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Abstract
This thesis aims to further investigate rare natural disasters and studies adaptation decisions

under uncertainty by solving several computational economic models. The modeling of rare

natural disasters depends on the treatment of catastrophic outcomes with a low probability.

The impact of rare disasters on economic activities has been explored in the literature. This

thesis is dedicated to answering a question: How do we optimally adapt or alleviate the risk of

uncertain rare natural disasters?

Uncertainty is central to this dissertation. I overview the sources of uncertainty and present

how these uncertainties are addressed in the literature of environmental economics. I demon-

strate why rare natural disasters are worth studying and present the advantages that can be

gained by investigating them. Subsequently, I present my choice of adaptation measures, spa-

tial adaptation and adaptive capital stock, to better situate my study in the existing literature

of adaptation. I investigate adaptation decisions by using an approach based on numerical

methods.

I employ the existing computational general equilibrium model GENESwIS in Chapter 1. I

propose a new simulation approach, the hazard myopia, for a better consideration of spatial

adaptation for future high impact floods in Switzerland. The hazard myopic agent solves an

intertemporal optimization problem by adopting his subjective belief of the risk of flooding.

Capital stocks are recursively updated based on the actual damage. However, my simulation

results contradict the real Swiss situation. To correctly handle rare but catastrophic events,

one promising approach is to convert the model from deterministic to fully stochastic so that

the precautionary saving is endogenized.

Why does an economic agent save for a less productive but risk-free capital or a non-productive

but adaptive capital stock? Chapter 2 aims to address this question by solving dynamic

stochastic equilibrium models. I present the optimal policy functions for spatial adaptation

and adaptive capital stock in a stylized but reproducible setting. I quantitatively show that the

certainty-equivalent deterministic model underestimates the risk of rare natural disasters.

Chapter 3 discusses the qualitative argument established by Schelling (1992, Section IV). I

quantitatively demonstrate that the developing economy’s best strategy to adapt to future dis-

asters is to advance its economic development. A developed economy bolsters non-productive

yet adaptive capital stock to prepare for future uncertainties.

Throughout Chapters 2 and 3, my implementations are massively parallelized on a high-

end computation cluster to speed up the solving processes. The efficient usage of parallel

computing is an emerging field in economics. This dissertation demonstrates the applicability
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of exploiting the massive power of modern computing in economics.

KEYWORDS: Environmental economics, uncertainty, adaptation, natural disasters and their

management, computable general equilibrium models, dynamic stochastic general equilib-

rium models, adaptive sparse grids, parallel computing.
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Résumé
Cette thèse vise à analyser les conséquences économiques des catastrophes naturelles rares

et à étudier l’efficacité de mesures d’adaptations en cas d’incertitudes grâce à un modèle

économique numérique. La modélisation des catastrophes naturelles dépend de comment

sont traités les évènements à faible probabilité. Bien que les conséquences économiques

des catastrophes naturelles aient été étudiées dans la littérature, une question centrale est

toujours en suspens : Quelle est la manière optimale d’atténuer le risque et de s’adapter à ces

évènements catastrophiques, rares et incertains? Cette thèse est dédiée à répondre à cette

question.

La modélisation des incertitudes est au coeur de cette dissertation. Je passe en revue les

principales sources d’incertitude en économie de l’environnement et j’explique comment

ces incertitudes sont traitées dans la littérature. Je montre pourquoi l’étude des catastrophes

naturelles rares est pertinente et je détaille les avantages que l’on peut tirer d’une telle analyse.

De plus, je présente les mesures d’adaptations inclues dans cette dissertation : l’adaptation

spatiale et l’investissement dans du capital d’adaptation, qui protège le capital vulnérable. Je

discute comment les mesures d’adaptation ont été étudiées dans la littérature, notamment à

l’aide de méthodes numériques, afin de souligner ma contribution.

Dans le Chapitre 1, j’essaie d’implémenter dans le modèle d’équilibre général GENESwIS

les catastrophes naturelles ainsi que les mesures d’adaptation. Je propose une nouvelle ap-

proche de simulation, la myopie aux risques (hazard myopia), pour mieux prendre en compte

l’adaptation spatiale aux futures grandes inondations en Suisse. Un agent myope aux risques

résout un problème d’optimisation intertemporelle en évaluant subjectivement le risque

d’inondation. En revanche, les stocks de capital sont mis à jour de manière récursive en

fonction des dommages objectifs, c’est-à-dire des dégâts réels. En effet, le modèle d’équilibre

général, déterministique, ne prend pas en considération le phénomène d’épargne préventif,

qui est un comportement déterminant en présence d’incertitude. Pour correctement repré-

senter les évènements rares mais catastrophiques, il est ainsi nécessaire d’utiliser un modèle

stochastique.

En situation d’incertitude, un agent économique va investir davantage dans un capital moins

productif mais sans risque ou dans un capital non productif qui protège le capital productif

vulnérable. Comment expliquer ce phénomène d’épargne préventive ? Je traite cette question

dans le Chapitre 2 en résolvant un modèle d’équilibre général dynamique stochastique. Dans

ce cadre stylisé mais reproductible, j’obtiens les politiques d’investissement optimales pour

deux mesures d’adaptation, l’adaptation spatiale et l’investissement dans du capital d’adap-
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tation. Grâce à des simulations numériques, je montre que le modèle déterministique, qui

utilise l’équivalent certain, sous-estime le risque de catastrophes naturelles.

Dans le Chapitre 3, je discute et je confirme quantitativement l’argument défendu par Schelling

(1992, Section IV). En effet, je démontre que la meilleure stratégie d’adaptation à un désastre

naturel future varie en fonction du développement économique des pays. Un pays en voie

de développement devrait prioriser son développement économique en investissement dans

du capital productif au détriment des mesures d’adaptation. A l’inverse, un pays développé

devrait renforcer son capital d’adaptation, qui est non-productif mais qui permet d’atténuer

les conséquences d’une catastrophe.

A travers les Chapitres 2 et 3, j’ai eu recours à des techniques de parallélisation sur un cluster

de calcul haut de gamme dans le but d’accélérer les processus de résolution. L’utilisation du

calcul parallèle est un développement récent dans le domaine de l’économie. Cette thèse

illustre l’utilité des techniques informatiques modernes et vise également à encourager leur

utilisation en économie.

MOTS CLÉS : Economie de l’environnement, incertitude, adaptation, catastrophes naturelles et

leur gestion, modèle d’équilibre général, modèles d’équilibre général dynamique stochastique,

grilles adaptives éparses, calcul parallèle.
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General introduction

The concept of rare disasters, such as a great recession or world war, is introduced and studied

in economics by Rietz (1988), Barro (2006) and Gourio (2012), among others. Their motivation

is to solve the classic equity-risk premium puzzle in a financial market, proposed by Mehra and

Prescott (1985). When a rare disaster occurs with low probability, outputs jump down sharply

(Barro, 2006). Barro (2006) demonstrates that the properties of rare disasters are analogous to

fat-tailed distributed shocks in climate change. Judd, Maliar, and Maliar (2011), Posch and

Trimborn (2013) and Fernández-Villaverde and Levintal (2018) mainly propose numerical

methods to analyze the negative impacts of rare disasters on production activities.

The financial crisis is not the only example of rare disasters. Rare natural disasters such as

massive floods, great earthquakes or long droughts can cause extreme damages to economic

activities. The probability of high impact natural disasters is small but possible to occur

(Weitzman, 2011). These natural disasters cause damage not only to material assets but also

to intangible values including human life. Weitzman (2009) proposes the first theoretical

treatment of low probability but extreme impact events. However, it still includes many

aspects that are yet to be developed.

Tsur and Zemel (1998), Ikefuji and Horii (2012) and Bretschger and Vinogradova (2017) ex-

amine the impact of rare disasters from an environmental economics perspective. However,

except for a few contributions, such as Millner and Dietz (2015) and Grames et al. (2016), one

critical point is still missing: how do we adapt or alleviate the risk of uncertain rare natural

disasters? This question would be consistently pursued throughout this dissertation.

I briefly summarize the five key concepts in this thesis: environmental economics and uncer-

tainty, mitigation and adaptation to climate change, rare natural disasters, numerical methods

in economics and a certainty-equivalent deterministic model. Following this, I present the

organization of this thesis.

Environmental economics and uncertainty

Knight (1921) formalized a distinction between risk and uncertainty in 1921. According to

Knight (1921), risk refers to situations where we can correctly and objectively measure the

probability of each event. Uncertainty, on the other hand, refers to situations where we

1
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cannot know the probability of each event. In reality, the case of risk is rarely true. Every

decision maker postulates the probabilities of uncertain events subjectively in the situation of

uncertainty. According to Savage (1954), the choice behavior of every decision maker is one as

if he subjectively attaches the probability on each event and takes expected utilities.

Uncertainty is central to environmental economics. Pindyck (2007), Pindyck (2013a) and

Weitzman (2013) summarize the sources of uncertainty in modern environmental economics.

Stern (2016a) criticizes that the current economic models in this field fail to sufficiently

model these uncertainties. Farmer et al. (2015) overview the shortcomings in the current

modeling approaches and propose how economic models should be elaborated to address

these uncertainties correctly. In this chapter, based on the above arguments, I present the

sources of uncertainty in environmental economics and how these uncertainties have been

tackled mainly in the literature of numerical modeling below. Then I present which uncertainty

this dissertation concerns.

Literature review

The discount rate is one of the most notorious and controversial uncertainties. The impact of

climate change and related environmental policies would persist for over decades or centuries.

Long time horizons make it difficult to discount the distant future. Suppose that we rely on

an exponential discounting scheme, the model tends to trivialize events in the distant future

and results critically depend on the choice of a discount rate, especially in the context of

cost-benefit analyses. One well-known example about uncertainty in the discount rate is in

the evaluation of the social cost of carbon (SCC), which is the discounted value of the marginal

damage to economic activities caused by carbon emissions. Stern (2007) and Nordhaus

(2008), among others, calculate SCC and achieved strikingly different estimations as well as

optimal abatement policy. Nordhaus (2008) uses his integrated assessment model, namely the

DICE model. According to Nordhaus (2008), the optimal abatement should start gradually,

consistent with SCC at around 30 USD per ton of carbon in 2005 or more, depending on

the abatement target. On the other hand, Stern (2007) suggests a drastic and immediate

CO2 emission is necessary, which requires around 350 USD per ton of carbon in 2005. This

considerable difference stems from many assumptions behind the economic and climate

models, and the role of the discount rate is crucial in their estimations.1 Nordhaus (2008)

assumes that the pure rate of social time preference equals 1.5 percent per year. Stern (2007)

assumes almost zero for the pure rate of time preference.2 There is still no consensus between

economists about the discount rate, as Weitzman (2011) summarizes, and the choice of the

discount rate remains a subjective issue.

Environmental economists widely recognize parametric uncertainty. A typical example of a

1Indeed, in Nordhaus (2008), Nordhaus adopts Stern’s discount rate and calculates substantially different SCC
compared to his original estimations.

2Besides this underlying assumption on the discount rate, many challenge that Stern’s assumptions about
economical formulations and abatement cost, among others, are too pessimistic, but Stern (2008) defends these
assumptions.
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parametric uncertainty is in the choice of the relative risk-aversion parameter η. The role of η

can be understood in two ways: A large relative risk-aversion means a small marginal utility

of consumption in the future. In other words, avoiding climate change today offers a smaller

benefit in the future. If there is uncertainty in the future, a large ηmeans a more risk-averse and

precautious economic agent. He expects a more considerable loss in the future welfare and the

benefits from today’s abatement become meaningful. Pindyck (2013b) claims the former effect

dominates the latter; however, there is no definite conclusion about an appropriate value

of η in the literature. In addition to the relative risk-aversion parameter, many parametric

uncertainties are reported, and these are typically addressed using Monte-Carlo simulations.

Löschel and Otto (2009), for instance, test the sensitivity of modeling results on technological

uncertainties concerning the performance of backstop technologies. Babonneau et al. (2012)

execute Monte-Carlo simulations for climate sensitivity, technological progress, economic

growth, and oil and gas price.

The damage function is “the most speculative element of the analysis” of climate change

(Pindyck, 2013a). It translates the temperature change to economic activities, such as factor

productivity. Economic models are susceptible to the functional form of the damage function;

however, there is little agreement on it. Functional form is still very arbitrary, and no theoretical

or empirical foundations have been justified to date, for instance, see Tol (2002a) and Tol

(2002b) for the FUND model, Hope (2006) for the PAGE model and Nordhaus (2008) for the

DICE model. Damage functions are typically calibrated to analyze the temperature range

from 2 to 3°C. Therefore if the temperature increase exceeds 5°C, the reliability of the function

largely deteriorates.

The climate sensitivity parameter defines the increase in temperature relative to preindustrial

levels, which corresponds to double the atmospheric CO2 concentration. Figure 1 illustrates

the estimated probability distribution functions for a climate sensitivity parameter from the

published studies. Climate scientists use climate models to estimate the parameter based

on the variety of assumptions involving parameters, physical processes and observational

data among others. As Figure 1 shows, there is enormous uncertainty. Allen and Frame (2007)

conclude that climate sensitivity is “unknowable.” Also one should note that the probability

distribution of climate sensitivity exhibited is fat-tailed, which is potentially another source of

uncertainty: catastrophic events.

Catastrophic events are another source of uncertainty that environmental economists have

realized but failed to address in a model correctly. IPCC (2007) estimates that the global

average surface temperature is likely to be in the range from 2 to 4.5°C with the best estimate

of 3°C, and it is very improbable to be less than 1.5°C. However, the climate outcomes tend

to follow a fat-tailed distribution; thus, catastrophic events such as 7°C or 8°C temperature

increase are still possible to happen. These events have a very low probability of occurring but

are realized with a catastrophic consequence. Given the specific nature of the catastrophic

events, the expected damage may be inappropriate to represent all catastrophic events, and

this fact makes modeling implausible (Weitzman, 2009, 2011). The literature on this topic is
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24 A. Millner et al.

Fig. 1 Estimated probability density functions for climate sensitivity from a variety of published studies,
collated by Meinshausen et al. (2009 )

aggregate the different estimates into a single probability density (“Bayesian response”); and
surely all the estimates are not equally valid, so why not simply choose the ‘best’ estimate
(“scientists’ response”)? To answer these questions, it is important to understand that the
estimates of climate sensitivity in Fig. 1 are based on different climate model structures (i.e.
different representations of physical processes, and choices of physical parameters), differ-
ent statistical methodologies, and different observational data. Climate science is currently
unable to identify how these different estimates might best be combined. The problem of
model comparison is made especially difficult by the fact that the estimates are not indepen-
dent, and the fact that the historical instrumental record has already been used to generate
the estimates in Fig. 1 , thus precluding us from using it again to determine which of the
models fits the data best (see Tebaldi and Knutti 2007 for a discussion of the difficulties of
combining predictions from multiple climate models.). Thus we cannot quantify how the
different estimates relate to one another, or objectively single out a ‘best’ study.

Any putative weights that we might assign to the different estimates would thus reflect
largely subjective choices. Importantly, the standard expected utility paradigm does not dis-
tinguish between subjective choices (e.g. the weights on models in our application) and the
conditionally objective knowledge generated by assuming a given model structure is correct
and comparing it to the data (e.g. the probability densities in Fig. 1 in our application). In
the standard Bayesian model subjective weights combine linearly with conditionally objec-
tive probabilities to give rise to a unique compound distribution which is indistinguishable
from an equivalent objective lottery—we have lost sight of the fact that this compound

123

Figure 1 – Estimated probability density functions for a climate sensitivity parameter, adopted
from Millner, Dietz, and Heal (2013)

limited apart from a few mentions from Dietz and Stern (2015), for instance.

Tipping points are coming to be considered as a further source of uncertainty. Lenton et al.

(2008) define “tipping point” as a critical threshold. Once a state passes a tipping point,

the state of a system is completely altered and may not return to the original state. They

shortlist nine tipping elements and conclude that the melt of the Arctic Sea ice and the

Greenland ice sheet are the greatest threats to our planet. Tipping elements have been grossly

underestimated by conventional modeling, however, some recent literature discuss this issue

for instance Lontzek, Cai, and Judd (2012), Lemoine and Traeger (2014), Lontzek et al. (2015)

and Cai, Judd, and Lontzek (2015).

Uncertainty in this dissertation

Environmental economics suffer from a wide range of uncertainties. To make matters worse,

climate scientists claim that some of the listed uncertainties are “unknowable”. Given these

potential difficulties, this dissertation focuses on two sources of uncertainty. One is a rare

natural disaster with a small probability of occurring but causes catastrophic damage to the

environment such as great floods or massive earthquakes. The probability of significant

natural disasters is estimated to be very small, but it has happened in the past and causing
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extensive damage to the national or global GDP, as has been recorded. Rare natural disasters

share common natures with catastrophic events.

The second source of uncertainty is a small but frequent productivity shock. The productivity

shock is standard in the economics literature. I aim to include this uncertainty to maintain

consistency with other fields of economics.

Mitigation and adaptation to climate change

Climate change is primarily regarded as one of this century’s most pertinent global common

concerns. Stabilization of greenhouse gas concentrations is necessary to prevent irreversible

damage to the environment, which is attributable to anthropogenic interference. After a

seminal contribution by Nordhaus (1991), there is a growing demand from the economic side

to curb CO2 emissions to sustain economic growth. Mitigation measures are a priority to avoid

irreversible damage to the environment. However, additional adaptation efforts are required

to reduce the adverse impacts of the projected climate change. In this chapter, I overview

these approaches. First I briefly review mitigation measures and subsequently I discuss the

adaptation to climate change, which is a central focus of this dissertation. Finally, I present

the contributions of this dissertation to the existing literature.

Mitigation of climate change

Mitigating climate change is primal research interests. Carbon tax and carbon emission

trading are the best examples of mitigating ongoing climate change. Price (tax) and quantity

(permit) based regulatory instruments provide different incentive motives after a seminal

contribution by Weitzman (1974). This price and quantity regulation is widely discussed in the

theoretical assessment of environmental policy, for instance see Montero (2002), Kelly (2005),

Krysiak (2008), Krysiak and Oberauner (2010) and Storrøsten (2014) among others.

William D. Nordhaus, a Nobel laureate in 2018, is one of the founders of the economic analysis

of anthropogenic impacts on the environment. His seminal contribution is to propose a

stylized and reproducible mathematical model, namely an integrated assessment model (IAM),

where an economic and a climate module are synthesized. Today IAMs have become one of

the main tools to estimate the efficiency of a variety of mitigation measures. Depending on

the scope of the modeling exercises, existing IAMs are roughly classified into two approaches:

top-down and bottom-up.

Top-down IAMs focus on the macroeconomic structure of target regions. A representative

agent solves a static or an intertemporal optimization problem subjected to several constraints,

deciding how much output to consume and how much to save for the future. IPCC (2001)

categorizes top-down IAMs into two subcategories: a policy optimization model (POM) and a

policy evaluation model (PEM).

POMs focus on the cost-benefit aspect of mitigation measures. For instance, the DICE model
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(Nordhaus, 2008), the RICE model (Nordhaus and Boyer, 2000), the FUND model (Tol, 2002a,b)

and the PAGE model (Hope, 2006) have been developed and deployed to evaluate mitigation

strategies. POMs are often cast as a Ramsey growth model with a simple climate model and a

damage function.

PEMs have detailed sectoral input-output information to analyze a general or partial equilib-

rium, while POMs highly aggregate sectoral details. The computational general equilibrium

(CGE) model is regarded as an example of PEMs. A representative agent in a CGE model

is either complete myopic, such as the EPPA model (Paltsev et al., 2005) or the GEMINI-E3

model (Bernard and Vielle, 2008), or has perfect foresight, such as the EPPA-FL (Babiker et al.,

2009) model or the GENESwIS model (Vöhringer, 2012). POMs are largely implemented as an

optimization problem, while PEMs are often categorized as a simulation model.

Bottom-up IAMs represent the technological side of target regions in greater detail. Bottom-up

IAMs are often cast as a non-linear optimization model and analyze a partial equilibrium at

the sectoral, regional or global level. MERGE (: Model for Evaluating the Regional and Global

Effects of climate change policies) is a well-known example of (Manne, Mendelsohn, and

Richels, 1995). Barreto and Kypreos (2004) study the impact of R&D investments, which is an

essential factor to push technological progress within a given technology, on the diffusion of

renewable technologies, using the bottom-up energy system model ERIS. Usui, Furubayashi,

and Nakata (2017) endogenize the energy-related R&D investment for a renewable technology,

which requires technological innovation to be deployed in the mature electricity market

in Japan, and optimize the timing of R&D investment within the framework of a partial

equilibrium model. The carbon capture and storage (CCS) system is one option to reduce

a significant amount of CO2 emission from carbon-intensive power plants. Technological

change and the cost of carbon mitigation are widely discussed (Grübler, 2003; Kypreos, 2008).

Endogenous technological development and induced technological change have been widely

studied especially with a technology-rich energy system model such as van der Zwaan et al.

(2002), Buonanno, Carraro, and Galeotti (2003) and Castelnuovo et al. (2005).

Adaptation to climate change

Due to the inertia of the climate system and the demands from public administration, there

is a growing need for adaptation strategies. Adaptation aims to reduce possible impacts of

climate change on the economy and the environment. In this sense, adaption to climate

change could become a substitute or a complementary action of mitigation.

Tol (2005) argues three differences between mitigation and adaptation instruments. First, as

summarized in Table 1, mitigation is more likely to be a public good and requires a concerted

international effort. On the other hand, adaptation could be implemented on a national or a

regional scale, providing sufficient implementation speed and geographical scope. Second,

adaptation can be carried out with a more specific geographical scope and shorter temporal

scale than mitigation. Third, mitigation and adaptation are substitute goods. Mitigation takes

resources away from adaptation and vice versa.
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Table 1 – Mismatches between mitigation and adaptation adapted from (Tol, 2005)

Scale of implementation Decision makers Time scale

Mitigation National scale in the context of interna-
tional negotiations

Ministries or Gov-
ernments

Long-term

Adaptation Local scale of individual households or
companies in the context of a regional
economy

Local managers Short- or
medium-
term

Fankhauser, Smith, and Tol (1999) developed some basic rules to design efficient adaptation

strategies that enrich the flexibility and the resilience of systems to climate shocks, reflecting

the long time scale and the prevailing uncertainties about climate change. They classify adap-

tation measures into four types: reactive, anticipatory, autonomous and planned adaptation.

The objectives of adaptation measures can be diverse. One approach is to try to cancel all

climate-related impacts, maintaining the status quo. Another is to cancel adverse impacts and

to collect positive opportunities. In the presence of limited resources, adaptation strategies

involve some trade-offs with multiple policy alternatives such as economic development

and climate mitigation. Therefore, there is a growing demand for the understanding of the

economic nature of adaptation in the context of climate change; however, most aspects of

adaptation measures are yet to be addressed (Ciscar and Dowling, 2014). Most adaptation

efforts create local public good as opposed to mitigation, which contributes to the global

public good, creating a concern that such actions would not receive enough attention from

private parties.

Private of public actors motivate many forms of adaptation measures. These adaptations

are undertaken in the context of local or international negotiations (Chambwera et al., 2014).

General forms of adaptation and the primary stakeholders are summarized in Table 2. One

notable and successful example is about adaptation to great floods in Switzerland. Swiss

national and local authorities have realized the risk of great floods after the catastrophic flood

in 2005 and have installed early warning systems, weather regulation services. Those facilities

worked correctly in 2007, even the magnitude and the catchment of the flood was very similar

to the flood in 2005 (NZZ, 2007a,b). Japan is known for an earthquake-prone country. Public

facilities in Japan are supposed to install earthquake resisting function. Risk communication,

as well as evacuation training, are regularly conducted by every local municipality. Some of

the actions are public, i.e., they are funded by public actors such as governments, NGOs, or

international organizations.

Figure 2 illustrates the link between the cost of climate change and the adaptation cost, for the

case that, either, optimal adaptation is possible, or not. A fraction of the climate cost can be

reduced without any payment as shown in both panels. It is called adaptation without any

payment. Most adaptation efforts, like mitigation, require additional investment to reduce
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Table 2 – Adaptation measures and their main stakeholders

Adaptation measures Stakeholder(s)

Altered patterns of enterprise management, facility investment, en-
terprise choice or resource use

Mainly private

Direct capital investments in public infrastructure Mainly public
Technology development through research Private and public
Creation and dissemination of adaptation information Mainly public
Human capital enhancement Private and public
Redesign or development of adaptation institutions Private and public
Changes in norms and regulations to facilitate autonomous actions Mainly public
Changes in individual behavior Private with possi-

bly public
Emergency response procedures and crisis management Mainly public

the negative impact of future climate change. The cost of climate change can be reduced

monotonically with increasing adaptation costs. The left panel shows the case when optimal

adaptation is possible. The optimal adaptation level can be found by equating the marginal

adaptation cost with the marginal benefit of adaptation. On the other hand, as shown in the

right panel, optimal adaptation is in general not possible. Any adaptation instrument can

not overcome some of the climate costs since some instruments are too cost-inefficient or

too ambitious to be implemented. There is also a technology limit. Fankhauser and Soare

(2013) claim the role of government intervention to overcome barriers that prevent smooth

or autonomous adaptation. Barriers to adaptation include shortcomings in the institutional

and regulatory environment, market failures such as asymmetric information and moral

hazard, as well as the lack of behavioral and information.3 Because of these barriers and

technological constraints, the marginal cost of adaptation cannot be equal to the marginal

benefit of adaptation in this setting.

Adaptation is not a static project. Rather, it evolves, taking into account changing climate

conditions, technology availability and its maturity (Chambwera et al., 2014). Uncertainty, the

lack of reliable data and the patterns of future climate change are also an important aspect

since the longer analytic periods are, the more uncertainty there is. However, in most cases,

especially with a low-probability but high-impact catastrophic disaster, it may be impossible

to identify reasonable probabilities for alternative outcomes and forecast the set of possible

future outcomes (Weitzman, 2009, 2011). Data quality and quantity are also significant sources

of uncertainty (Chambwera et al., 2014). Poor or sparse data limits the accuracy of numerical

estimations. It is especially the case for developing countries for which adaptation to climate

change is a more urgent matter (Millner and Dietz, 2015).

3Moser and Ekstrom (2010) define barriers as obstacles that could be stemmed from all phases and sub-
processes throughout the adaptation process. Common barriers are listed up by Moser and Ekstrom (2010, and
references therein).
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Figure 2 – Cost of adaptation and the residual cost of climate change, the left panel shows the
case where optimal adaptation is possible, while the right panel is the case where optimal
adaptation is not possible. The figures are cited from Chambwera et al. (2014), but has been
slightly modified by the author.

Adaptation is classified into two forms; flow and stock adaptation. Flow adaptation occurs

in a single period, and stock adaptation involves intertemporal investment decision-making.

Some existing economic models consider flow or stock adaptation. de Bruin, Dellink, and

Tol (2009) are some of the first to model adaptation as an endogenous choice variable in

IAM, AD-DICE. Bosello, Carraro, and De Cian (2010) discuss the optimal balance between

mitigation and adaptation in another IAM, AD-WITCH. In analytical literature, stochastic

dynamic optimization over a continuous time is a standard tool to study optimal adaptation

decisions, for instance, see Tsur and Zemel (1998). Bréchet, Hritonenko, and Yatsenko (2013)

solve the optimal balance between mitigation and adaptation by using the deterministic

Solow growth model. Millner and Dietz (2015) introduce adaptive capital stock together with

productive capital stock, to the deterministic Ramsey-Cass-Koopmans growth model and

solve the intertemporal optimization model numerically for the consumption, as well as

for the investment to adaptive and productive capital stock. Grames et al. (2016) present a

continuous dynamic stochastic growth model with adaptive capital stock to address uncertain

floods.

Adaptation in this dissertation

In this dissertation, I focus only on adaptation and mainly address two adaptation measures:

spatial adaptation and the introduction of adaptive capital stock.4 In the spatial adaptation, I

classify the existing productive capital stock into two types, depending on its vulnerability to

4In terms of terminology, spatial adaptation is well accepted in the literature on flood risk, for instance, see
Koks et al. (2014). The concept of adaptive capital is relatively new, but my definition is similar to Millner and Dietz
(2015) and Grames et al. (2016).
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rare natural disasters. Spatial adaptation can be cast as intertemporal investment decision-

making between vulnerable and non-vulnerable capital stock. Spatial adaptation is one form

of “stock” adaptation. Spatial adaptation is “planned” adaptation in the classifications of

Fankhauser, Smith, and Tol (1999) and is an example of “direct capital investments in public

infrastructure” in Table 2.

The adaptive capital stock is assumed not to contribute to production activities and becomes

only effective when a disaster occurs. Therefore, an investment in adaptive capital stock has a

precautionary sense. Adaptive capital stock requires dynamic investment decision-making

between productive and adaptive capital stock. Therefore, the adaptive capital stock is another

form of “stock” adaptation. The introduction of adaptive capital stock is an “anticipatory”

action in the classifications of Fankhauser, Smith, and Tol (1999) and is again an example of

“direct capital investments in public infrastructure” in Table 2.

The dissertation relates or contributes to the existing literature in the following ways: First,

both spatial adaptation and adaptive capital stock are stock adaptations, as in Agrawala et al.

(2011), and have either a planned or an anticipatory sense, as in Fankhauser, Smith, and Tol

(1999). In Chapter 1, I aim to evaluate the efficiency of several spatial adaptation policies, using

an existing CGE model. The dynamic stochastic equilibrium analyses in Chapters 2 and 3

are analogous to analytical studies such as in Tsur and Zemel (1998), Bréchet, Hritonenko,

and Yatsenko (2013) and Millner and Dietz (2015). In general, closed-form solutions require

stylized assumptions especially under uncertainty, though I use a state-of-the-art numerical

method to approximate an Euler equation with keeping reasonable assumptions directly.

Finally, Grames et al. (2016) discuss the optimal adaptation decision for uncertain hazards

over continuous time, while my models are formulated in discrete time. The consideration of

spatial adaptation is an additional asset.

Rare natural disasters

Rare natural disasters have caused notable damage to human welfare. Economic damage

from natural disasters on the global GDP from 1960 are summarized in Figure 3 (CRED and

Guha-Sapir, 2018). Figure 3a displays the long term economic damage from natural disasters.

Natural disasters have caused an extreme impact on economic activities; however, the trend

exhibited is considerably random.

The ratio of damage to the global GDP is shown in Figure 3b. Again the trend presented is

substantially random, but I weakly conjecture that the ratio continues on a steady and upward

trend. The continuous economic growth supports this observation. The economic growth

is expected to continue for the next decades and centuries. If I can assume some degree of

relationship between economic growth, climate change and the probability of having a rare

natural disaster, the economic development itself threatens sustainable development. An

adaptation to rare natural disasters is also demanded within this context.
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Figure 3 – Economic damage from natural disasters on a global scale. The label “others”
includes biological, climatological and extra-terrestrial disasters. Data source is CRED and
Guha-Sapir (2018) and The World Bank (2018).

Numerical methods in economics

Numerical methods have become the third pillar in most areas of science.5 In the past, science

relied on observational and experimental facts. Theories were developed to offer mathematical

reasoning. All of the theories are mathematically tractable and offer implications in some

closed-form expression. Models are highly simplified and require stylized assumptions. The

theories are useful to illustrate general rules, but a computational approach is necessary when

a model is analytically intractable by adding additional elements.

Nowadays, computational approaches are widely accepted in most (hard) sciences such a

physics, chemistry, astronomy, meteorology, pharmacy among others. Many economists em-

phasize on the analytical assumption-theorem-proving style, but some realize the importance

of computing power. We need to specify all the assumptions such as functional forms and

parameters. However, if we want to address some complexities that have been omitted to

illustrate a closed-form solution, such as uncertainty or heterogeneity, numerical methods

could become complements or substitutes to analytical solutions.

Computational general equilibrium (CGE) is the most mature area of computational eco-

nomics (Judd, 1997). A CGE model is based on the general equilibrium theory, which was first

pioneered by Léon Walras and mathematically formalized mainly by Kenneth J. Arrow and

Gerard Debreu. The basic idea is that all prices are adjusted until the demand and supply are

equalized in all considered markets. The Scarf’s algorithm is the first solution to solve CGE

models. Shoven and Whalley (1984) survey the artistic contributions in this field.

After seminal contributions by Thomas F. Rutherford and James R. Markusen, among others,

CGE models have now become one of the standard policy evaluation tools in economics.

5Judd (1997) is a comprehensive essay about computational economics.
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Most CGE models are calibrated and solved using the General Algebraic Modeling System

(GAMS), a high-level modeling language for mathematical programming (Rosenthal, 2013).

Mathematical Programming System for General Equilibrium (MPSGE) has been developed as

a subsystem of GAMS (Rutherford, 1999). MPSGE greatly facilitates the programming cost of

CGE modeling. Advances in a mixed complementarity approach are noteworthy to support

the development of CGE modeling, for instance, the PATH solver (Ferris and Munson, 2000).

Numerical methods for solving non-linear dynamic problems have been continuously de-

veloped. One of the most active research fields is to propose a solution algorithm to solve

rational expectation models. Judd (1992) demonstrates how rational expectation models can

be solved by using a projection method. Projection (or time iteration collocation) method

has been widely employed to solve a variety of economic models, including dynamic games

as (Judd, 1996) and asymmetric information models (Ausubel, 1990). Classical projection

methods depend on the orthogonal global polynomials such as Chebyshev or Legendre poly-

nomial. Approximation based on the orthogonal polynomials becomes more expensive when

one aims to solve a high dimensional rational expectation model. It is known as the curse

of dimensionality. The Smolyak algorithm is a well-known example to alleviate the curse of

dimensionality (Krueger and Kubler, 2004).

High-performance computing (HPC) would become more critical for serious computational

works in economics. The clock speed of a single CPU is reaching its transition limit, and it is

expensive to make a single processor faster. Serial computing would also reach its limitation

soon and is already incapable of solving a numerically expensive economic model. HPC

enables us to access the modern and massive power of the high-end computing system.

However, compared to other (hard) sciences, applications of HPC in economics are limited,

for instance, see Aldrich et al. (2011), Cai et al. (2015) and Brumm and Scheidegger (2017)

among others.

There are many more numerical methods and algorithms capable of solving interesting eco-

nomic models than I can include here. There is no golden algorithm to solve all economic

models. We need to select the correct numerical methods depending on the characteristics of

the models that we want to solve numerically. Computing time and approximation quality are

worth considering. Aruoba, Fernández-Villaverde, and Rubio-Ramírez (2006) and Juillard and

Villemot (2011) compared some solution algorithms and resulted in approximation qualities

for some examples. Some are interested in selecting the best programming language for

economic modeling and comparing them (Aruoba and Fernández-Villaverde, 2015).

This dissertation employs two numerical models. In Chapter 1, I use a computational general

equilibrium model. In Chapters 2 and 3, I solve dynamic stochastic equilibrium models by

using an approach based on the time iteration collocation method. The presented models

in Chapters 2 and 3 are too expensive for a serial desktop computer. Therefore, I implement

and massively parallelize them on the university computing cluster via the message passing

interface (MPI).
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Certainty-equivalent deterministic model

Stochastic models have no steady state as deterministic models do. A certainty-equivalent

deterministic model offers a useful benchmark solution for the subsequent analyses with

a stochastic model (Miranda and Fackler, 2002). The most convenient way to transform

stochastic models to the certainty-equivalent deterministic models are to take an expected

value of uncertain parameters.

Suppose that I want to solve the following stochastic programming:

min
x
E
[

f (x;ξ)
]

(1)

s.t. x ∈X (ξ) (2)

where x is the vector of decision variables and ξ is the vector of (uncertain) parameters. X (·)
stands for the feasible set of the decision variables. I assume ξ follows ex-ante probability

distributions. I can convert the stochastic model to the certainty-equivalent deterministic

model by taking:

ξ= E [ξ] (3)

However, the modeling results in Eq. (1) is different from the certainty-equivalent deterministic

one:

E
[

f
(
x∗;ξ

)] 6= f
(
x∗;E [ξ]

)
(4)

where x∗ is the vector of the optimal control of the associated problem.

In some applications, especially if the model is linear and an uncertain parameter distributes

uniformly, the certainty-equivalent deterministic model offers an acceptable approximation

quality for the corresponding stochastic model. However, the certainty- equivalent approxi-

mation is known to pose poor approximation, if the model contains a non-linear equation or a

fat-tailed distributed parameter. The presented thesis addresses highly non-linear stochastic

models with rare but catastrophic disasters. In this context, the certainty-equivalent approxi-

mation is expected to be the wrong choice for this thesis.

Outline of the thesis

The dissertation studies adaptations to rare natural disasters under uncertainty using an

approach based on numerical economic models. How do we (optimally) adapt or alleviate the

risk of future rare natural disasters? The dissertation is dedicated to answering this question

and is organized as follows:

Chapter 1 presents the first numerical simulations for uncertain high impact floods in Switzer-

13
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land. I employ the existing CGE model GENESwIS (Vöhringer, 2012), and consider spatial

adaptation. I start this chapter by classifying the existing Swiss productive capital stock

amongst flood vulnerable and non-vulnerable capital stock. Flood hazards involve a high

degree of uncertainty; therefore, the conventional perfect-foresight agent is inappropriate.

The spatial adaptation is one form of the stock adaptations; thus, investment decision making

should be based on an intertemporal optimization that a conventional myopic economic

agent misses. Regarding this aspect, I propose a new simulation approach, namely the hazard-

myopia. The hazard myopic economic agent has perfect-foresight of all macroeconomic

conditions, but he is still myopic when it comes to uncertain floods. Instead of objectively

observing information on flooding, he subjectively forms an expectation on an upcoming

flood. The agent solves an intertemporal optimization problem based on his subjective belief.

The capital stocks in the next period are recursively updated considering the realized damage

scale. I address uncertainty around the timing of high impact floods with a large number

of Monte-Carlo simulations. In each Monte-Carlo simulation run, the timing of hazards are

exogenously defined and substituted into the model.

However, the simulated results are counterintuitive. The hazard myopic economic agent

invests more in vulnerable capital stock, even though he realizes the risk of significant flooding

in the future. The model is calibrated based on the Swiss empirical data; however, the modeling

insights contradict the real Swiss situation.

To model and to exploit stochasticity in the improved representation, I study optimal adapta-

tion decisions on rare natural disasters by using an approach based on a dynamic stochastic

equilibrium model in Chapter Chapter 2.

As an example of adaptation measures, I consider spatial adaptation and the introduction of

adaptive capital stock. The scope of Chapter 2 is to carefully study the optimal adaptation

decisions on uncertain rare natural disasters with either spatial adaptation or adaptive capital

stock. The models are formulated as a social planner problem. First-order autoregressive

productivity shock is considered. I present a modeling way that includes uncertain rare natural

disasters in discrete time and solves the models by applying the time iteration collocation with

adaptive sparse grid (Brumm and Scheidegger, 2017). To speed up the solving processes, my

implementations are massively parallelized using high-performance computing architecture.

I numerically approximate the optimal stochastic policy functions for the economy either with

spatial adaptation or adaptive capital stock. Furthermore, I demonstrate the applicability of

the stochastic adaptation decisions over the deterministic ones, focussing on small probability

but catastrophic natural disasters.

Chapter 2 contributes not only to adaptation decisions but also to the literature of computa-

tional economics. The models have several capital stocks. Therefore, occasionally binding

irreversible investment constraints are required. The occasionally binding constraints impose

non-smooth regions in the interpolant and that largely deteriorates the quality of approxima-

tion (Judd, Kubler, and Schmedders, 2000). Adaptive sparse grid algorithm correctly detects
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non-smoothness regions. My approximation quality is good enough compared to the existing

literature (Brumm and Grill, 2014).

Chapter 3 extends the models and the discussions in Chapter 2. Adaptation is likely to be

installed in the regional and specific environment (Tol, 2005). Optimal adaptation decisions

depend on the development state of the target economy. Spatial planning and adaptive capital

stock are complementarities. A tradeoff between the two adaptation measures should be

considered in the same manner. I develop a social planner’s problem with two adaptation

measures in Chapter 3. The model is solved using the time iteration collocation with an

adaptive sparse grid algorithm.

Computed stochastic policy functions are applied to the initially well developed and devel-

oping economy. I claim that if the economy is still developing, it is socially optimal to invest

more in productive capital stock at first, to secure the resources available for adaptation. If the

initial state of the economy is sufficiently developed, the initial growth rate of the adaptive

capital stock exceeds that of the productive capital stock in preparation for future uncertainty.

Schelling (1992, Secion IV) qualitatively claims that the developing countries’ “best defense

against climate change may be their continued development”. My results quantitatively

support his statement.

15





1 Spatial adaptation in the CGE model

1.1 Introduction

Switzerland has been identified, as have many other European countries, vulnerable to flood-

ing. Floods cause significant damage not only to material assets but also to intangible valuables.

Floods can be triggered by diverse weather conditions such as thunderstorms, long-lasting

rainfall or snow-melt. Schmocker-Fackel and Naef (2010) analyzed up to 105 years of stream-

flow data in Switzerland to determine whether the flood frequency has increased as a result of

the changes in the atmospheric circulation. Flood risk analysis takes into account practical

information about floods, such as frequency and magnitude, as well as the exposure and

vulnerability in flood-prone areas. Fuchs et al. (2017) and Röthlisberger, Zischg, and Keiler

(2017) carry out a case study in Switzerland. It is a pervasive and active research field. Recent

scientific evidence demonstrates that the impact of climate change is visible in the hydro-

logical data such as heavy precipitation and peak flows, implying that flood risk has already

increased in Switzerland (CH2018, 2018). Swiss authorities have realized the risk of floods and

have installed some early warning systems and physical instruments to alert these associated

uncertainties.

How do we adapt to the risk of uncertain, rare but catastrophic floods? I would tackle this ques-

tion using an approach based on the existing simulation model GENESwIS (Vöhringer, 2012).

GENESwIS is a dynamic computational general equilibrium (CGE) model and represents the

Swiss economy as a small open economy. I aim to deliver the ex-ante estimation of adaptation

to great floods within the context of Switzerland. First, I implement spatial adaptation on

GENESwIS as an example of an adaptation instrument.1 In the spatial adaptation, I categorize

the existing Swiss productive capital stock into two types, depending on its vulnerability to

floods: vulnerable and non-vulnerable capital stock.

An increasing number of papers have applied CGE models to study the economic impact of

natural disasters and the distribution of damage within the economy. Earthquakes disrupt life

1Spatial adaptation is a well-considered adaptation measure to flooding, for instance see Koks et al. (2014).
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and transportation infrastructures and cause a significant impact on the economy. Rose and

Guha (2004) estimate the indirect impacts of large earthquakes on business activities. Rose

and Liao (2005) study the sectoral and regional impacts of a water disruption caused by an

earthquake in the Portland Metropolitan. Tsuchiya, Tatano, and Okada (2007) and Tatano and

Tsuchiya (2008) employ a spatial CGE model and investigate the impacts of transportation

infrastructure disruptions caused by an empirical or a projected massive earthquake in Japan.

High impact floods and their distributional effects have been widely studied. Pauw et al. (2011)

conduct a case study for Malawi to estimate the losses caused by possible extreme weather

events, such as droughts and floods. Haddad and Teixeira (2015) study the economic impact

of floods in São Paulo, Brazil, by integrating a spatial CGE model and GIS information. Carrera

et al. (2015) estimate the damage to the physical stock and apply the model to an empirical

flood in Italy. The potential economic losses attributable to general natural hazards have been

estimated and reported. Berrittella et al. (2007) investigate the impact of water scarcity in the

framework of international trade. Pycroft, Abrell, and Ciscar (2016) evaluate the impacts of

sea-level rise at a global scale. Finally, Gertz and Davies (2015) is the first to use a dynamic

CGE model to examine recovering processes after significant flooding in Metro Vancouver,

where an economic agent has perfect foresight.

Natural hazards involve a high degree of uncertainty. The timing and the magnitude of natural

hazards are unpredictable; therefore, the conventional perfect-foresight economic agent is

not a reasonable assumption within the context of uncertainty. Spatial adaptation is one form

of stock adaptation. This fact makes the conventional myopic economic agent inappropriate

since he does not consider an intertemporal tradeoff.

The first contribution of this chapter is to propose a hazard myopic simulation algorithm.

There are three critical assumptions behind the hazard myopia. First, the representative

agent has perfect-foresight of all macroeconomic conditions except for uncertain natural

disasters. Second, the agent subjectively forms an expectation of the scale of damage of

future floods. This subjectively formed expectation is directly considered when the agent

solves an intertemporal optimization problem. This subjective belief reflects how much the

representative agent is concerned with the risk in the future. When the agent finds that there is

a high future risk, he prepares for future uncertainty by assuming higher additional damage on

vulnerable capital stock. When he underestimates the risk of floods, his belief in the additional

damage naturally decreases.

The third assumption behind the hazard myopic simulation is in the timing of capital updating.

The representative agent correctly observes whether a flood has occurred or not in each period.

Capital stocks need to be recursively updated based on the realized observed damage scale,

in line with the complete myopic economic agent. The representative agent again solves an

intertemporal optimization problem in the next period. In short, there are two laws of motion

of capital stock. One is based on a subjective belief, and it is used when the agent solves

an optimization problem. The other is based on an observed damage scale, depending on

whether a flood occurs or not, and capital stocks are recursively updated based on this law of
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1.2. Switzerland and floods

motion every period.

I extend the GENESwIS model so as to include a hazard myopic economic agent. I assume he

is risk-averse. The risk-averse economic agent subjectively evaluates the risk of future flooding.

The more he is concerned about the risk of future great floods, the more he invests into less

productive but risk-free capital stock, such as non-vulnerable capital stock. After checking the

credibility and the stability of the new simulation approach, I evaluate the spatial adaptation

strategies for the selected major five floods in Switzerland. I address uncertainty in the timing

of floods by a large number of Monte-Carlo simulations.

However, my modeling offers counterintuitive results and contradicts the real Swiss situation.

That is, the representative agent realizes the risk of flooding, but he invests his saving mainly

in vulnerable capital stock, even though he is assumed to be risk-averse. The more he is

concerned about the risk of future floods, the more he invests in more productive but risky

capital stock, such as vulnerable capital stock, instead of investing into non-vulnerable capital

stock.

Given this result, I decided to contribute to the modeling community by providing reasons

why my attempts had failed to model adaptation decisions that could be consistent with

risk-averse behavior. I systematically compare some advanced economic models with my

study. I conclude that the treatment of uncertainty in my approach is inadequate. Investment

in non-vulnerable capital stock is a precautionary saving with which an economic agent with

income shocks is known to save excessively rather than determinate (Ljungqvist and Sargent,

2012, Section 18.14). The economic agent invests in a less productive but risk-free capital

based on a precautionary motive, but this effect can be strengthened under uncertainty.

The remainder of this chapter is organized as follows. Section 1.2 briefly overviews the flood

history in Switzerland and selects the major five floods for simulation analyses. Section 1.3

presents the structure of the existing computational general equilibrium model GENESwIS

and proposes a new modeling approach: the hazard myopia. Section 1.4 summarizes the simu-

lation results. However, the simulation results contradict what we observe in reality. Therefore,

I discuss how the existing CGE model can be elaborated to include correct adaptation behavior

to rare but catastrophic disasters in Section 1.5, and I conclude in Section 1.6.

1.2 Switzerland and floods

The Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL) has

systematically accumulated data on damage caused by naturally triggered floods, debris

flows and landslides since 1972 (Hilker, Badoux, and Hegg, 2009). Figure 1.1 illustrates the

cumulative flood damage costs and their spatial distribution in Switzerland since 1972. The

regions Espace Midland and Central Switzerland each account for more than one-quarter

of the absolute total loss. When the recent history of flood damage is reviewed, as shown in

Figure 1.2, we can observe several prominent floods in terms of their damage to the Swiss
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Figure 1.1 – Spatial distribution of cumulative costs of flood damage in Switzerland from 1972
to 2013. The figure is initially provided by the WSL Storm Damage Database of Switzerland
(Hilker, Badoux, and Hegg, 2009).

economy. National and local authorities have successfully applied the WSL storm damage

database in Switzerland in a decision-making process.

Together with our project partners at the University of Bern (Ole Rössler, Luise Keller and

Alexandra Gavilano), we have selected the major floods in Switzerland. I briefly present

reasons why the selected five floods are interesting for the subsequent simulation analyses

with the existing computational general equilibrium model: GENESwIS.

Flood in August 2005

From the 19th to the 24th of August 2005, torrential rain fell mainly in Canton Bern and

Central Switzerland.2 In some observatory stations, the amount of precipitation surpassed

the existing record. Especially the rivers Aare and Reuss generated extraordinary levels of

discharge. Flooding, erosion, landslides and debris flows killed seven people. The flood

caused the largest monetary damage on the Swiss economy in history and approximately 900

communes were affected.

2Flood information is taken from Sturmarchiv Schweiz (http://www.sturmarchiv.ch/) and National Platform
for Natural Hazard (http://www.planat.ch/en/).
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Figure 1.2 – The annual cost of damage caused by flooding in Switzerland. Cost data is
converted into Swiss francs (CHF) in 2014.

Flood in May 1999

The northern part of Switzerland experienced extremely heavy precipitation from the 4th to

22nd May 1999. Persistent high temperatures in this time and heavy precipitations accelerated

the melting of the snow in the mountains and the melt-water significantly increased the

level of the discharge. Due to the long-lasting rainfall and melt-water, the rivers Thur, Aare,

Linth and Lake Bodensee were flooded. Canton Zürich and Bern were affected. The event is

recognized as a centennial flood. The catchments and the flooding process are different from

those in 2005.

Flood in October 2000

A severe storm hit Canton Valais on October 14th 2000. A disaster happened in the village

Gondo. A mixture of water, soil mud and parts of the protection wall avalanched down and

destroyed one-third of the village within seconds. The event happened so quickly that the

installed warning system gave insufficient notice to take action. Lake Maggiore was flooded

during the period. This flood is also recognized as an example of a lake case, which differs

from other floods.

Flood in October 2011

In 2011, there was heavy precipitation between October 6th and 10th. Due to the amount of

warm air flowing from subtropical latitudes, a considerable amount of fresh snowfall melted.
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Table 1.1 – Empirical floods in Switzerland

Flood Date Return periods
[year] a

Nominal damage
[106 CHF] b

Real damage
[106 CHF in
2008] c

Damage
scale ∆O

f [-] d

1 August 2005 150 2977.60 3105.89 7.54×10−2

2 May 1999 150 577.25 644.07 1.56×10−2

3 October 2000 100 668.55 737.18 1.79×10−2

4 October 2011 100 84.99 87.13 2.12×10−3

5 August 2007 150 379.18 403.39 9.80×10−3

a Annual probability of flood (π f ) is the inverse of the return periods.
b WSL Storm Damage Database of Switzerland.
c We convert the nominal damage by using the Consumer Price index reported by Federal Statistical Office

(2018). Details are in Eq. (1.1).
d Benchmark share of vulnerable capital stock is from Röthlisberger, Zischg, and Keiler (2017).

The rainfall and the large volume of snow caused floods in the region Bernese Oberland

in Canton Bern, Canton Valais and Canton Glarus. The frequency of heavy precipitation is

increased due to climate change (Milly et al., 2002; CH2018, 2018).

Flood in August 2007

The intense rainfall between the 8th and 9th of August 2007 caused a rapid increase in the

discharge in the river Birs and Aare. Not only was the flooding process, but also the catchments,

were very similar to those of the 2005 flood. Early warning systems as well as weather regulation

services, which had been installed after the flood in 2005, worked correctly (NZZ, 2007a,b).

I collect the nominal economic damage recorded in the flooded date and convert them to

real terms in the benchmark year by using the Consumer Price index (Federal Statistical

Office, 2018). I assume that the economic damage can be understood as direct depreciation

on vulnerable capital stock. In 2008, there are 4.12× 104 CHF million of capital stock in

total. Röthlisberger, Zischg, and Keiler (2017) overlay empirical information about buildings

and inhabitants on a map about flood-prone areas and report that 20.4% of capital stock is

installed in vulnerable regions in Switzerland. I compute the damage scale of each flood listed

in Table 1.1 by using the following simple formula:

∆O
t =

Nominal damaget × C PI2008
C PIt

4.12×104︸ ︷︷ ︸
Capital in 2008

× 0.204︸ ︷︷ ︸
Share of vulnerable capital stock

∀i ∈ {2005,1999,2000,2011,2007} (1.1)
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Table 1.2 – Highly aggregated domestic production sectors

Sector Abbreviation in GENESwIS

Agriculture AGR
Industry IND
Energy ENE
Service SRV
Transport TRS
Housing and real estate services HOU

1.3 Methodology

1.3.1 The GENESwIS model

GENESwIS, a dynamic computational general equilibrium model for the Swiss economy, was

first introduced in Vöhringer (2012), and since then it has been widely employed in climate

policy simulations.3 GENESwIS assumes a perfect foresight and risk-averse representative

agent who solves an intertemporal optimization problem subject to the budget constraint.

Similar to other perfect foresight CGE models, such as FL-EPPA model (for details, see Babiker

et al. (2009)), GENESwIS is part of the family of the standard Ramsey growth model. GENESwIS

is calibrated based on the Swiss Input-Output table in 2008 and has a flexible sectoral aggre-

gation. I highly aggregate domestic production sectors compared to the original version in

Vöhringer (2012) mainly to stabilize a solving process and to finalize Monte-Carlo simulations

within reasonable computational expense. Table 1.2 presents the adopted sectoral aggregation

in this study. Besides the representative household, the model has a government whose role is

to equate tax revenue and expenses for public goods provision. The time horizon is from 2010

to 2100 and I assume 5 year time steps.

In numerical CGE simulations, the model is often represented with a market equilibrium

where the representative household aims to maximize his utility, with several cost-minimizing

firms and the government interact with each other (Rutherford, 1999). Rutherford (1995)

characterizes the equilibrium conditions with the following three classes of non-linear equa-

tions: the zero-profit conditions, the market-clearance conditions and the income balance.

These three classes of equations typically take the form of a mixed complementarity program

(MCP). GENESwIS is developed on the General Algebraic Modeling System (GAMS) modeling

language and solved numerically by employing the PATH solver (Ferris and Munson, 2000;

Rosenthal, 2013). Furthermore, the coding is greatly facilitated by the support of MPSGE,

which is a subsystem of GAMS (Rutherford, 1999).

In the following sections, I briefly discuss the zero profit conditions, the market clearance

and the income balance. Instead of showing full algebra, I present the so-called nested

constant elasticity of substitution (CES) trees. The nested CES tree can graphically illustrate

3GENESwIS is classified into a policy evaluation model according to the discussion by IPCC (2001).
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the structure of the model. Full algebra is deferred to Section A.1.

1.3.2 Vulnerable and non-vulnerable capital stock

I classify the existing Swiss production capital stock into two categories, depending on the

vulnerability to uncertain but large flood shocks: vulnerable and non-vulnerable capital stock.

On the one hand, the vulnerable capital stock is installed in the flood-vulnerable region

and faces the risk of massive depreciation when a flood occurs. On the other hand, the

non-vulnerable capital stock is accumulated in the flood non-vulnerable region; thus, it is a

risk-free capital. Both capital stocks are productive and substitute goods.

Stern (2016b, Chapter 4) claims that the economic damages are generally introduced as a

negative impact on the production function or a direct depreciation on the capital stock. In

this section, I adopt the latter approach. Stochastic element ∆̃O
f is introduced in the law of

motion of the vulnerable capital stock:

K Vt+1 =
(
1−δ− ∆̃O

f

)
K Vt + I K V

t where ∆̃O
f =

{
∆O

f with probability π f

0 with probability
(
1−π f

) (1.2)

Note that δ stands for the annual depreciation rate. ∆O
f represents an observed damage scale

of flood f , which the representative agent in the model cannot correctly observe. Table 1.1

summarizes the estimated empirical damage rate and annual probability for the selected

floods.

Non-vulnerable capital stock is risk-free capital, and therefore, it follows the standard law of

motion:

K NVt+1 = (1−δ)K NVt + I K NV
t (1.3)

1.3.3 Spatial adaptation

Spatial adaptation is one of the most popular and has been widely considered adaptation

measures to flooding in the literature of hydrology; for instance, see Koks et al. (2014). In

this study I define the spatial adaptation by classifying the existing Swiss production capital

stock into two types, depending on their vulnerability to uncertain significant floods. More

details about the vulnerable and non-vulnerable capital stock can be found in Section 1.3.2.

When an economic agent realizes the risk of great floods in the future, he would invest more in

non-vulnerable capital stock to prepare for future uncertainty. If the agent underestimates the

risk of future flooding, he allocates more investment to vulnerable capital stock that exhibits

higher marginal productivity than non-vulnerable capital stock. Spatial adaptation is one

form of stock adaptation, and intertemporal investment decision-making between vulnerable

and non-vulnerable capital stock is central for spatial adaptation.
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1.3.4 Uncertainty treatment

The stochastic element in this study is in the uncertain flood shocks, and it is introduced in

the law of motion of vulnerable capital stock as presented in Eq. (1.2). To make the model

tractable, instead of developing a stochastic model, I replace the random element ∆̃O
f by a

deterministic parameter ∆S
f . ∆S

f is an agent’s subjectively formed expectation for the uncertain

flood f .4 For instance, if an economic agent correctly expects uncertain flood f , his subjective

expectation is:

∆S
f = E

[
∆̃O

f

]
=∆O

f ×π f (1.4)

It is equivalent to having a certainty-equivalent deterministic model. The choice of ∆S
f is

arbitrary for the agent. However, the level of ∆S
f represents the agent’s expectation for the

risk of uncertain floods. I assume the agent is risk-averse. Here I aim to define his attitude

toward uncertain floods by measuring how much his subjective expectation deviates from the

certainty-equivalent level. The discussions around the risk attitude lie outside the scope of

this paper. Subjective belief can be interrupted in the following manner:
∆S

f > E
[
∆̃O

f

]
(Overestimate the risk of floods)

∆S
f = E

[
∆̃O

f

]
(Certainty-equivalent)

∆S
f < E

[
∆̃O

f

]
(Underestimate the risk of floods)

(1.5)

Introducing the subjective expectation ∆S
f has two advantages. First, the model is now de-

terministic, and this makes modeling much easier and more tractable. Second, the agent’s

belief of uncertain floods is represented in the choice of ∆S
f . Natural disasters involve a high

degree of uncertainty, and it is, in general, impossible to form a correct estimation. Economic

agents have their own belief for future uncertainty, and it can be embedded in the choice of

∆S
f . When the agent is more concerned about the risk of future floods, he saves more for the

vulnerable capital stock by increasing the level of ∆S
f .

The representative agent solves an intertemporal optimization problem based on his sub-

jective expectation ∆S
f . Specifically, the law of motion of vulnerable capital stock that the

representative agent is concerned about concerns is given in Eq. (1.6).

K Vt+1 =
(
1−δ−∆S

f

)
K Vt + I K V

t (1.6)

The representative agent assumes that the vulnerable capital stock is more depreciated than

the non-vulnerable capital stock. Why does a representative agent decide to build new capital

stock in a place assumed to be vulnerable to natural hazards? Two effects motivate this

4There is no link with risk aversion. The representative economic agent determines subjective belief based on
his available knowledge. When he is correctly informed, his subjective belief would be equal to the expected value.
Subjective belief measures how much his belief deviates from the expected value.

25



Chapter 1. Spatial adaptation in the CGE model

observation. First, vulnerable and non-vulnerable capital stock are assumed to be substitutes

in production functions. Second, in equilibrium, the marginal productivity of the vulnerable

capital stock is higher than that of the non-vulnerable capital stock by ∆S
f .5 Vulnerable areas

are in general more productive than non-vulnerable regions.

1.3.5 The nested CES structure

The nested CES structure represents the input-output structure of the target economy as-

suming a constant degree of substitutability. In the following sections, I present the so-called

nested CES tree. More detailed algebra is deferred in Appendix A.

Zero-profit condition

For each domestic production sector s in Table 1.2, each firm produces a product by using

capital, labor and intermediate inputs. The nested CES structure for the production sector s is

provided in Figure 1.3. A nested constant elasticity of substitution (CES) function models the

substitution effect between the factor and the intermediate inputs. σY
s , σK L

s and σA
s define

the elasticity of substitution for the corresponding nest in the sector s. Furthermore, in the

top nest, the produced domestic good in sector s is transformed into a domestic usage with

the price index pY
s,t and export with the price index pF X

t based on the constant elasticity of

transformation (CET) function. The elasticity of transformation in sector s is given as ηY
s .

Given the unit cost function C Y
s,t

(
r K V

t ,r K NV
t , wt , p A

i ,t

)
and the unit revenue function RY

s,t

(
pY

s,t , pF X
t

)
,

the following zero-profit condition for the domestic production sector Ys,t can be formulated

as:

−πY
s,t =C Y

s,t

(
r K V

t ,r K NV
t , wt , p A

i ,t

)
−RY

s,t

(
pY

s,t , pF X
t

)≥ 0 ⊥ Ys,t ≥ 0 ∀s, t (1.7)

where the notation πY
s,t donates the unit profit function and the symbol ⊥, throughout this

chapter, indicates the complementarity slackness condition.

Adopting the Armington (1969) assumption, I treat domestic production and imports as

imperfect substitutes. These two types of goods are combined based on the CES function,

as Figure 1.4 illustrates, where the constant elasticity of substitution for good i is given as

σA
i . Given the unit cost function C A

i ,t , the zero-profit condition for this production block is in

Eq. (1.8), where Ai ,t is the Armington good production from sector i in time t :

−πA
i ,t =C A

i ,t

(
pY

i ,t , pF X
t

)
−p A

i ,t ≥ 0 ⊥ Ai ,t ≥ 0 ∀i , t (1.8)

5It is a well-known result from a neoclassical growth model with physical and human capital, for instance, see
Acemoglu (2009, Secion 10.4).
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Figure 1.3 – Nested CES structure of the domestic production sector s

Armington good i (p A
i ,t )

σA
i

Domestic good i (pY
i ,t ) Import (pF X

t )

Figure 1.4 – Nested CES structure of the Armington good production i

Figure 1.5 presents the CES structure of consumption in which the representative household

consumes leisure, goods and services based on the given constant elasticity of substitution

σC . I assume σC =σC A = 1, which represents a Cobb-Douglas form of substitution. Defining

the unit cost function CC
(
wt , pY

i ,t

)
, the zero-profit condition for this nesting can be defined in

Eq. (1.9):

−πC
t =CC

t

(
wt , pY

i ,t

)
−pC

t ≥ 0 ⊥ Ct ≥ 0 ∀t (1.9)

The representative household solves an intertemporal optimization problem. I suppose a

constant intertemporal elasticity of substitution (CIES) utility function for the welfare over

Consumption (pC
t )

σC = 1

Leisure (wt ) Goods consumption
σC A = 1

... ... Armington good inputs (pY
i ,t ) ... ...

Figure 1.5 – Nested CES structure of the consumption

27



Chapter 1. Spatial adaptation in the CGE model

Welfare (PW )
σW = 0.5

... ... Consumption (pC
t ) ... ...

Figure 1.6 – Nested CES structure of the welfare

the whole computational time horizon.6 The CES structure is displayed in Figure 1.6. I set the

intertemporal elasticity of substitution σW equal to 0.5 (Babiker et al., 2009). The zero-profit

condition of the block is provided in Eq. (1.10) where C W
(
pC

t

)
is the unit cost function:

−πW =C W (
pC

t

)−pW ≥ 0 ⊥ W ≥ 0 (1.10)

The zero-profit condition for the investment activities can be formulated taking into account

intertemporal substitution.7 The vulnerable capital stock faces the risk of significant depre-

ciation when an uncertain flood occurs. The non-vulnerable capital stock is risk-free. The

zero-profit condition for investment in vulnerable capital stock is presented in Eq. (1.11). The

condition claims that the gross price of the vulnerable capital stock in the next period t +1 is

equal or less than the unit cost of an aggregated investment C I K V
t

(
p A

i ,t

)
:

−πI K V
t =C I K V

t

(
p A

i ,t

)
−pK V

t+1 ≥ 0 ⊥ I K V
t ≥ 0 (1.11)

The zero-profit condition for investment in non-vulnerable capital stock is in Eq. (1.12).

−πI K NV
t =C I K NV

t

(
p A

i ,t

)
−pK NV

t+1 ≥ 0 ⊥ I K NV
t ≥ 0 (1.12)

Eq. (1.13) presents the zero-profit condition for the accumulation of the vulnerable capital

stock. The unit returns of the vulnerable capital stock plus the gross price of capital stock in

period t +1 consider the annual depreciation δ and the subjective damage ∆S
f . It is greater or

equal to the price of the vulnerable capital stock in period t .

−πK V
t = r K V

t +
(
1−δ−∆S

f

)
pK V

t+1 −pK V
t ≥ 0 ⊥ K Vt ≥ 0 (1.13)

Finally, the zero-profit condition for the accumulation of the non-vulnerable capital stock is

6CIES utility function is a monotonic transformation of a better known CRRA utility function. Both utility
functions show the same intertemporal characteristics. Therefore, the Walrasian or Hicksian demand functions for
both utility functions are the same. MPSGE directly handles the CIES utility function. I would discuss this point
more closely in Section 1.5.1.

7Paltsev (2004) is pedagogic but provides thoughtful discussions about the zero-profit conditions for invest-
ment activities and capital accumulations.
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found in Eq. (1.14).

πK NV
t = r K NV

t + (1−δ) pK NV
t+1 −pK NV

t ≥ 0 ⊥ K NVs,t ≥ 0 (1.14)

Market-clearance condition

The market-clearance condition claims that there is no excess demand in the market of

product i , and the corresponding price pi ,t is positive. If a market for good i exhibits an excess

supply, the corresponding price is zero. Mathematically this is complementarity and takes the

following form:

Di ,t −Si ,t ≥ 0 ⊥ pi ,t ≥ 0 (1.15)

Compensated demands of each good Di ,t are obtained from the corresponding expenditure

function by applying Shephard’s Lemma.

Income balance

The income balance condition must hold for each period. In every period t , the total expendi-

ture is equal to total factor income and some transfers from the government.

1.3.6 Dynamic steady state with vulnerable and non-vulnerable capital stock

All dynamic CGE models need to be calibrated to replicate the dynamic steady state. In the

dynamic steady state, all economic activities are on the balanced growth path.8 In this section,

I present the calibration strategy with vulnerable and non-vulnerable capital stock. My task

here is to reasonably manipulate the empirical social accounting matrix (SAM) to support the

dynamic steady state.

In the balanced growth path, vulnerable and non-vulnerable capital stocks have an exogenous

growth rate g :

K Vt+1 =
(
1+ g

)
K Vt (1.16)

K NVt+1 =
(
1+ g

)
K NVt (1.17)

All the prices in period t +1 can be discounted to the present value with a given interest rate r :

pt+1 = pt

1+ r
(1.18)

I am revisiting the zero-profit conditions for two investments provided in Eqs. (1.13) and (1.14).

8For more details, see Paltsev (2004) who provides pedagogic and thoughtful treatments on this issue.
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Assumed that the zero-profit conditions are strictly binding, the investment activities are

positive (I K V
t , I K NV

t ≥ 0):9

pK V
t −

(
1−δ−∆S

f

)
pK V

t+1 − r K V
t = 0 (1.19)

pK NV
t − (1−δ) pK NV

t+1 − r K NV
t = 0 (1.20)

By applying Eq. (1.18) to Eqs. (1.19) and (1.20), the rental price of each capital stock is given in

Eqs. (1.21) and (1.22):

r K V
t =

(
δ+∆S

f + r
) pK V

t

1+ r
=

(
δ+∆S

f + r
)

pt (1.21)

r K NV
t = (δ+ r )

pK NV
t

1+ r
= (δ+ r ) pt (1.22)

If the market is competitive and all production technologies exhibit constant returns to scale,

the marginal productivity of production function F of each capital stock is equal to its rental

price:

FK V ,t =
(
δ+∆S

f + r
)

pt (1.23)

FK NV ,t = (δ+ r ) pt (1.24)

Eqs. (1.23) and (1.24) argue that the vulnerable capital stock is more productive than the

non-vulnerable capital stock by ∆S
f .

Finally, from Eqs. (1.6) and (1.16) for the vulnerable capital stock and Eqs. (1.3) and (1.17) for

the non-vulnerable capital stock, in the dynamic steady state, I confirm that each investment

and each capital stock satisfy the following conditions:

I K V
t =

(
δ+∆S

f + g
)

K Vt (1.25)

I K NV
t = (

δ+ g
)

K NVt (1.26)

As I have mentioned above, the GENESwIS model needs to be calibrated based on the existing

2008 Swiss Input-Output table that represents the benchmark static economy. In general, the

raw Input-Output table does not support a dynamic steady state under the assumed rates for

growth, interest and capital depreciation. It is necessary to manipulate the Swiss Input-Output

table to have the dynamic steady state with vulnerable and non-vulnerable capital stock.

The Swiss Input-Output table in 2008 reports the total value of the capital stock V K2008.

Without loss of generality, I can suppose that all prices in the benchmark year are equal to

one p2008 = 1. Therefore, I can regard that all of the numbers in the Input-Output table are

9In CGE analyses, we usually analyze the target economy around the dynamic steady state, which excludes the
probability to have a zero investment (a corner solution).
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a unit-free amount. Röthlisberger, Zischg, and Keiler (2017) overlay the building footprints

and the map of flood-prone areas within a GIS and estimate 20.4% buildings are located in

flood-vulnerable regions in Switzerland. I use this value as a benchmark share of vulnerable

capital stock. Supposing this share, the benchmark investment demands of each capital stock

is:

I K V
2008 =

∑
s

I K V
s,2008 =

∑
s

δ+∆S
f + g

δ+∆S + r
K Vs,2008 (1.27)

I K NV
2008 =∑

s
I K NV

s,2008 =
∑

s

δ+ g

δ+ r
K NVs,2008 (1.28)

Due to Eq. (1.27), there is extra investment demand. I subtract this extra investment demand

from the consumption to balance the Input-Output table again.10

1.3.7 Hazard myopic approach

Natural hazards involve a high degree of uncertainty. In this context, an economic agent

with perfect-foresight is a strong assumption. Recursive dynamic modeling with a complete

myopic economic agent is an alternative. However, in this latter approach, the saving pref-

erence is exogenously given. Spatial adaptation is stock adaptation; therefore, investment

decisions should be intertemporal and endogenized. Given two considerations, I propose a

new modeling approach: namely hazard myopia.

A hazard myopic economic agent has perfect foresight of all macroeconomic conditions, as in

a perfect-foresight model. However, he is entirely myopic when it comes to uncertain natural

shocks that are an exogenous process.

Numerical economic models, in general, does not deal with an infinite-time horizon; thus, a

terminal condition is introduced to replicate an infinite time horizon following Lau, Pahlke,

and Rutherford (2002). Furthermore, I extend a terminal period from T to T ′ to mitigate the

possible effect of the terminal condition. I retrieve and report simulation results from period 0

to T in the following section as illustrated in Figure 1.7.

Law of motion of vulnerable capital stock is central in the hazard myopic simulation. Instead

of observing correct information about floods, he subjectively forms expectations of uncertain

floods, ∆S
f . As a perfect-foresight economic agent does, the hazard myopic representative

agent solves an intertemporal optimization model from period t to the terminal period T ,

having a law of motion of a vulnerable capital stock based on ∆S
f as in Eq. (1.6).11 Between

10This treatment is reasonable especially for the Swiss economy, which is highly capital dependent.
11This is a potential drawback of the hazard myopia. In a perfect CGE modeling, the capital stock in the first

year is exogenously given by the benchmark data but the capital stock in the subsequent periods is endogenously
defined by solving an intertemporal optimization problem. Another source of the first year effect stems from the
fact that policies are applied from the second periods. An agent with perfect foresight consumes more in the first
period due to the anticipation of future floods. I treat the first year different from the other periods in these two
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Figure 1.7 – Schematic image of a hazard myopic simulation

period t and t+1, both capital stocks are updated like a recursive approach. Vulnerable capital

stock follows Eq. (1.2) and non-vulnerable capital stock follows Eq. (1.3). When a flood f

occurs with a probability π f , the observed damage scale∆O
f is realized. When there is no flood,

there is no damage to the vulnerable capital stock.

Figure 1.7 presents a schematic overview of the hazard myopic simulation. In a hazard myopic

simulation, I need to solve in total T intertemporal optimization problems. I retrieve the

optimized decisions from each sub-model to derive the whole simulation path. For instance,

in Figure 1.7, I solve at first an intertemporal optimization model from period t = 0 to t = T .

Both capital stocks are updated recursively. The vulnerable capital stock is updated with an

observed damage scale zero (no flood). Similar to the period t = 2 and t = 3, the hazard myopic

economic agent solves an intertemporal model from period t = 2 to the terminal period T .

Both capital stocks are updated, but the vulnerable capital stock is largely damaged by ∆O
f .

The timing of flood f is assumed to follow a Poisson process. A Poisson arrival rate is an

inverse of return periods of a target flood. The Poisson process has been employed in the

literature of economics to model a random event, for instance see Barro (2006), Posch and

Trimborn (2013) and Bretschger and Vinogradova (2017), among others.

I address uncertainty around flood hazards by a large number of Monte-Carlo simulations.

In each simulation run, the timing of floods is exogenously drawn from the corresponding

Poisson process and exogenously given to the deterministic CGE model. During flooding

periods, the vulnerable capital stock is further depreciated by the observed damage scale∆O
f . I

solve the set of intertemporal optimization models and retrieve the price and activity indexes

to draw simulation paths for the whole computational periods. The solution algorithm is

provided in Algorithm 1.

1.4 Result

In this section, I present the simulation results with the GENESwIS model. I first check

the credibility of the hazard myopic approach with the stylized flood in Section 1.4.1. In

points.
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Algorithm 1: Monte-Carlo simulation of a hazard myopic agent with vulnerable and non-
vulnerable capital stocks

Initialization:
Set the maximum number of Monte-Carlo iterations, n.
Set the computational time horizon from t0 to T .
Define the observed damage scale ∆O

f and the probability π f .

The representative household subjectively forms an expectation of a damage scale ∆S
f on

the vulnerable capital stock.
Adjust the Input-Output table based on ∆S

f and calibrate the model for the dynamic steady
state.

Define the flooding time periods t F from the corresponding Poisson process.
for n ≤ n do

Solve the model from t0 to T considering ∆S
f .

for t ∈ {t0, t1, · · ·T −1} do
Chop the time horizon from t +1 to T .
Update the time dependent parameters.
Non-vulnerable capital stock in the next period is updated by

K NVt+1 = (1−δ)K NVt + I K NV
t

if t = t F , then
Vulnerable capital stock in the next period is updated by

K Vt+1 =
(
1−δ−∆O

f

)
K Vt + I K V

t

else
Vulnerable capital stock in the next period is updated by

K Vt+1 = (1−δ)K Vt + I K V
t

Solve the model with updated stock variables from t +1 to T .
Integrate all simulation paths from t0 to T .
if n ≤ n, then

Initialize the model and go to the next Monte-Carlo iteration n +1.
else

break

Retrieve all the simulation paths.
Each price and activity index have T ×n dimensions.

Section 1.4.2, I empirically analyze five floods in Switzerland. Detailed information about the

floods is summarized in Table 1.1.

1.4.1 Test simulation with a stylized flood

This test simulation aims to check the credibility of my advanced modeling algorithm, hazard

myopia. I assume a stylized flood, which information is in Table 1.3, for testing purposes.

Following the standard CGE simulations, I measure a deviation from the business as usual

(BAU) case. The BAU refers to the case where (1) no flood occurs throughout computational
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Table 1.3 – Stylized flood to test the hazard myopic approach

Return periods Poisson rate λ Actual damage ∆O Expected value E
[
∆̃O

]
100 0.01 0.05 5×10−4
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Figure 1.8 – Consumption and capital ratio path without exogenous floods

periods and (2) the representative agents ignore the risk of floods (∆S = 0).12

The primary goal of this test is to check general modeling behavior when the subjectively

formed expectation ∆S changes. I focus on consumption and the capital ratio of vulnerable to

non-vulnerable capital stock.

No flood scenario

The first simulation starts from the simplest case where there are no floods throughout the

computational periods. The vulnerable capital stock is updated by Eq. (1.2) in which ∆O
f is

equal to zero between every period. I change the subjectively formed damage expectation ∆S

from zero to ∆S = 1.0×10−3. Note that the case where ∆S = 5×10−4 represents the certainty-

equivalent deterministic model. The representative agent has the right expectation for the

stylized flood.

Figure 1.8a plots changes in consumption with respect to the BAU case. The higher the subjec-

tive expectations the representative agent forms, the smaller the consumption demand in the

first period becomes. It is due to the benchmark calibration. When the representative agent is

concerned more about the risk of future floods, he subjectively forms a higher expectation for

the uncertainty. It becomes an additional motive to save more for the vulnerable capital stock.

The consumption demand decreases concerning the strictly binding resource constraints.

12In general, the BAU scenario includes more detailed assumptions such as the growth rate of population and
GDP. However, I prefer to have a simple BAU scenario for my testing purposes.
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Moreover, the higher the subjective expectations the representative agent forms, the higher

the consumption profile becomes in the long run. It is due to two reasons. Firstly, recall

that in equilibrium the difference between the marginal productivities of the vulnerable and

non-vulnerable capital stock are equal to the subjectively formed expectation ∆S . Having a

higher subjective expectation is identical to assuming higher marginal productivity for the

vulnerable capital stock. Secondly, the agent’s intertemporal optimization problem is based

on ∆S ≥ 0. I update both capital stocks based on the law of motion with the observed damage

scale Eq. (1.2) for the vulnerable capital and Eq. (1.3) for the non-vulnerable. When there is no

flood, there is an excess investment in the vulnerable capital stock, since the representative

agent assumes that the vulnerable capital stock is depreciated more by ∆S .

Figure 1.8 presents the capital ratio of the vulnerable to the non-vulnerable capital stock. To

aid the reader to interpolate the capital ratio:

d

d t

(
K Vt

K NVt

)
= K Vt

K NVt

( ˙K V t

K Vt
−

˙K NV t

K NVt

)
(1.29)

where ˙K Vt and ˙K NVt represent the time derivative of each variable, and
˙K Vt

K Vt
and

˙K NVt
K NVt

mea-

sure the growth rate of each capital stock. As K Vt ,K NVt > 0, ∀t , if the slope of K Vt
K NVt

shows an

upward trend, the growth rate of the vulnerable capital stock exceeds that of non-vulnerable

capital stock, and vice versa.

There are two revelations of Figure 1.8b. First, the higher the subjective expectation the

agent forms, the lower the benchmark capital ratio of the vulnerable to the non-vulnerable

capital stock is. The representative agent relies more on the risky capital stock when he is

subjectively concerned about future risk. Second, the growth rate of the vulnerable capital

stock always exceeds that of the non-vulnerable capital stock. The reason is the same as why

the consumption path is elevated with a higher subjective expectation.

Two deterministic floods in 2040 and 2080

I assume that floods occur in 2040 and 2080.13 As the frequency of the stylized flood is every

100 years, it is unlikely that they would be 40 years apart but worth testing to check the

robustness of our method.

When there is a flood, the vulnerable capital stock is updated by Eq. (1.2) with ∆O = 0.05. I

check the sensitivity of the ∆S parameter by changing ∆S from 0 to 1.0×10−3.

Figure 1.9a shows the consumption profile. If a flood occurs, there is a great reduction in

consumption. The reason is twofold. On the one hand, the economic outcomes from all

production sectors are largely impaired, since the vulnerable capital stock has significant

damage. On the other hand, a large amount of investment is allocated to vulnerable capital

13A flood occurs between 2035 and 2040, and 2075 and 2080 respectively since I adopted a five years time step.
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Figure 1.9 – Consumption and capital ratio path during two exogenous floods

stock. This saving behavior largely constrains the available resource for consumption.

Figure 1.9b shows the capital ratio of the vulnerable capital stock to the non-vulnerable capital

stock. When a flood occurs, the ratio drops. However, after flooding, it shows an upward trend.

The growth rate of the vulnerable capital stock exceeds that of non-vulnerable capital stock.

The representative agent allocates more investment in the vulnerable capital stock to recover

from the damage of flooding.

It is worth noting that having a higher subjective risk expectation leads to an increase in

welfare as shown in Figures 1.8a and 1.9a. Furthermore, the ratio of the vulnerable capital

to the non-vulnerable capital stock is elevated. The representative agent realizes the risk of

flooding but invests his saving mainly in vulnerable capital stock, and as a result, the economy

becomes more flood vulnerable.

Monte-Carlo analyses

I perform 1,000 Monte-Carlo simulations with a stylized flood to check the stability of the

hazard myopic simulation. I change the subjectively formed expectation∆S from 0 to 7.5×10−4

where the case ∆S = 5.0× 10−4 replicates the certainty-equivalent case. The Monte-Carlo

simulation algorithm is presented in Algorithm 1. Hereunder, I present the distribution with a

focus on consumption.

Figure 1.10 summarizes the Monte-Carlo simulation results with a stylized flood. The mean of

the Monte-Carlo simulated consumption paths, as well as the two worst consumption paths,

are presented. The latter is provided mainly to offer insights behind Monte-Carlo simulations.

Figure 1.10 is similar to what I have observed in Figures 1.8a and 1.9a. The higher subjective

expectation the representative agent forms, the higher consumption profile the representative

agent has.

In Figure 1.11 I present the 10%, 25%, 50%, 75% and 90% quantiles as well as a range of possible
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Figure 1.10 – The mean of consumption for the stylized flood. Dashed trajectories show the
possible two worst paths.

sample paths (1% to 99%) in the gray cloud. I change the subjectively formed expectation ∆S .

Figure 1.11 shows why it is difficult to estimate the damage caused by rare disasters by using

a (certainty-equivalent) deterministic model. The upper four quantiles (25%, 50%, 75% and

90%) are overlapped. It illustrates that, in most simulated paths, there is no flood. Recalling

that the probability of flood is 1% per year. In other words, simulated paths are possibly

distributed as in the gray cloud. These simulated paths are equivalent to the upper range of

the distribution with at least a 75% probability.

My revelation from these observations is that the risk of a stylized flood in the future is not

big enough for the representative agent to invest his saving in non-vulnerable capital stock.

He invests more in vulnerable capital stock that exhibits higher marginal productivity than a

non-vulnerable capital stock in the equilibrium. He subjectively forms higher expectations of

the vulnerable capital stock, not as a precautionary concern about the risk of floods, but to

increase the marginal productivity of risky capital - vulnerable capital stock.

1.4.2 Simulations with empirical floods in Switzerland

In this section, I apply the proposed approach, the hazard myopia, to the empirical Swiss

floods in Table 1.1. Unfortunately, the main findings are similar to the results in Section 1.4.1.

This is why I only show the simulated results with the worst flood in 2005 and the flood in 2007.

The other floods in 1999, 2000 and 2011 are deferred in Appendix B.

I present the deviation from the BAU case. In the BAU case, there is no flood, and the represen-

tative agent completely ignores the risk of a flood f , ∆S
f = 0. In general, the BAU case in the

CGE analyses includes more detailed assumptions, such as the exogenous growth rate of the
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Figure 1.11 – Monte-Carlo simulated results for the stylized flood when the subjectively formed
depreciation rate ∆S is changed.

population and GDP. In the sections below, I set the BAU case as the dynamic steady state to

keep the model simple.

Flood in August 2005

The flood in August 2005 was the most costly in term of insured economic damages and is

considered a 150 years great flood. Nominal damage was around 3 billion CHF, and seven

people were killed. The damage expectation that the representative agent subjectively forms

of this event is equal to the expected value of the flood in 2005. It is a certainty-equivalent

deterministic model:

∆S
2005 = E

[
∆̃O

2005

]= 7.54×10−2 × 1

150
≈ 5.03×10−4 (1.30)

I present three scenarios. In the first scenario, the representative agent completely neglects

the risk of flooding ∆S
2005 = 0. In the second scenario, the agent correctly observes the risk

of flooding and his subjective expectation is equal to the expected value ∆S
2005 = E

[
∆̃O

2005

]=
5.03×10−4. In the third scenario, I assume that the representative agent is more concerned

about the risk of future floods and he sets ∆S
2005 = E

[
∆̃O

2005

]×1.5 = 7.54×10−4.

Figure 1.12 shows the mean of 1,000 Monte-Carlo simulated consumption paths. The dashed

38



1.5. Discussion

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Time period

0.80

0.85

0.90

0.95

1.00

1.05

1.10

C
ha

ng
es

in
C
t

w
rt

.
B

AU

Mean, ∆S = 0.00× 100

Mean, ∆S = 5.03× 10−4

Mean, ∆S = 7.54× 10−4

Figure 1.12 – The mean consumption for the flood occurred in 2005. Dashed trajectories show
the possible two worst paths.

trajectories show the possible worst cases. The main trend in the mean is the same as in the

case with the stylized flood. Forming a higher subjective expectation improves welfare. When

I focus on the possible worst case, the number of floods is at most two, given that the flood

in 2005 has a return period of 150 years. Note that once a flood occurs, the consumption

path cannot be returned to the original. Floods completely alter a system; however, the

risk of having a post-flooded economy is too small for the economic agent to allocate more

investment in non-vulnerable capital stock, since the probability of flooding is small enough.

Figure 1.13 shows the distribution of Monte-Carlo simulated consumption paths. Upper

quantiles (90%, 75%, 50% and 25%) are overlapped, given that the probability of the flood

in 2005 is 1
150 . 1% to 99% of the consumption paths are distributed within the gray cloud as

illustrated; however, the simulated paths converge on the upper bound with a probability of

more than 75% (no flood).

1.5 Discussion

The main simulation exercises presented in Section 1.4 offer a peculiar policy recommendation.

Having a higher subjective depreciation rate for the vulnerable capital stock is intended

to replicate a situation where the risk of future floods is a more significant concern of the

representative agent. I suppose that the higher depreciation rate the representative agent

subjectively forms, the more investment he would allocate to the capital stock and the less

is his consumption. However, the simulation results contradict my assumption. The higher

depreciation rate the representative agent subjectively forms, the larger consumption profile

the representative agent achieves. Furthermore, the vulnerable capital stock is more rapidly
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Figure 1.13 – Monte-Carlo simulated results for the flood occurred in 2005 when the subjec-
tively formed depreciation rate ∆S is changed.

accumulated than the non-vulnerable capital stock. These two findings suggest that, in the

simulation model, the risk of floods is not significant enough for the representative agent to

invest his saving in risk-free but less productive capital stock, non-vulnerable capital stock,

even though I assume a risk-averse agent. The simulation results contradict the real Swiss

situation.14 It is also a problematic issue, especially for a policy evaluation model.

I aim to investigate this issue closely; however, as far as I have noticed, there is no literature

from the CGE community that discusses rare but catastrophic events under uncertainty. When

I turn my attention to the literature of IAMs, some advanced IAMs correctly internalize tipping

elements in their framework. IAMs and dynamic CGE models start from the Ramsey model

and rely on many common economic assumptions, though their structure and the modeling

approaches differ. The IAM literature offers a good starting point if there is no reliable literature

directly employed in CGE models.15

14Swiss Cantons learned from the flood in 2005 and a protective structure, as well as an alarm system, had been
installed (NZZ, 2007a). Those systems forewarned the inhabitants in 2007 moreover, contributed to minimizing
flood damage (NZZ, 2007b).

15Some early literature such as Mastrandrea and Schneider (2001), Yohe, Andronova, and Schlesinger (2004),
Keller, Bolker, and Bradford (2004) and Nordhaus (2010) include the damage from tipping elements such as the
collapse of the North Atlantic thermohaline circulation (THC) and the sea level rise. Their major approach is to
increase the curvature of the damage function, and all of them are deterministic. Since CGE models do not include
a damage module; these studies are not suitable to support my arguments here.
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1.5. Discussion

Cai, Judd, and Lontzek (2012) is the first to introduce a dynamic stochastic integrated model

of climate and economy (DSICE). They introduce a stochastic productivity shock and tipping

elements to the deterministic DICE model (Nordhaus, 2008). Lemoine and Traeger (2014) is

based on the DICE model but introduces stochastic tipping points. One of their contributions

is to differentiate the pre-tipping and post-tipping value function and show that the tipping

points increase the level of the optimal carbon tax. Cai, Judd, and Lontzek (2015) extends Cai,

Judd, and Lontzek (2012) to discuss a recursive utility function and allows for a more detailed

climate module.

Table 1.4 summarizes the significant difference between the existing IAMs with tipping points

and my study. In the following sections, I first compare the existing models with my study. Then

I aim to propose how existing CGE models could be extended to handle rare but catastrophic

events correctly.
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Table 1.4 – Comparison between IAMs with tipping points and my study

Reference Type Deterministic
or stochastic

Utility
functionb

Production
function

Discount fac-
tor

Time horizon Numerical
methods

Cai, Judd, and Lontzek (2012)a IAM Stochastic CRRA (η= 2) Cobb-
Douglas

≈ 0.985 Infinite VFId and
Chebyshev
polynomial

Lemoine and Traeger (2014) IAM Stochastic CRRA (η= 2) Cobb-
Douglas

Time depen-
dent effective
discount
factorc

Infinite VFI and
Chebyshev
polynomial

Cai, Judd, and Lontzek (2015) IAM Stochastic Epstein-Zin
(η = 10 and
σ= 1.5)

Cobb-
Douglas

0.985 Infinite VFI and
Chebyshev
polynomial

My study CGE Deterministic CIES (η= 1
σ =

2)
CES ≈ 0.957 Finitee MPSGE/MCP

a Cai, Judd, and Lontzek (2012) presents the DCICE model, which is a stochastic version of the DICE model (Nordhaus, 2008). The DCICE model has been used by the
authors for instance in Lontzek, Cai, and Judd (2012) and Lontzek et al. (2015).

b η is the degree of risk-aversion and σ is the intertemporal elasticity of substitution.
c Detail discussions is in Lemoine and Traeger (2014, p. 163)
d VFI: Value function iteration
e Terminal constraints are introduced to replicate the infinite time horizon.
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1.5. Discussion

1.5.1 Utility function

Perfect-foresight CGE models, especially based on MPSGE, employ a constant intertemporal

elasticity of substitution (CIES) function, for instance see Babiker et al. (2009), Bretschger,

Ramer, and Schwark (2011) and Vöhringer (2012).

U =
[

T∑
t=0

(
1

1+ρ
)t

C 1−θ
t

] 1
1−θ

(1.31)

Eq. (1.31) claims that the representative agent utility U depends on consumption C where ρ

denotes the annual rate of the time preference. θ is the inverse of the elasticity of intertemporal

substitution and T is the terminal period.16 The utility function in Eq. (1.31) has the same

intertemporal characteristics as the better known time-separable additive utility function,

namely the constant relative risk aversion (CRRA) utility function in Eq. (1.32).

Ũ =
T∑

t=0

(
1

1+ρ
)t C 1−θ

t −1

1−θ (1.32)

Rutherford (2004) confirms that the CRRA utility function in Eq. (1.32) is a monotonic transfor-

mation of the CIES utility function in Eq. (1.31).

Ũ =V (U ) =
[

(1−θ)U +
T∑

t=0

(
1

1+ρ
)t

] 1
1−θ

(1.33)

Moreover, the marginal rate of substitution of the two utility functions is the same:

∂U
∂Ct+1

∂U
∂Ct

=
∂Ũ
∂Ct+1

∂Ũ
∂Ct

= 1

1+ρ
(

Ct

Ct+1

)1−θ
(1.34)

Economically, the CRRA and CIES utility functions in Eq. (1.31) and Eq. (1.32) are equivalent.

The optimization problem based on both utility functions yields the same demand functions

(Mas-Colell, Whinston, and Green, 1995). The MPSGE can directly handle the CIES utility

function in Eq. (1.31), therefore, the CIES utility function becomes a preferred option in the

literature of dynamic CGE models, especially based on MPSGE.

As summarized in Table 1.4, Cai, Judd, and Lontzek (2012) and Lemoine and Traeger (2014)

adopt the CRRA utility function with the same degree of risk-aversion as myself. Cai, Judd,

16CGE models cannot deal with an infinite time horizon, thus, a terminal period must be specified and a
terminal condition needs to be introduced to replicate an infinite time horizon, for instance see Lau, Pahlke, and
Rutherford (2002).
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and Lontzek (2015) employ the Epstein-Zin recursive social welfare function (Epstein and Zin,

1989) as in Eq. (1.35), where the annual utility function is in Eq. (1.36):17

Ut =
[(

1−β)
u (Ct ,Lt )+β

{
Et

[
U 1−η

t+1

]} 1− 1
σ

1−η
] 1

1− 1
σ

(1.35)

u (Ct ,Lt ) =
(

Ct
Lt

)1− 1
σ

1− 1
σ

Lt (1.36)

β is the discount factor, σ is the intertemporal elasticity of substitution, and η is the risk

aversion parameter. Epstein-Zin preference allows separating the effect of risk aversion and

intertemporal substitution. Crost and Traeger (2011) suggest that the Epstein-Zin preference

disentangles risk aversion from intertemporal substitutability and this resolves the equity-

premium and risk-free rate puzzles. Moreover, it offers better calibration results primarily in

an integrated assessment model.

I am personally skeptical about embedding the Epstein-Zin preference in the framework of

CGE models. It would be an advantage to discuss the intertemporal substitution and the

risk-aversion in a separated manner. However, I am not so confident with how much modeling

insights from CGE models can be enriched by taking into account this utility function.

1.5.2 Production function

CGE models have a detailed sectoral input-output structure. To produce one product, a firm

requires not only factor inputs but also other goods as an intermediate input good. The

substitution effect between factors or intermediate inputs is implemented by using a constant

elasticity of substitution production function.

On the other hand, Cai, Judd, and Lontzek (2012), Lemoine and Traeger (2014) and Cai, Judd,

and Lontzek (2015) develop a one sector growth model. All of them employ the standard

Cobb-Douglas production function where the substitution effect between capital and labor

input is considered.

Both CES and Cobb-Douglas production function exhibit constant returns to scale. Further-

more, the Cobb-Douglas function is the special case of the CES function.18 I conclude that the

difference in the production function cannot explain the reasons to have counter-intuitive

results in my simulations.

17Epstein-Zin preference is gaining attention as an alternative to the CRRA utility function, for instance see
Traeger (2014) and Fernández-Villaverde and Levintal (2018).

18When the elasticity of substitution is equal to one, the CES function is identical to the Cobb-Douglas function.
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1.5.3 Discount factor

All of the models employ almost the same time preference to discount values in the distant

future. Cai, Judd, and Lontzek (2012), Lemoine and Traeger (2014) and Cai, Judd, and Lontzek

(2015) are recursively formulated as an infinite time horizon model, while in my attempt I

specify the terminal period and introduce the terminal constraint to approximate an infinite

time horizon. For details see Lau, Pahlke, and Rutherford (2002).

1.5.4 Uncertainty and precautionary saving

All of my simulations with a CGE model are deterministic but with exogenous random shocks.

I start this subsection by reviewing my simulation approach, called hazard myopia. More

details on this approach can be found in Section 1.3.7.

Assuming that a spatial adaptation decision for flood f is developed, where the observed

damage scale is known to be∆O
f and the annual hazard probability is p f . Instead of developing

a dynamic stochastic model, I suppose that the representative agent in the model subjectively

forms an expectation∆S
O for the flood f with his available information. If he correctly observes

the flood f , his subjective damage expectation is:

∆S
f = E

[
∆̃O

f

]
=∆O

f ×p f (1.37)

This is equivalent to the certainty-equivalent deterministic model.

If the representative agent is more afraid of the risk of future floods, his subjective expectation

is larger than its expected value. When he is less conscious of the risk of floods, he would form

a lower subjective expectation. In other words, the representative agent saves more for the

vulnerable capital stock when his subjective expectation is larger than the certainty equivalent

level. He saves less when he forms a little subjective expectation. The simulated results

presented in Section 1.4 consider the above discussions, however, illustrate the contradicted

behavior.

This modification dramatically simplifies modeling but corrupts the stochasticity around

flood events. I fail to include the precautionary saving, even though a risk-averse economic

agent is assumed.

Precautionary saving acts as self-insurance.19 Extra saving is demanded by the uncertainty

in future income rather than determinate. It leads to a steeper consumption profile for a

consumer. Precautionary saving would lead to excessive accumulation of capital than the

economy would have if there were no uncertainty. Precautionary saving is in response to the

consumer’s risk behavior. Necessary conditions on a utility function are u (·) ∈C 3, u′ (·) ≥ 0,

u′′ (·) ≤ 0 and u′′′ (·) ≥ 0. The CRRA utility function is one of the best examples that induces

19General discussions about precautionary saving are found vastly throughout literature. Ljungqvist and
Sargent (2012, see Section 18.14 and reference therein) offers a comprehensive discussion on this topic.
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precautionary saving if there is uncertainty in the future.

Precautionary saving that is induced by risk-averse behavior and uncertainty in the future

becomes an additional motive to invest more in capital stock. Weitzman (2009, 2011) argues

that the probability of catastrophic events is very small but non-negligible, and therefore,

the calculation of “expected damage” may be inappropriate to have a certainty-equivalent

deterministic model. Indeed, such a model underestimates the risk of catastrophic events.

Cai, Judd, and Lontzek (2015) achieve the same conclusion by using their stochastic IAM.

I conjecture that the reason why my modeling results are counter-intuitive is due to precau-

tionary saving. Stochasticity is not correctly handled in my CGE attempts which corrupts a

precautionary effect. On the other hand, the IAMs in Table 1.4 are developed in a dynamic

stochastic setting which correctly supports the optimal consumption profile with a risk-averse

economic agent.

Rutherford and Meeraus (2005, see, p.17) suggest in his presentation that “without heading

possibilities [all possible future states] stochasticity cannot be exploited”. My attempt failed

to respect this argument. I explore the uncertainty around rare but catastrophic disasters by

running Monte-Carlo simulations with a certainty-equivalent deterministic model and ex-

ante probability distributions. Pindyck (2013a) suggests that this combination still prevails to

evaluate uncertainty. However, we should recall that an investment in a non-vulnerable capital

stock, which is less productive than a vulnerable capital stock in equilibrium, is motivated by

precautionary effects.

Developing a fully stochastic CGE model (maybe with MPSGE) is not an easy task. As far as I

have realized, there is no literature about stochastic CGE models so far. Chang and Rutherford

(2016) solve a dynamic stochastic growth model by using a mixed complementarity approach.

They rely on the standard numerical recipe, the value function iteration, as all of the advanced

numerical economic models presented in Table 1.4.

1.6 Conclusion

I aimed to address spatial adaptation decisions for the major floods in Switzerland by solving

an existing CGE model, GENESwIS. In addition to the conventional approaches in the literature

of CGE, which are recursive and perfect-foresight dynamics, I developed a new approach called

hazard myopia. A hazard myopic agent has perfect-foresight of all macroeconomic conditions

except uncertain disasters. Intertemporal decisions in period t are the same as those of the

perfect foresight agent. Between period t and t +1, the capital stocks are recursively updated,

as a recursive dynamic CGE model does, depending on the realized observed damage scale.

I conclude that the reason why I end up with problematic simulation results is in the treatment

of the stochasticity. Instead of developing a stochastic dynamic model, I converted the model

to a certainty-equivalent deterministic one by taking an expected value of uncertain flood
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parameters. By doing this, the modeling has become tractable, but I corrupted a precautionary

saving motive with which a representative agent is known to save more than he would do

under deterministic. The excessive accumulation of capital stock, especially of non-vulnerable

capital stock which is less-productive but risk-free, can be thought to be closely related to the

precautionary saving. I surmise that full integration of stochasticity is promising, especially

when one aims to address small probability events, but I remain this as a future task.

The proposed modeling approach in this chapter is closely related to Cai, Judd, and Steinbuks

(2017) who demonstrate that a non-linear certainty equivalent approximation method (NL-

CEQ) is suitable to solve a dynamic stochastic general equilibrium model. NLCEQ transforms

a stochastic model to deterministic one by taking the mean of uncertain parameters or re-

place a stochastic law of motion by a deterministic but applicable law of motion. As I do in

this chapter, NLCEQ solves a finite time horizon model with a terminal constraint instead of

dealing with an infinite time horizon model. Then NLCEQ approximates the results of the

sequence of optimization problems and computes for the value or policy function. NLCEQ

seems to be a promising modeling approach to solve a dynamic stochastic general equilibrium

model; however, I would note that Cai, Judd, and Steinbuks (2017) deal with only a small but

frequent shock. The implementation of rare disasters on NLCEQ remains a future work, and a

comparative study between the two approaches is demanding.

Parametric uncertainty should be carefully addressed. Climate economic models, especially

CGE models, heavily rely on parameters that have almost no scientific or statistical support.

Babonneau et al. (2012) address parametric uncertainty through Monte Carlo simulations,

and recently (Harenberg et al., 2018) propose a systematic uncertain quantification (: UQ)

approach. Systematic UQ is desirable, but I leave parametric uncertainty as one of the most

appealing future researches.

Finally, the proposed hazard myopic modeling is rather a descriptive approach. The choice

of subjective expectation of the risk of future flooding is arbitrary, and I do not count any

connection with the degree of risk-aversion behind. Furthermore, it is known that people

tend to be loss-averse, especially for a catastrophic shock. Prospect theory might be one of the

most well-known examples to combine these behavioral observations.20 I find, especially in

numerical simulations, it might be an interesting extension to deviate from the conventional

expected utility maximization theorem, however, I leave this for future research.

These conclusions encourage me to develop a rather stylized but stochastic dynamic model

with adaptation measures. Adaptation decisions, as well as rare but catastrophic events, are

relatively new topics in modern environmental economics. Thus, it is beneficial for us to know

the essential characteristics of adaptation to rare but catastrophic events under uncertainty.

In the next chapters, I demonstrate optimal adaptation decisions to rare natural disasters by

using an approach based on a dynamic stochastic equilibrium model.

20For instance, see Wakker (2010).
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2 Dynamic stochastic equilibrium anal-
ysis with adaptation

2.1 Introduction

Rare natural disasters, such as a massive flood or a great earthquake, are studied in Tsur and

Zemel (1998), Ikefuji and Horii (2012) and Bretschger and Vinogradova (2017) in the con-

text of climate change or in Judd, Maliar, and Maliar (2011), Posch and Trimborn (2013) and

Fernández-Villaverde and Levintal (2018) in the literature of numerical methods in economics.

These papers contribute to present how rare disasters are modeled in the framework of a

dynamic (stochastic) economic model or how we can solve the models numerically. This

literature mainly focuses on the macroeconomic impact of rare disasters on economic activi-

ties, however, one critical point is still missing: except for a few contributions such as Millner

and Dietz (2015) and Grames et al. (2016), how do we optimally adapt or alleviate the risk of

uncertain rare natural disasters?

To tackle this question requires a dynamic stochastic equilibrium model with adaptation

measures. As an example of adaptation measures, I consider two adaptation schemes: spa-

tial adaptation and the introduction of adaptive capital stock.1 In the spatial adaptation, I

classify the existing productive capital stock into vulnerable and non-vulnerable capital stock,

depending on the vulnerability to rare natural disasters. Vulnerable capital stock faces the risk

of massive depreciation caused by a disaster; however it exhibits higher marginal productivity

than non-vulnerable capital stock in equilibrium.2 Adaptive capital stock does not contribute

to the production function; however, we can alleviate the damage on productive capital stock

by accumulating the adaptive capital stock relative to the productive capital stock.3 Given that

the adaptive capital stock becomes effective only when a natural disaster occurs, investment

1Spatial adaptation is widely studied in literature within the context of adaptation of significant flooding, for
instance, see Koks et al. (2014). The concept of adaptive capital stock is similar to Millner and Dietz (2015) and
Grames et al. (2016).

2If an economic agent knows a priori that vulnerable capital stock faces the risk of natural disasters, the
only reason why he invests in vulnerable capital stock is that the capital stock is more productive than in a
non-vulnerable region.

3Typical adaptive capital stock I suppose is a dike or a dam for flooding or an antiseismic device for an
earthquake.
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in adaptive capital stock is regarded as a sort of precautionary saving.

My contributions to this chapter are mainly threefold. First, I present a model that processes

uncertain rare disasters, in addition to the conventional autoregressive productivity shock,

with adaptation measures in the framework of a dynamic stochastic equilibrium model in dis-

crete time. Natural disasters present a small probability with a catastrophic consequence. Our

modeling lessons, therefore, are substantially different from conventional dynamic stochastic

(general) equilibrium analyses with real business cycle shocks that are small but frequent.

As another modeling highlight, I introduce occasionally binding irreversible constraints on

investment decisions. It is a well known numerical issue, for instance, see Judd, Kubler, and

Schmedders (2000), that an occasionally binding constraint poses substantial difficulties for

derivative-based optimization solvers. Consumption and saving decisions might substantially

differ between pre and post disasters. Therefore I solve the models globally, not locally.4 I

overcome these numerical difficulties by implementing the time iteration collocation with

adaptive sparse grid algorithm (Brumm and Scheidegger, 2017). To speed up our solution

processes, the models are massively parallelized via the Message Passive Interface (MPI) and

implemented on a high-end computing cluster.

Second, I carefully study the optimal adaptation behavior for spatial adaptation and the

introduction of adaptive capital stock. I numerically approximate stochastic policy functions

for the model with either spatial adaptation or adaptive capital stock and graphically present

policy functions in the state space. Policy functions return an optimal decision given an

exogenous state. Non-smooth regions in a policy function are correctly detected by the

solution algorithm and reasonably approximated with a tolerated approximation error. It is

worthwhile to note that the derived stochastic policy functions internalize uncertainty around

rare natural disasters and productivity shocks in the ex-ante manner.

The final remark in this chapter is to quantitatively demonstrate the applicability of a stochas-

tic model over a certainty-equivalent deterministic model by comparing the Monte-Carlo

simulated paths. A certainty-equivalent deterministic model treats uncertainty in the ex-ante

manner. Since the probability of rare natural disasters is small enough, there is no striking

difference between the means of Monte-Carlo simulated paths from either a stochastic or

certainty-equivalent deterministic model. Monte-Carlo simulated paths with a certainty-

equivalent deterministic model present a substantially random trend with much higher vari-

ance than those with a stochastic model, as Cai, Judd, and Lontzek (2015) achieve the same

conclusion in the estimation of the social cost of carbon. I conclude that adaptation decisions

should be based on a stochastic model because it supports low variance economic paths

and correctly accounts for risk-averse and precautionary behavior for the risk of uncertain

disasters.

4Local method, such as the perturbation method, approximates equilibrium solutions with tolerated approxi-
mation error if the solutions are close enough to its steady state. However, it is a known issue that the approximated
quality rapidly deteriorates when the solution deviates from its steady state. Judd (1998) provides comprehensive
discussions about the local and global method. Lontzek and Narita (2011) solve a stochastic optimization model of
a climate-economic system by both methods and compare the approximation quality of both methods.
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2.2. Models and numerical methods

The remainder of this chapter is organized as follows. Section 2.2 presents two models imple-

mented with either spatial adaptation or adaptive capital stock and numerical methods that

I adopt. Section 2.3 graphically presents stochastic policy functions for the two models and

shows Monte-Carlo simulated paths. Section 2.4 discusses the applicability of the stochastic

approach over the deterministic approach. Section 2.5 concludes this chapter.

2.2 Models and numerical methods

I develop a stylized neoclassical growth model implemented with either spatial adaptation or

adaptive capital stock. Dynamic stochastic economic problems do not have a closed-form

solution in general.5 The analytical solutions from a further stylized model pose subtle im-

plications; therefore in modern economics, there is a growing demand to employ numerical

methods.6 The two models have formulated as an infinite-time horizon dynamic stochastic

social planner problem. We solve each social planner problem for the Euler equations analyti-

cally, and numerically solve the system of non-linear equilibrium conditions. In Section 2.2.1,

I present the basic framework of a social planner problem. In Section 2.2.2, I study the optimal

adaptation decisions for spatial adaptation. In Section 2.2.3, the adaptation capital stock

is introduced. Finally in Section 2.2.4, I briefly overview the time iteration collocation with

adaptive sparse grid, integration and a parallelization scheme.

2.2.1 Social planner problem

The objective function of the social planner is to maximize the sum of discounted and time

separative utility, as in Eq. (2.1), subject to some occasionally binding investment constraints

and a resource constraint:

maxE0

[ ∞∑
t=0

βt u (Ct )

]
(2.1)

β stands for a discount factor and E0 is an expectation operator from the initial time period

0. We assume the neoclassical utility function u (·), mathematically u(·) ∈C3, uC ≥ 0, uCC ≤ 0,

uCCC ≥ 0 and limc→0 uC =∞. We assume the time separative constant relative risk aversion(:

CRRA) for the utility function:

u(Ct ) = C 1−η
t

1−η (2.2)

Since the choice of the functional form of a utility function controls the intertemporal saving

5One of the most famous exceptions might be the logarithmic preferences and Cobb-Douglas production
(Ljungqvist and Sargent, 2012, see, Section 3.1.2.).

6Judd (1998) and Miranda and Fackler (2002) are a classical but standard reference for the numerical methods
in economics.
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and consumption decisions, it is worthwhile to discuss the other forms of a utility function.7

The logarithmic utility function is still rather standard and ensures good analytical tractability,

for instance, see Golosov et al. (2014). However, the CRRA utility function exhibits a more

general form of the risk-averse preference. A recursive utility function, especially the Epstein-

Zin preference (Epstein and Zin, 1989), becomes an alternative to the CRRA utility function

in the very advanced numerical studies, see Traeger (2014), Cai, Judd, and Lontzek (2015)

and Fernández-Villaverde and Levintal (2018) among others. Epstein-Zin preference can

capture the risk-aversion and the effect of the intertemporal elasticity of substitution within a

recursive formula. We aim to study the optimal adaptation decision to rare disasters under

uncertainty, and in our point of view, the CRRA utility function is the most appealing to achieve

our objectives with the reasonable computational expense.

2.2.2 Spatial adaptation

I introduce spatial adaptation by classifying the existing productive capital stock into two

classes based on their vulnerability to uncertain shocks, namely vulnerable (K Vt ) and non-

vulnerable capital stock (K NVt ). Both capital stocks are productive and only vulnerable capital

faces the risk of large depreciation caused by uncertain shocks.

I formulate the social planner’s problem whose objective function is in Eq. (2.3), subject to

irreversible investment constraints of vulnerable capital stock Eq. (2.4) and of non-vulnerable

capital stock Eq. (2.5) and a resource constraint Eq. (2.6).

max
{Ct ,K Vt+1,K NVt+1}∞t=0

E0

[ ∞∑
t=0

βt u (Ct )

]
(2.3)

s.t. I K V
t = K Vt+1 −

(
1−δ− ∆̃z)K Vt ≥ 0 ⊥ µK V

t ≥ 0

where


∆̃z=0 = 0, Pr[z = 0] =π(0)

∆̃z=1 =∆1, Pr[z = 1] =π(1)

∆̃z=2 =∆2, Pr[z = 2] =π(2)

(2.4)

I K NV
t = K NVt+1 − (1−δ)K NVt ≥ 0 ⊥ µK NV

t ≥ 0 (2.5)

at f (K Vt ,K NVt )− I K V
t − qK V

2
K Vt

(
I K V

t

K Vt
−δ− ∆̃z

)2

− I K NV
t − qK NV

2
K NVt

(
I K NV

t

K NVt
−δ

)2

−Ct ≥ 0 ⊥ λt ≥ 0 (2.6)

ln at+1 = ρ ln at +εt+1, εt+1 ∼ N
(
0, s2) (2.7)

Utility function remains the same as in Eq. (2.2). Uncertainty around rare disasters is in-

troduced through ∆̃z in Eq. (2.4). In time t , the social planner observes in which state he

is standing. When state 0 occurs with probability π(0), there is no shock, thus the realized

7Among others, Barro (2006), Lontzek and Narita (2011) and Bretschger and Vinogradova (2017) adopt the
CRRA utility function.
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damage scale ∆ is zero. State 1 is realized with probability π(1) where a moderate and frequent

shock occurs. The shock imposes additional depreciation on vulnerable capital stock by ∆1.

Rare natural disasters occur with probability π(2) and its damage scale is given by ∆2. Clearly

π(0)+π(1)+π(2) = 1. Eqs. (2.4) and (2.5) are an occasionally binding irreversible constraint on

investment to each capital stock.8 Eq. (2.6) is the strictly binding resource constraint consider-

ing a convex quadratic investment adjustment cost for both capital stocks, for instance, see

Juillard and Villemot (2011). Parameters qK V and qK NV govern the intensity of the quadratic

part. If qK V , qK NV = 0, there is no adjustment cost. If qK V , qK NV > 0, to have a different level

of capital stock between subsequent periods is costly due to the quadratic cost. It becomes

an incentive to allocate more investment to damaged capital stock in state 1 and 2 to recover

from disasters.

Eq. (2.7) defines a law of motion of the first-order autoregressive productivity shock, for

instance, see Juillard and Villemot (2011). AR(1) productivity shock is a well-studied example

of a small but frequent shock such as a real business cycle shock (Juillard and Villemot, 2011;

Judd et al., 2014; Brumm and Scheidegger, 2017, among others).9 Dynamics, as well as an

integration method of rare disasters, are comparatively different from those of small but

frequent shocks (Judd, Maliar, and Maliar, 2011). This study, mainly following (Judd, Maliar,

and Maliar, 2011), examines the modeling way of two different types of exogenous shocks.

Log productivity follows independent and identically distributed (i.i.d.) normal distribution

with the standard deviation s. ρ characterizes an autocorrelation process.

The production function f (·) in Eq. (2.6) satisfies the following neoclassical assumptions:

f (·) ∈C2, fK V > 0, fK NV > 0, fK V K V < 0, fK NV K NV < 0, limK V →0 fK V =+∞, limK V →∞ fK V = 0,

limK NV →0 fK NV =+∞ and limK NV →∞ fK NV = 0. Since both vulnerable and non-vulnerable

capital stock are productive, I employ the nested constant elasticity of substitution (CES)

production function as in Eq. (2.8):

f (K Vt ,K NVt ) =
[
θK V

σ−1
σ

t + (1−θ)K NV
σ−1
σ

t

] σ
σ−1α

(2.8)

The CES production function satisfies the neoclassical assumptions. In the bottom nest, we

model the substitution between vulnerable and non-vulnerable capital stock based on the

constant elasticity σ. θ measures the benchmark share of vulnerable capital stock over the

sum of two capital stocks. In the top nest, the aggregated capital stock and labor input are

combined based on the Cobb-Douglas function. I normalize, for simplicity, the labor input to

one over the time horizon. α represents the initial input share of capital stock.

Since the irreversible investment constraints are occasionally binding, the Karush-Kuhn-

8Irreversible investment constraint prevents negative investment, meaning that capital stock cannot be
converted back to a re-investment good once it is invested: putty-clay capital stock.

9Another common way to model a real business cycle shock is to adopt the finite state Markov chain, for
instance, see Stachurski (2009). Hamilton (2005) estimates the finite Markov transition matrix for the U.S. business
cycle.
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Tucker multiplier (KKT) multipliers µK V
t for Eq. (2.4) and µK NV

t for Eq. (2.5) have to be con-

sidered. λt is an associated Lagrange multiplier for the strictly binding resource constraint.

Finally note that in Eqs. (2.4) to (2.6), the symbol ⊥ indicates a complementarity slackness

condition. We summarize the model parameters in Table 2.1. These values might be well

accepted in the neoclassical literature, and the parametric uncertainty regarding these values

lie outside the scope of the paper.

By formulating the Lagrangian and solving for the first-order equilibrium conditions, I can

derive the following two Euler conditions where the symbol Et is an expectation operator

from time t . I define the growth rate g K V
t := K Vt+1

K Vt
−1 for vulnerable capital stock and g K NV

t :=
K NVt+1

K NVt
−1 for non-vulnerable capital stock. More details on the Lagrangian is deferred to

Section C.2.

λt
[
1+qK V g K V

t

]−µK V
t =

βEt

[
λt+1

{
at+1 fK V (K Vt+1,K NVt+1)+ (

1−δ− ∆̃z)+ qK V

2
g K V

t+1

(
g K V

t+1 +2
)}−µK V

t+1

(
1−δ− ∆̃z)]
(2.9)

λt
[
1+qK NV g K NV

t

]−µK NV
t =

βEt

[
λt+1

{
at+1 fK NV (K Vt+1,K NVt+1)+ (1−δ)+ qK NV

2
g K NV

t+1

(
g K NV

t+1 +2
)}−µK V

t+1 (1−δ)

]
(2.10)

The two Euler equations characterize the intertemporal equilibrium conditions for choice

variables between time t and t +1, hedging the three discrete states in time t +1 and the

random and continuous productivity shock at+1. The state and the level of productivity shock

in period t +1 are uncertain for the social planner in period t . Therefore, it is necessary to

introduce an expectation operator Et .10

Our system of non-linear equilibrium conditions includes the two Euler conditions Eqs. (2.9)

and (2.10), the two occasionally binding irreversible investment conditions Eqs. (2.4) and (2.5),

and the resource constraint Eq. (2.6).

2.2.3 Adaptive capital stock

In the second class of adaptation, I introduce the adaptive capital stock, which is non-

productive but alleviates the damage on both productive and adaptive capital stocks. The

role of the adaptive capital stock is similar to the existing literature such as de Bruin, Dellink,

and Tol (2009), Bosello, Carraro, and De Cian (2010), Millner and Dietz (2015) and Grames

et al. (2016). However, modeling adaptive capital stock depends on how we treat exogenous

damages. As Stern (2016b, Chapter 4) discusses, the economic damages are normally modeled

10Discussions about how to discretize the continuous productivity shock and to evaluate the expectation
operator in Eqs. (2.9) and (2.10) are deferred in Section 2.2.5.
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as a negative impact on the production function, such as de Bruin, Dellink, and Tol (2009),

Bosello, Carraro, and De Cian (2010) and Millner and Dietz (2015), or as direct damage on

capital stock, such as Grames et al. (2016). In this chapter, I focus on the optimal investment

balance between productive and adaptive capital stock. Moreover, the adaptive capital stock

is assumed to directly introduced on the productive capital stock.11 Considering my research

objective, I consider direct damage on capital stock and discuss how the damage can be allevi-

ated by accumulating adaptive capital stock relative to productive capital stock. I introduce

the adaptive function directly in the law of motion of productive and adaptive capital stock,

which is in line with Grames et al. (2016).

The social planner solves the following infinite time horizon dynamic stochastic optimization

problem. The objective function Eq. (2.11) is to be maximized subject to the irreversible

investment conditions, Eqs. (2.12) and (2.13), and the resource constraint, Eq. (2.14). Eq. (2.15)

defines a law of motion of the first-order autoregressive productivity shock.

max
{Ct ,Kt+1,At+1}∞t=0

E0

[ ∞∑
t=0

βt u (Ct )

]
(2.11)

s.t. I K
t = Kt+1 −

(
1−δ− ∆̃z h (Kt , At )

)
Kt ≥ 0 ⊥ µK

t ≥ 0 (2.12)

I A
t = At+1 −

(
1−δ− ∆̃z h (Kt , At )

)
At ≥ 0 ⊥ µA

t ≥ 0 (2.13)

at f (Kt )− I K
t − qK

2
Kt

(
I K

t

Kt
−δ− ∆̃z h (Kt , At )

)2

− I A
t − q A

2
At

(
I A

t

At
−δ− ∆̃z h (Kt , At )

)2

−Ct ≥ 0 ⊥ λt ≥ 0 where


∆̃z=0 = 0, Pr[z = 0] =π(0)

∆̃z=1 =∆1, Pr[z = 1] =π(1)

∆̃z=2 =∆2, Pr[z = 1] =π(2)

(2.14)

ln at+1 = ρ ln at +εt+1, εt+1 ∼ N
(
0, s2) (2.15)

I employ the CRRA utility function, provided in Eq. (2.2), and the neoclassical production

function f (·), mathematically, f (·) ∈C2, fK > 0, fK K < 0, limK→0 fK =+∞ and limK→∞ fK = 0.

I assume the Cobb-Douglas production function and keep the exogenous labor input equal to

one:

f (Kt ) = Kα
t (2.16)

In Eqs. (2.12) and (2.13), µK
t andµA

t stand for a KKT multiplier andλt in the resource constraint

Eq. (2.14) is a Lagrange multiplier. The symbol ⊥ represents complementarity slackness. The

model parameters are summarized in Table 2.1.

As provided in Eqs. (2.12) and (2.13), the productive capital stock Kt and the adaptive capital

11Typical examples of an adaptation capital are a dike or a dam to mitigate flooding, and an antiseismic
structure installed on a building to counteract earthquakes, among others.
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stock At face a risk of catastrophic uncertain shocks that cause damage to the capital stock

by ∆̃z . The role of the adaptation function h(·) is to define how much uncertain damage

∆̃z can be mitigated through the accumulation of the adaptive capital stock relative to the

productive capital stock. h (·) in Eqs. (2.12) to (2.14), which defines the adaptive function with

the following mathematical properties.12

h :R+×R+ 7→ (0,1] (2.17)

∀Kt ,h (Kt ,0) = 1 (2.18)

hK (·) ≥ 0,hK K (·) ≤ 0 (2.19)

hA (·) ≤ 0,hA A (·) ≥ 0 (2.20)

hAK (·) < 0 (2.21)

Eq. (2.17) claims that it is impossible to fully adapt to the damage (h (·) > 0). Eq. (2.18) shows

that, if there is no adaption effort, i.e., At = 0, the economy will accept the full damage

(h (·) = 1). The main assumption behind Eq. (2.19) is that the marginal unit of productive

capital stock always requires the additional adaptive capital stock to achieve the same level of

adaptation, but the necessary amount of adaptive capital stock exhibits decreasing returns to

scale. Eq. (2.20) claims that the marginal unit of adaptation always contributes to alleviating

the damage, but it exhibits decreasing returns to scale. In the end, Eq. (2.21) implies the

marginal unit of adaptive capital stock reduces the damage on both capital stocks more

effectively when the level of productive capital stock is small, rather than when it is large.

By solving the Lagrangian for the first-order conditions, I can derive the following Euler

equations. More details on the Lagrangian is deferred in Section C.2.

λt
[
1+qK g K

t

]−µK
t =

βEt

[
λt+1

{
at+1 fK (Kt+1)+ (

1−δ− ∆̃z h (Kt+1, At+1)
)− ∆̃z hK (Kt+1, At+1) (Kt+1 + At+1)

+ qK

2
g K

t+1

(
g K

t+1 +2
)}− µK

t+1

{(
1−δ− ∆̃z h (Kt+1, At+1)

)− ∆̃z hK (Kt+1, At+1)Kt+1
}

+µA
t+1∆̃

z hK (Kt+1, At+1) At+1

]
(2.22)

λt
[
1+q A g A

t

]−µA
t =

βEt

[
λt+1

{(
1−δ− ∆̃z h (Kt+1, At+1)

)− ∆̃z hA (Kt+1, At+1) (Kt+1 + At+1)

+ q A

2
g A

t+1

(
g A

t+1 +2
)}+µK

t+1∆̃
z hA (Kt+1, At+1)Kt+1

−µA
t+1

{(
1−δ− ∆̃z h (Kt+1, At+1)

)− ∆̃z hA (Kt+1, At+1) At+1
}]

(2.23)

12Similar discussion about the functional properties of an adaptation function can be found in Bréchet,
Hritonenko, and Yatsenko (2013) and Millner and Dietz (2015). Note that in both of these papers, adaptive capital
stock reduces the negative damage on the production function.
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Again note that g K
t := Kt+1

Kt
−1 is the growth rate of productive capital stock and g A

t := At+1
At

−1

is the growth rate of adaptive capital stock. Our system of non-linear equilibrium conditions

consist of the two Euler equations in Eqs. (2.22) and (2.23), the two occasionally binding

investment constraints in Eqs. (2.12) and (2.13) and the resource constraint in Eq. (2.14).

I need to specify the functional form of h (·) that satisfies Eqs. (2.17), (2.18), (2.20) and (2.21). As

far as I have realized, there is no common functional form for this kind of adaptation function

in the previous literature.13 One appealing but straightforward option is an exponential

function with a negative argument. Moreover, the exponential function is strictly convex,

which is convenient for a numerical solver. I assume the adaptive function to take the form:

h (Kt , At ) = exp

(−φAt

Kt

)
(2.24)

where φ measures the technology level of adaptation.

2.2.4 Time iteration collocation with adaptive sparse grid

In this chapter, our main challenges involve: (1) solving an infinite-time horizon dynamic

stochastic model under uncertainty and (2) to approximate stochastic policy functions that

exhibit relatively high dimensional hypercubes with possibly non-smooth regions. I rely on the

time iteration collocation with an adaptive sparse grid to overcome the two main difficulties

(Brumm and Scheidegger, 2017, and references therein.). In the following, I briefly justify why

the approach by Brumm and Scheidegger (2017) is suitable for my applications.

The time iteration collocation and the value function iteration method are two mainstreams

to solve dynamic stochastic models globally. The value function iteration is relatively easy to

implement, however, from a numerical point of view, the time iteration collocation method

has the following advantages.14 The time iteration collocation method, introduced to eco-

nomics by Judd (1992), solves the system of (non-) linear equations to approximate policy

functions directly. Whereas the value function iteration computes a value function involving a

numerically expensive non-linear optimization problem. Another advantage of time iteration

collocation over a value function iteration is the approximation or interpolation step. A value

function is known for exhibiting a higher degree of curvature than a policy function, which

sometimes causes numerical problems.

Another issue is the curse of dimensionality. The tensor-product based approximation meth-

ods are known to suffer from the curse of dimensionality. One of the most practical methods

to handle this problem is a sparse grid (SG), also known as the Smolyak method. It was

firstly introduced in economics by Krueger and Kubler (2004, and references therein). SG

can interpolate multidimensional hypercubes with a moderate computational expense, if

13de Bruin, Dellink, and Tol (2009) and Millner and Dietz (2015) are an early example of adaptation literature,
however, their adaptation function works on production function and differs from what I discuss here.

14Stachurski (2009) provides the theoretical and computational treatments of value function iteration.
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the interpolant is smooth enough, and some refinement algorithms have been proposed, for

instance, by Judd et al. (2014).

SG employs global polynomials such as Chebychev or Lagrange in the approximation step. It

means that if an interpolated function poses non-smoothness, as Judd, Kubler, and Schmed-

ders (2000) point out, it would become numerically very challenging to approximate the

non-smooth functions within a tolerated error, since a standard numerical solver requires

the Jacobian or Hessian information. Adaptive sparse grid (ASG) with local polynomial is a

practical extension of SG to overcome the main numerical difficulties. ASG algorithm detects

the kink in interpolant and adds the necessary amounts of interpolated nodes around the kink.

ASG enables approximating non-smooth hypercubes with tolerated approximation error.

As discussed above, ASG is superior to other global methods in the following points: (1) The

algorithm can detect a non-smooth region of a policy or value function. (2) It can alleviate the

curse of dimensionality. (3) It can deal with high dimensionality and can be parallelized with

a moderate computational effort. For my specific problem, point (1) and (3) are particularly

important. There are some computational methods to deal with non-smooth functions such

as Carroll (2006) and Brumm and Grill (2014), but as far as I understand, the adaptive sparse

grid is more suitable in a parallelization than other methods.

I present the pseudocode in Algorithm 2, where IPOPT, a large scale non-linear optimization

solver, is used to solve the system of equations (Wächter and Biegler, 2006). To stabilize each

optimization iteration, I provide a starting point from the previous iteration, if available. If

IPOPT still cannot find the root of the system, neighboring points from the previous iteration

are provided as a starting point. We need to ensure IPOPT to solve the system of equations

correctly in every iteration. The TASMANIAN sparse grid library is used to generate sparse

grids and to adapt or refine sparse grids with local polynomials (Stoyanov, 2015). Finally, I

implement all the numerical steps in Python 3.6 with its scientific libraries.

2.2.5 Integration

Due to the two sources of uncertainty, namely rare natural disasters and the first-order autore-

gressive (AR(1)) productivity shock, I need to evaluate the expectation operator that appears

in the Euler equations by using integration procedures. Rare natural disasters are a discrete

event; thus, our primary task is to evaluate the integration of continuous AR(1) productivity

shock. Since the AR(1) process involves Normal random variables, the Gauss-Hermite quadra-

ture reasonably approximates the expectation of a function of a normal random variable

(Judd, 1998, see, p. 261). We adopt the degree five Gauss-Hermite quadrature.15 I construct

multidimensional nodes as a tensor product of the discrete rare disaster nodes and the five

nodes Gauss-Hermite quadrature.

15Juillard and Villemot (2011) implement three numerical integration methods (the degree four Gauss-Hermite
quadrature, the degree five monomial formula and quasi-Monte Carlo integration) on a multi-country real business
cycle model and compare the accuracy of each integration method.
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Algorithm 2: Time iteration collocation with adaptive sparse grid

Initialization:
Define state s such that s = (κ,ζ) = (

κ1, · · ·κNκ
,ζ1, · · · ,ζNζ

)
, where κ stands for the vector of

endogenous state variables and ζ stand for the vector of exogenous state variables.
Solve the certainty equivalent deterministic model to compute the state variables in the

steady state sSS .
Define the range of each state variable such that s ∈ [

s, s
]⊂ S ⊂RNκ+Nζ .

Set a refinement threshold ε. Set the maximum level of refinement Lmax and the initial
level of sparse grid L0. Set l = L0.

Set an approximation tolerance η.
Solve for the optimal policy function p∗ : S 7→R2Nκ+1.
Initial guess for the policy function in the next period:

p+ : S 7→R2Nκ+1 : p+ (
s+

)= (
κ++1

(
s+

)
, · · · ,κ++Nκ

(
s+

)
,µ+

1

(
s+

)
, · · · ,µ+

Nκ

(
s+

)
,λ+ (

s+
))

while η> η do
Select a course grid Gol d ⊂ S; Generate level L0 sparse grid G by adding 2n

neighborhood points of x ∈Gol d for each policy function
while l ≤ Lmax do

if l = L0, then
For each grid point (κ,ζ) ∈G , solve the system of non-linear equilibrium

conditions given the next period’s policy functions p+ (
s+

)
.

else
For each grid point (κ,ζ) ∈G \Gol d , solve the system of non-linear equilibrium

conditions given the next period’s policy functions p+ (
s+

)
.

Generate Gnew from G by adding the 2d points of x ∈G \Gol d , if
||p (x)− p̂ (x) ||∞ > ε
where p̂(x) is given by interpolating

{
p (x)

}
x∈Gol d

with the local hierarchical
polynomial basis functions.
if Gnew =G or l = Lmax , then

Set G =Gnew and break.
else

Set Gol d =G , G =Gnew and l+= 1

Define policy function
{

p
}

x∈G .
Calculate an approximation error η= ||p −p+||∞.
if η> η, then

Set p+ = p
else

break

Derive the optimal policy function p∗ = p.

2.3 Result

In this section, I present the stochastic policy functions and the Monte-Carlo simulated

economic growth paths implemented with either spatial adaptation in Section 2.3.1 and

adaptive capital stock Section 2.3.2.
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Table 2.1 – Value of parameters

Symbol Description Value Reference

β Time preference factor 0.99 Juillard and Villemot (2011)
δ Capital depreciation rate 0.025 Juillard and Villemot (2011)
η Constant relative risk aversion 2 Millner and Dietz (2015)
α Capital input share 0.36 Juillard and Villemot (2011)
σ Elasticity of substitution between K V and K NV 1.5
θ Vulnerable capital share 0.25 Dumas and Ha-Duong (2013)
qK V Coefficient of the quadratic adjustment cost of K V 0.5 Juillard and Villemot (2011)
qK NV Coefficient of the quadratic adjustment cost of K NV 0.5 Juillard and Villemot (2011)
qK Coefficient of the quadratic adjustment cost of K 0.5 Juillard and Villemot (2011)
q A Coefficient of the quadratic adjustment cost of A 0.5 Juillard and Villemot (2011)
ρ Autocorrelation coefficient 0.95 Juillard and Villemot (2011)
s Standard deviation in the productivity shock 0.01 Juillard and Villemot (2011)
φ Technology level of the adaptation function h (·) 10
∆1 Damage scale of a frequent but moderate shock 0.025
∆2 Damage scale of a rare disaster 0.20
π (1) Annual probability of a frequent but moderate shock 0.10
π (2) Annual probability of a rare disaster 0.01

2.3.1 Spatial adaptation

Stochastic policy functions

Optimal stochastic policy functions are summarized in Figure 2.1 when the AR(1) productivity

shock at is fixed at one. The numerically approximated policy function returns the optimal

consumption level, corresponding to the endogenous state variables and the exogenous state

variable.

Figure 2.1a shows the consumption policy function. The consumption policy function is

sufficiently smooth and increases in both productive capital stocks, vulnerable and non-

vulnerable capital. Both capital stocks are productive and substituted based on the CES

production function as shown in Eq. (2.8). Figure 2.1a can be interrupted in the following way:

When the rare disaster occurs (in state 2), the optimal consumption level is shown to be smaller

than that in state 0 (no shock occurs) and in state 1 (frequent but moderate shock occurs).

When a rare natural disaster occurs, the vulnerable capital stock is largely damaged, and the

associated productivity level is decreased. Additionally, the more investment is allocated

to vulnerable capital stock to compensate for the damage, see Figure 2.1b for the optimal

investment to vulnerable capital stock. The resource constraint is always strictly binding; thus,

the consumption level decreases.

Figure 2.1b displays the optimal stochastic investment policy functions for vulnerable capital

stock and Figure 2.1c is for non-vulnerable capital stock. We interpret the optimal stochastic
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Figure 2.1 – Stochastic policy functions with spatial adaptation when at = 1

investment policy functions in the same way as we do for the optimal stochastic consump-

tion policy function in Figure 2.1a. In some specific domains, the curvature of the optimal

investment policy functions is non-smooth, which would not be numerically suitable for

derivative-based optimization solvers. As mentioned in Section 2.2.4, the ASG algorithm

successfully detects kinks and adds the necessary amount of interpolated points to refine the

SG around the kinks, which conventional tensor-product multidimensional global polynomial

approximations may fail.

The optimal investment decision-making between the vulnerable and non-vulnerable capital

stock is very intuitive but offers rich insights. When there is a rich amount of one capital

stock, for instance, the amount of vulnerable capital stock in the left domain of Figure 2.1b is

large enough, a large fraction of saving is allocated to the other capital stock, see Figure 2.1b
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and Figure 2.1c. The main reasoning of this observation is that the investment is irreversible,

and the resource constraint is strictly binding. Finally, if the rare disaster occurs (State 2 is

realized), the amount of investment in vulnerable capital stock is more significant than that

in state 0 and 1, as shown in Figure 2.1b. The main reason for this behavior is due quadratic

adjustment cost and the strictly binding resource constraint. We need to recover the damage

to vulnerable capital stock to avoid paying adjustment costs that are quadratically increased.

We need to decrease the level of consumption and investment to non-vulnerable capital stock

to allocate more investment to vulnerable capital stock because the resource constraint is

strictly binding.

Ex-post Monte-Carlo simulations

I perform the Monte-Carlo simulations based on the computed stochastic policy functions in

Section 2.3.1. Instead of showing each simulated path, I evaluate the uncertainty around rare

natural disasters and the AR(1) productivity shock based on a 10,000 Monte-Carlo simulations.

I classify the Monte-Carlo simulations in two ways. One is based on the stochastic policy

functions that internalize the stochastic elements in the ex-post way and I call this type

of Monte-Carlo simulations an ex-post Monte-Carlo simulations. Second is based on the

deterministic policy functions with which uncertainty is still treated as the ex-ante manner

and I call this sort of Monte-Carlo simulations as ex-ante Monte-Carlo simulations. Ex-ante

Monte-Carlo simulations prevail to tackle uncertainty with a given probability distribution,

especially in the IAM literature. Lontzek and Narita (2011) suggest that the ex-post Monte-Carlo

simulation is substantially different from ex-ante Monte-Carlo simulation.16

We examine stochastic growth paths of some critical variables for two models with either

spatial adaptation or adaptive capital stock. In the initial state, the amount of each capital

stock is 80% of its certainty-equivalent steady state level. We mainly report the mean, 25% and

75% quartile and the possible simulated range situated between 5% and 95% quartile.

Figure 2.2 presents the consumption profile with spatial adaptation with the best and the worst

consumption trajectories. On average, the consumption grows to its deterministic steady state

level, and the marginal utility strictly decreases. The mean is nicely situated within the 25%

and 75% quartiles. The best and the worst two trajectories are reported. These four trajectories

are very unlikely but still possible; however, one should note that all possible consumption

paths are situated in the gray cloud with 90% probability.

Figure 2.3 summarizes the growth path of the vulnerable capital stock in Figure 2.3a and the

non-vulnerable capital stock in Figure 2.3b. Both capital stocks show a strictly increasing

accumulation trend toward their certainty-equivalent steady state levels. If a rare disaster

frequently hits the economy, as illustrated in Figure 2.3a with red color, vulnerable capital

stocks largely deviate from their average growth trends and cannot return to them (see, the

two sample trajectories in red). In these two very unlikely but catastrophic cases, even the

16I follow Lontzek and Narita (2011) for the terminology ex-post and ex-ante Monte-Carlo simulations.
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Figure 2.2 – Consumption profile with spatial adaptation. The best and the worst two trajecto-
ries are reported in blue and red, respectively.

level of non-vulnerable capital stock exhibits a decreasing trend. Capital stock faces a constant

depreciation; therefore, the capital stock can depreciate if the amount of investment is not

enough to compensate. Plus the total production can decrease if the amount of capital

stock decreases. The consumer requires some amount of consumption to achieve smooth

consumption, and in this case, the possible amount of investment allocated in non-vulnerable

capital stock becomes limited and it, in turn, accelerates depreciation in non-vulnerable

capital stock.

Finally, Figure 2.4 plots the ratio of vulnerable capital stock to non-vulnerable capital stock.

We take the first derivative of the capital ratio, as in Eq. (2.25):

d

d t

(
K Vt

K NVt

)
= K Vt

K NVt

( ˙K V t

K Vt
−

˙K NV t

K NVt

)
= K Vt

K NVt

(
gK V − gK NV

)
(2.25)

gK V stands for the growth rate of vulnerable capital stock and gK NV is the growth rate of

non-vulnerable capital stock. Eq. (2.26) argues that when the curve of the capital ratio slopes

upward, the growth rate of the vulnerable capital stock exceeds that of non-vulnerable capital

stock. It is the case for roughly the first 10 years. The reason for this is that the marginal

productivity of vulnerable capital stock is higher than that of non-vulnerable capital stock in

equilibrium. The social planner aims to accumulate vulnerable capital stock to have enough

resources for economic growth. Once the economy has enough amount of vulnerable capital

stock, the slope of the capital ratio trends downward, meaning that the growth rate of the non-

vulnerable capital stock exceeds that of vulnerable capital stock. Why is it the socially optimal

decision to invest in less productive but risk-free capital stock? The representative agent is
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Figure 2.3 – Capital accumulation profile with spatial adaptation. The best and worst two
trajectories are reported in blue and red, respectively.

risk-averse and precautionary saves for future uncertainty. Investment in non-vulnerable

capital stock can be understood as precautionary saving in this context.

2.3.2 Adaptive capital stock

Stochastic policy functions

The optimal stochastic policy functions with adaptive capital stock are presented in Figure 2.5

when the AR(1) productivity shock is fixed at one.17 In Figure 2.5a, the optimal stochastic

consumption policy function is smooth enough and strictly increases in the productive capital

stock Kt . Remember that the adaptive capital stock At is non-productive. It is why we can

observe a weak relationship between the level of At and consumption. When state 2 is realized

where a rare disaster occurs; we observe a substantial consumption loss caused by the shock

in the consumption policy function.

Figures 2.5b and 2.5c present the optimal stochastic investment policy functions for productive

capital stock and for adaptive capital stock, respectively. As seen in Figure 2.5b, productive

capital stock requires almost a constant level of investment throughout the whole domain.

When the large shock occurs (state 2), the productive capital stock requires more investment to

recover the damage, mainly to avoid paying quadratic adjustment costs. The optimal adaptive

investment function in Figure 2.5c presents interesting implications. When the economy is

still developing, i.e., the level of productive capital stock is small enough, the social planner

does not allocate any savings to adaptive capital stock. The main reason to do this is to

ensure resources are available for continuous development. Once the level of the productive

capital stock achieves a certain level, the investment in adaptive capital stock starts. In state

2, the social planner saves more than the other states. It is another reason why the level of

consumption in state 2 is largely limited over the other state in Figure 2.5a.

17Again I arbitrary fix AR(1) shock at one to illustrate a policy function in a 3D format.
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Figure 2.4 – Ratio of vulnerable to non-vulnerable capital stock

By comparing the optimal policy functions for investment in productive and adaptive capital

stock, we can find an interesting observation. In state 2, as shown in Figure 2.5b, the optimal

level of investment is slightly greater compared to the other states, but the level of investment

to adaptive capital stock is slightly less, as seen in Figure 2.5c. This observation is consistent

with the fact that the social planner prioritizes productive capital stock over adaptive capital

stock when a rare disaster occurs. This investment behavior is justified because (1) the agent

is risk-averse; therefore, he is eager to have smooth consumption (2) productive capital stock

contributes to production activity.

Ex-post Monte-Carlo simulations

The adaptive capital stock is not productive and becomes only effective when a shock occurs.

The social planner solves an intertemporal optimization problem hedging future uncertainties.

Therefore, the investment in the non-productive but adaptive capital stock has a precautionary

sense.

Figure 2.6 illustrates the mean consumption and its distribution when adaptive capital stock

is available. The blue lines indicate the best two trajectories, whereas the red ones show

the most catastrophic pathways. The two red trajectories show the case when the economy

has experienced multiple disasters. Note that, even the red lines are very catastrophic, the

possible consumption path is situated in the gray region with a probability of 90%. The blue

consumption paths present the very optimistic pathways but note that those two are also

exceptional.

Figure 2.7 summarizes the growth path of productive and adaptive capital stock. As shown in

Figure 2.7a, the productive capital stock grows to its certainty-equivalent steady state level.
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Figure 2.5 – Stochastic policy functions with adaptive capital stock when at = 1

As the two red-colored trajectories illustrate, when a rare disaster occurs, a large amount of

productive capital stock is damaged. Adaptive capital stock provided in Figure 2.7b grows

from the initial period. Adaptive capital stock faces the risk of uncertain disasters; therefore,

when a disaster occurs, the adaptive capital stock sustains a loss. I assume that both capital

stocks are equally damaged when a disaster occurs. This is why we can observe a similar trend

in Figure 2.7a and Figure 2.7b.

We plot the ratio of productive capital to adaptive capital stock in Figure 2.8. In order to

interpret the figure, Eq. (2.26) is helpful:

d

d t

(
Kt

At

)
= Kt

At

(
K̇t

Kt
− Ȧt

At

)
= Kt

At

(
gK − g A

)
(2.26)
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Figure 2.6 – Consumption profile with adaptive capital stock. The best and worst two trajecto-
ries are reported in blue and red, respectively.

gK is the growth rate of the productive capital stock and g A stands for that of the adaptive

capital stock. Note that by definition, Kt , At > 0, ∀t , when the time derivative in Eq. (2.26) is

negative, the growth rate of the adaptive capital stock exceeds that of the productive capital

stock.

Figure 2.8 shows that, in its mean, Kt
At

is negative in the first decades and becomes gradually

flat. Considering Eq. (2.26), we observe that gK < g A holds in the first decades. The adaptive

capital stock optimally accumulates at a higher rate than the productive capital stock. When

the slope is approaching to flat, the growth rate of both capital stocks is the same. It suggests

that the economy is on a balanced growth path.

2.3.3 Euler error

To evaluate the accuracy of our approximation, following Judd (1992) for instance, I calculate

the relative error in the Euler equations and call it as an Euler error (EE). We can define for

example, Euler errors for spatial adaptation in Section 2.2.2 such that:
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Figure 2.7 – Capital accumulation profile with adaptive capital stock. The best and worst two
trajectories are reported in blue and red, respectively.

Table 2.2 – Relative error in the Euler equations in log10, where L0 = 5, Lmax = 10 and ε= 0.001.

Spatial adaptation Adaptive capital

Max error −2.42 −2.39
Average error −5.43 −5.70

EE K V
t =

∣∣∣∣βEt

[
λt+1

{
at+1 fK V (K Vt+1,K NVt+1)+ (

1−δ− ∆̃z)+ qK V

2
g K V

t+1

(
g K V

t+1 +2
)}

−µK V
t+1

(
1−δ− ∆̃z)]{

λt
[
1+qK V g K V

t

]−µK V
t

}−1 −1

∣∣∣∣ (2.27)

EE K NV
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∣∣∣∣βEt
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λt+1
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(
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[
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t

]−µK NV
t
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∣∣∣∣ (2.28)

Euler error measures the period-to-period relative deviation the computed policy functions

are used. Euler equations should be strictly binding; therefore, the Euler error should be very

small, if we reasonably approximate the policy functions.

I evaluate the Euler error at many points in the state space. Evaluation points are given as

1,000 random points drawn from the uniform distribution of the entire state space. Table 2.2

summarizes the maximum and average error for the three models we have developed. All

values are reported in log10 scale.

The reported errors are reasonably small compared to existing literature such as Brumm and

Grill (2014) and Brumm and Scheidegger (2017). My modeling exercises are different from

those of two literature; thus I cannot just conclude the superiority of the adaptive sparse
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Figure 2.8 – Ratio of productive to adaptive capital stock

grid with a hierarchical local polynomial over other interpolated techniques. I can conclude

that the adaptive sparse grid interpolation correctly detects non-smooth regions in policy

functions and reasonably approximates them with a tolerated approximation error.

2.4 Uncertainty qualification

In this section, I aim to numerically demonstrate the applicability of stochastic modeling over a

deterministic approach, especially in the context of fat-tailed distributed rare natural disasters.

We have studied the stochastic policy functions in Section 2.2.2 for spatial adaptation and in

Section 2.2.3 for adaptive capital stock. Firstly, the two stochastic models need to be converted

to certainty-equivalent deterministic ones.

The most convenient way to transform a stochastic model to a certainty-equivalent determin-

istic model might be to take an expected value of uncertain parameters.18 In our example, I

replace the stochastic damage scale ∆̃z and AR(1) productivity shock by its expected value:19

∆= E[
∆̃z]=∑

z
π (z)×∆z (2.29)

a = E [at ] = 1 (2.30)

18Weitzman (2009, 2011) criticize that expected damage may be inappropriate to represent rare but catastrophic
events. The main purpose of Section 2.4 is to quantitatively demonstrate the applicability of stochastic modeling
over a deterministic model, especially for rare but catastrophic events. I conjecture that a certainty-equivalent
deterministic model with expected values is good enough to support my arguments.

19In this transformation, we implicitly assume a risk-neutral economic agent, unless we assume a risk-averse
economic agent.
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Figure 2.9 – Deterministic policy functions with spatial adaptation

We solve certainty-equivalent deterministic models with either spatial adaptation or adaptive

capital stock by the time iteration collocation with ASG. The resulted policy functions with

the spatial adaptation are presented in Figure 2.9, and Figure 2.10 shows the results with

the adaptive capital stock. Comparison between the stochastic and the deterministic policy

functions are provided in Appendix F.

Based on the stochastic policy functions with either spatial adaptation or adaptive capital stock

as well as the deterministic policy functions with either spatial adaptation or adaptive capital

stock, I perform 10,000 Monte-Carlo simulations. The initial state variables are assumed to be

80% of each certainty-equivalent steady state level. Stochastic policy functions, provided in

Figures 2.1 and 2.5, internalize the stochastic damage on a capital stock in the ex-post way.

Therefore we regard the Monte-Carlo simulations based on the stochastic policy function as an

ex-post Monte-Carlo simulation. In contrast, the deterministic policy functions in Figures 2.9
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Figure 2.10 – Deterministic policy functions with adaptive capital stock

and 2.10 fail to capture uncertainty. Thus, the Monte-Carlo simulations with deterministic

policy functions treat uncertainty in the ex-ante way.

Figure 2.11 summarizes the consumption paths of the ex-post and ex-ante Monte-Carlo

simulations with spatial adaptation. I plot the mean and the possible simulation range in

Figure 2.11a and the variance of 10,000 simulated paths in Figure 2.11b. We cannot observe a

clear difference between the ex-post and the ex-ante Monte-Carlo simulation in their means.

This observation is intuitive in the context of rare disasters. The probability of having a shock

is small, thus state 0 dominates the other states. Moreover, The expected value computed in

following Eq. (2.29) is close to 0. We underestimate the risk of rare disasters in the certainty-

equivalent deterministic model. The 5% to 95% simulation range of deterministic paths is

much wider than that of stochastically simulated paths and consequently the variance of the

ex-ante Monte-Carlo simulated path is bigger than that of the ex-post simulated path as shown
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Figure 2.11 – Stochastic and deterministic consumption paths with spatial adaptation
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Figure 2.12 – Stochastic and deterministic consumption paths with adaptive capital stock

in Figure 2.11b. In the ex-ante Monte Carlo simulation, the policy function is deterministic

and fails to capture uncertainty. Therefore, an agent based on the deterministic policies does

not precautionary save for uncertain shocks in the future. On the other hand, policy functions

based on stochastic programming correctly hedge the risk of uncertain damage caused by a

shock.

Figure 2.12 reports the statistical information of the ex-post and the ex-ante Monte-Carlo

simulations with an adaptive capital stock. Main observations are the same as what we discuss

Figure 2.11.

We demonstrate the advantage of stochastic programming over the certainty-equivalent deter-

ministic programming.20 We aim to present the optimal adaptation decision to a rare disaster.

Especially in the nature of adaptation, if the resulting policy functions induce a random trend

20Cai, Judd, and Lontzek (2015) achieve the same conclusion. They solve a dynamic stochastic integration of
climate and the economic model to compute the social cost of carbon (SCC). One of their main conclusion is that
the mean of the SCC is close to that implied by deterministic models, but the path of SCC is a very random walk
with substantial variance.
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with substantial variance, these policies lead to an unstable consequence and are inappropri-

ate for adapting to rare disasters. Climate-related events, including rare disasters, are known

to pose a fat-tailed probability distribution with sometimes catastrophic consequences. In this

case, taking an expected value tends to underestimate the risk of disasters (Weitzman, 2009,

2011). Adaptation decisions recognize and hedge future uncertainties correctly, therefore,

policies based on the deterministic models might be misleading.

2.5 Conclusion

In this chapter, I discuss the optimal adaptation decisions to a rare natural disaster. I imple-

ment either spatial adaptation or adaptive capital stock on a dynamic stochastic equilibrium

model and solve them as a social planner’s problem under uncertainty. The time iteration

collocation with an adaptive sparse grid algorithm numerically approximate the system of

non-linear equilibrium conditions for the optimal policy functions (Brumm and Scheideg-

ger, 2017). Each time iteration and an adaptive step is massively parallelized via MPI and

implemented on a high-end computing cluster.

I demonstrate that the time iteration collocation with an adaptive sparse grid correctly detects

non-smooth regions in an interpolant and overcomes the related numerical difficulty with a

tolerated computing expense. I numerically demonstrate why the algorithm is appealing in

the set of modeling exercises in this chapter.

Spatial adaptation and adaptive capital stock take the form of stock adaptation; therefore, it

is practically essential to gain insights about the optimal investment decisions between vul-

nerable and non-vulnerable capital stock for spatial adaptation and productive and adaptive

capital stock for the introduction of adaptive capital stock. Our optimal policy functions with

spatial adaptation suggest that once a disaster occurs, we need to allocate more investment to

rebuild vulnerable capital stock, mainly securing enough production while avoiding paying

quadratic adjustment costs. Policy functions reveal that, after a disaster, the social planner

should prioritize productive capital stock over adaptive capital stock.

The advantage of stochastic policy functions over the conventional deterministic approach is

in the correct internalization of uncertainty around rare disasters and AR(1) productivity shock.

Monte-Carlo simulated paths based on the certainty-equivalent deterministic model show

a random trend with substantially larger variance than those based on the stochastic policy

functions. Any policies that lead to unstable consequences are not appealing, especially for

adaptation to natural disasters. Furthermore, as Weitzman (2009) claims, rare natural disasters

follow fat-tailed distributions with catastrophic consequences. Conventional deterministic

approach underestimates the risk of uncertain disasters.

We quantitatively compare Monte-Carlo simulated paths either with a stochastic or a certainty-

equivalent deterministic model. I numerically confirm that if an economic agent relies on

deterministic policies, his economic paths show random walks with larger variance than those
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of stochastic models. My finding is consistent with Cai, Judd, and Lontzek (2015), where they

present the same conclusion in the estimation of the social cost of carbon.
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3 Spatial adaptation and adaptive capi-
tal stock

3.1 Introduction

Adaptation is more likely to be implemented in a highly regional and specific environment (Tol,

2005). The stakeholders of adaptation measures usually are regional or national authorities.

Several adaptation measures have been investigated mainly using the approach based on a

cost-benefit analysis. Developed countries have realized the importance of adaptation to limit

nearer-term impacts from natural hazards. de Bruin, Agrawala, and Dellink (2009) studies

a variety of adaptation measures for the Netherlands. Ranger et al. (2010) demonstrate a

framework for adaptation decision-making and include some case studies for a high impact

flood in the UK. Millner and Dietz (2015) is one of the first to study the optimal adaptation

decisions for a developing economy (sub-Saharan Africa) and suggest that a developing

country tends to be more vulnerable to exogenous shocks than a developed country. Optimal

adaptation decisions should highly depend on the state of current economic development,

however, there is no criteria to know how much a developed (or developing) economy invests

in adaptation a priori.

Schelling (1992, Section IV) qualitatively claims in his essay that developing countries should

not allocate resources to slow or to adapt to climate changes, and that “their best defense

against climate change may be their own continued development”. I quantitatively approach

this argument in this chapter by extending a dynamic stochastic equilibrium model developed

in Chapter 2.

I develop a dynamic stochastic equilibrium model with spatial adaptation and adaptive capital

stock.1 The representative agent decides the allocation of investment between three types of

capital stock: productive but vulnerable capital stock (K V ), productive and non-vulnerable

capital stock (K NV ), and non-productive but adaptive capital stock (A). Adaptive capital stock

is assumed to be installed only on vulnerable capital stock, to alleviate the damage caused

by a rare natural disaster. Non-vulnerable capital stock is risk-free but less productive than

1Note that in Chapter 2, I developed two models in which spatial adaptation and adaptive capital stock are
introduced independently.
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vulnerable capital stock in the equilibrium. The time iteration collocation with an adaptive

sparse grid solves the developed model. The model is massively parallelized on the university’s

computing cluster via message passing interface (MPI).

The main contribution of this chapter is to present the optimal adaptation decisions for the

developed and developing economy. I demonstrate that the developed economy precaution-

ary invests in adaptive capital stock to prepare for the uncertain catastrophic shocks from the

initial state. In contrast, the developing economy at first invests in productive but vulnerable

capital stock, to secure enough available resources for future adaptation. My main findings in

this chapter quantitatively support the claim by Schelling (1992, Section IV).

The remainder of this chapter is organized as follows. Section 3.2.1 presents the social planner’s

problem with two adaptation measures. Section 3.3 shows the optimal economic growth paths

for the developed and developing economy. Section 3.4 concludes this chapter with possible

extensions for future study.

3.2 The model

3.2.1 Social planner’s problem with two adaptation measures

I formulate the social planner’s problem with spatial adaptation and adaptive capital stock un-

der uncertainty. The objective function is to maximize the sum of discounted time-separable

utility in Eq. (3.1). Constraints involve the three irreversible investment constraints for each

capital stock in Eqs. (3.2) to (3.4) and the resource constraint in Eq. (3.5). The adaptive function

h (·) defines how much the damage caused by rare disasters can be alleviated by accumulating

the adaptive capital stock relative to the vulnerable capital stock. In the resource constraint

Eq. (3.5), a convex quadratic adjustment cost is introduced where qK V , qK NV and q A control
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the intensity of a quadratic cost. Eq. (3.6) defines the standard AR(1) productivity shock.

max
{Ct ,K Vt+1,K NVt+1,At+1}∞t=0

E0

[ ∞∑
t=0

βt u (Ct )

]
(3.1)

s.t. I K V
t = K Vt+1 −

(
1−δ− ∆̃z h (K Vt , At )

)
K Vt ≥ 0 ⊥ µK V

t ≥ 0 (3.2)

I K NV
t = K NVt+1 − (1−δ)K NVt ≥ 0 ⊥ µK NV

t ≥ 0 (3.3)

I A
t = At+1 −

(
1−δ− ∆̃z h (K Vt , At )

)
At ≥ 0 ⊥ µA

t ≥ 0 (3.4)

at f (K Vt ,K NVt )− I K V
t − qK V

2
K Vt

(
I K V

t

K Vt
−δ− ∆̃z h (K Vt , At )

)2

− I K NV
t

− qK NV

2
K NVt

(
I K NV

t

K NVt
−δ

)2

− I A
t − q A

2
At

(
I A

t

At
−δ− ∆̃z h (K Vt , At )

)2

−Ct ≥ 0 ⊥ λt ≥ 0 where


∆̃z=0 = 0, Pr[z = 0] =π(0)

∆̃z=1 =∆1, Pr[z = 1] =π(1)

∆̃z=2 =∆2, Pr[z = 1] =π(2)

(3.5)

ln at+1 = ρ ln at +εt+1, εt+1 ∼ N
(
0, s2) (3.6)

where, β stands for a discount factor. The utility function u (·) is the standard CRRA utility

function as in Eq. (2.2). The CES production function f (·) is same as in Eq. (2.8) and the

adaptive function is same as in Eq. (2.24). We solve the social planner’s problem for the first-

order conditions. We need to consider the associated Karush-Kuhn-Tucker (KKT) multipliers

for the occasionally binding irreversible investment constraints in Eqs. (3.2) to (3.4), and the

Lagrange multiplier for the strictly binding resource constraint, as in Eq. (3.5). Symbol ⊥
stands for a complementarity slackness.

We formulate Lagrangian and solve it for the first-order conditions. Eqs. (3.7) to (3.9) are the

deriving Euler conditions. More details about the Lagrangian is deferred in Section C.3. The

Euler equations characterize the equilibrium conditions, where the operator Et shows an
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expectation from time t .

λt
[
1+qK V g K V

t

]−µK V
t =

βEt

[
λt+1

{
at+1 fK V (K Vt+1,K NVt+1)+ (

1−δ− ∆̃z h (K Vt+1, At+1)
)

− ∆̃z hK V (K Vt+1, At+1) (K Vt+1 + At+1)

+ qK V

2
g K V

t+1

(
g K V

t+1 +2
)}− µK V

t+1

{(
1−δ− ∆̃z h (K Vt+1, At+1)

)− ∆̃z hK V (K Vt+1, At+1)K Vt+1
}

+µA
t+1∆̃

z hK V (K Vt+1, At+1) At+1

]
(3.7)

λt
[
1+qK NV g K NV

t

]−µK NV
t =

βEt

[
λt+1

{
at+1 fK NV (K Vt+1,K NVt+1)+ (1−δ)+ qK NV

2
g K NV

t+1

(
g K NV

t+1 +2
)}

−µK NV
t+1 (1−δ)

]
(3.8)

λt
[
1+q A g A

t

]−µA
t =

βEt

[
λt+1

{(
1−δ− ∆̃z h (K Vt+1, At+1)

)− ∆̃z hA (K Vt+1, At+1) (K Vt+1 + At+1)

+ q A

2
g A

t+1

(
g A

t+1 +2
)}+µK V

t+1∆̃
z hA (K Vt+1, At+1)K Vt+1

−µA
t+1

{(
1−δ− ∆̃z h (K Vt+1, At+1)

)− ∆̃z hA (K Vt+1, At+1) At+1
}]

(3.9)

Our system of equations consists of the three Euler equations in Eqs. (3.7) to (3.9), three

occasionally binding irreversible investment constraints in Eqs. (3.2) to (3.4) and one resource

constraint in Eq. (3.5). I solve the system of equations using the time iteration collocation with

adaptive sparse grid, which is presented in Algorithm 2.

3.2.2 Developed and developing economy

To provide further insight into the general behavior of the model, I define the developed and

developing economy, depending on how much capital stock they endow in the initial state. I

at first solve the certainty-equivalent deterministic version of the model in Eqs. (3.1) to (3.6).2

By solving the deterministic model for the certainty-equivalent steady state, I can define the

level of state variables in the steady state.

In the time iteration collocation algorithm, I aim to find the optimal policies for the given state

space. State space, in this chapter, is the union of the endogenous states (three capital stocks)

and the exogenous states (rare natural disasters and AR(1) productivity shock). In this context,

it is one option to define the level of economic development by the endogenous state in the

2More details on the certainty-equivalent deterministic models are found in Appendix E.
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Table 3.1 – Relative error in the Euler equations in log10, where L0 = 4, Lmax = 9 and ε= 0.001.

Spatial adaptation and adaptive capital stock

Max error −1.67
Average error −2.07

initial period.3 I define the developed and developing economy based on how far the three

stock variables in each economy are from the levels in the certainty-equivalent deterministic

steady state. The initial state variables in the developed economy are assumed to be 90%

of each state variable in the certainty-equivalent steady state. The developing economy is

assumed to reach 60% of each state variable in the deterministic steady state.

3.3 Result

3.3.1 Approximation errors

Table 3.1 presents the approximation error in the Euler equation in Eqs. (3.7) to (3.9). Com-

pared to the cases in Table 2.2, the approximation error is relatively large. There are three

capital stocks; therefore, the occasionally binding constraints become continuously harder to

approximate.

The number of state variables is increased by one, but this makes computations much more

expensive than the other models in Chapter 2. It significantly increases the number of opti-

mization problems that need to be solved in the time iteration collocation and the adaptive

steps. I should increase the maximum level of refinement (Lmax ) to further refine computa-

tional grids to achieve a smaller approximation error, however, the computation is already

costly with the presented refinement strategy. Interpolation with adaptive sparse grid requires

very dense arithmetic operations, and I speed up this process by utilizing the conventional

BLAS library. This bottleneck is already reported in Brumm and Scheidegger (2017), who

speed up the interpolation part by adopting GPUs.

3.3.2 Monte-Carlo simulations

Monte-Carlo simulations provide more general and graphical representations of my dynamic

stochastic modeling approach. I perform 10,000 Monte-Carlo simulations with the stochastic

policy functions that are computed in Section 3.2.1. I mainly plot the mean, 75% and 25%

quantile, as well as present the 5% to 95% possible simulated range. The developed and

developing economy starts from their initial state levels. I run the simulations for 100 periods.

3However, it involves an extreme assumption. This assumption implies that I assume, for instance, the same
utility function, risk-aversion parameter, production function, for the two very different economies. I intend to do
so to make discussions easy to follow. Detail discussions about the definition of the developed and developing
economy are left for future analyses.
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Figure 3.1 – Consumption profile with spatial adaptation and adaptive capital stock

Figure 3.1 shows the consumption paths for the two economies. Developed and developing

economies grow constantly. The growth rate of a developing economy exceeds that of a

developed economy because the marginal utility decreases as it approaches the deterministic

steady state.

Figure 3.2 summarizes the development paths of the three capital stock in the developed and

developing economy. Vulnerable capital stock (Figure 3.2a) and non-vulnerable capital stock

(Figure 3.2b) continue to grow toward their certainty-equivalent deterministic steady state

levels. In contrast, adaptive capital stock in Figure 3.2c presents different accumulation pat-

terns for the two economies. The developed economy starts to invest in adaptive capital stock

from the initial state; however, the level of adaptive capital stock in the developing economy

depreciates in the first few periods. The developing economy requires more investment in

productive capital stock to secure resources for future adaptation with the adaptive capital

stock. In both economies, there is an upper limit for the adaptive capital stock. This upper

limit is determined by assumptions such as the production technology, the utility function,

and the adaptation function. The scale of the ratio of productive capital stock to adaptive

capital stock is similar to Millner and Dietz (2015).

Since I measure the level of the economic development by the stock of capital variables, I

focus on the growth rates of each capital stock, specifically vulnerable, non-vulnerable and

adaptive capital stock. Figure 3.3 summarizes the growth path of two capital ratios. Figure 3.3a

presents the ratio of vulnerable to non-vulnerable capital stock. Note that both capital stocks

are productive. Figure 3.3b shows the ratio of a productive capital stock, which is the sum of

vulnerable and non-vulnerable capital stock, to adaptive capital stock.
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(a) Vulnerable capital stock
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(b) Non-vulnerable capital stock
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Figure 3.2 – Capital accumulation profile with spatial adaptation and adaptive capital stock.

In order to interpret Figure 3.3, it is beneficial to note that:

d

d t

(
K Vt

K NVt

)
= K Vt

K NVt

( ˙K V t

K Vt
−

˙K NV t

K NVt

)
= K Vt

K NVt

(
gK V − gK NV

)
(3.10)

d

d t

(
K Vt +K NVt

At

)
= K Vt +K NVt

At

( ˙K Vt +K NVt

K Vt +K NVt
− Ȧt

At

)
= K Vt +K NVt

At

(
gK V +K NV − g A

)
(3.11)

where gK V is the growth rate of the vulnerable capital stock, gK NV is the growth rate of the

non-vulnerable capital stock, and g A is the growth rate of the adaptive capital stock. The

interpretation of Eqs. (3.10) and (3.11) is the same as in Eq. (2.26).

Figure 3.3 summarizes the two capital ratios. In Figure 3.3a, we notice that the capital ratios of

vulnerable capital to non-vulnerable capital stock in both economies are almost constant over

time, even though the fact that the vulnerable capital stock faces the risk of large depreciation.

This observation is explainable by the difference in the marginal productivity of the vulnerable

and the non-vulnerable capital stock. In the equilibrium, the difference between the marginal

productivity of the vulnerable and the non-vulnerable capital stock is equal to the difference

in their depreciation rates (Acemoglu, 2009, Section 10.4). In our example, it is equal to ∆̃z
t .
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Figure 3.3 – Capital ratio with spatial adaptation and adaptive capital stock

The risk of large depreciation by a disaster can be compensated for by the higher marginal

productivity in the vulnerable capital stock. The slope of both of the capital share curves

eventually flattens out. It suggests that the economy is shifting towards a balanced growth

path in the long run.

Figure 3.3b shows the ratio of the productive to the adaptive capital stock. In the developing

economy, the growth rate of the productive capital stock exceeds that of the adaptive cap-

ital stock in the first few decades. The developing economy prioritizes the development of

productive capital stock over adaptive capital stock. Once the developing economy secures

available enough resource available to adaptation, the growth rate of the adaptive capital stock

becomes more significant than that of the productive capital stock. On the other hand, the

developed economy accumulates adaptive capital stock faster than productive capital stock in

the first few decades. The developed economy has some resources to allocate non-productive

but adaptive capital stock as a precaution to secure itself from the risk of uncertain natural

disasters. When enough adaptive capital stock has been prepared, investment in productive

capital stock is again prioritized. Our finding quantitatively supports the qualitative claim of

Thomas Schelling that the “best defense against climate change may be their own continued

development” (Schelling, 1992, Section IV).

3.4 Conclusion

In this chapter, I address the optimal adaptation decisions for spatial adaptation with adaptive

capital stock by using an approach based on a stochastic dynamic equilibrium model. The

model is formulated as a social planner’s problem under uncertainty and is solved numeri-

cally, using the time iteration collocation with adaptive sparse grid algorithm (Brumm and

Scheidegger, 2017), for the optimal policy functions. In addition to showing the optimal

adaptation profile with spatial adaptation and adaptive capital stock, I quantitatively show

that the optimal adaptation decisions depend on the initial state of economic development.
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Table 3.2 – Wealth, by type of asset and region, adopted from Lange, Wodon, and Carey (2018)

Type of asset Low-
income

Lower-
middle-
income

Upper-
middle-
income

High-
income
Non-OECD

High-
income
OECD

World

Produced capital [%] 14 25 25 22 28 27
Natural capital [%] 47 27 17 30 3 9
Human capital [%] 41 51 58 42 70 64
Net foreign asset [%] −2 −3 0 5 −1 0
Total wealth [109] $7,161 $70,718 $247,793 $76,179 $741,398 $1,143,249
Total wealth per capita $13,629 $25,948 $112,798 $264,998 $708,389 $168,580

The developed economy starts to invest in adaptive capital stock, which is non-productive

capital stock. The developing economy at first accumulates productive capital stock, especially

vulnerable capital stock, as a priority to develop over adaptive capital stock. A risk-averse agent

in the developed economy saves for future uncertainty as a precaution, on the other hand, the

economic agent in the developing economy prioritizes today’s development, even I assume

the same degree of risk-aversion. Schelling (1992, Section IV) claimed that the developing

countries’ “best defense against climate change may be their own continued development”.

My finding quantitatively supports his argument.

In this study, I adopt rather stylized assumptions to distinguish developed economy from

developing one. Besides initial capital endowment, there are possibly many sources that

are desirable to be considered. In general, a production function in the developed economy

is more capital intensive one than that in the developing economy. Representative agent

in the developed economy may be more risk-averse than those in the developing economy.

Benchmark share of vulnerable capital stock in the developed economy may be smaller

than that in the developing economy. More detailed analyses with the above parameter

assumptions are desired, but I would leave these for future research.

Finally, Lange, Wodon, and Carey (2018) suggested that the main difference between developed

and developing economy is in the importance of human capital, as presented in Table 3.2.

Besides production and natural capital, we can observe the considerable difference in human

capital between developed and developing economy, though I have not introduced the human

capital yet. In economics, human capital refers to intangible assets, such as the stock of

skills, knowledge and education, that potentially increase worker’s productivity. According to

Acemoglu (2009), the seminal contributions by Becker (1965) and Mincer (1974) are noticeable

to formalize an idea of human capital in economics. It is a desirable future research topic to

endogenize the role of human capital in the presented framework.

There are several possible extensions. First, it would be interesting to introduce heterogeneous

agents in the model. After a seminal contribution by Krusell and Smith, Jr. (1998), there is a

growing demand to model heterogeneous agents within the general equilibrium framework.
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Perspective for uncertainty involves a high degree of heterogeneity; therefore, I can enrich our

discussions by adding this point. Second, it would be interesting to investigate the learning

effect with which economic agents might reduce or resolve uncertainties. As shown in Kelly

and Kolstad (1999), implementing the learning effect in a dynamic setting can provide more

reliable policy recommendations, especially in the context of climate change. Finally, my

model should be applied to real economies to provide policy recommendations for countries.

My modeling framework is scalable to include several sectors. Empirical policy simulations

are considerably demanding; however, many of the critical parameters that characterize

adaptation decisions are still highly uncertain at this time.
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This dissertation aims at opening the way toward a better consideration of uncertainties,

in particular, rare natural disasters, and at addressing the adaptation decisions by solving

computational economic models. Throughout the thesis, I pursue the research question: How

do we optimally adapt or alleviate the risk of uncertain rare natural disasters? In this chapter, I

briefly summarize the main modeling lessons, findings and policy recommendations from

each chapter, and present the desired research extensions for the future.

First, I closely overview the sources of uncertainty and review related literature to shed light on

research gaps between existing literature and the presented dissertation. Among many sources

of uncertainty, I ascertain that rare natural disasters and their adaptation decisions are worth

to be further investigated since the conventional deterministic approaches underestimate

the risk of rare disasters, for instance, see Cai, Judd, and Lontzek (2015). Furthermore, after a

seminal contribution by Weitzman (2009), there is no academic consensus on how to model

rare natural disasters and to quantify the risk of catastrophic events with a low probability,

especially employing a computational model, as far as I have realized. The dissertation aims

to fulfill these research gaps in the subsequent chapters.

In Chapter 1 I extend the existing computational general equilibrium model for Switzerland,

GENESwIS, to simulate adaptation decisions for the significant empirical floods in Switzerland.

Although I developed a new simulation approach called hazard myopia to correctly introduce

a subjective estimation of the risk of future floods in intertemporal decision processes, my

simulation results contradict the real Swiss situations. Rare natural disasters require a different

treatment of uncertainty from that of small but frequent shocks. To correctly quantify the risk

of rare disasters, the better consideration of uncertainty is demanding.

In Chapter 2 I develop two dynamic stochastic economic models to better address the uncer-

tainty and study the optimal adaptation decisions for rare natural disasters. I consider spatial

adaptation and the introduction of adaptive capital stock in a stylized but rather reproducible

setting. The numerically approximated policy functions contain non-smooth regions that

are correctly detected by the employed numerical algorithm, namely adaptive sparse grid

(Brumm and Scheidegger, 2017). The policy functions with spatial adaptation claim that we

need to prioritize vulnerable capital over non-vulnerable capital stock after a disaster, mainly

securing enough production in the subsequent periods. The policy function with adaptive
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capital stock presents that we should start to invest to adaptive capital stock only if we secure

enough resources for productive capital stock to prepare for future uncertainty. I confirm that

a certainty-equivalent deterministic model underestimates the risk of rare natural disasters.

Stochastic policy functions presented in this chapter internalize and hedge the risk of future

catastrophes in an ex-ante way, whereas a certainty-equivalent deterministic model treats

it in an ex-post way. I conclude that a dynamic stochastic approach can propose a better

adaptation policy to a rare natural disaster than a certainty-equivalent deterministic model as

Cai, Judd, and Lontzek (2015) demonstrated in the calculation of the social cost of carbon.

In Chapter 3 I quantitatively approach the classical argument established by Schelling (1992,

Section IV). I demonstrate that optimal adaptation decisions depend on the initial state of

economic development. As Schelling (1992, Section IV) claimed, my numerical simulations

show that the optimal adaptation in the developing economy is in their continued economic

development. On the other hand, the developed economy should start to invest in adaptation

activities to prepare for future uncertainties.

Using the implementation of adaptation measures on computational economic models, I

present stylized but reproducible adaptation decisions to rare natural disasters in Chapters 2

and 3. The modeling of rare natural disasters requires the special treatment of catastrophic

outcomes with a low probability. I demonstrate that the conventional (certainty-equivalent)

deterministic model underestimates the risk of rare natural disasters. The optimal adaptation

strategy depends on the current state of economic development. Throughout Chapters 2

and 3, my implementations are massively parallelized on a high-end computing cluster to

speedup the solving processes. The efficient usage of high-end computing facilities is an

emerging field in economics. The applicability of the massive power of modern computing

resources in economics is demonstrated in this dissertation.

Much work should be pursued based on the presented dissertation in the future. This thesis

pays particular attention to the modeling of stochastic but catastrophic shocks; however,

we should systematically quantify parametric uncertainty following Harenberg et al. (2018).

Economic models, especially in the field of environmental economics, deal with long time

horizon. Therefore, the impact of learning should be correctly endogenized, for instance

following the classical literature Kelly and Kolstad (1999). The recursive framework adopted in

Kelly and Kolstad (1999) can be naturally extended and implemented within the presented

modeling approach.

In Switzerland, the scientific community has realized moreover, warned that the frequency of

great floods is projected to increase mainly due to climate change (CH2018, 2018). It would

accelerate the research and development (R&D) activities in the development of various

adaptation technologies. Detailed discussions and the implementations of technological

development and innovation would be interesting to provide more elaborate policy recom-

mendations for a specific context.

Adaptation to rare natural disasters does not aim at only alleviating direct damage on capital
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stock, but also transforming the economy more robust and resilient toward uncertain catas-

trophic shocks. The thesis strictly discusses the role of non-vulnerable or adaptive capital

stock in the context of adaptation. However, it would be desirable to better situate the role of

these capital stocks in the discussion of robustness and resilience.

Although economic damage caused by natural disasters are calculated based on insurance

claims, especially in the private sector, the insurance system is missing in this dissertation. The

optimal adaptation decisions of a risk-averse agent with and without access to an insurance

lie outside the scope of the thesis, but I have noticed that it would be an interesting extension

and should be pursued in the future.
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Appendices

A More details on MCP formulations

A.1 Zero-profit conditions

The unit cost function of the domestic production sector s is in Eq. (A.1):
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(A.1)

The produced good in sector s is allocated as a domestic usage and export based on the

constant elasticity of transformation function. In this case, the unit revenue function is in

Eq. (A.2), where ηY
s measures the constant elasticity of transformation:
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Based on the Armington assumption, each product is produced based on the CES function

where the domestic and imported product are inputted.

C A
i ,t

(
pY

i ,t , pF X
t

)
=

θA
i ,t

(
pY

i ,t

pY
i ,t

)1−σA
i

+θA
F X ,t

(
pF X

t

pF X
t

)1−σA
i


1

1−σA
i

(A.3)

I assume the consumption function of the representative household is the sum of the leisure

and goods consumption based on the CES function, as in Eq. (A.4).

CC
t

(
wt , pY

i ,t

)
=

θC
L,t

wt

w t
+∑

i
θC

i ,t

(
1+ t

C +τC
i ,t

)
pY

i ,t

pY
i ,t

 (A.4)
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Figure B.1 – The mean of consumption for the flood occurred in 2007. Dashed trajectories
show the possible two worst paths.

B Further empirical floods analysis

Flood in August 2007

The flooding process in 2007 is very similar to that in 2005. The flood catchment and the

inundated regions are similar, but the reported monetary damage was greatly alleviated. After

the flood in 2005, early warning systems as well as physical instruments were introduced by

the national and local authorities and had worked correctly (NZZ, 2007a,b).

I developed three scenarios concerning the choice of the subjectively formed damage expecta-

tion ∆S
2007. In the first scenario, the representative agent neglects the risk of future flooding

by assuming ∆S
2007 = 0. In the second scenario, the representative agent forms an expected

value of the flood in 2007, and he forms ∆S
2007 = E

[
∆̃O

2007

]= 1.04×10−4. It is equivalent to the

certainty-equivalent deterministic model. In the third scenario, the representative agent is

supposed to be more conscious of the risk of flooding. He subjectively forms a higher damage

expectation such as ∆S
2007 = E

[
∆̃O

2007

]×1.5 = 1.56×10−4.

In Figure B.1, the mean of 1,000 Monte-Carlo simulated consumption paths with three differ-

ent subjective expectations of damage scale ∆S
2005 are presented. Again, the main result is that

the higher expectation of damage the representative agent forms, the higher consumption

profile he has. The trajectories show the possible worst cases. One single flood is big enough

to deviate from the pre-flooding economic path. However, the probability of flood is 1
100 , and

the representative agent does not take precautionary action.

The distribution of possible consumption paths with the flood in 2007 are shown in Figure B.2.

With a probability of at least more than 75%, the consumption path is the same as one without
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Figure B.2 – Monte-Carlo simulated results for the flood occurred in 2007 when the subjectively
formed depreciation rate ∆S is changed.

flooding. The gray clouds show the possible simulated path from 1% to 99% quantile. The

distribution shows that some flooding might occur, however, the probability is not big enough

to offer an incentive for the representative agent to allocate investment to less productive but

risk-free capital stock: non-vulnerable capital stock.

B.1 Flood in May 1999

The Northern part of Switzerland experienced extremely heavy precipitation from 4 to 22 May

1999. The river Thur, Aare, Linth and the lake Bodensee flooded, and Canton Zürich and Bern

were affected. The event was caused by long-lasting precipitation, and it caused damage to

a large spatial extent; therefore, the event is characterized as a particular case of flooding. It

caused expensive damage costs, see Table 1.1, in these two regions.

In the first scenario, the representative agent completely neglects the risk of flooding ∆S
1999 = 0.

In the second scenario, the agent correctly observes the risk of flooding and his subjective

expectation is equal to the expected value ∆S
1999 = E

[
∆̃O

1999

]= 1.04×10−4. In the third scenario,

I assume that the representative agent is more concerned about the risk of future floods and

he sets ∆S
1999 = E

[
∆̃O

1999

]×1.5 = 1.56×10−4.

Figure B.3 summarizes the mean Monte-Carlo simulated consumption paths when the repre-
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Figure B.3 – The mean consumption during the flood in 1999. Dashed trajectories show the
possible two worst paths.

sentative agent changes his subjective belief for future uncertainty. I can develop the same

observations as I did in Section 1.4.2.

Figure B.4 presents the distribution of simulated consumption paths. The main results in

Figure B.4 are the same in Section 1.4.2.

B.2 Flood in October 2000

There was a severe storm in Canton Valais on October 14. It induced a grave landslide, resulting

in water, soil and mud destroying one-third of the village Gondo within seconds.

In the first scenario, the representative agent completely neglects the risk of flooding ∆S
2000 = 0.

In the second scenario, the agent correctly observes the risk of flooding and his subjective

expectation is equal to the expected value ∆S
2000 = E

[
∆̃O

2000

]= 1.79×10−4. In the third scenario,

I assume that the representative agent is more concerned the risk of future floods and he sets

∆S
2000 = E

[
∆̃O

2000

]×1.5 = 2.68×10−4.

Figure B.5 presents the mean Monte-Carlo simulated consumption paths. The main findings

are the same as in Section 1.4.2.

Figure B.6 show the distribution of simulated consumption paths. The intuition is the same as

what I developed in Section 1.4.2.
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Figure B.4 – Monte-Carlo simulated results for the flood in 1999 when the subjectively formed
depreciation rate ∆S is changed.

B.3 Flood in October 2011

The primary catchment of the flood in October 2011 was the river of Kander and the region

Bernese Oberland in the Caton Bern, the Canton Valais and the Canton Glarus were also

affected. Heavy precipitation between October 6 and 10 as well as the volume of new snow

caused the floods. It is regarded as a 100 years flood.

In the first scenario, the representative agent completely neglects the risk of flooding ∆S
2011 = 0.

In the second scenario, the agent correctly observes the risk of flooding and his subjective

expectation is equal to the expected value ∆S
2011 = E

[
∆̃O

2011

]= 2.12×10−5. In the third scenario,

I assume that the representative agent is more concerned about the risk of future floods and

he sets ∆S
2011 = E

[
∆̃O

2011

]×1.5 = 3.18×10−5.

Figure B.7 summarizes the Monte-Carlo simulated consumption paths. Figure B.8 shows the

distribution of simulated consumption paths. Both figures are regarded similarly to the other

selected floods.

93



Appendices

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Time period

0.950

0.975

1.000

1.025

1.050

C
ha

ng
es

in
C
t

w
rt

.
B

AU

Mean, ∆S = 0.00× 100

Mean, ∆S = 1.79× 10−4

Mean, ∆S = 2.68× 10−4

Figure B.5 – The mean consumption during the flood in 2000. Dashed trajectories show the
possible two worst paths.

C More details on the Euler equations

In this appendix, I present the Lagrangian for each social planner’s problem that I discussed

in Section 2.2.2 for spatial adaptation, in Section 2.2.3 for adaptive capital stock and in Sec-

tion 3.2.1 for spatial adaptation and adaptive capital stock.

C.1 Spatial adaptation

I maximize the discounted sum of the time-separable utility given in Eq. (2.3) subject to the

two occasionally binding irreversible investment constraints in Eqs. (2.4) and (2.5) and the

strictly binding resource constraint Eq. (2.6). The Lagrangian for the problem is defined such

that:

L = E0

[ ∞∑
t=0

βt u (Ct )

]
+E0

[ ∞∑
t=0

βtµK V
t

{
K Vt+1 −

(
1−δ− ∆̃z)K Vt

}]
+E0

[ ∞∑
t=0

βtµK NV
t {K NVt+1 − (1−δ)K NVt }

]
+E0

[ ∞∑
t=0

βtλt

{
at f (K Vt ,K NVt )+ (

1−δ− ∆̃z)K Vt −K Vt+1 − qK V

2
K Vt

(
K Vt+1

K Vt
−1

)2

+ (1−δ)K NVt −K NVt+1 − qK NV

2
K NVt

(
K NVt+1

K NVt
−1

)2

−Ct

}]
(C.1)

Note that µK V
t and µK NV

t are a KKT multiplier associated with Eqs. (2.4) and (2.5) respectively.

λt is a Lagrangian multiplier for the resource constraint in Eq. (2.6).
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Figure B.6 – Monte-Carlo simulated results for the flood in 2000 when the subjectively formed
depreciation rate ∆S is changed.

The first-order conditions of Eq. (C.1) are in following:

∂L

∂Ct
= 0 ⇔ u′(Ct ) =λt (C.2)

∂L

∂K Vt
= 0 ⇔λt

[
1+qK V

(
K Vt+1

K Vt
−1

)]
−µK V

t =

βEt

[
λt+1

{
at+1 fK V (K Vt+1,K NVt+1)+ (

1−δ− ∆̃z)+ qK V

2

(
K Vt+2

K Vt+1
−1

)(
K Vt+2

K Vt+1
+1

)}
−

µK V
t+1

(
1−δ− ∆̃z)] (C.3)

∂L

∂K NVt
= 0 ⇔λt

[
1+qK NV

(
K NVt+1

K NVt
−1

)]
−µK NV

t =

βEt

[
λt+1

{
at+1 fK NV (K Vt+1,K NVt+1)+ (1−δ)+ qK NV

2

(
K NVt+2

K NVt+1
−1

)(
K NVt+2

K NVt+1
+1

)}
−

µK V
t+1 (1−δ)

]
(C.4)

Eq. (C.3) are the Euler equations corresponding to Eqs. (2.9) and (2.10).
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Figure B.7 – The mean consumption during the flood in 2011. Dashed trajectories show the
possible two worst paths.

C.2 Adaptive capital stock

Social planner solves an infinite-time dynamic stochastic optimization problem Eq. (2.11)

subject to Eqs. (2.12) to (2.14). The Lagrangian of the problem is formulated as in Eq. (C.5):

L = E0

[ ∞∑
t=0

βt u (Ct )

]
+E0

[ ∞∑
t=0

βtµK
t

{
Kt+1 −

(
1−δ− ∆̃z h (Kt , At )

)
Kt

}]
+E0

[ ∞∑
t=0

βtµA
t

{
At+1 −

(
1−δ− ∆̃z h (Kt , At )

)
At

}]
+E0

[ ∞∑
t=0

βtλt

{
at f (Kt )+ (

1−δ− ∆̃z h (Kt , At )
)

Kt −Kt+1 − qK

2
Kt

(
Kt+1

Kt
−1

)2

+(
1−δ− ∆̃z h (Kt , At )

)
At − At+1 − q A

2
At

(
At+1

At
−1

)2

−Ct

}]
(C.5)

Note that µK
t and µA

t are a KKT multiplier for Eqs. (2.12) and (2.13) and λt is a Lagrange

multiplier for the resource constraint in Eq. (2.14).
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Figure B.8 – Monte-Carlo simulated results for the flood in 2011 when the subjectively formed
depreciation rate ∆S is changed.

Computing Eq. (C.5) for the first-order conditions, I derive:

∂L

∂Ct
= 0 ⇔ u′(Ct ) =λt (C.6)

∂L

∂Kt
= 0 ⇔λt

[
1+qK

(
Kt+1

Kt
−1

)]
−µK

t =

βEt

[
λt+1

{
at+1 fK (Kt+1)+ (

1−δ− ∆̃z h (Kt+1, At+1)
)− ∆̃z hK (Kt+1, At+1) (Kt+1 + At+1)

+ qK

2

(
Kt+2

Kt+1
−1

)(
Kt+2

Kt+1
+1

)}
− µK

t+1

{(
1−δ− ∆̃z h (Kt+1, At+1)

)− ∆̃z hK (Kt+1, At+1)Kt+1
}

+µA
t+1∆̃

z hK (Kt+1, At+1) At+1

]
(C.7)

∂L

∂At
= 0 ⇔λt

[
1+q A

(
At+1

At
−1

)]
−µA

t =

βEt

[
λt+1

{(
1−δ− ∆̃z h (Kt+1, At+1)

)− ∆̃z hA (Kt+1, At+1) (Kt+1 + At+1)

+ q A

2

(
At+2

At+1
−1

)(
At+2

At+1
+1

)}
+µK

t+1∆̃
z hA (Kt+1, At+1)Kt+1

−µA
t+1

{(
1−δ− ∆̃z h (Kt+1, At+1)

)− ∆̃z hA (Kt+1, At+1) At+1
}]

(C.8)
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Eqs. (C.7) and (C.8) are corresponding to Eqs. (2.22) and (2.23).

C.3 Spatial adaptation and adaptive capital stock

The social planner’s objective function that is given in Eq. (3.1) is maximized subject to the

irreversible investment constraints in Eqs. (3.2) to (3.4) and the resource constraint in Eq. (3.5).

The Lagrangian is formulated as in Eq. (C.9):

L = E0

[ ∞∑
t=0

βt u (Ct )

]
+E0

[ ∞∑
t=0

βtµK V
t

{
K Vt+1 −

(
1−δ− ∆̃z h (K Vt , At )

)
K Vt

}]
+E0

[ ∞∑
t=0

βtµK NV
t {K NVt+1 − (1−δ)K NVt }

]
+E0

[ ∞∑
t=0

βtµA
t

{
At+1 −

(
1−δ− ∆̃z h (K Vt , At )

)
At

}]
+E0

[ ∞∑
t=0

βtλt

{
at f (K Vt ,K NVt )+ (

1−δ− ∆̃z h (K Vt , At )
)

K Vt −K Vt+1 − qK V

2
K Vt

(
K Vt+1

K Vt
−1

)2

+ (1−δ)K NVt −K NVt+1 − qK NV

2
K NVt

(
K NVt+1

K NVt
−1

)2

+(
1−δ− ∆̃z h (K Vt , At )

)
At − At+1 − q A

2
At

(
At+1

At
−1

)2

−Ct

}]
(C.9)

In Eq. (C.9), µK V
t , µK NV

t andµA
t are KKT multipliers for the corresponding occasionally binding

investment constraints. λt is a Lagrange multiplier.

When I solve Eq. (C.9) for the first-order conditions, I have the following intertemporal equilib-
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rium conditions.

∂L

∂Ct
= 0 ⇔ u′(Ct ) =λt (C.10)

∂L

∂K Vt
= 0 ⇔λt

[
1+qK V

(
K Vt+1

K Vt
−1

)]
−µK V

t =

βEt

[
λt+1

{
at+1 fK V (K Vt+1,K NVt+1)+ (

1−δ− ∆̃z h (K Vt+1, At+1)
)

− ∆̃z hK V (K Vt+1, At+1) (K Vt+1 + At+1)+ qK V

2

(
K Vt+2

K Vt+1
−1

)(
K Vt+2

K Vt+1
+1

)}
− µK V

t+1

{(
1−δ− ∆̃z h (K Vt+1, At+1)

)− ∆̃z hK V (K Vt+1, At+1)K Vt+1
}

+µA
t+1∆̃

z hK V (K Vt+1, At+1) At+1

]
(C.11)

∂L

∂K NVt
= 0 ⇔λt

[
1+qK NV

(
K NVt+1

K NVt
−1

)]
−µK NV

t =

βEt

[
λt+1

{
at+1 fK NV (K Vt+1,K NVt+1)+ (1−δ)+ qK NV

2

(
K NVt+2

K NVt+1
−1

)(
K NVt+2

K NVt+1
+1

)}
−µK V

t+1 (1−δ)

]
(C.12)

∂L

∂At
= 0 ⇔λt

[
1+q A

(
At+1

At
−1

)]
−µA

t =

βEt

[
λt+1

{(
1−δ− ∆̃z h (K Vt+1, At+1)

)− ∆̃z hA (K Vt+1, At+1) (K Vt+1 + At+1)

+ q A

2

(
At+2

At+1
−1

)(
At+2

At+1
+1

)}
+µK V

t+1∆̃
z hA (K Vt+1, At+1)K Vt+1

−µA
t+1

{(
1−δ− ∆̃z h (K Vt+1, At+1)

)− ∆̃z hA (K Vt+1, At+1) At+1
}]

(C.13)

First-order conditions Eqs. (C.11) to (C.13) are corresponds to Eqs. (3.7) to (3.9) respectively.

D The system of equations compatible with Algorithm 2

In this appendix, I present the system of equations in a more compatible form with Algorithm 2.

I evaluate the expectation operator around the integral of continuous AR(1) productivity shock

by applying the five-nodes Gauss-Hermite quadrature with the weight ω (x) for each node x

(Judd, 1998, see, p. 261).

D.1 Spatial adaptation

Following Algorithm 2, I define the policy function p that maps from the given state space (s, z)

to the five optimal policy functions, where s is the vector of the endogenous state variables
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(capital variables) and z is the vector of the exogenous state variables.4

p : S 7→R5, p(s, z) = (
K V +(s, z),K NV +(s, z),λ(s, z),µK V (s, z),µK NV (s, z)

)
(D.1)

Substituting Eq. (D.1) into the system of equations, I have:

p2

[
1+qK V

(
p0

s0
−1

)]
−p3 =

β
∑
z+

∑
x+
π(z+)ω

(
x+)[

p+
2

{
a+ (

x+)
fK V

(
p0, p1

)+ (
1−δ− ∆̃z+)+ qK V

2

(
p+

0

p0
−1

)(
p+

0

p0
+1

)}
−p+

3

(
1−δ− ∆̃z+)]

(D.2)

p2

[
1+qK NV

(
p1

s1
−1

)]
−p4 =

β
∑
z+

∑
x+
π(z+)ω

(
x+)[

p+
2

{
a+ (

x+)
fK NV

(
p0, p1

)+ (1−δ)+ qK NV

2

(
p+

1

p1
−1

)(
p+

1

p1
+1

)}
−p+

4 (1−δ)

]
(D.3)

p0 −
(
1−δ− ∆̃z) s0 ≥ 0 ⊥ p3 ≥ 0 (D.4)

p1 − (1−δ) s1 ≥ 0 ⊥ p4 ≥ 0 (D.5)

a f (s0, s1)+ (
1−δ− ∆̃z) s0 −p1 − qK V

2
s0

(
p0

s0
−1

)2

+ (1−δ) s1 −p1 − qK NV

2
s0

(
p1

s1
−1

)2

−u−1 (
p2

)≥ 0 ⊥ p2 ≥ 0 (D.6)

In Eqs. (D.2) to (D.6), p0 = K V +(s, z), p1 = K NV +(s, z), p2 = λ(s, z), p3 = µK V (s, z) and p4 =
µK NV (s, z). Similarly for the exogenous state variables, s0 = K V and s1 = K NV .

D.2 Adaptive capital stock

Following our Algorithm 2, the policy function can be defined as:

p : S 7→R5, p (s, z) = (
K + (s, z) , A+ (s, z) ,λ (s, z) ,µK (s, z) ,µA (s, z)

)
(D.7)

In Eq. (D.7), s is the vector of endogenous state variables and z is the vector of exogenous

state variables. Our system of non-linear equilibrium conditions consists of the two Euler

equations Eqs. (D.8) and (D.9), the two occasionally binding investment constraints Eqs. (D.10)

4I drop off the time notation t and indicate the next period activities with the symbol +

100
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and (D.11) and the resource constraint Eq. (D.12).

p2

[
1+qK

(
p0

s0
−1

)]
−p3 =

β
∑
z+

∑
x+
π(z+)

[
p+

2

{
a+ (

x+)
fK

(
p0

)+ (
1−δ− ∆̃z+h

(
p0, p1

))− ∆̃z+hK
(
p0, p1

)(
p0 +p1

)
+ qK

2

(
p+

0

p0
−1

)(
p+

0

p0
+1

)}
−p+

3

{(
1−δ− ∆̃z+h

(
p0, p1

))− ∆̃z+hK
(
p0, p1

)
p0

}
+p+

4 ∆̃
z+hK

(
p0, p1

)
p1

]
(D.8)

p2

[
1+q A

(
p1

s1
−1

)]
−p4 =

β
∑
z+
π(z+)

[
p+

2

{(
1−δ− ∆̃z+h

(
p0, p1

))− ∆̃z+hA
(
p0, p1

)(
p0 +p1

)+ q A

2

(
p+

1

p1
−1

)(
p+

1

p1
+1

)}
+p+

3 ∆̃
z+hA

(
p0, p1

)
p1 −p+

4

{(
1−δ− ∆̃z+h

(
p0, p1

))− ∆̃z+hA
(
p0, p1

)
p1

}]
(D.9)

p0 −
(
1−δ− ∆̃z h (s0, s1)

)
s0 ≥ 0 ⊥ p3 ≥ 0 (D.10)

p1 −
(
1−δ− ∆̃z h (s0, s1)

)
s1 ≥ 0 ⊥ p4 ≥ 0 (D.11)

f (s0)+ (
1−δ− ∆̃z h (s0, s1)

)
s0 −p0 − qK

2
s0

(
p0

s0
−1

)2

+ (
1−δ− ∆̃z h (s0, s1)

)
s1 −p1 − q A

2
s1

(
p1

s1
−1

)2

−u−1 (
p2

)≥ 0 ⊥ p2 ≥ 0 (D.12)

In Eqs. (D.8) to (D.12), the vector of policy functions are p0 = K +(s, z), p1 = A+(s, z), p2 =λ(s, z),

p3 =µK (s, z) and p4 =µA(s, z). Similarly for the endogenous state variable s, s0 = K and s1 = A.

D.3 Spatial adaptation and adaptive capital stock

Following our Algorithm 2, the policy function can be defined as:

p : S 7→R7, p (s, z) = (
K V + (s, z) ,K NV + (s, z) , A+ (s, z) ,λ (s, z) ,µK V (s, z) ,µK NV (s, z) ,µA (s, z)

)
(D.13)

By applying Eq. (D.13), I transform the three Euler equations in Eqs. (3.7) to (3.9) and the three

occasionally binding irreversible investment constraints in Eqs. (3.2) to (3.4) and one strictly

binding resource constraint in Eq. (3.5).
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Our resulting system of non-linear equations are as follows:

p3

[
1+qK V

(
p0

s0
−1

)]
−p4 =

β
∑
z+

∑
x+
π

(
z+)

ω
(
x+)[

p+
3

{
a+ (

x+)
fK V

(
p0, p1

)+ (
1−δ− ∆̃z+h

(
p0, p2

))− ∆̃z+hK V
(
p0, p2

)(
p0 +p2

)
+ qK V

2

(
p+

0

p0
−1

)(
p+

0

p0
+1

)}
− p+

4

{(
1−δ− ∆̃z+h

(
p0, p2

))− ∆̃z+hK V
(
p0, p2

)
p0

}
+p6∆̃

z+hK V
(
p0, p2

)
p2

]
(D.14)

p3

[
1+qK NV

(
p1

s1
−1

)]
−p5 =

β
∑
z+

∑
x+
π

(
z+)

ω
(
x+)[

p+
3

{
a+ (

x+)
fK NV

(
p0, p1

)+ (1−δ)+ qK NV

2

(
p+

1

p1
−1

)(
p+

1

p1
+1

)}
−p4 (1−δ)

]
(D.15)

p3

[
1+q A

(
p2

s2
−1

)]
−p6 =

β
∑
z+
π

(
z+)[

p+
3

{(
1−δ− ∆̃z+h

(
p0, p2

))− ∆̃z+hA
(
p0, p2

)(
p0 +p2

)+ q A

2

(
p+

2

p2
−1

)(
p+

2

p2
+1

)}
+p4∆̃

z+hA
(
p0, p2

)
p0 −p6

{(
1−δ− ∆̃z+h

(
p0, p2

))− ∆̃z+hA
(
p0, p2

)
p2

}]
(D.16)

p0 −
(
1−δ− ∆̃z h (s0, s2)

)
s0 ≥ 0 ⊥ p4 ≥ 0 (D.17)

p1 − (1−δ) s1 ≥ 0 ⊥ p5 ≥ 0 (D.18)

p2 −
(
1−δ− ∆̃z h (s0, s2)

)
s2 ≥ 0 ⊥ p6 ≥ 0 (D.19)

a f (s0, s1)+ (
1−δ− ∆̃z h (s0, s2)

)
s0 −p0 − qK V

2
s0

(
p0

s0
−1

)2

+ (1−δ) s1 −p1 − qK NV

2
s1

(
p1

s1
−1

)2

+ (
1−δ− ∆̃z h (s0, s2)

)
s1 −p2 − q A

2
s2

(
p2

s2
−1

)2

−u−1 (
p3

)≥ 0 ⊥ λt ≥ 0 (D.20)

In Eqs. (D.14) to (D.20), p0 = K V +(s, z), p1 = K NV +(s, z), p2 = A+(s, z), p3 = λ(s, z), p4 =
µK V (s, z), p5 =µK NV (s, z) and p6 =µA(s, z). Similarly for the exogenous state variables, s0 =
K V and s1 = K NV .
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E Certainty-equivalent steady states

I can convert dynamic stochastic models to the certainty-equivalent deterministic models by

taking an expected value of the two uncertain parameters:

∆= E[
∆̃z]=∑

z
π (z)×∆z (E.1)

a = E [at ] = 1 (E.2)

E.1 Spatial adaptation

I solve the certainty-equivalent deterministic model for its steady state. The following equi-

librium conditions characterize the steady state, where the superscript ss over each variable

stands for steady state, and I drop off the time notation t throughout this appendix.

λss −µK V ,ss =β
[
λss

{
a fK V

(
K V ss ,K NV ss)+ (

1−δ−∆
)}

−µK V ,ss (
1−δ− ∆̃z)] (E.3)

λss −µK NV ,ss =β[
λss {

a fK NV
(
K V ss ,K NV ss)+ (1−δ)

}−µK V ,ss (1+δ)
]

(E.4)

µK V ,ss
(
δ+∆

)
K V ss = 0 (E.5)

µK NV ,ssδK NV ss = 0 (E.6)

a f
(
K V ss ,K NV ss)−[(

δ+∆
)

K V ss +δK NV ss + (
λss)− 1

η

]
= 0 (E.7)

The system of non-linear equations (Eqs. (E.3) to (E.7)) gives us the certainty-equivalent steady

state values for K V ss , K NV ss , µK V ,ss , µK NV ,ss and λss .

E.2 Adaptive capital stock

The following system of non-linear equations (Eqs. (E.8) to (E.12)) gives us the certainty-

equivalent deterministic steady state values for K ss , Ass , µK ,ss , µA,ss and λss .

λss −µK ,ss =β
[
λss

{
a fK V

(
K V ss)+ (

1−δ−∆h
(
K ss , Ass))−∆hK

(
K ss , Ass)(K ss + Ass)}

−µK ,ss
{(

1−δ− ∆̃h
(
K ss , Ass))−∆hK

(
K ss , Ass)K ss

}
+µA,ss∆hK

(
K ss , Ass) Ass

]
(E.8)

λss −µA,ss =β
[
λss

{(
1−δ−∆h

(
K ss , Ass))−∆hA

(
K ss , Ass)(K ss + Ass)}

+µK ,ss∆hA
(
K ss , Ass)K ss −µA,ss

{(
1−δ− ∆̃h

(
K ss , Ass))−∆hA

(
K ss , Ass) Ass

}]
(E.9)

µK ,ss
(
δ+∆h

(
K ss , Ass))K ss = 0 (E.10)

µA,ss
(
δ+∆h

(
K ss , Ass)) Ass = 0 (E.11)

a f
(
K ss)−[(

δ+∆h
(
K ss , Ass))K ss +

(
δ+∆h

(
K ss , Ass)) Ass + (

λss)− 1
η

]
= 0 (E.12)
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E.3 Spatial adaptation and adaptive capital stock

The following system of non-linear equations (Eqs. (E.13) to (E.19)) gives us the certainty-

equivalent deterministic steady state values for K V ss , K NV ss , Ass , µK V ,ss , µK NV ,ss , µA,ss and

λss .

λss −µK V ,ss =β
[
λss

{
a fK V

(
K V ss ,K NV ss)+ (

1−δ−∆h
(
K V ss , Ass))

−∆hK V
(
K V ss , Ass)(K V ss + Ass)}

− µK V ,ss
{(

1−δ−∆h
(
K V ss , Ass))−∆hK V

(
K V ss , Ass)K V ss

}
+µA,ss∆hK V

(
K V ss , Ass) Ass

]
(E.13)

λss −µK NV ,ss =β
[
λss {

a fK NV
(
K V ss ,K NV ss)+ (1−δ)

}−µK NV ,ss (1−δ)

]
(E.14)

λss −µA,ss =β
[
λss

{(
1−δ−∆h

(
K V ss , Ass))−∆hA

(
K V ss , Ass)(K V ss + Ass)}

+µK V ,ss∆hA
(
K V ss , Ass)K V ss

−µA,ss
{(

1−δ−∆h
(
K V ss , Ass))−∆hA

(
K V ss , Ass) Ass

}]
(E.15)

µK V ,ss
(
δ+∆h

(
K V ss , Ass))K V ss = 0 (E.16)

µK NV ,ssδK NV ss = 0 (E.17)

µA,ss
(
δ+∆h

(
K V ss , Ass)) Ass = 0 (E.18)

a f
(
K V ss ,K NV ss)

−
[(
δ+∆h

(
K V ss , Ass))K V ss +δK NV ss +

(
δ+∆h

(
K V ss , Ass)) Ass + (

λss)− 1
η

]
= 0

(E.19)

F Comparison between the stochastic and the deterministic policy

functions

I compare the stochastic and the deterministic policy functions with spatial adaptation in

Figure F.1 and with adaptive capital stock in Figure F.2. In both figures, I fix AR(1) productivity

shock at one. I observe that, in both figures, the deterministic policy functions are almost the

same as the stochastic policy functions in state 0 where no shock occurs. It is an intuitive result.

In the deterministic models, I take an expected value of a damage scale for the uncertain

shocks. Weitzman (2009) claims that many economic and climate events generally have a

fat-tailed (or a heavy-tailed) probability distribution, and in this context, taking an expected

value becomes an inappropriate way. The modeling of rare disasters is a typical example of

Weitzman (2009)’s claim. Deterministic models underestimate the risk of rare disasters, and

the fact makes the policy recommendations based on the deterministic misleading, especially
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(c) Investment to non-vulnerable capital stock

Figure F.1 – Stochastic and deterministic policy functions with spatial adaptation when at = 1

in the framework of rare disasters.

G Policy functions with a zero social rate of pure time preference

In the main numerical exercises presented in Chapter 2, I adopt the discount factor β equal to

0.99 following Juillard and Villemot (2011, for instance). Ramsey (1928) suggests that a social

rate of pure time preference should be zero, claiming that there should be no discount. In this

appendix, I set the discount factor equal to 1 and show the corresponding policy functions for

spatial adaptation.

Figure G.1 summarizes sensitivity to the choice of the discount factor among 0.99 and 1. In

general, we can observe that the social planner saves more when β= 1 than the case when
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(b) Investment to productive capital stock
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Figure F.2 – Stochastic and deterministic policy functions with adaptive capital stockwhen
at = 1

β= 0.99. The level of investment to both types of capital stock with β= 1 is greater than those

with β= 0.99, as illustrated. This is an intuitive result. When the social planner choices β= 1,

he treats the value in t and t +1 equally in the Euler equation, and he would save more for the

period t +1.

As shown above, the choice of the discount factor is crucial. Arrow et al. (2004) suggest that the

discount factor should be in the range of 0.995 ≥β≥ 1 to achieve sustainable development,

but there is no scientific consensus. The choice of the discount factor is an active research

field, especially under uncertainty.
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H Ergodic set in the model with spatial adaptation or adaptive cap-

ital stock

It is particularly important, especially for global methods, to ensure that the possible economic

paths should be inside of the ex-ante selected approximation domain. For instance, Judd,

Maliar, and Maliar (2011) at first compute the possible ergodic set with a closed-form solution

and efficiently determine an approximation domain for subsequent analysis with a global

method. In this appendix, I illustrate the ergodic set of the two models, spatial adaptation and

adaptive capital, and check whether a long time horizon simulation results are inside of the

approximation domain or not.

Figure H.1 illustrated the ergodic set of the simulated results where I set the 10,000 time

horizon. We can confirm twofold in Figure H.1. First, when plotting the possible path of

the three state variables, we confirm that all possible paths are the inside of the selected

approximation domain. Second, we selected a much broader approximation domain for the

spatial planning model as shown in Figure H.1a. When we restrict the approximation domain

for the spatial planning model, we might achieve a smaller approximation error in the Euler

equation because we can approximate policy functions with a finer approximated domain,

but there is no way to know enough size of an approximation domain ex-ante.

I Scalability and efficiency of the parallelized adaptive sparse grid

In this appendix, I report the strong scaling efficiency of the parallelized adaptive sparse grid.

More detailed discussions about the specifications of the computing cluster installed in EPFL

is in Appendix K.

In Figure I.1, I define the speed up Sm and the efficiency Em of the code as in Eq. (I.1).

Sm = T1

mTm
, Em = T1

mTm
(I.1)

where T1 is the benchmark execution time (number of available CPU is one) and Tm is the

execution time with the m number of CPUs. I report the execution time and the ideal speedup

when I change the level of the sparse grid in Figure I.1a and Figure I.1b. Both figures show

a nice scaling effect for most regions. For instance, if I employ the level 4 sparse grid (177

grid points) with 224 CPUs, the number of CPUs is higher than that of grid points. However,

except these cases, we can achieve almost more than 65% parallelization efficiency, and it is

acceptable compared with Brumm and Scheidegger (2017) and Scheidegger et al. (2018) for

instance.
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J Parallelization via MPI

High-performance computing (HPC) enables us to access the massive computing power of

the high-end system. A clock speed of a single CPU is reaching its transition limit and to make

a single CPU faster is incredibly expensive. Serial computing is no longer suitable to solve a

large or numerically expensive model within a tolerable amount of time; therefore, there is a

growing demand to solve a model in a concurrent way: parallel computing.

HPC architecture has become a workhouse in many areas of science and engineering, and

applications in economics are emerging. Aldrich et al. (2011) solve a basic RBC model by

massively parallelizing the value function iteration steps with graphical processing units

(GPU). Cai et al. (2015) demonstrate the applicability of high throughput computing (HTC)

parallelization scheme. In the HTC scheme, one Master node decomposes a problem into

small tasks and deploys them to workstations on the network when they are not occupied for

another purpose. Brumm and Scheidegger (2017) combines several parallelization schemes to

solve high dimensional economic models efficiently. The first parallelization is realized by the

message passing interface (MPI). Subsequently in each computing node, further paralleliza-

tion is done by threading building blocks (TBB). A high intensity of arithmetic computations

is accelerated by using GPUs.

Given that I can access a high-end computing cluster, MPI is suitable for the first parallelization.

The dimension of my models is not so “high”; therefore, the benefit from further parallelization

might be insufficient.

My parallelization strategy is illustrated in Figure J.1. Before entering a time iteration collo-

cation step, I initialize the model in the root MPI process (or rank in the MPI language) and

broadcast the initialized information to the rest of the ranks. I distribute the set of grid points

to each rank by MPI. Each rank is independent, and the optimal controls are derived based on

the policy functions from the previous iteration. The derived optimal controls are gathered

from each rank to the root rank. I interpolate policy functions in the root rank and refine

the sparse grid by one. The newly generated grid points are distributed among multiple MPI

processes and in each rank, I solve for the optimal policy functions given the policy functions

in the next period.

Massive parallelization substantially speeds up the computing processes. I can assess 8

computing nodes with 28 cores each, thus 224 CPUs at the same time. All of these processes

are implemented on an Intel Broadwell based cluster on site at the university on-site.

Finally, I report how the ASG algorithm detects kinks and adds a necessary amount of points

to approximate a non-smooth function with an acceptable approximation error. Table J.1

shows the number of grid points with the classical sparse grid (the SG column) and that of an

adaptive sparse grid with two adaptation measures when I adopt the benchmark parameters

for the adaptive sparse grid. As seen, the finer level of the sparse grid I assume, the more

grid points for the three cases. However, the adaptive sparse grid algorithm successfully and
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Table J.1 – Number of grid points where L0 = 5, Lmax = 10 and ε= 0.001.

Level SG Spatial planning, ASG Adaptive capital, ASG

5 441 441 441
6 1073 820 759
7 2561 1440 1251
8 6017 2400 1913
9 13953 3776 2836
10 32001 5821 4132

efficiently reduces the number of grid points compared to the classical sparse grid. It is the

advantage to adopt the adaptive sparse grid.

K Detailed EPFL cluster specifications

My MPI parallelization is implemented on the Intel Broadwell based computing cluster at

EPFL named Fidis. Fidis have started its service from May, 2017. Fidis achieves 401.3 TFLOPs

Linpack performance and equips 61 TB RAM as well as 350 TB storage in total. The cluster

equips, in total, 408 computing nodes, and each has 2 Intel Broadwell processors running at

2.6 GHz. Each processor has 14 cores, which means that 28 cores per each node. I access to at

most 8 computing nodes, which means that my codes are parallelized with 224(= 28×8) MPI

processes.
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Figure G.1 – Stochastic policy functions with the discount factor β= 0.99 and β= 1
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Figure H.1 – Ergodic set in the models with the derived policy functions
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