scale fluctuations that are uncorrelated with

the long-wavelength density field. The formal inclusion of stochastic terms into

TSPT is straightforward. However, we defer the detailed treatment of these con-

tributions for two reasons. First, the effect of stochastic bias is expected to be

negligibly small at the BAO scales. Second, noise terms clearly have a UV origin

and thus should be treated on the same footing as the UV counterterms, which

are left beyond the scope of this Chapter.

Due to the equivalence principle, the density of tracers cannot depend on the

value of the Newtonian potential and its first derivatives. Thus, the operators

O(n) must be constructed using the tidal tensor

Π
[1]
ij = ∂i∂jΦ (4.62)

and its derivatives. Here Φ is the suitably normalized gravitational potential re-

lated to the standard Newtonian potential φ via Φ ≡ 2φ/(3ΩmH2). A convenient

basis is constructed as follows. One introduces a sequence of tensors,

Π
[1]
ij = ∂i∂jΦ , (4.63a)

Π
[n]
ij =

1

(n− 1)!

[
1

fH
D

Dτ
Π

[n−1]
ij − (n− 1)Π

[n−1]
ij

]
, (4.63b)

where D/Dτ is the convective derivative,

D

Dτ
=

∂

∂τ
+ vi∂i =

∂

∂τ
− fH∂iΘ

(r)

∆
∂i , (4.64)

and in passing to the last equality we used that only the longitudinal component

of the peculiar velocity is present in perturbation theory. The use of convective

derivative accounts for the fact that the evolution of tracers is determined by

the physical conditions along the fluid flow [131]. The second term in (4.63b)

is adjusted to subtract O(δn−1) contributions, so that Π
[n]
ij has homogeneous

dependence on δ of order O(δn). Despite the fact that the tensors (4.63b) contain

partial time derivatives, it is always possible to eliminate them by using the

equations of motion for matter.
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The bias operators at n’th order are given by all possible contractions of the

tensors (4.63) with total order n, e.g.

1st Tr[Π[1]] ,

2nd Tr[(Π[1])2] , (Tr[Π[1]])2 ,

3rd Tr[(Π[1])3] , Tr[(Π[1])2]Tr[Π[1]] , (Tr[Π[1]])3 , Tr[Π[1]]Tr[Π[2]] ,

...

(4.65)

Note that the terms Tr[Π[n]] are excluded at the n’th order (except n = 1) as

they are degenerate with other operators in the basis. The basis (4.63) does

not contain higher-derivative terms. In principle, they can always be added

by applying derivatives to the tidal tensor and making all possible contractions

analogous to (4.65). As the bias expansion preserves the equivalence principle

[129], it contains no IR poles. We give explicit expressions for a few first bias

operators relevant for one-loop computations in Appendix E.

All in all, the bias expansion takes the following form:

δ
(r)
h (τ,k) =

∞∑
n=1

1

n!

∫
q1,...,qn

(2π)3δ
(3)
D (k− q1...n) M̃n(τ ; q1, ...,qn)

n∏
i=1

δ(r)(τ,qi) .

(4.66)

In order to incorporate bias into TSPT, it is convenient to rewrite (4.66) in

terms of the velocity divergence field. Using that the matter density field can be

expressed in perturbation theory through the velocity divergence via (2.8), the

relation (4.66) can be rearranged in the desired form:

δ
(r)
h (τ,k) =

∞∑
n=1

1

n!

∫
q1,...,qn

(2π)3δ
(3)
D (k− q1...n)M (r)

n (τ ; q1, ...,qn)
n∏
i=1

Θ(r)(τ,qi) .

(4.67)

The kernels M
(r)
n relevant for the 1-loop calculation are given in Appendix E.

In principle, the M
(r)
n kernels may have arbitrary time-dependence, that is why

we will not treat them as functions of the coupling constant g in the TSPT

perturbative expansion. The bias parameters are expected to evolve slowly,

with the rate comparable to that of the growth of matter. Note that the bias

parameters are subject to UV renormalization [129, 132]. This issue will be

addressed elsewhere.
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The tracers’ velocity field can, in principle, also be biased, so within the validity

of perturbation theory it will be expressed as a power series in Θ(r),

Θ
(r)
h (τ,k) =

∞∑
n=1

1

n!

∫
q1,...,qn

(2π)3δ
(3)
D (k− q1...n)Vn(η; q1, ...,qn)

n∏
i=1

Θ(r)(τ,qi) .

(4.68)

However, as long as the effect of relative velocities between different matter

components can be neglected, the velocity bias will be absent at the lowest order

in spatial derivatives. The difference of Θ
(r)
h from Θ(r) will appear only at higher

derivatives. For example,

V1(τ ; k) = 1 + b∇2v(τ)k2 . (4.69)

We conclude that the velocity bias has the same order in the derivative expansion

as the UV counterterms, and thus its treatment goes beyond the scope of this

thesis. In what follows we will neglect all the effects related to velocity bias.

4.5.1 IR resummation for biased tracers in real and redshift

space

The goal of this section is to incorporate bias into TSPT and perform IR resum-

mation for correlation functions of biased tracers in real and redshift space.

We start by discussing real space. In this case Eq. (4.67) describes the density of

biased tracers as a composite operator analogous to the density of matter. Thus,

we can use the technique developed in [1] by simply using the kernels Mn instead

of Kn in the relevant Feynman diagrams. Since the bias vertices are IR safe, they

do not produce additional contributions to be resummed. IR resummation thus

goes in full analogy with the IR resummation of the density correlators in real

space, see Chapter 3. The result of this procedure in real space is very simple:

one has to substitute the linear power spectrum by its IR-resummed version in

all expressions for the correlation functions of biased tracers.

Generalization to the case of redshift space is straightforward. The redshift

coordinate of the tracer is related to the real-space one by means of the tracer’s

velocity v
(r)
h (x),

sh = x + ẑ
v

(r)
h,z(x)

H
. (4.70)

As pointed out before, we do not consider velocity bias in this thesis, thus in

the rest of it we will assume that tracers are comoving with matter and simply
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replace

v
(r)
h → v(r) (4.71)

in Eq. (4.70). In order to transform the bias kernels M
(r)
n into redshift space we

use the same trick of introducing a fictitious 1D flow described in Sec. 4.2. In

this way we obtain the same equations of motion as (4.15), but with δ(s) replaced

by δ
(s)
h . At the next step we use these equations to derive the kernels relating

the tracer density field with the redshift space velocity Θ(s). We obtain

δ
(s)
h (F ; τ,k) =

∞∑
n=1

1

n!

∫
[dq]nM (s)

n (F ; q1, ...,qn)Θ
(s)
q1 ...Θ

(s)
qn , (4.72)

with M
(s)
n ’s satisfying the same equations of motion as (4.32) with an obvious

change in the initial conditions,

M (s)
n

∣∣∣
F=0

= M (r)
n . (4.73)

This procedure allows us to unambiguously map the real space bias parameters

to redshift space ones. It should be noted that some tracers (e.g. Lyα forest,

21 cm intensity) may have additional biases in redshift space [131, 133, 134]. In

this case one has to supplement (4.72) with relevant extra bias operators.

An immediate consequence of the above construction is that the kernels M
(s)
n are

IR-safe and are not functionals of the initial power spectra. Thus, they do not

receive any IR enhancement which, as before, affects solely the vertices Γ̄
w (s)
n .

The diagrams involving these vertices are resummed, as has been shown in the

previous sections. The net result at leading order is that one has to use the

“dressed” power spectrum

P̄nw + e−g
2S(s)

P̄w , (4.74)

instead of the linear one in all tree-level calculations. At first order in hard

loops one has to use the power spectrum (4.74) in the loop diagrams and correct

the tree-level result for double-counting. At higher loop order this procedure

iterates, as illustrated by Eq. (4.60).



IR resummation in redshift space 83

4.6 Practical implementation and comparison with

other methods

In this section we formulate the practical prescription to evaluate the IR-resummed

power spectra and bispectra. We then compare our results with other analytic

approaches. While our results have been derived within the TSPT framework,

they can be easily reformulated in the language of the standard perturbation the-

ory [15], which may be convenient for implementation within existing numerical

codes, e.g. FAST-PT [135, 136] or FnFast [137].

4.6.1 The power spectrum and bispectrum at leading order

In order to simplify notations in this section we drop the explicit time dependence

of the power spectra and use the shorthand

P (k) ≡ D2(z)P̄ (k) . (4.75)

Having decomposed the linear power spectrum into wiggly and smooth parts,

e.g. using one of the methods described in [3], we have to evaluate the derivative

operator acting on the wiggly part. Since Pw is a function oscillating with the

period kosc = h/(110 Mpc), we have

∇α1 · · · ∇α2nPw(k) = (−1)n
k̂α1 · · · k̂α2n

k2n
osc

Pw(k)
(
1 +O(ε)

)
, (4.76)

where ε ' keq/k is the small expansion parameter controlling the IR enhance-

ment and k̂ = k/k. Then the action of the operator S(s) (Eq. (4.51)) at leading

order in ε reads,

g2S(s)[Pw(k)] = PabPcdkakc
∫
|q|<kS

Pnw(q)
qbqd

q4

[
1− cos

(
(q · k̂)

kosc

)]
Pw(k) ,

(4.77)

which reduces to a k-dependent multiplicative factor. Evaluating the integral we

obtain,

g2S(s)[Pw(k)] = k2
[(

1 + fµ2(2 + f)
)
Σ2 + f2µ2(µ2 − 1)δΣ2

]
Pw(k)×

(
1 +O(ε)

)
,

(4.78)
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with µ ≡ kz/k and

Σ2 ≡ 4π

3

∫ kS

0

dq

(2π)3
Pnw(q)

[
1− j0

(
q

kosc

)
+ 2j2

(
q

kosc

)]
, (4.79a)

δΣ2 ≡ 4π

∫ kS

0

dq

(2π)3
Pnw(q) j2

(
q

kosc

)
. (4.79b)

Here jn are spherical Bessel functions and kS is the separation scale of long and

short modes in the loop integrals. Thus, the LO IR-resummed power spectrum

of biased tracers (say, halos) in redshift space is given by

P
(s) IR res,LO
hh (k, µ) =(b1 + fµ2)2

(
Pnw(k) + e−k

2Σ2
tot(µ;kS)Pw(k)

)
, (4.80)

where

Σ2
tot(µ; kS) ≡

(
1 + fµ2(2 + f)

)
Σ2 + f2µ2(µ2 − 1)δΣ2 . (4.81)

Note that the damping factor Σ2 has already appeared as a result of IR resum-

mation in real space [3, 29], while δΣ2 is a new contribution. The form of the first

term in (4.81) has a simple physical meaning: one has to keep the perpendicular

(real space) rms displacement Σ of soft modes intact while multiplying the rms

displacements along the line-of-sight by a factor (1 + f), as prescribed by the

Kaiser formula, i.e.

k2
‖(1 + f)2Σ2 + k2

⊥Σ2 = Σ2(1 + fµ2(2 + f)) , (4.82)

where k‖ = kz, k⊥ =
√
k2 − k2

z . Note that the contribution proportional to δΣ2

is negative and thus it somewhat reduces the BAO damping compared to the

simple formula (4.82). The form of exponential damping (4.81) does not depend

on bias parameters. This is consistent with physical intuition, as the degradation

of the BAO feature in the statistics of biased tracers is caused by displacements

of underlying matter, in agreement with the equivalence principle [131].

We plot the dependence of the damping factors Σ2 and δΣ2 on the choice of kS

in the left panel of Fig. 4.2. At small kS � kosc the damping functions have the

following asymptotic behavior:

Σ2(kS)→ 2π

5

∫ kS

0

dq

(2π)3

q2

k2
osc

Pnw(q) , δΣ2(kS)→ 4π

15

∫ kS

0

dq

(2π)3

q2

k2
osc

Pnw(q) .

(4.83)
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Figure 4.2: Left panel: the dependence of the BAO damping factors Σ2

and δΣ2 on the separation scale kS at redshift zero (in the cosmological model
of [138], f = 0.483). Right panel: the dependence of two contributions to
the damping factor on the angle µ between the Fourier wavevector and the

line-of-sight; kS is fixed to 0.2h/Mpc.

The integral in δΣ2(kS) is cut off at kosc by the Bessel function and becomes a

constant equal to

δΣ2(kosc) '
4π

15k2
osc

∫
|q|.kosc

dq

(2π)3
q2Pnw(q) , (4.84)

whereas Σ2(kS) keeps growing up to q ∼ 0.2h/Mpc where it approaches its

asymptotic value σ2
v ≡ 4π

∫
dq Pnw(q)/3. The integral in Σ2(kS) receives the

dominant contribution from q & keq and is significantly bigger than δΣ2(kS).

This numerical hierarchy is due to the specific shape of the ΛCDM power spec-

trum which is strongly suppressed at q . kosc; if the power spectrum peaked

at momenta smaller than kosc, the damping factors Σ2(kS) and δΣ2(kS) would

have comparable magnitudes.

As discussed in Sec. 4.4.2, the scale kS should be chosen high enough to include

the contributions of all relevant soft modes. At the same time, it should be

smaller than the momentum k of interest. In the numerical calculations below

we will vary kS in the range (0.05 ÷ 0.2)h/Mpc. The dependence of the final

result on the precise choice of kS should be considered as a measure of theoretical

uncertainty.

In order to understand the effect of damping in redshift space let us rewrite the

expression (4.81) as Σ2
tot = Σ2

1 + Σ2
2 with

Σ2
1(µ; kS) ≡ (1 + fµ2(2 + f))Σ2 ,

Σ2
2(µ; kS) ≡ f2µ2(µ2 − 1)δΣ2.

(4.85)

Σ2
1 and Σ2

2 as functions of µ are plotted in the right panel of Fig. 4.2. We fix
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kS = 0.2h/Mpc. For visualization purposes we multiply Σ2
2 by factor 100 and

flip its sign. We observe that Σ2
2 is much smaller than Σ2

1 for all wavevector

directions. Its relative effect somewhat increases at high redshifts where the

suppression by factor f2 is mitigated. As for the Σ2
1 contribution, we see that

it grows monotonically with µ and thus, as expected, the BAO signal is more

suppressed for the wavevectors aligned with the line-of-sight.

The IR-resummed bispectrum at leading order is easily obtained from the general

formula (4.56). Making use of the well-known SPT result we get,

B
(s) IR res,LO
hhh (k1,k2,k3) = 2

∑
1≤i<j≤3

(b1 + fµ2
i )(b1 + fµ2

j )Z2(ki,kj)

×
(
Pnw(kj)Pnw(ki) + e−k

2
jΣ2

tot(µj)Pw(kj)Pnw(ki) + e−k
2
iΣ2

tot(µi)Pw(ki)Pnw(kj)
)
,

(4.86)

where µj ≡ k̂j · ẑ. As everywhere else in the Chapter, we have retained only

linear terms in Pw. The expression for the SPT kernel Z2 is given in Appendix

E.

4.6.2 The power spectrum and bispectrum at next-to-leading

order

At NLO the IR-resummed power spectrum can be written as

P
(s) IR res,LO+NLO
hh (k, µ) =(b1 + fµ2)2

(
Pnw(k) + (1 + k2Σ2

tot(µ))e−k
2Σ2

tot(µ)Pw(k)
)

+ P
(s) 1−loop
hh

[
Pnw + e−k

2Σ2
tot(µ)Pw

]
.

(4.87)

Note that the power spectrum that must be used as an input in the loop contri-

bution is anisotropic due to the angular dependence of the damping factor. This

complicates evaluation of the loop integral, as it prevents from using the stan-

dard procedure of integrating over the azimuthal angle and reducing P
(s) 1−loop
hh

to a finite series in µ2. To cast (4.87) in a more convenient form, we isolate the

wiggly terms,

P
(s) 1−loop
hh,w = 6Z1(k)e−k

2Σ2
tot(µ)Pw(k)

∫
p
Z3(k,p,−p)Pnw(p)

+ 6Z1(k)Pnw(k)

∫
p
Z3(k,p,−p)Pw(p)e−p

2Σ2
tot(µp)

+ 4

∫
p

(
Z2(p,k− p)

)2
Pnw(|k− p|)Pw(p)e−p

2Σ2
tot(µp) ,

(4.88)
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where µp ≡ (p̂ · ẑ). The first term contains an integral of the isotropic smooth

power spectrum and its evaluation does not pose any problem. The second term

is an integral of a quickly oscillating function and is exponentially suppressed

within our power counting. Indeed, approximating Pw with the sine we have3,∫
p

sin(p/kosc)fsmooth(p/k) ∼ e−k/kosc ∼ e−1/ε . (4.89)

Similarly, the hard part of the third integral, i.e. the contribution from |p −
k| > kS , is also exponentially suppressed. On the other hand, in the vicinity

|p− k| < kS the damping factor can be approximated as

e−p
2Σ2

tot(µp) = e−k
2Σ2

tot(µ)
(
1 +O(ε)

)
. (4.90)

The difference pertains to NLO soft corrections which we neglect in this Chap-

ter. We conclude that the damping factor can be pulled out of the loop integrals

without changing the order of approximation in our power counting. This al-

lows us to rewrite the IR-resummed power spectrum in the form involving only

integration over the isotropic initial power spectrum,

P
(s) IR res,LO+NLO
hh (k, µ) =(b1 + fµ2)2

(
Pnw(k) + (1 + k2Σ2

tot(µ))e−k
2Σ2

tot(µ)Pw(k)
)

+ P
(s) 1−loop
hh [Pnw] + e−k

2Σ2
tot(µ)P

(s) 1−loop
hh,w ,

(4.91)

where P
(s) 1−loop
hh [Pnw] is evaluated on the smooth power spectrum only and

P
(s) 1−loop
hh,w = 6Pw(k)Z1(k)

∫
p
Z3(p,−p,k)Pnw(p)

+ 4

∫
p

(
Z2(p,k− p)

)2
Pnw(|k− p|)Pw(p) .

(4.92)

An expression similar to (4.91) was obtained for the 1-loop IR resummed real-

space power spectrum in Ref. [29].

For higher-point correlation functions the “isotropisation” of the IR resummed

loop integrands is in general impossible. However, some partial contributions to

the total result may still be simplified. Thus, in Appendix F we show that the

3The kernel Z3(k,p,−p) is not regular at p → 0. However, this singularity does not
contribute because Pw(p) vanishes at the origin.
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1-loop bispectrum in redshift space can be written in the following form,

B(s) IR res,LO+NLO =B(s) tree
[
Pnw+(1+k2Σ2

tot)e
−k2Σ2

totPw
]
+B(s) 1−loop[Pnw+e−k

2Σ2
totPw

]
≈B(s) tree

[
Pnw+(1+k2Σ2

tot)e
−k2Σ2

totPw
]

+B(s) 1−loop[Pnw]
+ B̃

(s)
411,w + B̃

(s)
321−I,w + B̃

(s)
321−II,w + B̃

(s)
222,w ,

(4.93)

where all terms except B̃
(s)
222,w involve isotropic power spectra inside the mo-

mentum integrals. The ‘approximately equal’ sign between the first and second

lines means that the two expressions are equal up to NLO soft correction. The

formulae for B̃
(s)
411,w, B̃

(s)
321−I,w, B̃

(s)
321−II,w and B̃

(s)
222,w are given in Eqs. (F.5) of

Appendix F.

4.6.3 Comparison with other approaches

Let us compare our results to other methods. At the phenomenological level

the suppression of the BAO feature in redshift space is well described by a µ-

dependent exponential damping acting on the wiggly part of the linear power

spectrum. The aim of analytic approaches is to derive this result from first

principles and consistently generalize it to higher orders in perturbation theory,

where the effects beyond this simple damping are relevant. In this section we

will focus on a few methods to describe the BAO peak which are most common

in the literature.

The simplest model describing the suppression of the BAO peak in redshift space

is given by

P (s)(k, µ) = (b1 + fµ2)2
(
Pnw(k) + e−k

2D2(z)A2(1+fµ2(2+f))Pw(k)
)
, (4.94)

with two possible choices of the damping factor A:

A2 = σ2
v ≡

4π

3

∫ ∞
0

dq

(2π)3
P (q) , following [62, 63] ,

(4.95a)

A2 = Σ2
∞ ≡

4π

3

∫ ∞
0

dq

(2π)3
P (q)

[
1− j0

(
q

kosc

)
+ 2j2

(
q

kosc

)]
, following [26, 103] .

(4.95b)

These models are, essentially, the generalizations of the real space models dis-

cussed in detail in Section 3.6.2. Although they are quite successful at the phe-

nomenological level, we emphasize that most of its success is merely a numerical
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coincidence that happens due to a particular shape of the linear power spectrum

in ΛCDM. Also note that the models (4.95) do not take into account the δΣ2

contribution, which, albeit small in the ΛCDM cosmology, could be sizable if keq

were smaller than kosc.

The leading order IR-resummed power spectrum (4.80) coincides with the expres-

sion found in Ref. [139]. The approach used in [139] is related to the framework

developed in Refs. [140, 141]. We point out that the accurate description of the

BAO feature requires including loop corrections and thus goes beyond the simple

exponential damping prescribed by (4.94).

Our results for the power spectrum are consistent with those obtained within

the effective field theory of large scale structure [28, 64–66, 69, 142, 143]. Our

expressions (4.58) and (4.60) agree, up to higher order corrections4, with those

obtained in Ref. [142]. We emphasize that TSPT gives a simple diagrammatic

description of IR resummation and provides a tool to examine and extend the

results found in Ref. [142]. IR resummation in TSPT readily generalizes beyond

the power spectrum and applies to any n-point correlation functions with an

arbitrary number of hard loops. The power counting, outlined in this Chapter,

allows one to go beyond next-to-leading order in a systematic way. In particu-

lar, TSPT allows one to systematically compute the subleading soft corrections

relevant for the shift of the BAO peak. We leave their detailed study for future

work.

4.7 Numerical results and comparison with N-body

data

In this section we show the results for the 2-point correlation function and the

power spectrum of matter in redshift space, although our analysis can be easily

extended to biased tracers. We will first discuss the 2-point correlation function,

which allows us to clearly illustrate the effect of IR resummation on the BAO

feature due to a better separation between the BAO peak and short scales.

Then we compare our predictions for the IR-resummed power spectrum at one

loop against N-body data. To the best of our knowledge, there are no publicly

available data on the 2-point correlation function in redshift space. That is why

4Note that [142] essentially applies the operator e−g
2S(s)

to the whole power spectrum,
including its smooth part. This is equivalent to a partial resummation of IR corrections to the
smooth power spectrum. These corrections are not enhanced and therefore their resummation
is not legitimate within our power-counting rules.
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Figure 4.3: The monopole (` = 0) moment of the 2-point correlation function
of matter in redshift space at z = 0. Left panel: linear theory (orange, dashed)
vs leading order (LO) IR resummed results for several choices of kS (blue).
Right panel: LO for kS = 0.2h/Mpc (blue, dashed) vs next-to-leading order

(NLO) IR resummed results (black).

in this Chapter we limit the comparison to the power spectrum, even though it

is not optimal for the visualization of the BAO.

As common in redshift space analysis, we will study Legendre multipoles of the

power spectrum and the 2-point correlation function, defined via

P`(k) =
2`+ 1

2

∫ 1

−1
L`(µ)P (s)(k, µ)dµ ,

ξ`(r) = 4π i`
∫
P`(k)j`(kr)

k2dk

(2π)3
,

(4.96)

where L` is the Legendre polynomial of order `. We will focus on the monopole,

quadrupole and hexadecapole moments (` = 0, 2, 4), which fully characterize the

linear correlation function in redshift space.

We consider the cosmological model corresponding to the N-body simulations

performed in [138]. The linear power spectrum is produced with the Boltzmann

code CLASS [111] and then decomposed into the wiggly and non-wiggly com-

ponents using the spline approximation of the broadband power spectrum [3].

The redshift space one-loop integrals are evaluated using the FFTLog algorithm

[144, 145]. A similar technique is used to compute the correlation function mul-

tipoles from those of the power spectrum.
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Figure 4.4: The quadrupole (` = 2) moment of the 2-point correlation
function of matter in redshift space at z = 0. Left panel: linear theory (orange,
dashed) vs LO IR resummed results for several choices of kS (blue). Right
panel: LO for kS = 0.2h/Mpc (blue, dashed) vs NLO IR resummed results

(black). The three NLO curves are virtually indistinguishable.
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Figure 4.5: The hexadecapole (` = 4) moment of the 2-point correlation
function of matter in redshift space at z = 0. Left panel: linear theory (orange,
dashed) vs LO IR resummed results for several choices of kS (blue). Right
panel: LO for kS = 0.2h/Mpc (blue, dashed) vs NLO IR resummed results

(black). Note that different choices of kS lead to virtually identical curves.

4.7.1 2-point correlation function: quantitative study

In the left panel of Fig. 4.3 we show the leading-order IR resummed monopole

correlation function for three different values5 of kS . For comparison we also show

the prediction of linear theory. As expected, the damping of the BAO described

by a simple exponential suppression of the wiggly component translates into a

suppression of the BAO peak. On the other hand, the scatter induced by the

choice of kS is quite sizable at leading order. To reduce this uncertainty one

has to go to next-to-leading order. The corresponding correlation function is

displayed in the right panel of Fig. 4.3. For comparison we also show the LO

result for kS = 0.2h/Mpc. We observe that the 1-loop contribution slightly

5 Alternatively, one could consider a k-dependent separation scale [29] to account for the fact
that the enhancement only takes place for modes with k � q. In order to avoid the uncertainty
related to the precise form of k-dependence, we prefer to keep kS as a free parameter that allows
us to control the theoretical error of our method.



IR resummation in redshift space 92

N-body

linear

IR-res, LO

IR-res, NLO

0.005 0.010 0.050 0.100 0.500

0.90

0.95

1.00

1.05

1.10

1.15

k, h/Mpc

P
(r
) (
k)
/P

(r
) n
w
,
z=
0

N-body

linear

IR-res, LO

IR-res, NLO

0.005 0.010 0.050 0.100 0.500

0.85

0.90

0.95

1.00

1.05

1.10

1.15

k, h/Mpc

P
0
(k
)/
P
nw
,0
,
z=
0

N-body

linear

IR-res, LO

IR-res, NLO

0.005 0.010 0.050 0.100 0.500

0.8

0.9

1.0

1.1

k, h/Mpc

P
2
(k
)/
P
nw
,2
,z

=
0

N-body
linear

IR-res, LO

IR-res, NLO

0.005 0.010 0.050 0.100 0.500

0.6

0.8

1.0

1.2

1.4

k, h/Mpc
P
4
(k
)/
P
nw
,4
,z

=
0

Figure 4.6: Matter power spectrum in real space (upper left panel) and
power spectrum multipoles in redshift space: monopole (upper right panel),
quadrupole (lower left panel), and hexadecapole (lower right panel), normalized
to the corresponding linear non-wiggly power spectra. Bands show variation
of the IR-resummed results when kS changes between 0.05 and 0.2h/Mpc. For
NLO results the bands are barely visible. All results are shown for z = 0,

f = 0.483.

lifts the correlation function at short scales. The NLO predictions have a very

mild (sub-percent) dependence on the separation scale kS which indicates the

convergence of our resummation scheme.

Fig. 4.4 shows the result for the quadrupole, ` = 2. In the left panel we plot the

correlation function in linear theory and at the leading order of IR resummation

for three choices of kS . Since the quadrupole contribution is proportional to the

derivatives of the real-space correlation function [122], instead of a single peak

we observe an oscillating pattern at the BAO scales in linear theory. After IR

resummation this pattern becomes almost invisible. This happens because the

broadband part of the quadrupole has a significant amplitude at the BAO scale,

which makes it difficult to distinguish a much smaller BAO contribution. We

note that the dependence on the separation scale is quite mild both at leading

(left panel) and next-to-leading order (right panel). We also observe the relative

impact of the one-loop contribution becomes more sizable as compared to the

monopole.

Fig. 4.5 shows the result for the hexadecapole, ` = 4. Similarly to the previous

case, we observe that the oscillating pattern corresponding to the BAO is strongly
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Figure 4.7: Matter power spectrum in real space (upper left panel) and
power spectrum multipoles in redshift space: monopole (upper right panel),
quadrupole (lower left panel), and hexadecapole (lower right panel), normalized
to the corresponding linear non-wiggly power spectra. Bands show variation
of the IR-resummed results when kS changes between 0.05 and 0.2h/Mpc. For
NLO results the bands are barely visible. All results are shown for z = 1.5,

f = 0.916.

suppressed after the IR resummation. The dependence on the separation scale is

mild both at LO and NLO. We observe that the broadband part is significantly

altered by the one-loop correction to the smooth power spectrum.

4.7.2 Matter power spectrum: comparison with N-body data

In this section we compare our predictions for the power spectrum and its mul-

tipoles at LO and NLO with the N-body simulations performed in [138]. The

results of this section should be taken with a grain of salt as they do not take

into account UV counterterms whose inclusion is necessary for a consistent de-

scription of the short-scale dynamics. The analysis including UV counterterms

will be reported elsewhere.

Fig. 4.6 shows the results for the power spectrum in real space at z = 0 (upper

left panel) and the power spectrum multipoles: monopole (upper right panel),

quadrupole (lower left panel), and hexadecapole (lower right panel) divided by

the corresponding linear non-wiggly power spectra. We show the predictions

of linear theory (orange, dashed), leading order (blue) and next-to-leading order
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(black) IR resummation models. For IR resummed power spectra we show bands

corresponding to the theoretical uncertainty caused by variation of kS in the

range (0.05 ÷ 0.2)h/Mpc. Note that for the NLO spectra this band is barely

visible. The error bars correspond to variance drawn from 160 realizations of

volume (2.4Gpc/h)3 each. They do not take into account systematic errors

due to discreteness effects, which become big for higher-order power spectrum

multipoles at large scales. In particular, we observe that the fluctuations in the

measured hexadecapole power spectrum are very large even at mildly non-linear

scales.

Qualitatively, we observe that the LO result does not improve much over linear

theory as it misses the correct broadband information, while upon including

the 1-loop corrections at NLO the agreement between the data and the theory

improves. The monopole and quadrupole moments clearly exhibit the finger-of-

God suppression at short scales. It reduces the range of agreement between the

data and the theory as compared to real space and implies that UV counterterms

should play a significant role is redshift space [65, 143].

In Fig. 4.7 we demonstrate the results for z = 1.5, which display an improvement

in the agreement between the data and the theory over a wider range of scales

in line with the suppression of non-linearities at large redshifts.

4.8 Summary and outlook

In this Chapter we embedded redshift space distortions and bias in time-sliced

perturbation theory. We developed a manifestly IR-safe framework which al-

lows us to perturbatively compute non-linear equal-time correlation functions of

biased tracers in redshift space. The key observation is that the coordinate trans-

formation from real to redshift space can be viewed as a fictitious 1D fluid flow,

which maps real space correlation functions to the redshift space ones. Once

this mapping is done, one can systematically resum the enhanced IR corrections

affecting the BAO feature. The IR resummation of cosmological correlators pro-

ceeds in a straightforward manner along the lines of [3]. IR resummation in

TSPT is based on physically motivated power counting rules and has a clear

diagrammatic representation, which allows to compute the relevant corrections

in a systematic and controllable way.
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Our analysis gives a simple prescription for the numerical evaluation of the IR-

resummed cosmological correlation functions. First, one has to isolate the os-

cillating part of the power spectrum as only this contribution is susceptible to

non-linear damping due to bulk flows. IR resummation at leading order amounts

to replacing the usual linear power spectrum by the “improved” one,

P (k)→ Pnw(k) + e−k
2Σ2

tot(µ;kS)Pw(k) , (4.97)

where µ is the cosine of the angle between the wavevector k and the line-of-

sight, kS is the separation scale defining the range of modes which are resummed,

and the damping factor Σ2
tot is given in (3.71). Applying this prescription we

obtained the explicit expressions for the IR-resummed power spectrum (4.80)

and bispectrum (4.86) of biased tracers in redshift space.

At first order in hard loops IR resummation amounts to computing loop dia-

grams using the IR-resummed power spectrum (4.97) as an input. This must

be accompanied by modification of the input power spectrum in the tree-level

part to avoid double counting. The general formula for n-point IR-resummed

redshift-space correlator reads,

C(s) IR res,LO+NLO
n (k1, ...kn) =C(s) tree

n

[
Pnw + (1 + k2Σ2

tot)e
−k2Σ2

totPw
]
(k1, ...kn)

+ C(s) 1−loop
n

[
Pnw + e−k

2Σ2
totPw

]
(k1, ...kn) ,

(4.98)

where C
(s) tree
n and C

(s) 1−loop
n are the tree-level and 1-loop contributions under-

stood as functionals of the input power spectrum. Equation (4.98) applies both

to the density and velocity correlators, as well as to biased tracers. It also admits

a straightforward generalization to higher orders in hard loops.

The angular dependence of the damping factor Σ2
tot in (4.98) reduces the symme-

try of one-loop integrands and complicates the numerical evaluation. We have

shown that for the one-loop power spectrum it is possible to rearrange our result

in an equivalent form, Eq. (4.91), suitable for numerical implementation using

standard algorithms. We also derived a simplified expression for the redshift-

space 1-loop bispectrum, see Eq. (4.93).

The separation scale kS is a priori arbitrary and any dependence on it should be

considered as part of the theoretical uncertainty. We show that the scatter of our

results w.r.t variations of this scale in the reasonable range (0.05÷0.2)h/Mpc is

not negligible at LO, but substantially reduces when including NLO corrections.

This testifies the convergence of our resummation procedure.
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We compared our results with available N-body data on the power spectrum of

matter in redshift space and found that IR resummation at NLO significantly

improves the range of agreement between theory and data compared to linear

theory and LO IR resummation. The results of our comparison are preliminary

at the moment as we have not included into calculation the UV-counterterms.

Taking into account these counterterms is expected to further improve the agree-

ment. We leave this task for future study.

Our results suggest several directions for future research. On one hand, one

can accurately assess the shift of the BAO peak in redshift space and for biased

tracers. Although the expression (4.91) already contains some contributions into

the shift, its precise value must be validated by computing full NLO soft correc-

tions. On the other hand, our results may be useful for elucidating systematic

uncertainties of the reconstruction algorithms, see Ref. [57] for a recent work in

this direction. Finally, our theoretical template may be used for analyzing the

data from full-shape measurements of galaxy clustering without reconstruction.

Note that in that case proper UV counterterms must be added to our expressions

(4.80) and (4.86).
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Chapter 5

Path integral derivation from

first principles

5.1 Path integral for counts-in-cells PDF

In this chapter we introduce a general formalism to describe the counts in cells

statistics, compute the 1-point PDF and discuss its main ingredients.

5.1.1 Spherical collapse saddle point

Consider the density contrast averaged over a spherical cell of radius r∗,

δ̄W =

∫
d3x

r3
∗
W̃ (r/r∗) δ(x) =

∫
k
W (kr∗)δ(k) , (5.1)

where δ(x) ≡ δρ(x)
ρuniv

, W̃ (r/r∗) is a window function, W (kr∗) is its Fourier trans-

form, and we have introduced the notation
∫
k ≡

∫
d3k

(2π)3 . We will soon specify

the window function to be top-hat in the position space, which is the standard

choice for counts-in-cells statistics. However, it is instructive to see how far one

can proceed without making any specific assumptions about W̃ , apart from it

being spherically symmetric. The window function is normalized as∫
d3x

r3
∗
W̃ (r/r∗) = 1 . (5.2)

We are interested in the 1-point PDF P(δ∗) describing the probability that the

random variable δ̄W takes a given value δ∗. Due to translational invariance, the
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1-point statistics do not depend on the position of the cell. Thus, without loss

of generality we center the cell at the origin, x = 0.

We assume that the initial conditions for the density perturbations at some large

redshift zi are adiabatic and Gaussian, so that their statistical properties are fully

determined by the 2-point cumulant,1

〈δi(k)δi(k
′)〉 = (2π)3δ

(3)
D (k + k′) g2(zi)P (k) , (5.3)

where δ
(3)
D is the 3-dimensional Dirac delta-function. Here P (k) is the linear

power spectrum at redshift zero and g(z) is the linear growth factor2. The latter

is normalized to be 1 at z = 0. Nevertheless, it is convenient to keep g2 explicitly

in the formulas and treat it as a small free parameter. The rationale behind

this approach is to use g2 as a book-keeping parameter that characterizes the

overall amplitude of the power spectrum and thereby controls the saddle-point

evaluation of the PDF, just like a coupling constant controls the semiclassical

expansion in QFT (cf. [1]). The true physical expansion parameter in our case

is the smoothed density variance at the scale r∗, as will become clear shortly.

Instead of working directly with the initial density field δi, it is customary to

rescale it to redshift z using the linear growth factor,

δL(k, z) =
g(z)

g(zi)
δi(k) . (5.4)

We will refer to δL as the ‘linear density field’ in what follows and will omit the

explicit z-dependence to simplify notations.

The desired PDF is given by the following path integral [85, 97],

P(δ∗) = N−1

∫
DδL exp

{
−
∫
k

|δL(k)|2

2g2P (k)

}
δ

(1)
D

(
δ∗ − δ̄W [δL]

)
, (5.5)

where different linear density perturbations are weighted with the appropriate

Gaussian weight. The Dirac delta-function ensures that only the configurations

that produce the average density contrast δ∗ are retained in the integration. Note

that we have written δ̄W as a functional of the linear density field, δ̄W [δL]. In

general, this functional is complicated and its evaluation requires knowing non-

linear dynamics that map initial linear perturbations onto the final non-linear

1From now on we will use P (k) to denote the linear matter power spectrum at redshift zero.
There will be no other power spectra discussed.

2The growth factor is commonly denoted by D(z) in the LSS literature. We prefer the
notation g(z) to emphasize the analogy with a coupling constant in QFT.
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density field δ(x). The normalization factor in (5.5) is

N =

∫
DδL exp

{
−
∫
k

|δL(k)|2

2g2P (k)

}
. (5.6)

It is convenient to rewrite the delta-function constraint using the inverse Laplace

transform,

P(δ∗) = N−1

∫ i∞

−i∞

dλ

2πig2

∫
DδL exp

{
− 1

g2

[ ∫
k

|δL(k)|2

2P (k)
− λ

(
δ∗ − δ̄W [δL]

)]}
,

(5.7)

where we introduced the Lagrange multiplier λ. Our goal is to compute the

above integral by the steepest-decent method. We expect the result to take the

form,

P(δ∗) = exp

{
− 1

g2

(
α0 + α1g

2 + α2g
4 + ...

)}
. (5.8)

The leading term α0 corresponds to the exponent of the integrand in (5.7) eval-

uated on the saddle-point configuration. The first correction α1g
2 stems from

the Gaussian integral around the saddle point. It gives rise to a g-independent

prefactor3 in the PDF. As we discuss below, the evaluation of α1 corresponds

to a one-loop calculation in the saddle-point background. Higher loops give fur-

ther corrections α2g
4 etc., which can be rewritten as O(g2) corrections to the

prefactor. We will not consider them in this dissertation.

We are looking for a saddle point of the integral (5.7) in the limit g2 → 0.

Taking variations of the expression in the exponent w.r.t. δL and λ, we obtain

the equations for the saddle-point configuration4,

δL(k)

P (k)
+ λ

∂δ̄W
∂δL(k)

= 0 , (5.9a)

δ̄W [δL] = δ∗ . (5.9b)

Now comes a crucial observation: a spherically symmetric Ansatz for δL(k) goes

through these equations. Let us prove this. The check is non-trivial only for

Eq. (5.9a). Clearly, if the linear field is spherically symmetric, the first term in

(5.9a) depends only on the absolute value k of the momentum. We need to show

that this is also the case for the second term. To this end, expand the variational

derivative,
∂δ̄W
∂δL(k)

=

∫
d3x

r3
∗
W̃ (r/r∗)

∂δ(x)

∂δL(k)
. (5.10)

3In fact, we will see that α1 also has a term ∼ ln g which introduces an overall factor 1/g in
the PDF.

4We write the variational derivatives w.r.t. the linear density field as an ordinary partial
derivative ∂/∂δL(k) to avoid proliferation of deltas.
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Due to rotational invariance of dynamics, the derivative ∂δ(x)/∂δL(k), evaluated

on a spherically symmetric linear density configuration, is a rotationally invariant

function of the vectors x and k. Thus, it depends only on the lengths x, k and

the scalar product (kx). Upon integration with a spherically symmetric window

function W̃ , only the dependence on the absolute value of the momentum k

survives. This completes the proof.

The previous observation greatly simplifies the solution of the saddle-point equa-

tions (5.9). It implies that we can search for the saddle point among spherically

symmetric configurations. For such configurations there exists a simple mapping

between the linear and non-linear density fields prior to shell-crossing, see Ap-

pendix G. This mapping relates the non-linear density contrast averaged over a

cell of radius r,

δ̄(r) ≡ 3

r3

∫ r

0
dr1 r

2
1 δ(r1) , (5.11)

with the linear averaged density

δ̄L(R) ≡ 3

R3

∫ R

0
dR1R

2
1 δL(R1) (5.12)

at the radius

R = r
(
1 + δ̄(r)

)1/3
. (5.13)

In the last expression one recognizes the Lagrangian radius of the matter shell

whose Eulerian radius is r. The mapping then gives δ̄L(R) as a function of δ̄(r)

and vice versa,

δ̄L(R) = F
(
δ̄(r)

)
⇐⇒ δ̄(r) = f

(
δ̄L(R)

)
. (5.14)

Evaluation of the functions F or f requires an inversion of an elementary analytic

function (in EdS cosmology) or solution of a first-order ordinary differential equa-

tion (in ΛCDM). Both operations are easily performed using standard computer

packages. Curiously, the mapping (5.14) is almost independent of cosmology

(EdS vs. ΛCDM)5.

The existence of the mapping (5.14) allows us to compute the variational deriva-

tive in Eq. (5.9a) explicitly for spherically symmetric6 δL(k). Assuming that the

non-linear density field δ(r) has not undergone shell-crossing, we transform the

5At sub-percent level, see Fig. 5.1 and the discussion in the next subsection.
6To avoid confusion, let us stress that we do not intend to restrict the path integral (5.7) to

spherical configurations. This restriction is used only to find the saddle point.
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expression for δ̄W as follows,

δ̄W =
4π

r3
∗

∫
dr r2 W̃ (r/r∗)

(
1 + δ(r)

)
− 1

=
4π

r3
∗

∫
dRR2W̃

(
R
(
1 + f

(
δ̄L(R)

))−1/3
/r∗

)
− 1 .

(5.15)

Taking into account that

δ̄L(R) =

∫
k

3j1(kR)

kR
δL(k) , (5.16)

where j1 is the spherical Bessel function (see Appendix A for conventions), we

obtain,

∂δ̄W
∂δL(k)

= − 4π

r4
∗k

∫
dRR2 W̃ ′

(
R(1 + f)−1/3/r∗

) f ′

(1 + f)4/3
j1(kR) , (5.17)

where primes denote differentiation of the functions w.r.t. their arguments. Here

f and f ′ are functions of δ̄L(R) and hence functionals of δL(k). Substituting this

expression into (5.9a) we obtain,

δL(k) = λP (k)
4π

r4
∗k

∫
dRR2 W̃

′(R(1 + f)−1/3/r∗
)
f ′ j1(kR)

(1 + f)4/3
. (5.18)

This is a non-linear integral equation for δL(k) which can, in principle, be solved

numerically. Together with Eq. (5.9b) that fixes the value of the Lagrange multi-

plier λ through the overall normalization of δL(k), they form a complete system

of equations determining the saddle-point linear density. For a generic window

function W̃ the solution of this system appears challenging. We are now going

to see that Eq. (5.18) gets drastically simplified for top-hat W̃ .

5.1.2 Leading exponent for top-hat window function

From now on we specify to the case of a top-hat window function in position

space,

W̃th(r/r∗) =
3

4π
ΘH

(
1− r

r∗

)
⇐⇒ Wth(kr∗) =

3j1(kr∗)

kr∗
, (5.19)

where ΘH stands for the Heaviside theta-function. As the derivative of W̃th

is proportional to the Dirac delta-function, the integral in (5.18) localizes to

R = R∗, where

R∗ = r∗(1 + δ∗)
1/3 . (5.20)
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After a straightforward calculation Eq. (5.18) simplifies to

δL(k) = − λ
C
P (k)Wth(kR∗) (5.21)

with

C = F ′(δ∗) +
δ̄L(R∗)− δL(R∗)

1 + δ∗
. (5.22)

Here F is the spherical-collapse mapping function introduced in (5.14) and in

deriving (5.21), (5.22) we have used the relation,

F ′(δ∗) =
1

f ′
(
δ̄L(R∗)

) .
One observes that (5.21) fixes the k-dependence of the saddle-point configuration.

We now use Eq. (5.9b) where we act with the function F on both sides. This

yields,

δ̄L(R∗) = F (δ∗) . (5.23)

Combining it with Eqs. (5.21), (5.16) gives an equation for the Lagrange multi-

plier,

λ = −F (δ∗)

σ2
R∗

C , (5.24)

where

σ2
R∗ ≡

∫
k
P (k) |Wth(kR∗)|2 (5.25)

is the linear density variance filtered at the scale R∗. Note that it depends on δ∗

through the corresponding dependence of R∗, see Eq. (5.20).

Substituting (5.24) back into (5.21) we arrive at the final expression for the

saddle-point linear density, which will be denoted with an overhat,

δ̂L(k) =
F (δ∗)

σ2
R∗

P (k)Wth(kR∗) . (5.26)

In Lagrangian position space the linear density reads,

δ̂L(R) =
F (δ∗)

σ2
R∗

ξ̂(R) . (5.27)

where we introduced the profile function

ξ̂(R) ≡ 1

2π2

∫
dk k2 sin(kR)

kR
Wth(kR∗)P (k) . (5.28)

Note that it coincides with the 2-point correlation function smeared with the

top-hat filter. In what follows we will also need the saddle-point value of the
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Figure 5.1: Left panel: the function F mapping spherically-averaged non-
linear density contrast into its linear counterpart within the spherical collapse
dynamics. The results are shown for an EdS universe and ΛCDM cosmology at
z = 0. The two curves practically coincide. Right panel: the relative difference

between FΛCDM and FEdS at two values of the redshift.

Lagrange multiplier. This is obtained by substituting (5.26) into (5.22), (5.24).

The result is,

λ̂ = −F (δ∗)

σ2
R∗

Ĉ , Ĉ(δ∗) = F ′(δ∗) +
F (δ∗)

1 + δ∗

(
1− ξR∗

σ2
R∗

)
, (5.29)

where we have denoted ξR∗ ≡ ξ̂(R∗). Finally, substituting the saddle-point con-

figuration into the expression (5.7) for the PDF we obtain the leading exponential

behavior,

P(δ∗) ∝ exp

{
− F

2(δ∗)

2g2σ2
R∗

}
. (5.30)

We observe that the PDF exhibits a characteristic ‘semiclassical’ scaling in the

limit g2 → 0.

Let us take a closer look at the various ingredients that define the saddle-point

configuration. We start with the function F (δ∗). It is determined exclusively by

the dynamics of spherical collapse and does not depend at all on the statistical

properties of the perturbations. We have computed it using the procedure de-

scribed in Appendix G for the cases of an EdS universe (Ωm = 1,ΩΛ = 0) and

the reference ΛCDM cosmology (Ωm = 0.26,ΩΛ = 0.74). The results are shown

in Fig. 5.1, left panel. The dependence on cosmology is very weak, so that the

curves essentially overlay. In the EdS case the mapping is redshift-independent.

Its behavior for small values of the argument is,

FEdS(δ∗) = δ∗ −
17

21
δ2
∗ +

2815

3969
δ3
∗ +O(δ4

∗) , (5.31a)
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Figure 5.2: Left panel: the saddle point linear density variance as a function
of the final density in the cell at z = 0 for comoving cell radii 10 Mpc/h and
15 Mpc/h. Right panel: the dependence of the linear growth factor on redhsift

in ΛCDM and EdS cosmologies. In the latter case, it is equal to (1 + z)−1.

whereas its asymptotics at large over/underdensities are

FEdS → 1.686 at δ∗ →∞ , (5.31b)

FEdS ∼ −(1 + δ∗)
−3/2 at δ∗ → −1 . (5.31c)

For ΛCDM this function has a very mild redshift dependence illustrated in the

right panel of Fig. 5.1, which shows the relative difference between FΛCDM and

FEdS. This difference is maximal for z = 0, where it reaches a few per mil at the

edges of the considered range of δ∗. However, F enters in the exponent of the

PDF (see (5.30)) and a few per mil inaccuracy in it would generate a few percent

relative error at the tails of the PDF. For these reasons we will use the exact

ΛCDM mapping whenever the function F appears in the leading exponent. In

all other instances the EdS approximation provides sufficient accuracy.

The second ingredient is the linear density variance at redshift zero σ2
R∗

. In

contrast to F , it is determined only by the linear power spectrum and is inde-

pendent of the non-linear dynamics. As already pointed out, it depends on the

argument δ∗ of the PDF through the Lagrangian radius R∗. This dependence

is shown in the left panel of Fig. 5.2 for two different cell radii. By definition,

σ2
R∗

is independent of the redshift. The redshift dependence of the PDF comes

through the linear growth factor g, shown as a function of z in the right panel of

Fig. 5.2. From the way g2 and σ2
R∗

enter the leading exponent (5.30) it is clear

that the physical expansion parameter controlling the validity of the saddle-

point approximation is the z-dependent linear variance g2(z)σ2
R∗

. One expects

the semiclassical expansion to work as long as g2σ2
R∗

. 1. The numerical values

of the linear density variance for δ∗ = 0 are given in Table 5.1.
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r∗ = 10 Mpc/h r∗ = 15 Mpc/h

z=0 0.464 0.254

z=0.7 0.238 0.130

z=4 0.0325 0.0177

Table 5.1: The filtered density variance g2σ2
r∗ for various redshifts and cell

radii.
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Figure 5.3: The saddle-point Lagrange multiplier, Eq. (5.29), as a function
of δ∗. The computation is performed in the EdS approximation.

The Lagrange multiplier λ̂ does not appear in the leading exponent of the PDF.

However, we will see below that it enters the prefactor. So, it is instructive to

plot its dependence on δ∗, see Fig. 5.3. Note that it is positive (negative) for

under- (over-) densities. It quickly grows at δ∗ < 0.

For completeness, we also present in Fig. 5.4 the saddle-point linear density

profiles for several values of δ∗. For δ∗ & 7 the density profile in the central

region exceeds the critical value7 1.674, and therefore the innermost part of the

profile experiences shell-crossing. Conservatively, one would expect a breakdown

of our saddle-point expansion for such large overdensities. However, we will see

shortly that the available data are consistent with the semiclassical scaling even

for δ∗ & 7. This robustness of the semiclassical approach may be explained by

the fact that the averaged density at R∗ is still less than the critical value even

when the central regions undergo shell-crossing. Since the velocities of matter

particles are rather low, it takes a significant amount of time for the information

about shell-crossing to propagate to the boundary R∗. Until this happens, the

dynamics of the boundary remain the same as if no shell-crossing occurred, so

that the spherical collapse mapping used in the derivation of (5.30) still applies.

7 We give the critical value at z = 0 for our reference ΛCDM cosmology. It is somewhat
lower than the well-known EdS value δc = 1.686.
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Figure 5.4: The saddle point linear density profiles in Lagrangian position
space for several values of δ∗ corresponding to underdensities (left panel) and
overdensities (right panel). The results are shown for the cell radius r∗ = 10

Mpc/h.

It should be stressed that having a spherical collapse saddle point does not mean

that an exact spherical collapse happens inside each cell. Recall that in the case

of tunneling in quantum mechanics the saddle-point solution, by itself, has mea-

sure zero in the space of all possible trajectories in the path integral, and thus is

never realized precisely (see e.g. [146, 147]). What makes the tunneling ampli-

tude finite are small perturbations around the saddle point solution that add up

coherently and eventually contribute to the prefactor. From this argument it is

clear that fluctuations around the saddle point are crucial for the consistency of

our path integral calculation. If the saddle-point approximation works, the ac-

tual dynamics of the density field inside each cell is spherical collapse perturbed

by aspherical fluctuations.

5.1.3 Prefactor from fluctuations

We now consider small fluctuations around the spherical collapse saddle point

found in the previous subsection. To leading order in g2, the path integral over

these fluctuations is Gaussian and produces the prefactor in front of the leading

exponent (5.30), as was pointed out in Refs. [85, 148]. It is natural to expand

the fluctuations of the linear density field in spherical harmonics. We write,

δL(k) = δ̂L(k) + δ
(1)
L,0(k) +

∑
`>0

∑̀
m=−`

(−i)` δ(1)
L,`m(k)Y`m(k/k) , (5.32a)

λ = λ̂+ λ(1) , (5.32b)

where we have singled out the monopole fluctuation δ
(1)
L,0. Note that due to our

convention for the spherical harmonics (see Appendix A), the reality condition
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(
δL(k)

)∗
= δL(−k) translates into the conditions

(
δ

(1)
L,0(k)

)∗
= δ

(1)
L,0(k) ,

(
δ

(1)
L,`m(k)

)∗
= δ

(1)
L,`,−m(k) . (5.33)

Fluctuations give rise to a perturbation of the averaged density contrast which

up to second order can be written as,

δ̄W =δ∗ +

∫
[dk] 4πS(k) δ

(1)
L,0(k) +

∫
[dk]2 4πQ0(k1, k2) δ

(1)
L,0(k1)δ

(1)
L,0(k2)

+
∑
`>0,m

∫
[dk]2Q`(k1, k2) δ

(1)
L,`m(k1)δ

(1)
L,`,−m(k2) ,

(5.34)

where we introduced the notation,

[dk]n ≡
n∏
i=1

k2
i dki

(2π)3
, (5.35)

and S, Q0, Q` are some kernels. Below we will refer to Q0, Q` as response matri-

ces. Note the factor 4π that we included in the definition of S and Q0; it reflects

the difference in our normalization of spherical harmonics in the monopole and

higher multipole sectors, see Eq. (A.10). In the expression (5.34) we have used

the fact that non-monopole fluctuations can contribute only at quadratic order

due to spherical symmetry. For the same reason, the kernels Q` do not depend

on the azimuthal number m.

Substituting (5.32a) and (5.34) into the path integral (5.7), after a straight-

forward calculation, we find that the Gaussian integrals over fluctuations with

different multipole numbers ` factorize. This leads to the following representation

for the PDF,

P(δ∗) = A0 ·
∏
`>0

A`(δ∗) · exp

{
− F

2(δ∗)

2g2σ2
R∗

}
, (5.36)

where

A0 =N−1
0

∫ i∞

−i∞

dλ(1)

2πig2

∫
Dδ

(1)
L,0 exp

{
− 4π

g2

[ ∫
[dk]

2P (k)

(
δ

(1)
L,0(k)

)2
+ λ(1)

∫
[dk]S(k) δ

(1)
L,0(k) + λ̂

∫
[dk]2Q0(k1, k2) δ

(1)
L,0(k1)δ

(1)
L,0(k2)

]}
,

(5.37)

A` =N−1
`

∫
[Dδ

(1)
L,lm] exp

{
− 1

g2

∑
m

[ ∫
[dk]

2P (k)
δ

(1)
L,`m(k)δ

(1)
L,`,−m(k)

+ λ̂

∫
[dk]2Q`(k1, k2) δ

(1)
L,`m(k1)δ

(1)
L,`,−m(k2)

]}
.

(5.38)
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The integration measure in the last expression is [Dδ
(1)
L,lm] =

∏l
m=−l Dδ

(1)
L,lm,

whereas the normalization factors are,

N0 =

∫
DδL,0 exp

{
− 4π

g2

∫
[dk]

2P (k)

(
δL,0(k)

)2}
, (5.39)

N` =

∫
[DδL,lm] exp

{
− 1

g2

∑
m

∫
[dk]

2P (k)
δL,`m(k)δL,`,−m(k)

}
. (5.40)

Despite appearing more complicated, the monopole prefactor A0 can be eval-

uated analytically. This is not surprising, since the dynamics in the monopole

sector is known exactly. We postpone this analysis to the next section and focus

here on the prefactor stemming from higher multipoles.

The quadratic form in the exponent of Eq. (5.38) is a convolution of the vector

δ
(1)
L,`m with the matrix

1

g2

(
1 · 1

P (k)
+ 2λ̂Q`

)
δm,−m ,

where 1 is the unit operator in k-space whose kernel with respect to the measure

(5.35) is,

1(k, k′) = (2π)3k−2δ
(1)
D (k − k′) , (5.41)

and δm,−m is the Kronecker symbol. The Gaussian integral over δ
(1)
L,`m is inversely

proportional to the square root of the determinant of this matrix. To get A`, this

determinant must be divided by the determinant of the corresponding matrix in

the normalization factor (5.40) which is simply

1

g2

(
1 · 1

P (k)

)
δm,−m .

In this way we obtain

A` = D−(`+1/2)
` , (5.42)

where

D` = det
(

1 + 2λ̂
√
PQ`
√
P
)
, (5.43)

is the `th aspherical fluctuation determinant. The second term in D` denotes

an operator with the kernel
√
P (k)Q`(k, k

′)
√
P (k′). It is convenient to intro-

duce the aspherical prefactor that aggregates contributions of all multipoles with

strictly positive `,

AASP ≡
∏
`>0

A` =
∏
`>0

D−(`+1/2)
` . (5.44)
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We see that its computation requires knowledge of the aspherical response ma-

trices Q`.

Let us make an important remark. The growth factor g has dropped out of the

expression for the fluctuation determinants (5.43). Also, it can be shown that the

response matrices Q` do not depend on the redshift8 (see Sec. 6.2). This implies

that the aspherical prefactor is redshift-independent. We are going to see in the

next section that this theoretical expectation is confirmed by the N-body data.

The redshift-independence of AASP may be somewhat puzzling. Indeed, being a

non-trivial function of δ∗, the aspherical prefactor affects the shape of PDF even

at early times, when the distribution must be Gaussian. To resolve this apparent

paradox, we notice that at high redshifts (in the limit g2 → 0) the distribution

(5.36) approaches the delta-function centered at δ∗ = 0. On the other hand,

recall that λ̂ vanishes at δ∗ (see Fig. 5.3) and hence D`(δ∗ = 0) = 1 for all `.

This implies AASP(δ∗ = 0) = 1 and in the limit g2 → 0 the whole aspherical

prefactor reduces to unity. One concludes that the role of the aspherical prefactor

decreases as the distribution becomes sharper towards high redshifts.

5.2 Closer look at the prefactor

In this section we explicitly compute the monopole prefactor A0 from the spher-

ical collapse dynamics. We then use N-body data to extract the aspherical

prefactor AASP and discuss its main properties.

5.2.1 Monopole

The factorization property (5.36) implies that in the computation of the monopole

prefactor all aspherical perturbations can be set to zero. Thereby it is conve-

nient to consider the path integral over the spherically symmetric sector as a

whole, without splitting the density field into the saddle-point configuration and

fluctuations. In this way we arrive at what can be called ‘spherical PDF’,

PSP(δ∗) = N−1
0

∫
DδL,0 exp

{
− 4π

g2

∫
[dk]

2P (k)

(
δL,0(k)

)2}
δ

(1)
D

(
δ∗ − δ̄W [δL,0]

)
,

(5.45)

8Strictly speaking, this statement is true only in the EdS universe. However, the response
matrices computed in the exact ΛCDM cosmology coincide with the EdS approximation better
than at a per cent level. Another source of a weak z-dependence is a UV counterterm in the
prefactor, required to renormalize the short-distance contributions, see Sec. 6.5.2.
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with the normalization factor given in Eq. (5.39). We stress that PSP is not equal

to the true PDF, as it restricts the original path integral (5.5) to spherically

symmetric configurations only, and thus misses the contribution of aspherical

modes.

Due to the existence of the spherical collapse mapping (5.14), the condition δ∗ =

δ̄W [δL,0] is equivalent to the condition F (δ∗) = δ̄L,0(R∗). Thus, the delta-function

in (5.45) is proportional to the delta-function of the argument F (δ∗)− δ̄L,0(R∗),

δ
(1)
D

(
δ∗ − δ̄W [δL,0]

)
= C[δL,0] · δ(1)

D

(
F (δ∗)− δ̄L,0(R∗)

)
. (5.46)

The proportionality coefficient C is given in Eq. (5.22); it is fixed by the require-

ment that the integral of both sides of (5.46) over δ∗ produces unity. Substituting

this relation into Eq. (5.45) and using the integral representation for the delta-

function we obtain,

PSP(δ∗) =N−1
0

∫ i∞

−i∞

dλ

2πig2
eλF/g

2

∫
DδL,0C[δL,0]

× exp

{
− 4π

g2

[ ∫
[dk]

2P (k)

(
δL,0(k)

)2
+ λ

∫
[dk]Wth(kR∗)δL,0(k)

]}
.

(5.47)

It is now straightforward to evaluate this integral by the saddle point method,

which yields9,

PSP(δ∗) =
Ĉ(δ∗)√
2πg2σ2

R∗

exp

(
− F

2(δ∗)

2g2σ2
R∗

)
, (5.48)

where Ĉ is defined in (5.29). From this expression we infer the monopole pref-

actor,

A0(δ∗) =
Ĉ(δ∗)√
2πg2σ2

R∗

. (5.49)

We plot its dependence on the density contrast in Fig. 5.5. It varies roughly by an

order of magnitude in the range δ∗ = [−0.9, 9]. Since it is inversely proportional

to the r.m.s density contrast gσR∗ , it significantly varies with the window function

radius and redshift. For illustration purposes we show the results for z = 0. The

curves for other redshifts are qualitatively similar and can be obtained upon

rescaling by an appropriate growth factor (shown in the right panel of Fig. 5.2).

9This result is actually exact as C[δL,0] is a linear functional of δL,0, and for this type of
integrals there are no corrections to the saddle-point approximation.
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Figure 5.5: The monopole prefactor at z = 0.

By construction, the spherical PDF (5.45) is normalized to unity,∫ ∞
−1

dδ∗ PSP(δ∗) = 1 . (5.50)

However, it does not reproduce the correct zero mean value of the density con-

trast,

〈δ∗〉SP ≡
∫ ∞
−1

dδ∗ PSP(δ∗) δ∗ 6= 0 . (5.51)

To see this, we define the variable ν = F/σR∗ and rewrite (5.48) as

PSP =
1√
2πg2

dν

dδ∗
e
− ν2

2g2 . (5.52)

The expectation value (5.51) becomes,

〈δ∗〉SP =

∫ ∞
−∞

dν√
2πg2

δ∗(ν) e
− ν2

2g2 =
g2

2

d2δ∗
dν2

∣∣∣∣
ν=0

, (5.53)

where we have evaluated the integral at leading order in g2. It is straightforward

to compute the second derivative appearing in the above equation. One finds,

d2δ∗
dν2

∣∣∣∣
ν=0

= −σ2
r∗

[
F ′′(0) + 2

(
1− ξr∗

σ2
r∗

)]
. (5.54)

Using also the Taylor expansion (5.31a) for the function F one obtains,

〈δ∗〉SP = −g2σ2
r∗a1 , where a1 =

4

21
− ξr∗
σ2
r∗

. (5.55)

The numerical values of a1 for different cell radii are given in Table 5.2 in the

next subsection.
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Figure 5.6: 1-point PDF of the smoothed density field at redshift z = 0 for
r∗ = 10 Mpc/h (left panel) and r∗ = 15 Mpc/h (right panel): the spherical
PDF given by Eq. (5.48) (blue line) against the N-body data (black dots).

Error-bars on the data points show the statistical uncertainty.

At a first glance, the fact that the spherical PDF fails to reproduce the zero

mean value of δ∗ may seem surprising. However, it becomes less so once we

realize that vanishing of 〈δ∗〉 is related to translational invariance. Indeed, it is

implied by the vanishing of 〈δ(x)〉, the mean density contrast at each space point.

The latter, in turn, involves two ingredients: (i) the constraint
∫
d3x δ(x) = 0

which follows trivially from the definition of the density contrast, and (ii) the

fact that, due to translational invariance, 〈δ(x)〉 is the same at all points. But

the translational invariance has been explicitly broken by the reduction of the

path integral to the spherically symmetric sector that singles out the origin as a

preferred point in space. The correct identity 〈δ∗〉 = 0 will be restored once we

take into account the aspherical prefactor generated by fluctuations beyond the

monopole sector.

5.2.2 Aspherical prefactor from N-body data

Before delving into the calculation of the aspherical prefactor, let us verify the

semiclassical factorization formula (5.36) against the N-body data. To this end,

we have run a suite of N-body simulations using the FastPM code [100] and

obtained the counts-in-cells statistics for a total of 518400 cells with radius r∗ =

10 Mpc/h and 153600 cells with r∗ = 15 Mpc/h. The details of our simulations

are presented in Appendix B of Ref. [9]. Figure 5.6 shows the data points together

with the spherical PDF PSP. The results are shown for redshift z = 0. The

PDFs for other redshifts are qualitatively similar and will be discussed shortly.

From Fig. 5.6 we see that although the spherical PDF correctly captures the

exponential falloff of the data points at large over-/under-densities, it is clearly

off-set from the data even at δ∗ = 0. According to (5.36), this off-set should be
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Figure 5.7: The aspherical prefactor AASP = Pdata/PSP extracted from the
simulations. The results are shown for the cell radii 10 Mpc/h (left panel) and

15 Mpc/h (right panel).

compensated by the aspherical prefactor AASP. Using the full PDF Pdata(δ∗)

measured from the data, we can extract the aspherical prefactor as

AASP(δ∗) =
Pdata(δ∗)

PSP(δ∗)
. (5.56)

The result is shown in Fig. 5.7 for various redshifts and cell radii. At higher

redshifts the distribution becomes sharper, which increases the measurement

errors away from the origin. This is especially visible in the case z = 4 where

the available δ∗-range in the data significantly shrinks compared to z = 0. The

errorbars shown in the plots represent the statistical uncertainty of our data. It is

worth noting that the bins at the tails of the distribution are expected to contain

also a systematic error comparable to the statistical one, see the discussion in

Appendix B of [9].

The spherical PDF has an exponential sensitivity to the density variance, which

changes by an order of magnitude across the considered redshifts, see Tab. 5.1.

Similarly, the measured PDF’s at different redshifts and cell radii are exponen-

tially different. Nevertheless, we observe that the results of their division by the

spherical PDF’s depend very weakly on the redshift and the size of the window

function. This is a strong confirmation of the validity of the semiclassical scaling

(5.36). In particular, we conclude that the spherical collapse saddle point indeed

dominates the probability: if it were not the case, one would expect exponen-

tially large difference between Pdata and PSP. Moreover, the data are clearly

consistent with the redshift-independence of AASP, as predicted by the theory

(see Sec. 5.1.3). Note that the aspherical prefactor is a very smooth function

that varies only by an order of magnitude within the density range where the

whole PDF varies by six-seven orders of magnitude.
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In complete agreement with the theoretical expectation (recall the discussion at

the end of Sec. 5.1.3), we see that AASP

∣∣
δ∗=0

= 1. Note that this ensures the

correct normalization of the full PDF P = AASPPSP in the leading semiclassical

approximation. Indeed, in this approximation the PDF is concentrated around

δ∗ = 0 and we have,∫
dδ∗AASP(δ∗)PSP(δ∗) = AASP

∣∣
δ∗=0

∫
dδ∗ PSP(δ∗) = AASP

∣∣
δ∗=0

.

Let us now see how inclusion of the aspherical prefactor restores the zero expec-

tation value of the density contrast. To this end, we introduce the variable ν as

in (5.52) and write,

〈δ∗〉 =

∫ ∞
−1

dδ∗AASP(δ∗)PSP(δ∗) δ∗ =

∫ ∞
−∞

dν√
2πg2

AASP(ν) δ∗(ν) e
− ν2

2g2

= g2

(
dAASP

dν
· dδ∗
dν

+
1

2

d2δ∗
dν2

)∣∣∣∣
ν=0

,

(5.57)

where in the last equality we evaluated the integral at leading order in g2. For

〈δ∗〉 to vanish, the first derivative of AASP at δ∗ = 0 must satisfy,

dAASP

dδ∗

∣∣∣∣
δ∗=0

= −1

2

(
dδ∗
dν

)−2d2δ∗
dν2

∣∣∣∣
ν=0

.

Comparing with Eq. (5.54) we obtain the condition

dAASP

dδ∗

∣∣∣∣
δ∗=0

= a1 , (5.58)

where a1 has been defined in (5.55).

We have checked that the N-body data are fully consistent with this require-

ment. Namely, we fit the dependence AASP(δ∗) extracted from the data with the

formula

AASP = 1 + a1 ln(1 + δ∗) + a2 ln2(1 + δ∗) + a3 ln3(1 + δ∗) , (5.59)

where we fix a1 to the numerical values predicted by Eq. (5.55), whereas a2 and

a3 are treated as free parameters of the fit. The results of the fit are shown in

Fig. 5.8 and the parameters are summarized in Table 5.2. We observe that the

expression (5.59) accurately describes the data throughout the whole available

range of densities. In particular, there is a perfect match between the slopes of

the fitting curve and the data at the origin. Note that the precise values of the

coefficients a2, a3 listed in Table 5.2 should be taken with a grain of salt as they
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Figure 5.8: The fitting formula for the aspherical prefactor (5.59) against
the N-body data for r∗ = 10 Mpc/h (left panel) and r∗ = 15 Mpc/h (right

panel). All results are shown for z = 0.

are determined by the tails of the measured distribution, which are subject to

systematic errors.

a1 a2 a3

r∗ = 10 Mpc/h −0.575 0.047 0.027

r∗ = 15 Mpc/h −0.546 0.018 0.037

Table 5.2: Parameters of the fitting formula (5.59) for the aspherical prefactor
for two different cell radii. The parameter a1 is computed from Eq. (5.55), and

is not fitted from the data.

We have seen that the aspherical prefactor is independent of the linear growth

factor. We also observe that the prefactor depends rather weakly on the size

of the window function. The leading response of the PDF to a change in the

cosmological model (such as e.g. variation of the cosmological parameters or

beyond-ΛCDM physics) will clearly enter through the exponent of the spherical

part PSP. The modification of the PDF due to the change of AASP is expected

to be subdominant. Hence, for practical applications of the 1-point PDF to

constraining the cosmological parameters or exploring new physics one can, in

principle, proceed with the simple fitting formula (5.59) with the parameters

extracted from N-body simulations of a fiducial ΛCDM cosmology. Nevertheless,

from the theoretical perspective, it is highly instructive to perform the full first-

principle calculation of the aspherical prefactor. The rest of this thesis is devoted

to this task. In the four subsequent sections we derive and analyze the relevant

equations.



Chapter 6

Accurate calculation of

aspherical prefactor

6.1 Perturbative calculation at small density contrast

In this section we compute the aspherical prefactor treating the saddle point con-

figuration perturbatively. This approximation is valid at small contrasts |δ∗| � 1.

We will work at quadratic order in δ∗ which, as we will see shortly, corresponds

to the 1-loop order of standard perturbation theory. We first consider standard

cosmological perturbation theory (SPT) [15] and then discuss its extension, the

effective field theory (EFT) of large scale structure [30, 31]. Eventually, we are

interested in large averaged density contrasts |δ∗| ∼ 1 where perturbation the-

ory does not apply. Still, it will serve us to grasp important features of a fully

non-linear calculation.

It is convenient to introduce an alternative representation of the aspherical pref-

actor. Let us multiply and divide the expression (5.44) by the square root of the

monopole fluctuation determinant

D0 = det
[
1 + 2λ̂

√
PQ0

√
P
]
, (6.1)

where Q0 is the monopole response matrix introduced in (5.34). Next we observe

that

∞∏
`=0

D−(`+1/2)
` = N−1

∫
Dδ

(1)
L exp

{
− 1

g2

[ ∫
k

(
δ

(1)
L (k)

)2
2P (k)

+ λ̂

∫
k1

∫
k2

Qtot(k1,k2) δ
(1)
L (k1) δ

(1)
L (k2)

]}
,

(6.2)
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where

Qtot(k1,k2) =
1

2

∂2δ̄W
∂δL(k1)∂δL(k2)

(6.3)

is the total quadratic response operator. Note that it is defined in the space of

functions depending on the full 3-dimensional wavevectors k, unlike the partial

multipole operators Q` defined in the space of functions of the radial wavenumber

k. The expression on the r.h.s. of (6.2) is the inverse square root of the total

fluctuation determinant,

Dtot = det[1 + 2λ̂
√
PQtot

√
P ] . (6.4)

In this way we obtain the following formula for the aspherical prefactor,

AASP =

√
D0

Dtot
. (6.5)

The monopole determinant D0 can be computed analytically for any value of δ∗,

see Appendix G.3. Note that, by itself, it does not have any physical meaning

as the quadratic monopole fluctuations are already taken into account in the

monopole prefactor A0. The introduction of the monopole determinant is just

a useful trick to simplify the calculation, Dtot being more convenient to treat in

perturbation theory than the determinants in separate multipole sectors.

6.1.1 Fluctuation determinant in standard perturbation theory

In order to find the response matrix we use the SPT solution [15] for the mildly

non-linear density field,

δ(k) = δL(k)+
∞∑
n=2

∫
k1

...

∫
kn

(2π)3δ
(3)
D

(
k−
∑
i

ki

)
Fn(k1, ...,kn)

n∏
i=1

δL(ki) . (6.6)

We work in the EdS approximation, where the SPT kernels Fn are redshift-

independent, e.g.

F2(k1,k2) =
17

21
+ (k1 · k2)

(
1

2k2
1

+
1

2k2
2

)
+

2

7

(
(k1 · k2)2

k2
1k

2
2

− 1

3

)
. (6.7)
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We will discuss the EFT corrections later on. Using (6.6) we obtain

Qtot(k1,k2) =
∞∑
n=2

n(n− 1)

2

∫
q1

...

∫
qn−2

Fn(k1,k2,q1, ...,qn−2)

×Wth(|k12 + q1...n−2|r∗)
n−2∏
i=1

δ̂L(qi) ,

(6.8)

where q1...m ≡ q1 + ... + qm. We will keep only the first two terms in the

expansion (6.8):

Qtot(k1,k2) = F2(k1,k2)Wth(|k12|r∗)+3

∫
q
F3(k1,k2,q)Wth(|k12 +q|r∗) δ̂L(q) .

(6.9)

An important comment is in order. The SPT kernels Fn(k1, ...,kn) are known

to contain poles when one or several momenta vanish, see e.g. the second term

in (6.7). These lead to the so-called1 ‘IR divergence’ in the individual SPT

loop integrals that cancel in the final results for the correlation functions [18].

Equation (6.9) implies that the response matrix has IR poles when k1 or k2 (or

both) tend to zero. Nevertheless, we are going to see that the IR divergences

associated with these poles cancel in the determinant Dtot. In other words, the

aspherical prefactor, and hence the full 1-point PDF, is IR safe. In Sec. 6.3.1

this property will be related to the equivalence principle.

To compute the determinant Dtot, we make use of the trace formula,

Dtot = exp
{

Tr ln
(

1 + 2λ̂
√
PQtot

√
P
)}

≈ exp

{[
−2

δ∗
s2
r∗

+ 6
δ2
∗

σ2
r∗

(
− 4

21
+
ξr∗
σ2
r∗

)]
Tr(PQtot)− 2

δ2
∗

s4
r∗

Tr(PQtotPQtot)

}
,

(6.10)

where in the second line we perturbatively expanded the Lagrange multiplier λ̂

and kept only the terms that can contribute at order δ2
∗ . Let us first compute

the leading-order contribution O(δ∗). From Eq. (6.9) it is proportional to

Tr(QtotP )LO = Wth(0)

∫
k
F2(k,−k)P (k) . (6.11)

But this vanishes due to F2(k,−k) = 0. Note that this property can be traced

back to the translational invariance. Indeed, the latter implies conservation of

momentum, so that at quadratic order of SPT around homogeneous background

1For the realistic power spectrum there are no true divergences, but rather spurious enhanced
contributions of soft modes.
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one has,

δ(k) = δL(k) +

∫
q
F2(k− q,q) δL(k− q)δL(q) .

Averaging over the Gaussian initial conditions and recalling that 〈δ(k)〉 = 〈δL(k)〉 =

0 by construction, one obtains that the integral entering (6.11) must vanish.

As this should be true for any power spectrum, one further infers vanishing of

F2(k,−k).

At next-to-leading order one has,

Tr(QtotP )NLO = 3
δ∗
σ2
r∗

∫
k

∫
q
F3(q,−q,k)P (k)P (q)|Wth(kr∗)|2 . (6.12)

This term is similar to the P13-contribution to the filtered density variance in

SPT. It is known to contain a spurious IR-enhancement, which cancels upon

adding the P22 contribution, whose counterpart in our calculation is the right-

most term in (6.10),

Tr(QtotPQtotP ) =

∫
k1

∫
k2

F 2
2 (k1,k2)P (k1)P (k2)

∣∣Wth(|k1 + k2|r∗)
∣∣2 . (6.13)

The net expression for the prefactor generated by total fluctuations reads:

Atot ≡ D−1/2
tot ≈ exp

{
δ2
∗
2

σ2
1-loop

σ4
r∗

}
, (6.14)

where we defined the filtered 1-loop density variance:

σ2
1-loop =

∫
k
P1-loop(k)|Wth(kr∗)|2 , (6.15a)

P1-loop(k) =

∫
q

(
2F 2

2 (k− q,q)P (q)P (|k− q|) + 6F3(k,−q,q)P (q)P (k)
)
.

(6.15b)

This result has an intuitive interpretation. Expression (6.14) is precisely the

factor which appears if we use the full 1-loop corrected power spectrum instead

of the linear one in the variance entering the saddle-point exponent (5.30):

exp

{
− δ2

∗
2g2(σ2

r∗ + g2σ2
1-loop)

}
≈ exp

{
− δ2

∗
2g2σ2

r∗

+
δ2
∗
2

σ2
1-loop

σ4
r∗

}
. (6.16)

The replacement of the linear variance by the 1-loop expression in (6.16) is

reminiscent of the coupling constant renormalization due to radiative corrections

in instanton calculations in QFT (see e.g. [149]).
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6.1.2 Effective field theory corrections

SPT does not capture correctly the effect of very short modes that become

deeply non-linear by z = 0. This problem is addressed in EFT of LSS. The

latter augments the pressureless hydrodynamics equations solved in SPT by the

effective stress tensor, which is treated within a gradient expansion [30, 31, 150].

At the leading (1-loop) order it produces the following correction (counterterm)

to the density contrast,

δctr(k) = −γ(z)k2δL(k) , (6.17)

which must be added to the SPT expression (6.6). Here γ(z) is a z-dependent

coefficient with the dimension of (length)2 whose value and scaling with g(z) will

be discussed below. Note that this contribution is linear in δL. However, it has

the same order of magnitude as the one-loop correction because the combination

γk2 is assumed to be small according to the rules of gradient expansion.

Addition of the term (6.17) to the relation between linear and non-linear density

contrasts slightly modifies the saddle-point solution. To find this correction we

observe that, at the order we are working, the final smoothed density contrast

is related to the linear density field as,

δ̄W =

∫
k
Wth(kr∗) δL(k) (1− γk2). (6.18)

Substituting this into the saddle-point equations (5.9) we obtain,

δ̂L =
δ∗
σ2
r∗

(
1 +

2γΣ2
r∗

σ2
r∗

)
P (k)Wth(kr∗)(1− γk2) , (6.19)

where

Σ2
r∗ =

∫
k
|Wth(kr∗)|2 P (k) k2 . (6.20)

The modification of the saddle point produces a shift in the leading exponent of

the PDF and results in the following counterterm prefactor:

Actr = exp

(
−δ2
∗
γ(z)

g2(z)

Σ2
r∗

σ4
r∗

)
. (6.21)

It is instructive to derive this result in an alternative way. One recalls that the 1-

loop SPT correction to the power spectrum (6.15b) receives a large contribution
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from short modes that has the form (see e.g. [150]),

g2P1-loop, UV(k) =

(
− 61

630π2

∫
q�k

dqP (q)

)
g2k2P (k) . (6.22)

This contributons would be divergent for a universe where the spectrum P (q) falls

slower than q−1 at q →∞. In EFT of LSS it is renormalized by the counterterm

−2γk2P (k) coming from the correction (6.17). Performing the renormalization

inside the filtered 1-loop density variance we obtain the expression,

σ2
1-loop, ren = σ2

1-loop −
2γ

g2
Σ2
r∗ , (6.23)

which translates into the multiplication of the 1-loop prefactor Atot by the coun-

terterm (6.21).

We obtain the value of the EFT coefficient γ(z = 0) by fitting the dark matter

power spectrum of the simulations2 at z = 0 to the 1-loop IR-resummed theoret-

ical template of Chapter 3. We follow Ref. [151] to include the theoretical error

in our analysis, which yields the following result:

γ0 ≡ γ
∣∣
z=0

= 1.51± 0.07 (Mpc/h)2 . (6.24)

In general, the redshift dependence of γ should be also fitted from the power

spectrum in different redshift bins. In our analysis we use a simplified model of

a scaling universe [152]. In the range of wavenumbers k ∼ 0.1h/Mpc relevant

for the EFT considerations the broad-band part of the power spectrum can be

approximated as a power law [153, 154],

P (k) ∼ 2π2

k3
NL

(
k

kNL

)n
, (6.25)

where kNL is the non-linear scale and the spectral index is estimated in the

range n ' −(1.5 ÷ 1.7). In a universe with such spectrum, the EFT coefficient

is expected to scale as γ ∝ k−2
NL, whereas kNL depends on the growth factor as

kNL ∝
(
g(z)

)n+3
2 . This gives the dependence,

γ(z) = γ0

(
g(z)

) 4
n+3 . (6.26)

It has been found consistent with the results of N-body simulations [150, 155].

For numerical estimates we will adopt the value n = −3/2 and the corresponding

2For the fit we use the power spectrum of the Horizon Run 2 [101] that has the same
cosmology as assumed in this Chapter. This gives a better precision than our own simulations
performed in relatively small boxes and contaminated by systematic errors at large scales.
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Figure 6.1: The prefactor Atot due to quadratic fluctuations in perturbation
theory computed at 1-loop order in SPT and EFT. The results are shown at
z = 0. Perturbation theory is strictly applicable in the neighborhood of δ∗ = 0.

scaling γ(z) = γ0

(
g(z)

)8/3
.

In Fig. 6.1 we compare the numerical results for Atot at z = 0 computed in SPT

and upon inclusion of the EFT correction (we use the value γ0 = 1.5 (Mpc/h)2).

We see that the EFT correction has a sizable effect on the prefactor, and some-

what reduces its value.

6.1.3 Aspherical prefactor at second order in background den-

sity

In order to compute the full aspherical prefactor we have to combine the total

determinant with the spherical one, see Eq. (G.34). Unlike the total determinant,

the spherical determinant differs from unity at leading order in δ∗ and yields

ALO
ASP = D1/2

0 = exp

{
δ∗

(
4

21
− ξr∗
σ2
r∗

)}
. (6.27)

Remarkably, the aspherical prefactor at order O(δ∗) is fully controlled by trans-

lation invariance which forces the corresponding terms in Atot to vanish. Thus,

the slope of the aspherical prefactor at the origin is encoded in the spherical col-

lapse dynamics. Note that this slope has precisely the value necessary to restore

the zero mean of the density contrast, Eqs. (5.58), (5.55). This is an important

consistency check of our approach.
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Figure 6.2: Left panel: the aspherical prefactor in perturbation theory at
leading (LO) and next-to-leading (NLO) orders shown against the N-body data
for cell radius r∗ = 10 Mpc/h at z = 0. Right panel: the corresponding resid-

uals.

Expanding the monopole determinant, one finds at the next-to-leading order:

ANLO
ASP = exp

{
δ∗

(
4

21
− ξr∗
σ2
r∗

)
+
δ2
∗
2

σ2
1-loop, ren

σ4
r∗

+
δ2
∗
2

(
− 1180

1323
+

40ξr∗
21σ2

r∗

+
r2
∗Σ

2
r∗

3σ2
r∗

+
ξ2
r∗

σ4
r∗

−
3σ2

1 r∗

σ2
r∗

)}
,

(6.28)

where Σ2
r∗ is defined in (6.20) and

σ2
1 r∗ =

∫
k

(
sin(kr∗)

kr∗

)2

P (k) . (6.29)

In the left panel of Fig. 6.2 we show the aspherical prefactor evaluated at leading

and next-to-leading orders in perturbation theory. We observe that the LO result

works surprisingly well and does not deviate from the data by more than 10%

in the range δ∗ ≈ [−0.5, 1], while the NLO results extends the agreement up

to δ∗ ≈ [−0.8, 1.5]. In the right panel of Fig. 6.2 we show the residuals for

the perturbation theory PDF. One sees that the NLO corrections reduce the

residuals close to the origin, but quickly blow up towards large overdensities.

One takes four main lessons from the perturbative calculation:

1. The response matrix contains spurious IR enhanced terms that cancel in

the determinant.

2. Including the aspherical corrections amounts, in part, to replacing the lin-

ear density variance by its non-linear version.
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3. The short-scale contributions should be renormalized by appropriate EFT

counterterms.

4. The slope of the aspherical prefactor at the origin is dictated by transla-

tional invariance and is such that the mean value 〈δ∗〉 vanishes.

6.2 Aspherical prefactor at large density contrasts:

main equations

In Sec. 5.1.3 we expressed the aspherical prefactor as the product of fluctuation

determinants in different multipole sectors. Calculation of these determinants

requires knowledge of the aspherical response matrices Q`. In this and the sub-

sequent section we set up the equations for the determination of Q` that we will

solve numerically afterwards. For simplicity, we work in the EdS approximation.

The equations for ΛCDM cosmology are summarized in Appendix E of Ref. [9].

We have checked that the difference in the final answers for the prefactor in

ΛCDM and in EdS does not exceed 1%. Thus, the EdS approximation is vastly

sufficient for our purposes.

6.2.1 Linearized fluctuations with ` > 0

We first derive the evolution equations for linearized aspherical perturbations

in the background of the saddle-point solution. We start from the standard

pressureless Euler–Poisson equations for the density, peculiar velocity, and the

Newtonian gravitational potential in an EdS universe,

∂δ

∂t
+ ∂i

(
(1 + δ)ui

)
= 0 , (6.30a)

∂ui
∂t

+Hui + (uj∂j)ui = −∂iΦ , (6.30b)

∆Φ =
3H2

2
δ , (6.30c)

where t is conformal time, H = ∂ta/a = 2/t is the conformal Hubble parameter

and a is the scale factor. We expand all quantities into background and first-

order perturbations, δ = δ̂ + δ(1), etc. Next, we take the divergence of (6.30b)

and introduce the velocity potential Ψ:

u
(1)
i = −H∂iΨ(1) , ∂iu

(1)
i = −HΘ(1) . (6.31)
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From now on we also switch to a new time variable

η ≡ ln a(t) , (6.32)

To linear order in perturbations, the system (6.30) takes the form,

δ̇(1) −Θ(1) +H−1ûi ∂iδ
(1) +H−1∂iûi δ

(1) − ∂iδ̂ ∂iΨ(1) − δ̂Θ(1) = 0 , (6.33a)

Θ̇(1) +
1

2
Θ(1) − 3

2
δ(1) +H−1ûi ∂iΘ

(1) +H−1∂i∂j ûj ∂iΨ
(1) + 2H−1∂iûj ∂i∂jΨ

(1) = 0 ,

(6.33b)

∆Ψ(1) = Θ(1) , (6.33c)

where dot denotes the derivative with respect to η. Note that the background

quantities have only radial dependence and the velocity ûi has only the radial

component, so that

H−1∂iûj = −∂i∂jΨ̂ =
xixj
r2

∂2
r Ψ̂ +

(
δij −

xixj
r2

)
∂rΨ̂

r
. (6.34)

We now expand the perturbations in spherical harmonics,

δ(1)(x) =
∑
`>0

∑̀
m=−`

Y`m(x/r) δ`m(r) , (6.35)

and similarly for the other fields. To simplify notations, we have omitted the su-

perscript ‘(1)’ on the multipole components of the fluctuations. In what follows

we will also omit the azimuthal quantum number m as it does not appear ex-

plicitly in the equations. Substituting the expansion into Eqs. (6.33) we obtain,

δ̇` −Θ` − ∂rΨ̂ ∂rδ` − Θ̂ δ` − ∂r δ̂ ∂rΨ` − δ̂Θ` = 0 , (6.36a)

Θ̇` +
1

2
Θ` −

3

2
δ` − ∂rΨ̂ ∂rΘ` − ∂rΘ̂ ∂rΨ` − 2∂2

r Ψ̂ Θ`

+ 2

(
∂2
r Ψ̂− ∂rΨ̂

r

)(
2

r
∂rΨ` −

`(`+ 1)

r2
Ψ`

)
= 0 , (6.36b)

∂2
rΨ` +

2

r
∂rΨ` −

`(`+ 1)

r2
Ψ` = Θ` . (6.36c)

This is a system of (1+1)-dimensional partial differential equations for the set of

functions (δ`,Θ`,Ψ`).

To determine the initial conditions, we reason as follows. At early times the

saddle-point background vanishes and a solution to the previous system goes
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into

δ`(r)→ eη δL,`(r) ,

where δL,` is a linear density field. Just like one decomposes linear perturbations

over plane waves in 3-dimensional space, we need to choose a basis of functions

on the half-line which are properly normalized w.r.t. to the radial integration

measure, ∫ ∞
0

dr r2 δ∗L,`,k(r)δL,`,k′(r) = (2π)3k−2δ
(1)
D (k − k′) . (6.37)

The expression on the r.h.s. is the radial delta-function compatible with the

momentum-space measure
∫

[dk], Eq. (A.4). A convenient basis with these prop-

erties is provided by the spherical Bessel functions (see Appendix A),

δL,`,k(r) = 4π j`(kr) .

We conclude that the relevant initial conditions are,

δ`,k(r) = Θ`,k(r) = eη · 4πj`(kr) , (6.38a)

Ψ`,k = −eη · 4π

k2
j`(kr) at η → −∞ . (6.38b)

In setting up the initial conditions for Ψ we have used that Bessel functions are

eigenstates of the radial part of the Laplace operator, see Eq. (A.17).

6.2.2 Quadratic fluctuations in the monopole sector

To find the response matrix, we need the second-order monopole perturbation

δ
(2)
0 induced by a pair of first-order aspherical modes with a given `. For sim-

plicity, we will take the latter in the form,

δ
(1)
k (r) = Y`,m=0(x/r) δ`,k(r) , (6.39)

so that, according to (A.12), δ`,k is real. Let us first focus on the diagonal

elements of the response matrix, i.e. consider the case when the fluctuation δ
(2)
0

is sourced by two linear modes with the same wavenumber k. Generalization to

a pair with different wavenumbers will be discussed at the end of the subsection.

For compactness we will omit this wavenumber in the subscript of δ`,Θ`,Ψ` in

what follows.
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Expanding the Euler–Poisson equations to the quadratic order and averaging

over the angles we obtain,

δ̇
(2)
0 −Θ

(2)
0 − ∂rΨ̂ ∂rδ

(2)
0 − Θ̂ δ

(2)
0 − ∂r δ̂ ∂rΨ

(2)
0 − δ̂Θ

(2)
0 = Ξδ , (6.40a)

Θ̇
(2)
0 +

1

2
Θ

(2)
0 −

3

2
δ

(2)
0 −∂rΨ̂ ∂rΘ

(2)
0 −∂rΘ̂ ∂rΨ

(2)
0 (6.40b)

− 2∂2
r Ψ̂ Θ

(2)
0 +

4

r

(
∂2
r Ψ̂− ∂rΨ̂

r

)
∂rΨ

(2)
0 = ΞΘ ,

∂2
rΨ

(2)
0 +

2

r
∂rΨ

(2)
0 = Θ

(2)
0 , (6.40c)

where the sources on the r.h.s. are,

Ξδ = − 1

H

∫
dΩ

4π
∂i(δ

(1)u
(1)
i ) , ΞΘ =

1

H2

∫
dΩ

4π
∂i(u

(1)
j ∂ju

(1)
i ) . (6.41)

Performing the angular integration and using the Poisson equation (6.36c) the

sources can be cast in a suggestive form,

Ξδ =
1

r2
∂r(r

2Υδ) , ΞΘ =
1

r2
∂r(r

2ΥΘ) , (6.42)

where

Υδ =
1

4π
δ`∂rΨ` , (6.43a)

ΥΘ =
1

4π

[
Θ`∂rΨ` −

2

r
(∂rΨ`)

2 +
2`(`+ 1)

r2
Ψ`∂rΨ` −

`(`+ 1)

r3
Ψ2
`

]
. (6.43b)

Let us introduce a second-order overdensity integrated over a sphere of radius3 rη,

µ(2) =

∫ rη

0
dr r2 δ

(2)
0 (r) , (6.44)

where we allow rη to be time dependent. We now show that if rη satisfies

an appropriate evolution equation, the system (6.40) reduces to an ordinary

differential equation for µ(2). It is convenient to work with the total quantities

(background plus second order perturbations), δ0 = δ̂+δ
(2)
0 etc. Then Eqs. (6.40)

become,

δ̇0 − ∂rΨ0∂rδ0 − (1 + δ0)Θ0 = Ξδ , (6.45a)

Θ̇0 +
1

2
Θ0 −

3

2
δ0 − ∂rΨ0∂rΘ0 −Θ2

0 +
2

r2
(∂rΨ0)2 +

4

r
∂2
rΨ0∂rΨ0 = ΞΘ , (6.45b)

∂r(r
2∂rΨ0) = r2Θ0 . (6.45c)

3Note that we do not divide by the volume of the sphere, so µ(2) differs from the spherically
averaged density contrast by a factor r3

η/3.
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Let us multiply the first equation by r2 and integrate from 0 to rη,∫ rη

0
dr r2∂δ0

∂η
−
∫ rη

0
dr r2∂rΨ0∂rδ0−

∫ rη

0
dr r2(1+δ0)Θ0 =

∫ rη

0
dr r2Ξδ . (6.46)

The last two terms on the l.h.s. combine into a total derivative due to Eq. (6.45c).

Also pulling the time derivative outside of the integral in the first term we obtain,

d

dη

∫ rη

0
dr r2

(
1 + δ0(r)

)
− r2

η

(
1 + δ0(rη)

)(
ṙη + ∂rΨ0(rη)

)
= r2

ηΥδ(rη) . (6.47)

The boundary terms on the l.h.s. cancel if we choose the time-dependence of rη

in such a way that

ṙη = −∂rΨ0(rη) . (6.48)

In other words, we shall choose the boundary to be moving with the angular-

averaged fluid velocity. Then Eq. (6.47) simplifies,

µ̇ = r2
ηΥδ(rη) , (6.49)

where we introduced4

µ =

∫ rη

0
dr r2

(
1 + δ0(r)

)
. (6.50)

This equation has a clear physical interpretation. It tells us that the mass inside

a spherical region comoving with the average spherical fluid flow changes due to

the inflow through the boundary generated by aspherical modes.

Equation (6.49) allows us to determine µ once the time dependence of rη is

known. However, we still need an evolution equation for rη in terms of rη and

µ to close the system5. This is obtained from (6.45b) by multiplying it with r2

and integrating from 0 to rη. Using (6.42) and (6.43b) we obtain,

r2
η

(
∂

∂η
∂rΨ0 +

1

2
∂rΨ0 − ∂rΨ0∂

2
rΨ0

)∣∣∣∣
rη

− 3

2

(
µ−

r3
η

3

)
= r2

ηΥΘ(rη) . (6.51)

It follows from (6.48) that

r̈η =

(
− ∂

∂η
∂rΨ0 + ∂2

rΨ0∂rΨ0

)∣∣∣∣
rη

. (6.52)

Thus, we arrive at

r̈η +
ṙη
2
− rη

2
+

3µ

2r2
η

= −ΥΘ(rη) . (6.53)

4A careful reader might have noticed that we have run out of nice letters. Here µ should
not be confused with the µ from Part I of this thesis.

5Equation (6.48) is not sufficient as it involves the monopole velocity potential Ψ0 which is
unknown.
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There is again a transparent physical interpretation: the aspherical perturbations

exert an effective force on the spherical flow that modifies its acceleration.

As a final step, we decompose µ and rη into background values and second-order

perturbations,

rη = r̂η + r(2)
η , (6.54a)

µ = µ̂+ µ(2) + r(2)
η r̂2

η

(
1 + δ̂(r̂η)

)
, (6.54b)

where r̂η, µ̂ satisfy source-free Eqs. (6.49), (6.53). Subtracting the background

contributions from the evolution equations we obtain,

µ̇(2) + ṙ(2)
η r̂2

η

(
1 + δ̂(r̂η)

)
+ r(2)

η

d

dη

(
r̂2
η

(
1 + δ̂(r̂η)

))
= r̂2

ηΥδ(r̂η) (6.55a)

r̈(2)
η +

ṙ
(2)
η

2
+

(
1 +

3

2
δ̂(r̂η)−

R3
∗
r̂3
η

)
r(2)
η +

3

2r̂2
η

µ(2) = −ΥΘ(r̂η) , (6.55b)

where we have used the asymptotics r̂η → R∗, µ̂→ R3
∗/3 at η → −∞. Equations

(6.55) provide a closed system of linear ordinary differential equations for the

variables µ
(2)
∗ , r

(2)
η once the sources Υδ,Θ are known.

We must supplement (6.55) by three boundary conditions. One of them is set

at the final time and expresses the fact that we are interested in the overdensity

within the fixed radius r∗, so that the final radius is not perturbed,

r(2)
η

∣∣
η=0

= 0 . (6.56a)

The conditions at the initial time η → −∞ are more subtle. The source-free

Eqs. (6.55) admit solutions corresponding to first order monopole fluctuations,

that can also change the mass within the cell. We need to eliminate such solu-

tions. For this purpose, we observe that for the spurious solutions the fields δ0

etc. behave as eη at early times, whereas the second-order perturbations that

we are interested in are proportional to e2η. We conclude that we must require,

µ(2) ∝ e2η , at η → −∞ . (6.56b)

As for r
(2)
η , it need not vanish in the beginning. Rather, it should approach a

constant value in a specific way. Indeed, from Eqs. (6.49), (6.54b) and the fact

that ˙̂µ vanishes we conclude that the derivative of the combination r
(2)
η r̂2

η

(
1 +

δ̂(r̂η)
)

must fall off as e2η. Thus, we obtain the third condition,

ṙ(2)
η + r(2)

η

d

dη
ln
[
r̂2
η

(
1 + δ̂(r̂η)

)]
∝ e2η , at η → −∞ . (6.56c)
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It is straightforward to generalize the above analysis to the case when the second-

order perturbation is sourced by a pair of aspherical modes with different radial

wavenumbers k and k′ (but, of course, the same angular numbers ` and m). In

that case the sources (6.43) are replaced by symmetric combinations constructed

from the two modes,

Υδ,kk′ =
1

8π
δ`,k∂rΨ`,k′ + (k ←→ k′) , (6.57a)

ΥΘ,kk′ =
1

8π

[
Θ`,k∂rΨ`,k′ −

2

r
∂rΨ`,k∂rΨ`,k′ +

2`(`+ 1)

r2
Ψ`,k∂rΨ`,k′

− `(`+ 1)

r3
Ψ`,kΨ`,k′

]
+ (k ←→ k′) . (6.57b)

The rest of the derivation goes exactly the same as above, leading to Eqs. (6.55)

with the new sources.

6.2.3 Summary of the algorithm

Summarizing the results of this section, one obtains the following algorithm to

find the response matrix Q`(k, k
′) and the fluctuation determinant D`:

1. One solves Eqs. (6.36) with the initial conditions (6.38) and finds the wave-

functions δ`,Θ`,Ψ` for each basis function from a set of N + 1 momenta

{k0, ..., kN}.

2. One uses these solutions to construct the sources (6.57) for a pair of

wavevectors ki and kj .

3. One solves (6.55) with the initial conditions (6.56) . The final variation in

the averaged overdensity gives the element of Q`,

Q`(ki, kj) =
3

r3
∗
µ(2)(η = 0) . (6.58)

4. One repeats the above procedure for all different pairs of wavenumbers

(ki, kj), construct the operator 1 + 2λ̂
√
PQ`
√
P and evaluates its determi-

nant.

The implementation of this algorithm on a discrete grid is described in Appendix

G of [9].

The algorithm requires a modification in the dipole sector (` = 1) due to the IR

sensitivity of the matrix Q1. We now focus on this issue.
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6.3 Removing IR divergences in the dipole contribu-

tion

A complication arises in the dipole sector (` = 1). The initial conditions (6.38b)

imply that the velocity potential Ψ1,k ∝ eη ·r/k has an 1/k pole6 at kr ∼ kr∗ � 1.

Substitution of this expressions into equations of motion (6.36a), (6.36b) leads

to further 1/k contributions in δ1,k and Θ1,k proportional to the derivatives of

the background configuration ∂r δ̂, ∂rΘ̂. Thus, the linear solution (δ1,Θ1,Ψ1)

contains singular 1/k terms which translate into first- and second-order poles in

the matrix Q1(k, k′) at k, k′ � 1/r∗. As we discuss below, these infrared (IR)

enhanced contribution must cancel in the determinant D1 entering the prefactor

(5.44), which is IR-safe7. However, the presence of the ‘IR-divergent’8 terms

makes a straightforward numerical evaluation of the determinant unfeasible. The

purpose of this section is to show that the IR-enhanced contributions can be

isolated and the IR-divergences can be removed, whereby reducing the task to

numerical evaluation of IR-safe quantities only.

6.3.1 IR safety of the prefactor

We start by showing that the aspherical prefactor (5.44) is IR safe. We first

give a heuristic argument and then a more direct proof. Let us assume that

the mapping from the linear to non-linear density fields is invertible9. Then the

counts-in-cells PDF can be written in the schematic form,

P(δ∗) = N−1

∫
Dδ

∫
dλ

2πig2
exp

{
−Γ[δ]

g2
+
λ

g2

(
δ∗ − δ̄(r∗)

)}
, (6.59)

where the path integral runs over all density configurations at the final moment

of time and Γ[δ] is a weighting functional obtained from the Gaussian weight

using the map δ 7→ δL. A perturbative expansion for the functional Γ[δ] was

derived in [1] and it was shown that all coefficients in this expansion are IR-safe.

Extrapolating this property to the non-perturbative level, one concludes that the

6This problem does not arise for higher multipoles. The Bessel functions behave at the origin
as (kr)`, and hence the corresponding velocity potential Ψ`,k is regular at k → 0 for ` > 1.

7We have already seen this cancellation in the perturbative calculation in Sec. 6.1.1.
8Here the term ‘divergence’ is used in the sense adopted in the perturbation theory literature,

where it refers to the fact that loop integrals would be divergent in IR for power-law spectra
P (k) ∝ kn with n ≤ −1. The ΛCDM power spectrum vanishes quickly at small k, so the loop
integrals are actually convergent, albeit strongly enhanced.

9This would be true in the absence of shell-crossing, but in general is not correct.
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matrix of second variational derivatives around the saddle-point solution

∂2Γ

∂δ(1)(x) ∂δ(1)(x′)

∣∣∣∣
δ=δ̂(x)

(6.60)

is also IR-safe. The prefactor of the PDF is given by the determinant of this

matrix, hence it is IR-safe as well.

We now give a more rigorous argument that does not require invertibility of

the density mapping. We split the integration variables in the path integral

(5.7) into soft (k � 1/r∗) and hard (k & 1/r∗) modes. Omitting for clarity the

normalization factors we obtain,

P(δ∗) =

∫
Dδsoft

L exp

{
−
∫
k

|δsoft
L (k)|2

2g2P (k)

}
P[δ∗; δ

soft
L ] , (6.61)

where

P[δ∗; δ
soft
L ] ≡

∫
Dδhard

L dλ exp

{
− 1

g2

[ ∫
k

|δhard
L (k)|2

2P (k)
− λ

(
δ∗ − δ̄W [δhard

L + δsoft
L ]

)]}
,

(6.62)

has the physical meaning of the PDF for short-scale overdensities in the back-

ground of soft modes.

Now, the addition of a soft mode corresponds to immersion of the system into

a large-scale flow. Due to the equivalence principle, the main effect of such flow

is an overall translation of the hard modes by a distance proportional to the

gradient of the Newtonian potential [19, 20, 23, 24, 156]. In other words,

δ[δhard
L + δsoft

L ](x, η) = δ[δhard
L ]

(
x− ∇

∆
δsoft
L (0, η), η

)
+ . . . . (6.63)

The shift is enhanced for long-wavelength perturbations leading to 1/ksoft poles

in the perturbative expansion of the expression (6.63) in δsoft
L . On the other

hand, the remaining terms represented by dots in (6.63) contain more derivatives

acting on the Newtonian potential, and thus are regular in the limit when the

soft momentum ksoft goes to zero.

The PDF (6.62) can be evaluated in the saddle-point approximation. The saddle-

point solution is

δ̂L[δsoft
L ](x) = δ̂L

(
x +
∇
∆
δsoft
L |x=0

)
, (6.64)

where δ̂L is the saddle-point configuration in the absence of soft modes. Likewise,

the fluctuations around the solution (6.64) are obtained from those around δ̂L

by the same translation, so that the integral over them does not contain any
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poles. We conclude that P[δ∗; δ
soft
L ] is IR-safe which implies the IR safety of the

original PDF P(δ∗).

6.3.2 Factorization of IR divergences

At ` = 1 the equations (6.36) admit an exact solution

δ1 = ∂r δ̂ · eη , Θ1 = ∂rΘ̂ · eη , Ψ1 = ∂rΨ̂ · eη + r · eη . (6.65)

Notice that in the far past all contributions here vanish faster than eη (actually,

as O(e2η)), except for the last term in Ψ1. The latter corresponds to a uniform

motion of all fluid elements10, i.e. to a large bulk flow. Existence of the solution

(6.65) follows from the equivalence principle obeyed by the Euler-Poisson equa-

tions. Indeed, we can impose on any solution an infinitely large bulk flow that

will sweep the original solution as a whole. The dipolar solution (6.65) precisely

corresponds to imposing such a large bulk flow on the saddle-point configuration

(δ̂, Θ̂, Ψ̂).

The solution (6.65) can be added with an arbitrary coefficient to any other

solution of eqs. (6.36). In particular, the perturbation with the initial conditions

(6.38) for ` = 1 can be written as,

δ1,k = δ̆k −
4π

3k
∂r δ̂ eη , (6.66a)

Θ1,k = Θ̆k −
4π

3k
∂rΘ̂ eη , (6.66b)

Ψ1,k = Ψ̆k −
4π

3k
∂rΨ̂ eη − 4πr

3k
eη , (6.66c)

where the triple
(
δ̆k, Θ̆k, Ψ̆k

)
is also a solution of eqs. (6.36) satisfying the same

initial conditions (6.38a) for δ̆k, Θ̆k, but with modified initial condition for Ψ̆k,

Ψ̆k =

[
− 4π

k2
j1(kr) +

4πr

3k

]
· eη . (6.67)

Importantly, this modification eliminates the dangerous 1/k pole, so that the

initial conditions for all functions (δ̆k, Θ̆k, Ψ̆k) are regular at k → 0. In fact,

δ̆k, Θ̆k, Ψ̆k = O(k) . (6.68)

Then, by linearity of eqs. (6.36), this property holds at all times.

10Recall that the gradient of Ψ is proportional to the fluid velocity, see eq. (6.31).
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The next step is to isolate the IR divergences in the sources Υδ, ΥΘ. Substituting

(6.66) into (6.57), we obtain

Υδ,kk′ =
Aδ
kk′

+
Bδ,k′

k
+
Bδ,k
k′

+ Ῠδ,kk′ , (6.69a)

ΥΘ,kk′ =
AΘ

kk′
+
BΘ,k′

k
+
BΘ,k

k′
+ ῨΘ,kk′ , (6.69b)

where

Aδ =
4π

9
∂r δ̂(∂

2
r Ψ̂ + 1) e2η , (6.70a)

Bδ,k = −1

6

[
(∂2
r Ψ̂ + 1)δ̆k + ∂r δ̂∂rΨ̆k

]
eη , (6.70b)

AΘ =
4π

9

[
∂rΘ̂(∂2

r Ψ̂ + 1)− 2

r
(∂2
r Ψ̂)2 +

4

r2
∂rΨ̂∂

2
r Ψ̂− 2

r3
(∂rΨ̂)2

]
e2η , (6.70c)

BΘ,k=−1

6

[
(∂2
r Ψ̂+1)Θ̆k+

(
∂rΘ̂−

4

r
∂2
r Ψ̂+

4

r2
∂rΨ̂

)
∂rΨ̆k+

(
4

r2
∂2
r Ψ̂− 4

r3
∂rΨ̂

)
Ψ̆k

]
eη ,

(6.70d)

and Ῠδ,kk′ , ῨΘ,kk′ are computed using the regular solutions (δ̆k, Θ̆k, Ψ̆k), (δ̆k′ , Θ̆k′ , Ψ̆k′).

Due to linearity of Eqs. (6.55), the pole structure of the sources (6.69) propagates

into the pole structure of the matrix

Q1(k, k′) =
A

kk′
+
B(k′)

k
+
B(k)

k′
+ Q̆(k, k′) , (6.71)

where A, B, Q̆ are found by solving Eqs. (6.55) with the sources (Aδ, AΘ),

(Bδ, BΘ) and (Ῠδ, ῨΘ) respectively. Due to the property (6.68) we have

B(k) = O(k) , Q̆(k, k′) = O(kk′) at k, k′ → 0 . (6.72)

We now observe that the sought-for determinant has the form,

D1 = det
(

1 + 2λ̂
√
PQ̆
√
P + a(k)b(k′) + b(k)a(k′)

)
, (6.73)

with

a(k) = λ̂

√
P (k)

k
, b(k) =

(
A

k
+ 2B(k)

)√
P (k) . (6.74)

Denoting

M(k, k′) = (2π)3k−2δ
(1)
D (k − k′) + 2λ̂

√
P (k)Q̆(k, k′)

√
P (k′) (6.75)

we write,

D1 = detM · DIR , (6.76)
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where all IR-sensitive contributions have been collected into

DIR = det
(
1 + ã⊗ b̃+ b̃⊗ ã

)
. (6.77)

We have introduced ã = M−1/2a, b̃ = M−1/2b and used the fact that the matrix

M is symmetric.

The determinant (6.77) can be easily evaluated using Eq. (D.1) from Appendix

D of Ref. [9],

DIR = 1 + 2(ã · b̃) + (ã · b̃)2 − ã2 b̃2 . (6.78)

Here dot denotes the scalar product,

ã · b̃ =

∫
[dk] ã(k)b̃(k) =

∫
[dk][dk′] a(k)M−1(k, k′)b(k′) ,

and similarly for ã2 and b̃2. The inverse matrix M−1 has the form,

M−1 = 1− 2λ̂
√
PQ̊
√
P (6.79)

with

Q̊(k, k′) = Q̆(k, k′) + . . . = O(kk′) at small k, k′ . (6.80)

Using this property one isolates the ‘IR-divergences’ in the different terms11 in

(6.78),

2(ã · b̃) 3 2λ̂

∫
[dk]

P (k)

k2
A (6.81a)

(ã · b̃)2 − ã2b̃2 3 −4λ̂2

∫
[dk]2

P (k1)

k2
1

P (k2)
(
B(k2)

)2
+ 8λ̂3

∫
[dk]3

P (k1)

k2
1

P (k2)P (k3)Q̊(k2, k3)B(k2)B(k3) . (6.81b)

A necessary and sufficient condition for their cancellation in the determinant

(6.78) is,

A = 2λ̂

∫
[dk]2

√
P (k1)P (k2)B(k1)M−1(k1, k2)B(k2) . (6.82)

While we do not have a direct proof of this identity, the arguments of the previous

subsection imply that it must be satisfied. We also checked it numerically and

found that it is fulfilled in our computations within the accuracy of the numerical

procedure.

11 As in perturbation theory, for the realistic power spectrum these terms are finite, but still
dangerously enhanced. They would be actually divergent if the power spectrum behaved as
P (k) ∝ kn with n ≤ −1 at small k.
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Using (6.82) we can simplify the expression (6.78). A straightforward calculation

yields,

DIR =

[
1 + 2λ̂

∫
[dk]2

√
P (k1)P (k2)

1

k1
M−1(k1, k2)B(k2)

]2

. (6.83)

This is the final expression to be used in numerical evaluation. The algorithm

for the computation of D1 consists of the following steps:

1. Solve the linear equations (6.36) with initial conditions (6.38a), (6.67) to

find the functions δ̆k, Θ̆k, Ψ̆k;

2. Find the matrix Q̆(k, k′) by solving Eqs. (6.55) with the sources Ῠδ,kk′ ,

ῨΘ,kk′ ;

3. Find the vector B(k) by solving Eqs. (6.55) with the sources Bδ,k, BΘ,k,

Eqs. (6.70b), (6.70d);

4. Construct the matrix M(k, k′), Eq. (6.75), compute its determinant and

inverse;

5. Use the inverse matrix M−1(k, k′) and the vector B(k) to compute the IR

contribution (6.83);

6. Compute the full determinant in the dipole sector as a product of detM

and DIR.

6.4 WKB approximation for high multipoles

In general the computation of the aspherical fluctuation determinant requires

solving the system of linear partial differential equations (6.36) on a grid. How-

ever, in the sectors with large orbital numbers ` � 1 one can use the Wentzel-

Kramers-Brillouin (WKB) technique to simplify the problem and gain insights

into the structure of the aspherical response matrix. Remarkably, in the WKB

regime the system (6.36) reduces to a system of ordinary differential equations

and can be easily solved, e.g. in Mathematica. The WKB analysis serves both

to cross check the results of the full numerical integration of Eqs. (6.36) and to

study the UV sensitivity of the aspherical prefactor in Sec. 6.5.2.

We start by noticing that the basis functions (6.38) are suppressed at kr < `

due to the centrifugal barrier. Indeed, at these values of r we obtain using
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Eq. (10.19.3) from12,

j`
(
(`+ 1/2)κr

)
∼ e−(`+1/2)

(
arcch 1

κr−
√

1−(κr)2
)

(2`+ 1)
√
κr[1− (κr)2]1/4

, (6.84)

where we have introduced the ratio

κ ≡ k

`+ 1/2
(6.85)

which will be kept fixed in the limit `→∞. We see that j`(kr) is exponentially

suppressed at κr < 1. Thus, if kr∗ � ` the perturbation has support outside of

the window function and does not contribute into the variation of the overdensity:

Q`(k, k
′) ≈ 0 whenever k or k′ is much smaller than `/r∗. We conclude that the

dominant contribution into the response matrix comes from the modes with

k & `/r∗ � 1/r∗ . (6.86)

These modes oscillate much faster than the background, so we can use the WKB

technique to find their evolution.

We will see that we have to go up to the second order in the WKB expansion,

hence we write the following Ansatz:

δ` = (δ`1 + k−1δ`2)eikS` + h.c. ,

Θ` = (Θ`1 + k−1Θ`2)eikS` + h.c. ,

Ψ` =(k−2Ψ`1 + k−3Ψ`2)eikS` + h.c.

(6.87)

where δ`1, δ`2 etc. are slowly varying functions. Note that Ψ` is suppressed by

two powers of k compared to δ` and Θ`. From the Poisson equation (6.36c) we

find at leading order

Ψ`1 = − Θ`1

(S′`)
2 + (κr)−2

. (6.88a)

The next-to-leading expansion yields,

Ψ`2 =
−Θ`2 + iS′′` Ψ`1 + 2iS′`Ψ

′
`1 +

2iS′`
r Ψ`1

(S′`)
2 + (κr)−2

. (6.88b)

Further, we susbstitute the form (6.87) into the dynamical Eqs. (6.36a), (6.36b).

At leading order O(k) both equations reduce to

Ṡ` − ∂rΨ̂S′` = 0 . (6.89)

12“Digital Library of Mathematical Functions,” http://dlmf.nist.gov.

http://dlmf.nist.gov
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In the combination on the l.h.s. one recognizes the time-derivative along the

background flow, so one concludes that S` is conserved along the flow,

dS`
dη

∣∣∣∣
flow

= 0 . (6.90)

In other words, S`(r, η) = S`
(
R(r, η)

)
, where R is the Lagrangian coordinate

of the spherical shell in the background solution. It is related to the Eulerian

coordinate r and η by Eq. (5.13) where for the density contrast one takes the

saddle-point profile δ̂(r, η). At η → −∞ the Lagrangian and Eulerian coordinates

coincide, R = r.

From the orders O(1) and O(1/k) of Eqs. (6.36a), (6.36b) we obtain the equations

for the coefficient functions in the WKB Ansatz:

Next-to Leading Order,

dδ`1
dη

∣∣∣∣
flow

− Θ̂δ`1 − (1 + δ̂)Θ`1 = 0 , (6.91a)

dΘ`1

dη

∣∣∣∣
flow

− 3

2
δ`1 +

[
1

2
−

2(κrS′`)2∂2
r Ψ̂

1 + (κrS′`)2
− 2∂rΨ̂

r(1 + (κrS′`)2)

]
Θ`1 = 0 . (6.91b)

Next-to-Next-to-Leading Order,

dδ`2
dη

∣∣∣∣
flow

−Θ̂δ`2 − (1 + δ̂)Θ`2 = i∂r δ̂ S
′
`Ψ`1 , (6.92a)

dΘ`2

dη

∣∣∣∣
flow

−3

2
δ`2 +

[
1

2
−

2(κrS′`)2∂2
r Ψ̂

1 + (κrS′`)2
− 2∂rΨ̂

r(1 + (κrS′`)2)

]
Θ`2

=
4iS′`

1 + (κrS′`)2

(
∂2
r Ψ̂− ∂rΨ̂

r

)
Ψ′`1

+

[
i∂rΘ̂S

′
` +

2i

1 + (κrS′`)2

(
S′′` −

2S′`(κrS′`)2

r

)(
∂2
r Ψ̂− ∂rΨ̂

r

)]
Ψ`1 .

(6.92b)

We notice that Eqs. (6.91) do not contain spatial derivatives of δ`1,Θ`1, so that

they form a system of ordinary differential equations for these functions. The

same is true for Eqs. (6.92) with respect to the functions δ`2,Θ`2.

To set up the initial conditions we use the asymptotic expansion for the Bessel

function at large order (Eq. (10.19.6) from13),

j`

(
`+1/2

cosβ

)
=

cosβ

(`+1/2)
√

sinβ

(
cos ξ+

1

8(`+1/2)

(
ctg β+

5

3
(ctg β)3

)
sin ξ+O(`−2)

)
,

(6.93)

13“Digital Library of Mathematical Functions,” http://dlmf.nist.gov .

http://dlmf.nist.gov
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where

ξ = (`+ 1/2)(tg β − β)− π/4 . (6.94)

Substituting this into (6.38) and comparing with the WKB Ansatz (6.87) we find

the initial conditions at η → −∞,

S` =
1

κ

[√
(κr)2 − 1− arccos

1

κr

]
, (6.95a)

δ`1 = Θ`1 = −Ψ`1 =
eη

`+ 1/2
· 2π
√
κr [(κr)2 − 1]1/4

· e−iπ/4 , (6.95b)

δ`2 = Θ`2 = −Ψ`2 =
eη

`+ 1/2
· πκ

4
√
κr

(
1

[(κr)2 − 1]3/4
+

5

3[(κr)2 − 1]7/4

)
· e−i3π/4 .

(6.95c)

Equation (6.90) with the initial conditions (6.95a) is readily solved giving

S` =
1

κ

[√
(κR)2 − 1− arccos

1

κR

]
. (6.96)

We observe that in the large-` limit the function S` becomes universal (`-independent).

The WKB approximation is valid as long as

S′′` /(S
′
`)

2 � k (6.97)

which is equivalent to

|κR− 1| � (`+ 1/2)−2/3 . (6.98)

Next, Eqs. (6.91) for the first-order WKB coefficients can be integrated numer-

ically along the flow lines (i.e. at fixed R) starting from the initial conditions

(6.95b). We will see shortly that the functions δ`1, Θ`1 need to be evaluated

only in the vicinity of the flow line R = R∗ corresponding to the boundary

of the spherical region that collapses to the cell of radius r∗ at the final time.

Knowing Θ`1, one finds Ψ`1 by Eq. (6.88a) and inserts it in the r.h.s. of (6.92).

Finally, Eqs. (6.92) are integrated at fixed R starting from the initial configura-

tion (6.95c). Again, we will need δ`2, Θ`2 only at R∗. Notice that the r.h.s. of

(6.92) involves the radial derivative Ψ′`1. Thus, evaluating the first-order func-

tions precisely at R∗ would be insufficient: one needs to know them in a small

vicinity of this point14.

The factor (`+ 1/2)−1 in the initial conditions (6.95b), (6.95c) implies that the

WKB solution is suppressed in the limit `→∞. This leads to a suppression of

14Alternatively, one can take radial derivatives of Eqs. (6.91) and in this way obtain a system
of ordinary differential equations for δ′`1, Θ′`1. Then Ψ′`1 is computed from Θ′`1 by using the
radial derivative of Eq. (6.88a).
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the sources Υδ,Θ appearing on the r.h.s. of Eqs. (6.55) and hence a suppression of

the response matrix Q`. Then the fluctuation determinant can be approximated

using the trace formula,

D` ≈ exp
(

2λ̂TrPQ`

)
, (6.99)

and for its calculation it suffices to focus on the diagonal elements of the response

matrix Q`(k, k). The sources for these elements are obtained by substituting the

WKB solution with a single wavenumber k into (6.43). For the first source this

yields,

Υδ =
1

4π

[
iS′`
k
δ`1Ψ`1 +

1

k2

(
δ`1Ψ′`1 + iS′`δ`1Ψ`2 + iS′`δ`2Ψ`1

)]
ei2kS`

+
1

4πk2

(
δ∗`1Ψ′`1 + iS′`δ

∗
`1Ψ`2 + iS′`δ

∗
`2Ψ`1

)
+ h.c.

(6.100)

The term in the first line is quickly oscillating. In the eventual integral over k

that appears in the Q`-trace it will average to zero. Neglecting it we get,

Υδ(r̂η) =
1

2πk2

[
δ̃`1

∂Ψ̃`1

∂R
+
∂S`
∂R

(δ̃`1Ψ̃`2 − δ̃`2Ψ̃`1)

]
∂R

∂r

∣∣∣∣
R∗

, (6.101a)

where the overline means averaging over the oscillations. Here we denoted by

tildes the functions with the complex phases stripped off15 and switched from

the Eulerian to the Lagrangian radial coordinate R. Similarly, for the source ΥΘ

we have,

ΥΘ(r̂η) =
1

2πk2

{[
Θ̃`1

∂Ψ̃`1

∂R
+
∂S`
∂R

(Θ̃`1Ψ̃`2 − Θ̃`2Ψ̃`1) +
2

(κr̂η)2
Ψ̃`1

∂Ψ̃`1

∂R

]
∂R

∂r

− 2

r̂η

(
∂S`
∂R

)2

Ψ̃2
`1

(
∂R

∂r

)2

− 1

κ2r̂3
η

Ψ̃2
`1

}∣∣∣∣
R∗

.

(6.101b)

These relations allow us to extract the asymptotic dependence of the response

matrix on ` and k. We first observe that k and ` appear in the dynamical

equations (6.91), (6.92) only in the combination κ. Together with the form

(6.95) of the initial conditions this implies that the coefficient function δ`1, δ`2

etc. have a universal dependence on κ, up to an overall factor (` + 1/2)−1.

This, in turn, implies that the sources (6.101) are functions of κ times an overall

factor k−2(`+ 1/2)−2. On general grounds, the matrix elements of Q` are linear

15In other words, δ̃`1 ≡ δ`1eiπ/4, δ̃`2 ≡ δ`2ei3π/4 and so on.
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functionals of the sources,

Q`(k, k) =

∫ 0

−∞
dη
(
Kδ(η)Υδ(r̂η, η; k, `) +KΘ(η)ΥΘ(r̂η, η; k, `)

)
, (6.102)

with some kernels K1,2 that do not depend on ` and k. This leads to the expres-

sion,

Q`(k, k) = k−2(`+ 1/2)−2q(κ) , (6.103)

where the function q depends only on the ratio (6.85).

We can now collect the contributions of all high-` multipoles to the prefactor,

Ahigh−` = exp
[
− 2λ̂

∑
`

(`+ 1/2)TrQ`P
]

= exp

[
− 2λ̂

∫
dκ q(κ)

∑
`

(2π)−3P
(
κ(`+ 1/2)

)]
.

(6.104)

The sum over ` converges as long as the power spectrum falls down faster than

k−1 in the UV, which coincides with the condition for the convergence of the

1-loop corrections in the standard cosmological perturbation theory. One can

show that q(κ) ∝ κ−2 at large values of κ (see below), so the integral over κ will

converge as well. Still, the expression (6.104) receives large contributions from

unphysical UV modes and must be renormalized just like the 1-loop correction

to the power spectrum is renormalized in EFT of LSS. We will return to this

issue in Sec. 6.5.2.

Let us discuss the lower limit of integration in (6.104). From the arguments of

the beginning of this section we know that q(κ) = 0 for κR∗ < 1, so the integral

in (6.104) should be taken from κ = R−1
∗ to infinity. The WKB result for the

function q(κ) and hence for the integral is valid at

κ > (1 + ε)/R∗ , ε� `−2/3 . (6.105)

One would like to extend the WKB expression for the integral down to κ = R−1
∗

hoping that the error made in the region 1 < κR∗ < 1 + ε is small. However,

here we encounter a problem. The expressions (6.95b), (6.95c) imply that the

functions δ`1, δ`2, etc. have a singular behavior at κ → R−1
∗ . Due to the locality

of Eqs. (6.91), (6.92) this singularity survives the time evolution and gives rise to

singular terms in the sources (6.101) behaving as [(κR∗)2 − 1]−3/2. Further, the

representation (6.102) implies that the singularity is inherited by the function

q(κ), so its integral actually diverges at the lower limit as ε−1/2. As shown

in Appendix F of Ref. [9], this is an artifact of the WKB approximation and
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the divergence is canceled by a boundary term produced by the integral over the

interval (1−ε)/R∗ < κ < (1+ε)/R∗ which is not captured by the WKB method.

The net result is that an integral of q(κ) with a smooth function ϕ(κ) should

be understood as

−
∫
dκ q(κ)ϕ(κ) = lim

ε→0

(∫ ∞
(1+ε)/R∗

dκ q(κ)ϕ(κ)− 2C√
ε

)
, (6.106)

with

C = R−1
∗ ϕ(R−1

∗ ) lim
κ→1/R∗

[κR∗ − 1]3/2 q(κ) . (6.107)

A numerically efficient way to evaluate this integral is described in Appendix F

of Ref. [9]. In the next section we will see that the WKB approximation becomes

accurate for orbital numbers ` ≥ 9.

Before closing this section, let us discuss the limit κ → ∞, corresponding to

k � (` + 1/2)/r∗. In this limit all the above formulas greatly simplify. From

Eq. (6.96) we get S` = R. Also κ drops off the equations (6.91), (6.92) for the

coefficient functions. In the initial conditions (6.95b), (6.95c) κ factors out, so

that all coefficient functions become simply proportional to 1/κ. This translates

into the following asymptotics of the function q(κ),

q(κ) =
q∞
κ2

, at κ � 1/R∗ . (6.108)

Alternatively, for the diagonal elements of the response matrix we obtain

Q`(k, k) =
q∞
k4

, at k � (`+ 1/2)/R∗ . (6.109)

Note that this high-k asymptotics is `-independent. Although it has been derived

under the assumption of large `, one can show that in fact it holds for any16 `,

including ` = 0. Thus, we can determine q∞ using the exact expression for the

response matrix in the monopole sector. Comparing (6.109) to (G.33) we get,

q∞ =
6π

R4
∗

(
− 3Ê

Ĉ3
+

1

Ĉ2(1 + δ∗)

)
, (6.110)

where Ĉ, Ê are defined in (5.29), (G.32) respectively. We have verified that the

numerically computed function q(κ) satisfies the asymptotics (6.108) with q∞

from (6.110) with very high precision.

16To obtain (6.109) at arbitrary fixed ` and k → ∞, one can use a slightly modified version
of the WKB expansion based on the asymptotics of Bessel functions at large arguments.
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6.5 Aspherical prefactor: results

6.5.1 Evaluation of fluctuation determinants

In this section we present the results obtained by a fully-nonlinear numerical

calculation of the aspherical prefactor. We follow the algorithm discussed in

Sec. 6.2.3: compute the linear aspherical fluctuations on the grid, use them to

build the sources ΥΘ,δ, solve the ODE’s governing the time evolution of the re-

sponse matrix, and finally compute the fluctuation determinants. For the dipole

sector we have implemented the IR safe algorithm discussed in Sec. 6.3.2. The

details of our numerical procedure are presented in Appendix H. We have eval-

uated the aspherical prefactor both in the EdS approximation and for the exact

ΛCDM cosmology and found that the results agree within one percent accuracy.

This is consistent with the fact that the departures from EdS appear only at

late times. However, at this stage the coupling of the fluctuations to the local

spherical collapse background already dominates the effect of the cosmological

expansion, so the effect of the cosmological constant is suppressed. In what

follows we display the results obtained within the EdS approximation.

Figure 6.3 shows individual contributions of different multipoles to the aspherical

prefactor. We fix the cell size to r∗ = 10 Mpc/h; the results for r∗ = 15 Mpc/h

are similar. The most significant contribution comes from the dipole sector and

is shown in the upper left panel. We observe that it is a decreasing convex

function that changes by a factor ∼ 0.2 between δ∗ = −0.9 and δ∗ = 9. At large

δ∗ the curve flattens out. The contributions of the multipoles with 2 ≤ ` ≤ 5

and 6 ≤ ` ≤ 9 are shown in the upper right and lower left panels respectively.

These curves are quite different from the dipole: their deviation from unity in

the explored δ∗-range is only ∼ 40% for the quadrupole and even less (. 10%) for

the higher multipoles. The variation of A` decreases with the multipole number.

Note that in the case of overdensities (δ∗ > 0) all A` are less than 1 which is

consistent with the expectation that any aspherical fluctuation makes collapse

less efficient. On the other hand, at underdensities the partial contributions A`
can be both larger or smaller than unity, depending on the value of `.

The aggregate contribution of all sectors with ` > 9 is shown in the lower right

panel of Fig. 6.3. It has been evaluated using the WKB formula (6.104). We test

the validity of the WKB approximation by comparing it to the results of the full

numerical routine in Fig. 6.4. The comparison is performed for ` = 5 (left panel)

and ` = 9 (right panel). For ` = 5 there is a significant difference between the full
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Figure 6.3: The prefactor of aspherical fluctuations in different orbital
sectors. Upper left panel: the dipole (` = 1) sector. Upper right panel:
` = 2, 3, 4, 5 sectors. Lower left panel: ` = 6, 7, 8, 9 sectors. Lower right
panel: the cumulative prefactor for orbital numbers ` > 9 computed in the

WKB approximation. All results are shown for r∗ = 10 Mpc/h.

calculation and the WKB approximation at strong underdensities. At overden-

sities the WKB approximation exhibits spurious wiggles that can be traced back

to the baryon acoustic oscillations in the power spectrum17. However, already

for ` = 9 the WKB approximation is in perfect agreement with the full result.

We have checked that the relative error introduced in the aggregate contribution

of ` > 9 by the use of the WKB approximation does not exceed 10−3. Given

that this contribution itself is small compared to that of lower multipoles, the

error in the whole prefactor is negligible.

The total result for the aspherical prefactor obtained upon multiplying the con-

tributions of all ` ≥ 1 is shown in Fig. 6.5, where it is compared with the prefactor

extracted from the N-body data (see Sec. 5.2.2). One observes a good qualitative

agreement between the theoretical curve and the data. However, there is a clear

quantitative discrepancy which grows towards the edges of the δ∗-interval. The

discrepancy is somewhat bigger for r∗ = 10 Mpc/h than for r∗ = 15 Mpc/h and

17The WKB formula (6.104) has an enhanced sensitivity to the shape of the power spectrum
at k ∼ (`+ 1/2)/R∗ due to the sharp increase of the function q(κ) in the vicinity of the point
κ = 1/R∗. This unphysical sensitivity disappears for higher multipoles.
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Figure 6.4: Comparison between the WKB approximation and the full nu-
merical calculation for ` = 5 (left panel) and ` = 9 (right panel). The results

are shown for r∗ = 10 Mpc/h.
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Figure 6.5: The aspherical prefactor computed from fluctuation determi-
nants (solid blue curve) against that extracted from the N-body simulations
(black dots). The cell radii are r∗ = 10 Mpc/h (left panel) and r∗ = 15 Mpc/h

(right panel).

reaches 30% (100%) for underdense (overdense) tail. We interpret this discrep-

ancy as the effect of short-scale physics that is not captured by the perfect-fluid

hydrodynamics. In the next subsection we show how our results can be improved

by renormalizing the contributions of short-scale modes.

Let us make a comment. The fact that the fluctuation determinants found in our

calculation are always positive provides a consistency check of the saddle-point

approximation developed in Sec. 5.1. In particular, it shows that there are no

other saddle points of the path integral (5.5) that would branch off the spherical

collapse dynamics at any value of δ∗ within the considered range. Indeed, if it

were the case the spectrum of fluctuations around the spherical collapse at this

value of δ∗ would contain a zero mode, and hence at least one of the determinants

D` would vanish, which is not observed.
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6.5.2 Renormalization of short-scale contributions

Up to this point we have worked within pressureless perfect fluid hydrodynamics,

which is known to break down at short scales. This introduces an error in our

calculation that must be corrected. A similar issue arises in the perturbative

calculation of the density correlation functions in the homogeneous background

where a systematic way to take into account the corrections due to UV modes is

provided by introduction of counterterms in the hydrodynamics equations. These

counterterms are constructed as a double expansion in the number of spatial

derivatives acting on the fields and in the powers of the density contrast [34].

We have encountered this procedure in Sec. 6.1 where we made contact between

the calculation of the prefactor at small density contrast and the calculation of

1-loop corrections to the power spectrum. At that level the sensitivity to the

short-scale physics reduced to a single counterterm γ(z), see Eq. (6.17).

The situation is more complicated at large density contrasts δ∗ which we are

interested in now. In this case, the evaluation of the aspherical prefactor can

be viewed as a 1-loop calculation in the non-trivial background of the spherical

collapse solution. Then the counterterm is, in general, a functional of the back-

ground, restricted by the symmetries of the problem, but otherwise arbitrary. It

is impossible to rigorously fix its form without going beyond the EFT framework.

In what follows we consider two schemes for renormalization of the aspherical

prefactor that are based on reasonable physical assumptions. The difference be-

tween the two models should be treated as an intrinsic theoretical uncertainty

of our current determination of AASP due to the lack of control over the UV

physics.

We start by analyzing the UV sensitivity of the aspherical prefactor. The con-

tribution of modes with k > kUV � 1/r∗, ` � 1 is described by the WKB

expression (6.104). The sum over ` in the exponent can be rewritten as an

integral,∫ ∞
kUV

dkP (k)

(2π)3

∑
`

1

`+ 1/2
q

(
k

`+ 1/2

)
'
∫ ∞
kUV

dkP (k)

(2π)3
−
∫

d`

`+ 1/2
q

(
k

`+ 1/2

)
=

∫ ∞
kUV

dkP (k)

(2π)3
−
∫
dκ
κ

q(κ) . (6.111)

We observe that the integral over momenta and the background dependence

contained in the function q factorize. In other words, all high-k modes contribute

into AASP in a universal way. Of course, this is true only within the domain of

validity of the formula (6.104) which neglects the interaction among the short
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Figure 6.6: The counterterm prefactor for model 1 (left panel) and model
2 (right panel) evaluated for γ0 = 1.5 (Mpc/h)2, z = 0 and cell radii r∗ = 10

Mpc/h and r∗ = 15 Mpc/h.

modes and the departures from the hydrodynamic description. Precisely because

of this inaccuracy, the integral over k in (6.111) should be renormalized.

The integral in (6.111) is proportional to the high-k contribution into the velocity

dispersion

σ2
v ≡

1

6π2

∫
dk P (k) . (6.112)

The same integral arises in the 1-loop correction to the power spectrum (see

(6.22)) where it is renormalized by the substitution∫
dkP (k)

(2π)3
7→
∫
dkP (k)

(2π)3
+

315

122π

γ(z)

g2(z)
. (6.113)

We saw in Sec. 6.1.2 that this substitution also works for the aspherical pref-

actor at small δ∗. Our first model for the renormalization of AASP is obtained

by extending the prescription (6.113) to finite values of δ∗. It corresponds to

an assumption that the main effect of renormalization in all quantities is the

replacement of the tree-level velocity dispersion of high-k modes with its renor-

malized value18. For the redshift dependence of the counterterm we will use the

scaling-universe approximation, as we did in Sec. 6.1.2. In this way we arrive at

the following expression for the counterterm prefactor,

Actr1 = exp

(
−315γ0

122π

(
g(z)

)− 2(n+1)
n+3 × 2λ̂

∫
dκ
κ
q(κ)

)
, (6.114)

where γ0 is the 1-loop counterterm from the power spectrum and n is the slope

of the power spectrum at the mildly non-linear scales. For numerical estimates

18This assumption is supported by the observation [150] that the N-body data for bispectrum
are well fitted by the EFT formula without any additional counterterms beyond γ (“0-parameter
fit” in [150]). Inclusion of further independent counterterms allowed by the EFT framework
does not significantly improve the quality of the fit.
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Figure 6.7: Upper panels: The aspherical prefactor in model 1 (dashed red
curve) against the N-body data (black dots) for cell radii r∗ = 10 Mpc/h (left
panel) and r∗ = 15 Mpc/h (right panel) at z = 0. The aspherical prefactor
without the counterterm is reproduced for comparison (solid blue curve). Lower
panels: Residuals for the PDF extracted from the N-body data compared to
our theoretical prediction at several redshifts for r∗ = 10 Mpc/h (left panel)

and r∗ = 15 Mpc/h (right panel).

we will use γ0 = 1.5 (Mpc/h)2, n = −1.5. The final answer for the aspherical

prefactor is given by the product of (6.114) with the contribution obtained from

the fluctuation determinants and described in the previous subsection. We will

refer to the aspherical prefactor calculated using the counterterm (6.114) as

“model 1”.

The counterterm prefactor (6.114) is plotted in the left panel of Fig. 6.6. We

see that it captures the main qualitative features: it has a zero derivative at

the origin where we expect the impact of shell-crossing to be negligible, and

suppresses the probability for big under- and overdensities. In the upper panels

of Fig. 6.7 we plot the aspherical prefactor in model 1 against the data. The

aspherical prefactor without the counterterm is also shown for comparison. In the

lower panels of Fig. 6.7 we show the residuals between the PDF measured from

the N-body data and our theoretical template for several values of redshift. One

observes a good agreement between the theory and the data. For r∗ = 10 Mpc/h

the residuals are at sub-percent level in the range −0.6 < δ∗ < 1. They degrade

to 10% at −0.8 < δ∗ < −0.6 and 1 < δ∗ < 3. Eventually they increase to ∼ 30%
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Figure 6.8: Upper panels: The aspherical prefactor in model 2 (dashed red
curve) against the N-body data (black dots) for cell radii r∗ = 10 Mpc/h (left
panel) and r∗ = 15 Mpc/h (right panel) at z = 0. The aspherical prefactor
without the counterterm is reproduced for comparison (solid blue curve). Lower
panels: Residuals for the PDF extracted from the N-body data compared to
our theoretical prediction at several redshifts for r∗ = 10 Mpc/h (left panel)

and r∗ = 15 Mpc/h (right panel).

at the tails. Overall, the agreement is slightly better for the underdensities than

for the overdensities. Similar trends are observed for r∗ = 15 Mpc/h, though the

precision of the N-body data is too low to see them unambiguously. It is worth

noting that on general grounds one expects the effects of the UV physics to be

weaker for larger cells.

As clear from Fig. 6.7, the model 1 systematically underestimates the aspheri-

cal prefactor for underdensities and overestimates for overdensities. This can be

attributed to the following deficiency. We have taken the counterterm γ to be

independent of δ∗. On the other hand, one expects the overdense regions to be

more non-linear than the underdense ones, so that the effects of UV renormal-

ization encapsulated by γ should be larger (smaller) at δ∗ > 0 (δ∗ < 0) than at

δ∗ = 0. Comparing this with the formula (6.114) one sees that qualitatively such

a dependence would act in the right direction to improve the agreement between

the theory and the data.

To estimate a possible effect of the δ∗-dependence of γ, we use the following
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crude model. We approximate the spherical collapse solution by top-hat den-

sity profile with the final under-/over-density δ∗. Treating such a profile as an

open/closed separate universe, we replace the counterterm and the growth fac-

tor in Eq. (6.113) by γ(δ∗, z) and D(δ∗, z) — the counterterm and the growth

factor in the separate universe. The latter is derived in Appendix G.4. To esti-

mate γ(δ∗, z) we again use the power-law approximation for the power spectrum

and obtain γ(δ∗, z) ∝
(
D(δ∗, z)

) 4
n+3 . All in all, this leads to the replacement of

g(z) in the counterterm prefactor (6.114) by the density-dependent growth fac-

tor D(δ∗, z). Using the explicit expression for the latter, Eq. (G.39), we obtain

model 2 for the counterterm,

Actr2 = exp

(
−315γ0

122π

( g(z)

F ′(δ∗)(1 + δ∗)

)− 2(n+1)
n+3 × 2λ̂

∫
dκ
κ
q(κ)

)
, (6.115)

This counterterm prefactor is shown in the right panel of Fig. 6.6. Compared to

the model 1, it gives less suppression at underdensities and stronger suppresses

overdensities. In the upper panels of Fig. 6.8 we compare the aspherical prefactor

in model 2 with the N-body data and the prefactor without the counterterm. In

the lower panels of Fig. 6.8 we show the residuals between the PDF measured

from the N-body data and our theoretical template for z = 0, 0.7, 4. One

observes an excellent agreement between the theory and the data within the

precision of the latter. This is striking given the crudeness of the model.

We leave a detailed investigation of the counterterms in the spherical collapse

background for future and propose to treat the difference between the models 1

and 2 as a proxy for the theoretical uncertainty. Notice that this uncertainty esti-

mate is internal to the theoretical approach and does not require any comparison

with N-body simulations. We also emphasize that none of the two counterterm

models proposed in this section introduces any additional fitting parameter, as

the coefficient γ0 entering in Eqs. (6.114), (6.115) must be the same as the one

measured from the dark matter power spectrum.



Chapter 7

Summary of Part II

In the second part of this thesis we computed the 1-point probability distribution

function (PDF) of the cosmic matter density field in spherical cells. Our approach

makes use of the path integral description of large-scale structure. We identified

the saddle point of the path integral that corresponds to the spherical collapse

dynamics and yields the leading exponent of the PDF. Then we computed the

prefactor given by the determinant of the quadratic fluctuations around the

saddle-point solution. This can be viewed as a 1-loop calculation in perturbation

theory around a fully non-linear background.

We showed that the prefactor factorizes into the contributions of fluctuations

in different multipole sectors and evaluated the monopole contribution exactly.

Next we considered the contribution of fluctuations with ` > 0 which we called

‘the aspherical prefactor’ AASP. We demonstrated that it is crucial for the con-

sistency of the PDF, in particular, for ensuring that the mean density contrast

evaluated using the PDF vanishes. Our final formula for the 1-point PDF has

the form,

P̄ (δ∗) = AASP(δ∗)
Ĉ(δ∗)√
2πg2σ2

R∗

e
− F2(δ∗)

2g2σ2
R∗ , (7.1)

where g(z) is the linear growth factor, σR∗ is the linear density variance at

z = 0 filtered at the Lagrangian radius R∗ = r∗(1 + δ∗)
1/3, F (δ∗) is the linear

overdensity corresponding to δ∗ through the spherical collapse mapping, and the

function Ĉ(δ∗) is defined by the formula (5.29).

We computed the aspherical prefactor using several techniques. First, we treated

the background perturbatively, which allowed us to capture the correct shape of

the prefactor for small averaged densities. Second, we computed the partial con-

tributions to the prefactor from sectors with high orbital numbers treating the
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Figure 7.1: 1-point probability distribution function computed in this work
(blue band) against that extracted from our N-body data (black dots). The
results are presented for redshift zero, z = 0, and two cell radii, r∗ = 10 Mpc/h
(left panel) and r∗ = 15 Mpc/h (right panel). The width of the theoretical band
is set by the uncertainty in modelling the short-distance physics; it exceeds the

line width only at the tails of the distribution.

background non-perturbatively. We showed that this limit allows one to use the

WKB technique, which made possible a semi-analytic treatment of the problem.

Finally, we developed a numerical procedure for a fully non-linear computation

of the aspherical determinant on the grid. This procedure includes analytic

factorization and cancellation of the so-called ‘IR-divergences’ — spurious en-

hanced contributions that appear in the dipole sector and are associated with

large bulk flows. We implemented this procedure in an open-source Python code

AsPy available at the following link.

We compared the results of our computation to the N-body data. Despite a

qualitative agreement, we observed a sizable quantitative discrepancy, which we

attributed to the failure of the pressureless fluid approximation at short scales.

We proposed two models for renormalization of the short-scale contributions

in the spirit of the EFT of LSS. The two models agree at the percent level

at moderate density contrasts and deviate by at most 30% at the tails of the

distribution. We have suggested to use the difference between the two models

as an estimate of the theoretical uncertainty of our approach stemming from the

lack of control over the short-distance physics.

The resulting theoretical PDFs for cells with radii r∗ = 10 Mpc/h and 15 Mpc/h

at z = 0 are shown against N-body data in Fig. 7.1. The lines corresponding

to the two counterterm models are almost indistinguishable. We see that the

theory and the data are in excellent agreement. The theoretical uncertainty is

smaller for the larger radius, which is consistent with the expectation that the

UV effects should be suppressed at large distances.

https://github.com/Michalychforever/AsPy
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The 1-point PDF has a very distinctive sensitivity to the dynamics and initial

statistics of the matter density perturbations. One observes from Eq. (7.1) that

the dependence of the PDF on the filtered linear density variance gσR∗ factorizes.

By varying δ∗ one effectively changes the filtering radius, and thus probes the

variance of the density field at different scales. Going to the underdense tail

allows one to test the linear power spectrum at very small Lagrangian radii, i.e.

at the scales which are beyond the regime of validity of the standard cosmological

perturbation theory.

We have shown that the prefactor in (7.1) has only a weak dependence on cosmol-

ogy. Thus, any variation of the cosmological parameters or extension of ΛCDM

is expected to affect the PDF primarily through the leading exponent. Even a

small change in the growth factor or the linear variance can have a strong effect

on the PDF. On the other hand, the sensitivity to the non-linear dynamics at

leading order is encoded in the spherical collapse mapping F (δ∗). It will be in-

teresting to understand to which extent this property of the 1-point PDF can be

used to constrain non-standard dark matter scenarios or modifications of gravity.

The expansion parameter in our approach is the linear density variance smoothed

at the scale of the window function. Thus, corrections to our result for the

aspherical prefactor are expected to scale as O
(
(gσr∗)

2
)
, c.f. Eq. (5.8). On the

other hand, our comparison with the N-body data has not revealed any presence

of such corrections for (gσr∗)
2 as large as ∼ 0.5 (for z = 0, r∗ = 10Mpc/h,

see Table 5.1). This indicates that the coefficient in front of the correction

is suppressed. Nevertheless, as one decreases the cell radius, the corrections

will grow and eventually the ‘semiclassical’ approximation is expected to break

down. Another limitation of our method in its present form is its reliance on the

existence of an analytic spherical collapse saddle-point solution. As discussed

in Sec. 5.1.2, this assumption is actually violated for large overdensities δ∗ & 7

where the saddle-point solution exhibits shell crossing. Remarkably, the N-body

data still obey the ‘semiclassical’ scaling up to the maximal value δ∗ = 9 that we

were able to explore. We have interpreted it as a consequence of the slow signal

propagation in dark matter which implies that the information about the shell

crossing in the inner part of the density profile does not have enough time to

reach the boundary of the cell. However, an extension to yet higher overdensities

will likely require a modification of the semiclassical method to properly take the

shell crossing into account, cf. [96]. It would be highly instructive to map the

domain of validity of the ‘semiclassical’ formula (7.1) in the space of cell radii

r∗ and densities δ∗ using high-precision counts-in-cells statistics obtained from

state of the art cosmological simulations.
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Let us briefly comment on the relation between the PDF derived in this work

and the log-normal distribution that has been widely used in the literature to

model the counts-in-cells statistics. As discussed in Appendix I, the success of

the log-normal model does not appear to have any physical meaning, but is a

consequence of an accidental conspiracy between the spherical collapse dynamics

and the shape of the power spectrum in our universe, that makes the combination

F (δ∗)/σR∗ entering in the exponent of (7.1) look similar to ln(1 + δ∗)/σln, where

σln is the log-density variance. A change of the slope of the power spectrum

would destroy this conspiracy. Even for the standard ΛCDM the approximation

of F/σR∗ by the logarithm does not work for large under- and over-densities.

Moreover, the log-normal model does not incorporate the correct prefactor. As

a result, it significantly deviates from the N-body data in the tails of the distri-

bution (cf. Refs. [81, 91]).

Before concluding, we summarize several key features of our approach:

1. It clearly separates the leading exponent from the prefactor. This allows

us to keep the saddle-point expansion under control and disentangle the

cosmology-dependent effects from those of non-linear clustering.

2. We use the exact ΛCDM mapping for spherical collapse. This is crucial

for the accuracy of our calculation, as the PDF is exponentially sensitive

to the mapping.

3. It explicitly takes into account aspherical fluctuations along with the contri-

butions beyond the single-stream pressureless perfect fluid approximation.

4. It is based on the first principles and does not introduce any fitting param-

eters.

5. It provides an intrinsic estimate of the theoretical uncertainty that does

not require an input from the N-body data.

6. It increases the range of agreement between the analytic theory and N-body

simulations compared to previous approaches.

In this thesis we have studied the simplest case of non-perturbative cosmologi-

cal statistics: 1-point PDF of dark matter in real space for Gaussian adiabatic

initial conditions. Applications to realistic observations, such as galaxy surveys,

Lyman-α forest or 21 cm intensity mapping will require extension of the method

to the biased tracers in redshift space. Another line of research is the statistics

of the 2-dimensional projected density field and weak lensing convergence. Last
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but not least, a generalization to the 2-point PDF will be very interesting as a

way to probe the primordial non-Gaussianity.



Chapter 8

Concluding remarks

In this thesis we developed several analytic tools to describe the formation of cos-

mological large-scale structure. We mainly focused on two questions: non-linear

evolution of baryon acoustic oscillations (BAO) and counts in cells statistics of

the matter density field. Both questions were addressed using the path integral

formalism, which has proven to be an extremely efficient tool in many areas

of science ranging from economics to mathematical physics. We have shown

that the path integral formulation of large-scale structure allows one to build a

consistent and systematic framework that encompasses both perturbative and

non-perturbative aspects of structure formation. The analytic tools developed

in this thesis helped us explore the resummation of IR contributions relevant for

the accurate description of the BAO and the probability distribution function of

the spherically averaged matter density field. We hope that these tools will also

find broad applications in other areas related to large-scale structure. Below we

summarize main results as they appear in the thesis.

We have developed a systematic procedure to resum enhanced infrared (IR) con-

tributions that are present in cosmological perturbation theory. A resummation

of these contributions is required to capture the non-linear deformation of the

BAO pattern due to bulk motions. The corresponding procedure is called ‘IR

resummation’. We have shown that time-sliced perturbation theory (TSPT) pro-

vides an optimal framework for this task: the building blocks of this formalism

are explicitly IR finite and therefore reveal a transparent IR structure of cosmo-

logical perturbation theory. We built a new method that allowed one to identify

and resum the contributions affecting the BAO to any desired level of accuracy.

Most importantly, this method has a simple and intuitive diagrammatic repre-

sentation. We introduced power counting rules that allowed us to easily estimate
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the contribution of each diagram in the perturbative expansion. This way one

can clearly spot all the diagrams relevant at a given order of precision and resum

them to all orders in perturbation theory. Moreover, our power-counting rules

give an estimate of the theoretical error at each step of IR resummation. This

allowed us to perform IR resummation for arbitrary n-point correlation function

of matter and biased tracers at leading order in the IR corrections and to all

orders in hard loops. We computed, for the first time, the next-to-leading IR

corrections to the matter power spectrum and argued that they can be relevant

given the accuracy level required by future surveys. The next-to-leading order

soft corrections are also important for the robust estimation of the non-linear

shift of the baryon acoustic peak in position space. Our results agree very well

with the output of N-body simulations. The theoretical template obtained in this

study has been used in the eBOSS data analysis of the BAO in the distribution

of quasars [6].

We have also incorporated the effects of redshift space distortions. This has

been done via a new method that allows one to map cosmological correlation

functions from real to redshift space. This mapping preserves a transparent

IR structure of the theory and retains advantageous properties of TSPT, such

as IR finiteness and a simple diagrammatic representation. This allowed for

an accurate description of the BAO by means of a systematic resummation of

Feynman diagrams akin to the one used in the case of real space.

We expect that the path integral formulation of cosmological perturbation theory

pursued in this thesis will also help to ameliorate our understanding of the UV

counterterms required to properly account for the effects of short-scale physics.

We leave this question for future study.

The second part of the thesis was devoted to counts in cells statistics. There we

performed a non-perturbative calculation of the 1-point probability distribution

function (PDF) for the spherically-averaged matter density field. To accomplish

this task we represented the PDF as a path integral and evaluated it using the

steepest-decent method. We have explicitly found the saddle point of this in-

tegral that corresponds to the spherical collapse dynamics and determines the

leading exponent of the PDF. At a next step we used a combination of analytic

and numerical methods to evaluate the prefactor, which contains the contribu-

tion of aspherical fluctuations on top of the fully non-linear spherical collapse

background. We have also identified the sensitivity to the short-scale physics

and argued that it must be properly renormalized. We have argued that UV

renormalization of the aspherical prefactor requires the same UV counterterm
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as the one-loop matter power spectrum, hence our theoretical templates do not

have any free parameters whatsoever. Our approach is self-contained in the sense

that it also provides a way assess the theoretical uncertainty of the model. We

checked our theoretical predictions against the results of N -body simulations and

found an excellent agreement.

The final theoretical PDF splits into the prefactor and the leading exponent. The

leading exponent is sensitive to the initial distribution of the density field and

gives an extraordinary opportunity to probe the linear matter power spectrum

at the scales where perturbation theory is not applicable. On the other hand,

the prefactor contains some information on the n-point correlation functions,

and therefore provides us with a relatively simple way to test the density field

beyond the two-point statistics. We believe that our study will pave a way toward

a systematic investigation of non-perturbative statistics as potentially powerful

cosmological probes.



Appendix A

Conventions

In this Appendix we summarize our main notations and conventions. The Fourier

transform is defined as,

δ(x) =

∫
k
δ(k)eik·x , (A.1)

where the integration measure in momentum space is∫
k

=

∫
d3k

(2π)3
, (A.2)

and its generalization to multiple wavenumbers,

∫
k1...kn

=

∫ n∏
i=1

d3ki
(2π)3

. (A.3)

We also use the shorthand notation for the radial integral in momentum space,∫
[dk] =

∫ ∞
0

k2dk

(2π)3
, (A.4)

and its generalization to several wavenumbers,

∫
[dk]n =

∫ n∏
i=1

k2
i dki

(2π)3
, (A.5)

The power spectrum is defined as,

〈δ(k)δ(k′)〉 = (2π)3δ
(3)
D (k + k′)P (k) , (A.6)

where δ
(d)
D (k) is the Dirac delta-function in a d-dimensional space.
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We use the following notation for the sum of 3-dimensional wavenumbers:

k1...n = k1 + ...+ kn . (A.7)

We use the following definition for the spherical harmonics:

Y0(θ, φ) = 1 , (A.8a)

Y`m(θ, φ) =
(−1)`+m

2``!

[
2`+ 1

4π

(`− |m|)!
(`+ |m|)!

]1/2

eimφ(sin θ)|m|
(

d

d cos θ

)`+|m|
(sin θ)2`,

` > 0 , − ` < m < ` . (A.8b)

They obey the relations,

∆ΩY`m = −`(`+ 1)Y`m , Y`m(−n) = (−1)`Y`m(n) , Y ∗`m(n) = Y`,−m(n) ,

(A.9)

where ∆Ω is the Laplacian on a unit 2-dimensional sphere. All harmonics are

orthogonal and normalized to 1 when integrated over a 2d sphere, except the

monopole that has the norm 4π,∫
dΩY`m Y

∗
`′m′ = (4π)δ0`δ``′δmm′ , (A.10)

where δij is the Kronecker delta symbol. Note that our definition (A.8b) differs

by a factor (−1)
m−|m|

2 from the standard conventions1.

We expand the fields over spherical harmonics in position and Fourier space as,

δ(x) = δ0(r) +
∑
`>0

∑̀
m=−`

δ`m(r)Y`m(x/r) , (A.11a)

δ(k) = δ0(k) +
∑
`>0

∑̀
m=−`

(−i)` δ`m(k)Y`m(k/k) . (A.11b)

Due to the relations (A.9) we have,

(
δ`m(r)

)∗
=
(
δ`,−m(r)

)
,

(
δ`m(k)

)∗
=
(
δ`,−m(k)

)
. (A.12)

The coefficient functions in the above expansions are related by,

δ`m(r) = 4π

∫
[dk] j`(kr) δ`m(k) , (A.13)

1“Digital Library of Mathematical Functions,” http://dlmf.nist.gov.

http://dlmf.nist.gov
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where j`(x) is the spherical Bessel function of order `. It is related to the Bessel

function of the first kind via

j`(x) =

√
π

2x
J`+1/2(x) . (A.14)

The first few functions are,

j0(x) =
sinx

x
, j1(x) =

sinx

x2
− cosx

x
, j2(x) =

(
− 1

x
+

3

x3

)
sinx− 3

x2
cosx .

(A.15)

Spherical Bessel functions j`(kr) with different arguments k form an orthogonal

basis on the half-line with the normalization∫ ∞
0

dr r2j`(k
′r)j`(kr) =

π

2k2
δ

(1)
D (k − k′) . (A.16)

They are eigenmodes of the radial part of the Laplace operator,

∂2
r j`(kr) +

2

r
∂rj`(kr)−

`(`+ 1)

r2
j`(kr) = −k2j`(kr) . (A.17)



Appendix B

Asymptotic behavior of the Γn

vertices in the soft limit

In this Appendix we study in detail the form of the TSPT vertices with soft

legs in real and redshift spaces. We will omit the superscript (r) in sections

B.1,B.2,B.3 where we will discuss only real space quantities. Sec. B.4 is devoted

to the redshift space vertices. First, we derive the leading order expression (3.22).

Next, we extend the analysis to include the subleading corrections and obtain

Eq. (3.62), as well as the expression for the four-point vertex evaluated on the

modified linear power spectrum used in the derivation of Eq. (3.67).

B.1 Recursion relations for TSPT vertices

For convenience, we start by reviewing the main building of TSPT in the exact

dynamics (ED) and Zel’dovich approximation (ZA). Note that by ‘exact dynam-

ics’, as common in the LSS literature, we actually mean pressureless perfect fluid

hydrodynamics [1] without the EFT corrections. To define the building blocks

of TSPT one starts with the non-linear SPT kernels,

α(k1,k2) ≡ (k1 + k2) · k1

k2
1

, β(k1,k2) ≡ (k1 + k2)2(k1 · k2)

2k2
1k

2
2

. (B.1)

These are used to write down the recursion relations for the vertices Kn and Γ̄n

[1]. The seeds for these relation are K1 = 1 and Γ̄2 given by Eq. (2.17a). Higher
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vertices are different for ZA and ED. We have

ZA: K2(k1,k2) = sin2(k1,k2) ≡ 1− (k1 · k2)2

k2
1k

2
2

, (B.2)

ED: K2(k1,k2) =
4

7
sin2(k1,k2) . (B.3)

For n ≥ 3 the recursion relations read,

ZA:

Kn(k1, ...,kn) =
1

n

[ n∑
i=1

α
(
ki,

∑
1≤j≤n,j 6=i

kj

)
Kn−1(k1, ..., ǩi, ...,kn)

−
∑

1≤i<j≤n
I2(ki,kj)Kn−1(ki + kj ,k1, ..., ǩi, ..., ǩj , ...,kn)

]
,

(B.4a)

Γ̄n(k1, ...,kn) = − 1

n− 2

∑
1≤i<j≤n

I2(ki,kj) Γ̄n−1(ki + kj ,k1, ..., ǩi, ..., ǩj , ...,kn) ,

(B.4b)

and

ED:

Kn(k1, ...,kn) =
2

2n+ 3

[ n∑
i=1

α
(
ki,

∑
1≤j≤n,j 6=i

kj

)
Kn−1(k1, ..., ǩi, ...,kn)

−
∑

1≤i<j≤n
I2(ki,kj)Kn−1(ki + kj ,k1, ..., ǩi, ..., ǩj , ...,kn)

− 3

2

n−1∑
p=3

1

p!(n− p)!
∑
σ

Kp

(
kσ(1), ...,kσ(p)

)
Kn−p+1

( p∑
l=1

kσ(l),kσ(p+1), ...,kσ(n)

)]
,

(B.5a)

Γ̄n(k1, ...,kn) = − 1

n− 2

∑
1≤i<j≤n

I2(ki,kj)Γ̄n−1(ki+kj ,k1, ..., ǩi, ..., ǩj , ...,kn)

− 3

2(n− 2)

n−1∑
p=3

1

p!(n− p)!
∑
σ

Kp

(
kσ(1), ...,kσ(p)

)
Γ̄n−p+1

( p∑
l=1

kσ(l),kσ(p+1), ...,kσ(n)

)
.

(B.5b)

where

I2(k1,k2) =

2β(k1,k2) for ZA

2β(k1,k2) + 3
2K2(k1,k2) for ED

(B.6)

The notation ǩi above means that the momentum ki is absent from the argu-

ments of the corresponding function, and in the last lines of (B.5a), (B.5b) the
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summation is performed over all permutations σ of n indices.

B.2 Γn vertices in the soft limit: leading order

We split the arguments of the vertices into ‘hard’ momenta ki, 1 ≤ i ≤ m,

km = −
∑m−1

i=1 ki, that are are fixed and ‘soft’ momenta qj , which are sent

uniformly to zero,

qj = ε q̃j , ε→ 0 . (B.7)

To prove (3.22) we proceed by induction. Let us fix m ≥ 2 and assume that

Eq. (3.22) has been already proved for all m′ < m. Equation (3.22) holds trivially

for n = m. Now, suppose that it is valid for all n′ such that m ≤ n′ < n. Our

task is to show that it also holds for n.

We focus on the case of exact dynamics (perfect fluid hydrodynamics); the deriva-

tion for the Zel’dovich approximation can be recovered by simply ignoring all

contributions due to the Kn kernels. We will use the shorthand q ≡
∑n−m

j=1 qj .

It is convenient to decompose the Γ̄′wn into two pieces,

Γ̄wn = Γ̄wn,A + Γ̄wn,B , (B.8)

which correspond respectively to the first and second lines in the recursion rela-

tion (B.5b). Consider first Γ̄wn,A. We have,

Γ̄′wn,A(k1, ...,km − q,q1, ...,qn−m) =
−1

n− 2

[ ∑
1≤i<j<m

I2(ki,kj)Γ̄
′w
n−1(ki + kj , ..., ǩi, ..., ǩi, ...)

+
∑

1≤i<m
I2(ki,km − q)Γ̄′wn−1(ki + km − q, ..., ǩi, ..., ǩm − q̌, ...)

+
m−1∑
i=1

n−m∑
j=1

I2(ki,qj)Γ̄
′w
n−1(...,ki + qj , ..., q̌j , ...)

+

n−m∑
j=1

I2(km − q,qj)Γ̄
′w
n−1(...,km − q + qj , ..., q̌j , ...)

+
∑

1≤i<j≤n−m
I2(qi,qj)Γ̄

′w
n−1(...,qi + qj , ..., q̌i, ..., q̌j , ...)

]
.

(B.9)

Let us analyze the soft enhancement of various terms in this expression. The

vertex functions in the first two lines have n − m soft arguments, and hence,

by the induction assumption, are of order O(ε−n+m). On the other hand, the

vertices Γ̄′wn−1 in the last three lines have one soft argument less and thus are
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only O(ε−n+m+1). In the third and fourth lines this is compensated by the

enhancement of the kernels I2. Indeed,

I2(ki,qj) ≈
ki · qj
q2
j

= O(1/ε) . (B.10)

Finally, the kernel I2 in the last line of (B.9) is of order O(ε0) and thus this term

can be neglected in the leading approximation.

Keeping only contributions of order O(ε−n+m) we obtain,

Γ̄′w,LOn,A =
−1

n− 2

[ ∑
1≤i<j≤m

I2(ki,kj)Γ̄
′w
n−1(ki + kj , ...ǩi, ..., ǩj , ...)

+
n−m∑
j=1

(m−1∑
i=1

(ki · qj)
q2
j

Γ̄′wn−1(...,ki + qj , ..., q̌j , ...)

+
(km · qj)

q2
j

Γ̄′wn−1

(
...,km −

∑
l 6=j

ql, ..., q̌j , ...
))]

=
−1

n− 2

[ ∑
1≤i<j≤m

I2(ki,kj)Γ̄
′w
n−1(ki + kj , ...ǩi, ..., ǩj , ...)

+
n−m∑
j=1

Dqj Γ̄
′w
n−1(k1...,km −

∑
l 6=j

ql, ..., q̌j , ...)

]
,

(B.11)

where in passing to the second equality we substituted km = −
∑m−1

i=1 ki and

used

m−1∑
i=1

(ki · qj)
q2
j

[
Γ̄′wn−1

(
k1, ...,ki + qj , ...,km − q, ..., q̌j , ...

)
− Γ̄′wn−1

(
k1, ...,ki, ...,km −

∑
l 6=j

ql, ..., q̌j , ...
)]

= Dqj Γ̄
′w
n−1

(
k1, ...,ki, ...,km −

∑
l 6=j

ql, ..., q̌j , ...
)
.

(B.12)

Finally, inserting the expansion (3.22) for the vertices in (B.11) and using that

the operators Dqj commute with each other, we arrive at

Γ̄′w,LOn,A =
(−1)n−m

n− 2

n−m∏
l=1

Dql

[
−

∑
1≤i<j≤m

I2(ki,kj)Γ̄
′w
m−1(ki + kj , ...ǩi, ..., ǩj , ...,km)

+ (n−m)Γ̄′wm (k1, ...,km)

]
.

(B.13)



Asymptotic behavior of the Γn vertices in the soft limit 167

We now turn to the second piece in (B.8). By inspection of the second line

of (B.5b) one concludes that the terms of order O(ε−n+m) can arise only if all

(n − m) soft wavenumbers qj appear as the arguments of the vertex function

Γ̄wn−p+1 (recall that the kernels Kp do not depend on the wiggly power spectrum

and hence are not enhanced). The vertex must also depend on at least two hard

momenta, which implies that p cannot exceed m − 1. This yields for the LO

contributions,

Γ̄′w,LOn,B (k1, ...,km − q,q1, ...,qn−m) = − 3

2(n− 2)

m−1∑
p=3

1

p!(n− p)!
× (n−m)!Cn−mn−p

×
∑
σ

Kp(kσ(1), ...,kσ(p)) Γ̄′wn−p+1

(
p∑
l=1

kσ(l),kσ(p+1), ...,kσ(m) − q,q1, ...,qn−m

)
,

(B.14)

where, in contrast to (B.5b), we have replaced the summation over all permuta-

tions of the arguments by the sum only over permutations of the hard wavenum-

bers and accounted for the multiplicity of the retained terms with the appropriate

symmetry factor. Using Eq. (3.22) we obtain,

Γ̄′w,LOn,B =
3(−1)n−m

2(n− 2)

n−m∏
l=1

Dql

[
−
m−1∑
p=3

1

p!(m− p)!
∑
σ

Kp(kσ(1), ...,kσ(p))

× Γ̄′wm−p+1

(
p∑
l=1

kσ(l),kσ(p+1), ...,kσ(m)

)]
.

(B.15)

One notices that this expression, when combined with the first line of (B.13),

gives precisely the recursive formula for

(−1)n−m

n− 2

n−m∏
l=1

Dql

[
(m− 2)Γ̄′wm (k1, ...,km)

]
. (B.16)

Adding to this the second line of (B.13) yields (3.22). This is our final result. It

has the same form in ED and ZA.

B.3 Γn vertices in the soft limit: NLO

In this section we study the subleading corrections of order O(ε−n+3) to the ex-

pression (3.23). We carry out the derivation for ZA and ED in parallel. Whenever

there are differences between these two cases we will use indices (ZA) or (ED).
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Let us start with Γ̄′w3 . Expanding Eq. (3.13) in the soft wavenumber q and

keeping term up to O
(
(q/k)0

)
we obtain,

Γ̄′w,LO+NLO
3 (k,−k− q,q) = [Dq + Eq]

P̄w(k)

P̄ 2
s (k)

, (B.17)

where we introduced the new operator Eq defined as,

E(ZA)
q P̄w =

(
2 cos2(q,k)− 1 + 2 cos2(q,k)

(
1− ns(k)

)
eq·∇

)
P̄w ,

E(ED)
q P̄w =

(
E(ZA)
q +

6

7
sin2(q,k)

(
eq·∇ + 1

))
P̄w , ns ≡

d ln P̄s(k)

d ln k
.

(B.18)

As in the case of Dq, the operator Eq acts only on the wiggly power spectrum,

leaving all smoothly varying functions intact. Its action is of order O(1),

EqP̄w ∼ O(1)P̄w . (B.19)

A new structure appears when we consider the subleading expansion of Γ̄′w4 .

After a somewhat lengthy, but straightforward calculation using the recursion

relations (B.4b), (B.5b) one obtains,

Γ̄′w,LO+NLO
4 (k,−k− q1 − q2,q1,q2) = − [Dq1Dq2 +Dq1Eq2 +Dq2Eq1 + Fq1q2 ]

P̄w(k)

P̄ 2
s (k)

,

(B.20)

where

F (ZA)
q1q2 P̄w =

(q1 · q2)

q2
1q

2
2

[
(k · q1)eq1·∇(eq2·∇ − 1) + (k · q2)eq2·∇(eq1·∇ − 1)

]
P̄w ,

F (ED)
q1q2 P̄w =

[
F (ZA)
q1q2 +

3

7
sin2(q1,q2)Dq1+q2

]
P̄w .

(B.21)

This operator is of order O(ε−1). The expressions (B.17), (B.20) are special cases

of Eq. (3.62) from the main text for n = 3 and 4. We now prove Eq. (3.62) for

general n by induction.

Suppose that (3.62) holds for Γ̄′w,NLOn′ for any n′ < n. Assuming that all

qi go uniformly to zero as in (B.7), we will expand the vertex Γ̄′wn
(
k,−k −∑n−2

i=1 qi,q1, ..,qn−2

)
in powers of soft momenta and focus on the terms scal-

ing like ε−n+2 (leading order) and ε−n+3 (next-to-leading order). The terms of

the form Γn−p+1Kp in the recursion relation (B.5b) scale at most as ε−n+4 be-

cause the Kp kernels are infrared safe and cannot produce new poles. Hence, we
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concentrate on the part of the recursion relation (B.5b) with the Γ̄n−1 vertex,

Γ̄′wn (k,−k− q,q1, ..,qn−2) =
−1

n− 2

[
n−2∑
j=1

I2(k,qj) Γ̄′wn−1(k + qj ,−k− q, ..., q̌j , ...)

+

n−2∑
j=1

I2(−k− q,qj) Γ̄′wn−1(k,−k− q + qj , ..., q̌j , ...)

+
n−2∑
i,j=1
i<j

I2(qi,qj)Γ̄
′w
n−1(k,−k− q,qi + qj , ..., q̌i, ..., q̌j , ...)

]
+O(ε−n+4) ,

(B.22)

where we used the shorthand notation q =
∑n−2

i=1 qi. The hard argument of the

vertex in the first term in (B.22) is shifted by qj with respect to k. Thus, we have

to shift the argument in the expansion (3.62) for Γ̄′wn−1 and keep the subleading

terms in qj . Multiplying by I2(k,qj) Taylor-expanded up to zeroth order in qj

we obtain,

Aj ≡ I2(k,qj) Γ̄′wn−1(k + qj ,−k− q, ..., q̌j , ...) ≈ (−1)n−2

[
(k · qj)
q2
j

n−2∏
l 6=j
Dql

+
(k · qj)
q2
j

n−2∑
m6=j

(
Eqm +

(qj · qm)

q2
m

(eqm·∇ − 1)

)n−2∏
l 6=j,m
Dql +

(k · qj)
q2
j

n−2∑
m1<m2
m1,m2 6=j

Fqm1qm2

n−2∏
l 6=j,m1,m2

Dql

+

(
2(1− ns) cos2(k,qj) +

6

7
sin2(k,qj)

) n−2∏
l 6=j
Dql

]
eqj ·∇P̄w(k)

P̄ 2
s (k)

.

(B.23)

In the second term in (B.22) we can directly substitute Eq. (3.62) for Γ̄′wn−1 which

yields,

Bj ≡I2(−k− q,qj) Γ̄′wn−1(k,−k− q + qj , ..., q̌j , ...) ≈ (−1)n−2

[
− (k · qj)

q2
j

n−2∏
l 6=j
Dql

− (k · qj)
q2
j

n−2∑
m 6=j
Eqm

n−2∏
l 6=j,m

Dql −
(k · qj)
q2
j

n−2∑
m1<m2
m1,m2 6=j

Fqm1qm2

n−2∏
l 6=j,m1,m2

Dql

+

(
2 cos2(k,qj)− 1 +

6

7
sin2(k,qj)

) n−2∏
l 6=j
Dql −

n−2∑
m 6=j

(qm · qj)
q2
j

n−2∏
l 6=j
Dql

]
P̄w(k)

P̄ 2
s (k)

.

(B.24)



Asymptotic behavior of the Γn vertices in the soft limit 170

Together the above contributions sum up to

−1

n− 2

n−2∑
j=1

(Aj +Bj) =
(−1)n−1

n− 2

[
(n− 2)

n−2∏
l=1

Dql + (n− 2)
n−2∑
m=1

Eqm
n−2∏
l 6=m
Dql

+ (n− 4)
n−2∑

m1<m2

Fqm1qm2

n−2∏
l 6=m1,m2

Dql +
n−2∑
m<j

(qm · qj)
q2
mq

2
j

((
k · (qm + qj)

)
(e(qm+qj)·∇ − 1)

− 2(k · qm)eqm·∇ − 2(k · qj)eqj ·∇
) n−2∏
l 6=m,j

Dql

]
P̄w(k)

P̄ 2
s (k)

.

(B.25)

It remains to include the third term in (B.22). It is sufficient to consider only

the leading behaviour of the vertex, as I2(qi,qj) is an order-one function. We

obtain,

−1

n− 2

n−2∑
i<j

I2(qi,qj)Γ̄
′w
n−1(k,−k− q,qi + qj , ..., q̌i, ..., q̌j , ...)

≈ (−1)n−1

n− 2

n−2∑
i<j

[(
k · (qi + qj)

)
q2
i q

2
j

(e(qi+qj)·∇ − 1) +
6

7
sin2(qi,qj)Dqi+qj

] n−2∏
l 6=i,j
Dql

P̄w(k)

P̄ 2
s (k)

.

(B.26)

Combining this with (B.25) we obtain the representation (3.62) for Γ̄′wn . QED.

In Sec. 3.5 we used the NLO expression for the four-point vertex Γ̄′wn (k,−k,q,−q)

evaluated using the modified power spectrum e−g
2S P̄w. Let us derive this expres-

sion. As emphasized in the main text, it would be incorrect to just substitute

P̄w 7→ e−g
2S P̄w in the formula (B.20) because the combination D−qDq[e−g

2S P̄w]

involves terms containing the operator S with shifted argument. This shift gen-

erates additional NLO contributions that must be properly taken into account.

Indeed, we have,

Dq[e−g
2S P̄w](k) =

(k · q)

q2

(
e
−g2S

∣∣
k+qP̄w(|k + q|)− e−g

2S
∣∣
kP̄w(k)

)
= Dqe

−g2S
∣∣
kP̄w(k)− g2 (k · q)

q2
∆S
∣∣
q
e
−g2S

∣∣
k eq·∇P̄w(k) +O(ε) ,

(B.27)

where

∆S
∣∣
q

= 2

∫
q′≤kS

[dq′]P̄s(q
′)

(k · q′)(q · q′)
q′4

(
1− cosh(q′ · ∇)

)
. (B.28)
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Acting on (B.27) with D−q and again taking into account the shift in the argu-

ment of S in the first term we obtain the desired expression,

Γ̄′w4 (k,−k,q,−q)[e−g
2S P̄w] = −

[
DqD−q + EqD−q +DqE−q + Fq,−q

]e−g2S P̄w(k)

P̄ 2
s (k)

+ 4
(k · q)2

q4

∫
q′≤kS

[dq′]P̄s(q
′)

(k · q′)(q · q′)
q′4

sinh(q · ∇)
(
1− cosh(q′ · ∇)

)e−g2S P̄w(k)

P̄ 2
s (k)

.

(B.29)

This formula was used in the derivation of Eq. (3.67).

B.4 Asymptotic behavior of RSD vertices in the soft

limit

In this Appendix we prove the asymptotic formula (4.48) for the redshift space

vertices. For clarity we will omit the superscript (s) in the notation for the

wiggly vertices and keep in mind that these quantities are evaluated in redshift

space. In what follows it is useful to define the operator

Dzq[P̄w(k)] =
kzqz
q2

(eq·∇k′ − 1)P̄w(k′)
∣∣∣
k′=k

. (B.30)

To prove (4.48) we proceed by induction. In Eq. (4.42) we have verified this

formula for n = 3. Now, suppose it is valid for n− 1 and any m. Our aim is to

prove it for n. Using the recursion relation (4.24) we write

Γ′wn (f ; k1, ...,km −Q,q1, ...,qn−m) = Γ′w (r)
n (f ; k1, ...,km −Q,q1, ...,qn−m)

−
∫ f

0
dF
[ ∑

1≤i<j<m
I

(s)
2 (ki,kj) Γ′wn−1(F ; ki + kj , ..., ǩi, ..., ǩj , ...)

+

m−1∑
i=1

I
(s)
2 (ki,km −Q) Γ′wn−1(F ; ..., ǩi, ...,km + ki −Q, ...)

+
m−1∑
i=1

n−m∑
j=1

I
(s)
2 (ki,qj) Γ′wn−1(F ; ...,ki + qj , ..., q̌j , ...)

+

n−m∑
j=1

I
(s)
2 (km −Q,qj) Γ′wn−1

(
F ; ...,km −

∑
l 6=j

ql, ..., q̌j , ...
)

+
∑

1≤i<j 6=n−m
I

(s)
2 (qi,qj) Γ′wn−1(F ; ...,qi + qj , ..., q̌i, ..., q̌j , ...)

]
,

(B.31)
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where we have introduced a shorthand notation Q ≡
∑n−m

i=1 qi. Let us estimate

the enhancement of various terms in this expression. The real-space vertex Γ
′w (r)
n

is of order O(ε−n+m), as seen from Eq. (3.22). The vertices in the second and

third lines have n−m soft arguments and thus are also enhanced as O(ε−n+m)

according to our induction hypothesis. The vertices in the last three lines have

one soft argument less and thus are only O(ε−n+m+1). In the fourth and fifth

lines, however, this is compensated by the poles in the I
(s)
2 kernels,

I
(s)
2 (ki,qj) ≈

ki,zqj,z
q2
j

= O(1/ε) . (B.32)

Keeping only the terms O(ε−n+m) we arrive at

Γ′wn = Γ′w (r)
n −

∫ f

0
dF
[ ∑

1≤i<j≤m
I

(s)
2 (ki,kj) Γ′wn−1(F ; ki + kj , ..., ǩi, ..., ǩj , ...)

+
n−m∑
j=1

m−1∑
i=1

ki,zqj,z
q2
j

Γ′wn−1(F ; ...,ki + qj , ..., q̌j , ...)

+

n−m∑
j=1

km,zqj,z
q2
j

Γ′wn−1

(
F ; ...,km −

∑
l 6=j

ql, ..., q̌j , ...
)]
.

(B.33)

Next, we use that km = −
∑m−1

i=1 ki due to momentum conservation and rewrite

the last two terms as

n−m∑
j=1

m−1∑
i=1

ki,zqj,z
q2
j

[
Γ′wn−1(F ; ...,ki + qj , ..., q̌j , ...)− Γ′wn−1(F ; ...,km −

∑
l 6=j

ql, ..., q̌j , ...)
]

=

n−m∑
j=1

DzqjΓ
′w
n−1(...,km −

∑
l 6=j

ql, ..., q̌j , ...)

≈ (−1)n−m−1
n−m∑
j=1

Dzqj
∏
l 6=j

(
D(r)

ql + FDzql
)

Γ′wm (F ; k1, ...,km)

= (−1)n−m−1 ∂

∂F

(
n−m∏
l=1

(
D(r)

ql + FDzql
))

Γ′wm (F ; k1, ...,km) .

(B.34)
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On the other hand, the first term in square brackets in (B.33) reads,∑
1≤i<j≤m

I
(s)
2 (ki,kj) Γ′wn−1(F ; ki + kj , ..., ǩi, ..., ǩj , ...)

≈ (−1)n−m
n−m∏
l=1

(
D(r)

ql + FDzql
) ∑

1≤i<j≤m
I

(s)
2 (ki,kj) Γ′wm−1(F ; ki + kj , ..., ǩi, ..., ǩj , ...)

= (−1)n−m−1
n−m∏
l=1

(
D(r)

ql + FDzql
) ∂

∂F
Γ′wm (F ; k1, ...km) ,

(B.35)

where in the last equality we again used the relation (4.24). Combining Eqs. (B.34)

and (B.35) we obtain,

Γ′wn = Γ′w (r)
n + (−1)n−m

∫ f

0
dF ∂

∂F

( n−m∏
l=1

(
D(r)

ql + FDzql
)

Γ′wm (F ; k1, ...km)

)
.

(B.36)

Integration and use of Eq. (3.22) for the real space vertex Γ
′w (r)
n yields the formula

(4.48). QED



Appendix C

NLO polynomials

The functions appearing Eq. (3.75) are given by

h1(x, y) =
1

kosc

∫
dΩqdΩq′

(4π)2

ckqckq′(qckq + q′ckq′)s
2
qq′qq

′

(q2 + 2qq′cqq′ + q′2)
sin
(
(qckq + q′ckq′)/kosc

) ∣∣∣ q=xkosc
q′=ykosc

=− 1

60x2y2

(
720 + x4 − 12y2 + y4 − 2x2

(
6 + y2

))
cos[x] cos[y]

− 1

240x3y3

(
x2 − y2

)4
(Ci[|x− y|]− Ci[x+ y])

− 1

240x3(x2 − y2)y3

{
− 2y

(
x8 − 2x6

(
3 + 2y2

)
+ 2x4

(
−300 + 5y2 + 3y4

)
+ y2

(
−1440 + 24y2 − 2y4 + y6

)
− 2x2

(
−720− 240y2 + y4 + 2y6

))
cos[y] sin[x]

+ 2

(
x
(
x8 − 2x6

(
1 + 2y2

)
+ x4

(
24− 2y2 + 6y4

)
+ 2x2

(
−720 + 240y2 + 5y4 − 2y6

)
+ y2

(
1440− 600y2 − 6y4 + y6

) )
cos[x] + (x2 − y2)

(
1440 + x6 − 600y2 − 6y4

+ y6 − x4
(
6 + y2

)
− x2

(
600− 204y2 + y4

) )
sin[x]

)
sin[y]

}
, (C.1)
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and

h2(x, y) = − 1

kosc

∫
dΩqdΩq′

(4π)2

ckqckq′(qckq + q′ckq′)s
2
qq′qq

′

(q2 + 2qq′cqq′ + q′2)
sin (qckq/kosc)

∣∣∣
q=xkosc,q′=ykosc

= − 1

192x8y3

{
x cos[x]

(
4xy

(
3x8 + 27y6 − 3x2y4

(
21 + y2

)
+ x4y2

(
−3 + 5y2

)
−x6

(
9 + 5y2

) )
+ 3(x− y)3(x+ y)3

(
x4 − 9y2 + x2

(
−3 + y2

))
log

[
(x− y)2

(x+ y)2

])

+

(
4xy

(
9x6 − 6x8 + x4

(
3 + 4x2

)
y2 + x2

(
63− 26x2

)
y4 + 3

(
−9 + 4x2

)
y6
)

−3(x− y)3(x+ y)3
(
2x4 − 9y2 + x2

(
−3 + 4y2

))
log

[
(x− y)2

(x+ y)2

])
sin[x]

}
, (C.2)

where ckq = k ·q/(kq), ckq′ = k ·q′/(kq′), cqq′ = q ·q′/(qq′), s2
qq′ = 1− c2

qq′ . Note

that instead of averaging over the directions of q and q′ one can equivalently

average over the direction of the external wavenumber k and either q or q′. In

particular, h2 can be evaluated setting q′ = q′(0, 0, 1), k = k(0, sk, ck), q =

q(sqsφ, sqcφ, cq) and integrating first over φ, then ck and then cq. The integral

h1 can be evaluated by first averaging over the direction of k in a frame where

the z-axis is chosen along q + q′, and q = q(0, sq, cq). Then one uses that

cq =
(q + q′)2 + q2 − q′2

2q|q + q′|
, cqq′ =

(q + q′)2 − q2 − q′2

2qq′
(C.3)

and performs the average over cqq′ . For the last integral it is helpful to do the

substitution dcqq′ = |q + q′|/(qq′) d|q + q′|, with integration boundaries from

|q − q′| to q + q′.



Appendix D

Shift of the BAO in

momentum space

As discussed in the main text, at LO the IR resummation leads to a simple

damping of the wiggly component in the power spectrum. In this appendix

we evaluate the NLO contribution and show that it contains a term describing

the shift of the phase of BAO. Namely, we derive Eq. (3.94). Our calculation

is similar to the one performed in [107] with the main difference that the IR

resummation procedure allows us to consistently take into account the BAO

damping. Besides, we retain certain NLO terms that were omitted in [107].

According to Eq. (3.73) we need to compute the 1-loop correction to the power

spectrum using the damped wiggly spectrum as an input. It is convenient to use

the standard SPT expression (see [1] for the derivation using TSPT),

P 1−loop(z, k) = D(z)4
[
6P (k)

∫
[dq]E3(k,q,−q)P (q)+2

∫
[dq]
(
E2(k−q,q)

)2
P (q)P (|k−q|)

]
,

(D.1)

where En are the SPT kernels Fn (Gn) for the density (velocity divergence) power

spectrum. The first and second terms in brackets are identified as P13 and P22

respectively. Performing the smooth + wiggly decomposition we see that the

term P13 contributes only to the part proportional to Pw(k) and thus does not

affect the BAO phase. In the P22 term we split the integration into soft and hard

parts,

Pw,22

[
e−k

2D(z)2Σ2
Pw
]

= 4D(z)4

[ ∫
q≤kS

[dq] +

∫
q≥kS

[dq]

](
E2(k− q,q)

)2
×Ps(q)Pw(|k− q|)e−(k−q)2D(z)2Σ2

.

(D.2)
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ED Pδδ ED PΘΘ ZA Pδδ ZA PΘΘ

Υ 3
7 −1

7 0 −1

κ 1 1 0 0

Table D.1: The values of Υ,κ for different power spectra in ED and ZA.

The integral over the hard modes vanishes as it involves a rapidly oscillating

function. In the soft part we use the expression,

E2(k− q,q) =
(k · q)

2q2

(
1 +

k · q
k2

+ Υ
q2

(k · q)
sin2(k,q) +O(q2/k2)

)
, (D.3)

where the coefficient Υ is different in ED and ZA and depends on the type of

the power spectrum under consideration; its values are given in Table D.1. Next,

using the representation (3.89) we write,

Pw(|k− q|) = Pw(k)

[
cos

(k̂ · q)

kosc
+
d log fenv
d log k

(
kosc
k

sin
(k̂ · q)

kosc
− (k̂ · q)

k
cos

(k̂ · q)

kosc

)
+

q2

2kkosc
sin2(k,q) sin

(k̂ · q)

kosc

]
+ kosc

dPw(k)

dk

[
− sin

(k̂ · q)

kosc

+
d log fenv
d log k

(k̂ · q)

k
sin

(k̂ · q)

kosc
+

q2

2kkosc
sin2(k,q) cos

(k̂ · q)

kosc

]
.

(D.4)

Expanding also the exponent in (D.2) and integrating over angles one obtains,

Pw,22

[
e−k

2D(z)2Σ2
Pw
]

= D(z)4e−k
2D(z)2Σ2

[
H̃(z, k)Pw(k) + S̃(z, k)

dPw(k)

dk

]
,

(D.5)

where the form of H̃(z, k) is unimportant for our purposes. For the second term

we have

S̃(z, k) = k

(
1− 1

2

d log fenv
d log k

)
s1 + k(s2 + s3)− k3D(z)2Σ2

a (D.6)

where

s1 =− 8πkosc

∫ kS

0
dqqPs(q)

∫ 1

0
dµµ3 sin(qµ/kosc) (D.7a)

s2 =− 8πΥkosc

∫ kS

0
dqqPs(q)

∫ 1

0
dµµ(1− µ2) sin(µq/kosc) , (D.7b)

s3 =2π

∫ kS

0
dq q2Ps(q)

∫ 1

0
dµµ2(1− µ2) cos(qµkosc) , (D.7c)
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and Σ2
a has been defined in (3.74a). In the region of BAO oscillations the en-

veloping function is well approximated by the form (cf. Eq. (3.6))

fenv(k) ∝ k−me−(k/kSilk)2
(D.8)

with m ≈ 3/2. Finally, combining (D.5) with the contribution of Pw,13 and the

last term in (3.73) we obtain Eqs. (3.94), (3.95) with

s = (1 +m/2)s1 + s2 + s3 , Σ2
Silk = s1/k

2
Silk . (D.9)



Appendix E

Bias expansion at one loop

In order to obtain the bias kernels Mn at one loop we have to go to the second

order in Π, i.e. we need only

Π
[1]
ij =

∂i∂jδ

∆
,

Π
[2]
ij =

∂i∂j
∆

(Θ(1 + δ)− δ) +
∂i∂j
∆

(
∂lδ

∂lΘ

∆

)
− ∂i∂j∂lδ

∆

∂lΘ

∆
.

(E.1)

At first order there is a single operator in the bias expansion, trΠ[1] = δ. At

second order there are two operators,

O[2]
1 ≡

1

2
(tr[Π[1]])2 =

δ2

2
,

O[2]
2 ≡

1

2
tr[(Π[1])2] =

1

2

∂i∂jδ

∆

∂i∂jδ

∆
.

(E.2)

At third order we have:

O[3]
1 ≡

1

6
(tr[Π[1]])3 =

δ3

6
,

O[3]
2 ≡

1

2
tr[(Π[1])2]tr[Π[1]] =

1

2

∂i∂jδ

∆

∂i∂jδ

∆
δ ,

O[3]
3 ≡

1

6
tr[(Π[1])3] =

1

6

∂i∂jδ

∆

∂i∂lδ

∆

∂l∂iδ

∆
,

O[3]
4 ≡

1

2
tr[Π[2]Π[1]] =

1

2

{
∂i∂j
∆

(Θδ + Θ− δ)∂i∂jδ
∆

+

[
∂i∂j
∆

(
∂lδ

∂lΘ

∆

)
− ∂i∂j∂lδ

∆

∂lΘ

∆

]
∂i∂jδ

∆

}
.

(E.3)
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Going into Fourier space and using the decomposition (2.8) we obtain (4.72)

with the following kernels:

M
(r)
1 (k) = b1 ,

M
(r)
2 (k1,k2) = b1K2(k1,k2) + b2 + bO[2]

2

(k1 · k2)2

k2
1k

2
2

,

M
(r)
3 (k1,k2,k3) = b1K3(k1,k2,k3) + b2[K2(k1,k2) + perm.]

+ bO[2]
2

[
(k1 · k23)2

k2
1k

2
23

K2(k2,k3) + perm.

]
+ b3 + bO[3]

2

[
(k1 · k2)2

k2
1k

2
2

+ perm.

]
+ bO[3]

3

(k1 · k2)(k2 · k3)(k3 · k1)

k2
1k

2
2k

2
3

+ bO[3]
4

[
(k1 · k23)2

k2
1k

2
23

(
1− 1

2
K2(k2,k3)

)

+
(k3 · k2)

k2
23k

2
1k

2
2k

2
3

[
(k1 · k2)(k1 · k3)(k2

2 + k2
3)− (k2 · k3)

(
(k1 · k3)2 + (k1 · k2)2

)]
+perm.

]
,

(E.4)

where ‘perm.’ means terms obtained by cyclic permutations of the momenta

k1,k2,k3. Note that the M
(r)
n kernels written above are manifestly IR safe. The

kernels in redshift space are obtained using the recursion relations similar to

(4.32). In particular, we have

M
(s)
1 (k) = b1 + fµ2 ,

M
(s)
2 (k1,k2) = M

(r)
2 (k1,k2) +

{
µ2

1 + µ2
2 − 2

(k1 · k2)

k1k2
µ1µ2

}
b1f ,

(E.5)

where µi ≡ (k̂i · ẑ). The expression for M
(s)
3 is rather cumbersome and we do

not present it here.

For reference we also write down the SPT kernels for biased tracers in redshift

space. Compared to [15] we add the tidal bias. It appears convenient to change

the bias basis and consider

δh = b1δ +
b2
2
δ2 + bG2G2 +

b3
6
δ3 + bG3G3 + b(G2δ)G2δ + bΓ3Γ3 , (E.6)

where

G2(Φ) = (∂i∂jΦ)2 − (∂2Φ)2 ,

G3(Φ) = −∂i∂jΦ∂j∂kΦ∂k∂iΦ−
1

2
(∂2Φ)3 +

3

2
(∂i∂jΦ)2∂2Φ ,

Γ3 = G2(Φ)− G2(Φv) ,

(E.7)



Bias expansion at one loop 181

and we introduced we velocity potential defined via ∆Φv = Θ. Acting along the

lines of Sec. 7.4.1 of [15] we obtain

Z1(k) = b1 + fµ2 , (E.8a)

Z2(k1,k2) =
b2
2

+ bG2

(
(k1 · k2)2

k2
1k

2
2

− 1

)
+ b1F2(k1,k2) + fµ2G2(k1,k2)

+
fµk

2

(
µ1

k1
(b1 + fµ2

2) +
µ2

k2
(b1 + fµ2

1)

)
, (E.8b)

Z3(k1,k2,k3) =
b3
6

+ bG3

[
−(k1 · k2)(k2 · k3)(k3 · k1)

k2
1k

2
2k

2
3

− 1

2
+

3

2

(k1 · k2)2

k2
1k

2
2

]
+ b(G2δ)

[
(k1 · k2)2

k2
1k

2
2

− 1

]
+ 2bΓ3

[
(k1 · (k2 + k3))2

k2
1(k2 + k3)2

− 1

] [
F2(k2,k3)−G2(k2,k3)

]
+ b1F3(k1,k2,k3) + fµ2G3(k1,k2,k3) +

(fµk)2

2
(b1 + fµ2

1)
µ2

k2

µ3

k3

+ fµk
µ3

k3

[
b1F2(k1,k2) + fµ2

12G2(k1,k2)
]

+ fµk(b1 + fµ2
1)
µ23

k23
G2(k2,k3)

+ b2F2(k1,k2) + 2bG2

[
(k1 · (k2 + k3))2

k2
1(k2 + k3)2

− 1

]
F2(k2,k3) +

b2fµk

2

µ1

k1

+ bG2fµk
µ1

k1

[
(k2 · k3)2

k2
2k

2
3

− 1

]
, (E.8c)

where k = k1 +k2 +k3 and the kernel Z3 must be symmetrized in its arguments.



Appendix F

Simplification of NLO IR

resummed integrands:

example of bispectrum in

redshift space

At face value, IR resummation requires using the dressed anisotropic power spec-

trum

Pnw(p) + e−p
2Σ2

tot(µp)Pw(p) (F.1)

as an input in loop calculations. This prescription causes technical complications

that one would like to minimize. We have seen in Sec. 4.6.2 that in the case of

one-loop power spectrum one can pull the anisotropic damping factor outside

the momentum integral without changing the order of approximation of the final

result. Here we discuss the general situation for an 1-loop n-point correlator

and illustrate it on the example of bispectrum. We will work in terms of SPT

diagrams.

Consider an SPT one-loop diagram for some n-point function and substitute the

linear power spectrum in it by its IR-resummed counterpart (F.1). Depending

on the topology of the diagram the wiggly power spectrum can be:

(a) outside the loop and depend only on an external momentum. In this case

the loop integral contains only the isotropic smooth power spectrum Pnw

and its evaluation is straightforward.
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(b) inside the loop and be multiplied by a combination of kernels without IR

singularities at finite values of the loop momentum p (we choose p to co-

incide with the argument of Pw). An example of such contribution is given

by the second term in (4.88) which is part of P13 diagram in SPT lan-

guage. As we discussed in Sec. 4.6.2, such contributions are exponentially

suppressed and can be safely neglected.

(c) inside the loop and be multiplied by a combination of kernels with a single

IR singularity at p = p0, where p0 is a linear combinations of external

momenta. This is the case of the third term in (4.88) which comes from

the P22 diagram. In such diagram the argument of the damping factor can

be substituted by p0,

e−p
2Σ2

tot(µp)Pw(p)→ e−p
2
0Σ2

tot(µp0 )Pw(p) . (F.2)

Then the damping factor can be taken out of the loop integral.

(d) inside the loop and be multiplied by a combination of kernels with more

than one IR singularity. We are not aware of any convenient method to

simplify these contributions, so in this case the anisotropic damping factor

must be kept inside the integral.

Applying the above algorithm to the one-loop correction to the bispectrum we

obtain the following expression,

B(s) IR res,NLO(k1,k2,k3) = B(s) 1−loop[Pnw] + B̃(s) 1−loop
w (k1,k2,k3) , (F.3)

where B(s) 1−loop[Pnw] is evaluated using only the smooth power spectrum and

B̃(s) 1−loop
w = B̃

(s)
411,w + B̃

(s)
321−II,w + B̃

(s)
321−I,w + B̃

(s)
222,w . (F.4)

Here the individual terms read,

B̃
(s)
411,w = 12Z1(k2)Z1(k3)

[
e−k

2
2Σ2

tot(µ2)Pw(k2)Pnw(k3) + e−k
2
3Σ2

tot(µ3)Pnw(k2)Pw(k3)
]

×
∫

[dp]Z4(−p,p,−k2,−k3)Pnw(p) + 2 cyclic perm. ,

(F.5a)

B̃
(s)
321−II,w = 6Z1(k2)Z2(k2,k3)

[
e−k

2
2Σ2

tot(µ2)Pw(k2)Pnw(k3)+e−k
2
3Σ2

tot(µ3)Pnw(k2)Pw(k3)
]

×
∫

[dp]Z3(−p,p,k3)Pnw(p) + 5 permutations ,

(F.5b)
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B̃
(s)
321−I,w =6Z1(k3)e−k

2
3Σ2

tot(µ3)Pw(k3)

×
∫

[dp]Z3(−p,p− k2,−k3)Z2(p,k2 − p)Pnw(p)Pnw(|k2 − p|)

+ 12Z1(k3)Pnw(k3)e−k
2
2Σ2

tot(µ2)

×
∫

[dp]Z3(−p,p− k2,−k3)Z2(p,k2 − p)Pw(p)Pnw(|k2 − p|)

+ 5 permutations,

(F.5c)

B̃
(s)
222,w = 8

∫
[dp]Z2(−p,p + k1)Z2(−p− k1,p− k2)Z2(p + k2,p)

× e−p2Σ2
tot(µp)Pw(p)Pnw(|p + k1|)Pnw(|p− k2|) + 2 cyclic perm.

(F.5d)

We observe that the terms (F.5a), (F.5b) are of type (a), the term (F.5c) is of

type (c), whereas (F.5d) is of type (d).



Appendix G

Dynamics of spherical collapse

G.1 Spherical collapse in Einstein–de Sitter universe

Consider a spherically symmetric density perturbation in a spatially flat universe

filled with non-relativistic matter. For concreteness, we focus on the case of an

overdensity. We study the motion of a spherical shell of matter enclosing the

total mass M . Before the onset of shell-crossing the mass within the shell is

conserved. Due to Newton’s theorem (or Birkhoff’s theorem in general relativity)

the mechanical energy of the shell is conserved, so we write,

1

2

(
dy

dτ

)2

− GM

y
= E , (G.1)

where y is the physical radius of the shell and τ is the physical time. The

conserved energy E is negative for the case of an overdensity. It is straightforward

to obtain the solution to (G.1) in a parametric form,

y = −GM
2E

(1− cos θ) , (G.2a)

τ =
GM

(−2E)3/2
(θ − sin θ) . (G.2b)

Next, we switch from the variables y, τ to the comoving radius of the shell

r = y/a and the scale factor a. We use,

a =

(
8πG

3
ρia

3
i

)1/3(3

2
τ

)2/3

, (G.3)

M =
4π

3
ρia

3
iR

3 , (G.4)
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where ρi, ai and R are the matter density, the scale factor and the comoving

radius of the shell at some early time when the universe was almost homogeneous.

Note that R has a finite limit at ai → 0 which coincides with the Lagrangian

radius of the shell. Substitution of (G.3), (G.4) into Eqs. (G.2), gives,

r = R

(
2

9

)1/3 1− cos θ

(θ − sin θ)2/3
, (G.5a)

a =

(
9

2

)1/3 4πG

3(−2E)
ρia

3
iR

2(θ − sin θ)2/3 , (G.5b)

We now recall the definition of the spherically averaged density contrast (5.11).

Expressing it through the enclosed mass M , the radius of the shell and the mean

density of the universe ρuniv we obtain,

1 + δ̄(r) =
3M

4πy3ρuniv
=

(
R

r

)3

, (G.6)

where in the second equality we used that ρuniv = ρia
3
i /a

3. This gives the relation

(5.13) between the Lagrangian and Eulerian radii of the shell. Besides, we have

from (G.5a),

δ̄ = F(θ) , where F(θ) ≡ 9

2

(θ − sin θ)2

(1− cos θ)3
− 1 . (G.7)

It remains to relate the constant E to the initial overdensity. To this end, we

consider Eqs. (G.5b), (G.7) at the initial time. The parameter θ is initially small,

so we can expand,

ai =
θ2
i

2

4πG

3(−2E)
ρia

3
iR

2 , δ̄i(R) =
3

20
θ2
i , (G.8)

which gives

E = −5

3

δ̄i(R)

ai

4πG

3
ρia

3
iR

2 . (G.9)

Substituting E back into (G.5b) and introducing the rescaled linear density con-

trast δ̄L(R) ≡ aδ̄i(R)/ai we arrive at

δ̄L(R) = G(θ) ≡ 3

20
[6(θ − sin θ)]2/3 . (G.10)

Equations (G.7), (G.10) together provide a mapping between the linear and

non-linear averaged density contrasts at a given moment of time expressed para-

metrically through the so-called development angle θ. The functions f and F
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used in the main text (see Eq. (5.14)) are the superpositions

f = F ◦ G−1 , F = G ◦ F−1 . (G.11)

We now derive several useful expressions for the fields characterizing the spherical

collapse that are required for the calculation of linear fluctuations around the

spherical collapse saddle point in Sec. 6.2. It is convenient to choose the logarithm

of the growth factor as a new time variable,

η = ln a . (G.12)

The key object is the linear density profile which we rescale to zero redshift. This

will be denoted by δL|0(R). All other quantities are sourced by it and should be

understood as functions of η and R. We first rewrite (G.10)

θ − sin θ =
e3η/2

6

(
20

3
δ̄L|0(R)

)3/2

, (G.13a)

which implicitly defines the function θ(η,R). Then we obtain the relations,

∂θ

∂R
=

3(θ − sin θ)

2(1− cos θ)
·
δ̄′L|0(R)

δ̄L|0(R)
,

∂θ

∂η
=

3(θ − sin θ)

2(1− cos θ)
, (G.13b)

∂r

∂R
=

(
2

9

)1/3 1− cos θ

(θ − sin θ)2/3

[
1 +R

δ̄′L|0

δ̄L|0

(
3(θ − sin θ) sin θ

2(1− cos θ)2
− 1

)]
, (G.13c)

which yield the overdensity field,

δ =

[
r2

R2

∂r

∂R

]−1

− 1 =
9(θ − sin θ)2

2(1− cos θ)3

[
1 +R

δ̄′L|0

δ̄L|0

(
3(θ − sin θ) sin θ

2(1− cos θ)2
− 1

)]−1

− 1 .

(G.13d)

We also need the velocity potential Ψ defined as

∂rΨ = −ur/H ,

where ur is the radial velocity of collapsing matter, ur = ∂r
∂t , and H = 1

a
da
dt . Here

t is the conformal time. We obtain,

∂rΨ = −∂r
∂η

= −R
(

2

9

)1/3 1− cos θ

(θ − sin θ)2/3

[
3(θ − sin θ) sin θ

2(1− cos θ)2
− 1

]
. (G.13e)

Finally, the rescaled velocity divergence is

Θ ≡ −∂iui
H

=

(
∂r

∂R

)−1 ∂

∂R
∂rΨ +

2

r
∂rΨ . (G.13f)
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In the case of an underdensity, the spherically symmetric dynamics is similar

with only minor modifications. Without repeating the analysis, we summarize

the relevant expressions,

G(θ) =
3

20
[6(sh θ − θ)]2/3 , F(θ) =

9(sh θ − θ)2

2(ch θ − 1)3
− 1 , (G.14a)

sh θ − θ =
e3η/2

6

(
− 20

3
δ̄L|0(R)

)3/2

, (G.14b)

∂θ

∂R
=

3(sh θ − θ)
2(ch θ − 1)

δ̄′L|0

δ̄L|0
,

∂θ

∂η
=

3(sh θ − θ)
2(ch θ − 1)

, (G.14c)

r = R

(
2

9

)1/3 ch θ − 1

(sh θ − θ)2/3
, (G.14d)

∂r

∂R
=

(
2

9

)1/3 ch θ − 1

(sh θ − θ)2/3

[
1 +R

δ̄′L|0

δ̄L|0

(
3(sh θ − θ) sh θ

2(ch θ − 1)2
− 1

)]
, (G.14e)

δ =
9(sh θ − θ)2

2(ch θ − 1)3

[
1 +R

δ̄′L|0

δ̄L|0

(
3(sh θ − θ) sh θ

2(ch θ − 1)2
− 1

)]−1

− 1 , (G.14f)

∂rΨ̂ = −R
(

2

9

)1/3 ch θ − 1

(sh θ − θ)2/3

[
3(sh θ − θ) sh θ

2(ch θ − 1)2
− 1

]
. (G.14g)

G.2 Spherical collapse in ΛCDM

Here we discuss how the previous results are modified in ΛCDM. In the presence

of a cosmological constant Λ the equation (G.1) for the trajectory of a spherical

shell is replaced by [157, 158],

1

2

(
dy

dτ

)2

− GM

y
− Λy2

6
= E . (G.15)

Unlike Eq. (G.1), this cannot be solved analytically, so one has to resort to

numerical integration. It is convenient to use the scale factor1 a as the time

variable and switch from y to the variable

ζ ≡ R/r , (G.16)

where r = y/a and R = lima→0 r. One uses the Hubble equation,

1

a2

(
da

dτ

)2

=
8πG

3
ρuniv +

Λ

3
, (G.17)

and the relations ρuniv = ρ0/a
3, Λ = 8πGρ0ΩΛ/Ωm, with ρ0 the present-day

average matter density and ΩΛ = 1 − Ωm. Then Eq. (G.15) takes the following

1We choose the scale factor to be normalized to 1 at the present epoch.
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form,(
1− d ln ζ

d ln a

)2

=

(
1 +

ΩΛ

Ωm
a3

)−1(
ζ3 +

ΩΛ

Ωm
a3 +

3E
4πGρ0R2

aζ2

)
. (G.18)

To fix the value of the energy E , we observe that Eq. (G.6) still applies in ΛCDM,

so we have,

1 + δ̄(r) = ζ3 , (G.19)

which at early times gives ζ = 1 +
(
aδ̄i(R)

)
/(3ai). Substituting this into (G.18)

and matching terms linear in a at a→ 0, we recover the same expression for E ,

as in the EdS case,
3E

4πGρ0R2
= −5

3

δ̄i(R)

ai
. (G.20)

The next step is to express the initial overdensity in terms of the linear density

contrast δ̄L(R) at the redshift z, at which we want to establish the spherical

collapse mapping. To this end we write,

δ̄i(R)

ai
=
g(z)

g(zi)
δ̄i(R)

g(zi)

ai

1

g(z)
=

gΛ

g(z)
δ̄L(R) . (G.21)

In the last equality we have used that at early times the growth factor is pro-

portional to a,

g(zi) = gΛ · ai (G.22)

where gΛ is a constant2. Collecting the relations (G.20), (G.21) and inserting

them into Eq. (G.18) we cast the latter in the form,

(
1− d ln ζ

d ln a

)2

=

(
1 +

ΩΛ

Ωm
a3

)−1(
ζ3 − 5gΛ

3g(z)
δ̄L(R) aζ2 +

ΩΛ

Ωm
a3

)
. (G.23)

With this in hand, the algorithm to construct the spherical collapse mapping

goes as follows:

(i) Fix a value δ̄L(R) of the spherically averaged linear overdensity at redshift

z;

(ii) Solve Eq. (G.23) from a = 0 to a = (1 + z)−1 with the initial condition

ζ
∣∣
a=0

= 1;

(iii) Compute f as f
(
δ̄L(R); z

)
= ζ3

(
(1 + z)−1

)
− 1.

The function F is then found as the inverse of f .

2Recall that we normalize g(z) to be 1 at z = 0, which leads to a constant offset between g
and a in the matter-dominated era. For our reference cosmology gΛ = 1.328.
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As discussed in Sec. 5.1.2, the functions f and F computed in this way are very

weakly depending on the redshift and, somewhat surprisingly, coincide with the

corresponding functions in EdS cosmology at the level of a few per mil in the

relevant range of density contrasts.

Before concluding this section, we note that the formulas derived above can

be used to obtain a first order differential equation for the growth factor g as a

function of a in the ΛCDM universe. To this end, we assume that the overdensity

is small at all times, so that we can linearize Eq. (G.19),

ζ = 1 +
g(a)

3g(ai)
δ̄i(R) .

Substituting this into (G.23) and also linearizing it in δ̄i(R) we arrive at,

dg

da
=

(
1 +

ΩΛ

Ωm
a3

)−1(
− 3g(a)

2a
+

5gΛ

2

)
, (G.24)

which is to be integrated with the boundary condition g
∣∣
a=1

= 1.

G.3 Monopole response matrix

In this section we derive analytic expressions for the monopole response matrix

Q0(k1, k2) introduced in Eq. (5.34) and the monopole fluctuation determinant

(6.1). These results are used in Sec. 6.1 for the perturbative calculation of the

aspherical prefactor and for validating our numerical code (see Appendix H). The

starting point of the derivation is the relation provided by the spherical collapse

mapping,

F (δ̄W ) = δ̄L
(
r∗(1 + δ̄W )1/3

)
. (G.25)

We consider a monopole fluctuation on top of the saddle-point configuration

(5.26), (5.27), so we write

δL(R) = δ̂L(R) + δ
(1)
L,0(R) , δ̄W = δ∗ + δ̄

(1)
W + δ̄

(2)
W , (G.26)

where the terms δ̄
(1)
W and δ̄

(2)
W are linear and quadratic in δ

(1)
L,0 respectively. Substi-

tuting these expressions into (G.25), Taylor expanding the two sides and grouping
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the terms of linear and quadratic order, we obtain two equations,

F ′(δ∗) δ̄
(1)
W =

R∗
¯̂
δ′L(R∗)

3(1 + δ∗)
δ̄

(1)
W + δ̄

(1)
L,0(R∗) , (G.27a)

F ′(δ∗) δ̄
(2)
W +

F ′′(δ∗)

2

(
δ̄

(1)
W

)2
=
R∗

¯̂
δ′L(R∗)

3(1 + δ∗)
δ̄

(2)
W +

R2
∗

18(1 + δ∗)2

(
¯̂
δ′′L(R∗)− 2

¯̂
δ′L(R∗)

)(
δ̄

(1)
W

)2
+

R∗
2(1 + δ∗)

δ̄
(1)
W

(
δ̄

(1)
L,0

)′
(R∗) , (G.27b)

where R∗ is defined in (5.20). Next we use the expressions

¯̂
δ′L(R∗) = −3F (δ∗)

R∗

(
1− ξR∗

σ2
R∗

)
, (G.28a)

¯̂
δ′′L(R∗) =

12F (δ∗)

R2
∗

(
1− ξR∗

σ2
R∗

)
− F (δ∗)

Σ2
R∗

σ2
R∗

, (G.28b)

where σ2
R∗

, ξR∗ are defined in Sec. 5.1.2 and

Σ2
R∗ = 4π

∫
[dk] k2|Wth(kR∗)|2P (k) . (G.29)

Substituting (G.28a) into (G.27a) we get,

δ̄
(1)
W =

δ̄
(1)
L,0(R∗)

Ĉ(δ∗)
, (G.30)

where Ĉ(δ∗) is introduced in Eq. (5.29). We note in passing that this relation im-

plies an expression for the linear monopole response kernel S(k) (see Eq. (5.34)),

S(k) =
Wth(kR∗)

Ĉ(δ∗)

From (G.27b) we further obtain,

δ̄
(2)
W = − Ê(δ∗)

Ĉ3(δ∗)

(
δ̄

(1)
L,0(R∗)

)2
+

1

(1 + δ∗)Ĉ2(δ∗)
δ

(1)
L,0(R∗) δ̄

(1)
L,0(R∗) , (G.31)

where

Ê(δ∗) =
F ′′(δ∗)

2
+
F ′(δ∗)

1 + δ∗
+

F (δ∗)

(1 + δ∗)2

R2
∗Σ

2
R∗

18σ2
R∗

, (G.32)

and we have used the identity,

(
δ̄

(1)
L,0

)′
(R∗) =

3

R∗

(
δ̄

(1)
L,0(R∗)− δ(1)

L,0(R∗)
)
.
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Finally, switching from position to momentum space,

δ̄
(1)
L,0(R∗) = 4π

∫
[dk]Wth(kR∗) δ

(1)
L,0(k) , δ

(1)
L,0(R∗) = 4π

∫
[dk]

sin(kR∗)

kR∗
δ

(1)
L,0(k) ,

and comparing (G.31) to Eq. (5.34) we arrive at the following expression for the

monopole response matrix,

Q0(k1, k2) =− 4πÊ

Ĉ3
Wth(k1R∗)Wth(k2R∗)

+
2π

(1 + δ∗)Ĉ2

[
Wth(k1R̂∗)

sin(k2R∗)

k2R∗
+

sin(k1R∗)

k1R∗
Wth(k2R∗)

]
,

(G.33)

To evaluate the monopole fluctuation determinant D0 defined in (6.1), we observe

that the matrix 1 + 2λ̂
√
PQ0

√
P can be written as

1(k1, k2) + a(k1)b(k2) + b(k1)a(k2)

with

a(k) = 2λ̂
√
P (k)Wth(kR∗) ,

b(k) =

[
− 2πÊ

Ĉ3
Wth(kR∗) +

2π

(1 + δ∗)Ĉ2

sin kR∗
kR∗

]√
P (k) .

The general formula for the determinant of a matrix of this form is derived in

Appendix D of Ref. [9]. Applying it to the case at hand and using the expression

(5.29) for λ̂ gives,

D0 = 1 +
2F

Ĉ2

[
Ê − Ĉ

(1 + δ∗)

ξR∗
σ2
R∗

]
+

F 2

(1 + δ∗)2Ĉ2

( ξR∗
σ2
R∗

)2

−
σ2

1R∗

σ2
R∗

 , (G.34)

where we have defined

σ2
1R∗ = 4π

∫
[dk]

(
sin(kR∗)

kR∗

)2

P (k) . (G.35)

It is instructive to compare the full result (G.34) to a trace approximation which

treats the matrix 2λ̂
√
PQ0

√
P as small, (G.34),

D0 = exp
{

Tr ln(1 + 2λ̂
√
PQ0

√
P )
}

≈ 1 + 2λ̂Tr(
√
PQ0

√
P ) = 1 +

2F

Ĉ2

[
Ê − Ĉ

1 + δ∗

ξR∗
σ2
R∗

]
.

(G.36)
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full

trace approx.
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Fluctuation determinant, ℓ=0

Figure G.1: Monopole fluctuation determinant D0 (blue, solid) and it trace
approximation (orange, dashed). Note that the determinant crosses zero at

δ∗ ≈ 1.75.

We see that it reproduces the first two terms in (G.34), but misses the third one.

In Fig. G.1 we display the trace approximation versus the full result (G.34) for

our reference cosmology. We observe that, though the trace approximation is,

strictly speaking, applicable only for δ∗ � 1, it works quite well in the range

δ∗ ∈ [−0.9, 1]. Still, at larger overdensities it deviates significantly from the true

result.

G.4 Growth factor in a spherically-symmetric sepa-

rate universe

To estimate the dependence of the UV counterterm on the density in Sec. 6.5.2,

we need the linear growth factor for perturbations in the background of a spher-

ical top-hat overdensity3. Due to the Birkhoff theorem, such an overdensity can

be treated as a separate closed universe. Then the linear growth factor does

not depend on the wavenumber of the mode and can be derived by considering

spherically symmetric top-hat perturbations.

Consider a spherically symmetric lump of matter with a top-hat profile, whose

final density contrast w.r.t. the unperturbed cosmology is equal to δ. Let us

additionally perturb this lump by a linear fluctuation δ
(1)
L . According to the

spherical collapse mapping, this fluctuation produces the following perturbation

3We are talking about overdensity for concreteness. For an underdensity the reasoning is
exactly the same.
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of the non-linear density δ(1),

δ(1) =
δ

(1)
L

F ′(δ∗)
. (G.37)

The density contrast in the separate universe should be normalized to the back-

ground density of that universe,

δ(1)
su =

δ(1)

1 + δ∗
. (G.38)

This gives for the growth factor in the separate universe:

D(δ∗, z) =
g(z)

F ′(δ∗)(1 + δ∗)
. (G.39)

Note that the dependence of the growth factor on redshift and density factorize.



Appendix H

Numerical procedure for

aspherical determinants

In this Appendix we discuss the details of our numerical method, which is imple-

mented in the open-source code AsPy1 written in Python using scipy and numpy

libraries.

We first cast the partial differential equations (6.36) in the form suitable for

numerical solution using finite differences. In this section we will omit the sub-

script ` denoting linear aspherical perturbations. We switch to the Lagrangian

coordinate R comoving with the background flow, which allows us to absorb the

shift terms into the time derivative,

∂

∂η
− ∂rΨ̂

∂

∂r
≡ d

dη

∣∣∣∣
flow

. (H.1)

Equations (6.36a), (6.36b) take the form,

dδ

dη
= A1(η,R)δ +A2(η,R)Θ +A3(η,R)∂RΨ , (H.2a)

dΘ

dη
=

3

2
δ +A4(η,R)Θ +A5(η,R)∂RΨ + `(`+ 1)A6(η,R)Ψ , (H.2b)

1https://github.com/Michalychforever/AsPy

https://github.com/Michalychforever
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where we defined the following background functions:

A1 = Θ̂ , A4 = −1

2
+ 2

(
Θ̂− 2

r
∂rΨ̂

)
, (H.3a)

A2 = 1 + δ̂ , A5 =
1
∂r
∂R

(
1
∂r
∂R

∂RΘ̂− 4

r

(
Θ̂− 3

∂rΨ̂

r

))
, (H.3b)

A3 =
1(
∂r
∂R

)2∂Rδ̂ , A6 = 2

(
Θ̂− 3

∂rΨ̂

r

)
1

r2
. (H.3c)

The initial conditions for the density and velocity fields are given by Eqs. (6.38a).

Note that Eqs. (H.2) do not contain spatial derivatives of δ or Θ, so we do not

need to impose any boundary conditions on them.

The Euler and continuity equations are supplemented by the Poisson equation(
∂2
r +

2∂r
r
− `(`+ 1)

r2

)
Ψ(η,R) = Θ(η,R) . (H.4)

The boundary conditions for the velocity potential are given by,

Ψ(η,R) ∝ r`(R) , at R→ 0

Ψ(η,Rmax) = e(η−ηmin)Ψ(ηmin, Rmax) .
(H.5)

The boundary condition at the origin is dictated by the structure of the Poisson

equation (6.36c). The second condition comes from the assumption that at spa-

tial infinity the velocity potential follows the linear evolution, which is justified

since the background profile falls off quickly outside the window function.

We work on an equally-spaced rectangular lattice with NR×Nη nodes and phys-

ical size [Rmin, Rmax]× [ηmin, 0]. We implement an implicit second-order Runge-

Kutta scheme (RK2) for the Euler and continuity equations. For the Poisson

equation we use an implicit second-order finite difference scheme.

We use the discrete version of the fluctuation operator obtained by rewriting the

integrals in the exponent of (5.38) in a discrete form and taking the corresponding

Gaussian integral. This yields,

O` = δij + 2λ̂
∆k

(2π)3
kikjQ`(ki, kj)

√
P (ki)P (kj) , (H.6)
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with i, j = 0, . . . , N ; ∆k = (kN −k0)/N . One can check that this definition gives

the correct continuous limit for the trace2:

N∑
i=0

∆kk2
i

(2π)3
Q`(ki, ki)P (ki)

N→∞−−−−→
∫ ∞

0
[dk]Q`(k, k)P (k) = TrQ`P . (H.7)

We implement the algorithm for computing the aspherical determinant from

Sec. 6.2.3. At the first step the code computes the background functions (H.3)

required for solving the fluid equations on the grid. To this end we make a

sample of ∼ 20 values of δ∗ in the range [−0.9, 9] and use the spherical collapse

linear profile (5.27) to compute the non-linear background configuration defined

by the equations from Sec. G.1.

At the second step we sample the momentum space and compute the evolution of

linear fluctuations given by the finite difference approximation to the equations

(H.2), (H.4) with appropriate initial and boundary conditions for each momen-

tum ki from the sample. We use the sample of N = 200 wavenumbers which we

found sufficient for our purposes.

We found that the following grid parameters lead to a good convergence for most

of the multipoles in the δ∗-range of interest:

Rmin = 10−2 Mpc/h , Rmax = 10 ·R∗ , NR = 1000 ,

ηmin = −7 , Nη = 500 .
(H.8)

For the dipole we increased the spatial extent of the grid to Rmax = 15·R∗, NR =

1500. We have run several tests and found that increasing the grid resolution

further or moving the box boundaries can only change the final results at the

0.1% level.

At the third step we use the linear wavefunctions computed in step 2 to construct

the sources ΥΘ,δ for all different pairs of momenta (ki, kj), i, j = 0, . . . , N . For

the dipole sector, we also construct the sources BΘ,δ

At the fourth step we solve the finite difference equations for the time evolu-

tion of µ(2) and r
(2)
η obtained by discretizing Eqs. (6.55). This yields the matrix

Q`(ki, kj), which is used to obtain the desired determinant. In the dipole sector

we separately compute Q̆`(ki, kj), B(ki), and A using (6.55) with the corre-

sponding sources (6.70). The final determinant is obtained upon multiplying the

IR-sensitive determinant DIR and the IR-safe determinant det(1+2λ̂
√
PQ̆`
√
P ).

2We do not assign the weight 1/2 to the boundary values, but choose IR and UV cutoffs to
make sure that the results are independent of them.
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As a cross-check, we computed A both by solving Eqs. (6.55) and from the rela-

tion (6.82), which yielded results that agree at the per mil level.

We have validated our code by computing the determinant of the monopole

fluctuations and comparing it to the analytic expression (G.34). The results of

this test are displayed in Fig. H.1. Numerical procedure agrees with the analytic

formula at per mil level.

Analytics

Numerics

0.1 0.5 1 5 10
-1

0

1

2

3

4

1+δ*


0

Fluctuation determinant, ℓ=0

Figure H.1: The fluctuation determinant in the monopole sector: the result
of our numerical procedure (dots) vs. Eq. (G.34) (line).



Appendix I

A comment on log-normal

model

It has long been known that the observed counts-in-cells distribution can be well

approximated by log-normal [74–77],

P̄log-normal(δ∗) =
1√

2πσ2
ln(1 + δ∗)

exp

{
−
(

ln(1 + δ∗) + σ2
ln/2

)2
2σ2

ln

}
, (I.1)

where σ2
ln = 〈[ln(1 + δ∗)]

2〉 is the log-density variance, to be fitted from the data.

The mean of the distribution (I.1) is adjusted to ensure 〈δ∗〉 = 0. The success of

this model is partially due to the fact that the spherical collapse mapping F (δ∗) is

close to ln(1+δ∗) for moderate density contrasts, see the left panel of Fig. I.1. The

difference grows for bigger |δ∗|, but, curiously enough, gets largely compensated

by the scale dependence of σR∗ . This compensation is a mere coincidence due

to the shape of the power spectrum at mildly non-linear scales [79, 80]. Indeed,

consider, for example, a universe with a power-law power spectrum P (k) ∝
kn. In such a universe the variance scales as σ2

R∗
∝ (1 + δ∗)

−1−n/3, which

clearly depends on the slope n. On the other hand, spherical collapse mapping

is determined exclusively by dynamics and is insensitive to the statistics of the

initial conditions. One concludes that changing the slope of the power spectrum

would destroy the consipracy and the log-normal model would fail.

Although the log-normal PDF gives a good leading order approximation, it does

not incorporate the correct prefactor. As a consequence, it is unable to describe

the data with the accuracy better than ∼ 10% even at moderate densities and

quickly deviates from the data in the tails [81, 91]. This is illustrated in the right
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Figure I.1: Left panel: The functions defining the leading exponential be-
havior of the log-normal PDF (I.1) and our theoretical PDF (5.30). The log-
variance σln is found from the fit to N-body data. Right panel: Residuals of
the N-body data with respect to the best fit log-normal models at different red-
shifts. σln is refitted for each z independently. The cell radius is r∗ = 10 Mpc/h.

panel of Fig. I.1 where we show the residuals of the N-body data with respect to

the best fit log-normal model.
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