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Abstract
Genetic association studies have become increasingly important in understanding the molecular bases

of complex human traits. The speci�c analysis of intermediate molecular traits, via quantitative trait

locus (QTL) studies, has recently received much attention, prompted by the advance of high-throughput

technologies for quantifying gene, protein and metabolite levels. Of great interest is the detection of

weak trans-regulatory effects between a genetic variant and a distal gene product. In particular, hotspot

genetic variants, which remotely control the levels of many molecular outcomes, may initiate decisive

functional mechanisms underlying disease endpoints.

This thesis proposes a Bayesian hierarchical approach for joint analysis of QTL data on a genome-wide

scale. We consider a series of parallel sparse regressions combined in a hierarchical manner to �exibly

accommodate high-dimensional responses (molecular levels) and predictors (genetic variants), and

we present new methods for large-scale inference.

Existing approaches have limitations. Conventional marginal screening does not account for local

dependencies and association patterns common to multiple outcomes and genetic variants, whereas

joint modelling approaches are restricted to relatively small datasets by computational constraints.

Our novel framework allows information-sharing across outcomes and variants, thereby enhancing the

detection of weak trans and hotspot effects, and implements tailored variational inference procedures

that allow simultaneous analysis of data for an entire QTL study, comprising hundreds of thousands of

predictors, and thousands of responses and samples.

The present work also describes extensions to leverage spatial and functional information on the

genetic variants, for example, using predictor-level covariates such as epigenomic marks. Moreover,

we augment variational inference with simulated annealing and parallel expectation-maximisation

schemes in order to enhance exploration of highly multimodal spaces and allow ef�cient empirical

Bayes estimation.

Our methods, publicly available as packages implemented in R and C++, are extensively assessed in

realistic simulations. Their advantages are illustrated in several QTL applications, including a large-

scale proteomic QTL study on two clinical cohorts that highlights novel candidate biomarkers for

metabolic disorders.

Keywords: Bayesian sparse regression; Hierarchical model; High-dimensional data; Molecular quanti-

tative trait locus analysis; Pleiotropy; Statistical genetics; Variable selection; Variational inference.
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Résumé
Les études d'association génétique sont aujourd'hui largement utilisées pour tenter de comprendre les

bases moléculaires de traits humains complexes. L'analyse de phénotypes moléculaires intermédiaires,

via des études de locus à caractères quantitatifs (QTL), a récemment fait l'objet d'une attention parti-

culière, eu égard aux progrès techniques réalisés en matière de quanti�cation à haut rendement de

niveaux de gènes, de protéines et de métabolites. La détection de faibles effets trans entre un variant

génétique et le produit d'un gène distant est d'un grand intérêt. En particulier, les variants génétiques

pléiotropiques , qui contrôlent à distance les niveaux de nombreux phénotypes moléculaires, pourraient

être à l'origine de mécanismes fonctionnels déterminants pour le développement de maladies.

Cette thèse propose une approche hiérarchique bayésienne pour l'analyse multivariée de données QTL

à l'échelle du génome. Nous considérons une série de régressions parallèles éparses, combinées de

façon hiérarchique, pour modéliser de manière �exible un grand nombre de réponses (phénotypes

moléculaires) et de prédicteurs (variants génétiques), et nous présentons de nouvelles méthodes pour

l'inférence à grande échelle.

Les approches existantes ont des limitations. Les méthodes marginales conventionnelles ne tiennent

pas compte des dépendances locales et des motifs d'association communs à plusieurs phénotypes

moléculaires et variants génétiques, alors que les approches de modélisation conjointe sont limitées

à des jeux de données relativement petits en raison de contraintes computationelles. Notre nouvelle

approche permet un transfert d'information entre les phénotypes et variants, améliorant ainsi la

détection des effets pléiotropiques faibles, et implémente des procédures d'inférence variationnelle

permettant l'analyse simultanée de données pour une étude QTL complète, comprenant des centaines

de milliers de prédicteurs, et des milliers de réponses et d'échantillons.

La thèse décrit également des extensions permettant de tirer parti d'informations spatiales et fonc-

tionnelles sur les variants génétiques, par exemple à l'aide de covariables sur les prédicteurs telles que

les marques épigénomiques. De plus, nous couplons nos algorithmes variationnels à des schémas de

recuit simulé et d'espérance-maximisation parallèles a�n de faciliter l'exploration d'espaces hautement

multi-modaux et de permettre une estimation bayésienne empirique ef�cace.

Nos méthodes, en libre accès sous forme de librairies écrites en R et C++, sont rigoureusement évaluées

par des simulations réalistes. Leurs avantages sont illustrés par plusieurs applications QTL, notamment

par une étude QTL protéomique à grande échelle sur deux cohortes cliniques mettant en évidence de

nouveaux biomarqueurs candidats pour les troubles métaboliques.

Mots clés : Analyse de locus à caractères quantitatifs ; Données en hautes dimensions ; Génétique

statistique ; Inférence variationnelle ; Modèle hiérarchique ; Pléiotropie ; Régression bayésienne éparse ;

Sélection de variables.
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1 Introduction

The past decades have seen a multiplication of large-scale statistical applications, prompted by the

proliferation of devices capable of measuring large volumes of information, whether on buying habits,

health and life-style parameters, molecular entities, or even galaxies. As well as growing in size, the

datasets collected are also growing in complexity, which calls for elaborate and �exible modelling strate-

gies. Bayesian hierarchical modelling is a powerful framework for describing intricate dependencies

across multiple sources of information, while conveying uncertainty in a coherent fashion.

Many applications entail many samples for a comparatively modest number of variables; this can

pose computational challenges, but is relatively unproblematic from a statistical viewpoint, and a rich

statistical and machine learning literature tackles capitalising on the amount of data to effectively

answer questions of interest. The large-scale paradigm faced by genomic researchers is of a completely

different nature. The data produced by high-throughput technologies have unprecedented numbers

of variables, many more than samples. Such complex large p, small n setups have triggered intense

research efforts since the early 2000s, directed towards reconsidering traditional asymptotics, assessing

�nite-sample accuracy and characterising computational complexity. But despite important progress,

full awareness that statistical and computational approaches should be developed jointly has long

been lacking, with inference algorithms often employed as mere secondary tools on complicated high-

dimensional models. This is particularly true for Bayesian procedures, whose statistical advantages are

often hindered by computational disadvantages that prevent their adoption in applications. Addressing

this con�ict in the context of genetic association with many outcomes is a central ambition of this

thesis.

1.1 Motivation

This thesis is concerned with variable selection from high-throughput genetic data. Understanding

the genetic architecture of complex human traits is an important step towards predicting health risks

and developing effective therapies. Dramatic technological developments leading to the sequencing of

the human genome at the end of the last millennium gave hopes for rapid breakthroughs in medical

research. Several thousand studies have been designed with the twin purposes of giving deeper insights

into the molecular processes underlying certain phenotypes (e.g., hypertension, obesity or types

of cancer), and of the detection of reliable biomarkers for them. Some of these studies have led to

major discoveries, such as obesity-associated risk alleles, whose encoded enzymes have shed light on
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Chapter 1. Introduction

Figure 1.1 – Genotype-to-phenotype path (reproduced from Lusis, 2006).

the functional mechanisms behind body weight regulation (Loos and Yeo, 2014). But the expected

transformation of medicine has barely begun, because of the complexity of biological mechanisms, the

size, heterogeneity and noisy nature of the collected data, and the slow development of solid inference

procedures.

The challenge of bridging this gap is currently being widely addressed, and a �rst step towards this

involves a proper understanding of the molecular data available for analyses. The biomarkers sought

in genetic association studies are genetic variants that in�uence the susceptibility to a disease or

clinical phenotype of interest. The term genetic variant refers to a change at a speci�c location on the

genome (locus), and the different versions of this change are called alleles. All the genetic variants

contribute to de�ning the genetic makeup or genotypeof an individual, but the most common variants

in a population are single nucleotide polymorphisms (SNPs). A SNP is a variation in the nucleotide, A, T,

G, or C, that is present to some appreciable extent in a population, i.e., the minor allele of this variation

has frequency È 0.01 (Lewin et al., 2011, Chap. 2 and 5).

Most human conditions and diseases are believed to be complex traits . Such traits are controlled by

variants from many genetic loci, each of which may contribute a relatively small effect, yet whose

cumulative contribution can be substantial (Lander and Schork, 1994). A variety of molecular mecha-

nisms mediate the action of the genotype on the phenotype, via different types of entities (Figure 1.1).

Genetic variants can regulate the expression of genes (the transcriptome), which may have downstream

consequences at the protein (the proteome) or metabolite (the metabolome) level. These mechanisms

can involve complex interactions that may subtly perturb pathways or networks underpinning the

phenotype. They can also be tissue- and cell-type-speci�c, as well as retroactive, meaning that all

molecular layers, except the genotype, can react to the phenotype and to environmental factors.

At the advent of high-throughput technologies, the editorial entitled “Talkin' Omics” of the journal

Disease Markers(issue of September 2001) thus observes

“We are no longer satis�ed to study a gene or a gene product in isolation, but rather we

strive to view each gene within the complex circuitry of a cell. Understanding how genes

and their products interact will open many exciting avenues.”

The concurrent surge of interest for such holistic approaches has led to using the generic designation

of systems biologyfor them (Kitano, 2002). In the context of association studies, gene, protein and

metabolite levels are often called endophenotypes, as they may be regarded as intermediate molecular

proxies for clinical endpoints of interest. The former should have clearer connections with genetic

variants than the latter, as they are less subject to environmental and behavioural effects (Gottesman
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and Gould, 2003). This stimulated much of the current focus in statistical genetics on molecular

quantitative trait locus (QTL) analyses, which assess how genetic variants control molecular levels

at a genome-wide scale; this thesis tackles ef�cient modelling and inference for such molecular QTL

studies.

Molecular QTL studies differ from classical genome-wide association studies in the types of analyses

and questions addressed. We discuss this for expression quantitative trait locus (eQTL) analyses,

which study the effects of genetic variants on the expression of transcripts or genes, but the same

considerations apply to protein or metabolite outcomes, involved in so-called pQTL or mQTL analyses.

The data used for eQTL studies usually involve several hundred thousand SNPs and several thousand

transcript expression outcomes. Genetic variants can act locally, affecting the expression of a nearby

gene (cis-eQTL) or they can alter expression of remote transcripts ( trans-eQTL). Understanding by

which mechanisms trans-regulation can take place, via a local cis gene that acts on a whole network or

via other means, is a subject of active debate (Westra et al., 2013; Solovieff et al., 2013; Brynedal et al.,

2017; Yao et al., 2017). In particular, the detection of pleiotropic variants, regulating the expression of

tens or possibly hundreds of transcripts, is of great interest: such “ trans-hotspot” genetic variants may

provide insight into the regulatory landscape of the transcriptome, and hence into the mechanisms

shaping the evolution of the human genome. They may also shed light on important functional

processes underlying clinical traits and diseases. Hence, the task of identifying trans effects and

hotspot variants is a central endeavour of molecular QTL studies, which is absent from genome-wide

association studies that involve a single or just a handful of clinical outcomes.

The locations and abundance of hotspots on the genome are largely unknown; as we next illustrate,

detecting trans effects is dif�cult, and conventional approaches to association analyses have several

drawbacks. We consider eQTL data comprising È 24,400 transcripts from CD14 Å monocytes and

È 380,000 SNPs determined using Illumina arrays, for n Æ432 samples from healthy European indi-

viduals; details are in Section 5.5, which describes a more extensive analysis using our work. Here we

perform a classical marginal screening on all the transcripts and the p Æ29,607 SNPs of chromosome

one, that is, we regress each expression outcome on each genetic variant, one by one. This leads to the

following observations (Figure 1.2 and Table 1.1): �rst, the estimated effect sizes of trans associations

uncovered at Benjamini–Hochberg false discovery rate (FDR) of 20% are substantially smaller than

those of the cis effects. Second, although the screening uncovers about 2 .5 times more cis associations

than trans associations, about one-third of the former are essentially redundant: because of the local

correlation structure on the genome ( linkage disequilibrium ), a single transcript is often assessed as

under control by several genetic variants at a same locus, yet these variants are likely to be proxies

for a single causal variant. Such scenarios are much less represented among the uncovered trans

associations, as they concern only about 2% of them. Hence the large number of false positive cis

associations reported by the marginal screening is likely to have hampered the detection of, weaker,

trans effects.

It is easy to formalise this as a model misspeci�cation issue in ordinary least squares regression. For an

n £ 1 centred expression outcome vector y, screening approaches assume a series of marginal models

y ÆXs¯ s Å " , sÆ1,. . . ,p, (1.1)

where Xs an n £ 1 centred SNP vector, ¯ s is its regression coef�cient, and " is an n £ 1 error term.

Suppose that the true model is simply

y ÆX1¯ 1 Å " , ¯ 1 6Æ0,
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Figure 1.2 – Detection of cis and trans associations by a univariate screening approach using a
Benjamini–Hochberg FDR of 20%. Effects between a gene and a SNP located less than 2 megabases
(Mb) to it were de�ned as cis effects; the remaining effects were de�ned as trans effects. Left: example
of linkage disequilibrium plot and Manhattan plot, here for associations with transcript B3GALT6. The
blue labels indicate seven SNPs cis-acting on B3GALT6at FDR 20%; these effects are likely to be proxies
for a single signal in the locus and arise because of the failure of univariate approaches to handle local
correlation structures. Middle: number of such “proxy” associations for cis and trans effects, based on
a linkage disequilibrium threshold of r 2 Æ0.5 and window size 2 Mb. Right: ¡ log10 p-values for the
declared effects.

Number Number after LD pruning Magnitude of estimated effects
Cis effects 1,611 1,049 0.11 (0.10)
Trans effects 655 641 0.04 (0.03)

Table 1.1 – Detection of cis and trans associations by univariate screening using a Benjamini–Hochberg
false discovery rate threshold of 0 .2. Left: number of detected pairwise associations. Middle: number
of detected pairwise associations after grouping those between a given transcript and several SNPs in
linkage disequilibrium (LD) using correlation r 2 È 0.5 and window size 2 Mb. Right: average magnitude
of regression estimates, and standard deviation in parentheses.

(the argument easily generalises to an additive contribution of multiple SNPs). Based on (1.1), the

ordinary least squares estimate ˆ̄s has mean

E( ˆ̄s) Æ

(
¯ 1, sÆ1,

¯ 1(X T
s Xs)¡ 1X T

s X1, otherwise,

so, omitting the variable X1 yields a biased estimate for ¯ s Æ0 (s6Æ1) if Xs is correlated with X1, which

explains the redundant spurious effects declared by the marginal screening in regions of high linkage

disequilibrium. This also suggests that the biases for SNPs in a locus with a cis effect (say, ¯ 1 large)

may be larger than many estimated trans effects. In Section 2.3.2, we shall brie�y review some general

properties and recent modi�cations of marginal screening approaches.

There is a broad consensus in the biological community about the generality of the above remarks

(Gilad et al., 2008; Mackay et al., 2009; Nica and Dermitzakis, 2013). It may be tempting to view them

as consequences of the multiplicity burden entailed by molecular QTL problems. To date, marginal

approaches have focused on detecting proximal cis associations, either to limit this burden or because

the distal trans associations uncovered would fail to replicate. False discovery rate techniques with

different corrections for cis and trans effects have been proposed (Peterson et al., 2016) and may
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alleviate the issue. Rather than pursue this approach, we anticipate and tackle the question upfront,

at the modelling stage, by building a hierarchical sparse regression model that can directly borrow

information across genes.

Compelling evidence indicates that joint approaches outperform univariate screening approaches for

variable selection in genetic association studies. Collectively accounting for the SNPs is needed to avoid

omitted-variable misspeci�cation (Guan and Stephens, 2011; Yang et al., 2012; Goddard et al., 2016),

while leveraging information across multiple correlated transcripts is essential to uncovering pleiotropy

(Jia and Xu, 2007; Richardson et al., 2010; Bottolo et al., 2011; Scott-Boyer et al., 2012). Despite this,

marginal screening prevails owing to a combination of �rmly-established practices and computational

concerns. Indeed, none of the existing joint approaches allow analysis at the scale required by current

molecular QTL studies, and they often necessitate drastic preliminary dimension reduction.

In addition to the large p, small n paradigm, whereby the number of genetic variants p greatly exceeds

the number of samples n, molecular QTL studies also have a large q characteristic, entailed by the

large number of expression levels q. The present thesis develops methodologies for this setup at both

modelling and inference levels, thereby enabling expressive joint inference for realistic molecular QTL

problem sizes. It builds on the �exible hierarchical model of Richardson et al. (2010), which it tailors to

accommodate speci�c biological structures and heterogeneous sources of information, and it develops

ef�cient variational inference procedures applicable to hundreds of thousands of SNPs and thousands

of molecular expression outcomes.

1.2 Thesis outline

This thesis is structured as follows. Chapter 2 surveys basic concepts of high-dimensional Bayesian

statistics and recent developments therein. Its �rst part reviews sparse modelling, from discrete mixture

priors to continuous shrinkage priors, also touching on multiplicity control. Its second part discusses

inference approaches, focusing on scalability issues, and presents variational inference.

Chapter 3 introduces our hierarchical sparse regression model for molecular QTL data and describes

our variational procedure for it. The candidate predictors are SNPs and the responses are molecular

expression outcomes. The use of variational approaches is relatively “non-standard” for Bayesian

inference, for which sampling algorithms still prevail; the chapter strives to show the suitability of our

algorithm for the model and for molecular QTL data.

The next three chapters propose enhancements and variants of the model and variational algorithm.

They revolve around the concepts of linkage disequilibrium and pleiotropy: Chapters 4 and 6 propose

using SNP data structures and external information to try to improve selection from loci with marked

linkage disequilibrium, and Chapter 5 enhances the borrowing of strength from related expression

outcomes to further adapt the model to the detection of hotspots.

More precisely, Chapter 4 is concerned with better handling of dependence structures. It evaluates the

performance of two model variants that encode linkage disequilibrium, and augments the inference

procedure with a simulated annealing scheme that enhances exploration of multimodal spaces, without

using any structural information.

5
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Chapter 5 describes a fully Bayesian second-stage model for hotspots, which bypasses sensitivity issues

affecting the estimated propensity of SNPs to be hotspots. This proposal involves a �exible global-local

representation for hotspots, which signi�cantly improves their detection.

Chapter 6 considers involving a third data source: it extends the model with a second-stage regression

to accommodate predictor-level covariates that inform the probability of candidate predictors to be

involved in associations. In genetics, such covariates may be epigenomic marks that annotate the SNPs

on their function, location or other features that may relate to their regulatory potential. This potential

is inferred by the model, which selects the relevant marks using a dedicated spike-and-slab prior.

All chapters illustrate the performances of the approaches in numerical experiments that involve

real molecular QTL data (transcriptomic, proteomic or metabolomic) or simulated data designed to

emulate real data. Chapter 7 details an application on pQTL datasets from two clinical cohorts on

obesity. It supports the relevance of the replicated hits by evaluating colocalisation with epigenomic

marks and known eQTL effects, and takes advantage of comprehensive clinical data to study links with

dyslipidemia and insulin sensitivity.

We conclude with a general discussion and outline possible extensions in Chapter 8.

Chapters 5, 6 and part of Chapter 4 are joint work with Leonardo Bottolo and Sylvia Richardson.

Chapter 7 is joint work with Armand Valsesia.
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2 Hierarchical modelling and inference

for high-dimensional data

In this chapter we review modelling approaches to high-dimensional regression in the Bayesian

framework, and we evaluate possibilities for reliable and scalable inference. We restrict our discussion to

the linear regression setting, from which essential properties of Bayesian variable selection procedures

can be learnt. We focus on presenting an overview of general methodological aspects and recent

developments, and defer the review of approaches tailored to the genetic context to subsequent

chapters.

The chapter is organised as follows. Section 2.1 reviews sparse Bayesian modelling, its relations to

frequentist penalised regression, and two different perspectives on it. Section 2.2 discusses multiplicity

in variable selection tasks. Section 2.3 presents the main approaches to scaling Bayesian inference

for high-dimensional problems. Section 2.4 focuses on the inference approach used in this thesis,

namely, variational inference; it gives a general presentation of the approach and brie�y outlines new

developments.

2.1 Bayesian sparse regression modelling

2.1.1 Frequentist and Bayesian approaches to regularisation

Consider inference about a p-variate parameter ¯ in the linear regression model

y ÆX¯ Å " , " » N
¡
0,¾2

" I n
¢
, (2.1)

where y is an n-variate response, X is an n £ p design matrix and ¾2
" is the error variance. For simplicity,

the intercept is set to zero and the columns Xs (sÆ1,. . . ,p) of X are measured on the same scale; this is

without loss of generality, as it can always be achieved by centring y and standardising each Xs to have

mean zero and variance one.

We discuss model (2.1) in presence of high-dimensional predictors, i.e., for p À n. When p È n, the

design matrix is singular, so inference requires structural assumptions on ¯ in order to be well-posed. A

natural approach is to enforce sparsity by assuming that only a handful of predictors may be associated

with the response, constraining most regression coef�cients to be (nearly) zero. It is questionable

whether the sparsity assumption is always reasonable in practice; however it is not unreasonable in

7



Chapter 2. Hierarchical modelling and inference for high-dimensional data

genome-wide applications, as one typically expects a small fraction of the molecular entities analysed

to control an outcome of interest.

In the frequentist setup, Bühlmann and van de Geer (2011, Chap. 1) explain that optimal estimation

properties may be obtained by imposing sparsity conditions of the form

k¯ kq
q log p ¿ n,

where k¢kq is the ` q norm with 0 · q Ç 1 chosen depending on the context, and writing k¯ k0
0 Æ k̄ k0 Æ

#
©
1 · s · p : ¯ s 6Æ0

ª
. To achieve such regularisation, high-dimensional regression is often framed as a

minimisation problem with objective function

L (¯ ) Æ ky ¡ X¯ k2
2 Å ¸

pX

sÆ1
½

¡
¯ s

¢
, (2.2)

for some penalty ½(¢) and parameter ¸ È 0. For instance, the choice ½
¡
¯ s

¢
Æ

¯
¯¯ s

¯
¯ corresponds to the

popular least absolute shrinkage and selection operator (LASSO, Tibshirani, 1996), but many more

possibilities are reviewed by Bühlmann and van de Geer (2011). Frequentist uncertainty estimates are

often dif�cult to construct because asymptotic normality arguments do not transfer trivially from the

p Ç n to the p À n regime (Bhattacharya et al., 2015). Bootstrapping may be used but can produce

unstable or poor variance estimates; see Kyung et al. (2010) for an extensive discussion in the context

of the LASSO.

Most penalised estimators can be interpreted as the mode of a posterior distribution under an inde-

pendent and identically distributed prior (Polson and Scott, 2010)

pr
¡
¯ s

¢
/ exp

©
¡ ¸½

¡
¯ s

¢ª
, sÆ1,. . . ,p. (2.3)

For instance, the LASSO �nds a maximum a posteriori (MAP) estimate for a Laplace shrinkage prior

on ¯ s. This suggests that the entire posterior distribution may be used for inference, rather than

just its posterior mode, and this is what Bayesian sparse regression enables. Hence, in contrast to

frequentist penalised regression, Bayesian regression implicitly conveys uncertainty. Fully Bayesian

versions of (2.2) also place a prior on the regularisation parameter ¸ and infer it simultaneously with the

model parameters, thereby avoiding plug-in solutions based on cross-validation or marginal maximum

likelihood estimation.

The scope of Bayesian sparse regression goes beyond the relation with frequentist penalised regression,

as sparsity is induced via the prior placed on the regression coef�cients and MAP estimation under this

prior may or may not coincide with an existing penalised method. A wide range of sparsity priors can

be expressed using scale mixtures of normal densities:

pr( ¯ s) Æ
Z

N
¡
¯ s j 0,! s

¢
dG(! s) , sÆ1,. . . ,p, (2.4)

for some distribution function G (Grif�n and Brown, 2017). Bayesian optimality properties, however,

usually do rely on frequentist perspectives. For posterior consistency, for example, one assumes

the existence of an underlying true parameter ¯ 0, and evaluates convergence, in a suitable sense,

of the posterior distribution to the Dirac measure of ¯ 0 as the amount of data grows inde�nitely.

Another characterisation of posterior consistency requires the posterior probability assigned to any

neighborhood of ¯ 0 to converge to unity (Ghosal and van der Vaart, 2017, Chap. 6). On top of assessing

8
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consistency, it is often of interest to derive concentration rates, that is, to study at what rate ¯ 0 can be

learnt, as this can be informative about the number of samples n needed to reach a desired accuracy, up

to constants. This corresponds to �nding the smallest shrinking ball that still contains all the posterior

mass asn ! 1 . The �rst general results on consistency may be attributed to Doob (1949) and Schwartz

(1965). The former stated that if the true parameter ¯ 0 is drawn from the prior, then the posterior

of ¯ is consistent almost everywhere. The latter obtained guarantees for consistency when the prior

places positive mass on Kullback–Leibler neighborhoods of the true density (assuming that densities

exist). Barron et al. (1999) and Ghosal et al. (1999) derived further similar theoretical results. Posterior

concentration rates have been studied by Ghosal et al. (2000), Genovese and Wasserman (2000) and

Shen and Wasserman (2001), among others, for general density estimation or estimation with mixture

of normals. Ghosal and van der Vaart (2007) derived extensions for observations that are not necessarily

independent nor identically distributed.

Asymptotic normality is another central ingredient of large-sample theory. The Bernstein–von Mises

theorem is the Bayesian analog of the central limit theorem: it states that the posterior converges in

distribution to a Gaussian distribution centred at the maximum likelihood estimator, under some

conditions, including that the prior is strictly positive in a neighborhood of ¯ 0, and that the problem

dimension is �xed and �nite; the full conditions can be found in van der Vaart (2000, Chap. 10). Hence,

when applicable, the Bernstein–von Mises theorem provides frequentist justi�cations for Bayesian

inference; for instance, it ensures robustness of inferences to the choice of priors, and asymptotic

agreement between credible intervals and classical Wald intervals. Unfortunately the vanilla Bernstein–

von Mises theorem does not hold in high dimensions: it requires �xed p, and the condition on the

prior being strictly positive in a neighborhood of ¯ 0 is very strong for large parameter spaces. To date,

attempts to obtain Bernstein–von Mises-type of theorems when p À n were essentially unsuccessful:

Ghosal (1999) obtained suf�cient conditions for the asymptotic normality of the posterior of ¯ the

under model (2.1), but under the assumption that p grows much slower than n. Bontemps (2011)

derived a Bernstein–von Mises theorem for semiparametric and nonparametric regression models,

with a faster growth rate than Ghosal (1999), but assuming p Ç n. Moreover, for both results, the prior

must be suf�ciently �at in the vicinity of ¯ 0, which essentially rules out sparsity priors.

In the p À n regime, the prior typically remains in�uential; in Chapter 5, we will illustrate how its choice

may severely distort posterior inferences in high dimensions, and propose a solution for our model. As

general asymptotic statements are dif�cult to obtain, guarantees for high-dimensional asymptotics are

typically established for given likelihoods, priors and data-generating truths. For instance, common

lines of research seek consistency and optimal concentration rates for the posterior distribution under

a prior (2.4) with a speci�c choice G. In particular, strong results have been obtained for two important

classes of priors (2.4), which we now discuss. To ease the presentation and unless stated otherwise, we

describe these priors in the context of the normal means problem (Stein, 1981),

yi Æ¯ i Å " i , " i » N (0,1) , i Æ1,. . . ,n , (2.5)

where the dimensionality n is large. Theory for model (2.5) is frequently examined under a nearly-black

sparsity assumption, i.e., assuming that the unknown true parameter ¯ 0 belongs to (Donoho et al.,

1992; Johnstone, 1994)

l 0[pn ;n ] Æ
©
¯ 2 Rn : k¯ k0 · pn

ª
, pn Æo(n), n ! 1 . (2.6)
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Chapter 2. Hierarchical modelling and inference for high-dimensional data

2.1.2 Two-group shrinkage priors

We �rst discuss the two-group shrinkage priors, which model the signal and the noise with two dedi-

cated components (Polson and Scott, 2010). These priors use a discrete mixture distribution for G in

(2.4), which yields

¯ i j ¼» ¼g¯ Å (1¡ ¼)±0, i Æ1, . . . ,n , (2.7)

where ¼is a mixing weight, g¯ is an absolutely continuous density on R (centred normal in (2.4)), and

±0 is the Dirac distribution. These priors are better known as spike-and-slab priors, the null effects

being attributed to the “spike” degenerate distribution ±0 at zero, and the non-null effects to the “slab”

density g¯ . They also allow separate handling of the typical size of the nonzero coef�cients, via g¯ , and

the sparsity level, via ¼Æpr
¡
¯ i 6Æ0

¢
, with prior average model size n¼.

Spike-and-slab priors were proposed by Mitchell and Beauchamp (1988), George and McCulloch (1993),

and further studied by Clyde et al. (1996) and Chipman (1996); they have become very popular in

recent decades. In the original formulation of Mitchell and Beauchamp (1988), g¯ was a uniform distri-

bution, but other unimodal symmetric distributions are today preferred, such as the centred normal

distribution, which is used in many applications. The two-group class also comprises continuous

relaxations of (2.7), whereby the Dirac mass is replaced with a peaked continuous density, although

such speci�cations are less common in practice; the case of two centred normal distributions with

variances ¾2
0 ¿ ¾2

¯ is often employed to discuss theoretical properties of two-group priors, see, e.g.,

George and McCulloch (1993), Ishwaran and Rao (2003), Ishwaran and Rao (2005) and Narisetty and

He (2014).

The following lemma characterises the shrinkage that two-group priors enforce on the posterior mean

of ¯ .

Lemma 2.1.1 (Bhadra et al., 2017a). Assume the normal means model (2.5) and prior (2.7) for ¯ i , where

g¯ is a centred Gaussian distribution with variance ¾2
¯ . Then the posterior mean of ¯ i is

E
¡
¯ i j yi

¢
Æ¼(yi )

¾2
¯

1Å ¾2
¯

yi , (2.8)

where ¼(yi ) Æpr
¡
¯ i 6Æ0 j yi

¢
, so that

E
¡
¯ i j yi

¢
Æ{1Å o(1)}¼(yi )yi , ¾2

¯ ! 1 . (2.9)

Equality (2.8) indicates that ¾2
¯ enforces global shrinkage, while ¼(yi ) adapts to the individual effects. If

the mixing weight ¼in (2.7) is treated as unknown, then ¼(yi ) adjusts to the overall sparsity in the data

through its shared dependence upon ¼. The approximation E
¡
¯ i j yi

¢
¼¼(yi )yi holds for appropriately

heavy tailed densities g¯ ; indeed,

E
¡
¯ i j yi

¢
Æ¼(yi )Eg¯

¡
¯ i j yi

¢
,

where Eg¯ (¢) is the expectation with respect to g¯ (Carvalho et al., 2010).

The asymptotic behaviour of two-group priors is generally well understood. Speci�c optimality proper-

ties hold for the posterior of ¯ , depending on whether the mixing weight is estimated via empirical

Bayes (Johnstone and Silverman, 2004), or assigned a suitable Beta prior (Castillo and van der Vaart,
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2.1. Bayesian sparse regression modelling

2012). The density g¯ must satisfy appropriate tail conditions; in particular, Castillo and van der Vaart

(2012) obtained optimal contraction rates when g¯ is a Laplace or a Cauchy density. Ishwaran and Rao

(2011) established an oracle property of the posterior mean for non-orthogonal and low-dimensional

setups, and Narisetty and He (2014) obtained model selection consistency in high dimensions for

suitable data-driven hyperparameters; both studies concern the continuous spike-and-slab model.

A reparametrisation of spike-and-slab models consists in adding one level of hierarchy, by introducing

a coef�cient-speci�c latent variable ° i ,

¯ i j ° i » ° i g¯ Å (1¡ ° i )±0, ° i j ¼» Bernoulli( ¼), i Æ1,. . . ,n . (2.10)

As we shall see in Section 2.2, this formulation is prevalent in regression models as it yields useful

posterior quantities for variable selection: replacing the index i in (2.10) by the predictor index s, the

posterior mean of ° s corresponds to the marginal posterior probability of inclusion of variable Xs in

model (2.1), E
¡
° s j y

¢
Æpr

¡
° s Æ1 j y

¢
, and hence is a direct measure of support for the presence or

absence of individual associations. The binary variables ° s are independent conditional on the prior

probability of inclusion ¼but dependent marginally. If it is unjusti�ed in practice, this assumption

could be relaxed by using a variable-speci�c inclusion probability ¼s; we will see in Chapter 3 how such

a predictor-speci�c probability parameter will help us to model “hotspot” SNPs in multiple-response

contexts.

We end this section by discussing two important priors which, although they do not strictly �t within

the classes (2.4) or (2.7), are two-group priors in essence, since they also frame inference about a sparse

vector as a classi�cation problem between the null and non-null hypotheses, ¯ s Æ0 and ¯ s 6Æ0. The

g-prior (Zellner, 1986) for variable selection is a non-exchangeable prior having, for the alternative

hypothesis,

¯ ° j ° ,g » N p°

µ
0,g¾2

"

³
X T

° X°

´ ¡ 1
¶
,

where ¯ ° is the vector gathering the p° Æ
P p

sÆ1 ° s nonzero ¯ s, X° is the corresponding n £ p° design

matrix, g È 0 is a parameter controlling the expected sizes of effects, and ¾2
" is the response error

variance of model (2.1). This prior is often employed for its conjugacy properties; the analytical

expression of the marginal likelihood pr(y j ° ) involves a determinant term under the independent

spike-and-slab prior (2.10), which is absent under the g-prior, allowing cheaper computations. The

g-prior is data-dependent as it involves the design matrix X , and should be used cautiously in presence

of highly collinear predictors, as nearly singular X T
° X° may give rise to instabilities and poor inferences.

The choice of the hyperparameter g has been the subject of much discussion, resulting in a variety of

proposals of hyperpriors for it; some are reviewed in Liang et al. (2008) and more recent work towards

more robust priors in terms of tail behaviour includes Maruyama and George (2011), and Bayarri et al.

(2012).

Finally, Johnson and Rossell (2010) proposed a nonlocal prior whose signal component has negligible

mass in a small neighborhood around zero, possibly allowing better distinction between the signal and

the noise. This is in contrast with most sparse priors, which have highest probability mass at zero. To

date, theoretical guarantees for nonlocal priors are few: in variable selection settings, Johnson and

Rossell (2012) showed strong model selection consistency, but the proof is for regimes p Ç n.
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Chapter 2. Hierarchical modelling and inference for high-dimensional data

2.1.3 One-group shrinkage priors

There is growing interest in priors termed one-group shrinkage priors, which, instead of classifying

coef�cients using a mixture of signal/noise components, infer them in a uni�ed fashion by enforcing

shrinkage with a single component.

The James–Stein shrinkage estimator (Stein, 1956; James and Stein, 1961), based on the prior

¯ i j ¾2
0 » N

¡
0,¾2

0

¢
, (2.11)

may be seen as an early one-group prior. Stein (1956) made the counterintuitive observation that the

maximum likelihood estimator is inadmissible when estimating three or more independent parameters.

In fact, its quadratic loss always exceeds that of the James–Stein estimator. This revealed that shared

dependence upon a global parameter, such as ¾2
0 in (2.11), can induce bene�cial shrinkage and can

yield estimates with substantially lower risk than conventional estimators. This �nding has had a

considerable impact since the 1960s, and laid the ground for later intense development in shrinkage

estimation, this time focusing on sparse settings.

Modern one-group priors correspond to choosing G in (2.4) to be absolutely continuous. For instance,

the Laplace prior discussed in Section 2.1.1 is a one-group prior: it is obtained by taking G to be the

exponential distribution with parameter
¡
2¾2

0

¢¡ 1
, for ¾0, the Laplace scale parameter. Polson and Scott

(2010) expressed one-group priors as global-local scale mixture priors,

¯ i j ¾2
0, ¸ 2

i » N
¡
0,¾2

0¸ 2
i

¢
, ¾0 » f , ¸ i » g , (2.12)

where f and g are densities on RÅ . The global scale ¾0 controls overall shrinkage toward the origin,

while the local scales ¸ i allow coef�cient-speci�c deviations in the level of shrinkage. These parameters

are learnt from the data through their hyperpriors f and g. This interplay of local and global shrinkages

gives rise to non-normal marginal densities for ¯ i that can model both sparse and heavy-tailed signals.

This improves upon James–Stein-type estimators, which lose their optimal risk properties in sparse

settings (Polson and Scott, 2009).

The emergence of one-group priors also relates to the idea that sparsity may arguably be better induced

in a weak sense, i.e., assuming that most true coef�cients are small, yet not exactly zero. For instance,

despite their relation, the Laplace prior-based and LASSO estimations yield answers of different nature,

namely weakly and strongly sparse estimates respectively, the former being based on posterior means

and the latter on posterior modes. There is much discussion whether weak or strong sparsity should

be preferred. The question is linked to that of the pertinence of hypothesis testing in the Bayesian

paradigm, which we will touch on brie�y in Section 2.2.

Gelman (2006) and Polson and Scott (2010) discuss the adequacy of several prior choices for variances,

f or g in (2.12), in terms of their degree of (un)informativeness and robustness. Gelman argues that

the standard inverse-Gamma priors InvGamma (" ," ) with small " È 0 proposed by Spiegelhalter et al.

(1996) are often inappropriate for variance components. He illustrates that, on data for which the

variance can take low values, inferences can be sensitive to the choice of " , and InvGamma (" ," ) is not

truly uninformative despite its reputation. Apart from the Laplace and Student- t marginal priors for ¯ i ,

with exponential and inverse-Gamma local variances respectively, two important examples of (2.12)
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2.1. Bayesian sparse regression modelling

are the Strawderman–Berger prior (Strawderman, 1971; Berger, 1980),

¯ i j · i » N
µ
0,

1

· i
¡ 1

¶
, · i » Beta

µ
1

2
,1

¶
,

and the normal/inverted-beta prior with local variances following an inverted-Beta density,

pr
¡
¸ 2

i

¢
Æ

¡
¸ 2

i

¢®¡ 1 ¡
1Å ¸ 2

i

¢¡ ®¡ ¯

B(®,¯ )
, ®,¯ È 0, (2.13)

where B(¢,¢) is the beta function. A popular special case is the horseshoe prior (Carvalho et al., 2010)

whose half-Cauchy local scale prior corresponds to taking ® Æ¯ Æ1/2 in (2.13),

¯ i j ¾2
0, ¸ 2

i » N
¡
0,¾2

0¸ 2
i

¢
, ¸ i » CÅ (0,1) . (2.14)

The horseshoe+ prior (Bhadra et al., 2017a) adds a level in the hierarchy:

¯ i j ¾2
0, ¸ 2

i » N
¡
0,¾2

0¸ 2
i

¢
, ¸ i j ´ i » CÅ ¡

0,´ i
¢
, ´ i » CÅ (0,1) .

This leads to heavier marginal tails than with the original horseshoe prior, which permits a better

separation of the signals, or so the authors claim.

The differences between these proposals in handling shrinkage is best understood by inspecting the

shrinkage pro�les linked with their posterior expectations, as we next explain.

Lemma 2.1.2 (Adapted from Carvalho et al., 2009) . Assume the normal means model (2.5) and prior

(2.12) for ¯ i . Let

· i Æ
1

1Å ¾2
0¸ 2

i

, · i 2 (0,1) . (2.15)

Then the conditional posterior mean of ¯ i can be expressed as

E
¡
¯ i j yi ,¾

2
0, ¸ 2

i

¢
Æ(1¡ · i ) £ yi Å · i £ 0,

so

E
¡
¯ i j yi ,¾

2
0

¢
Æ

©
1¡ E

¡
· i j yi ,¾

2
0

¢ª
yi .

The parameter · i is called the shrinkage factor , as it represents the weight placed on zero by the

posterior mean of ¯ i . Lemma 2.1.2 is the global-local analog of Lemma 2.1.1, with 1 ¡ E
¡
· i j yi ,¾2

0

¢

mimicking the posterior probability of inclusion ¼(yi ). The de�nition of · i in (2.15) also suggests that

¾2
0 must have substantial mass near zero to promote a strong shrinkage of unimportant coef�cients ( · i

close to 1), while ¸ i must have suf�ciently fat tails to ensure that large coef�cients are only minimally

shrunk ( · i close to 0). In Chapter 5, we will use these shrinkage pro�les to de�ne a multiplicity penalty

on the response dimensionality.

Inspecting the marginal prior density of · i allows one to appreciate the speci�cities of the different

global-local scale priors in terms of their behaviour near zero and in the tails; Figure 2.1 displays this

density for the above-cited global-local scale priors, conditional on ¾0 Æ1, as in Carvalho et al. (2009).

In particular, the horseshoe shape · i » Beta(1/2,1/2 ), obtained under the horseshoe half-Cauchy

scales¸ i » CÅ(0,1), encodes the assumption that signals are a priori either large or nearly zero. The

Student- t and Strawderman–Berger shrinkage pro�les both have a pole at zero, re�ecting the fat tails of
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Chapter 2. Hierarchical modelling and inference for high-dimensional data

Figure 2.1 – (Unnormalised) prior densities of the shrinkage factor · s conditional on ¾0 Æ 1 for the
sparse priors: horseshoe, Student- t (with one degrees of freedom, i.e., Cauchy), Strawderman–Berger
and Laplace. Mass close to 1 induces shrinkage, while mass close to 0 leaves effects unshrunk. The
difference between the horseshoe and the horseshoe + (not shown) shrinkage factors is imperceptible;
the latter places slightly more mass near 0 and 1 than the former. This �gure is reproduced from
Carvalho et al. (2009).

these priors, but are bounded near · i Æ1, indicating that irrelevant coef�cients may be only partially

shrunk to zero. The Laplace shrinkage pro�le has very little mass near zero because of the lighter

tails of the exponential local variances. Hence, the Laplace prior cannot prevent shrinkage of genuine

coef�cients. The concept of tail heaviness is often linked with that of the robustness of the prior

distribution. However, it is not clear if heavy tails must always be preferred, especially in problems with

�at likelihoods. This is discussed by Gelman et al. (2008) and Polson and Scott (2012), who recommend

Student- t priors with degrees of freedom º È 1 over priors with Cauchy-like tails for local and global

scales in weakly informative data situations, e.g., in case of separation with logistic regression. We will

discuss and compare these choices in the context of our model in Chapter 5.

Theory for one-group shrinkage priors is at a relatively early stage. For the reasons outlined above,

optimality properties for a given prior hinge on suitable tail conditions and probability mass near

zero. Such properties are being intensively researched for the horseshoe prior, and yielded convincing

results on concentration rates, see van der Pas et al. (2014), van der Pas et al. (2016) and van der Pas

et al. (2017). van der Pas et al. (2016) and Ghosh and Chakrabarti (2017) extended the study to a general

class of global-local shrinkage priors.

2.2 Multiplicity in Bayesian variable selection

The previous section focused on describing important approaches to modelling sparse vectors. This

section builds on this overview to discuss Bayesian variable selection in high-dimensional regression.

We thus leave the normal means setting and return to the linear regression model (2.1), using indices

sÆ1,. . . ,p for variables and i Æ1,. . . ,n for samples.

In principle, deciding whether each parameter ¯ s inferred from (2.1) should be classi�ed as signal or

noise depends on the type of sparsity prior used for inference. In two-group models, the binary latent
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2.2. Multiplicity in Bayesian variable selection

variables ° s are useful for selection. It is natural to perceive the highest posterior probability model

arg max
° 2{0,1}p

pr
¡
M ° j y

¢
, (2.16)

where M ° is the model that includes or excludes each of the p candidate predictors according to

° , as the best model for selection purposes (Clyde, 1999). In high dimensions, however, posterior

probabilities for individual models are usually very small and their interpretation is less appealing. More

importantly, identifying (2.16) is beyond reach for moderate-to-large p, as this would involve exploring

2p possible models. In practice, it is therefore customary to measure the importance of each variable Xs

separately, using its marginal posterior inclusion probability, pr(° s Æ1 j y). Barbieri and Berger (2004)

prove that retaining the variables with marginal posterior inclusion probability greater than 0 .5 yields

optimal predictions in the orthogonal design case. Because it is also inexpensive computationally, this

median probability model approach is a popular alternative to the highest posterior probability model

approach.

In one-group models, there is no such binary variable to provide direct measures of support, and

exact zeros for ¯ s also are unavailable. Assessing whether the posterior credible interval for ¯ s covers

zero or not may result in poor selection, as reliable parameter uncertainty estimates can be dif�cult

to obtain in high dimensions (Li and Pati, 2017). In practice, selection is done by hard-thresholding,

and there is no natural rationale for the choice of threshold. Carvalho et al. (2010) apply heuristics

to transfer the median probability model rule to one-group priors: based on the interpretation of

shrinkage factors in terms of posterior inclusion probabilities (Lemmas 2.1.1 and 2.1.2), they suggest

to threshold 1 ¡ E
¡
· s j y

¢
at 0.5. However they caution that g¯ should be suf�ciently heavy-tailed for

the relation with posterior probabilities of inclusion to hold. Datta and Ghosh (2013) established that

selection under this decision rule has certain optimality properties for the horseshoe prior, and Ghosh

et al. (2016) extended their results to a rich class of one-group priors.

Although these arguments make intuitive sense, summaries from marginal posterior probabilities must

be interpreted with care when using data with complex dependencies. For instance, Ghosh and Ghattas

(2015) gave examples where summaries from marginal posteriors strongly contradict those of joint

posteriors in assessing the importance of highly-correlated predictors.

Moreover, variable selection is inherently related to the question of the multiplicity of comparisons,

and of a correction for this multiplicity by controlling the number of false discoveries as the number of

candidate variables increases. There is much debate as to whether the number of comparisons should

be corrected for in the Bayesian paradigm. In their paper “Why We (Usually) Don't Have to Worry About

Multiple Comparisons”, Gelman et al. (2012) argue that

“the problem is not multiple testing but rather insuf�cient modeling of the relationship

between the parameters of the model”

suggesting that adjustment should be solely achieved from suitable shrinkage, rather than being

imposed post hoc. They explain that shrinkage built in the model through the prior can in principle

induce an appropriately conservative selection, by pooling and shrinking parameter estimates. The

earliest observation along this line dates back to 1939 and is due to Jeffreys, who examined ways of

assigning probabilities across various types of model spaces and referred to this as “correcting for

selection” (see Sections 1.6, 5.0 and 6.0 of Jeffreys, 1961, 3rd edition).
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Chapter 2. Hierarchical modelling and inference for high-dimensional data

In order to enforce the right degree of shrinkage, it is crucial to adequately learn parameters controlling

the overall sparsity. In two-group priors, the choice of mixing parameter (or prior inclusion probability)

¼governs the level of sparsity being induced. Its treatment is the focus of the in�uential paper by Scott

and Berger (2010) on Bayesian multiplicity adjustment. Clearly, ¼Æ1/2 yields a uniform prior on the

model space, with each variable having equal probability of being included in the model; no multiplicity

control is obtained in this case. The paper discusses inferring ¼using a fully Bayes approach with

¼» Beta(®,¯ ),

for certain ®,¯ È 0, or using an empirical Bayes approach, and demonstrates that both can provide

suitable multiplicity adjustment, in the sense that the variable marginal posterior probabilities of

inclusion tend to decrease as the number of candidate “noise” variables increases. The paper also

provides theoretical comparisons of the full and empirical Bayes approaches via an asymptotic analysis

of their respective estimates.

In one-group models, the role of ¼in exerting multiplicity control is played by the global scale parameter

¾0, and investigations similar to those in Scott and Berger (2010) have been undertaken. In the

horseshoe model case, Carvalho et al. (2010) advise a fully Bayesian treatment, using a half-Cauchy

hyperprior for ¾0. Datta and Ghosh (2013) provide an empirical assessment of the relationship between

¾0 under this prior and the underlying sparsity level, and conclude that the posterior of ¾0 tends to

put mass on smaller values in sparser conditions, as expected. Piironen and Vehtari (2016) further

propose a procedure to set the scale hyperparameter of the half-Cauchy prior, based on a prior expected

number of signals. Plug-in strategies based on naive estimates of ¾0, e.g., from cross-validation, have

been implemented but, in nearly-black settings (2.6), caution is warranted as ¾0 can collapse to zero,

resulting in possible degeneracy in inference (Bhadra et al., 2017b). van der Pas et al. (2014) studied and

showed optimality conditions for concentration rates for both the fully Bayes and marginal maximum

likelihood approaches for ¾0.

Another reason why Gelman et al. (2012) and others (Greenland and Robins, 1991; Poole, 1991; Krantz,

1999) tend to disregard multiplicity correction relates to their belief that true effects are unlikely to be

exactly zero, in line with the weak sparsity perspective. They therefore consider pointless the attempts

to control the type I error, which assumes a sharp point null hypothesis of zero effect. This idea is not

new; for instance Tukey (1991) claims that

“All we know about the world teaches us that the effects of A and B are always different – in

some decimal place – for any A and B. Thus asking Àre the effects different?' is foolish”.

and before him, Cox et al. (1977) had made a similar point. However, Gelman et al. (2012) seem to

acknowledge that the assumption of true zeros is reasonable in some contexts. For instance, they

admit:

“Methods that control for the false discovery rate may make particular sense in �elds like

genetics where one would expect to see a number of real effects amidst a vast quantity of

zero effects”.

In high-throughput genetic analyses, the number of tests performed is indeed usually very large, and

practitioners cannot afford many false discoveries, as each reported signal may lead to extensive

subsequent investigation. Efron et al. (2001) were among the �rst to highlight this need in the context of
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gene expression microarray experiments, and to present a Bayesian reinterpretation of the frequentist

false discovery rate of Benjamini and Hochberg (1995); Efron later gathered important ideas on large-

scale empirical Bayes inference in a now well-known book (Efron, 2010).

Let H1, . . . ,Hp be p null hypotheses considered simultaneously, and let ẑ1, . . . ,ẑp be corresponding

summary statistics. Efron et al. (2001) use the two-group view to propose a mixture model for the test

statistics z,

z » f Æ(1¡ ¼0) f1 Å ¼0 f0, (2.17)

with mixing weight ¼0, signal density f1 and noise density f0. They de�ne the local false discovery rate

(fdr) as the posterior probability of the null H0,

fdr( z) Æpr (H0 j z) Æ
¼0 f0(z)

f (z)
.

A fully Bayesian treatment would require priors for ¼0, f0 and f1. Instead, they propose nonparametric

empirical Bayes estimation of f and f0, or posit a standard Gaussian density for a theoretical null f0.

The null prior probability ¼0 should be large to promote sparsity, and may also be estimated under

(strong) parametric assumptions; alternatively, Efron et al. (2001) suggest ¼0 Æ1 as a suitable, yet

conservative, option.

The classical Benjamini–Hochberg false discovery rate is based on tail areas as opposed to densities. It

corresponds to the expected proportion of type I errors using the rejection rule {Z · z} (the rationale is

the same for the rule {Z ¸ z}). Efron and Tibshirani (2002) relate the fdr to the tail-area false discovery

rate through the Bayesian false discovery rate(Fdr) for {Z · z} which they de�ne as the posterior

probability of the null under model (2.17) given { Z · z},

Fdr(z) Æpr (H0 j Z · z) Æ
¼0F0(z)

F(z)
,

where F Æ(1¡ ¼0)F1 Å ¼0F0, with F1 and F0 the cumulative distribution functions of f1 and f0, respec-

tively. Efron and Tibshirani (2002) further highlight that the local and tail-area false discovery rates are

linked through

Fdr(z) ÆEf {fdr( z) j Z · z} ,

where E f (¢) is the expectation with respect to f . Hence, the former is greater than the latter in the

general case where fdr (z) decreases as the magnitude of z increases. Moreover, the local false discovery

rate is more speci�c than the tail-area false discovery rate as it provides a measure of support for a

given value z, rather than for a set of values containing the value z; a set which may cover a wide range

of fdr values. The positive false discovery rate (pFDR) proposed by Storey (2002) also has a Bayesian

posterior probability formulation. From the pFDR, Storey (2002) obtains a q-value, which he terms as

the “Bayesian posterior p-value”; for more on pFDR and q-values, see Storey (2002), Storey (2003) and

Storey and Tibshirani (2003).

The above Bayesian approaches to false discovery use summary statistics that may be obtained from

frequentist or Bayesian analyses. For instance, they may be t -statistics or marginal posterior means of

¯ s. Because they already relate to noise-signal mixtures, two-group posterior quantities do not need

further modelling, they have de facto connections with hypothesis testing problems: the posterior

quantity pr
¡
° s Æ0 j y

¢
corresponds to the probability of making a false discovery when selecting vari-

able s. Following this idea, Newton et al. (2004) de�ne another Bayesian false discovery rate as the
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fraction of false discoveries relative to the total number of discoveries under a threshold rule ¿:

FDR(¿) Æ

P p
sÆ1 (1¡ PPIs)1 (PPIs È ¿)

P p
sÆ1 1 (PPIs È ¿)

, 0 Ç ¿Ç 1, (2.18)

writing PPI s Æpr
¡
° s Æ1 j y

¢
.

More recently, Stephens (2016) proposed an empirical Bayes false discovery rate approach, called “ASH”

for “adaptive shrinkage”, based on the one-group perspective. ASH uses both the estimated effect sizes,
ˆ̄s, and their standard errors, ŝs, assuming a unimodal distribution of the true effects. Speci�cally, ASH

links the observations ( ˆ̄s, ŝs) with the effects ¯ s using the normal means model,

ˆ̄s j ¯ s, ŝs » N
¡
¯ s, ŝ

2
s

¢
, ¯ s

iid» G, sÆ1,. . . ,p,

where G belongs to the space Gof unimodal distributions with mode at zero. Then, it maximises the

marginal likelihood,

Ĝ Æargmax
G2G

pr
¡ ˆ̄ j G, ŝ

¢
Æargmax

G2G

pY

sÆ1

Z
N

¡
¯ s, ŝ

2
s

¢
dG(¯ s), (2.19)

and computes summaries from the posterior distributions pr
¡
¯ s j Ĝ, ˆ̄ , ŝ

¢
, sÆ1,. . . ,p ; the task (2.19) is

cast as a convex optimisation problem by approximating G by a �nite mixture of uniform distributions.

The posterior summaries formed after estimating G are Efron's local false discovery rates and novel

local false sign rates (lfsr) which report measures of support for the signs of effects, see Stephens (2016)

for details. A strength of Stephens's procedure is that it allows the incorporation of variable precision

measures ŝs, unlike conventional approaches to FDR.

In practice, all the above approaches may suffer from correlation among tests: correlated summary

statistics can produce strong deviations from theoretical null distributions, often resulting in failure to

control false discovery rates, with too many rejections of the null (Efron, 2007; Leek and Storey, 2007).

The issue reaches beyond these examples: in frequentist settings, only a handful of procedures allow

for some form of correlation among tests, the best-known of which was proposed by Benjamini and

Yekutieli (2001), and even then, the assumptions underlying these procedures are often violated in

real scenarios. Practitioners tend to circumvent the problem by resorting to permutation analyses,

where the permuted data maintain the original correlation structure, but the computational cost of

this is prohibitive in many large-scale applications. Deriving more formal procedures with relaxed

assumptions regarding correlation is an open research area. To obtain more robust estimates in our

applications to real data, we will use a permutation-based variant of the FDR estimate (2.18).

2.3 Scaling high-dimensional Bayesian inference

2.3.1 Preliminaries

The Bayesian paradigm essentially involves integration tasks. Except in very speci�c cases, however,

integrals are not amenable in closed form and posterior inference requires approximation procedures.

Monte Carlo techniques, and in particular, Markov Chain Monte Carlo (MCMC) algorithms, have been

the workhorse for this task since the 1990s (Gelfand and Smith, 1990). For reasonably small datasets,

MCMC methods can yield accurate inference in a timely manner. For large-scale problems however,
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2.3. Scaling high-dimensional Bayesian inference

obtaining samples from the target distribution involves substantial, if not prohibitive, computational

expense.

Whether via MCMC approximations or via other approaches, scaling Bayesian inference is a challenge.

This has triggered considerable work in the statistical and machine learning communities to devise

new strategies aiming for accuracy, robustness, tractability, and asymptotic guarantees. The nature

of the dif�culties faced in this endeavour differ depending on the speci�c “large-scale” regime under

consideration: the large n, small p case is the most favourable; with more samples, the posterior should

concentrate to a point mass (following the Bernstein–von Mises theorem), so point estimation may

seamlessly replace the full Bayesian machinery. This is no longer warranted in settings with more

variables, e.g., p growing with the number of samples n.

Most of the literature on scaling Bayesian inference is devoted to designing effective solutions for such

moderate-to-large p, large n cases. There, procedures requiring evaluations of all data points for each

sampling step or parameter update can be excessively expensive. Common remedies implement data

subsampling (e.g., Hoffman et al., 2013; Bardenet et al., 2014; Quiroz et al., 2018) or data partitioning

(e.g., Mcdonald et al., 2009; Wang and Dunson, 2013; Wang et al., 2015; Scott et al., 2016). The former

evaluate likelihoods of a random subset of samples at each iteration. The latter divide the samples

and �t the original model on all variables to each subset in order to restrict to cheaper-to-manipulate

batch quantities; they are also called divide-and-conquer approaches, as they can leverage parallel

and distributed computing resources, leading to dramatic computational savings in some instances.

An extensive review on subsampling and partitioning approaches for MCMC inference in the large n

regime is that of Bardenet et al. (2017).

Although prominent in applications, the case that interests us, where p is large and n is small, is

understudied. It is also arguably more dif�cult to tackle: dividing the sample space may no longer be

bene�cial or recommended, and naively transposing this to the variable space is not without risks,

since important dependencies may be omitted by treating groups of variables separately. The next

two sections clarify such tensions between modelling assumptions and inference tractability in this

high-dimensional regime, and discuss the two dominant strategies to achieve scalability in the Bayesian

paradigm. The �rst approach sees the scalability requirement as a prerequisite which should precede

the inference procedure and shape the modelling strategy itself. The second approach strives to leave

the modelling approach free of any practical considerations, and pursue scalability solely by adapting

the inference procedure. In some cases, the boundaries between the two strategies may be fuzzy, as it

may be desirable to design methods combining elements of both approaches, yet here we focus on

representative examples of each kind in order to convey general themes of research.

2.3.2 Rethinking the modelling approach

Many recent approaches to variable selection seek to develop methodologies that lend themselves to

ef�cient inference in the large p, small n paradigm. These approaches not only acknowledge the need

for sparsity assumptions, but also anticipate, at the modelling level, the computational burden attached

to the exploration of large parameter spaces. They often take the form of modelling procedures with two

or more consecutive stages, aiming to partition, prescreen or reduce the data to a lower-dimensional

subspace.

The variable partitioning idea mentioned in Section 2.3.1 has been adopted in several independent

works. For instance, Song and Liang (2015) proposed a split-and-merge (SAM) method that divides
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the data into lower-dimensional subsets, screens out variables uncorrelated with the response by

performing Bayesian variable selection within each subset, and then re�nes the selection by modelling

the response and the surviving variables from the aggregated dataset. Their authors prove selection

consistency under conditions that they describe as mild. However, for �nite sample sizes, the size of the

subsets can affect the effectiveness of the prescreening: the smaller the subsets, the greater the chance

to select false discoveries because of spurious correlation with the response through a variable from

another subset. To address such issues, Wang et al. (2016) developed a procedure called DECO, which

proceeds with a “decorrelation” step before the partitioning stage, to ensure that variables handled in

distinct subsets are uncorrelated. DECO differs from the SAM method in two other respects: �rst, it

does not involve a merging stage to re�ne the set of selected variables, and second, it is a frequentist

procedure that performs penalised regression on each subset, though its rationale is paradigm-free.

Taken to its extreme, the partitioning strategy reduces to a purely marginal screening (such as illustrated

in the motivation of Section 1.1), where the importance of each variable is assessed separately. By giving

up on modelling complex dependencies in the data, this screening strategy permits embarrassingly

parallel computing schemes that often lead to massive speedups. For this reason, it is widespread: most

published genome-wide association studies result from screening hundreds of thousands of genetic

variants, one by one. The performance of marginal screening has been the object of theoretical investi-

gation; notably Fan and Lv (2008) wrote an in�uential paper on their frequentist sure independence

screening (SIS) strategy. The authors prove that SIS has the sure screening property, which they de�ne

as the property of retaining all the relevant variables with probability tending to one after screening.

These guarantees hold for situations with “fairly uncorrelated” variables, to quote P. Bühlmann in his

discussion of the paper. In her contribution to the discussion, S. Richardson points out that this is

“a favourable case for asymptotics, but an unlikely situation in most applications, in

particular in genetics and genomics”.

In the discussion, E. Levina and J. Zhu further report a degraded performance for low signal-to-noise

ratios when using equicorrelated predictors. Aware of this weakness, Fan and Lv (2008) propose an

iterative sure independence screening (ISIS) algorithm, which iteratively re-screens based on residuals

from previous screenings. They demonstrate that their procedure alleviate issues attributable to

correlations in practice, but provide no theoretical foundation.

Many other techniques may be used to map high-dimensional data to lower-dimensional objects in

a tractable manner. Among them, factor models are appealing because they con�ne inference to a

relatively small number of parameters compared to classical sparse regression, see, e.g., Bhattacharya

and Dunson (2011) and Murray et al. (2013). However variable selection is not the original goal of factor

modelling, and this task appears somewhat add-hoc, as it requires additional interpretation of the

extracted factors.

In summary, addressing the practical concerns associated with high dimensionality at the modelling

stage is a sensible approach to scaling Bayesian methods, provided that the modelling assumptions

used are carefully reviewed and lend themselves to variable selection. The resulting methodology

should also be compared to more canonical methods, on both theoretical and empirical grounds, even

if this exercise implies considering smaller problems. Conversely, evaluating the scalability of a given

modelling strategy is always necessary. For instance, in a regression setting, modelling the correlation

of tens of thousands of response variables without further structural assumption is unrealistic, and

this, regardless of the inference approach employed; we shall discuss this further in Chapter 3.
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2.3.3 Scaling inference algorithms

The strategy summarised in the previous section focuses on attaining scalability from a methodological

perspective, thereby acknowledging that some modelling approaches are more amenable to fast

computation than others. The present section describes a different perspective to scaling Bayesian

methods, which is independent of the chosen modelling approach and therefore avoids possible

tradeoffs between enforcing structural constraints for scalability reasons and modelling data complexity

purely for statistical reasons. This perspective is concerned with designing inference algorithms that

can ef�ciently search through high-dimensional parameter spaces.

There are two main paths to approximate Bayesian inference. The �rst relies on Monte Carlo sampling

methods, developed by Stanislas Ulam, Nicholas Metropolis and John von Neumann (Metropolis and

Ulam, 1949; von Neumann and Ulam, 1951). Monte Carlo sampling methods frame integrations as

expectations to be estimated by the sample mean of simulated random variables. Because direct

simulation from the target distribution is often not possible, a special class of Monte Carlo algorithms

was developed: Markov Chain Monte Carlo (MCMC) algorithms devise Markov chains whose stationary

distributions, reached after convergence, correspond to the target distribution (Robert and Casella,

2013). A natural characterisation of Markov chains is through their transition kernels, which specify

conditional distributions de�ning moves to the next states.

MCMC inference is dif�cult in high dimensions. First, likelihoods and sometimes gradients need to be

evaluated at each iteration, and the computational cost associated to these evaluations increases with

the number of parameters. Second, the mixing tends to deteriorate in high dimensions, so extensive

exploration of the posterior space requires a large number of iterations. Moreover, assessing conver-

gence is hard in practice: indeed, all the parameters need to have converged, including the possible

nuisance parameters (Gill, 2008), and storing and checking diagnostics for millions of parameters in

some applications is essentially impossible.

Approaches to accelerate MCMC inference again depend on the large-scale setting under consideration,

and the large n data case has been the object of more active research than the high-dimensional, large

p small n , case. A common strategy for this latter regime involves replacing the Markov transition

kernel with an approximation from which it is cheaper to sample. One idea is to use point estimates at

some sampling steps (Guhaniyogi et al., 2018), and another example is to approximate full conditional

distributions by simpler distributions (Bhattacharya and Dunson, 2010; O'Brien and Dunson, 2004).

While such strategies have long been ad-hoc, Johndrow et al. (2015) recently provided bounds on

approximation errors that can be tolerated to achieve the best statistical performance with a given loss

function and computational budget.

While approximating transition kernels aims to reduce the cost per iteration, it is also sensible to try to

reduce the number of iterations through improved exploration of the parameter space. For instance,

simulated tempering techniques (Marinari and Parisi, 1992; Geyer and Thompson, 1995) aim to better

handle posterior multimodality, which often exacerbates in high dimensions. They embed the target

distribution pr (µ), µ 2 Rp , into an augmented space by introducing auxiliary distributions indexed by a

so-called “temperature” parameter T ¸ 1, namely, prT (µ) / pr (µ)1/ T . Suf�ciently large temperatures

T �atten out the density, allowing the chain to search through wider regions in the parameter space

without being trapped in local modes.

Another natural approach to more ef�cient exploration is to perform “automatic” adaptations as the

algorithm proceeds, to �nd better parameter values. This is often attempted in Metropolis–Hastings
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algorithms, a canonical class of MCMC algorithms, which draw samples from a proposal distribu-

tion , and accept them with a certain probability (Metropolis et al., 1953; Hastings, 1970). Adaptive

Metropolis–Hastings algorithms carefully tune the proposal distribution during execution, using infor-

mation from previous samples (Liang et al., 2011, Chap. 8). A variety of adaptive MCMC methods have

been designed for different contexts (Haario et al., 2001; Rosenthal and Roberts, 2007; Andrieu and

Moulines, 2006), including genetics (Turro et al., 2007); in particular, the evolutionary stochastic search

algorithm proposed by Bottolo and Richardson (2010) combines both tempering ideas and adaptive

moves.

The second way to perform Bayesian inference is via deterministic methods, which turn inference

onto an optimisation problem. Vanilla deterministic inference does not rely on sampling. It does not

necessarily target the posterior distribution either, but seeks a good surrogate that may be obtained in

a more tractable fashion. Variational inference is an instance of a deterministic inference approach.

In order to allow cheaper computation, it uses a class of approximating distributions and seeks the

distribution of this class that is “closest” (in Kullback–Leibler divergence) to the target distribution.

Because it is the subject of much of the present work, we defer the full description of variational

inference to Section 2.4, and we only provide here general considerations.

Much discussion opposing Monte Carlo and deterministic inference concerns tradeoffs between

asymptotic unbiasedness and computational ef�ciency in large-scale applications. MCMC inference

is often perceived as the gold standard because it is asymptotically unbiased; the approximation

becomes arbitrarily good as iterative sampling proceeds. But if stationarity cannot be attained within

an acceptable timeframe, then one should consider deterministic alternatives; yet the lack of theoretical

understanding of deterministic procedures is an objection that often arises. Scaling MCMC inference

and obtaining guarantees for deterministic inference would enable the exploitation of the full potential

of large-scale data.

As noted by Angelino et al. (2016), an important step in this direction could be to acknowledge the need

to balance bias and variance. Indeed, variational classes of approximating distributions rarely cover

the target distribution, so approximations may suffer from large bias when obtained from an overly

restrictive variational class. As we shall see in Section 2.4, there is a substantial amount of work on using

more expressive families of distributions to lower this bias. There are also attempts to quantify and

control the bias both in asymptotic and �nite regimes, even if these are still mostly limited to speci�c

contexts. Unlike variational approximations, MCMC approximations are asymptotically unbiased.

However, Angelino et al. (2016) observe that

“Insisting on zero asymptotic bias from Monte Carlo estimates of expectations may leave

us swamped in errors from high variance or transient bias”.

Indeed, in practice, MCMC estimates are obtained using a �nite number of iterations, after which

the error can still be signi�cant; this error can be decomposed in a transient bias, linked to a residual

dependence on the burn-in, and the Monte Carlo standard error, related to the collected samples being

too few or too correlated. Welling and Teh (2011), Korattikara et al. (2014) and Angelino et al. (2016),

among others, therefore point out that exact inference may have inferior statistical properties under a

�nite computational budget. This may be put in parallel with the discussion of Section 2.1.3 on the

improved risk properties of the biased James–Stein estimator over unbiased estimators. Although there

seems to be a long way to go towards full acceptance and leveraging of this rationale, recent work

mentioned above has already targeted relaxing asymptotic exactness in order to reduce the transient
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bias or the Monte Carlo variance for given computational resources: approximate transition kernels

(e.g., Korattikara et al., 2014; Johndrow et al., 2015) speed up execution of the chain at the cost of

introducing some asymptotic bias.

Finally, there have been attempts to pursue both scalability and asymptotic unbiasedness by marrying

MCMC and variational inference. The best-known example is probably de Freitas et al. (2001), who

use the variational approximation in the proposal distribution of a Metropolis–Hastings algorithm.

Salimans et al. (2015) exploit the latest developments of variational inference to approximate an

MCMC chain. It is, however, not clear if these attempts have yielded the expected practical payoff.

Designing hybrid algorithms with sound theoretical and empirical properties in a principled manner is

an interesting avenue for future research.

2.4 Variational inference

2.4.1 Origins and main ideas

The roots of variational inference date back to the late 1980s. They emerged from statistical physics,

and in particular statistical mechanics for spin glasses with the work of Mézard et al. (1987) applying

variational principles for �tting Ising-type models. In the same period, Anderson and Peterson (1987)

employed variational methods to study neural networks. These methods were then adopted by the

computer science community and started to be an appealing alternative to sampling-based methods

in the 1990s: Jaakkola et al. (1996), Saul et al. (1996), Jordan et al. (1999) and Opper and Saad (2001)

generalised their applicability to many probabilistic models while, in parallel and probably indepen-

dently, Hinton and van Camp (1993) contributed to further developing the original ideas in the context

of neural networks. With the availability of large datasets, recent years have seen renewed interest in

variational inference, which has now been extended in various fashions and applied in many different

contexts. We next present the main ideas of variational inference, and draw connections with other

types of inference procedures, deterministic or sampling-based. The material of this section is mostly

based on Blei et al. (2017) and Zhang et al. (2017).

Variational inference approximates the posterior density, p(µ j y), for a parameter vector µ and data

y, with a simpler density, q(µ), obtained as the solution of an optimisation problem. This problem

corresponds to minimising of a measure of “closeness” to p(µ j y), namely the Kullback–Leibler (KL)

divergence

KL
¡
q

°
° p

¢
Æ

Z
q (µ) log

½
q (µ)

p
¡
µ j y

¢
¾

dµ. (2.20)

The reasoning behind variational inference is thus very natural, yet two aspects need to be clari�ed:

the meaning of a “simple” distribution q(µ) and the rationale for this choice of divergence.

2.4.2 The Kullback–Leibler divergence and other ®-divergences

The KL divergence is probably the most prominent divergence measure used in statistics, machine

learning and information theory. It was introduced by Kullback and Leibler (1951) who described it

as a “directed divergence”, referring to its asymmetry, i.e., KL
¡
q

°
° p

¢
6ÆKL

¡
p

°
° q

¢
. The divergence from

p to q, KL
¡
p

°
° q

¢
, is sometimes called forward KL divergence and that from q to p, KL

¡
q

°
° p

¢
, is called

reverseKL divergence. These divergences are special cases of®-divergences, indexed by ® 2 R, which
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Figure 2.2 – (Unnormalised) Gaussian approximation q (red) to a mixture of Gaussian densities p (blue)
under Amari ®-divergences for various ®. Assuming �nite divergences, for ® ! ¡1 , q focuses on one
mode, while for ® ! 1 , it entirely covers p. This �gure is adapted from Minka (2005).

have several formulations, successively introduced by Rényi (1961), Amari (1985) and Tsallis (1988),

among others. Rényi's ®-divergence is arguably the most studied, while Amari ®-divergence has a long

history in differential geometry (Cichocki and Amari, 2010). The former is de�ned as

DR
®

¡
p

°
° q

¢
Æ

1

®¡ 1
log

Z
p

¡
µ j y

¢® q (µ)1¡ ® dµ, (2.21)

for ® 2 RÅ \ {1} such that D R
®

¡
p

°
° q

¢
Ç Å1 , and the latter is de�ned as
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2 q (µ)

1¡ ®
2 dµ

¶
, (2.22)

for ® 2 R\ { § 1} such that D A
®

¡
p

°
° q

¢
Ç Å1 . The forward KL divergence is obtained by extending (2.21)

and (2.22) by continuity to ® Æ1, namely,
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and, similarly, the reverse KL divergence is obtained by extending (2.22) to ® Æ ¡1,

DA
¡ 1

¡
p

°
° q

¢
Æ lim

®!¡ 1
DA

®

¡
p

°
° q

¢
ÆKL

¡
q

°
° p

¢
.

When used as an optimisation criterion, the choice of ®-divergence results in approximations with

different behaviours. For instance, examining the integrand of (2.20) reveals that the reverse KL

divergence tends to prevent q from putting mass in regions where p has little mass, and less penalises

q placing little mass where p is has positive mass. Hence, inference under KL
¡
q

°
° p

¢
tends to produce

underdispersed distributions. Conversely, the forward KL divergence prevents q from having low

probability mass in areas where p has positive mass, and less penalises q putting large mass where p

has negligible mass; approximations under KL
¡
p

°
° q

¢
tend to give overdispersed distributions. Figure 2.2

illustrates such behaviour under Amari ®-divergence minimisation. It describes the approximation

of a mixture of Gaussians p with a density q restricted to be Gaussian. The forward and reverse KL

divergences correspond to ® Æ1 and ® Æ ¡1, respectively. More generally, the approximation tends

to cover the entire distribution p when ® takes large positive values, and it tends to concentrate on

the mode with largest probability mass when ® takes large negative values. Neither extreme seems

ideal. If the target distribution p has many modes, then focusing on one of its modes misrepresents the

complexity of p, while covering all of them in a mode-averaging fashion may assign high probability in

regions where p has negligible mass.

But the choice of ® is mainly driven by more practical considerations: evaluating the ®-divergence,

whether in its form (2 .21) or (2.22), would require computing the marginal likelihood p(y), whose
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intractability motivated the use of inference algorithms in the �rst place. Hence, optimisation cannot

be carried out by directly using divergences as objective functions. Variational inference bypasses this

issue by exploiting the following decomposition of the reverse KL divergence:

KL
¡
q

°
° p

¢
Ælog p(y) ¡ L (q), (2.23)

where

L (q) Æ
Z

q(µ) log
½

p(y,µ)

q(µ)

¾
dµ. (2.24)

To paraphrase (2.23), the KL divergence is the difference between the marginal log-likelihood, which has

no effect on the optimisation procedure, and a functional, L (q). Hence, minimising the KL divergence

amounts to maximising L (q), which does not involve the marginal likelihood. The former problem is

intractable, but the latter has a closed form under suitably-chosen variational distribution families and

models. In such cases, L (q) can be used as a surrogate objective function.

A wide class of models enabling analytical L (q) is formed by conditionally-conjugate models, which

Gelman et al. (2013, Sect. 2.4) de�ne as follows. Let F be a class of sampling distributions p(y j µ,¸ ),

and let P be a class of prior distributions for µ conditional on ¸ , then the class P is conditionally

conjugate for F if p(µ j y,¸ ) 2 P for all p(¢ jµ,¸ ) 2 F and p(¢ j̧ ) 2 P .

Because KL
¡
q

°
° p

¢
¸ 0, L (q) is also a lower bound on the marginal likelihood; it is therefore often

referred to as a variational lower bound or evidence lower bound (ELBO). Equality (2.23) results from a

simple rearrangement of terms, but the lower bound relation can also be obtained without explicitly

invoking the KL divergence, as

log p(y) Æ log
Z

p(y,µ)dµ

Æ log
Z

p(y,µ)

q(µ)
q(µ)dµ

¸
Z

q(µ) log
½

p(y,µ)

q(µ)

¾
dµ

Æ L (q),

by Jensen's inequality.

The variational lower bound also provides useful insights into the type of inference obtained under the

reverse KL divergence. We can rewrite it as

L (q) ÆEq log p(y,µ) ¡ Eq log q(µ) (2.25)

where Eq (¢) is the expectation with respect to q, that is, L (q) is the sum of two terms, the expected log

joint distribution of the observations and the parameter vector, and an entropy term. The entropy term

acts as a regularisation; without it, the optimisation would correspond to a MAP estimation.

The technical advantage of reverse KL divergence's decomposition (2 .23) can be reproduced for the

more general (reverse) Rényi ®-divergences. We have,

DR
®

¡
q

°
° p

¢
Ælog p(y) ¡ L ®(q) ,
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where

L ®(q) Æ
1

®¡ 1
log

Z
q(µ)

½
p(y,µ)

q(µ)

¾1¡ ®

dµ, ® 2 RÅ \ {1}, (2.26)

so L ®(q) is also a lower bound on p(y) whose evaluation does not require computing p(y). The Rényi

®-divergences are the only ®-divergences whose formulation leads to such a bound; the bound is

continuous and non-increasing on
©
® ¸ 0 : jL ®j Ç Å1

ª
, in particular, for all ® 2 (0,1),

L (q) Ælim
®! 1

L ®(q) · L ®(q) · L 0(q),

where the left hand-side is the variational lower bound, obtained by reverse KL divergence, and the

right hand-side equals log p(y) if and only if the support of p(µ j y) is included in that of q(µ) (Li and

Turner, 2016). Hence, optimisation under Rényi divergence with ® Ç 1 may yield tighter bounds on

the marginal log-likelihood compared to variational inference. This improved accuracy comes at a

price, however: no closed-form expression can usually be obtained for (2.26), even by using restricted

families. We shall return to this question in Section 2.4.4.

We saw how variational inference minimises the reverse KL divergence via an auxiliary decomposition,

and how this can be extended to reverse Rényi divergences, albeit losing some tractability. Other

approaches to minimising divergences exist. Expectation propagation (Minka, 2001) is one of them; in

a nutshell, expectation propagation optimises the forward KL divergence by leveraging the factorisation

structure of the posterior. The algorithm also imposes restricted families of candidate distributions and

can result in exact inferences in simple cases. From a practical perspective, expectation propagation

tends to converge in fewer iterations than variational inference, but often has a higher cost per iteration.

An important drawback is that convergence is not guaranteed. Extensions of expectation propagation

to ®-divergences for general ® exist and are often termed power expectation propagation . More about

expectation propagation can be found in Bishop (2006, Section 10.7).

2.4.3 Gaussian and mean-�eld variational families

Returning to variational inference, we mentioned that the expectation (2.24) can be evaluated ana-

lytically by forcing the approximation to belong to a restricted family of distributions. If the family

contains the target distribution p, the variational approximation will be exact, that is, q(¢) Æp(¢ jy) and

KL
¡
q

°
° p

¢
Æ0. This rarely happens; for instance, in the example displayed in Figure 2.2, the family is

restricted to Gaussian distributions and cannot capture the bimodal target posterior. Such Gaussian

approximations form an important branch of variational algorithms. While they are poor proxies for

the posterior when the latter is multimodal or complicated, they are particularly interesting in the large

n setting, where the true posterior is expected to behave like a Gaussian.

The strengths and limitations of Gaussian variational approximation can be contrasted with those of

Laplace approximation (Laplace, 1986). Laplace approximation uses the maximum of the posterior

and the inverse of its Hessian (provided that the log posterior is twice-differentiable) as mean and

covariance for a Gaussian posterior approximation. It is purely local, as it depends only on the curvature

of the posterior in the vicinity of the optimum, whereas the Gaussian variational approximation, by

optimising the KL divergence, typically captures the overall posterior shape more accurately. A second

drawback of the Laplace approximation is that it requires the inversion of a potentially large Hessian,

which makes it intractable in high dimensions. Finally, the Laplace method is mostly restricted to

Gaussian approximations; variational inference often posits families of distributions without this

parametric restriction, as we now explain.
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2.4. Variational inference

Algorithm 1: Mean-�eld variational inference

Input : Data y, model p(y,µ), tolerance tol
initialise : For sÆ1,. . . ,p , variational parameter ®s indexing factor q(µs) Æq(µs;®s) in (2.27),

L (q) Ã ¡1
repeat

for sÆ1,. . . ,p do
Set the variational parameters ®s according to (2.28)

end

L old (q) Ã L (q)
L (q) Ã Eq log p(y,µ) ¡ Eq log q(µ)

until
¯
¯
¯L (q) ¡ L old (q)

¯
¯
¯ Ç tol;

return Variational approximation q(µ;®) Æ
Qp

sÆ1 q(µs;®s)

The mean-�eld formulation gives a natural approach to constructing variational families of candidate

distributions. The approach appeared in the context of the mean-�eld theory of physics (Mézard et al.,

1987) and was a central tool in the �rst applications of variational inference in the 1980s. Mean-�eld

variational inference assumes that the approximation factorises over the components of the parameter

vector,

q(µ) Æ
pY

sÆ1
q(µs), (2.27)

without imposing any constraint on the functional forms of each q(µs). This assumption allows simple

parameter updates based on Lemma 2.4.1.

Lemma 2.4.1 (Blei et al., 2017). Let p(µ j y) be the target posterior distribution for observations y and

parameter µ Æ
¡
µ1, . . . ,µp

¢
, and consider the mean-�eld formulation (2.27). For s 2 {1, . . . ,p}, and �xing

all variational factors q (µs0), s06Æs, the optimal variational factor q (µs) is

log q(µs) ÆE¡ s{log p(µ, y)} Å cst, (2.28)

where cst is constant with respect to µs.

Proof. The variational lower bound can be written as

L (q) Æ
Z pY

s0Æ1
q(µs0)

(

log p(µ, y) ¡
pX

s0Æ1
log q(µs0)

)

dµ1 ¢¢¢dµp

Æ
Z

q(µs)

( Z
log p(µ, y)

Y

s06Æs
q(µs0)dµs0¡ log q(µs)

)

dµs Å cst

Æ
Z

q(µs) log
½

p ¡ s(µs; y)

q(µs)

¾
dµs Å cst, (2.29)

where cst is constant with respect to µs and where we introduced the distribution

p ¡ s(µs; y) Æcst£ exp
£
E¡ s

©
log p(µ, y)

ª¤
,

with E ¡ s (¢) denoting the expectation with respect to the distributions q(µs0) over all variables µs0, s06Æs.

The right-hand side of (2.29) corresponds to the negative KL divergence between q(µs) and p ¡ s(µs; y),

plus a constant. So, �xing the factors q(µs0), s06Æs, the distribution q(µs) which maximises L (q) is

q(µs) Æp ¡ s(µs; y); the result follows.
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Chapter 2. Hierarchical modelling and inference for high-dimensional data

If the posterior is in the conditionally-conjugate exponential family, then expressions (2.28) can be

obtained in closed form using the fully-factorised form of q (2.27). The relations (2.28) give rise to cyclic

dependencies among the distributions q(µs) and form a coordinate ascent algorithm. Convergence is

ensured by the concavity of L (q) in each of the variational parameter ®s indexing the factors q(µs) Æ

q(µs;®s) (Boyd and Vandenberghe, 2004, Sections 3.1.5, 3.2.4, 3.2.5). Moreover, L (q) is guaranteed

to increase monotonically at every iteration, which provides a useful check against mistakes in the

computations or the implementation. A sketch of the procedure is outlined in Algorithm 1 and an

example of computations of variational updates and objective function is given in Appendix A.2.

The coordinate updates of the mean-�eld algorithm have close connections with Gibbs sampling

(Geman and Geman, 1984; Gelfand and Smith, 1990), which draws successively from each variable's

distribution, conditional on the current realisations of the other variables. Equation (2.28) relates to the

same conditional distribution since p(µ, y) / p(µs j µ¡ s, y), where the proportionality constant does

not depend on µs. Similar ideas underlie the expectation-maximisation (EM) algorithm (Dempster et al.,

1977): the EM algorithm alternates between taking expectations (E-step) of the log joint distribution

of the observations and the parameters, log p(µ, y), and maximising this expectation (M-step). In

fact, the parallel with variational inference is not limited to the alternating form of the mean-�eld

algorithm (2.28). Indeed, the expected log joint distribution corresponds to the �rst term of the

variational objective function (2.25) with the expectation taken with respect to p(µ j y), and the EM

algorithm relies on the fact that (2.25) equals the marginal log likelihood when q(µ) Æp(µ j y). Unlike in

variational inference, the EM algorithm estimates �xed model parameters µ and takes the expectation

of log p(y,µ) with respect to p(µ j y) and not q(µ), assuming it can be computed.

2.4.4 Recent trends

A quantity of new work in variational inference addresses novel directions such as enhancing accuracy,

scalability and making it applicable to a wider range of complicated models. This work is often primarily

designed for large n settings; in this section, we outline these developments and brie�y discuss their

relevance in the large p, small n setting.

We saw how fully-factorised approximations (2.27) improve tractability and make the mathematics

simpler. They introduce strong independence assumptions however, leading to a posterior which is

less expressive than when maintaining the dependencies, and to underestimated posterior variances.

To improve the accuracy of mean-�eld approximations, it is worth trying to restore some structure

by grouping factors in such a way that the coordinate updates are still obtained analytically. Richer

variational families along these lines have been studied, e.g., by Saul and Jordan (1996) and Barber

and Wiegerinck (1999), and the resulting inference was referred to as structured variational inference .

More recent advances on this can be found in Tran et al. (2015), Guo et al. (2016) and Ranganath et al.

(2016); many of these approaches give up closed-form formulations and introduce model-speci�c or

generic approximations, which may be costly. In general, choices about which dependencies to retain

should be made in a customised fashion for the model considered, as some dependencies may impact

inference more crucially than others.

The workhorse of variational algorithms in the large n regime is stochastic variational inference (Hoff-

man et al., 2013), designed to further scale computation to the massive datasets routinely encountered

in machine learning. It is applied on models with local parameters ¸ i (i Æ1,. . . ,n ), and a global
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2.4. Variational inference

parameter µ, and typically assumes a mean-�eld formulation

q(¸ ,µ) Æq(µ)
nY

i Æ1
q(¸ i ) ,

yielding a variational lower bound that involves a sum over contributions from the n data points, e.g.,

L (q) ÆEq
©
log p(µ) ¡ log q(µ)

ª
Å

nX

i Æ1
Eq

©
log p(yi j ¸ i ,µ) Å log p(¸ i j µ) ¡ log q(¸ i )

ª
. (2.30)

For conditionally-conjugate exponential families, expectations in (2.30) are available in closed form,

but evaluating the sum may be expensive when n is large. To alleviate this burden, stochastic variational

inference substitutes the coordinate ascent optimisation based on (2.28) with a stochastic gradient

optimisation (Robbins and Monro, 1951), which uses noisy yet easily-computed gradients and is

guaranteed to converge under certain conditions on the step size sequence. In the context of variational

inference, stochastic optimisation approximates (2.30) at each iteration by employing a single sample

or a batch of samples selected randomly, that is,

bL (q) ÆEq
©
log p(µ) ¡ log q(µ)

ª
Å

n

B

BX

bÆ1
Eq

©
log p(yi b j ¸ i b ,µ) Å log p(¸ i b j µ) ¡ log q(¸ i b )

ª
,

where i b is the variable index from the batch and B ¿ n is the batch size. The choice of B is dictated by

a tradeoff between the computational bene�ts of taking smaller B, and the gradient noise, which is

reduced by taking larger B thanks to the law of large numbers. The choice of step size ½t at iteration t

also requires tuning: the Robbins and Monro conditions,

1X

t Æ1
½t Æ 1 ,

1X

t Æ1
½2

t Ç 1 ,

ensure that the entire parameter space can be explored and that the gradient noise decreases suf�ciently

quickly to guarantee convergence.

Step sizes can be larger if the gradient variance is small, which leads to faster convergence. They

may be learnt using adaptive rules based on the current empirical gradient variances (Duchi et al.,

2011; Zeiler, 2012; Kingma and Ba, 2014). Alternatively, the batch size B can be set adaptively while

keeping the step size sequence �xed (Byrd et al., 2012; Balles et al., 2016; De et al., 2017). More elaborate

variance reduction techniques may also be needed, such as resorting to control variates (Paisley et al.,

2012; Johnson and Zhang, 2013; Wang et al., 2013) or non-uniform sampling (Zhao and Zhang, 2015;

Perekrestenko et al., 2017).

For conditionally conjugate models, the stochastic variational inference updates entail so-called natural

gradients (Amari, 1985, 1998), which enjoy interesting properties: these gradients allow optimisation to

take place in Riemann space, where “closeness” is measured by KL divergence, rather than in Euclidean

space. This allows the optimisation process to exploit the geometry of the parameter space; details can

be found in Sato (2001) and Honkela et al. (2008).

Stochastic variational inference has been applied to various domains and is still the object of much

research. But its primary, purely computational, motivation has a limited impact in high-dimensional

settings where the number of samples is not particularly large. In such contexts, closed-form up-

dates tend to be more effective, as they avoid questions on gradient variance and optimised step size

schedules.
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Chapter 2. Hierarchical modelling and inference for high-dimensional data

The genericity of stochastic optimisation has also triggered recent research to broaden the applicability

of variational inference. For instance, it may be of interest to relax the requirement of conditionally-

conjugate models or to optimise ®-divergences other than the reverse KL divergence, as discussed in

Section 2.4.2. Because analytical objective functions are typically unavailable, this research implements

further levels of approximations, relying on Monte Carlo approximations of intractable expectations,

and uses them in stochastic gradient optimisations. More precisely, this can be achieved by computing

the variational lower bound gradient with respect to the variational parameter vector ® to be optimised,

expressing it as an expectation with respect to q,

r ®L (q) ÆEq
£
r ® log q(µ;®)

©
log p(µ, y) ¡ log q(µ;®)

ª¤
, (2.31)

and obtaining unbiased estimates by Monte Carlo techniques. Gradients of the Rényi ®-divergence

lower bound can also be estimated by Monte Carlo sums using a simple reparametrisation rule; see Li

and Turner (2016). As it bypasses the tedious model-speci�c analytical derivations (2.24) and (2.28)

entailed by standard variational algorithms, this approach is often sold as capable of generic inference

that can be applied in a “black-box” fashion, see, e.g, Ranganath et al. (2014). The requirements for

black-box variational inference are typically very low, whether on the approximating family or on the

model itself. For instance, to form Monte Carlo estimates of (2.31), one need only be able to evaluate

the model joint distribution, sample from q, and compute the gradient (2.31) ef�ciently. The main

dif�culty of black-box variational inference concerns reducing the gradient variance. Owing to their

closed-form updates, standard variational methods require no tuning and their convergence can be

easily monitored through the changes in the variational objective function. In contrast, the stochastic

optimisation procedure behind black-box and stochastic variational inferences require careful batch

and step-size adaptation, and need to be assessed on a problem-speci�c basis.

2.4.5 Asymptotic guarantees and �nite-sample diagnostics

Theory for variational inference has long seemed understudied, especially when contrasted with the

abundant work on Monte Carlo inference. It has also mainly been investigated assuming speci�c

models and variational families. For instance, mean-�eld variational inference was studied for ex-

ponential family models with missing values (Wang and Titterington, 2004), mixture models with

conjugate priors (Wang and Titterington, 2005), the classical Bayesian linear model (You et al., 2014),

latent Gaussian models (Sheth and Khardon, 2017), and latent Dirichlet allocation (Ghorbani et al.,

2018). Most results concern assessing whether the posterior mean of the variational approximation has

standard frequentist asymptotic properties. In particular, for the regression setting that interests us,

You et al. (2014) obtain consistency using a normal prior for the regression coef�cients and an inverse

gamma prior for the error variance. They later extend their work to spike-and-slab priors (Ormerod

et al., 2014), also providing selection consistency guarantees. Their results hold for a �xed dimension p,

but, based on empirical grounds, they hypothesise that they remain valid for high-dimensional cases.

Huang et al. (2016) establish selection consistency for spike-and-slab regression, allowing p to grow

exponentially fast with n. Both Ormerod et al. (2014) and Huang et al. (2016) perform selection using

the median probability model of Barbieri and Berger (2004). Recent research tackles more general

settings, e.g., Wang and Blei (2018) obtain a Bernstein–von Mises-type theorem for general parametric

models, and Zhang and Gao (2017) study convergence rates of variational posterior distributions for

nonparametric and high-dimensional inferences.
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2.5. Summary

Approaches for evaluating the quality of variational approximations in a �nite-sample setting are also

important, and more so as the variational lower bound cannot be used to measure accuracy because

of its uninterpretable scale. A natural yet heuristic way to evaluate a variational approximation is

to regard MCMC inference as a reference, leaning on its well-established theoretical properties, and

benchmark the obtained variational posterior summaries against those of an MCMC approximation

for the same model. Carbonetto and Stephens (2012) employ this viewpoint to provide a detailed

empirical evaluation of their variational algorithm in the context of genome-wide association studies;

we shall follow this approach in some numerical experiments of Chapter 3. A constraint however is

that the problem sizes used in such comparisons are limited to those for which the MCMC algorithm

converges in a reasonable timeframe. MCMC inference is asymptotically exact but the properties of

approximation after a �nite number of iterations are less well understood, so, for larger problems, the

relative accuracy of variational inference and MCMC inference can be dif�cult to interpret.

Another approach to measuring the quality of a variational approximation is to rely on diagnostic

tools. A recent paper by Yao et al. (2018b) discusses two diagnostics with different purposes. The

�rst employs Pareto smoothed importance sampling (PSIS) to assess the quality of the full variational

posterior, using the shape parameter of the Pareto distribution to do diagnostics on the variational

approximation. Pareto smoothing allows the control of the potentially large variance of the importance

sampling weights, by �tting a generalised Pareto distribution to the importance ratios and by replacing

the largest weights using the inverse cumulative density function of the �tted distribution. The second

diagnostic is referred to as variational simulation-based calibration diagnostic (VSBC) because it

assesses the quality of variational point estimates by running variational inference multiple times on

simulated datasets; details can be found in Cook et al. (2006), Talts et al. (2018), and Yao et al. (2018b).

When applied to high-dimensional problems, these diagnostics may require substantial computational

resources, possibly more than those needed for the original approximation. Putting aside questions

of tractability, importance sampling is often deemed too dif�cult in high dimensions, so it is not

clear how informative the PSIS diagnostic can be in such settings. Still, the practical importance

of performance evaluations for variational inference is incontestable, especially as the asymptotic

properties of variational inference are less appealing than those of MCMC inference and as it is not

clear how this affects the inferred variational posterior distributions. Reliable diagnostic tools should

also make us better armed to understand, compare and improve variational algorithms.

2.5 Summary

In this chapter, we reviewed some basic material related to large-scale Bayesian modelling and in-

ference, with Sections 2.1 and 2.2 focusing on the former task and Sections 2.3 and 2.4, on the latter

task. The subsequent chapters will attempt tailoring these tools to hierarchical regression for large

predictor and response spaces, in molecular quantitative trait locus settings. Our work will heavily rely

on two-group mixture priors, which lend themselves to variable selection, but we will also resort to

the one-group horseshoe prior (in Chapter 5), whose global-local speci�cation will prove particularly

useful for modelling hotspot predictors, which associate with many responses. We will also capitalise

on the �exibility of hierarchical modelling to leverage structural information, via a tailored modelling of

the spike-and-slab mixing probability ¼. In settings where the predictor and response vectors are both

high-dimensional, it is important to study how inference depends on their dimensionality; this is done

in Chapters 3 and 5, either by suitably setting hyperparameters or by embedding a multiplicity penalty

within a fully Bayesian modelling framework. Both approaches allow the enforcement of appropriate

shrinkage at modelling level, as advocated by Gelman and co-authors; recall Section 2.2.
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Chapter 2. Hierarchical modelling and inference for high-dimensional data

Variational inference, upon which we will rely throughout this thesis, is a non-standard tool for Bayesian

inference, so we need to evaluate its validity on our model, as a replacement of more standard sampling

approaches. A lot of emphasis will be put on this in Chapter 3, but all other chapters will complement

this support with further algorithmic enhancements and numerical experiments. In particular, in

Chapter 4, we will undertake making variational mean-�eld inference more robust to multimodality

by coupling it with the ancestor of simulated tempering discussed in Section 2.3.3, namely simulated

annealing.
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3 Variational inference for multiple-

response hierarchical regression

In this chapter we present our approach to variable selection in molecular quantitative trait locus (QTL)

studies. The marginal screening analysis presented in Section 1.1 illustrates the need for joint modelling

of the molecular outcomes and genetic variants; our proposal addresses this. We saw in Chapter 2

that Bayesian variable selection for single-response regression is the subject of a vast research area,

by comparison with which, variable selection in multiple-response linear models has received little

attention. While most concepts developed for the former setting naturally extend to the latter when a

handful of response variables is considered, we will see that further issues arise when the number of

responses is large.

Our endeavour has two parts. First, we aim to improve the modelling of complex molecular QTL data in

order to better uncover weak associations, and in particular distal pleiotropic effects. The hierarchical

sparse regression approach of Richardson et al. (2010) and Bottolo et al. (2011) provides an appealing

modelling basis for this (for brevity, we hereafter only cite the former reference). Second, we make

joint inference feasible on the hundreds of thousands of genetic variants and thousands of expression

outcomes entailed by molecular QTL studies. Most of this chapter is devoted to this latter task: we

propose a novel variational procedure for inference on a model adapted from that of Richardson et al.

(2010).

A legitimate concern is whether fast deterministic inference is an adequate alternative to MCMC

inference for variable selection in molecular QTL studies. Attempting an answer to this is a central

objective of this chapter and we follow two complementary lines to this end: �rst, we evaluate the

quality of our variational procedure in small problems, where exact computations and comparisons

with MCMC inference are workable. Second, we assess variable selection performance on simulated

datasets of realistic sizes, compare it to several existing methods and illustrate it on a real QTL dataset.

The chapter is organised as follows. Section 3.1 presents the model, contrasts it with the general

multiple-response regression literature, and discusses its relations to earlier formulations by Jia and

Xu (2007), Richardson et al. (2010) and Scott-Boyer et al. (2012). It also proposes a procedure for

adjusting for the dimensionality of the predictor space. Section 3.2 recalls some useful variational

inference principles from Section 2.4 and explains our choice of approximation. Section 3.3 com-

pares variational and MCMC inferences on our model, also using direct approximations of posterior

quantities. Section 3.4 describes numerical experiments for large problems: it compares the method

with several predictor selection methods, including the single-response variational approach varbvs

(Carbonetto and Stephens, 2012), and with methods performing combined predictor and response
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Chapter 3. Variational inference for multiple-response hierarchical regression

selection, namely HESS (Richardson et al., 2010) and iBMQ (Scott-Boyer et al., 2012). Section 3.5

evaluates the computational ef�ciency of our proposal by extensive runtime pro�ling. Section 3.6

reports a permutation-based comparison of our method with varbvs in a metabolite QTL problem.

Finally, Section 3.7 extends modelling and inference to handle other data scenarios, including binary

and mixed response data.

Most of the work presented in this chapter has been published in Ruf�eux et al. (2017). The method is

freely available as an R package (https://github.com/hruf�eux/locus).

3.1 Hierarchical sparse regression for multiple responses

3.1.1 Model

Consider a series of parallel regressions

yt ÆX¯ t Å " t , " t » Nn
¡
0,¿¡ 1

t I n
¢
, t Æ1,. . . ,q, (3.1)

where y Æ(y1, . . . ,yq ) is an n £ q matrix of q centred responses, and X is an n £ p matrix of p centred

candidate predictors, for each of n samples. Each response, yt , is related linearly to the predictors

and has a speci�c residual precision, ¿t , to which we assign a Gamma prior, ¿t » Gamma(´ t , · t ). The

regressions (3.1) are intended to accommodate any type of molecular QTL data; in this context, the

candidate predictors are genetic variants, typically single nucleotide polymorphisms (SNPs), and the

responses might represent gene, protein or metabolite levels, depending on whether an eQTL, pQTL or

mQTL problem is considered. Here and throughout this thesis, the candidate predictors will be indexed

by s for “SNPs”, and the responses by t for “traits”.

As both p and q can be very large compared to n, we enforce sparsity of the p £ 1 regression parameters

¯ t by placing a spike-and-slab prior on each of their components, namely, for sÆ1,. . . ,p ,

¯ st j ° st ,¾
2,¿t » ° st N

¡
0,¾2 ¿¡ 1

t

¢
Å (1¡ ° st)±0, ° st j ! s » Bernoulli (! s) , (3.2)

where ±0 is the Dirac distribution. Hence, to each regression parameter ¯ st corresponds a binary

latent parameter ° st , which acts as a “predictor-response association indicator”: the predictor Xs is

associated with the response yt if and only if ° st Æ1. The parameter ¾represents the typical size of

nonzero effects and is modulated by the residual scale, ¿¡ 1/2
t , of the response concerned by the effect;

we infer ¾from the data using a Gamma prior speci�cation, ¾¡ 2 » Gamma (¸ ,º ). Finally, we let the

probability parameter ! s have a Beta distribution,

! s » Beta(as,bs) , as,bs È 0. (3.3)

As it is involved in the Bernoulli prior speci�cation of all ° s1, . . . ,° sq, the parameter ! s controls the

proportion of responses associated with the predictor Xs, and hence directly represents the propensity

of predictors to be “hotspots”. A graphical representation of the model is provided in Figure 3.1.

Our proposal is a variant of the models proposed by Jia and Xu (2007), Richardson et al. (2010) and

Scott-Boyer et al. (2012); we discuss their differences in Section 3.1.2.

Two keywords for model (3.1)–(3.2)–(3.3) are �exibility and interpretability . We next explain why, by

contrasting our model with classical multiple-response approaches. Consider the canonical sparse
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! s ° st

¾

¯ st

¿t

yi t

Xi s

i Æ1, . . . ,nsÆ1,. . . ,p

t Æ1,. . . ,q

Figure 3.1 – Graphical representation of model (3.1)–(3.2)–(3.3). The shaded nodes are observed, the
others are inferred.

multivariate regression model,

Y ÆX° B° Å E, (3.4)

where Y is the n £ q response matrix and E is the n £ q error term (capital letters are used to emphasise

matrix forms). The parameter ° is now a p£ 1 indicator vector, and, writing p° Æ
P p

sÆ1 ° s, X° is the n £ p°

design matrix restricted to variables with ° s Æ1 and B° is the corresponding p° £ q matrix of regression

coef�cients. The error E is often assigned a matrix-variate normal distribution, E » MN n£ q (0, I n ,§ ),

as de�ned by Dawid (1981), meaning that the rows Ei ¢ Æ
¡
" i 1, . . . ," i q

¢
are independent identically

distributed as N q (0,§ ).

When q À n, inferring the covariance matrix § involves exploring a high-dimensional model space, in

addition to being dif�cult from both runtime and memory requirement viewpoints. Hence, although

proposals based on such multivariate response modelling for genome-wide association problems exist

and perform well, they do not accommodate joint modelling of molecular QTL data in full generality.

Most of them limit the number of outcomes to just a few or integrate out § (in conjugate settings),

as in Petretto et al. (2010) and Lewin et al. (2015), who extend the original model of Richardson

et al. (2010) by applying (3.4) to different conditions, such as tissues, cell types or time points. Some

approaches simplify the task by considering one candidate SNP predictor at a time, thereby avoiding

sparse modelling, see, e.g., Flutre et al. (2013) and Zhou and Stephens (2014) for a mixed modelling

approach. Structural assumptions may alleviate the burden to some extent; for instance, Bhadra and

Mallick (2013) enforce sparsity on the precision matrix and successfully apply their model to problems

with a few hundred predictors and responses and around one hundred samples. However, they confess

that

“inferring the covariance graph for a given sample size n scales asO
¡
q2

¢
, where q is

the number of correlated traits. Therefore, our approach is useful if one is interested in

inferring the interaction among a modest number of traits.”

Envisioning reliable joint estimation of both the regression coef�cient and covariance matrices for

QTL problems, having q of order 10 3 ¡ 104, seems unreasonable, even with fast deterministic inference

approaches.

Our model (3.1)–(3.2)–(3.3) takes a different approach. Central to its formulation is the borrowing of

information through the model hierarchy. This idea is also at the heart of Richardson et al. (2010) and

circumvents modelling the covariance of the residuals, thereby allowing �exible inference in q À n

setups. More precisely, although responses are conditionally independent across the regressions, some
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dependence is captured via the prior on the regression coef�cients, namely, via parameters ! s and ¾,

which are common to all the responses. This naturally serves variable selection by leveraging strength

across responses associated with the same predictors, and our experiments of Section 3.4 suggest

that this suf�ces to greatly improve on separate single-response regressions, even when the residual

correlations are substantial; some of these experiments involve joint inference for q Æ20,000 responses

or are performed on a genome-wide scale.

The second aspect concerns interpretable inference for variable selection, which permits uni�ed

selection of outcomes and associated predictors. This is overlooked by most existing Bayesian or

frequentist methods, whose focus is on selecting either predictors or outcomes. For instance, O'Reilly

et al. (2012) reverse the classical ordinary least squares regression setup and �t a succession of models,

where each genetic variant is regressed on several outcomes. Because it entails a marginal treatment of

the SNPs, their approach is best suited to selecting outcomes for a few candidate SNPs; the authors

provide no strategy for handling the multiplicity burden that would arise from performing genome-wide

screens. Moreover, the method does not penalise model complexity, which may cause instabilities when

many outcomes are modelled. More classical proposals for handling multiple outcomes in genome-

wide association studies involve direct extensions of the sparse single-response model, whereby to

a given SNP Xs corresponds a scalar regression coef�cient ¯ s that measures the overall association

of Xs with all the outcomes (Simon et al., 2013). When there is an effect ¯ s, the model does not

provide any information on which outcome(s) are associated with Xs. Setting aside computational

questions, formulation (3.4) somewhat relaxes this assumption by modelling associations between

each pair SNP-outcome via the p £ q regression coef�cient matrix B. However, selection is performed

on the rows of B using the p-variate vector ° , that is, inclusion or exclusion of a candidate predictor

is based on all response variables. Such an assumption can make sense in settings with a few related

outcomes, see, e.g., the work of Petretto et al. (2010) and Lewin et al. (2015) mentioned above. But,

in molecular QTL problems, each row of B° is believed to be sparse, as a given SNP may control a

small subset of molecular entities, and this subset may vary depending on the SNP considered. One

may attempt to enforce within-row sparsity by reformulating (3.4) in a Bayesian seemingly unrelated

regression(SUR) framework (Zellner, 1962; Zellner and Ando, 2010). SUR models generalise (3.4) by

allowing the modelling of different covariates for each response, and therefore open possibilities for

response-speci�c model selection, yet they still entail the modelling of the q £ q response covariance

matrix.

In contrast to the above approaches, our proposal (3.1)–(3.2)–(3.3) naturally lends itself to the selection

of predictors or responses, and the detection of pairwise associations. Both the posterior means

of ! s and ° st offer direct interpretable measures of support for associations; the former quantify

the importance of each SNP across outcomes and can serve to select hotspot SNPs in pleiotropic

contexts, and the latter correspond to marginal posterior probabilities of inclusion of individual effects,

pr(° st Æ1 j y), and can serve to select SNP-outcome pairs. Support for the inclusion of each SNP or

each outcome can also be assessed by summing the marginal posterior probabilities across responses

or predictors, respectively.

3.1.2 Relations to earlier proposals

Our model differs from that of Richardson et al. (2010) in two respects. One concerns the treatment of

the regression coef�cient parameters ¯ st : we use independent priors, whereas Richardson et al. rely on

g-priors (Zellner, 1986). The g-prior speci�cation assumes that the correlation structure in the prior
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3.1. Hierarchical sparse regression for multiple responses

(i.e., that of the regression coef�cients) matches that in the likelihood (i.e., that of the predictors). A

motivation for considering independent priors instead is that, in genome-wide association problems,

effects can take place at locations of the genome that are far apart, and their correlation structure

need not re�ect the spatial correlation of the SNPs (see, e.g., Guan and Stephens, 2011); we will further

discuss encoding predictor dependence structures in prior speci�cations in Chapter 4. Jia and Xu

(2007) also rely on independent priors for regression coef�cients, but they model the latter with a

mixture of two normal distributions rather than a spike-and-slab prior and impose a residual variance

parameter common to all responses.

The second difference concerns the third level of the model. Richardson et al. (2010) opt for a �exible

multiplicative speci�cation, in which

! st Æ½s! t , ! t » Beta(at ,bt ) , ½s » Gamma(cs,ds) , 0 · ! st · 1 . (3.5)

In their case, the predictor inclusion probability is modelled via ! t ; it is speci�c to each response

yt but modulated by the parameter ½s shared by all responses. Jia and Xu (2007) and Scott-Boyer

et al. (2012) propose other variants for this prior. The former choose a treatment similar to ours, with

! st ´ ! s » Dirichlet(1,1), and the latter consider the mixture prior

! st j as,bs,¼s » ¼s±0 Å (1¡ ¼s)Beta(as,bs) , ¼s » Beta(a0,b0) , (3.6)

with as » Exp(¸ a ) and bs » Exp(¸ b). This encodes the belief that most SNPs have no association with

the responses and hence may be selected using (3.6); this idea was originally described in Lucas et al.

(2006). Our choice ! st ´ ! s » Beta(as,bs) is partly driven by our wish to design a simpler model and

partly by practical considerations, since it ensures a closed form for our variational algorithm, unlike

with (3.5). While such a formulation was mentioned by Richardson et al. (2010) and by Scott-Boyer

et al. (2012), they did not pursue it because of concerns regarding its ability to control for multiplicity.

These authors adjust for multiplicity by specifying an expected number of predictors associated with

each response; we instead consider the number of predictors entering the model, as we next explain.

3.1.3 Predictor multiplicity control

The role of the prior speci�cation in inducing sparsity and controlling the association pattern is largely

taken by the hotspot propensity parameter ! s. Thus, it is important to evaluate how different choices

of hyperparameters, as and bs, for ! s may affect inference as the predictor and response dimensions

grow. To assess this we consider the prior odds ratio representing the support for a model to have an

additional response associated with a given predictor Xs,

POR(qs ¡ 1 : qs) Æ
pr

¡
M qs¡ 1

¢

pr
¡
M qs

¢ Æ
bs Å q ¡ qs

as Å qs ¡ 1
, (3.7)

where M qs is a model in which Xs is associated with 1 · qs · q responses. Such prior odds ratios were

�rst employed for other multiplicity adjustment considerations by Scott and Berger (2010). Clearly,

a penalty arises and increases with the total number of responses in the model, q. But no inherent

adjustment exists when the total number of candidate predictors, p, increases. We propose to �ll this

gap by considering the prior probability that Xs is associated with at least one response,

pr
¡
[ q

t Æ1{° st Æ1}
¢

Æ1¡
qY

t Æ1

bs Å q ¡ t

as Å bs Å q ¡ t
, (3.8)
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Chapter 3. Variational inference for multiple-response hierarchical regression

Figure 3.2 – Prior odds ratios, POR(qs ¡ 1 : qs), for qs Æ1,. . . ,5, as and bs as in (3.9), q Æ100, p¤ Æ2, and
for a total number of predictors ranging from p Æ5 to 5,000; see Scott and Berger (2010) for a similar
visualisation of prior odds ratios in a single-response context.

p 50 250 500 1,000 2,500
Mean # of FP

Uncorrected 1.06 (0.11) 6.70 (0.33) 16.52 (0.64) 35.22 (0.79) 73.55 (1.09)
Corrected 0.39 (0.08) 0.30 (0.07) 0.36 (0.07) 0.34 (0.08) 0.31 (0.08)

Mean # of TP
Uncorrected 9.67 (0.07) 9.69 (0.07) 9.72 (0.06) 9.77 (0.05) 9.80 (0.06)

Corrected 9.69 (0.06) 9.42 (0.09) 9.20 (0.09) 9.25 (0.10) 8.98 (0.10)

Table 3.1 – Multiplicity adjustment for the predictor dimension. The average numbers of false positives
(FP) and true positives (TP) obtained with the uncorrected and corrected regimes are compared for
p° Æ10 active predictors and an increasing number of noise predictors, p ¡ p° . Selection is performed
using the median probability model rule, pr(° st Æ1 j y) È 0.5 (Barbieri and Berger, 2004). The total
number of responses is q Æ25. 64 replicates were performed; standard errors are in parentheses.

and setting this probability to be equal to p¤ / p , where p¤ ¿ p is the average number of predictors

expected to be included in the model. This can be achieved by choosing

as ´ 1, bs ´ q(p ¡ p¤ )/ p¤ , 0 Ç p¤ Ç p, (3.9)

assuming exchangeability.

Figure 3.2 displays (3.7) for qs Æ1,. . . ,5 as a function of p and indicates that, when as and bs are

speci�ed as in (3.9), the penalty does increase with the total number of predictors, p; in other words,

the prior now also controls for the predictor dimensionality. Moreover, the penalties are not uniform

when moving from one to two responses associated with Xs, or from four to �ve, for instance; we will

discuss the implications of this in Chapter 5.

The experiment reported in Table 3.1 con�rms that adjustment takes place in practice. It considers

problems with p° Æ10 “active” predictors, i.e., associated with at least one response, and an increasing

number of “noise” predictors and it compares the regime with as and bs set according to (3.9) to an

“uncorrected” regime with as ´ 1, bs ´ 2q ¡ 1, so E(! s) ´ (2q)¡ 1, meaning that the prior mean number
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3.2. Structured variational inference

of responses associated with Xs is 0.5. The number of false positives grows linearly with p when the

uncorrected model is used but remains roughly constant and close to zero with correction (3.9), giving

a clear multiplicity adjustment. The number of true positives is only weakly affected by this correction.

An important caveat here relates to the additional degree of freedom entailed when choosing the pair

of hyperparameters as and bs so that (3.8) equals p¤ / p for a given p¤ . It turns out that inference can

be sensitive to different speci�cations, especially when q is large. This will be the subject of Chapter 5,

where we will characterise the sensitivity and propose a solution to it.

3.2 Structured variational inference

Section 3.1.2 described some differences between our model and those of Jia and Xu (2007), Richardson

et al. (2010) and Scott and Berger (2010), but a more fundamental distinction concerns the inference

procedure.

Joint inference on molecular QTL models is particularly dif�cult, a serious complication being the high

dimensionality of the predictor and the response spaces. In our proposal, as well as in all above-cited

proposals, the binary latent matrix ¡ Æ{° st} creates a discrete search space of dimension 2 p£ q , with

p,q À n, and the quality of inference hinges on the successful exploration of this space. Several

sampling schemes have been proposed for spike-and-slab models. Most of them involve drawing each

latent component from its marginal posterior distribution, and therefore require costly evaluation of

marginal likelihoods at each iteration. Mixing problems also arise, mainly caused by the dif�culty that

the sampler has in jumping between the states de�ned by the spike and the slab components. The

resulting sample autocorrelations are high, so many iterations are usually needed to collect enough

independent samples.

As discussed in Chapter 2, scaling up Bayesian inference algorithms may be attempted by designing

more ef�cient Markov Chain Monte Carlo (MCMC) algorithms. However, research is rather limited for

the high-dimensional case, apart from work on approximating transition kernels (O'Brien and Dunson,

2004; Bhattacharya and Dunson, 2010; Guhaniyogi et al., 2018), so effectively scaling MCMC methods

for dimensions such as those involved in the molecular QTL analyses is still largely out of reach. The

methods of Jia and Xu (2007), Richardson et al. (2010) and Scott-Boyer et al. (2012) all rely on MCMC

inference and hence do not escape this dif�culty. Even the enhanced posterior exploration by the

adaptive parallel tempering/evolutionary Monte Carlo of Richardson et al. (2010) is not practicable for

large molecular QTL data, and we are unaware of any fully multivariate approach that can deal with

such data within a reasonable time. Scalable inference is crucial to the uptake of our model in practice.

This initiated our interest in variational inference as a deterministic alternative to sampling-based

approaches. Carbonetto and Stephens (2012) already proposed a variational algorithm for single-

response genome-wide association problems. We next recall the bases of variational inference which

we will be relying upon, and outline our approximation.

Let v be the parameter vector of interest. Variational posterior approximations are obtained by con-

sidering a tractable analytical approximation, q(v ), to the true posterior distribution, p(v j y). The

mean-�eld approximation (Opper and Saad, 2001) assumes that q(v ) factorises over some partition of

v , {v j } j Æ1,...,J, i.e.,

q(v ) Æ
JY

j Æ1
q(v j ) , (3.10)
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Chapter 3. Variational inference for multiple-response hierarchical regression

with no assumption on the functional forms of the q(v j ). One then performs inference by maximising

the variational lower bound on the marginal log-likelihood,

L (q) Æ
Z

q(v ) log
½

p(y,v )

q(v )

¾
dv , (3.11)

which is a tractable alternative to minimising the Kullback–Leibler divergence,

KL
¡
q

°
° p

¢
Æ ¡

Z
q(v ) log

½
p(v j y)

q(v )

¾
dv , (3.12)

recall Section 2.4.

With each v j modelled as independent a posteriori of the other parameters given the observations

and the hyperparameters, mean-�eld variational inferences (3.10) trade off posterior dependence

assumptions and computational complexity. For our model, independence assumptions between ¯ st

and ° st would be particularly problematic: they would make q(¯ t ) a unimodal representation of the

marginal distribution p(¯ t j y), and thus a poor proxy for the highly multimodal posterior distribution

implied by the spike-and-slab prior on ¯ t . We instead employ a structured factorisation, whereby we

model ¯ st and ° st jointly, i.e., for each �xed t 2 {1, . . . ,q}, we seek a variational distribution of the form

pY

sÆ1
q(¯ st ,° st). (3.13)

This structured factorisation induces point mass mixture factors and hence retains the multimodal

behaviour of the spike-and-slab distribution. It is also a faithful representation of the true posterior

distribution when predictors are only weakly dependent, since the latter factorises as (3.13), conditional

on the remaining parameters, when using an orthogonal design matrix, as pointed out by Carbonetto

and Stephens (2012). Indeed, if X is such that X T X Æn I n ,

p
¡
¯ t ,° t j ¾2,¿t , ! , yt

¢
/ exp

³
¡

¿t

2
kyt ¡ X ¯ t k

2
´
p(¯ t ,° t j ¾2,¿t , ! )

/ exp
½

¡
n¿t

2

pX

sÆ1

¡
¯ st ¡ ˆ̄st

¢2
¾ pY

sÆ1
p

¡
¯ st j ° st ,¾

2,¿t
¢
p(° st j ! s),

where ˆ̄st is the ordinary least squares estimator of ¯ st , ˆ̄st ÆX T
s yt / n .

In large n regimes, the scalability of variational algorithms can often greatly bene�t from data-

subsampling, which may be implemented generically in stochastic gradient ascent schemes; this

is less the case in high dimensions. In this latter regime, we believe that tailored, model-speci�c, deriva-

tions aiming for closed-form updates are important. Taking advantage of the conditional conjugacy

properties of our model and of the form of our structured variational approximation, we obtain all the

variational updates analytically. The prior distributions of all parameters are preserved by the varia-

tional distributions; for instance, we recover a spike-and-slab distribution with modi�ed parameters at

posterior level, q(¯ st ,° st) Æq(¯ st j ° st)q(° st) , with

¯ st j ° st Æ1,y » N
³
¹ ¯ ,st ,¾

2
¯ ,st

´
, ¯ st j ° st Æ0,y » ±0 , ° st j y » Bernoulli

³
° (1)

st

´
,

where ¹ ¯ ,st , ¾2
¯ ,st , ° (1)

st are variational parameters to be updated.
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3.3. Empirical quality assessment of the variational approximation

We optimise the variational parameters using a block coordinate ascent scheme, that is, the parameters

are updated in turn and by batches for all the responses, taking advantage of the concavity of L (q)

in each of these batches. This scheme combined with the rapidly computable updates produces an

effective algorithm, which is detailed in Appendix A.2.

3.3 Empirical quality assessment of the variational approximation

3.3.1 Tightness of the variational lower bound

Our variational algorithm is meant to be faster than MCMC inference on our model. However, scalability

should not come at the expense of accurate inference; the remainder of the chapter clari�es this through

extensive empirical studies. In this section, we evaluate the “closeness” of the variational density q

to the target posterior distribution by approximating the Kullback–Leibler divergence KL
¡
q

°
° p

¢
. This

amounts to assessing the tightness of the variational lower bound L (q) for the marginal log-likelihood,

because (recall Section 2.4.2)

KL
¡
q

°
° p

¢
Ælog p(y) ¡ L (q).

For small problems, the marginal likelihood p(y) may be accurately approximated using simple Monte

Carlo sums. We have

p(y) Æ
Z

¢¢¢
Z

d! d¾¡ 2
½ pY

sÆ1
p(! s)

¾
p

¡
¾¡ 2¢ qY

t Æ1

(
X

° t 2{0,1}p
p

¡
yt j ° t ,¾

¡ 2¢ pY

sÆ1
p

¡
° st j ! s

¢
)

,

with

p
¡
yt j ° t ,¾

¡ 2¢
Æ

8
>>>>>>>>>><

>>>>>>>>>>:

(2¼)¡ n /2 ¡
³ n

2
Å ´ t

´ · ´ t
t

¡ (´ t )

µ
· t Å

kyt k2

2

¶¡ n /2 ¡ ´ t

, q° t Æ0,

(2¼)¡ n /2
¯
¯
¯V° t ,¾¡ 2

¯
¯
¯
¡ 1/2

¡
³ n

2
Å ´ t

´ · ´ t
t

¡ (´ t )

Ã

· t Å
S2

° t

2

! ¡ n /2 ¡ ´ t ¡
¾¡ 2¢q° t /2

,

otherwise,

where

q° t Æ
pX

sÆ1
° st , V° t ,¾¡ 2 ÆX T

° t
X° t Å ¾¡ 2I q° t

, S2
° t ,¾¡ 2 Æ kyt k

2 ¡ yT
t X° t V

¡ 1
° t ,¾¡ 2 X T

° t
yt ;

see Appendix A.3 for details. As no closed form is available for the remaining integrals, we use

p(y) ¼
1

I

IX

i Æ1

qY

t Æ1

(
X

° t 2{0,1}p
p

³
yt j ° t ,

¡
¾¡ 2¢(i )

´ pY

sÆ1
p

³
° st j ! (i )

s

´
)

,

where we independently generate

¡
¾¡ 2¢(i )

» Gamma(¸ ,º ) , ! (i )
s » Beta(as,bs) , sÆ1,. . . ,p , i Æ1,. . . ,I . (3.14)

41



Chapter 3. Variational inference for multiple-response hierarchical regression

Figure 3.3 – Log10 relative difference between the marginal log-likelihood and the variational lower
bound. Left: independent predictors and responses. Right: correlated predictors and responses,
½Æ0.75. Problems with p Æ5 predictors, of which p° Æ3 randomly selected as “active” (associated
with at least one response), and q Æ6 responses, of which q° Æ3 “active” (associated with at least one
predictor). Each active predictor is associated with an additional active response with probability 0 .25
and explains on average 3.5% of the variance of its corresponding response(s). The number of draws
for the simple Monte Carlo approximations is I Æ50,000; the number of replicates for each sample size
is 150.

Figure 3.3 displays the relative difference
©
log p(y) ¡ L (q)

ª
/ log p(y) for problems with p Æ5 predictors,

q Æ6 responses and increasing sample sizes, n . In the left panel, the predictors are independent of each

other, and so are the responses. In the right panel, the predictors are equicorrelated with correlation

coef�cient ½Æ0.75, and so are the responses. In both cases, the mean relative difference is below 1%

with n Æ50 and tends to decrease as n grows. Although we are not aware of any such study with which

to benchmark our results, these values seem very small, suggesting that our variational distribution q

adequately re�ects the target distribution p for small problems, which is an encouraging sign. These

results also suggest using the variational lower bound L (q) as a proxy for the marginal log-likelihood

when performing model selection; we will illustrate this use in Section 3.6. Finally, the fact that the

variational lower bound remains tight in the correlated data case is also reassuring, as it suggests that

the independence assumptions underlying the mean-�eld factorisation of q may only weakly impact

the quality of the approximation; yet this needs to be assessed on larger problems.

3.3.2 Comparison with Markov Chain Monte Carlo

We complement our quality assessment by comparing several variational posterior quantities with

those for MCMC inference on problems of small sizes. A fair comparison is not straightforward, as these

two types of inference rely on stopping rules and convergence diagnostics of very different natures.

While the convergence criterion for variational inference comes down to a tolerance to be prescribed,

the ability of MCMC sampling to adequately explore the model space for a given chain length can be

dif�cult to evaluate, and usually varies greatly with the problem size. To alleviate the risk of inaccurate

MCMC inference, we run 10 5 iterations and discard the �rst half. We also support our comparison

with selected quantities approximated by simple Monte Carlo sums, namely, the marginal posterior
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3.3. Empirical quality assessment of the variational approximation

Active Inactive
10£ ¯ 1,2 ¯ 2,1 ¯ 3,2 ¯ 4,1 ¯ 4,2 ¯ rest (avg)

Truth ¡ 1.75 2.87 2.37 3.73 ¡ 4.76 0.00
VB ¡ 1.74 (0.01) 1.86 (0.01) 1.70 (0.02) 2.26 (0.01) ¡ 3.48 (0.01) 0.02 (0.04)

MCMC ¡ 1.74 (0.33) 1.86 (0.32) 1.69 (0.34) 2.26 (0.32) ¡ 3.48 (0.34) 0.02 (0.14)

Active Inactive
! 1 ! 2 ! 3 ! 4 ! rest (avg)

True prop. of active resp. 0.2 0.2 0.2 0.4 0
VB 0.21 (0.14) 0.25 (0.15) 0.19 (0.14) 0.33 (0.17) 0.03 (0.06)

MCMC 0.23 (0.18) 0.26 (0.18) 0.21 (0.16) 0.35 (0.18) 0.04 (0.08)
Simple Monte Carlo 0.25 0.26 0.21 0.35 0.05

Table 3.2 – Variational Bayes (VB), MCMC and simple Monte Carlo estimates for ¯ (£ 10) and ! (com-
ponents corresponding to noise averaged). Standard deviations are in parentheses.

probability of inclusion of a predictor Xs for a response yt ,

p(° st Æ1 j y) Æ
1

p(y)

1

I
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and the posterior mean of ! s, controlling the proportion of responses associated with predictor Xs,

E(! s j y) Æ
1

p(y)

1
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s
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(
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p

³
° j t j ! (i )

j

´
)

,

with the samples
¡
¾¡ 2

¢(i )
and {! (i )

s } generated as in (3.14), with I Æ2£ 105 draws.

We simulated a problem with p Æ8 predictors, q Æ5 responses for n Æ250 samples, and with the

nonzero associations explaining on average 13 .5% of response variance (data not simulated from the

model). Figures 3.4 displays the posterior distributions of ! , ¯ , ¾¡ 2 and ¿ approximated by MCMC

and variational inferences (the latter are obtained in closed form), along with the posterior means

obtained by simple Monte Carlo approximations and the true, simulated, values. All distributions

agree closely. Those corresponding to inactive ¯ st coef�cients all have zero posterior mode. Moreover,

in this case, the variational distributions are usually solely made up of a clear spike at zero, whereas

the MCMC histograms correspond roughly to a centred Gaussian distribution with average standard

deviation 0 .014. Table 3.2 summarises the posterior mean estimates for ! and ¯ . Those of the �ve

active regression coef�cients, ¯ 1,2, ¯ 2,1, ¯ 3,2, ¯ 4,1 and ¯ 4,2, are signi�cantly different from zero, despite

being shrunk under both the MCMC and variational inferences. This shrinkage is a consequence of the

spike-and-slab prior but we checked that it does not hamper the detection of the association signals:

the marginal posterior probabilities of inclusion of the true nonzero associations are concentrated

around 1, while those corresponding to noise are usually much lower, whether obtained by MCMC,

variational or simple Monte Carlo procedures; see Figure A.1 of Appendix A.3.2. Finally, the estimates of

! s provide a fair approximation to the actual proportion of responses associated with a given predictor.

The problems considered thus far were small enough to allow accurate and tractable MCMC inference;

the good performance of variational inference is satisfactory but unsurprising for such sizes. The

remainder of the chapter considers larger problems, with setups tailored to molecular QTL studies.
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Chapter 3. Variational inference for multiple-response hierarchical regression

Figure 3.4 – MCMC histograms and variational Bayes (VB, blue) posterior densities for parameters
! (far left panels), ¯ (central panels), ¾¡ 2 (bottom far left panel) and ¿ (bottom panels). The MCMC
means (dashed red) and variational means (dashed blue) are displayed, along with the simulated values
for the ¯ plots (dashed orange) and the simple Monte Carlo approximation of the posterior mean of !
(dashed green). Most of the dashed vertical lines overlap. The problem has p Æ8 predictors and q Æ5
responses for n Æ250 samples. The �ve green dots indicate the simulated nonzero associations. We
used the software OpenBUGS (Spiegelhalter et al., 2007) and the R package coda (Plummer et al., 2006)
for the MCMC inference and convergence diagnostics.
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3.4. Variable selection performance

3.4 Variable selection performance

3.4.1 Data-generation design

Our data-generation schemes are meant to embody accepted principles of population genetics. We

simulate SNPs as autocorrelated by blocks and under Hardy–Weinberg equilibrium. To this end, we

form the blocks using realisations from multivariate Gaussian latent variables and with autocorrelation

coef�cient drawn uniformly at random in a preselected interval. We then use a quantile thresholding

rule to code the number of minor alleles as 0, 1 or 2 according to a SNP-speci�c minor allele frequency

drawn from a uniform distribution, Unif (0.05,0.5). We also generate responses using multivariate

normal variables whose (residual) dependence is either enforced block-wise with preselected auto- or

equicorrelation coef�cients or chosen to be that of real data. We pick the labels of the active SNPs and

outcomes randomly, and associate each active SNP to one (randomly selected) active outcome and to

each of the remaining active outcomes with a prescribed probability; some outcomes are therefore

under pleiotropic control, i.e., associated with a same hotspot SNP.

We generate the associations under an additive dose-effect scheme, whereby each copy of the minor

allele results in a uniform and linear increase in risk, and we draw the proportion of response variance

explained by individual SNPs from a left-skewed Beta distribution to favour the generation of smaller

effects. We then rescale these proportions so that the response variance attributable to genetic variants

matches a given average proportion; the magnitude of SNP effects derives from this value, and the sign

of the effects is altered with probability 0 .5. These choices imply an inverse relationship between minor

allele frequencies and effect sizes, as expected under natural selection (selection against SNPs with

large penetrance is stronger, see, e.g., Park et al., 2011). The corresponding data-generating functions

are gathered in the R package echoseqavailable at https://github.com/hruf�eux/echoseq.

3.4.2 Predictor selection

In this section, we compare our approach, hereafter called LOCUS, with six variable selection methods.

These methods are Bayesian or frequentist, and implement either a joint modelling of outcomes and

candidate predictors (elastic net for multivariate Gaussian responses), or a joint modelling of candidate

predictors only (Bayesian multiple regression based on MCMC inference, “BAS”, or variational inference,

“varbvs”), or, �nally, a fully marginal modelling (univariate ordinary least squares and “lmBF” Bayesian

regressions). Complete descriptions and references are in Appendix A.3.3.

We evaluate the ability of each method to identify the “active” predictors, i.e., to determine which

candidate predictors are associated with at least one response. For our variational approach, this task

is achieved by ranking the posterior means of the hotspot propensity parameters ! s, which control the

proportion of responses associated with a given predictor.

The ROC curves in Figure 3.5 report performance for three simulation con�gurations based 48 replicates

following the design of Section 3.4.1. The �rst con�guration has moderate numbers of predictors

(p Æ5,000) and outcomes ( q Æ50), and allows time-consuming methods to run within hours. The

second has many outcomes ( q Æ20,000) and the third has many predictors ( p Æ150,000); these

numbers approach those encountered in molecular QTL studies. The remaining settings (numbers

of active outcomes and predictors, of observations, effect sizes, etc) are detailed in the caption to

Figure 3.5.
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Chapter 3. Variational inference for multiple-response hierarchical regression

Figure 3.5 – Truncated average receiver operating characteristic (ROC) curves with 95% con�dence
intervals for predictor selection obtained from 48 replicates. The competing methods are used in three
studies of different sizes, based on their computational tractability. Left: p Æ5,000 predictors spatially
autocorrelated with correlation coef�cient ½X Æ0.75, q Æ50 outcomes with residual equicorrelation by
blocks with four blocks of equal sizes and correlation coef�cients ½Y Æ0.8,0.3,0.2 and 0.5, p° Æ100
active predictors, q° Æ40 active outcomes, n Æ250 observations, probability of association between an
active predictor and an active outcome padd Æ0.15, average outcome variance percentage explained
by the active predictors pve Æ30.0%. Middle: p Æ500 independent predictors, q Æ20,000 outcomes
with residual equicorrelation by blocks of size 10 with ½Y 2 {0.5, . . . ,0.8}, p° Æ300, q° Æ12,500,n Æ300,
padd Æ0.01, pve Æ56%. Right: p Æ150,000 predictors autocorrelated by blocks of size 100 with
½X 2 {0.5, . . . ,0.9}, q Æ200 outcomes with same residual correlation structure as real protein expression
levels (DiOGenes study, Larsen et al., 2010), p° Æ500, q° Æ150, n Æ200, padd Æ0.05, pve Æ63%. The
univariate ordinary least squares and varbvs curves overlap.

Figure 3.6 – Marginal posterior probabilities of inclusion (PPI) obtained by LOCUS, and those of HESS
(left) and those of iBMQ (right), for a problem with p Æ250 predictors of which p° Æ50 are active, with
q Æ100 outcomes, of which q° Æ50 are active, and n Æ250 samples. The probability of association
between an active predictor and an active response is padd Æ0.05. On average, the active predictors
account for pve Æ22% of the variance of an outcome with which they are associated.
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Our approach outperforms the other methods; its ability to exploit the similarity across outcomes

improves greatly the detection of hotspot predictors, associated with multiple outcomes. As suggested

by the results of Section 3.3.1, the correlation structure among the predictors and the outcomes does

not seem to have a substantial impact on inferences, despite the independence assumptions implied

by the mean-�eld approximation. The marginal ordinary least squares and marginal lmBF regressions

appear to miss many associations because of their univariate modelling of predictors. This agrees with

the motivating example in Section 1.1; marginal screening often provides satisfactory answers when the

aim is to highlight cis associations at the level of loci, but, because of the multiplicity burden, it often

fails to declare weaker effects such as those involved in trans associations. However, jointly accounting

for the predictors may not suf�ce, as suggested by the rather poor performances of the Bayesian

multiple regression approaches BAS and varbvs, which apply separate multiple linear regressions for

each outcome. Finally, even though the multivariate elastic net method models jointly the predictor

and outcome variables, its inference suffers from the assumption that to each predictor corresponds

a single regression coef�cient, common to all responses. As a consequence, regression estimates of

predictors with weak or few associations with the responses may be shrunk to zero.

3.4.3 Combined selection of predictors and responses

Unlike the classical variable selection methods used as comparators in Section 3.4.2, our approach,

LOCUS, and those of Richardson et al. (2010), HESS, and Scott-Boyer et al. (2012), iBMQ, are tailored

to molecular QTL problems: they quantify the associations between each predictor-response pair in

a single model, and thus provide �exible and uni�ed frameworks for detecting pairs of associated

SNP-outcomes, as well as hotspot SNPs. In this section, we compare the posterior quantities used to

perform such selection for the three approaches. As both HESS and iBMQ rely on MCMC sampling, we

consider smaller problems than in Section 3.4.2 in order to ensure convergence within a reasonable

time; the simulated datasets have p Æ250 predictors and q Æ100 outcomes, for n Æ250 samples (see

caption to Figure 3.6 for details). We ran HESS with three MCMC chains, the number selected by the

authors for their simulations and with 50 ,000 iterations of which 25 ,000 were discarded as burn-in. For

iBMQ, we saved 50,000 iterations, after removal of 50 ,000 burn-in samples, as suggested in the package

documentation for a problem of comparable dimensions. Inference for one replicate took on average

10 seconds with our method, around 21 minutes with iBMQ and 4 hours with HESS on an Intel Xeon

CPU at 2.60 GHz with 64 GB RAM.

Figure 3.6 compares the marginal posterior probabilities of inclusion obtained by LOCUS with those of

HESS and iBMQ. We observe a strong correlation between our approach and HESS, with a quite good

ability to discriminate between active and inactive predictor-response pairs. There is a discrepancy at

the zero ordinate, where HESS signals a series of false positives and few true positives which are missed

by LOCUS. The comparison with iBMQ is more uneven, as its posterior probabilities of inclusion

for many true associations are below 0 .1 and indistinguishable from noise. We reached the same

conclusions when running the three methods on 47 additional datasets; see Table 3.3, which gathers

sensitivity and speci�city measures based on median probability models (Barbieri and Berger, 2004,

recall Section 2.2).

Figure 3.7 compares the patterns uncovered by the best two methods, namely HESS and LOCUS, again

based on the marginal posterior probabilities of inclusion from the �rst replicate. Visual comparison of

the true positive rates suggests that the abilities of the two approaches to detect the true associations

are very similar. Our approach indicates the presence of associations in the region of active predictors
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100£ TPR TNR
LOCUS 58.9 (0.8) 99.9 (0.0)

HESS 57.9 (0.8) 99.9 (0.0)
iBMQ 35.5 (0.8) 100.0 (0.0)

Table 3.3 – Mean true positive rate (TPR) and true negative rate (TNR) for LOCUS, HESS and iBMQ
based on median probability models. Settings: p Æ250, p° Æ50, q Æ100, q° Æ50, n Æ250, padd Æ0.05,
pve Æ22%, 48 replicates. Standard errors are in parentheses.

Figure 3.7 – Posterior quantities for detection of associations with HESS (left) and with LOCUS (right),
for the simulated datasets described in the caption of Figure 3.6 (only the �rst 100 predictors are shown,
and the active predictors are placed �rst). Marginal posterior probabilities of inclusion (central panel),
true positive rates for predictor and response selection based on posterior probability of inclusion
being È 0.5 (bottom and right panels), posterior probability pr(½s È 1 j y) for HESS and posterior mean
Eq (! s) for LOCUS (left panel). The simulated associations are shown by red crosses.

only, where it seems to declare a larger number of false positives than HESS, but the HESS pattern is

blurrier in regions of inactive predictors. The posterior means of ! s from our approach discriminate

quite well between active and inactive predictors, and so do, for HESS, the tail posterior probabilities

pr(½s È 1 j y), used by Richardson et al. (2010) as measures of predictor hotspot propensities.

3.5 Computational ef�ciency

Our primary motivation for implementing variational inference schemes for QTL models was to

enhance scalability; it is therefore of interest to quantify the actual gain in this respect. While a

naive implementation of the algorithm would not scale linearly with the number of predictors (see

the variational updates for ¯ st in the algorithm of Appendix A.2.3), we obtained linear scaling for

the predictor dimension p, response dimension q and sample size n, with some algebra, by locally

updating quantities stored once for all. We also improved the runtime using the optimised linear
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3.5. Computational ef�ciency

Figure 3.8 – Serial runtime pro�ling for all methods discussed, on an Intel Xeon CPU at 2.60 GHz with
64 GB RAM.

algebra C++ library Eigen (Guennebaud and Jacob, 2010), and we managed memory consumption by

recomputing certain objects on demand and by using zero-copy techniques across the R/C++ interface.

We report a runtime pro�ling of the different methods assessed in Section 3.4 and for a range of problem

sizes (n £ p £ q). Figure 3.8 displays the run times in minutes, averaged over 24 replicates. We aim for

overall evaluations rather than precise and exhaustive comparisons, since the methods all depend

on parallelism and convergence characteristics that are not directly comparable. We ran all methods

serially, in an attempt to treat them on an equal footing. This choice could be challenged, as some

approaches (e.g., any marginal screening) are more parallelisable than others (e.g., LOCUS or HESS),

but the number of cores used for the latter represents an additional setting that may have a large impact

on the measures. The number of chains for MCMC inference also matters: we ran HESS (Richardson

et al., 2010) with three chains, following its authors' choice made in their simulations; the other MCMC

inferences are based on a single chain. Finally, the runtime may also greatly vary depending on the

chosen chain length: the Bayesian multiple regression method BAS (Clyde, 2016) selects it adaptively,

and we ran the remaining MCMC methods for 50 ,000 iterations, based on preliminary convergence

diagnostics. In practice, the number of samples needed until convergence typically increases with the

problem size, a fact that we did not take into account in this pro�ling. Hence, if one were to properly

adapt the chain lengths to the dimensionality, the curves of Figure 3.8 corresponding to the MCMC

approaches would tend to deviate more from that of LOCUS, whose coordinate ascent scheme stops

only once convergence is reached.

With these serial settings, LOCUS is the fastest method; it usually converged in tens of iterations. At the

other extreme, MCMC inference for our model is the slowest, which underlines the intractability of

MCMC sampling for large problems. The evolutionary stochastic search of HESS does better, but still

more than 650 times slower than our variational approach. Our method is also about 10 times faster

than q applications (one for each outcome) of the varbvs method (Carbonetto and Stephens, 2012) but

these parallel regressions can run independently on multiple cores, which is an important advantage.

Likewise, the runtime of the univariate methods is to be (roughly) divided by the number of available

cores.
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In terms of absolute �gures, LOCUS scales to any proteomic, metabolomic and lipidomic QTL problems

that involve several hundreds of thousands of SNPs ( p Æ500,000 or more), thousands of outcomes

(q Æ5,000 or more) and thousands of samples ( n Æ5,000 or more). The memory requirements for a

typical pQTL analysis with p Æ500,000, q Æ1,000 and n Æ1,000 is about 16 GB of RAM. For expression

QTL analyses with around twenty-thousand transcripts, the current implementation of the method

requires running it chromosome by chromosome; this can be done in parallel and may not have

important consequences on inference as SNPs tend to be weakly correlated across chromosomes.

Improvements should consider both CPU time and memory aspects.

3.6 Application to metabolite quantitative trait locus data

We end these numerical experiments by illustrating our approach on data from a large multicentre

dietary intervention study (DiOGenes; Larsen et al., 2010). The study collected genetic, genomic,

proteomic and metabolomic data at different stages of a dietary treatment provided to the cohort. Its

goal is to uncover molecular mechanisms underlying the metabolic status of overweight individuals

and improve understanding of the factors predisposing weight regain after a diet. Here, we perform a

(lipid-)metabolite quantitative trait locus (mQTL) analysis; in this context, one may hypothesise that

some metabolites and their variation during the intervention could serve as proxies for the clinical

outcome of interest, weight maintenance. We also use this illustration on real data to further highlight

the bene�ts of modelling the outcomes jointly via an extensive permutation-based comparison with

the single-response variational method varbvs (Carbonetto and Stephens, 2012).

After quality control, the data consist of p Æ215,907 tag SNPs andq Æ125 metabolite levels, adjusted for

age, centre and gender, for n Æ317 individuals. The SNPs were genotyped by Illumina HumanCore tech-

nology and the metabolites were quanti�ed in plasma using liquid chromatography-mass spectrometry

(LC-MS). They span cholesterol esters (CholE), phosphatidylcholines (PC), phosphatidylethanolamines

(PE), sphingomyelins (SM), di- (DG) and triglycerides (TG).

We control for predictor multiplicity by specifying the hyperparameters for ! according to the discus-

sion of Section 3.1 and choose the prior average number of active SNPs, p¤ , by grid search within a

3-fold cross-validation procedure that maximises the variational lower bound. The entire procedure

took about 10 hours on an Intel Xeon CPU at 2.60 GHz, and the �nal run converged in 83 iterations. The

posterior means of ! s suggest the presence of several hotspot SNPs, spread across the chromosomes

(Figure 3.9).

We compare varbvs and LOCUS on these data based on the number of associations declared by each

method at speci�c false discovery rates (FDRs) estimated by permutations. We apply Efron's Bayesian

interpretation of the false discovery rate (Efron, 2008) to marginal posterior probabilities of inclusion,

PPIst Æpr(° st Æ1 j y), and use an empirical null distribution based on B Æ400 permutations to

compute the estimate

•FDR(¿) Æ
median bÆ1,...,B#{PPI(b)

st È ¿}

#{PPIst È ¿}
, 0 Ç ¿Ç 1, (3.15)

for a grid of thresholds ¿; we then �t a cubic spline to the resulting false discovery rates to �nd thresholds

for speci�c rates (Appendix A.4.1). At estimated FDR of 5%, LOCUS declares 21 associations and varbvs

19, and at FDR 25%, these numbers are 89 and 47 respectively; see Figure 3.9, and Table 3.4, which
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3.6. Application to metabolite quantitative trait locus data

Figure 3.9 – SNPs and pairwise associations identi�ed by our approach for the DiOGenes study. Left:
Manhattan plot for SNP association and evidence of pleiotropy. Right: marginal posterior probabilities
of inclusion for SNP-metabolite associations found at estimated FDR of 25% and overlap with the
associations found by the varbvs method at same FDR level (pink crosses) and found by univariate
screening at Benjamini–Hochberg FDR of 25% (orange underscores).

# detected:
Permutation-based FDR (%) LOCUS varbvs LOCUS \ varbvs

5 21 19 8
10 26 19 8
15 47 21 10
20 76 31 12
25 89 (48 univ.) 47 (19 univ.) 14 (13 univ.)

Table 3.4 – Numbers of associations detected by LOCUS (our method) and by varbvs, and numbers of
signals in common at selected permutation-based false discovery rates. In each case, the number of
associations also detected by univariate screening at Benjamini–Hochberg FDR of 25% is in parentheses.

provides the numbers for further FDR choices. These associations also partly agree with those obtained

with marginal screening at Benjamini–Hochberg FDR of 25%.

Database searches on the functional relevance of the detected associations provide hints of promising

biological functions related to metabolic activities for 12 of the 25 SNPs selected by our procedure.

For instance, the top hotspot SNP, rs4316911, has many associations with triglyceride levels. It is also

located less than 150 kilobases upstream of the ITGA6gene, which has probable implications in diabetic

kidney disease (Iyengar et al., 2015); the region therefore appears as a candidate risk locus, whose

possible mechanisms of action need to be clari�ed. The second most prominent hotspot identi�ed by

LOCUS, rs174535, associates with phospholipids, more precisely with 14 different phosphatidylcholine

levels, of which four are ether-linked/plasmalogen (PC-O). Interestingly, this SNP has known links with

metabolite levels, in particular with trans fatty acid levels and plasma phospholipid levels (Mozaffarian

et al., 2015), in line with our �ndings. This SNP is also an eQTL for the fatty acid desaturase genes

FADS1and FADS2. Finally, SNP rs3903703 is known as being associated with very long-chain fatty

acid levels (Lemaitre et al., 2015). This seems to agree with our �ndings, in which rs3903703 exhibits
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associations with sphingomyelin, a type of lipid containing fatty acids of different chain lengths. The

complete list of SNPs with metabolism-related associations found by LOCUS is given in Appendix A.4;

these results and interpretations would require con�rmation in follow-up studies.

The source code for a replication analysis using simulated mQTL data can be found at

https://github.com/hruf�eux/mQTL_analysis_example ; we generated the SNPs based on the minor

allele frequencies and linkage disequilibrium structure of the real SNPs, and simulated the outcomes

based the empirical dependence structure of the metabolites.

3.7 Some direct extensions

Several extensions come naturally to mind. First, molecular QTL datasets are often complemented

with other variables that may correspond to potential confounding factors, like gender, age, lifestyle,

or demographic characteristics. We extended the model to include such variables as covariates that

are not subject to selection. This is straightforward using a centred normal prior for their regression

coef�cient, ®t , i.e., for d such covariates gathered in the n £ d matrix Z ,

yt ÆZ ®t Å X¯ t Å " t , ®r t » N
¡
0,³ 2

r

¢
, ³ ¡ 2

r » Gamma
¡
Ár ,»r

¢
, r Æ1,. . . ,d ,

keeping the rest of the hierarchy untouched.

Second, although it is primarily intended for molecular QTL problems, our model may be considered

for genome-wide associations problems with a few clinical phenotypes (clinical QTL problems). Since

these may involve case-control designs, we also implemented variants of the algorithm for binary

responses, based on logit and probit link functions, as well as for mixed responses, based on combined

linear and probit link functions. While probit regressions pose no dif�culties for deriving closed-

form variational updates, extending our algorithm for logistic regression requires a further level of

approximation, because the likelihood does not have a conjugate prior in the exponential family.

Although it is possible to resort to Monte Carlo approximations for estimating the variational lower

bound, this may substantially affect scalability. We instead choose to stick to analytical expressions and

follow Jaakkola and Jordan (2000) to further bound the intractable expectation using a local Gaussian

approximation to the sigmoid function, Sig( z) Æ
©
1Å exp(¡ z)

ª ¡ 1, i.e.,

Sig(z) ¸ Sig(́ )exp
nz ¡ ´

2
¡ ½(´ )

¡
z2 ¡ ´ 2¢o

, ½(´ ) Æ
1

2´

µ
Sig(́ ) ¡

1

2

¶
.

The price to pay is the introduction of the auxiliary parameter ´ (actually, n of them as there is one copy

´ i per observation), which we optimise using an expectation-maximisation step, see Appendix A.5.2;

credits go to Loris Michel, who derived all logistic variational updates in his masters thesis. The

algorithms for the above-cited models are in Appendix A.5 and are available in the R package locus .

Finally, the Bayesian framework allows natural extensions to missing responses; obtaining these is

future work. As a provisional ersatz, the current implementations of our algorithms accept missing

data by simply discarding the samples with missing responses in the incriminated parallel regression.

This is better than discarding all samples with at least one missing response but is clearly a misuse of

the �exibility entailed by Bayesian modelling. As for missing values in the SNP data, imputing them

from the model is a lower priority given the wealth of imputation algorithms available to practitioners
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(Halperin and Stephan, 2009; Howie et al., 2009; Marchini and Howie, 2010); these algorithms are often

�ne-tuned to the speci�cities of these data.

3.8 Summary

This chapter presented our hierarchical regression approach to the joint modelling of large predictor

and response vectors, and applied it to data emulating molecular QTL data. It con�rmed earlier

demonstrations (Jia and Xu, 2007; Richardson et al., 2010; Scott-Boyer et al., 2012) that borrowing

information across responses greatly improves variable selection. In particular, it showed that capturing

dependence through the model hierarchy is a �exible alternative to directly modelling the correlation

structure of the responses.

To the central question “is variational inference a good surrogate for MCMC inference for variable

selection from our model?”, our numerical experiments suggest an af�rmative answer. This agrees with

the conclusions of Carbonetto and Stephens (2012) on the appropriateness of variational inference on

single-outcome genome-wide association data. Carbonetto and Stephens (2012) point out, however,

that selection performance can suffer from highly correlated SNPs; we will discuss and attempt to

address this in Chapter 4. Finally, we highlighted that model-speci�c derivations for our variational

algorithm, although somewhat tedious, are crucial to its ef�cacy in high dimensions, and we illus-

trated the computational gain over competing variable selection methods, including MCMC-based

approaches.
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4 Dependence structures

This chapter considers two separate but related themes: modelling for spatially dependent predictors

and inference for multimodal parameter spaces. These themes are linked because dependence tends

to exacerbate posterior multimodality.

Correlation among genetic variants is a central characteristic of genome-wide and molecular quan-

titative trait locus data, and is generically termed linkage disequilibrium ; we provide more context

on this in Section 4.1. In regression settings, the effects of highly correlated predictors on response

variables can be dif�cult to infer and interpret. When these effects can be regarded as related by some

underlying structure, it is natural to try to incorporate this information into the model, which may be

easily achieved in the Bayesian framework. Section 4.2 provides two illustrations of this, based on the

model presented in Chapter 3.

Instead of injecting structural assumptions in the model, one may attempt to make inference more

robust to strong multimodality in general. This is the aim of Section 4.3, where we propose coupling

our variational algorithm with a simulated annealing procedure that permits better exploration of mul-

timodal parameter spaces. This simulated annealing procedure has been developed in collaboration

with Leonardo Bottolo and Sylvia Richardson and is part of Ruf�eux et al. (2018, submitted).

4.1 Problem statement

Although every individual has a unique DNA sequence, certain combinations of genetic variants

are inherited together. The extent of the resulting nonrandom assortment of alleles at two or more

polymorphisms on a chromosome is termed linkage disequilibrium and tends to give rise to block

dependence structures among variants along the genome (Balding et al., 2008, Chap. 27). Such blocks

can span large portions of a chromosome, and their size and location depend on factors such as the

times of mutation events and population history (Goode, 2011; International HapMap Consortium,

2005). A number of algorithms have been proposed to estimate pairwise or block linkage disequilibrium;

see, e.g., Barrett (2009) and Berisa and Pickrell (2016).

Linkage disequilibrium structures have important effects on inference, regardless of whether marginal

or joint approaches are used. The motivating example of Chapter 1 indicates that marginal screening

generates spurious associations in regions of high linkage disequilibrium. If two nearby SNPs are

almost perfectly correlated and only one of them is causal, as often assumed at a given locus (Li and
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Zhang, 2010), then both are likely to be assigned a high measure of support for association. Because

of the high multiplicity burden entailed by molecular QTL problems, we saw that this hampers the

detection of distal trans effects, which are typically weaker than proximal cis effects. A conventional yet

simplistic strategy to account for linkage disequilibrium is to report, for each locus, the SNP whose

effect is most signi�cant.

Sparse regression methods also suffer from linkage disequilibrium. When there is insuf�cient infor-

mation to pinpoint the relevant SNP from its correlated neighbours, some methods tend to choose

one SNP interchangeably among all the candidates. This is a well-known characteristic of the LASSO

method (Tibshirani, 1996) that can also arise with Bayesian variable selection (Chipman, 1996). Our

variational inference approach can tolerate some dependence in the data (recall the experiments

of Sections 3.3 and 3.4), but is also affected by strong correlation structures, as we will explain in

Section 4.3. We will also see that model averaging can often mitigate this by providing a better grasp

of the uncertainty entailed by the selection of correlated SNPs. However, this requires rerunning the

analysis multiple times, which can represent a substantial computational overhead.

A complication is when the causative variant is not among those analysed. This can occur when the

variant was sequenced or genotyped but discarded after the quality control or other preprocessing

steps, or when the variant was not even measured on the genotyping chip. Such chips are made of

probes for few hundred thousand so-called tag SNPsout of the millions of SNPs entailed by human

genomes, and the criteria for selecting tag SNPs depend on the chip type and manufacturer; typically,

they are chosen to cover the major linkage disequilibrium blocks of genes in a given population (Rogers

and Weiss, 2017). A consequence is that the hits observed may relate to tag SNPs acting as proxies for

unmeasured causal SNPs.

In all the above cases, �ne mapping and external annotation data on targeted regions may help to

clarify the functional roles. This is a dif�cult task, however; it has been suggested that most of the SNPs

collected in biomarker databases are at best surrogates for a nearby SNP in linkage disequilibrium,

rather than genuine functional entities (Donnelly, 2008).

4.2 Structured modelling

4.2.1 Group sparsity model

Consider a regression setting where the candidate predictors can be naturally arranged into G disjoint

groups and let

yt j ¯ t ,¿t » Nn
¡
X ¯ t ,¿

¡ 1
t I n

¢
, t Æ1,. . . ,q ,

¯ g t j ° g t ,¾
2,¿t » ° g t N jgj

³
0,¾2 ¿¡ 1

t I jgj

´
Å (1 ¡ ° g t )±0, g Æ1,. . . ,G, (4.1)

° g t j ! g » Bernoulli( ! g ), ! g » Beta(ag ,bg ) ,

where y Æ(y1, . . . ,yq ) is an n £ q matrix of q centred responses, X is an n £ p matrix of p centred

candidate predictors for each of n samples,
¯
¯g

¯
¯ is the cardinality of group g 2 {1, . . . ,G}, and ±0 is a point

mass at 0 2 Rjgj . We assign Gamma priors to the precision parameters ¿t and ¾¡ 2.

Model (4.1) is a variant of model (3.1)–(3.2)–(3.3) whereby the binary latent indicator ° g t selects

groups of variables. It therefore applies to settings where it makes sense to let related predictors enter
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the model simultaneously rather than selectively. When the group structure is the result of strong

block dependences among predictors, the model also has the practical advantage of bypassing the

instability of sparse regression methods when attempting to select individual predictors from correlated

candidates. Chipman (1996) was probably the �rst to use structural grouping information under a

(continuous) spike-and-slab prior for single-response regression. He argues

“Not only does the grouping principle reduce the size of the total model space, but it makes

headway in dealing with the pitfalls of multiple comparisons”;

indeed, the dimension of each parallel regression latent indicator ° t has been reduced from p £ 1

to G £ 1, where G may be one or two orders of magnitude smaller than p, depending on the context.

Chipman suggests that interpretation from this model should be in two steps: one starts by identifying

components of ° t for which pr(° g t Æ1 j y) is large, then, for these, one identi�es the components of

the
¯
¯g

¯
¯£ 1 regression vector ¯ g t with large posterior means.

Model (4.1) does not impose sparsity on the regression coef�cients, conditional on their group being

selected. This is like the classical group selection extension of the LASSO by Yuan and Lin (2006),

where an ` 2 penalty is applied uniformly within the selected groups. Friedman et al. (2010) proposed

a sparse-within-group alternative to this original group LASSO by replacing the ` 2 penalty with a ` 1

penalty.

In the present molecular QTL context, it is natural to base the groups on linkage disequilibrium blocks,

whose estimation is thus prerequisite to the use of model (4.1). The dense-within-group assumption of

(4.1) is convenient here, as selecting SNPs from blocks in a sparse-within-group fashion may result in

the collinearity issues met initially. Hence, when doing inference with model (4.1), we take the view

that the model should provide evidence at the level of loci and that �ner within-loci selection should be

deferred to follow-up studies. This makes further sense if the functional SNP from an identi�ed locus is

absent from the SNP panel.

Returning to model (3.1)–(3.2)–(3.3) where ° t is p £ 1, we saw in Section 3.2 that the posterior

p(¯ t ,° t j ¾2,¿t , ! , yt ) factorises across the predictors in the orthogonal design case, and is then faith-

fully reproduced by the structured variational mean-�eld distribution

q(¯ t ,° t ) Æ
pY

sÆ1
q(¯ st ,° st).

Model (4.1) lends itself better to an approximation that accounts for the block linkage disequilibrium

structure of the SNPs, since

q(¯ t ,° t ) Æ
GY

gÆ1
q(¯ g t j ° g t )q(° g t )

Æ
GY

gÆ1
N jgj

¡
¯ g t ; ¹ g t ,§ g t
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,

where ¹ ¯ ,g t , § ¯ ,g t , ° (1)
g t are the variational parameters for group g. In particular, the update for § ¯ ,g t

explicitly involves the empirical covariance structure of the candidate predictors in group g,

§ ¡ 1
¯ ,g t Æ¿(1)
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o
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In order words, conditionally on ° g t Æ1, ¿t and ¾2, the regression coef�cients of the SNPs in group g

are independent a priori but dependent a posteriori , with a structure that re�ects that in the data. The

full variational updates and objective function are given in Appendix B.1.

4.2.2 Similarity sparsity model

The assumption that genetic variants along the genome form disjoint groups is stringent, as the

boundaries of linkage disequilibrium blocks may be blurred. Under model (4.1), two slightly different

group partitions may generate very different hypotheses for prospective functional analyses, since

the inclusion of a given variant as candidate regulatory marker hinges on the selection of the entire

group to which it has been assigned. To alleviate this, we describe a model that replaces the partition-

based structural information with a continuous measure of similarity between variants that acts as a

“smoothness” penalty. For q centred responses and p centred candidate predictors, we consider

yt j ¯ t ,¿t » Nn
¡
X ¯ t ,¿

¡ 1
t I n

¢
, t Æ1,. . . ,q ,

¯ st j ° st ,¾
2,¿t » ° st N

¡
0,¾2 ¿¡ 1

t

¢
Å (1¡ ° st)±0, sÆ1,. . . ,p, (4.3)

° st j µs » Bernoulli {©(µs)} , µ » N p (m0,§ 0),

where ¿t and ¾¡ 2 are assigned Gamma priors, ©(¢) is the standard normal cumulative distribution

function and ±0 is the Dirac distribution. Pairwise similarity between predictors is encoded by the

p £ p (positive de�nite) matrix § 0, and we choose the hyperparameter m0 to induce sparsity; see the

simulation settings of Section 4.2.3.

Engelhardt and Adams (2014) propose a similar structured probit-link formulation in a single-response

context,

¯ j ¡ ,¾2,¿» N p
¡
0,¿¡ 1¾2¡

¢
, µ » N p (0,§ 0) , ¡ s,s Æ1 (µs È µ0) , sÆ1,. . .p, (4.4)

where ¡ is a p £ p degenerate diagonal covariance matrix and where µ0 has a Gaussian prior. They

provide a list of kernel functions that may be used for § 0, but mention that this choice had little impact

in their experiments. They do not discuss the inversion of § 0 and the storage of its p2 entries, which

both become computationally prohibitive for large p. We consider the simple speci�cation § 0 Æ®X T X,

with a scaling factor ® È 0 and with X standardised to have zero-mean and unit-norm columns. We

then build a sparse block estimate of § 0 by observing that X T X is approximately banded and block

diagonal, owing to the local nature of linkage disequilibrium structures. Unlike for the group sparsity

model where groups are typically chosen to be small linkage disequilibrium blocks, the blocks used for

estimating § 0 should be as large as computationally feasible; they may therefore cover several dense

linkage disequilibrium blocks. A second practical concern is on ensuring that our estimate of § 0 (or

equivalently each of its blocks) is positive de�nite. If this criterion is not met, we replace our estimate

by the positive de�nite covariance matrix closest in Frobenius norm, using the algorithm of Higham

(2002).

The data-dependent prior speci�cation through § 0 may raise concerns regarding using the data twice:

the �rst time in describing the prior belief and the second time when updating the prior using the

likelihood. Engelhardt and Adams (2014) acknowledge this and propose building an estimate of

§ 0 using reference genome data from the same population as that of the study. A non-data-based

alternative may be to use a conditional autoregressive matrix for § 0 to enforce spatial similarity across

regression coef�cients for nearby locations. However, since the entire model is conditional on X , using
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4.2. Structured modelling

data-dependent priors should not be a problem; another such prior is the g-prior (Zellner, 1986), to

which we will return brie�y in Section 4.2.3.

Our variational algorithm for model (4.3) relies on the data augmentation strategy �rst employed by

Albert and Chib (1993) in the context of probit regression (and implicit used in (4.4)). We reparametrise

the top level of our model by introducing the auxiliary variable zst ,

° st Æ1(zst È 0), zst j µs » N (µs,1) , µ » N p (m0,§ 0),

and use the factorisation (
qY

t Æ1

pY

sÆ1
q(¯ st ,° st ,zst)

)

q(µ),

from which we obtain

q(¯ st ,° st ,zst) Æq(¯ st j zst)q(zst j ° st)q(° st) ,

given by

¯ st j zst È 0,y » N
³
¹ ¯ ,st ,¾

2
¯ ,st

´
, ¯ st j zst · 0,y » ±0 ,

zst j ° st Æ±, y » T N
³
¹ µ,s,1;

n
0 Ç (¡ 1)1¡ ±zst

o´
,

° st j y » Bernoulli
³
° (1)

st

´
,

where T N
¡
¹ ,¾2; {a Ç x Ç b}

¢
denotes the truncated normal distribution, and ¹ ¯ ,st , ¾2

¯ ,st , ° (1)
st and ¹ µ,s

are variational parameters. Moreover, µ (or each of its blocks) is approximated using a multivariate

normal distribution, µ » N p
¡
¹ µ,§ µ

¢
, with variational parameters

¹ µ Æ§ µ
¡
Z (1)1q Å § ¡ 1

0 m0
¢
, § ¡ 1

µ ÆqI p Å § ¡ 1
0 , (4.5)

where Z (1) is the p £ q matrix with entries

z(1)
st Æ° (1)

st

©
M(¹ µ,s,1) ¡ M( ¹ µ,s,0)

ª
Å ¹ µ,s Å M(¹ µ,s,0),

and

M (u,±) Æ(¡ 1)1¡ ± ' (u )

© (u)± [1¡ © (u)]1¡ ±
, u 2 R, ± Æ0,1,

is the inverse Mills ratio (Mills, 1926); see Appendix B.2.

4.2.3 Simulations

In this section, we describe a small numerical experiment to illustrate the type of posterior inferences

obtained from the group and similarity sparsity models (4.1) and (4.3), and to compare them with that

of our reference model (3.1)–(3.2)–(3.3) presented in Chapter 3. We simulated p Æ2,000 SNPs, from

which we randomly designated p° Æ10 SNPs as “active”, i.e., associated with at least one of q Æ100

responses. The SNPs are autocorrelated in blocks of size 50, with correlation coef�cients for the blocks

drawn from a right-skewed Beta distribution. Figure 4.1 shows the empirical distribution of these

coef�cients, and ROC curves for assessing the selection of SNPs involved in associations under each of

the models.
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Chapter 4. Dependence structures

Figure 4.1 – Distribution of linkage disequilibrium block autocorrelations and selection performance
using group and similarity sparsity models, for problems with p Æ2,000 SNPs, autocorrelated by blocks
of size 50, and q Æ100 responses, for n Æ200 samples. There are p° Æ10 SNPs associated with at
least one response, and each of them is associated with 3 .25 responses, on average. The cumulated
proportion of variance explained by the SNPs for a given response does not exceed 50%, and q ¡ q° Æ75
responses have no association with the SNPs. We simulated 200 datasets following the data generation
design of Section 3.4.1. Left: histogram of the block autocorrelation coef�cients simulated from a
Beta(25,2) distribution (density also shown). Middle: truncated average ROC curves for predictor
selection based on the probability parameters. Right: truncated average ROC curves for predictor
selection based on the cumulated effect sizes (see caption of Figure 4.2).

In an attempt to treat the hyperparameter speci�cation of all three models on an equal footing, we

based it on the multiplicity control procedure described in Section 3.1.3 for both the reference model

(3.1)–(3.2)–(3.3) and group sparsity model (4.1), and matched the �rst moment of the marginal distri-

bution of ° st under the similarity sparsity model (4.3) to that under the reference model; details are in

Appendix B.3. For simplicity, we de�ned the groups for the group sparsity model to be the simulated

linkage disequilibrium blocks, and also used this pattern to de�ne a block empirical covariance matrix

§ 0 for the similarity sparsity model; further investigation would be needed to assess the sensitivity of

inferences to these choices.

Figure 4.2 displays two types of posterior summaries to quantify the support for each SNP to be involved

in associations: the estimated probability parameters, at the top level of the model hierarchy, and the

estimated effect sizes cumulated across all responses, closer to the data in the hierarchy. While these

two summaries provide essentially the same information for the reference model, they are qualitatively

very different for each of the structured sparsity models. In particular, for the similarity sparsity model,

the dependence structure of SNPs is apparent in the probability estimates, but does not propagate to

the cumulated effect sizes, which clearly discriminate the signal from the noise. For the group sparsity

model, the probability parameter estimates quantify associations for groups of SNPs, and the within-

group structure appears in the cumulated effect sizes, re�ecting the dense-within-group assumption

discussed in Section 4.2.1. These observations could have been deduced from the variational updates:

the matrix § 0 of the similarity sparsity model appears in the top-level updates (4.5), and the group

empirical covariance used in the group sparsity model appears closer to the data, in the updates for

¯ st , see (4.2). As their effect size speci�cation also involves the predictor covariance matrix, g-prior

regressions should yield estimated effect sizes like those of the group sparsity model but somewhat

sparser, as the p £ 1 indicator parameter ° t selects predictors and not groups.
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4.2. Structured modelling

Figure 4.2 – Manhattan plots using group and similarity sparsity models. The data correspond to the
�rst replicate used for Figure 4.1; see its caption. The SNPs with simulated associations are marked
in red. Left column: evidence based on the estimated variational probability parameters ! (1)

s for the
reference model (3.1)–(3.2)–(3.3), ! (1)

g for group sparsity model (4.1), and ©(¹ µ,s) for similarity sparsity
model (4.3). Right column: evidence based on the variational effect sizes cumulated across responsesP q

t Æ1 j¹ ¯ ,st j £ ° (1)
st for models (3.1)–(3.2)–(3.3) and (4.3), and

P q
t Æ1 j¹ ¯ ,st j £ ° (1)

g t , g 3 s, for model (4.1).

The Manhattan plots exhibiting dependence structure indicate that even when the active SNP in a

block is not attributed the highest evidence, it appears as a potential candidate among its correlated

neighbours, since its posterior summary is in�ated. This output is similar to that of marginal screening,

and is qualitatively appealing in weakly informative and highly structured data, where the reference

model may be more likely to wrongly choose one of several correlated SNPs. The shaded areas show

how this encoded structure may also help to trigger the activation of signals: two active SNPs are not

picked up by the reference model, but receive some support under the similarity and group sparsity

models. Moreover, even though most groups involve a single active SNP out of �fty, the group-model

posterior estimates of ! g identify the correct groups.
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While Figure 4.2 shows a satisfactory recovery of signals for all three models, the ROC curves of Figure 4.1,

based on 200 replicates, indicate that predictor selection performance depends on the chosen posterior

summary. It is worse when the summaries are in�ated as a result of correlation, as this produces false

positive signals; recall the motivating example of Chapter 1. When using the cumulated effect sizes

for selection, the similarity sparsity model slightly outperforms the reference model, as a result of

activations being triggered, as explained in the previous paragraph.

More experiments would be needed to fully assess the potential of our structured models and eval-

uate the sensitivity of selection to the choice of grouping or posterior summary. In particular, the

ROC curves of Figure 4.1 are based on 10 active predictors only, on given effect strengths, predictor

autocorrelation levels and distribution of effects, and we suspect that the discussion will depend on

these data-generation settings. Finally, while encoding spatial dependence structures may help to

combat artefacts caused by multicollinearity, the dependence of effect sizes may not mimic that of

the SNPs. A well-known example pertains to the FTO gene, for which associations with body mass

have been reported, and to genetic variants lying within introns of FTO, which have been linked to

an increased risk for obesity; despite the proximity between the gene and the risk variants, recent

evidence suggests that the variants in�uence human adipocyte functions via the distal IRX3 gene (a

half-megabase downstream of FTO), rather than via FTO (Smemo et al., 2014). To explicitly account

for such long-range mechanisms, it may be sensible to build the groups or the covariance § 0 by also

incorporating other types of SNP similarity information. Such information could be based on the

involvement of SNPs in common biological pathways, on chromatin interaction using Hi-C data, or on

any other prior knowledge suggesting similar regulatory properties.

4.3 Variational inference for multimodal problems

4.3.1 Simulated annealing variational inference

Another approach to better handling data dependence structures is to enhance the inference strat-

egy, leaving the model untouched. To this end, it is important to understand the weaknesses of the

variational algorithm presented in Section 3.2 when applied to highly-correlated data.

Consider a bivariate posterior distribution p(v j y), v Æ(v1,v2) 2 R2, and a mean-�eld variational

approximation to it,

q (v ) Æq (v1) q (v2) . (4.6)

Under the posterior independence assumptions entailed by (4.6), the covariance structure of q(v ) is

decoupled by construction, and the marginal variances are smaller than those of p(v j y) as a result of

optimising the reverseKullback–Leibler divergence,

KL
¡
q

°
° p

¢
Æ

Z
q(v ) log

½
q(v )

p(v j y)

¾
dv ,

which penalises putting mass in regions of q(¢) where p(¢) has little mass; recall Section 2.4.2. This

underestimation of posterior variances clearly generalises to mean-�eld approximations for parameter

vectors of any dimension, and happens to affect the selection performance of our algorithm in presence

of strong dependence. The variational objective function,

L (q) ÆEq log p(y,v ) ¡ Eq log q(v ), (4.7)
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4.3. Variational inference for multimodal problems

Figure 4.3 – Variable selection under high multicollinearity. Problem with a single response and 1 ,000
genetic variants (SNPs) autocorrelated by blocks as candidate predictors (�rst 50 shown). The SNPs
simulated as associated with the response explain 30% of its variance; their positions are marked by the
blue labels. The bars show the marginal posterior probabilities of inclusion produced by the variational
algorithm of Chapter 3, one run (left) and average of 1 ,000 runs with different starting values (middle),
and by the annealed variational algorithm with initial temperature T Æ5 and grid of 100 temperatures,
average of 1,000 runs with different starting values (right).

for our model p(y,v ) and approximation q(v ) tends to be highly multimodal, which exposes our

coordinate ascent algorithm to entrapment in local modes, corresponding to suboptimal con�gurations

of variables. This risk is increased by the posterior variance underestimation, which encourages

the approximation to concentrate most of its mass on a single hypothesis. Figure 4.3 considers a

problem with blocks of highly correlated SNPs; the algorithm completely misses one active SNP (SNP

8) and instead picks one of its correlated neighbours with high con�dence (SNP 9). It also shows

that averaging posterior probabilities across multiple runs with different starting values can produce

“diluted” posterior summaries that better re�ect the uncertainty of SNP selection in regions of high

linkage disequilibrium. Such averaging strategies aiming for more stable and accurate estimates have

been proposed in different contexts; two examples are the bootstrap aggregating (bagging, Breiman,

1996) and the M-posterior (Minsker et al., 2017) algorithms. But although they mitigate the problem,

they typically result in increased computational costs, which can become quite substantial for typical

molecular QTL problems. We instead augment our algorithm with a simulated annealing procedure

that directly targets improving the exploration of multimodal posteriors.

The central idea of simulated annealing is essentially the same as that of simulated tempering for

MCMC algorithms (recall Section 2.3). It consists in introducing a so-called temperature parameter T

which indexes a series of heated distributions,

pT (y,v ) / p(y,v )1/ T ,

and controls the degree of separation of their modes. The procedure starts with large temperatures that

�atten the density of interest, thereby sweeping most of its local modes away and facilitating the search

for the global optimum. Temperatures are then progressively decreased until the cold distribution,

corresponding to the original multimodal distribution, is reached.

Like variational inference, simulated annealing was �rst used in statistical physics. Its name and

heuristic come from metallurgy, where annealing consists in heating a material and cooling it down

in a controlled fashion to limit its defects and achieve certain crystallisation properties (Brunger and

Rice, 1997). Optimisation via simulated annealing was �rst described in Metropolis et al. (1953) and

Kirkpatrick et al. (1983) for Metropolis algorithms, and was then adapted for expectation-maximisation
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by Ueda and Nakano (1998) and for variational inference by Katahira et al. (2008). Variational inference

lends itself to simulated annealing principles. Indeed, recall that the objective function (4.7) entails

a tradeoff between the �rst term of its sum, the expected log joint distribution, which encourages

the approximation to put mass on con�gurations of the variables that best explain the data, and the

second term, the entropy, which prefers the approximation to be more dispersed. Annealing in�ates

the entropy term by multiplying it by the temperature parameter,

L T (qT ) Æ
Z

qT (v ) log p(y,v )dv ¡ T
Z

qT (v ) log qT (v )dv , T ¸ 1, (4.8)

where qT (¢) is the heated variational distribution; it penalises the �rst term (when T È 1) and gradually

relaxes this penalty until the original variational algorithm is obtained (when T Æ1).

The variational updates for each heated variational distribution factor qT (v j ) are obtained as for the

vanilla mean-�eld algorithm. We rewrite (4.8) with respect to v j as

L T (qT ) Æ Ej
£
E¡ j

©
log p(v , y)

ª
¡ T log qT (v j )

¤
Å cst

Æ Ej

"

log

(
exp

©
E¡ j log p(v , y)

ª

qT (v j )T

)#

Å cst

Æ T Ej

·
log

½
pT,¡ j (v j , y)

qT (v j )

¾¸
Å cst,

where we introduced the distribution pT,¡ j (v j , y) / exp
©
T ¡ 1E¡ j log p(v , y)

ª
, and where E j (¢) denotes

expectation with respect to the distribution qT (v j ), E¡ j (¢), the expectation with respect to the distribu-

tions qT (vk ), for all the variables vk , (k 6Æj ), and cst does not depend on v j . The expectation in (4.9)

corresponds to the negative Kullback–Leibler divergence between qT (v j ) and pT,¡ j (v j , y); L T (q) is

therefore maximal when qT (v j ) ÆpT,¡ j (v j , y), i.e., when

log qT (v j ) ÆT ¡ 1E¡ j {log p(y,v )} Å cst , j Æ1,. . . ,J.

Our annealed variational algorithm for the reference model (3.1)–(3.2)–(3.3) is given in Appendix B.4.

There is no consensus on the type of temperature schedule to use. In the numerical experiments of

Section 4.3.2, we will compare three types of schedules proposed by Gramacy et al. (2010) on the inverse

temperature scale, namely, a linear schedule,

T ¡ 1
l ÆT ¡ 1

L Å ¢ (L ¡ l ), ¢ Æ
1¡ T ¡ 1

L

L ¡ 1
,

a harmonic schedule,

Tl Æ1Å ¢ (l ¡ 1), ¢ Æ
TL ¡ 1

L ¡ 1
,

and a geometric schedule

Tl Æ(1Å ¢ )l ¡ 1, ¢ ÆT 1/( L¡ 1)
L ¡ 1,

where l ÆL,. . . ,1, and TL is the hottest temperature. We decrease the temperature at each iteration, so

L corresponds to the number of iterations required by the annealing scheme, after which the classical
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4.3. Variational inference for multimodal problems

Figure 4.4 – Histograms of optimised variational lower bound values obtained by classical and annealed
variational inference using linear, harmonic and geometric schedules. The initial temperature is set to
5 and the temperature grid size is 100. Each algorithm was run 500 times using different starting points,
on the �rst simulated dataset. The three histograms corresponding to annealed variational inference
overlap.

variational algorithm is run until convergence. As L Æ10¡ 100 typically, the computational overhead is

limited.

A �nal purpose of Figure 4.3 is to illustrate the bene�ts of annealed variational inference over classical

variational inference: while selection based on the former may suffer from poorly-chosen starting

values, selection based on the latter consistently identi�es the relevant SNPs across 1 ,000 restarts. The

next section provides more empirical support for our annealed variational algorithm.

4.3.2 Simulations

The following numerical experiments borrow simulated data from Bottolo et al. (2011, dataset “SIM3”).

The data consist of p Æ498 SNPs forn Æ120 individuals from the Yoruba population, obtained from

the HapMap project (Consortium et al., 2005). The SNPs span 500 kilobases on chromosome 7 and are

in high linkage disequilibrium; their dependence structure and the positions of the “active” SNPs, i.e.,

with simulated associations, are displayed in Figure 4.5. The six active SNPs are hotspots of different

sizes; they are associated with 4, 10 or 26 responses. The total number of responses is q Æ1,000, of

which 950 were generated from Gaussian noise. The dataset comprises 25 replicates of simulated

responses and effects sizes.

We �rst examine sensitivity to the choice of schedule (linear, harmonic or geometric) by comparing the

values of the optimised variational lower bound on the marginal log-likelihood using the data from

the �rst replicate and performing 500 runs, using different starting values. We also benchmark these

values against those obtained by classical variational inference. For the annealed algorithms, we use

an initial temperature of 5 and a grid of 100 temperatures; all algorithms are based on the reference

model (3.1)–(3.2)–(3.3) discussed in Chapter 3. Figure 4.4 indicates that the optimised variational lower

bounds obtained by annealed variational inference are consistently higher and less variable than under

vanilla variational inference. There is also little difference across schedules, with the maximum value of
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Figure 4.5 – Selection performance by classical and annealed variational inference (LOCUS method of
Chapter 3) and univariate screening based on 25 simulated datasets. The annealing uses a geometric
schedule with initial temperature 5 and grid size 100. Top, left: correlation pattern of the SNPs (Yoruba
population HapMap, ENm014 region, chromosome 7, Consortium et al., 2005), with location of SNPs
with simulated associations; reproduced from Bottolo et al. (2011). Top, middle: simulated associ-
ation pattern (Bottolo et al., 2011, dataset “SIM3”). Top right: truncated average ROC curves based
on marginal posterior probabilities of inclusion for the variational algorithms and p-values for the
univariate method. Bottom: association patterns uncovered for the �rst 200 responses (the remain-
ing 800 are not involved in associations). Left: average marginal posterior inclusion probabilities by
classical variational inference. Middle: average marginal posterior inclusion probabilities by annealed
variational inference. Right: average ¡ log10 p-values by univariate screening. The red marks indicate
the rows and columns containing simulated signals.

L (q) Æ105,806.6 reached in most of the runs under the three schedules: this value is obtained ¼86%

of times for the harmonic schedule, which appears to be slightly inferior to the geometric and linear

schedules, which reach it ¼95 and 96% of times. The three schedules also result in equivalent variable

selection performance (their ROC curves overlap, not shown). We follow Kirkpatrick et al. (1983) and

use the geometric schedule for the rest of our experiments.

We next compare our classical and annealed variational inference algorithms on all 25 replicates, also

using a plain univariate screening for reference. Figure 4.5 shows that annealing substantially improves

signal recovery. The association pattern uncovered is close to that simulated, whereas that obtained

with no annealing presents spurious marks resulting from entrapments in the multiple local modes

caused by the linkage disequilibrium. As expected, the pattern produced by univariate screening is
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riddled with false positives. The ROC curves translate these observations into selection performance.

Additional simulations showing the bene�ts of annealing for our variational schemes will be presented

in Section 5.4.4 for a model tailored to the detection of pleiotropic effects in very large response settings.

4.3.3 Towards an adaptive temperature schedule?

The annealing schedule entails several presets (schedule type, initial and number of temperatures)

whose choices are left to the practitioner. Our simulations of Section 4.3.2 suggested that inferences may

not be sensitive to the schedule type, and further experimentation indicated that initial temperatures

between 2 and 20, and grids of 10 to 100 temperatures are suf�cient for good exploration. However,

these choices have no theoretical basis and optimal set-ups may be model-dependent. Intuitively, if

the number of temperatures is small or the initial temperature is very low, the procedure may become

inef�cient in avoiding local optima, whereas if the number of temperatures is large, the number of

iterations before convergence may be unnecessarily large. In Section 5.3, we will discuss a ill-behaved

scenario, where poor schedule choices can be particularly damaging.

A natural solution would be to develop a procedure that embeds the temperature as an auxiliary

parameter to be inferred. This would permit adaptive and dynamic control of the temperature schedule

and may help to balance the number of temperatures used, and hence the resource usage, with the level

of entropy needed for good exploration. Mandt et al. (2016) have described a procedure based on this

idea: they assign a discrete uniform prior over the temperature assignments on the grid and estimate

them jointly with the model parameters using a mean-�eld variational formulation. An important

drawback of their proposal is that it requires the precomputation of an approximation to the joint

distribution normalising constant

½Z Z
p(y,v )cdvdy

¾¡ 1

, (4.9)

where c Æ1/ T is the inverse temperature. Cheap estimates may be envisioned for large n cases, but are

unrealistic for high-dimensional models.

An alternative to computing (4.9) may be to couple the variational algorithm with a Metropolis–Hastings

rule for sampling the temperatures. Inspiration may come from simulated tempering, and in particular

from the adaptive procedure of Geyer and Thompson (1995). Writing the unnormalised densities

h l (v ) Æp(y,v )cl , l Æ1, . . . ,L,

they assume having, for each inverse temperature cl Æ1/ Tl , a procedure for updating v , and couple it

with a Metropolis–Hastings step that implements transitions between consecutive temperatures of the

grid. Their procedure for sampling ( v ,cl ) has stationary distribution proportional to

h l (v )¼(cl ), (4.10)

for some auxiliary numbers ¼(cl ), l Æ1, . . . ,L. They call ¼(¢) an (unnormalised) pseudo-prior as (4.10) re-

sembles the product of a likelihood and a prior, and choose it to obtain a uniform marginal distribution

for the temperature assignments, that is,

p(cl ) / ¼(cl )
Z

h l (v )dv Æ1,
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giving

¼(cl ) Æ
½Z

h l (v )dv
¾¡ 1

, l Æ1, . . . ,L; (4.11)

by doing so, the sampler will spend roughly equal time sampling each heated distribution and no

temperature will be visited too infrequently. The Metropolis version of their algorithm then chooses

k Æl § 1 with equal probability and accepts the transition from cl to ck , using the Metropolis rule

min(1, r ), where

r Æ
hk (v )

h l (v )

¼(ck )

¼(cl )
. (4.12)

The pseudo-prior (4.11) may be more amenable to rough estimation than (4.9); Geyer and Thompson

(1995) propose several estimation strategies for (4.9) based on preliminary runs, such as an itera-

tive adjustment method or a stochastic approximation that updates the computation as the chain

progresses.

Instead of directly estimating the ¼(cl ), we may exploit the fact that they only appear in ratios for

consecutive temperatures, ¼(ck )/ ¼(cl ), k Æl § 1, in Geyer and Thompson (1995)'s Metropolis–Hastings

rule, and implement an annealed importance sampling approximation (Neal, 2001). For instance, with

k Æl ¡ 1, we have

¼(cl )

¼(cl ¡ 1)
Æ ¼(cl )

Z
h l ¡ 1(v )

h l (v )
h l (v )dv

Æ
Z

p(y,v )(cl ¡ 1¡ cl )pcl (v j y)dv , (4.13)

since pcl (v j y) Æ¼(cl )h l (v ) is the posterior of the parameter vector under temperature 1/ cl .

For a �ne grid of temperatures, the difference cl ¡ 1 ¡ cl È 0 is small, so the �rst term in the integrand

of (4.13) is approximately constant. In our variational inference settings, we may thus obtain good

modi�ed importance sampling estimates by approximating pcl (v j y) with the variational distribution

qcl (v ) under the current inverse temperature cl , and drawing from the latter. This readily provides

approximate importance distributions whose importance weights have small variance; these distri-

butions are otherwise dif�cult to specify in high dimensions. Estimating ratios (4.13) might be done

during the course of the algorithm.

The above ingredients may serve to develop an adaptive annealed variational algorithm for our model,

but a number of important concerns still need to be addressed. For instance, we need to be able to

control the error introduced by the importance sampling approximation in the Metropolis–Hastings

step. Some error may be tolerated in the temperature chain, as it would merely lead to a suboptimal

schedule choice. A greater concern is on how to embed the Metropolis–Hastings procedure in the

variational algorithm, without violating the chain's convergence properties. The algorithm of Geyer

and Thompson (1995) involves constructing a Markov chain for v having stationary distribution

proportional to p(y,v )cl , and using samples from this chain to update the acceptance ratio (4.12) for cl .

Using samples from the variational distribution qcl (v ) instead may be interpreted as using a modi�ed

Metropolis–Hastings rule for v with a very good proposal (the variational distribution) and acceptance

ratio forced to unity. While there is hope that the entire procedure may be valid, deriving the theory to

prove this may be hard, as re�ected by the absence of strong research results on hybrid variational and

MCMC algorithms (recall Section 2.3). Moreover, sampling from the variational density may generate

important additional computational costs.
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4.4 Summary

In this chapter, we tackled tailoring our approach to data with marked dependence. We �rst presented

two attempts to explicitly leverage known spatial structure among the predictors, in order to enhance

selection performance and interpretability of posterior quantities in highly-correlated data scenar-

ios. The hierarchical probit model on the probability of associations provides a �exible avenue to

incorporate such structure, yet it is not limited to this use case. For instance, Quintana and Conti

(2013) employed this formulation to introduce a second-stage regression model and exploit external

information on the predictors. We will see other extensions in Chapters 5 and 6.

Several other approaches exist: for instance, Li and Zhang (2010) propose modelling structured predic-

tors using an Ising model in which they inject prior information on pairwise predictor similarity. Stingo

et al. (2011) describe a spike-and-slab model to encode pathway membership or other network infor-

mation by specifying a second-stage logistic model on the probability of inclusion. Kwon et al. (2011)

embed structural information at the algorithmic level; they use information about the dependence of

the predictors to accept or reject moves in a Metropolis–Hastings algorithm.

In the second part of the chapter, we proposed improving exploration multimodal spaces without

resorting to any prior structural belief. We described a simulated annealing algorithm which readily

extends our original variational algorithm, at little added computational cost.

Genome-wide association studies always require follow-up work to pinpoint actual causal variants;

this diminishes the practical relevance of identifying the most promising candidate SNPs inside linkage

disequilibrium blocks. From this perspective, the group and similarity structure models, which provide

association evidence at the level of linkage disequilibrium blocks, could suf�ce. However, it is always

desirable to narrow down the range of candidate functional variants, as this may save substantial

investment in prospective research. Our experiments suggest that annealed variational inference can

achieve this, as it produces improved selection over classical variational inference in highly-correlated

settings. Moreover, it seems to robustly and agnostically handle any structure in the data, and is

applicable to any model and mean-�eld approximation. For all these reasons, we will use annealed

variational inference implementations for the rest of this thesis.

69
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hotspots

In this chapter we address a parameter sensitivity issue that can be especially damaging in large

response settings. The sensitivity concerns a top-level variance parameter controlling the propensity of

predictors to be hotspots, and was alluded in Section 3.1.3, when discussing hyperparameter choices for

! s. We develop a solution based on a second-stage continuous shrinkage model that allows automatic

discrimination of hotspots. Our proposal entails both global and local scale parameters to shrink noise

globally and hence �exibly accommodate the highly sparse nature of genetic analyses, while being

robust to individual signals, thus leaving the effects of hotspots unshrunk. Even though all previous

chapters already tackle ef�cient modelling hotspot genetic variants, whose trans-regulatory effects are

dif�cult to uncover, the work presented in this chapter tailors inference to very large response settings,

in which the detection of hotspots is a prominent task. The discussion focuses on modelling aspects

but numerical experiments show that simulated annealing (adapted from Chapter 4 for the present

model) is critical for ef�cient selection and size estimation of hotspots.

The chapter is organised as follows. Section 5.1 states the problem in light of Jia and Xu (2007),

Richardson et al. (2010) and our proposal of Chapter 3, and formalises its consequences for sensitivity

and multiplicity control. Section 5.2 presents our modelling framework and discusses its properties, and

Section 5.3 comments on a detail of inference. Section 5.4 assesses the performance of our approach in

simulations, and Section 5.5 applies it to real eQTL data.

The work presented below has been developed with Leonardo Bottolo and Sylvia Richardson, and has

been submitted for publication, with minor changes, in Ruf�eux et al. (2018); Section 5.3 is an addition.

5.1 Problem statement

Recall our general modelling framework (3.1)–(3.2): consider a series of hierarchically related regres-

sions, with q centred responses, y Æ
¡
y1, . . . ,yq

¢
, and p centred candidate predictors, X Æ

¡
X1, . . . ,Xp

¢
,

for n samples (n ¿ p),

yt j ¯ t ,¿t » Nn
¡
X ¯ t ,¿

¡ 1
t I n

¢
, t Æ1,. . . ,q ,

¯ st j ° st ,¾
2,¿t » ° st N

¡
0,¾2 ¿¡ 1

t

¢
Å (1¡ ° st)±0 , sÆ1,. . . ,p , (5.1)

° st j ! st » Bernoulli (! st) ,

where ±0 is the Dirac distribution, and where ¿t and ¾¡ 2 are assigned Gamma priors.
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In Section 3.1.2 we saw that the proposals of Jia and Xu (2007) and Richardson et al. (2010) involve

variants of (5 .1) and that the primary difference between these models is in the prior speci�cation

for the probability of association parameter, ! st . Richardson et al. (2010) decouple the predictor and

response effects by setting ! st Æ! s £ ! t , and place prior distributions on each of ! s and ! t , whereas

Jia and Xu (2007) and our model of Chapter 3 are based on the simpler formulation ! st ´ ! s. A suitable

speci�cation of the predictor-speci�c parameter ! s is crucial, as ! s controls the propensity of each

predictor Xs to be a hotspot, i.e., to be simultaneously associated with several responses. As we now

explain, the discrimination of hotspots can be very sensitive to the choice of prior distribution for ! s

and this sensitivity becomes particularly severe in very large response settings, where the detection of

hotspots is a key task.

For the sake of discussion, we illustrate our point with formulation (3.3), whereby

! st ´ ! s
iid» Beta(a,b) , a,b È 0, sÆ1,. . . ,p, (5.2)

assuming exchangeability; similar considerations apply to the models of Jia and Xu (2007) and Richard-

son et al. (2010). We discuss the choice of the hyperparameters a and b through the prior expec-

tation and variance for ! s. The expectation corresponds to the prior base rate of associated pairs,

¹ ! ÆE(! s) Æpr(° st Æ1). Its value should be small to induce sparsity, typically ¹ ! ¿ 1 for p,q À n,

and may be �xed using an estimate of the overall signal sparsity. In contrast, there is no prior state

of knowledge about ¾2
! ÆVar(! s), and its choice turns out to impact the prior size of hotspots when

q is large. To formalise this, it is helpful to study prior odds ratios, as for the discussion on predictor

multiplicity adjustment in Section 3.1.3. Recall that, for a given predictor Xs, and a model M qs in

which Xs is associated with 1 · qs · q responses, the prior odds ratio

POR(qs ¡ 1 : qs) Æ
pr

¡
M qs¡ 1

¢

pr
¡
M qs

¢ Æ
b Å q ¡ qs

a Å qs ¡ 1
, (5.3)

quanti�es the penalty induced by the prior when moving from qs ¡ 1 to qs responses associated with

Xs. The penalty increases with the total number of responses in the model (for �xed a, b and qs), but

it also decreases monotonically as qs increases, so that it is a priori easier to add a response when Xs

is already associated with many responses. More insight into this phenomenon can be obtained by

looking at the quantity
POR(0 : 1)

POR(qs ¡ 1 : qs)
, (5.4)

which compares the cost of adding a further response association with Xs when moving from the null

model or from a model with qs ¡ 1 associations already.

In molecular QTL problems, qs is typically much smaller than q, as each SNP is believed to control

just a few molecular entities. For qs ¿ q, (5.4) behaves roughly linearly in qs with slope ¼ a¡ 1 Æ

¾2
!

©
¹ 2

! (1 ¡ ¹ ! ) ¡ ¹ ! ¾2
!

ª ¡ 1
. Hence, large ¾2

! favours large hotspots while small ¾2
! tends to give an

association pattern that is more scattered across predictors. In the latter case, strong shrinkage towards

¹ ! ¿ 1 may be induced and the resulting hotspot sizes may be underestimated, whereas, in the former

case artifactual hotspots may appear when data are insuf�ciently informative to dominate the prior

speci�cation. Table 5.1 shows that the penalties (5.4) can differ drastically for different choices of ¾2
! .

To evaluate the extent to which this could impact inference in �at likelihood scenarios, it is helpful

to also study the case where qs is of order q, even though this is unlikely to be encountered in our

applications. When qs » q (i.e., when qs/ q tends to a strictly positive constant as q ! 1 ), (5.4) is of

72



5.1. Problem statement

qs 5 10 50 100
¾2

!
10¡ 4 1.0 1.1 1.5 2.1
10¡ 3 1.4 2.0 6.5 12.2
10¡ 2 6.0 12.3 62.4 125.4

Table 5.1 – Ratios (5.4) for a grid of variances ¾2
! and numbers of associated responses qs. The total

number of responses is q Æ20,000 and the base rate is ¹ ! Æ0.1. The penalty varies greatly depending
on the chosen value for ¾2

! and increases roughly linearly with qs.

Figure 5.1 – Variable selection performance with and without multiplicity adjustment, measured by
average ROC curves with 95% con�dence intervals obtained from 100 replicates. Three problems
are simulated, with an increasing number of response variables, q Æ1,000 (left), q Æ2,500 (middle),
q Æ10,000 (right), and p Æ100 candidate predictors for n Æ100 samples. The pattern of associations is
the same for all three scenarios: 50 responses are chosen randomly among the �rst 1 ,000 responses
to be associated with at least one of 10 predictors; the rest of the responses are drawn from Gaussian
noise. For a given response, the proportion of its variance explained by the predictors does not exceed
15%. Two implementations of model (5.1)–(5.2) are compared: one uses a �xed choice of variance
¾2

! Æ¹ 2
! (black curves); its performance deteriorates as q increases, from left to right. The other

uses the proposed adjustment for the total number of responses q, i.e., ¾2
! Æq ¡ 1¹ 2

! (grey curves); its
performance remains unchanged as q increases (see grid). The base rate is �xed to the simulated
proportion of associated predictors, i.e., ¹ ! Æ0.1.

order O(q), so that, in weakly informative data settings, the sensitivity may lead to the manifestation

of massive spurious hotspots associated with nearly all responses. Such undesired “pile-up” effects

highlight the need to adjust for the dimensionality of the response.

The sensitivity of inferences to the hotspot propensity variance relates to the well-known issue of

specifying prior distributions for variance components, as ! s can be viewed as a random effect. While

this sensitivity and its related response multiplicity burden are important problems that affect any

hierarchically related regression model such as (5 .1), they have been neither formalised nor investigated

in the literature. In fact, the number of responses presented in numerical experiments is usually rather

small (10¡ 1,000), mainly limited by the heavy computational load of MCMC sampling, so that this

sensitivity issue may go unnoticed. Another aspect is that “pile-up” effects can be avoided by choosing

a small hotspot propensity variance, at the risk of giving up substantial hotspot selection performance.

The very sparse nature of molecular QTL analyses also rules out the use of simple empirical Bayes

estimates, which typically collapse to the degenerate case ¾̂2
! Æ0, see, e.g., van de Wiel et al. (2018).

Thus, a tailored solution is needed.
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Our proposal resolves the above issues, based on two considerations. First, we argue that “pile-up”

effects can be prevented by suitably linking the hotspot propensity variance to the number of responses,

in effect performing multiplicity adjustment. Indeed, choosing ¾2
! ÆO

¡
q ¡ 1

¢
, ratio (5 .4) is O(1) when

qs » q. For small values of ¹ ! , typically chosen in sparse association problems, this adjustment

amounts to enforcing small and similar numbers of response associations for all predictors, with the

degree of shrinkage depending on the number of responses q (in the limiting case q ! 1 , we obtain

! s ´ ¹ ! ). Figure 5.1 illustrates the degradation of the variable selection performance in moderately

informative problems with increasing q, and shows how the proposed penalty addresses the issue.

Second, we embed and relax this multiplicity adjustment in a fully Bayesian framework involving a

second-stage model on the probability of association, ! st , and hence infer the hotspot propensity

variances from the data in a fully automatic way, with no ad-hoc choice or compromise that would bias

the hotspot sizes.

5.2 Global-local modelling framework

5.2.1 Second-stage probit model on the probability of association

As a �rst step in detailing our proposal, we complement (5 .1) with a hierarchical probit model on the

probability of association, i.e.,

! st Æ©(µs Å ³ t ), ³ t
iid» N (n0, t 2

0 ), sÆ1,. . . ,p, t Æ1,. . .q, (5.5)

where ©(¢) is the standard normal cumulative distribution function, and where we assume for now

that µs
iid» N (0,s2

0). This second-stage model offers an interpretable representation of the association

probability in multiple-response settings: it involves a response-speci�c parameter, ³ t , which adapts to

the sparsity pattern corresponding to each response, and a propensity parameter, µs, which encodes

predictor-speci�c modulations of the probability of association, as in Richardson et al. (2010); it is

therefore more �exible than speci�cation (5.2). The hyperparameters n0 and t 2
0 are set to match a

selected expectation and variance for the prior number of associated predictors per response (see

Appendix C.1). The variance parameter s2
0 essentially plays the role of ¾2

! , presented in Section 5.1,

in in�uencing the prior odds ratios; in particular, an application of the delta method shows that if

s2
0 » O

¡
q ¡ 1

¢
as q ! 1 , then Var{© (µs)} » O

¡
q ¡ 1

¢
. While no closed form can be obtained for prior

odds ratios (5 .3) based on model (5 .5), numerical experiments suggest that (5 .4) indeed behaves

independently of q when s2
0 Æq ¡ 1, for qs ¼q large. Formulation (5 .5) sets the stage for introducing our

new multiplicity-adjusted hotspot model, which combines the bene�ts of both global and local control

and adaptation.

5.2.2 Horseshoe prior on hotspot propensities

Our proposed speci�cation for the hotspot propensity adds �exibility in modelling the scale of µs in

(5.5) by letting

µs j ¸ s,¾0 » N
¡
0,¾2

0¸ 2
s

¢
, ¸ s

iid» CÅ(0,1) , sÆ1,. . . ,p , (5.6)

where CÅ(¢,¢) is a half-Cauchy distribution. This corresponds to placing a horseshoe prior (Carvalho

et al., 2010) on the hotspot propensities, µs
iid» HS(0,¾0). The global scale ¾0 adapts to the overall
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sparsity pattern, while the Cauchy tails of the predictor-speci�c scale parameters ¸ s �exibly capture

the hotspot effects.

Gelman (2006) discusses the relevance of several noninformative and weakly informative priors on ran-

dom effect variances. When the variance is close to zero, which is the case in sparse scenarios such as

molecular QTL studies, Gelman cautions that badly chosen priors may severely distort posterior infer-

ences. This observation is at the heart of work on scale-mixture priors such as the Strawderman–Berger

prior (Strawderman, 1971; Berger, 1980), the Student -t prior (Gelman et al., 2008) or the horseshoe

prior (5.6). These shrinkage priors differ in the modelling of the scale parameter, and all have substan-

tial mass near zero in order to achieve good recovery of the sparsity pattern, while being suf�ciently

heavy-tailed to be robust to strong individual signals (recall Section 2.1.3). In particular, the horseshoe

prior belongs to the class of global-local shrinkage priors that have an in�nite spike at the origin and

regularly-varying tails (Polson and Scott, 2010; Bhadra et al., 2016), and has newly established theoreti-

cal guarantees, such as near-minimaxity in estimation (van der Pas et al., 2017). Fully noninformative

priors (e.g., whereby the scale parameter would be assigned a Jeffreys prior) are ruled out, as they would

fail to regularise.

5.2.3 Multiplicity-adjusted shrinkage pro�le

While the local scale parameters ¸ s are essential to suitably detect the few large signals, the choice of the

global scale ¾0 is no less important, as ¾0 controls the ability of the model to discriminate signal from

noise. Piironen and Vehtari (2017) propose to choose ¾0 based on speci�c sparsity assumptions; we

extend their considerations to our multi-response setting and further highlight how the dimension of

the response needs to be accounted for in order to recover the bene�cial shrinkage properties conferred

by the horseshoe prior when used in the classical normal means model. For a given predictor Xs, we

reparametrise the probit link formulation,

° st j µs, ³ t » Bernoulli {©(µs Å ³ t )} , t Æ1,. . . ,q ,

by introducing a q-variate auxiliary variable zs Æ(zs1, . . . ,zsq), as

° st Æ1{zst È 0}, zst j µs, ³ t » N (µs Å ³ t ,1) , t Æ1,. . . ,q . (5.7)

In this second-stage probit model, zst can be understood as data, and µ as a sparse parameter. Given

the hyperparameters n0 and t 2
0 for ³ t , we have

zst j µs » N (n0 Å µs,1Å t 2
0 ),

so that

E(µs j zs,¾0, ¸ s) Æ(1¡ · s)
1

q

qX

t Æ1
(zst ¡ n0) Å · s £ 0 Æ(1¡ · s)z̄

0
s,

where z̄0
s Æz̄s ¡ n0 and

· s Æ
1

1Å ®(¾0)¸ 2
s

is the shrinkage factor for hotspot propensities, with ®(¾0) Æq(1Å t 2
0 )¡ 1¾2

0.

In the horseshoe prior literature, with half-Cauchy priors on the local scales as well as unit global scale

and error variance, this factor has a Beta(1/2,1/2 ) prior whose shape resembles a horseshoe, hence the
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¸ s

µs

¾0

° st ¯ st

³ t

yi t

Xi s

¿t

¾

i Æ1, . . . ,nsÆ1,. . . ,p

t Æ1,. . . ,q

Figure 5.2 – Graphical representation of model (5.9). The shaded nodes are observed, the others are
inferred. The probability of association is decoupled in response-speci�c, ³ t , and predictor-speci�c, µs,
contributions. The latter entails the global-local second-stage model for hotspots.

name. As this prior density is unbounded at 0 and 1, a priori one expects, either large effects, with · s

close to zero, or no effects, with · s close to one (recall Section 2.1.3). In our case, it can be shown that

p(· s j ¾0) Æ¼¡ 1®(¾0)1/2 · ¡ 1/2
s (1 ¡ · s)

¡ 1/2 [1Å · s {®(¾0) ¡ 1}]¡ 1 , 0 Ç · s Ç 1,

using ¸ s
iid» CÅ(0,1); this prior density reduces to Beta(1/2,1/2 ) when ®(¾0) Æ1, that is, when ¾2

0 ¼q ¡ 1,

as t 2
0 ¿ 1 under sparse assumptions. This formulation therefore enjoys the shrinkage properties of the

horseshoe prior. Critically, using a default choice of ¾2
0 ÆO(1) as q ! 1 would yield E (· s j ¾0) ¼0 for

q large, so that on average, µs would be unregularised. These two choices can be read in light of the

discussion in Section 5.1: the latter mirrors the absence of any correction for the dimensionality of

the response, possibly creating spurious “pile-up” effects, whereas the former satis�es the multiplicity

adjustment condition with the proposed scaling factor q ¡ 1 for ¾2
0.

Fixing ¾2
0 Æq ¡ 1 would stop the global scale from adapting to the degree of signal sparsity. We instead

place a hyperprior on ¾0 which embeds the penalty. Following Carvalho et al. (2010), we choose a

half-Cauchy prior,

¾0 » CÅ(0,q ¡ 1/2 ) . (5.8)

An equivalent parametrisation of (5.6) and (5.8) is

µs j ¸ s,¾0 » N
¡
0,q ¡ 1¸ 2

s¾2
0

¢
, ¸ s

iid» CÅ(0,1) , ¾0 » CÅ(0,1) ,

from which one clearly sees how the multiplicity factor rescales the hotspot propensity variance. For

clarity, we gather the complete speci�cation of our global-local hierarchical model; it combines (5.1)

and the decomposition of the probability parameter (5.5) with (5.6) and (5.8):

yt j ¯ t ,¿t » Nn
¡
X ¯ t ,¿

¡ 1
t I n

¢
, t Æ1,. . . ,q ,

¯ st j ° st ,¾,¿t » ° st N
¡
0,¾2 ¿¡ 1

t

¢
Å (1¡ ° st)±0 , sÆ1,. . . ,p , (5.9)

° st j µs, ³ t » Bernoulli {©(µs Å ³ t )} , ³ t
iid» N (n0, t 2

0 ),

µs j ¸ s,¾0 » N
¡
0,¸ 2

s¾2
0

¢
, ¸ s

iid» CÅ(0,1) , ¾0 » CÅ(0,q ¡ 1/2 ) ,

with Gamma prior distributions for ¿t and ¾¡ 2; a graphical representation is provided in Figure 5.2.
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5.3 A remark on inference

We implemented an annealed variational inference algorithm for model (5.9), resorting to suitable

reparametrisations and data augmentations to obtain the updates analytically (albeit using the in-

complete gamma and exponential integral functions). In particular, obtaining closed-form updates

for the horseshoe's half-Cauchy scale parameters hinged on introducing auxiliary variables to arrive

at variational distributions in the Gamma family or involving cheap-to-compute special functions,

and this was somewhat complicated by the annealing. The full derivation of the annealed variational

updates is in Appendix C.2. We will see in the numerical experiments of Section 5.4.4 that annealing is

critical to accurate hotspot size inferences when SNPs are in high linkage disequilibrium.

We next discuss a pathology that can arise in noninformative data settings when strong annealing is

employed (initial temperature T Æ20 or larger, according to our experiments), and we evaluate several

options to address it. The issue relates to the prior dependency between the horseshoe parameters

µs and ¸ s, as parametrised in model (5.9). The joint prior distribution p(µs j ¸ s,¾0)p(¸ s) creates a

marked “funnel” shape, which re�ects the concentration of µs around zero as the scale ¸ s decreases

(Figure 5.3). When the likelihood is nearly �at, this shape propagates to the posterior distribution, so

the inference algorithm must manage important variations in curvature to fully explore the posterior

space. Somewhat counterintuitively, practical dif�culties arise only when the distributions are strongly

annealed: by traversing larger regions of the parameter space, our algorithm can �nd itself exploring in

the bulk of the funnel, with little chance of reaching back the neck of it. As a result, some ¸ s may have

unusually large variational means, which translates in spurious hotspot effects.

Such pathologies are very common in hierarchical models, owing to their complex geometries and

dependencies; they are not limited to horseshoe distributions, although these are particularly at risk

because of their heavy tails. Moreover, they may concern any type of algorithm, sampling-based or not:

Gibbs sampling may mix poorly (Yu and Meng, 2011), Hamiltonian Monte-Carlo (HMC) chains may

encounter divergent transitions resulting from inadequate step sizes (smaller steps are needed in the

neck of the funnel, but larger in its bulk; Betancourt and Girolami, 2015), and variational algorithms

may suffer from poor mean-�eld representations of the posterior (Ingraham and Marks, 2016).

Papaspiliopoulos et al. (2007) proposed using noncentred reparametrisations, such as

µs Æ¸ sµ̃s, µ̃s j ¾0 » N
¡
0,¾2

0

¢
, ¸ s » CÅ(0,1), (5.10)

as a replacement for the centred parametrisation in (5.9). Formulation (5.10) trades prior independence

between µ̃s and ¸ s, which diminishes the risk of strongly-curved posterior shapes and facilitates

parameter exploration (Figure 5.3). Noncentred parametrisations have since attracted substantial

interest (see, e.g., Betancourt and Girolami, 2015; Ingraham and Marks, 2016), yet a drawback is the

loss of conjugacy, which, for variational inference, prevents closed-form updates. Rudimentary tests

with a stochastic gradient implementation of the noncentred reparametrisation in our model indicated

that inferences are sensitive to the choice of the step size, which also impacts computational times. We

did not pursue this approach further, as it has been suggested that centred parametrisations are more

ef�cient when data informativeness increases (Yu and Meng, 2011; Betancourt and Girolami, 2015).

Concurrently to reparametrisation ideas, many have advocated using lighter tails for local scale pa-

rameters in case of weakly informative data or separation in logistic regression (Gelman et al., 2008;

Piironen and Vehtari, 2015; Ghosh et al., 2017). In particular, Piironen and Vehtari (2015) proposed

replacing the half-Cauchy distribution in the horseshoe prior with a half- t distribution, t Å
º (¢,¢), with
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Figure 5.3 – Centred and noncentred parametrisations for horseshoe prior distribution. Top: “funnel”-
shaped prior (left) under the centred parametrisation; the dependency propagates to the posterior
(right), as the likelihood (middle) is close to �at. Bottom: decoupled prior (left) under the noncentred
parametrisation with µ̃s Æµs/ ¸ s which allows the mean-�eld distribution for µ̃s and ¸ s (black contour,
bottom right) to implicitly reproduce the dependence structure of µs and ¸ s (black contours, top right).
Figure adapted from Ingraham and Marks (2016).

degrees of freedom º È 1,

µs j ¸ s,¾0 » N
¡
0,¸ 2

s¾2
0

¢
, ¸ s » tÅ

º (0,1) , (5.11)

and called this new prior speci�cation hierarchical shrinkage . They argued that the runs of their

HMC algorithm encountered a reduced number of divergent transitions compared to the horseshoe

case º Æ1. We implemented a modi�cation of our algorithm to accommodate (5.11); no generic

derivation was possible for any º , but we could use a systematic approach for º Æ1,3,5,7, after which

computational stability could not be guaranteed (see Appendix C.3.1). We considered real eQTL data

for which our original algorithm with initial temperature T Æ20 produced suspiciously large values for

a few local scale parameters. We ran the algorithm using (5.11) and º Æ7 and observed that the issue

was transferred to the global scale parameter, which grew unexpectedly large owing to its heavy-tailed

distribution, ¾0 » CÅ(0,q ¡ 1/2 ); a quick-�x was to force ¾0 Æq ¡ 1/2 . Lowering the initial temperature

to T Æ5 solved the problem for all algorithms, including our original algorithm for model (5.9), and

yielded inferences comparable to that from the half- t7-distribution with �xed ¾0; see Appendix C.3.2.

Finally, simulations indicated that the half-Cauchy version (5.9) and the half- t version (5.11) achieve

the same selection performance when the hotspots are relatively small, but the former outperforms the

latter in presence of large hotspots.

The above observations therefore suggest that leaving model (5.9) untouched is best. We did not

encounter issues when controlling the initial temperature T . In case of any doubt as to whether

a chosen T is appropriate, a convenient diagnostic can be used that does not require running the

algorithm to convergence: the traces of the local scale variational means can be inspected once the

cold temperature T Æ1 has been reached, to make sure that no divergences appear.

78



5.4. Simulations

5.4 Simulations

5.4.1 Data generation for pleiotropic QTL problems

The numerical experiments presented below are meant to closely reproduce real genetic data scenarios

demonstrating pleiotropy, i.e., the control of several outcomes by a single SNP, for which our method is

primarily designed. They also broadly illustrate the characteristic features of the method when applied

to association studies with a large number of correlated responses. We either extract SNPs from real

datasets or simulate them as autocorrelated by blocks of size 50 and in Hardy–Weinberg equilibrium,

as described in Section 3.4.1. We also generate block-dependent responses using multivariate normal

variables; the blocks consist of 10 equicorrelated responses.

The pleiotropic association pattern is constructed as follows. To model large and functionally inert

genomic regions, we partition the SNPs into N chunks of size 200 and leave bN /2 c chunks with no

associations. From the remaining chunks, we randomly select labels for the “active” predictors, namely,

SNPs associated with at least one response. Similarly, we select labels for the “active” responses, namely,

responses associated with at least one SNP. We then randomly associate each active predictor with

one active response, and each active response with one active predictor. For each active SNP s, we

draw a “propensity” parameter ¼s from a Beta(1,5) distribution, and further associate the SNP with

other active responses whose labels are sampled with probability ¼s; these SNP-speci�c propensities

{¼s} therefore create hotspots of different “sizes”. We generate the associations under an additive

dose-effect scheme with prescribed proportion of response variance attributable to genetic variants,

following the procedure outlined in Section 3.4.1. For a given experiment, we keep the same association

pattern across all replicates, but we regenerate the SNPs (if not real), responses and effect sizes for each

replicate. The remaining settings (e.g., numbers of variables and of samples, effect sizes) vary, so will

be detailed in the text corresponding to each experiment. Data-generation functions are implemented

in the R package echoseqavailable at https://github.com/hruf�eux/echoseq.

5.4.2 Variable selection performance with global-local modelling

In this section we evaluate the performance of our proposal for discriminating hotspots and selecting

pairs of associated predictor and response variables. We simulated a “reference” data scenario with

hotspots associated with approximately 35 responses on average and whose cumulated effect sizes

are responsible for at most 25% of the variability of each response. We also generated four variants of

this scenario: with smaller or larger hotspots (average sizes ¼17 and 85, respectively), and with weaker

or stronger effects (response variance explained by hotspots below 20% and 30%, respectively). Each

problem involves p Æ1,000 SNPs andq Æ20,000 responses (which corresponds the estimated number

of protein-coding genes in humans), for n Æ300 samples. We simulated 20 hotspots, and, depending

on the hotspot size scenario, 100, 200 or 500 responses had at least one association.

We benchmarked our global-local model (5.9) against four alternatives. The �rst three are based on the

proposal of Chapter 3, re-stated in (5.1)–(5.2), with three choices of hotspot propensity variance, ¾2
! .

These choices were made without assuming any prior state of knowledge, as would be faced in real

data situations: we set the base rate of associated pairs to ¹ ! Æ0.002, so that two predictors are a priori

associated with each response, on average. Then, for each model, we set the hotspot propensity scale

to a different fraction of this base rate. The fourth model places a global Gamma prior on the hotspot
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¾! Æ¹ ! £ 0.1 ¾! Æ¹ ! £ 0.5 ¾! Æ¹ ! £ 1 global global-local
Pairwise selection

Reference 55.5 (1.2) 74.1 (1.3) 85.9 (0.7) 69.5 (1.2) 93.6 (0.4)
Smaller hotspots 56.7 (1.0) 67.7 (1.3) 82.6 (0.8) 74.4 (0.9) 90.4 (0.6)
Larger hotspots 57.7 (1.0) 84.4 (0.5) 89.6 (0.3) 65.3 (0.8) 96.7 (0.1)

Weaker hotspots 44.7 (1.0) 57.5 (1.4) 77.3 (0.8) 53.0 (1.2) 81.5 (1.0)
Stronger hotspots 64.0 (1.1) 82.6 (0.7) 90.2 (0.4) 78.6 (0.7) 96.2 (0.1)

Predictor selection
Reference 65.8 (2.7) 68.2 (2.6) 68.2 (2.2) 71.7 (2.1) 74.6 (1.6)

Smaller hotspots 53.1 (3.4) 54.7 (3.3) 54.9 (3.2) 61.0 (3.1) 64.0 (3.0)
Larger hotspots 80.2 (2.9) 84.3 (2.6) 84.0 (2.7) 83.7 (2.4) 87.1 (2.1)

Weaker hotspots 52.9 (3.1) 54.6 (3.2) 56.0 (2.8) 59.2 (2.9) 63.2 (2.5)
Stronger hotspots 75.6 (3.1) 78.3 (2.8) 77.4 (2.7) 81.3 (2.4) 84.7 (2.1)

Table 5.2 – Average standardised partial areas under the curve £ 100 with false positive threshold 0 .01
for predictor-response selection performance and predictor (hotspot) selection performance. Different
hotspot size and effect size scenarios are reported, each based on 64 replicates; the “reference” case
is displayed in Figure 5.4. Standard errors are in parentheses and, for each scenario, the best two
performances are in bold.

propensity precision and embeds the multiplicity penalty used in our proposal, i.e.,
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With this choice, the propensity parameter has a Cauchy marginal prior distribution, µs » C(0,q ¡ 1/2 ).

Both the Cauchy and the horseshoe models rely on the base rate level used for the three �xed-variance

models to de�ne the prior expected number of predictors associated with each response as E p Æ

¹ ! £ p Æ2; the prior variance for this number is set to V p Æ100, which is large enough to cover a

wide range of con�gurations. We use annealed variational inference on all �ve models; the geometric

schedule consists of a grid of 100 temperatures, with initial temperature T Æ5 (recall Section 4.3.1).

Figure 5.4 and Table 5.2 compare the �ve models in terms of selection of associated pairs of predictors

and responses, selection of predictors (in our case, hotspots) and hotspot size estimation. They suggest

several comments.

First, they illustrate our motivating statement: selection is sensitive to the choice of hotspot propensity

variance; the pairwise selection performance of the three models with �xed variances varies greatly.

The model with small variance strongly shrinks the hotspot sizes, which prevents the detection of many

associations. The model with large variance identi�es more pairs but fails to uncover the smallest

hotspots; their estimated signals are overwhelmed by noise as a result of insuf�cient sparsity being

induced (also see Appendix C.4.1). Moreover, arbitrarily �xing hotspot propensity variances to large

values may trigger artifactual “pile-up” effects when the data are less informative, as discussed in

Section 5.1.

Second, the Cauchy model (global shrinkage only) is often able to discriminate the small hotspot

signals from the noise, thanks to its global scale inferred from the data, but is not as good for pairwise

selection and estimation of hotspot sizes; because it is mostly informed by SNPs with no simulated as-

sociations, the global scale concentrates towards zero, which over-penalises large hotspots, hampering
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Figure 5.4 – Performance of �ve hotspot modelling approaches, for the “reference” data generation case.
Left: truncated average ROC curves for predictor-response selection with 95% con�dence intervals
obtained from 64 replicates. Right: sizes of recovered hotspots based on the median probability model
rule (Barbieri and Berger, 2004); 16 replicates are superimposed. The data comprise p Æ1,000 simulated
SNPs with 20 hotspots, q Æ20,000 responses, of which 200 are associated with at least one hotspot,
leaving the rest of the responses unassociated. The block-autocorrelation coef�cients for SNPs were
drawn from the interval (0 .75,0.95), and the residual block-equicorrelation coef�cients for responses
were drawn from the interval (0 ,0.25). At most 25% of each response variance is explained by the
hotspots. For the �xed-variance models, we used a base rate ¹ ! Æ0.002, and scales¾! Æ¹ ! £ {1,0.5,0.1},
as explained in the text.

the detection of pairwise associations with these hotspots. This phenomenon is of particular concern

when signals are extremely sparse, as is thought to be the case in molecular QTL problems. One may

attempt to improve the Cauchy speci�cation by acknowledging the presence of genomic regions with

diverse degrees of functional plausibility and introducing region-speci�c variance parameters to adapt

to these degrees. Although inference may then be marginally impacted by the overall signal sparsity,

such a formulation raises questions on the sensitivity to the chosen genome partition.

Our horseshoe-based proposal performs well for selection of both response-predictor pairs and

hotspots. Unlike the �xed-scale models, it can clearly separate the small hotspots from the noise.

Moreover, the hotspot sizes are well inferred overall: there is some variability depending on the sim-

ulated effects (re-drawn for each replicate), with the very small hotspots often underestimated, but

the estimated sizes are much closer to the truth than those of the other models, which all strongly

overshrink. We obtained the hotspot sizes by thresholding the marginal posterior probabilities of

association at 0 .5, a threshold which corresponds to the median probability model rule described by

Barbieri and Berger (2004) as having optimal prediction performance. Hence, the �exibility offered by

the horseshoe's heavy-tailed local scale parameters improves on global scale parameter formulations,

whether the parameter values are �xed or inferred.
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5.4.3 Null model scenario

We examine the behaviour of our approach on data with neither hotspots nor individual associations.

We took the data simulated for the �rst replicate of the “reference” scenario discussed in Section 5.4.2,

but randomly shuf�ed the response sample labels, thus leaving the response correlation structure

untouched. We ran the method on eight such permuted datasets and observed no hotspot using the

0.5-thresholding rule on the marginal posterior probabilities of inclusion: there were at most four

associated responses per predictor. The average proportion of false positive pairwise associations was

2£ 10¡ 5.

5.4.4 The bene�ts of annealing the local scales

The present numerical experiment focuses on data exhibiting strong predictor and response multi-

collinearity. To best reproduce conditions encountered in molecular QTL studies, we used real SNPs

from eQTL data (see application Section 5.5). We considered a 1 .7 megabase (Mb) region located ¼1 Mb

upstream of the MHC region and comprising 200 variants for which n Æ413 observations were available.

We distributed �ve active SNPs across the blocks and simulated 500 “active” responses. Effects were

small, with each response having at most 10% of its variability explained by genetic variation. We

added another 19 ,500 inactive responses, drawn from Gaussian noise. The residual correlation of the

responses spanned larger values than in Section 5.4.2, with block-correlation coef�cients ½2 (0,0.5).

Figure 5.5 indicates that the annealed variational algorithm clearly discriminates hotspots. Moreover,

when declaring associations using a threshold of 0 .5 on the marginal posterior probabilities, the hotspot

sizes were well estimated, except for SNP id 105. In contrast, the non-annealed version of the algorithm

struggled to single out the relevant SNPs from their correlated neighbours, especially around SNP id

110. We also applied the algorithm with and without annealing on the data from the �rst replicate,

performing 500 runs each using different starting values, and reached conclusions identical to those of

Section 4.3.2: the optimal value reached by the variational objective function is larger and less variable

in the annealed case (Figure 5.5).

5.4.5 Comparison with other approaches

We conclude this series of simulation experiments by comparing the method with existing approaches.

We choose two competing methods, MatrixEQTL (Shabalin, 2012) and HESS (Richardson et al., 2010) as

representative of two types of approaches: a univariate screening algorithm that tests the SNP-response

pairs one by one, and joint hierarchical modelling coupled with parallel chain MCMC inference.

We restrict the number of simulated responses to 10 ,000 in order to ensure a reasonable convergence

time for the HESS MCMC run, and involve 15 SNPs in associations. We rely on the default settings

proposed in the MatrixEQTL and HESS implementations: these correspond, for the former, to using an

additive linear model for the genotype effects and t -statistics for signi�cance tests, and for the latter, to

running three parallel chains for 22 ,000 iterations, discarding the �rst 2 ,000 as burn-in. Our annealed

variational inference procedure was about 30 times faster than the MCMC inference implemented in

HESS, with an average runtime for one replicate of 4 hours and 17 minutes for the former and 5 days

and 10 hours for the latter on an Intel Xeon CPU, 2.60 GHz.
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Figure 5.5 – Performance comparisons between classical and annealed variational inferences, and
with competing methods. Problem with responses equicorrelated by blocks with residual correlation
½2 (0,0.5); 500 of them are under genetic control. Candidate predictors are p Æ200 SNPs from a
cohort of European ancestry, for n Æ413 individuals. Top: Hotspot discrimination achieved by classical
(left) and annealed (right) variational inferences, for a problem with q Æ20,000 responses. The plots
show the cumulated number of responses associated per SNP, after thresholding marginal posterior
probabilities at 0 .5, and averaging over 16 replicates. The red crosses show the simulated sizes of
the �ve hotspots (whose cumulated effects account for at most 10% of the variability of a response).
The coloured regions quantify the linkage disequilibrium structure in r 2 computed with respect to
the simulated hotspots, 9, 50, 115 and 175, respectively. Bottom, left: Histograms of optimised lower
bound on the marginal log-likelihood (ELBO) with classical and annealed variational inferences, 500
replicates; the x-axis shows the maximum ELBO value subtracted from all other values. Bottom, right:
Truncated average ROC curves with 95% con�dence intervals for the MatrixEQTL and HESS methods,
and our proposal. The same settings as above are used, except for the number of responses, limited
to q Æ10,000, and the number of hotspots, 15, whose cumulated effects account for at most 20% of
the variability of a response. Both HESS and our proposal have prior expectation E p Æ1 and variance
Vp Æ10 for the number of SNPs associated with a response; the value of E p is smaller than in Sections
5.4.2 and 5.4.3 because there are fewer candidate predictors, and so is the value of V p , to limit the
computational costs of HESS.
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As expected, the ROC curves of Figure 5.5 indicate that MatrixEQTL performs worse than the two joint

approaches. It correctly identi�es the strong associations but also declares many spurious associations

involving SNPs in high linkage disequilibrium. By borrowing information across all SNPs and responses,

HESS achieves much better association recovery. The HESS run is based on a speci�c choice of hotspot

propensity variance, which is hard-coded and not accessible to the user; we expect the performance

to vary with other choices of variances, similarly to what was shown in Figure 5.4 for the �xed-scale

approach of Chapter 3. With its global and local variances inferred from the data, our proposal performs

best. Confronting this performance with MCMC inference further suggests that the independence

assumptions underlying the variational mean-�eld formulation do not degrade the quality of variable

selection, as seen in Chapter 3. The coupling with simulated annealing results in an excellent selection

in our experiments, and in a fraction of the time required by MCMC techniques; this is particularly

remarkable in highly multimodal settings.

5.5 A targeted study of hotspot activity with stimulated monocyte

expression

In this section, we apply our approach to the eQTL data introduced in the motivating example of

Section 1.1. These data differ from most molecular QTL data, as they entail expression from CD14 Å

monocytes before and after immune stimulation, performed by exposing the monocytes to the in�am-

mation proxies interferon- ° (IFN- ° ) or differing durations of lipopolysaccharide (LPS 2h or LPS 24h).

The genetic variants are SNPs determined using Illumina arrays and the samples were obtained from

432 healthy European individuals.

Related work (Fairfax et al., 2014; Kim et al., 2014; Lee et al., 2014) has suggested that gene stimulation

may trigger substantial trans-regulatory activity, creating favourable conditions for the manifestation of

hotspot genetic variants; the analysis of stimulated eQTL data should therefore bene�t from a method

tailored to the detection of hotspots. In addition to monocyte expression, we consider B-cell expression

data for the same samples, to contrast the hotspot activity for the two cell types. Here, we analyse

three genomic regions comprising genes thought to play a central role in the pathogenesis of immune

disorders (Fairfax et al., 2012, 2014): NFE2L3on chromosome 7, IFNB1 on chromosome 9, and LYZ on

chromosome 12. Each region involves 1,500 SNPs and spans from 7.5 to 12 Mb.

The following quality control steps were performed prior to the analyses. For the genotyping, we

applied standard �lters that exclude SNPs with call rate Ç 95%, violate the Hardy–Weinberg equilibrium

assumption (at nominal p-value level 10 ¡ 4), or have minor allele frequency Ç 5%. For the transcripts,

we considered the top 30% quantile of the interquartile range distributions in each (un)stimulated

condition. In order to work with a common set of transcripts across conditions, we then retained the

intersection of the transcripts selected in each condition, and checked that no highly varying transcript

was dropped in this process. Finally, we discarded samples with unusual transcript values, separately

for each condition; the numbers of individuals thus retained were 413 for unstimulated monocytes,

366 for IFN- ° , 260 for LPS 2h, 321 for LPS 24h and 275 for B-cells, and the number of transcripts was

24,461.

We ran our method on each of the three regions, and for all four monocyte conditions, as well as for the

B cells, resulting in 15 separate analyses. We employed the same prior base rate of associated pairs as in

the simulation of Sections 5.4.2 and 5.4.3, giving a prior average of E p Æ0.002£ p Æ3 SNPs associated

with each transcript, and used a variance of V p Æ25. Figure 5.6 compares the evidence for hotspots
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Figure 5.6 – Evidence for hotspots from stimulated eQTL analyses, for the NFEL2L3, IFNB1 and LYZ
genomic regions with the four monocyte conditions and the B-cell negative controls. Top: for each
condition, raw hotspot evidence for all three regions comprising NFEL2L3, IFNB1 and LYZ. Scatterplots
with ¡ log10 p-values of univariate screening, summed across responses, versus marginal posterior
probabilities of inclusion obtained by our proposal, summed across responses. Bottom: Hotspot sizes,
as declared using a permutation-based FDR of 20%.

produced by our proposal and plain univariate screening. It shows the nominal ¡ log10 p-values of

a univariate screening against the raw posterior probabilities, both summed across responses, and

suggests that the two approaches agree on the small or moderate evidence but also that our proposal

appears to boost and better distinguish hotspot effects.

In order to derive empirical false discovery rates, we ran a permutation analysis with 30 replicates for

each region and condition, by shuf�ing the sample labels of the expression matrix; this was computa-

tionally feasible thanks to the ef�ciency of our variational procedure. We then obtained Bayesian false

discovery rates for a �ne grid of thresholds on the posterior probabilities, and �tted a spline in order to

derive thresholds corresponding to a false discovery rate of 20%.

Figure 5.6 indicates increased trans-regulatory activity under stimulation with IFN- ° and LPS 24h.

This activity was endorsed by the absence of hotspots in the B-cell analysis; indeed, previous studies

comparing B cells and monocytes on the three regions suggested that QTL activity was speci�c to the

latter (Fairfax et al., 2012), so the former may be used as negative controls in our analyses. The degree of

activity also varies greatly across the three regions: the NFE2L3region is essentially inactive; its largest

hotspot is of size 8 and appears under IFN- ° stimulation, in line with previous observations (Fairfax

et al., 2014). The IFNB1 region shows more activity under LPS 24h stimulation; this con�rms existing

work (Fairfax et al., 2014), but also reveals more associations with transcripts. The top LPS 24h hotspot

in the IFNB1 region, rs3898946, is an eQTL reported in the GTEx database, for genes FOCADand MLLT3

in the tibial artery, and for gene PTPLAD2in skin tissues; this provides some support for a possible
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mechanistic role of this hotspot (to be con�rmed in further work). The LYZ region is known for its high

degree of pleiotropy (Rotival et al., 2011) and is indeed very active in our analyses.

Although Fairfax et al. (2014) mostly report stimuli-speci�c trans-regulatory activities, our top hotspot

hit, rs6581889, located only 9 Kb downstream of the LYZ gene, is persistent across all four conditions: it

is the largest hotspot in the unstimulated condition with size 242, in the IFN- ° condition with size 333,

and in the LPS 2h condition with size 96, and it is the second largest hotspot in the LPS 24h condition

with size 18; a Venn diagram showing the transcript overlap across conditions is given in Appendix C.5.

Hence, the SNP activity was triggered by the IFN- ° stimulation, but was also substantial after 2 hours

and 24 hours of LPS stimulation. The B-cell data provide a good negative control as they show no

activity in the LYZ region; the largest number of responses associated with a given SNP is three, and the

signal does not colocalise with any hotspot uncovered in monocytes. Finally, rs6581889 is a known cis

eQTL for LYZ and YEATS4in multiple tissues, two associations which our analyses con�rmed.

5.6 Summary

We have introduced a new approach for the ef�cient detection of hotspots in regression problems with

tens of thousands of response variables. Our proposal accommodates three essential characteristics of

molecular QTL problems: extreme sparseness of association patterns, strong multimodality induced

by locally correlated genetic variants, and very high dimensions of both the predictor and the response

vectors.

Our simulations indicate that severe sparsity renders both �xed and inferred global hotspot propensity

variance formulations ineffective. Our global-local model provides suf�cient re�nement to properly

identify the locations and sizes of individual hotspots; it is free of ad-hoc variance choices and auto-

matically adapts to different signal sparsity degrees. Informativeness in the hotspot propensity prior

is limited to the embedded penalty adjusting for the response dimension. This penalty prevents the

manifestation of artifactual hotspots when the likelihood is relatively �at; we provided two justi�cations

for its choice.

Our experiments also demonstrate that the simulated annealing scheme for this new model yields

satisfactory estimates of hotspot sizes in situations where classical variational inference would strongly

overshrink.

Finally, our application to multiple-condition monocyte data highlighted a strong candidate eQTL

hotspot that was persistent across conditions, and whose activity was supported by B-cell negative

control analyses and public eQTL annotations.
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6 Leveraging predictor-level informa-

tion

The joint inference approaches presented thus far are intended to improve selection from large predic-

tor and response spaces of genetic variants and molecular outcomes. A natural enhancement would be

to re�ne these selections by leveraging additional data that may provide insights into the propensity

of predictors to be involved in associations. In genetics, epigenomic annotations on genetic variants

are increasingly collected and used as a source of information on the functional potential of these

variants. In this chapter we present a second-stage hierarchical regression extension that can encode

such variables and let them modulate the probabilities of associations.

Section 6.1 provides some background on epigenomic annotations and sets our goals. Section 6.2

presents our model in light of previous proposals and comments on an important modelling assump-

tion. Section 6.3 describes our variational-expectation-maximisation approach to scale up inference to

large numbers of annotations, genetic variants, molecular outcomes and samples. Section 6.4 evaluates

our proposal in simulations.

The material of this chapter is ongoing work in collaboration with Leonardo Bottolo and Sylvia Richard-

son.

6.1 Motivation

Molecular datasets and annotation databases are growing in diversity. On one hand, the biological

entities involved in processes of interest are more likely to be covered by the collected measurements

and their identi�cation may be facilitated by the use of rich complementary data sources to the primary

data. On the other hand, a number of obstacles remain or worsen: the multiplicity burden increases,

sample sizes grow much more slowly than the number of variables analysed, and the local dependence

of genetic variants (linkage disequilibrium) confounds the identi�cation of biological signals.

In Chapter 4, we considered embedding spatial information into the model to improve the interpretabil-

ity of posterior quantities for regions of high linkage disequilibrium. Here, we exploit another type of

structural information, which is based on the functional potential of genetic variants, capitalising on

the wealth of available epigenomic annotation sources. Suitable use of this information may boost the

detection of weak associations and help in discriminating genuine signals from spurious ones caused

by linkage disequilibrium.
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As suggested by its Greek pre�x, the “epigenome” is a generic term referring to chemical compounds

that exert control on the regulatory functions of the genome “on top of” the basic genetic principles of

inheritance. A more precise de�nition is given in Morgensztern et al. (2018):

“[The] epigenome is the complete description of all the chemical modi�cations to DNA

and histone proteins that regulate the expression of genes within the genome. [...] The

most common mechanisms of epigenetic modi�cation include DNA methylation, histone

modi�cations, and transcription of small noncoding RNA.”

DNA methylation is a process that attaches a methyl group to the bases (typically cytosine) of a DNA

molecule, thereby possibly repressing or activating gene expression (Kulis and Esteller, 2010). Histone

modi�cations encompass multiple types of chemical modi�cations of amino acids of histone proteins,

which are primary components of eukaryotic chromatin. These modi�cations can alter the chromatin

structure and function of chromatin-associated proteins (Shogren-Knaak and Peterson, 2003). Finally,

small noncoding RNAs are RNA molecules that do not code for proteins, yet can be important regulators

of gene expression and impact the organisation of chromatin (van Wolfswinkel and Ketting, 2010).

Several studies have con�rmed that genome-wide association and molecular QTL hits are enriched in

epigenomic marks, as well as in other types of functional annotation, such as DNase-I hypersensitive

sites, transcription factor binding sites or location of genetic variants (intronic, intergenic), see, e.g.,

Gaffney et al. (2012), Maurano et al. (2012), Karczewski et al. (2013) and Trynka et al. (2013). Although,

in a strict sense, epigenomic marks represent a subset of functional marks, the former terminology is

often used generically in place of the latter, so we hereafter follow this practice.

Practitioners resort to epigenomic annotations mostly for prioritisation of hits obtained from marginal

screening. They typically loop through all the loci with signi�cant associations, and, for each such locus,

they manually inspect a few marks to decide on “a most promising” functional candidate SNP among

all those in linkage disequilibrium. This approach is unsatisfactory for several reasons: �rst, publicly

available databases nowadays contain several hundreds of epigenomic annotations for each variant,

and selecting a few may involve omitting others that are relevant and thus may bias the conclusions.

Second, even if a comprehensive inspection were feasible, the degrees of relevance of the marks may

be very uneven and may depend on the conditions, tissues, and even genomic regions considered, so it

is not clear how to weight each contribution.

To avoid arbitrariness and to best leverage this information, we propose a molecular QTL model where

the propensity of SNPs to be involved in associations is moderated by annotation variables. The

relevance and effects of these variables are inferred in a top-level regression. The resulting two-stage

hierarchical model enables information to be borrowed from the three data sources (annotations, SNPs

and expression outcomes) in a uni�ed manner. It is designed to �exibly accommodate important

features of the data and to provide interpretable posterior quantities for selection of annotation, SNP

and outcome variables. In particular, it can handle several hundred annotation variables by enforcing

sparsity for their effects. Another particularity of our model is that the annotation effects are modelled

as speci�c to QTL blocks, each formed by a set of SNPs and of expression outcomes ( module ) whose

possible associations may be governed by common epigenomic mechanisms.

We intend to use our new framework with genome-wide annotations from the 1 ,000 Genome Project

or ENCODE consortium, and hope it will both enhance the discovery of risk variants and help to

disentangle the corresponding functional processes, thanks to the selected epigenomic marks.
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6.2 Two-stage hierarchical regression model

6.2.1 Model and earlier proposals

Consider the usual base regression model for q centred responses, y Æ(y1, . . . ,yq ), p centred candidate

predictors for them, X Æ(X1, . . . ,Xp ), and n samples,
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where ±0 is the Dirac distribution, and ¿t and ¾¡ 2 are precision parameters having Gamma priors. To let

the effects modelled in (6.1) be informed by r predictor-level covariates, we introduce a second-stage

probit regression on the probability of effects,
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where V Æ(V1, . . . ,Vr ) is the p £ r matrix of (centred) predictor-level covariates, b 2 P is a block of

predictor and response variables, with P a partition of {1, . . . , p} £ {1, . . . ,q} and b 3 (s, t ).

In our molecular QTL setting, the primary regression model (6.1) describes the regulation of q molecular

expression outcomes by p candidate SNP predictors, while the secondary regression model (6.2)

leverages information from r epigenomic annotation marks on the involvement of the SNPs in the

primary associations. The partition P into pairs of response and predictor subsets enables block-

speci�c predictor-level effects, »b . A given block b should ideally correspond to a module of expression

outcomes under genetic control and a set of SNPs from the genomic region exerting this control. Model

(6.2) then represents the possible epigenomic effects underlying the functional mechanisms in the

block.

The effects of the predictor-level covariates on the association probabilities are modelled using a

spike-and-slab prior to induce sparsity. This allows the incorporation of a large number of epigenomic

annotations, even though a fraction may be related to functional mechanisms between the SNPs and

the molecular outcomes. Moreover, selecting the relevant annotations is easily achieved using the

posterior means of ½b,l , pr(½b,l Æ1 j y).

The values of the hyperparameters n0 and t 2
0 are chosen to induce sparsity, using the procedure

described in Appendix C.1 (the same as for model (5.9)). The speci�cation of hyperparameters s2
0b ,

s2
b and ! b is the object of Section 6.3; in particular, we aim for a uni�ed treatment of the SNP and

annotation effect variances, s2
0b and s2

b , and hence do not place a global-local hyperprior on the former,

as in Chapter 5. Moreover, for the same reason, the hotspot propensity parameter µs of Chapter 5 is now

module-speci�c, µb,s, i.e., only informed by the expression outcomes from a same block b, which may

be suf�cient under the assumption that different modules have different genetic bases. A graphical

representation of model (6.1)–(6.2) is given in Figure 6.1.

The rationale for block-speci�c annotation effects is threefold. First, it is unlikely that all molecular QTL

associations are uniformly governed by the same functional mechanisms, involving a common set of

epigenomic marks. Second, the QTL association pattern is very sparse, so, if the effects of annotations

were modelled globally, they would be diluted by the large, functionally inert, genomic regions, as
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µb,s

° st»b,l½b,l ¯ st

³ t
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¾

sÆ1,. . . ,p

t Æ1,. . . ,q

l Æ1,. . . ,r

b 3 (s, t )

Figure 6.1 – Graphical representation of model (6.1)–(6.2). The shaded nodes are observed, and the
others are inferred. The block-speci�c second-stage regression corresponds to the left plate. Vbl is the
vector gathering the observations of predictor-level covariate l for the predictors belonging to block b.

will be illustrated in the simulations of Section 6.4. Finally, the possibility of using different types of

candidate annotation variables for different blocks is a side-bene�t. Moreover, as most such variables

entail binary information, the number of candidate annotations effectively considered can be reduced

by discarding, in each block b, the constant annotation variables, which are all zero or all unity for the

SNPs in b, and those that are perfectly collinear. An important question however is the speci�cation of

a suitable partition; we will discuss this in Section 6.2.2.

Several proposals exist to leverage epigenomic information in genome-wide association studies. Most

rely on genetic association summary statistics instead of raw SNP and expression data, and focus on

�ne-mapping tasks, thereby restricting to genomic loci of interest (e.g., Kichaev et al., 2014; Pickrell,

2014; Chen et al., 2015). The approach of Yang et al. (2017) instead infers association from raw QTL

data; it involves preprocessing the data to assign a single annotation feature to each SNP (e.g., coding,

noncoding, intergenic), and models SNP effects using a spike-and-slab prior with annotation-speci�c

probability parameter and effect-size variance. The proposal of Quintana and Conti (2013) is closer

to ours: it also resorts to a second-stage regression with a probit link on the probability parameter.

However, the effects of annotations are modelled using a Gaussian prior, while we separate the active

and inactive annotations with a spike-and-slab prior that better lends itself to selection. Finally,

van de Wiel et al. (2018) provide a general discussion on using external information in empirical Bayes

frameworks. They claim that empirical Bayes estimation is particularly suited to settings with lots

of variables and auxiliary information on them; this is indeed supported by Efron (2010)'s empirical

Bayes approach to multiplicity adjustment which quickly became a reference (recall Section 2.2).

They formalise the task of leveraging external information using the concept of “co-data”, originally

introduced in te Beest et al. (2017)

“Co-data are de�ned as any type of information that is available on the variables of the

primary data, but does not use its response labels”,

and mention two earlier contributions: van de Wiel et al. (2016) use co-data to de�ne groups of

predictors and perform inference using a Bayesian ridge regression with group penalties estimated

via empirical Bayes, and te Beest et al. (2017) use co-data to inform the sampling probabilities of a

random forest algorithm, which they estimate from the data. Finally, van de Wiel et al. (2018) discuss

moderating predictor-speci�c spike-and-slab probabilities with co-data using a link function g (in our
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case, the probit link), i.e.,

¯ s j ° s » ° s f ¯ Å (1¡ ° s) f0 , ° s j ¼s » Bernoulli (¼s) , sÆ1,. . . ,p,

¼s Æ g¡ 1 ¡
V T

s »
¢
,

where f ¯ and f0 are “signal” and “noise” distributions. They suggest coupling MCMC or variational

inference with an expectation-maximisation (EM) algorithm for inferring » but provide no implemen-

tation.

We independently developed a variational-EM strategy to obtain empirical Bayes estimates for the

block-annotation hyperparameters, s2
0b , s2

b and ! b,l (see Section 6.3). This allows the scaling of infer-

ence to several hundred annotations, which the above earlier proposals based on MCMC or MCMC-EM

procedures fail to achieve. Moreover, we can handle thousands of response variables simultaneously,

whereas all existing methods apply to a single response; the exception is Li and Kellis (2016), who jointly

model summary statistics for a handful of related responses.

6.2.2 Partition choice

In Section 6.2.1, we motivated the use of block-speci�c predictor-levels effects; this assumption raises

the question of the choice of partition P . We have already argued that molecular QTL blocks should

ideally comprise molecular entities with similar functional properties, e.g., SNPs from a genomic region

and related expression outcomes controlled by this region.

A natural idea would be to revise our approach to adaptively infer the partition along with the QTL

associations and annotation effects. This seems very challenging, however, given the complexity of

the modelling task, so it may be more reasonable to de�ne the partition before applying the model in

its current state. However this exposes us to the problem of “using the data twice”. Indeed, seeking a

partition into blocks of associated SNPs and outcomes con�icts with our primary goal of uncovering the

QTL association pattern, by already attempting to provide partial answers. Hence, existing proposals

whose main objective is to partition molecular QTL data based on association information (e.g., Monni

and Tadesse, 2009; Zhang et al., 2010; Jiang and Liu, 2015) are of no help to us.

A simpler solution may be to de�ne the partition as a grid, by splitting the SNP and outcome spaces

independently, i.e., without using the conditional information of y given X. For instance, we may

group the SNPs based on spatial structures, e.g., by chromosome, haplotypes, or regions �anked by

recombination hotspots. We may also separately seek modules of co-expressed molecular outcomes,

assuming that they may be co-regulated. This can be done in an unsupervised manner, for instance us-

ing hierarchical clustering or graphical models. Functional information gathered in external databases

may also provide guidance (e.g., using pathways such as GO, KEGG or Reactome).

Finding an approach tailored to our needs is future work. It should be suf�ciently �exible to accommo-

date complex functional patterns, yet simple enough to be seamlessly incorporated into our already

complicated framework. The numerical experiments of Section 6.4.3 attempt to provide some insights

into the sensitivity of our approach to the choice of P .
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6.3 Annealed variational-EM inference

Let v be the parameter vector for model (6.1)–(6.2), and let ´ Æ(´ 1, . . . ,´ B ) be the second-stage model

hyperparameter vector, with ´ b Æ(! b ,s2
0b ,s2

b) for block b. We propose estimating ´ via empirical Bayes,

by �nding
ˆ́ Æargmax

´
`

¡
´ ; y

¢
, (6.3)

where `
¡
´ ; y

¢
Ælog p

¡
y j ´

¢
is the marginal log-likelihood. Computing (6.3) analytically for our model

would require high-dimensional integration and thus is infeasible. Because this is a general issue

for variable selection models, George and Foster (2000) proposed two strategies, referred to as the

marginal maximum likelihood criterion (MML) and conditional maximum likelihood criterion (CML),

to approximating the solution in the context of a spike-and-slab model with a g-prior (Zellner, 1986).

The MML criterion corresponds to direct optimisation, expressing the marginal log-likelihood as a

sum over all possible models ° and maximising numerically. As this is infeasible even for moderate

dimensions, the proposed workaround is simply the observation that the sum becomes a product

under orthogonal designs. For the majority of cases where the orthogonality condition is not ful�lled,

George and Foster (2000) propose the CML criterion, which approximates (6.3) by maximising, rather

than marginalising, over the model space, thereby avoiding summing over ° . However they observe in

numerical experiments that this can affect the quality of inferences, sometimes substantially. Moreover,

the CML criterion still requires a search through the model space, which can have a high computational

price.

To circumvent computing marginal likelihoods, Casella (2001) proposed coupling the empirical Bayes

estimation of the hyperparameter ´ with a Gibbs sampling scheme that simultaneously infers the

model parameter vector v . His procedure corresponds to a Monte Carlo EM algorithm which alternates

between constructing an estimate ˆ́ using the samples from a (fully converged) Gibbs sampling for

p(v j y,´ ), and obtaining Gibbs samples from p(v j y, ˆ́ ).

A similar strategy can be implemented within variational inference frameworks; the variational-EM (or

“VBEM”) algorithm was proposed by Blei et al. (2003) in their work on variational inference for latent

Dirichlet allocation. The procedure results in alternating optimisations of the variational lower bound

L (q;´ ) ÆEq log p(y,v j ´ ) ¡ Eq log q(v ), (6.4)

where q(v ) is the variational approximation for p
¡
v j y, ˆ́

¢
for a current estimate ˆ́ . More precisely, it

initialises the parameter and hyperparameter vectors v (0) and ´ (0), and alternates between the E-step,

q (t ) Æargmax
q

L
¡
q;´ (t ¡ 1)¢,

using the variational algorithm for obtaining q (t ) at iteration t , and the M-step,

´ (t ) Æargmax
´

L
¡
q (t ); ´

¢
,

until convergence of ´ (t ). In our case, the updates for the M-step can be obtained analytically by

setting to zero the �rst derivative of L
¡
q (t ); ´

¢
with respect to each component of ´ . This only requires

computing and differentiating the joint likelihood term E q log p(y,v j ´ ) in (6.4), as the entropy term

¡ Eq log q(v ) is a function of ´ (t ¡ 1) and is constant with respect to ´ .
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Algorithm 2: Variational-EM algorithm

De�ne: Parameters v , hyperparameters ´ b Æ(! b ,s2
0b ,s2

b ), ´ Æ(´ 1, . . . ,´ B )

1. Block variational-EM runs for hyperparameter estimation

for b = 1, . . . , B (parallel loop) do

Input : Predictors, responses and annotations for block b: yb , Xb , Vb¢
Output : Empirical Bayes hyperparameter estimate: ˆ́ b

initialise : ´ (0)
b , t Ã 0

repeat

t Ã t Å 1

E-step (details in Appendix D.1):

Input : Current hyperparameter value: ´ (t ¡ 1)
b

Output : Second-stage model variational parameters: ¹ µ , ¾2
µ , ¹ », ¾2

», ½(1) (dropping label b)

repeat
for j Æshuf�e(1, . . . , Jb ) do

qb

³
v j ; ´ (t ¡ 1)

b

´
/ exp

n
E¡ j log p

³
v , yb j ´ (t ¡ 1)

b

´o
,

end

until convergence of all variational parameters;

M-step :

Input : Current variational parameter values: ¹ µ , ¾2
µ , ¹ », ¾2

», ½(1)

Output : Updated hyperparameter value: ´ (t )
b

s2
0b Ã

1

pb

X

s2b

³
¹ 2

µ,s Å ¾2
µ,s

´
, pb Æj{s : (s, t ) 2 b}j

s2
b Ã

P r
l Æ1 ½(1)

l

³
¹ 2

»,l Å ¾2
»,l

´

P r
l Æ1 ½(1)

l

! b,l Ã ½(1)
l , l Æ1, . . . ,r ,

´ (t )
b Ã (! b ,s2

0b ,s2
b )

until convergence of ´ (t )
b ;

ˆ́ b Ã ´ (t )
b

end

2. Final variational run

Input : All predictors, responses and annotations: y, X , V , empirical Bayes hyperparameter: ˆ́
Output : Variational parameters
repeat

for j Æshuf�e(1, . . . , J) do

q
³
v j ; ˆ́

´
/ exp

n
E¡ j log p

¡
v , y j ˆ́

¢o

end

until convergence of all variational parameters;

Each E-step of a variational-EM algorithm requires running the variational algorithm until convergence,

and even if a large tolerance may be suf�cient, these multiple complete variational runs represent

a substantial overhead compared to a vanilla variational algorithm. Moreover, the two regression
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levels of our model (6.1)–(6.2) necessitate the exploration of a very large parameter space, which is

complex and time-consuming for any type of inference. Fortunately, the block speci�cation in (6.2)

suggests that its hyperparameters may be estimated reasonably well by restricting the variational-EM

scheme to subproblems corresponding to each block, i.e., applying model (6.1)–(6.2) to the subsets

of responses yb and predictors Xb of a given block b for obtaining the corresponding empirical Bayes

estimates !̂ b , ŝ2
0b and ŝ2

b . In addition to accelerating hyperparameter estimation for each block (as the

model is much smaller), this has the advantage of allowing parallelisation across blocks. Once all block

hyperparameters are estimated, they are inserted into model (6.1)–(6.2) and variational inference is

run on the entire dataset. A sketch of the procedure is given in Algorithm 2, and the full derivation is in

Appendix D.1. We augmented all variational schemes (in the E-step and the �nal run) with simulated

annealing, although for brevity this is not described in Algorithm 2.

6.4 Simulations

6.4.1 Data-generation design

Generating realistic QTL data with epigenome-induced associations involves several steps, which we

describe here. We �rst de�ne the block association pattern and then successively build the epigenomic

annotation matrix, SNPs, molecular outcomes and effect sizes. An example pattern is given in Figure 6.2;

it corresponds the �rst replicate of a dataset used in the experiments of Sections 6.4.2 and 6.4.3.

We obtain the block association pattern as follows. We �rst partition the p £ q SNP-outcome space

into blocks of identical sizes. We then choose a proportion of “active” blocks, that is, blocks in which

epigenome-induced associations will be simulated for at least one SNP-outcome pair. Finally, we

choose the proportions of “active” predictors and outcomes in active blocks, and randomly select their

labels in each block.

We next generate a binary epigenomic annotation matrix V as follows. We start with a p £ r matrix of

zeros. Then, for each active block b, we draw the number of “active” annotations (responsible for at

least one SNP-response association) from a zero-truncated Poisson distribution with parameter 0 .1, to

obtain mostly one or two active annotations per block, and we randomly select their labels. We then

assign the value unity to each entry of Vb¢corresponding to an active SNP and an active annotation.

Once this is done for all blocks, we add some noise by randomly transforming zero entries into unity in

the V matrix, making sure that no annotation variable is constant across all SNPs.

Given this matrix V , we generate the full dataset: we �rst obtain the n £ p matrix of SNPs X, with

minor allele frequencies È 5%, as described in Section 3.4.1. For each block b, we then simulate

the r £ 1 annotation regression vector »b , such that its nonzero entries correspond to the labels of

the active annotations for b and have a log-normal distribution. Hence, the resulting non-negative

annotation effects can only increase the functional potential of SNPs. We next draw auxiliary variables

zst » N (³ Å V T
s »b ,1), for all ( s, t ) 2 b, with a large negative baseline ³ Æ ¡2.5 to induce overall sparsity.

We build the p £ q matrix ¡ with entries ° st Æ1
¡
zst È q1¡ ®

¢
, where q1¡ ® is the 1 ¡ ® empirical quantile

of zst (sÆ1,. . . ,p , t Æ1,. . . ,q), with ®, a chosen proportion of pairwise associations; this creates QTL

associations that either result from epigenomic marks or are independent of these marks (possibly

outside the active blocks). Finally, we generate a p £ q QTL effect matrix B, whose nonzero entries

match those of ¡ and are drawn from a centred normal distribution with variance set to reach desired
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6.4. Simulations

Figure 6.2 – Simulated block pattern for QTL associations and matrix of epigenomic annotations, for
the �rst replicate of the �rst data-generation scenario. There are p Æ10,000 SNPs (predictors) divided
in blocks of size 1 ,000, q Æ1,000 outcomes (responses) divided in blocks of size 50, and r Æ1,000
annotation variables (predictor-level covariates). Top left: p £ q block QTL association pattern. The
black rectangles indicate the active blocks, i.e., containing at least one epigenome-induced QTL
association. The red labels on the blocks indicate which annotation variable is responsible for the
QTL effects in the block. Top, right: p £ r block pattern for the annotation matrix V . The vertical
lines indicate which annotation variables (columns) act on which SNP blocks (rows). Bottom left:
zoom on the dashed red square (top left) of the QTL association pattern. The black marks locate the
associated SNPs and outcomes. Many simulated associations are located in the active blocks (with
SNPs associated with several related responses), but there are also associations located outside them,
that were not induced by epigenomic annotations. Bottom, right: zoom on the dashed red square (top
right) of the annotation matrix. The matrix is binary, with the black marks locating the one entries. The
active variables (514 and 635) have ones at the rows corresponding to the active SNPs (see bottom left).
The simulated pattern for the second data-generation scenario is similar but comprises more blocks,
i.e., 1,000 blocks of size 100£ 100.
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effect strengths, and we build the n £ q matrix Y ÆX B Å E, where the entries of E are centred normal

with variance unity.

In the numerical experiments of Sections 6.4.2 and 6.4.3, we consider two data-generation scenarios.

The �rst has q Æ1,000 outcomes and p Æ10,000 SNPs, and the second hasq Æ20,000 outcomes and

p Æ500 SNPs. Both are based onr Æ1,000 candidate annotation variables and n Æ100 samples. Repre-

sentative examples of simulated association pattern and annotation matrix are shown in Figure 6.2.

Each experiment involves 16 replicates based on the same active blocks and annotations, but with

re-simulated QTL and annotation effects.

We run all algorithms using a geometric annealing schedule with grid size 100 and initial temperature

T Æ5 (recall Section 4.3.1), and use an expected number of predictors associated with each response of

Ep Æ5 (arbitrarily set to the number of active predictors per active block), and a variance of V p Æ25

(see Appendix C.1).

6.4.2 Variable selection performance

In this section, we assess the ability of our approach to leverage the annotation data for informing

the selection of SNPs and associated outcomes. We �rst make the simplifying assumption that the

partition used for generating the data is known and provided it as input to our algorithm. We compare

our proposal with two approaches; the �rst is the global-local method of Chapter 5, which does not

incorporate annotation marks, and the second is based on a variant of our annotation model, that does

not involve any partitioning or empirical Bayes estimation, namely, where the second-stage model (6.2)

is replaced by

° st j µs, ³ t ,» » Bernoulli
©
©(µs Å ³ t Å V T

s »)
ª
,

»l j ½l » ½l N (0,s2) Å (1 ¡ ½l )±0, µs » N (0,s2
0), ³ t » N (n0, t 2

0 ), (6.5)

½l » Bernoulli (! l ) , ! l » Beta(al ,bl ), l Æ1,. . . ,r ,

�xing s2
0 Æs2 Æ0.1 and using al Æbl Æ0.5 (Jeffreys hyperprior), so the inclusion or exclusion of

annotation variables is a priori equally likely.

Figure 6.3 indicates that our proposal perform best, which is unsurprising given that it relies on the

splitting used for data generation. This nevertheless con�rms that the model could effectively exploit

the annotation data to improve the estimation of molecular QTL associations. This performance is

the result of good recovery of the annotation variables relevant to each active block. Figure 6.4 shows

the marginal posterior inclusion probabilities for annotations, pr(½b,l Æ1 j y), averaged over the 16

replicates of the �rst data scenario. The method produced a few false positives for some replicates,

but the correct annotations had the highest detection rates. No false positives were produced for the

second data scenario, and all active annotations had average probabilities very close to unity (not

shown). Hence, inferences from our model not only serve to improve the detection of QTL associations,

but they also offer appealing posterior summaries to answer the additional biological question of which

annotation variables are important for which blocks of SNPs and expression outcomes. A drawback of

the empirical Bayes estimation of ! b is that uncertainty is not properly propagated to the annotation

posterior inclusion probabilities, which typically collapsed to either zero or unity.

Variant (6.5) improves upon the global-local approach with no annotation information in the large-

response scenario, but loses power in the large-predictor scenario; in this latter case, the method
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Figure 6.3 – Truncated average ROC curves for predictor-response selection with 95% con�dence
intervals obtained from 16 replications. Our proposal is compared with the global-local approach
based on model (5.9) (no annotation information) and the model variant (6.5) (annotation effects
across all predictor and response variables). Left: �rst dataset with p Æ10,000 predictors, q Æ1,000
responses, r Æ1,000 annotations and n Æ100 samples. Right: second dataset with p Æ500 predictors,
q Æ20,000 responses,r Æ1,000 annotations and n Æ100 samples.

Figure 6.4 – Marginal posterior probabilities of inclusion for annotation variables, pr(½b,l Æ 1 j y),
averaged over the 16 replicates of the �rst data scenario. Only the values for the ten active blocks are
shown; those for the inactive blocks are all very close to zero. The locations of the active blocks on the
QTL association pattern are shown in Figure 6.2. The problem involves r Æ1,000 annotations, but, as
mentioned in Section 6.2.1, a practical side advantage of using a partition-based model is that constant
and collinear annotations for a given block can be removed prior to estimating the effects for each
block; this reduced the dimensionality of the latent indicator ½b by one order of magnitude in our
experiments (number of ticks of x-axis).

fails to distinguish the relevant annotations from the noise and includes many irrelevant annotations

in the model. The simulated QTL association effects are weak and the patterns are very sparse; in

particular, the simulated proportion of active SNPs is smaller in the large-predictor scenario than

97



Chapter 6. Leveraging predictor-level information

in the large-response scenario. As a result, very little information effectively triggers the annotation

parameters when these are modelled across all SNP and outcome variables. Moreover, the annotation

effects were simulated as block-speci�c, while the model assumes that the effects are shared across all

blocks.

Finally, we have also considered a model where the spike-and-slab prior in (6.5) is replaced by a pure

slab prior, similarly to Quintana and Conti (2013). Besides being less appealing, as direct selection of

annotations is impractical, this approach struggles to separate relevant from irrelevant annotations

when the number of annotations exceeds 100 or so. Moreover, the algorithm takes very long to converge,

owing to the absence of sparsity constraints in the second-stage regression.

6.4.3 Sensitivity to model misspeci�cation

We next assess the sensitivity of our proposal to the choice of partition. We ran the method on the

second data scenario of Section 6.4.2, providing to the algorithm a partition which is either �ner

or coarser than the “true” partition used to generate the data. More precisely, the data-generation

design partitioned the SNPs into bx Æ5 batches and the responses into by Æ200 batches, resulting

in 1,000 blocks, and the misspeci�ed partitions use bx § bx /5 and by § by /5, yielding 1 ,440 blocks

for the �ner partition and 640, for the coarser partition. We also evaluate making inference using an

annotation matrix whose entries are drawn from noise, more precisely, from a Bernoulli distribution

with probability 0.5.

Figure 6.5 indicates that the misspeci�ed partitions substantially impact inferences, and more so with

the �ner partition. Further experiments are needed to fully assess this, on data with various sparsity

levels, patterns and strengths of QTL and annotation effects, yet these preliminary results highlight the

importance of obtaining good partition estimates.

It is reassuring that inferences based on the annotation matrix with r Æ1,000 noise variables did not

result in poorer selections than the global-local model of Chapter 5, with no annotation information.

Hence, were the annotation data irrelevant or the partition suboptimal, there seems to be no risk of

worsening inferences using the former model, compared to the latter model; this alleviates slightly our

concerns on the choice of partition.

6.4.4 Empirical Bayes estimation without partitioning

Finally, we describe a small experiment to illustrate a degeneracy phenomenon that can affect empirical

Bayes estimation in highly sparse settings. Scott and Berger (2010) highlighted such degeneracy in

variable selection contexts and formalised it as a consequence of marginal likelihood maximisation,

causing the model posterior distribution to collapse to either the null model or the full model. In

our case, the issue arises when considering an empirical Bayes variant of our proposal (6.2), with no

partition, i.e.,

° st j µs, ³ t ,» » Bernoulli
©
©(µs Å ³ t Å V T

s »)
ª
,

»l j ½l » ½l N (0,s2) Å (1 ¡ ½l )±0, µs » N (0,s2
0), ³ t » N (n0, t 2

0 ), (6.6)

½l » Bernoulli (! l ) , l Æ1,. . . ,r ,

with ! l , s2
0, and s2 obtained by variational-EM estimation.
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Figure 6.5 – Truncated average ROC curves for predictor-response selection with 95% con�dence
intervals obtained from 16 replications. Left: comparisons on the second data scenario of our proposal
using the true partition and two misspeci�ed partitions (�ner and coarser), and using a noise annota-
tion matrix. The global-local approach based on model (5.9) is also shown (the green and red curves
overlap). Right: comparisons of our proposal with the variational-EM approach on model variant (6.6)
and the global-local approach (the green and dark red curves overlap), on a problem with q Æ1,000
responses, p Æ500 predictors, r Æ100 annotations and n Æ100 samples.

The empirical Bayes variance of the annotation spike-and-slab model collapses to zero, reaching

ŝ2 ¼7£ 10¡ 7. The resulting estimates for the annotation effects are close to null, so selection does not

bene�t from modelling the annotations; see Figure 6.5. Hence, both non-partition-based models (6.5)

and (6.6) are ineffective, owing the high sparsity entailed by the simulated QTL patterns. Model (6.6)

has the added drawback of requiring prohibitive computational times: indeed, at each iteration of

the EM algorithm, the variational algorithm has to run on the full model until convergence, while our

proposal based on model (6.2) restricts the variational-EM scheme to the variables in the block under

consideration. Simulations only completed on small problems, here, with q Æ1,000 responses,p Æ500

predictors, r Æ100 annotations and n Æ100 samples.

6.5 Summary

We proposed a framework that accommodates annotation information on the candidate SNPs to

enhance the estimation of QTL associations. Our proposal entails a second-stage regression model

on the probability of association. It models the effects of annotation variables using block-speci�c

spike-and-slab priors. This speci�cation is biologically, statistically and computationally appealing:

it accounts for the localised nature of functional mechanisms, prevents degeneracy issues caused by

extreme sparsity, and permits ef�cient computations thanks to our parallel variational-EM scheme.

However, the model is complex, and so are the molecular mechanisms that it aims at representing.

Substantial effort is still needed to test our approach on a variety of plausible data scenarios and on

real data, as well as to compare it with existing approaches. In particular, we saw in Section 6.4.3 that

selection performance hinges on the adequacy of the block partition. We also saw, based on two model

variants, that omitting the partition prevents the full exploitation of the annotation marks, hence even

if �nding a good partition may be dif�cult, this seems to be a necessary prerequisite for a fruitful

application of our method.

99





7 A pQTL study sheds light on the ge-

netic architecture of obesity

This chapter presents a genome-wide application of our approach on proteomic QTL data from two

clinical obesity cohorts. It reproduces the content of a submitted paper (Ruf�eux et al., 2019), which is

based on joint work with Armand Valsesia.

The model used for the proteomic analyses is that of Chapter 3, and inference is done with the annealed

variational algorithm presented in Chapter 4; we hereafter call it LOCUS, as in Chapter 3. The aim of

the chapter is twofold. First, it illustrates the applicability and bene�ts of the method for large-scale

QTL analyses, and second, it evaluates the biological relevance of the uncovered pQTL associations.

Section 7.1 introduces the study and sets our goals. Section 7.2 presents our two-stage pQTL study

design, provides general results and compares them with those of univariate methods. Section 7.3

discusses the �ndings based on associations between proteins under genetic control and clinical

variables on metabolic traits, and Section 7.4 focuses on trans-acting pQTL associations. Section 7.5

summarises the results and opens some perspectives. A “Methods” section, detailing the data collection,

processing and analyses, is in Appendix E. The Supplementary Tables (S1–S9) can be browsed online at

https://locus-pqtl.ep�.ch.

7.1 Introduction

Hundreds of genome-wide association studies (GWAS) have assessed the role of thousands of loci on

obesity susceptibility, yet the action of genetic variation on metabolism remains poorly understood. In

particular, most risk loci identi�ed lie in intergenic regions (Ward and Kellis, 2012; Tak and Farnham,

2015), which complicates their functional interpretation. The analysis of intermediate expression traits

or endophenotypes, via molecular quantitative trait locus (QTL) studies, may provide greater insight

into the biology underlying clinical traits. While gene expression QTL (eQTL) studies are nowadays

routinely performed, protein expression QTL (pQTL) studies have emerged more recently, prompted

by new large-scale production capabilities for proteomic samples. These studies may be particularly

appropriate for exploring the functional bases of obesity. Indeed, previous work reported substantial

variations in protein expression between obese and normal-weight individuals, as well as among

obese individuals, and suggested that proteins may act as proxies for diverse metabolic endpoints (e.g.,

López-Villar et al., 2015; Garrison et al., 2016; Hess et al., 2018; Thrush et al., 2018).
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However two major hurdles hamper pQTL analyses. First, owing to the number of tests that they

entail, conventional univariate approaches lack statistical power for uncovering weak associations,

such as trans and pleiotropic effects (Mackay et al., 2009; Nica and Dermitzakis, 2013), while better-

suited multivariate methods fail to scale to the dimensions of QTL studies. Second, the clinical data

complementing QTL data are often very limited, restricting subsequent investigation to external

information from unrelated populations, health status or study designs, and rendering some degree of

speculation unavoidable.

Here we attempt to address both concerns in an integrative study of two obesity clinical cohorts,

the clinical practice cohort Ottawa ( n Æ1,644, Dent et al., 2002) and the DiOGenes cohort ( n Æ789,

Larsen et al., 2010); two pQTL datasets are available for each cohort, with protein expression levels

quanti�ed in plasma by mass-spectrometry and aptamer-based SomaLogic assays (Kraemer et al.,

2011), respectively.

We present the �rst multivariate genome-wide pQTL analysis, tailored to the detection of weak trans

regulatory effects. We use our variational Bayesian method LOCUS (Ruf�eux et al., 2017), which

simultaneously accounts for all the genetic variants and proteomic outcomes, thereby leveraging

the similarity across proteins controlled by shared regulatory mechanisms (Figure 7.1). We analyse

the data from each proteomic technology in a two-stage design, using LOCUS for discovery with

the Ottawa cohort and replicating our �ndings with the independent DiOGenes cohort. Our rich

mass-spectrometry and SomaLogic proteomic data permit both cross- and intra-platform validation.

Pertinent interpretation of pQTL effects for complex diseases hinges on a careful examination of

metabolic and clinical parameters from the same subjects or, at a minimum, from a population pre-

senting similar clinical characteristics. We demonstrate the biomedical potential of several replicated

pQTL hits, using comprehensive clinical data from the two pQTL obesity cohorts. Our results reveal

novel protein biomarkers under genetic control, in the context of obesity co-morbidities.

7.2 Two-stage multivariate pQTL analyses

7.2.1 Discovery with the Ottawa cohort

We applied LOCUS for multivariate analyses of two proteomic datasets from the Ottawa cohort, compris-

ing 133 and 1,096 proteins measured by mass spectrometry (MS) and the multiplexed aptamer-based

technology SomaLogic (Kraemer et al., 2011), respectively. We analysed about 275 ,000 SNPs capturing

information from about 5M common variants for nearly 400 subjects, adjusting for age, gender and

body mass index (BMI); see Figure 7.1d. At false discovery rate (FDR) 5%, LOCUS identi�ed 18 pQTL

associations from the MS analysis, corresponding to 14 unique proteins and 18 SNPs, and 118 pQTLs

from the SomaLogic analysis, corresponding to 99 proteins and 111 SNPs; see Supplementary Table S1.

7.2.2 Replication with the DiOGenes cohort

We undertook to replicate all uncovered pQTLs in the independent DiOGenes cohort, using MS and

SomaLogic data for n Æ400 and n Æ548 subjects, respectively (Figure 7.1d). The DiOGenes cohort

recruited overweight/obese, non-diabetic subjects, while the Ottawa study was led in a specialised

obesity practice where subjects had severe obesity, dyslipidemia and insulin resistance disorders

(Supplementary Table S4). We validated 15 of the 18 discovered MS pQTLs, and 98 of the 118 discovered
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7.2. Two-stage multivariate pQTL analyses

Figure 7.1 – LOCUS model overview and study work�ow. (a) Inputs to LOCUS are an n £ p design
matrix X of p SNPs, and an n £ q outcome matrix y of q molecular traits, e.g., gene, protein, lipid
or methylation levels, for n individuals. The model is multivariate; it accounts for all the SNPs and
molecular traits jointly. (b) Graphical model representation of LOCUS. The effect size between a SNP
s and a trait t is modelled by ¯ st , and ° st is a latent variable taking value unity if they are associated,
and zero otherwise. The parameter ! s controls the pleiotropic level of each SNP, i.e., the number
of traits with which it is associated. The parameter ¾represents the typical size of effects, and the
parameter ¿t is a precision parameter that relates to the residual variability of each trait t . LOCUS
enforces sparsity on the QTL effects, so it identi�es just one or few markers per relevant locus, even
in regions of high linkage disequilibrium (LD). (c) Outputs of LOCUS are posterior probabilities of
associations, pr(° st Æ1 j y), for each SNP and each trait ( p £ q panel), and posterior means for the
pleiotropy propensity of each SNP, E

¡
! s j y

¢
(Manhattan plot). (d) Work�ow of the pQTL study. The

mass-spectrometry and SomaLogic pQTL data are analysed in parallel. LOCUS is applied on the Ottawa
data for discovery, and 83% of the 18 and 118 pQTL associations discovered with the mass-spectrometry
(MS) and SomaLogic data replicate in the independent study DiOGenes. The relevance of the validated
pQTLs in the obese population is assessed via analyses of clinical parameters from the Ottawa and
DiOGenes cohorts. Further support is obtained by evaluating colocalisation with eQTLs, epigenomic
marks and GWAS risk loci.
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SomaLogic pQTLs at FDR 5% (Supplementary Table S5), yielding a replication rate of 83% in both

cases. While the two platforms had inherent differences, 72 proteins were quanti�ed by both, enabling

cross-platform comparison. Eight of the MS pQTLs could be assessed with SomaLogic (i.e., had protein

levels available), and 7 of them replicated at FDR 5%. Likewise, of the 20 SomaLogic associations having

MS measurements, 14 were con�rmed, demonstrating appreciable cross-technology replication.

We evaluated replication rates separately for cis and trans effects. With the MS data, all 15 cis Ottawa

pQTLs replicated in DiOGenes, while the 3 trans pQTLs did not. With the SomaLogic data, 78 of 81 cis

and 20 of 37 trans pQTLs could be validated. We reached overall replication rates of 97% for cis pQTLs

and 50% for trans pQTLs; the trans-pQTL rate is in line with other pQTL studies (Suhre et al., 2017; Sun

et al., 2018; Yao et al., 2018a). Finally, we found that 73 of our validated pQTLs overlap with pQTLs

previously identi�ed in the general population (using proxy search r 2 È 0.8, and reporting associations

at p Ç 1£ 10¡ 5; Supplementary Table S6). The remaining 40 pQTLs are, to our knowledge, new.

7.2.3 Performance of LOCUS multivariate analyses over standard approaches

The high replication rates achieved using LOCUS are largely attributable to its �exible hierarchical

sparse regression model which exploits shared association patterns across all genetic variants and

proteomic levels (Figures 7.1a–c). Indeed, the increased statistical power of LOCUS over standard

univariate approaches has been extensively assessed (Ruf�eux et al., 2017), and additional evidence

using genetic variants from the Ottawa cohort and synthetic outcomes emulating the proteomic data is

available in Appendix E.2.

The univariate approach GEMMA (Zhou and Stephens, 2014) would have missed 18 of the 113 validated

hits (16%) using a conservative yet standard genome-wide Bonferroni correction of ® Æ0.05 (p Ç

®/275,297/133 for MS and p Ç ®/275,297/1,096 for SomaLogic), and 14 hits (12%) with a permissive

Bonferroni correction ® Æ0.25; see Supplementary Table S5. Moreover, the sparse selection of LOCUS

highlights candidate variants with promising functional evidence, even in regions with strong linkage

disequilibrium (LD) structures; we next provide two illustrations.

The �rst example concerns a locus associated with the SomaLogic levels of the HGFL (hepatocyte

growth factor-like) protein, encoded by the macrophage-stimulating MST1 gene (Figure 7.2a). At

FDR 5%, two variants (rs1800668 and rs56116382) were associated with the HGFL levels. GEMMA

highlighted a large LD block, with 15 SNPs signi�cant at Bonferroni level ® Æ0.05. The pQTLs selected

by LOCUS corresponded to the second and third most signi�cant hits of GEMMA. One of these two,

rs1800668, is located 326 Kb upstream of the MST1gene, within a gene-dense region ( È 40 genes). It had

the highest overlap in epigenomic annotation marks (336 out of 450 marks, enrichment p Æ2.06£ 10¡ 3)

and is a known eQTL for many genes (25 including MST1) in several tissues (Supplementary Table S2).

Interestingly, public pQTL studies reported associations of this SNP with 23 distinct proteins (Supple-

mentary Table S3), but not with HGFL. The top hit identi�ed by the univariate analysis, rs13062429,

had no signi�cant epigenomic enrichment (5 out of 450 marks); it was not picked by LOCUS.

The second example concerns the MHC region, with evidence of cis regulation of the CO4A MS protein

levels (Figure 7.2b). Here, the LD structure is slightly simpler, and GEMMA identi�ed four SNPs after

Bonferroni adjustment with ® Æ0.05. At FDR 5%, LOCUS selected two variants, one of which, rs433061,

was the top hit from univariate analyses ( p Æ3.94£ 10¡ 27). This variant colocalised with 156 epigenomic

marks (enrichment p Æ0.0184) and was 442 base pairs away from a transcription start site (compared

to randomly chosen SNPs, p Æ0.0253). This SNP is a known cis eQTL for the C4A gene in many
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7.2. Two-stage multivariate pQTL analyses

Figure 7.2 – Regional association plots for two loci, identi�ed by the (a) SomaLogic and (b) MS pQTL
analyses. In each case, the top panel displays the nominal ¡ log10 p-values obtained when re-analysing
the region with GEMMA (Zhou and Stephens, 2014); the dashed horizontal line corresponds to the
Bonferroni level with ® Æ0.05. The top SNP identi�ed by LOCUS is marked with a green triangle, and
its correlation in r 2 with the surrounding SNPs is indicated by the yellow to red colors. The second-row
panel shows the cumulated numbers of annotation marks for each SNP. The green bars correspond to
LOCUS top SNPs, the black bars, to the SNPs found signi�cant with GEMMA (Bonferroni adjustment
® Æ0.05). The bottom panel shows the transcript and CpG island positions.

tissues, including liver, arteries and adipose tissue, as well as for È 70 other transcripts (Supplementary

Table S2). It has already been described as a pQTL for CO4A and 27 other proteins (Supplementary

Table S3), suggesting a pleiotropic role.

These two examples indicate that the parsimonious selection of LOCUS can uncover SNPs that colo-

calise with many epigenomic marks and eQTLs, which supports possible regulatory roles. The next two

sections generalise these observations for all validated pQTLs identi�ed by LOCUS.

7.2.4 Colocalisation with eQTLs and evidence for regulatory impact

We assessed the overlap of the 113 validated pQTLs with known eQTLs. Seventy-seven of the 104 SNPs

involved in our pQTL associations had one or more eQTL associations in at least one tissue. These SNPs

have been implicated in 83 eQTL associations, representing a signi�cant enrichment ( p Ç 2.2£ 10¡ 16).

Forty-nine of these 77 SNPs were eQTL variants for the gene coding for the protein with which they

were associated in our datasets. Our pQTLs were also enriched in epigenome annotation marks

(p Æ9.20£ 10¡ 4) and signi�cantly closer to transcription start sites compared to randomly chosen SNP

sets (p Æ9.99£ 10¡ 6). These observations suggest potential functional consequences of our pQTL hits.
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7.2.5 Colocalisation with GWAS risk loci

A total of 217 previously reported genome-wide associations overlapped our validated pQTL loci,

corresponding to 139 unique traits mapping to 68 distinct regions (based on LD r 2 È 0.8). Nineteen

sentinel SNPs, i.e., SNPs speci�cally identi�ed by LOCUS pQTL analyses, were directly involved in these

associations (Supplementary Table S8) representing a signi�cant enrichment ( p Ç 2.2£ 10¡ 16). Some of

these results generate useful hypotheses to be explored in future research.

For instance, our aforementioned HGFL pQTL, rs1800668, is in strong LD ( r 2 È 0.95) with rs9858542

and rs3197999, which are known to associate with Crohn's disease (Wellcome Trust Case Control

Consortium, 2007; Franke et al., 2010; Liu et al., 2015). While gene causality remains to be demonstrated,

our pQTL �nding may be of clinical relevance given the prevalence of Crohn's disease in overweight

and obese subjects (Nic Suibhne et al., 2013; Singh et al., 2017); the region would merit follow-up in

in�ammatory bowel disease cohorts.

Another example concerns an association between rs3865444 and the Siglec-3 protein, whose coding

gene, CD33, has been reported as a risk factor for Alzheimer's disease (Naj et al., 2011; Lambert et al.,

2013; Sims et al., 2017). As subjects obese in midlife are more at risk of developing late-life Alzheimer's

(Xu et al., 2011; Lambert et al., 2013), this pQTL may help to better understand the genetic bases

of Alzheimer's disease and dementia; its potential as a prognosis biomarker should be studied in

Alzheimer's cohorts, ideally using weight records.

7.3 Proteins as endophenotypes for the genetics of obesity

Annotation queries suggested that most pQTLs had implications in in�ammation, insulin resistance,

lipid metabolism or cardiovascular diseases. We performed a more systematic evaluation of their

clinical relevance in a meta-analysis of the DiOGenes and Ottawa clinical and proteomic data, and

found that 35 of the 88 proteins under genetic control had associations with dyslipidemia, insulin

resistance or visceral fat-related measurements at FDR 5%, with consistent directions of effects in the

two cohorts (Supplementary Table S9). These associations should be attributable metabolic factors

independently of overall adiposity, as we controlled for BMI as a potential confounder. Remarkably,

we found that the 88 genetically-driven proteins are signi�cantly more associated with the clinical

variables than randomly chosen protein sets ( p Æ0.014); this enrichment suggests that the primary

pQTL analyses can help uncover potential proteomic biomarkers for the metabolic syndrome.

Figure 7.3a displays the associations as a network. The triglyceride measurements and visceral adiposity

index (VAI) had the highest degree of connectivity and were connected with measures of insulin

resistance and other lipid traits via proteins such as FA7, IL1AP, KYNU, PROC, RARR2 and WFKN2. CFAB,

FETUA, PA2GA had lower connectivity, yet are relevant in the context of obesity (Matsunaga et al., 2018;

Goustin and Abou-Samra, 2011; Monroy-Muñoz et al., 2017). Finally, several trans-regulated proteins

were implicated in clinical associations: CADH5, CD209 and LYAM2, all controlled by the pleiotropic

ABO locus; HEMO (Hemopexin), a liver glycoprotein controlled by the CFH locus, itself coding for

another liver glycoprotein; PROC controlled by its own receptor PROCR; and TXD12 (thioredoxin

domain containing 12), controlled by the DAG1/BSNlocus (see also Figure 7.3b).

The pQTL associations involving proteins with clinical associations at FDR 5% are listed in Table 7.1.

Subsequent sections discuss the possible functional and biomedical relevance of a selection of pQTL

associations based on their connection with clinical variables, as summarised by Figure 7.3a. Forest
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Figure 7.3 – Associations of proteins under genetic control with clinical parameters, and trans-pQTLs
associations. (a) Network displaying the associations (FDR Ç 5%) between protein levels and clinical
variables obtained by meta-analysis, adjusting for age, gender and BMI. Nodes for clinical parameters
are in dark grey with black borders (fasting glucose, HDL, HOMA-IR, insulin resistance, LDL, total
cholesterol, triglycerides, visceral adiposity index); proteins are in light grey, and type of genetic control,
cis or trans, is depicted with circular or square nodes, respectively. The edge thickness is proportional
to the signi�cance of association, and the node size is proportional to its connectivity. (b) Circular plot
showing the trans-pQTL associations uncovered by LOCUS (FDR Ç 5% for discovery and validation).
Each arrow starts from the pQTL SNP with label indicating its closest gene (grey) and points to the gene
(black) coding for the controlled protein.

plots for this selection are given in Figure 7.4 to help visualise the effect directions. Unless otherwise

speci�ed, all associations described have meta-analysis FDR corrected p-value below 5%, and we

provide their nominal p-values in parentheses.

7.3.1 CFAB and RARR2, mediators of adipogenesis are under genetic control

CFAB (complement factor B) and RARR2 (Retinoic acid receptor responder protein 2) levels associate

with distinct clinical parameters (Figures 7.3a and 7.4), yet both play a role in adipogenesis and hence

are particularly interesting in the context of obesity and related co-morbidities.

The CFAB protein controls the maturation of adipocytes (Matsunaga et al., 2018). Both the MS and

SomaLogic measurements were positively associated with BMI (MS: p Æ2.08£ 10¡ 8, SomaLogic:

p Æ2.23£ 10¡ 13) and with fasting insulin (adjusting for BMI; MS: p Æ4.45£ 10¡ 5, SomaLogic: p Æ

3.44£ 10¡ 4). The CFAB SomaLogic levels were negatively associated with cholesterol ( p Æ1.43£ 10¡ 3),

LDL (p Æ1.30£ 10¡ 5), and with HDL at higher FDR (nominal p Æ1.47£ 10¡ 2, corrected p Æ0.11). This

is consistent with previous gene expression �ndings (Moreno-Navarrete et al., 2010).

The MS and SomaLogic analyses independently highlighted the same cis-acting locus as putative

regulator of the CFAB protein. In particular, the sentinel pQTL SNP detected in the SomaLogic analysis,

rs641153, is a missense variant located in the MHC region, 180 base pairs away from a transcription

binding site (signi�cantly closer than other SNPs, p Æ1.16£ 10¡ 2). Further investigation using JASPAR
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Protein Protein name Clin. SNP Chr Position LOCUS PPI pQTL validation p -value

CADH5 Cadherin-5 L rs8176741 9 136131461 1.00 4.68 £££ 10¡ 30

CD209 DC-SIGN L/V rs8176741 9 136131461 1.00 7.74 £££ 10¡ 10

rs2519093 9 136141870 1.00 6.24 £££ 10¡ 26

CFAB Factor B G/L rs150132450 6 31906334 0.85 9.61£ 10¡ 4

rs641153 6 31914180 1.00 3.92£ 10¡ 12

CNTN2 CNTN2 L rs11240396 1 205205081 1.00 6.82£ 10¡ 14

CO7 C7 L rs71623870 5 40966676 0.83 4.03£ 10¡ 4

ECM1 ECM1 L/V rs34964511 1 150298015 1.00 3.77£ 10¡ 6

rs71578487 1 150340059 1.00 1.07£ 10¡ 11

rs72696900 1 150425256 0.82 1.5£ 10¡ 6

rs11802612 1 150427279 1.00 3.7£ 10¡ 6

rs35094010 1 150449557 1.00 3.76£ 10¡ 6

ESTD Esterase D L rs73193065 13 47383681 0.90 2.31£ 10¡ 15

FA12 Coagulation factor XII L/V rs55785724 5 176817583 1.00 1.34£ 10¡ 5

FA7 Coagulation Factor VII L/V rs3093233 13 113758130 1.00 3.11£ 10¡ 88

FCN2 FCN2 L/V rs3811140 9 137772111 1.00 9.66£ 10¡ 14

FCN3 Ficolin-3 L/V rs10902652 1 27558522 1.00 1.62£ 10¡ 3

FETUA a2-HS-Glycoprotein G rs2593813 3 186332571 1.00 2.47£ 10¡ 10

rs2593813 3 186332571 1.00 4.51£ 10¡ 8

HEMO Hemopexin L rs10801560 1 196714600 1.00 2.36 £££ 10¡ 26

I17RA IL-17 sR G rs738035 22 17594886 1.00 1.48£ 10¡ 20

I17RB IL-17B R L/V rs35518479 3 53873814 0.76 9.98£ 10¡ 6

IDUA IDUA L/V rs10017289 4 943534 1.00 1.22£ 10¡ 11

IL18R IL-18 Ra L/V rs3836108 2 103037742 1.00 5.22£ 10¡ 26

IL1AP IL-1 R AcP G/L/V rs724608 3 190348810 1.00 8.7£ 10¡ 114

IL6RA IL-6 sRa G rs4845372 1 154415396 1.00 1.72£ 10¡ 81

ITIH3 Inter-alpha-trypsin L/V rs736408 3 52835354 0.97 1.46£ 10¡ 6

inhibitor heavy chain H3

KAIN Kallistatin L rs5511 14 95033595 1.00 9.9£ 10¡ 24

KLKB1 Prekallikrein L rs80177406 4 187166024 0.99 3.54£ 10¡ 6

KNG1 Kininogen HMW L rs1621816 3 186439173 1.00 1.44£ 10¡ 13

KYNU KYNU G/L/V rs6741488 2 143793701 1.00 3.22£ 10¡ 20

LYAM2 sE-Selectin L/V rs2519093 9 136141870 1.00 6.81 £££ 10¡ 62

LYSC Lysozyme L rs71094714 12 69790495 1.00 8.41£ 10¡ 19

MPRI IGF-II receptor L rs3777411 6 160476945 1.00 4.95£ 10¡ 11

PA2GA NPS-PLA2 G/L/V rs6672057 1 20293791 1.00 3.86£ 10¡ 15

PCSK7 PCSK7 L/V rs11216284 11 117003060 1.00 8.17£ 10¡ 31

PROC Protein C L/V rs141091409 20 33739915 0.43 1.66 £££ 10¡ 18

RARR2 TIG2 G/L/V rs1047586 7 150035459 0.96 2.39£ 10¡ 11

SIGL6 Siglec-6 L rs77561179 19 52029477 1.00 3.39£ 10¡ 14

SPRL1 SPARCL1 L/V rs7681694 4 88462729 0.99 5.70£ 10¡ 14

TXD12 TXD12 L rs13062429 3 49559485 1.00 2.26 £££ 10¡ 5

rs34519883 3 49575831 1.00 5.39 £££ 10¡ 33

WFKN2 WFKN2 G/L/V rs9303566 17 48922281 1.00 3.38£ 10¡ 11

Table 7.1 – Proteins associated with clinical parameters (Figure 7.3a) and controlled by pQTL variants.
All associations were detected at FDR Ç 5%. Associations with glycemic traits (fasting glucose, insulin,
HOMA-IR) are indicated by G, with total lipid traits (HDL, LDL, triglycerides, total cholesterol), by L,
and with visceral fat (visceral adiposity index), by V. Trans-pQTL associations are in bold.

(Khan et al., 2018) and SNP2TFBS (Kumar et al., 2017) indicated that rs641153 may affect the binding

sites of four transcription factors (EBF1, TFAP2A, TFAP2C and HNFA). In GTEx (GTEx Consortium,

2015), rs641153 is described as an eQTL for the NELFE and SKIV2Lgenes in multiple tissues, but not

for the CFBgene.

RARR2 (Chemerin protein) is encoded by an essential adipogenesis gene, RARRES2, and regulates

glucose and lipid metabolism by altering the expression of adipocyte genes (Müssig et al., 2009). We

found signi�cant associations with triglycerides, fasting insulin and HDL (Figure 7.4, Supplementary

Table S9), which is consistent with previously described pleiotropic associations of RARRES2variants
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Figure 7.4 – Forest plots for associations between a selection of proteins under genetic control and
clinical parameters, adjusting for age, gender and BMI (Appendix E.1.11). All endpoints are measured in
both the Ottawa and DiOGenes cohorts; they correspond to total lipid levels (�rst row: total cholesterol,
HDL, LDL, triglycerides), glucose/insulin resistance (second row: fasting glucose, fasting insulin,
HOMA-IR) and VAI. In each case, regression coef�cients with 95% con�dence intervals are shown for
the Ottawa and DiOGenes analyses, and for the meta-analysis. The stars indicate associations with
meta-analysis FDR Ç 5% (correction applied across all proteins under genetic control, not only those
displayed; see Figure 7.3a). The order of appearance of the proteins follows that in the text. For proteins
with measurements in the MS and SomaLogic platforms, association results are displayed for both;
trans-regulated proteins are in bold.

with circulating RARR2, triglyceride levels and diverse measurements related to in�ammation (Er et al.,

2018). The MS and SomaLogic RARR2 levels were strongly associated with BMI and visceral fat, even

when controlling for BMI (Figure 7.4; Supplementary Table S9); this clari�es the as-yet unclear relation

between RARRES2and visceral fat mass in obese subjects (Müssig et al., 2009).

Our pQTL analyses indicated a cis association between a missense variant, rs1047586, and RARR2. This

variant was described as an eQTL for multiple genes and as associated with epigenomic marks (DNA

methylation and histone modi�cations, including H3K27ac and H3K4me1 enhancers; Bonder et al.,

2017).

Our analyses illustrate the relevance of CFAB and RARR2 for better understanding metabolic complica-

tions in obese subjects, and provide evidence in favour of their genetic control; both pQTLs colocalise

with several epigenomic marks.
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7.3.2 The importance of IL1AP for metabolic syndrome

The IL-1 pathway plays a critical role in the immune-response associated with obesity and type 2

diabetes (Banerjee and Saxena, 2012); other IL-1 related cytokines, such as IL-1ra, are also well docu-

mented in the context of type 1 and type 2 diabetes (P�eger et al., 2008; Böni-Schnetzler et al., 2018).

The IL1AP (IL-1 receptor accessory) protein is a co-receptor of the IL-1 receptor, and its soluble levels

were found reduced in obese subjects (Bozaoglu et al., 2014). Our analyses found an association be-

tween rs724608 and IL1AP, corroborating previously identi�ed associations with SNPs in LD ( r 2 Æ0.93;

Bozaoglu et al., 2014).

We found associations between IL1AP expression and measures of fasting insulin levels ( p Æ3.88£ 10¡ 5),

HOMA-IR ( p Æ3.89£ 10¡ 4), triglycerides ( p Æ1.61£ 10¡ 3) and visceral fat ( p Æ2.1£ 10¡ 4); see Figures

7.3a and 7.4. Moreover, worsened metabolic syndrome scores (Alberti et al., 2009) were associated with

lower protein levels ( p Æ1.20£ 10¡ 3 in Ottawa and p Æ2.50£ 10¡ 4 in DiOGenes).

7.3.3 WFKN2, a TGF¯ -activity protein with protective effect against metabolic
disorders

The role of the WFKN2 protein and of its coding gene, WFIKKN2, in regulating TGF ¯ activity has

been extensively studied in muscle and skeletal muscle (Monestier and Blanquet, 2016), but, to our

knowledge, not in other tissues. We describe it for the �rst time in the context of obesity and metabolic

disorders. We found that higher protein levels were associated with lower levels of fasting insulin,

triglycerides, HOMA-IR and visceral fat (Figure 7.4), suggesting a protective role against metabolic

dysregulation.

Our analyses suggested that the WFKN2 levels are controlled by rs9303566, which is consistent with

other p- and eQTL studies (Supplementary Tables S6–S7). This SNP was found to be associated with

DNA methylation and histone marks (Chen et al., 2016; Bonder et al., 2017), and is located within 100

base pairs of a transcription factor binding site, with numerous factors such as MYBL2, NFIC, EP300

and MXI1. It is in strong LD with other SNPs with potential regulatory impact; for instance, it is located

9Kb upstream to rs8072476 (r 2 Æ0.97), which overlaps another cluster of transcription factor binding

sites (FOXA1, ESR1, USF1 & 2, TFAP2A & 2C).

7.3.4 In�ammation mediated proteins and their role in insulin resistance

We found a cis effect of rs6741488 on KYNU (Kynureninase) plasmatic levels. KYNU is an enzyme

involved in the biosynthesis of nicotinamide adenine dinucleotide (NAD) cofactors from tryptophan.

This protein and its pathway have been found to be particularly relevant for obesity and associated

metabolic disorders. KYNU was found to be up-regulated by pro-in�ammatory cytokines in human

primary adipocytes, and more so in the omental adipose tissue of obese compared to lean control

subjects (Favennec et al., 2015). Other studies indicated that the kynurenine pathway (KP) may act

as an in�ammatory sensor, and that increased levels of its catabolites may be linked with several

cardiometabolic defects, including cardiovascular diseases, diabetes and obesity (Song et al., 2017).

In our cohorts, higher KYNU levels were associated with decreased HDL levels ( p Æ6.66£ 10¡ 4), and

increased triglycerides levels ( p Æ3.43£ 10¡ 8), visceral fat ( p Æ2.51£ 10¡ 8) and insulin resistance

(marginally, nominal p Æ2.53£ 10¡ 2, corrected p Æ0.17), see Figure 7.4; as expected, higher protein
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levels were associated with a worsened metabolic syndrome score (Ottawa p Æ8.23£ 10¡ 5; DiOGenes

p Æ3.62£ 10¡ 6).

Recent work suggested a causal link between obesity and cancer, mediated by KP activation through

in�ammatory mechanisms (Stone et al., 2018). Interestingly, our analyses highlighted two soluble

interleukin receptor antagonist proteins, namely IL6RA and I17RA, that were both under genetic control

and associated with insulin resistance (Figure 7.3a). We did not �nd signi�cant correlation between

the I17RA and KYNU protein levels, but we did observe a signi�cant negative correlation between

IL6RA and KYNU (Ottawa p Æ0.01 and DiOGenes p Æ4£ 10¡ 3). We found a link between the plasma

levels of KYNU and pro-in�ammatory molecules, namely, IL6, IFNG and TNF ®. In the Ottawa cohort,

where subjects displayed high low-grade in�ammation status, KYNU was positively associated with

IL6 and IFNG at FDR 5%, while in DiOGenes, we found a positive association with IFNG only (data

not shown). Finally, metabolic dysfunctions mediated via KP may relate to another in�ammatory

pathology, namely, psoriasis (Harden et al., 2016), a skin disease aggravated by obesity and improved

by weight loss (Armstrong et al., 2012; Jensen et al., 2016).

Our results thus highlighted pQTLs with probable roles in in�ammation and subsequent metabolic

dysfunctions, reinforcing previous discussion of the potential of KP therapeutic inhibitors against

cardiovascular diseases and metabolic disorders (Song et al., 2017; Jacobs et al., 2017).

7.4 Trans -pQTLs in a strati�ed obese population

In this section, we focus on trans-regulatory mechanisms that may be of particular relevance for

studying metabolic disorders in the obese population. Indeed, owing to its multivariate modelling

tailored to the detection of weak effects, LOCUS could identify several trans and pleiotropic effects that

suggest novel metabolic pathways (Figure 7.3b). We next discuss three important examples among

the validated trans pQTLs, in light of clinical associations; as before, all associations mentioned have

corrected meta-analysis p-values Ç 5% and nominal p-values are provided, unless noted otherwise.

7.4.1 Pleiotropic effects from the ABO locus onto CADH5, CD209, INSR, LYAM2
and TIE1

ABO is a well-known pleiotropic locus associated with coronary artery diseases, type 2 diabetes, liver

enzyme levels (alkaline phosphatase) and lipid levels (Carayol et al., 2017; Suhre et al., 2017; Sun et al.,

2018). Our analyses highlighted two independent sentinel SNPs in the ABO region: rs2519093 and

rs8176741 (r 2 Æ0.03). The former SNP is trans-acting on E-selectin (protein LYAM2 encoded by SELE),

the Insulin Receptor and the CD209 antigen. The latter SNP is trans-acting on the Tyrosine-protein

kinase receptor (Tie-1), Cadherin-5 and CD209. Both SNPs were reported as cis-acting eQTL variants

for ABO, OBP2B and SURF1, and further queries in public databases indicated that rs8176741 may

affect the binding sites for three transcription factors (Myc, MYC-MAX and Arnt), suggesting a complex

gene regulation circuitry.

Our clinical analyses indicated associations of CD209 and LYAM2 with triglycerides and visceral fat,

and CADH5 with triglycerides only (Figure 7.4). All were associated with triglyceride levels, and LYAM2

and CD209 were associated with visceral fat (Figures 7.3a and 7.4). Moreover, CD209 may have an

important role in controlling lipid levels as it was associated with HDL ( p Æ7.58£ 10¡ 6): higher CD209

levels had higher HDL, lower triglyceride levels, and, consistently with these effects, lower visceral fat
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index. Dyslipidemia is a risk factor for Non-Alcoholic Fatty Liver Disease (NAFLD; Bass et al., 2010), and

the CD209 gene levels have been reported as differentially expressed in patients with Non-Alcoholic

Steatohepatitis (NASH) compared to healthy subjects (Sheldon et al., 2016). The role of circulating

protein levels of CD209 could be further studied in NASH/NAFLD cohorts.

Finally, the LYAM2 levels were associated with all the glycemic variables in the Ottawa cohort (fasting

glucose: p Æ6.43£ 10¡ 6, fasting insulin: p Æ3.54£ 10¡ 4, HOMA-IR: p Æ1.8£ 10¡ 4), but only with fasting

glucose in the DiOGenes cohort ( p Æ8.91£ 10¡ 4), although we observed a suggestive association with

HOMA-IR (nominal p Æ0.02, corrected p Æ0.15). Since the Ottawa subjects are more insulin-resistant

than the DiOGenes subjects (average HOMA-IR with standard deviation: 4 .97(3.88) versus 3.00(1.71),

p Æ2.52£ 10¡ 18; Supplementary Table S4), LYAM2 might represent a marker of insulin-resistance

severity. Consistent with this hypothesis, the plasma levels of LYAM2 are employed as a biomarkers of

endothelial dysfunction and risk of type 2 diabetes (Song et al., 2007).

7.4.2 Complement/coagulation: a trans -acting insertion linking PROC and its re-
ceptor

PROC (Protein C, coding gene PROC on chromosome 2) and its paralog protein FA7 (Coagulation

Factor 7, coding gene F7 on chromosome 13) regulate the complement and the coagulation systems.

Both systems promote in�ammation (Ricklin et al., 2010) and contribute to metabolic dysfunction in

the adipose tissue and liver (Phieler et al., 2013). Our analyses suggested novel pQTLs for these proteins

(Supplementary Table S5): FA7 was associated with rs3093233, which is a known eQTL of F7 and F10 in

several tissues (Supplementary Table S7). PROC may be controlled by trans-regulatory mechanisms,

initiated in its receptor gene, PROCR, on chromosome 20; it was indeed associated with an insertion,

rs141091409, located 20Kb upstream of PROCR, an association observed with both our proteomic

platforms. Previous studies found associations between cardiovascular diseases and variants located in

the PROCor PROCRgenes (Reiner et al., 2008; van der Harst and Verweij, 2018). Interestingly, our hit,

rs141091409, was in strong LD (r 2 È 0.95) with the missense variant rs867186, previously identi�ed as

associated with coronary heart disease (van der Harst and Verweij, 2018).

Our clinical analyses support the relation of PROC and FA7 levels with lipid traits: both were positively

associated with cholesterol, triglycerides and visceral fat (Figures 7.3a and 7.4). PROC levels were

quanti�ed by both platforms, and displayed consistent results. The SomaLogic measurements of PROC

were positively associated with LDL ( p Æ5.39£ 10¡ 5). The role of these proteins for cardiovascular and

NAFLD diseases in the overweight/obese population would merit further investigation.

7.4.3 XRCC6, a DNA repair protein as putative biomarker for metabolic disorders

We identi�ed a novel trans pQTL for XRCC6 (X-Ray Repair Complementing Defective Repair In Chinese

Hamster Cells; also known as Ku70). The XRCC6gene activates DNA-dependent protein kinases (DNA-

PK) to repair double-stranded DNA breaks by nonhomologous end joining. DNA-PKs have been linked

to lipogenesis in response to feeding and insulin signaling (Wong et al., 2009). DNA-PK inhibitors may

reduce the risk of obesity and type 2 diabetes by activating multiple AMPK targets (Park et al., 2017). A

recent review discussed the role of DNA-PK in energy metabolism, and in particular, the conversion of

carbohydrates into fatty acids in the liver, in response to insulin (Chung, 2018). It described increased

DNA-PK activity with age, and links with mitochondrial loss in skeletal muscle and weight gain. Finally,
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XRCC6functions have been reported as associated with regulation of beta-cell proliferation, islet

expansion, increased insulin levels and decreased glucose levels (Tavana et al., 2013; Park et al., 2017).

We observed signi�cant associations between the XRCC6 protein levels and several clinical variables in

the Ottawa cohort (FDR Ç 5%). Higher expression was associated with decreased HDL ( p Æ5.83£ 10¡ 4),

as well as with higher triglycerides ( p Æ4.39£ 10¡ 4), insulin levels ( p Æ4.50£ 10¡ 4) and visceral adiposity

(p Æ5.94£ 10¡ 5; Figure 7.4). We only found marginal associations using the DiOGenes data for insulin

levels (nominal p Æ0.02, corrected p Æ0.14) and HOMA-IR (nominal p Æ0.02, corrected p Æ0.16). The

directionality of these effects was consistent in both cohorts. As the Ottawa subjects were more severely

obese, the effects might be larger for subjects with pronounced metabolic syndrome, but this would

require con�rmation.

Our pQTL sentinel SNP, rs4756623, is intronic and located within the LRRC4Cgene, a binding partner

for Netrin G1 and member of the axon guidance (Lin et al., 2003). To our knowledge, LRRC4Chas not

been previously described in the context of obesity, insulin resistance or type 2 diabetes. However,

its partner Netrin G1 is known to promote adipose tissue macrophage retention, in�ammation and

insulin resistance in obese mice (Ramkhelawon et al., 2014). The underlying regulatory mechanisms

between rs4756623 and the XRCC6locus should be clari�ed, and functional studies will be required to

understand their physiological impact.

7.5 Conclusion

Despite important technological advances, large-scale pQTL studies remain infrequent, owing to their

high costs (Carayol et al., 2017; Folkersen et al., 2017; Suhre et al., 2017; Sun et al., 2018; Yao et al., 2018a).

To date, all but our recent study (Carayol et al., 2017) have focused on the general population and have

assessed links with diseases by relying on information from different studies.

Here, we described the �rst integrative pQTL study that relates the associations discovered to metabolic

disorders, such as insulin resistance and dyslipidemia, in the obese population considered. Our

Bayesian method LOCUS con�rmed many pQTLs highlighted in previous studies, despite our sample

sizes 2.5 to 18 times smaller, and revealed a number of novel pQTLs, with sound evidence for functional

relevance and implications for the development of the metabolic syndrome. Our two-stage approach

achieved very high replication rates ( È 80%), and validated new �ndings, which standard univariate

approaches would have missed (e.g., the aforementioned cis and trans associations with CO7, INSR and

XRCC6). This corroborates numerical experiments demonstrating the increased statistical power of

LOCUS over existing approaches (Ruf�eux et al., 2017). Owing to its joint modelling of all proteins and

genetic variants, LOCUS both accounts for linkage disequilibrium and exploits the shared regulatory

architecture across molecular entities; this drastically reduces the multiplicity burden and enhances

the detection of weak effects. Finally, our analyses indicated that proteins under genetic control are

enriched in associations with clinical parameters pertaining to obesity co-morbidities, which further

supports a genetic basis of these parameters and emphasises the advantages of pQTL studies for

elucidating the underlying functional mechanisms. Our complete pQTL and clinical association results

offer opportunities to generate further hypotheses about therapeutic options; they are accessible from

the searchable online database https://locus-pqtl.ep�.ch.

The applicability of LOCUS goes beyond pQTL studies, as it is tailored to any genomic, proteomic,

lipidomic or methylation QTL analyses and can be used for genome-wide association with several

clinical endpoints. Its multivariate framework is made ef�cient at a genome-wide scale thanks to
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a scalable batch-wise variational algorithm and an effective C++/R implementation. Our MS and

SomaLogic analyses completed in a few hours for 275K tag SNPs representing information from about

5M common markers. Moreover, our method scales linearly in terms of memory and CPU usage;

for instance, analyses of 2 million SNPs and 1 ,000 proteins run in less than 40 hours and with a

memory footprint smaller than 256Gb; see pro�ling in Appendix E.3. To our knowledge, no other

fully multivariate method is applicable to large molecular QTL studies without drastic preliminary

dimension reduction; LOCUS therefore opens new perspectives for uncovering weak and complex

effects.

7.6 Summary

We presented a detailed pQTL study using our approach LOCUS. This study demonstrated that LOCUS

is scalable, and �nds pertinent QTL associations, both biologically and clinically. Several improvements

may be considered, however.

First, many of the detected effects were strong, and had been reported in previous studies. Moreover,

the number of validated trans associations seems rather small (twenty). It would be tempting to try

using a looser false discovery rate threshold ( È 5%), or different threshold choices for detecting cis

or trans associations, similarly as in Peterson et al. (2016), and see if additional discoveries can be

validated in the independent cohort.

Second, we did not use the global-local approach of Chapter 5 (which was developed after these data

analyses). To asses whether it would have yielded improved replication rates, we recently re-analysed

the data with this method: the results were almost identical to those described above, with no further

trans association. Hence, even with a tailored approach, we did not �nd any large hotspot, which may

in part be explained by the small number of measured outcomes ( q ¼130 and q ¼1,000) compared to

eQTL data.

Finally, we evaluated the enrichment of the pQTL loci in epigenomic annotation marks. It would

interesting to compare the results with the method of Chapter 6 that directly models them. As this

approach selects annotation marks, this may also permit a �ner interpretation of the mechanisms

underpinning the pQTL associations.
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8 Discussion and future work

This thesis has two main themes. The �rst is the construction of expressive hierarchical models for

molecular QTL data, and the second is ef�cient variational inference for them. We demonstrated the

importance of addressing these themes together; models should lend themselves to ef�cient inference,

and inference algorithms should be model-speci�c. The purpose of inference is variable selection. In

particular, the approaches presented in this thesis all attempt to leverage complex dependencies across

molecular entities to enhance the detection of trans associations and hotspot genetic variants.

Effective solutions require modelling tailored to important features of molecular QTL data. In Chapter 3,

we presented our hierarchical regression framework for joint modelling of q expression outcomes

(responses) and p genetic variants (predictors) for n samples. This framework accommodates the

p,q À n regime using a series of parallel regressions that are linked through the model hierarchy. In

particular, our proposal borrows information across expression outcomes via a parameter that controls

hotspot propensity. This parameter is central to our work: it permits a direct modelling of hotspots by

in�uencing the probabilities of association of each genetic variant with the expression outcomes, and

can accommodate diverse modelling extensions, which we explored in the subsequent chapters.

In Chapter 3, we also considered extending the bottom of the model hierarchy using logit and probit

link functions to model binary or mixed outcome data. Another natural enhancement would be to

propose a negative-binomial adaptation for RNA-seq count data, possibly relying on the Pólya–Gamma

data augmentations of Polson et al. (2013) to obtain closed-form variational updates. It would also be

useful to jointly account for multiple conditions, tissues or cell-types using multivariate link functions

(see, e.g., Petretto et al., 2010; Lewin et al., 2015).

Our simulations suggested that variable selection does not suffer much from not accounting for

the dependence of the outcomes beyond that induced by the model hierarchy, though it would be

interesting to quantify this better using dedicated experiments. One may envision modelling residual

correlation for co-expressed molecular outcomes, although this would require de�ning modules,

which may be unsatisfactory. Finally, real QTL data may exhibit substantial population structure or

relatedness, and we would need to assess its impact on inferences. We may also consider extensions to

involve a random-effects component capturing sample structure, as in the hybrid sparse linear mixed

model of Zhou et al. (2013).

In Chapter 4, we explored encoding genetic structural information via the hotspot propensity parameter

to better represent the uncertainty entailed by the selection of correlated genetic variants. We proposed
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a group and a similarity sparsity model that use the empirical correlation of genetic variants, thereby

improving the interpretability of association estimates in regions with marked dependence. However,

selection may be hampered by the numerous false positive signals, as with marginal screening. It may

be worth trying to incorporate other types of similarity information that may relate more directly to

functional processes, such as those provided by shared pathways or chromatin interactions.

In Chapter 5, we formulated a fully Bayesian second-stage model on the hotspot propensity, based on a

�exible global-local representation that can retain large hotspot effects in highly sparse settings. We

placed particular emphasis on hotspot detection in very large response settings, for which we proposed

a suitable response multiplicity adjustment. Further work is needed to provide recommendations

for selecting hotspots and estimating their sizes from the obtained posterior summaries. Current

practice often uses the 0 .5 optimal-prediction threshold of Barbieri and Berger (2004) on the posterior

probabilities of inclusion, or runs permutation analyses when feasible (which was the case for us).

However, a neater approach may be to devise a decision rule that would exploit the full variational

distributions of the hotspot propensity parameters.

In Chapter 6, we tackled guiding the selection of SNPs by encoding functional information under

the form of epigenomic marks. We used a second-stage spike-and-slab model on the probabilities of

association to infer the relevance and effects of the marks in SNP-outcome blocks. These block-speci�c

effects re�ect common biological assumptions on the localised nature of regulation mechanisms on

the genome and the existence of co-regulated expression outcomes. Our approach is not yet ready for

practical use; coming efforts will concern adequately de�ning the QTL block partition and testing the

sensitivity of inferences to its choice. This should be kept simple to seamlessly adapt to our modelling

framework, which is already quite complex. We will also need to compare our annotation-based model

with our original QTL model on real data.

The effectiveness of the above approaches hinges on the accuracy of variational inference for variable

selection in our QTL modelling framework. Evaluating and enhancing variational inference was a

connecting thread of this thesis, and we found that the algorithms should adapt to the speci�cities of

each model variant. In particular, our structured approximation of Chapter 3 relaxed the strong poste-

rior independence assumptions of vanilla mean-�eld factorisations by retaining the spike-and-slab

multimodal structure. The group and similarity sparsity models of Chapter 4 allowed the restoration of

additional structure into the approximation while maintaining analytical updates. Closed-form algo-

rithms were critical for scalability, and could be obtained by resorting to appropriate reparametrisations

(e.g., Chapter 5) or local approximations (e.g., the logistic regression extension of Chapter 3).

We also saw that variational inference lends itself to simulated annealing and expectation-maximisation

(EM) augmentations, which proved useful in several respects. Simulated annealing enabled improved

exploration of multimodal posteriors (Chapter 4). In particular, this allowed increasing robustness to

different algorithm initialisations and permitted accurate estimation of hotspot sizes by effectively

handling linkage disequilibrium structures (Chapter 5). We discussed adaptive ideas for learning the

temperature schedule to optimise the annealing procedure; developing an effective procedure for this

is future work. The coupling of variational updates with EM steps permitted empirical Bayes estimation

of the epigenomic annotation hyperparameters (Chapter 6). Indeed, the variational-EM algorithm

bypasses intractable maximisation of the marginal log-likelihood by alternating optimisations of the

variational lower bound. The partition-based approach allowed running the empirical Bayes estimation

in parallel, which resulted in an effective algorithm.
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Finally, the computational ef�ciency of our approaches relates to the nature of deterministic algorithms,

but also hinges on their effective implementation. The current version of the code is written in R and

C++, but it may be interesting to evaluate the bene�t of GPU computing or technologies for large-scale

applications, such as Hadoop MapReduce (Dean and Ghemawat, 2008), Apache Spark (Zaharia et al.,

2010) or TensorFlow (Abadi et al., 2016).

A central ambition of this thesis was to bridge the gap between Bayesian joint inference and its

practical use for analysing current molecular QTL data. Most practitioners still resort to marginal

screening, despite its known defects for genome-wide association analyses and its inability to answer

questions related to pleiotropy. In Chapter 7, we provided a practical illustration of the advantages

of our hierarchical approach via a detailed study of two pQTL datasets. We confronted our approach

with marginal screening on these data, highlighting the bene�ts of joint modelling based on external

evidence. The resulting analyses identi�ed novel candidate biomarkers, whose roles merit further

investigation. This, and our various numerical experiments on synthetic and real data, demonstrate

that our approach is scalable, yields interpretable posterior summaries for selection of QTL pairs and

hotspots, and requires very little input (an expected number of associated genetic variants per outcome,

and a variance for this number); they also indicated that it greatly outperforms marginal screening

approaches for identifying trans and pleiotropic effects, thereby effectively managing the inherent

tension between expressive modelling and scalability of inference. We hope that these advantages

will be suf�ciently appealing for practitioners to try our approach on their data, especially as there are

increasing opportunities for joint inference on transcriptomic, proteomic, lipidomic, metabolomic or

even clinical datasets.
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A Appendix for Chapter 3

A.1 Predictor multiplicity control

Sparsity control at predictor level can be induced through the prior distribution of ! , by carefully

selecting its hyperparameters. The prior probability that Xs is “active” (i.e., associated with at least one

response) is
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so assuming exchangeability and setting
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implies that
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where p¤ is interpreted as a prior average number of active predictors. The choice (A.1) yields a

multiplicity adjustment as suggested by a plot of the prior odds ratios (Figure 3.2), indicating the

penalty induced by the prior when moving from qs ¡ 1 to qs responses associated with Xs,

POR(qs ¡ 1 : qs) Æ
pr

¡
M qs¡ 1

¢

pr
¡
M qs

¢ Æ
B(as Å qs ¡ 1,bs Å q ¡ qs Å 1)

B(as Å qs,bs Å q ¡ qs)
Æ

bs Å q ¡ qs

as Å qs ¡ 1
,

where M qs is a model in which predictor Xs is associated with 1 · qs · q responses, so
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A.2 Derivation of the variational algorithm

A.2.1 Variational distributions

We provide the detailed derivation of our variational algorithm for the model and approximation

presented in Chapter 3. For q centred responses, y Æ
¡
y1, . . . ,yq

¢
, and p centred predictors, X Æ
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, for n samples, we have
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We obtain each component of this factorisation using the formula

log q j (v j ) ÆE¡ j {log p(y,v )} Å cst, j Æ1,. . . ,J,

with p(y,v ) given in ( A.2), where E¡ j (¢) is the expectation with respect to the distributions qk over all

variables vk (k 6Æj ), and where cst does not depend on v j (recall Lemma 2.4.1). Hereafter, we also

write E q (¢) for the expectation with respect to the complete variational distribution, and v (r )
j for the r th

moment with respect to the distribution q j of v j . We have
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where cst does not depend on ¯ st and ° st . Completing the square yields
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We then �nd that
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where
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Since ¿t has a Gamma distribution, the expectation E
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As ! s has a Beta distribution, we also get
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A.2.2 Variational lower bound

We provide the expression of the variational lower bound, L (q), on the marginal log-likelihood, log p(y).

It is evaluated at each iteration of the algorithm, in order to monitor its convergence:
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log ¾¡ 2
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¡
log ! s

¢
and Eq log(1 ¡ ! s) are given by (A.4), (A.5) and (A.6).

Hence, L (q) and all variational updates are obtained in closed form, albeit using special functions,

such as the digamma function. To optimise computational ef�ciency, updates are made by blocks, in a
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vectorised fashion, for all responses; convergence under such a scheme is guaranteed by the concavity

of the objective function, L (q), in each of the subvectors composing the blocks. Moreover, L (q) is

guaranteed to increase monotonically at every iteration, which provides a useful check against mistakes

in the computations or the implementation.

A.2.3 Variational algorithm

Algorithm 3: Structured mean-�eld variational algorithm

Input : y (centred), X (standardised using the usual unbiased estimator of the variance),
a, b, ´ , · , ¸ , º , tol, maxit, seed

initialise : M Æ{¹ ¯ ,st }, § Æ
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Compute L (q) based on the current parameter updates (see Appendix A.2.2)
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¯
¯
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The symbols ¯ and ® are the Hadamard operators standing for element-wise multiplication and

division of two matrices of the same dimension.
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A.3 Details on the empirical quality assessment of the variational

approximation

A.3.1 Marginal likelihood computation

We have
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If q° t Æ0, then
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A.3.2 Simple Monte Carlo posterior quantities

The marginal posterior probability of inclusion for predictor Xs and response yt can be approximated

using simple Monte Carlo sums, as follows,
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where the samples are generated independently from
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Similarly, we approximate the posterior mean for ! s as
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Figure A.1 displays and compares the posterior inclusion probabilities obtained by variational, MCMC

or simple Monte Carlo approximations, for the experiment of Section 3.3.2.

126



A.4. Details on the real data problem

Figure A.1 – Comparison of marginal posterior probabilities of inclusion (PPI) for variational Bayes
(VB), MCMC, and simple Monte Carlo approximations. The posterior probabilities of inclusion corre-
sponding to the true signals all overlap.

A.3.3 Competing predictor selection methods

The performance of our approach in terms of predictor selection is compared with the following

regression procedures:

1. univariate ordinary least squares: each response yt is regressed on each predictor Xs and the

statistics maxt Æ1,...,q tst , where tst is the t -statistic for the signi�cance of ¯ st , are gathered and

ranked;

2. elastic net regression for multivariate Gaussian responses ( ® Æ0.5) with 10-fold cross-validation

for choosing the tuning parameter ¸ (glmnet, Friedman et al., 2009). The estimates j¯ sj (s Æ

1,. . . ,p), where ¯ s is the regression coef�cient for Xs and common to all responses, are gathered

and ranked;

3. univariate Bayesian regressions, lmBF (Morey and Rouder, 2015): each response yt is regressed

on each predictor Xs with all computations made analytically. The (average) Bayes factors,
P q

t Æ1 BFst / q (sÆ1,. . . ,p), are gathered and ranked;

4. q Bayesian multiple regressions, BAS (Clyde, 2016), one for each response, using MCMC inference.

A g-prior is used for the regression coef�cients. The (average) Bayes factors,
P q

t Æ1 BFst / q (s Æ

1,. . . ,p), are gathered and ranked; and

5. q Bayesian multiple regressions, varbvs (Carbonetto and Stephens, 2012), one for each response,

using variational inference. The posterior probabilities of inclusion are summed across responses

and ranked.

A.4 Details on the real data problem

A.4.1 Permutation-based Bayesian false discovery rate estimation

We detail the false discovery rate estimation procedure applied in Section 3.6 to compare our method

with the varbvs method of Carbonetto and Stephens (2012) on the real data. We use the two-group mix-

ture approach proposed by Efron (2008) in the context of microarray data analysis (recall Section 2.2):
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we simultaneously consider N null hypotheses and their corresponding test statistics, which we assume

to follow a mixture distribution

F Æ(1¡ ¼0)F1 Å ¼0F0,

where ¼0 is the prior probability for a null case, and F0 and F1 are the null and non-null cumulative

distribution functions. We derive Bayesian false discovery rate values for thresholds ¿,

FDR(¿) Æ
¼0F̄0(¿)

F̄(¿)
, (A.8)

where F̄ Æ1¡ F and F̄0 Æ1¡ F0, using permutation-based estimates. Speci�cally, we obtain an empirical

null distribution by running our algorithm (with the same hyperparameters as those used for the actual

inference) on B datasets with permuted outcome sample labels and compute, for a grid of thresholds

0 Ç ¿1 Ç ¢¢¢ Ç¿K Ç 1,

•FDR(¿k ) Æ
median bÆ1,...,B#{PPI(b)

st È ¿k ; sÆ1,. . . ,p ; t Æ1,. . . ,q}

#{PPIst È ¿k ; sÆ1,. . . ,p ; t Æ1,. . . ,q}
, k Æ1,. . . ,K , (A.9)

where PPIst is the posterior probability of inclusion pr(° st Æ1 j y), PPI(b)
st is the corresponding posterior

probability of inclusion when running the method on the permuted dataset b, and where we conserva-

tively set ¼0 to 1 in (A.8). To �nd thresholds ¿̂ corresponding to preselected false discovery rates, we �t

a cubic spline to the estimates (A.9) obtained for ¿1, . . . ,¿K .

A.4.2 Biological evidence for the mQTL analysis �ndings

We used public association results from the following databases to support the mQTL �ndings of

Section 3.6: GWAS Catalog (Welter et al., 2014), UCSC genome browser (Karolchik et al., 2003), GTEx

(GTEx Consortium, 2015) and GeneCards (Rebhan et al., 1998). Twelve of the 25 SNPs identi�ed

by LOCUS (rs3820711, rs4316911, rs4909818, rs4744227, rs174535, rs680379, rs8012466, rs4906771,

rs573922, rs3903703, rs8114788 and rs6001093) have been reported as associated with BMI, diverse

diabetic or obesity diseases, fatty acid, sphingolipid or phospholipid levels.

A.5 Variational algorithms for some model extensions

We provide general results about the variational algorithms for the model extensions described in

Section 3.7.

A.5.1 Confounding variables not subject to selection

We consider including d covariates Z in the model as

yt ÆZ ®t Å X¯ t Å " t , ®r t » N
¡
0,³ 2

r

¢
, ³ ¡ 2

r » Gamma
¡
Ár ,»r

¢
, r Æ1,. . . ,d ,

keeping the rest of the hierarchy untouched.
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The corresponding mean-�eld factors are
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) (
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,

and since
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2
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we identify a normal distribution
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,
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,
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¹ ¯ ,st Æ¾2
¯ ,st¿

(1)
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j Æ1,j 6Æs
° (1)
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!

,

and the updates for ¾2
¯ ,st and ° (1)

st as for the reference model.

Then we have

log q
¡
³ ¡ 2

r
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³ q

2
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(
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qX
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we identify a Gamma distribution

³ ¡ 2
r j y » Gamma
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,

with

Á¤
r ÆÁr Å

q

2
, »¤

r Æ»r Å
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2

qX

t Æ1
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¹ 2

®,r t Å ¾2
®,r t

¢
.

The rest of the updates are unchanged and computations for the variational lower bound is straightfor-

wardly adapted from those for the reference model.

A.5.2 Logistic regression model

We replace the linear link of model (3.1)–(3.2)–(3.3) with a logit link speci�cation

yi t j ¯ t » Bernoulli
©
Sig

¡
X T

i ¯ t
¢ª

, i Æ1,. . . ,n , t Æ1,. . . ,q, (A.10)

yi t is the response t for sample i , Xi is the p £ 1 candidate predictor vector for sample i , and Sig(z) Æ

(1Å e¡ z)¡ 1 is the sigmoid function; the rest of the model hierarchy is unchanged. The resulting non-

conjugacy of the model prevents the derivation of coordinate ascent updates in closed form. We resort

to a local approximation that seeks a lower bound on the conditional distribution p(y j ¯ ) (Jaakkola
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and Jordan, 2000); the bound is expressed as the exponential of a quadratic form, and thus gives rise to

a Gaussian approximation.

We have

p(yi t j ¯ t ) Æ Sig
¡
X T

i ¯ t
¢yi t ©

1¡ Sig
¡
X T

i ¯ t
¢ª1¡ yi t

Æ exp
¡
X T
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¢
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¡
¡ X T
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¢

¸ exp
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¡
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h
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¡
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¢
/2 ¡ ½(´ i t )

n¡
X T

i ¯ t
¢2

¡ ´ 2
i t

oi

Æ: h(¯ t , ´ i t ),

where ´ i t is an auxiliary parameter, and where

½(´ ) Æ
1

2´

½
Sig(́ ) ¡

1

2

¾
;

see Bishop (2006, , Chap. 10) for the derivation of this bound. Writing h(¯ ,´ ) Æ
Qq

t Æ1
Qn

i Æ1 h(¯ t , ´ i t ),

where ´ Æ{´ i t }i Æ1,...,n ,t Æ1,...,q , we thus obtain a lower bound on the variational objective function, L (q),

log p(y) ¸ L (q)

Æ Eq log
©
p(y j ¯ )p(¯ j ° ,¾¡ 2)p(° j ! )p(! )p(¾¡ 2)

ª
¡ Eq log q(¯ ,° , ! ,¾¡ 2)

¸ Eq log
©
h(¯ ,´ )p(¯ j ° ,¾¡ 2)p(° j ! )p(! )p(¾¡ 2)

ª
¡ Eq log q(¯ ,° , ! ,¾¡ 2)

Æ: L (q,´ ),

where q(¢) is the mean �eld variational approximation, whose factors can now be obtained using L (q,´ )

as objective function. Inference requires optimising the auxiliary parameter ´ using an expectation-

maximisation algorithm. The algorithm cycles between updating the mean-�eld factors of q(¢), keeping

´ �xed, and optimising the bound L (q,´ ) with respect to ´ . This latter step is obtained by developing

L (q,´ ) and omitting all the terms that do not depend on ´ , i.e.,

L (q,´ ) Æ Eq
©
log h(¯ ,´ )

ª
Å cst

Æ
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T
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ªi
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where cst is constant with respect to ´ . Maximising this yields, after a little algebra,

(´ i t )2 ÆX T
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T
t

¢
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Xi j ° (1)

j t ¹ ¯ , j t ,

where ° (1)
st , ¹ ¯ ,st and ¾2

¯ ,st are the variational parameters for ¯ st and ° st given by

¹ ¯ ,st Æ¾2
¯ ,st

nX

i Æ1

(

Xi s

µ
yi t ¡

1

2

¶
¡ 2½(´ i t )Xi s

pX

j Æ1,j 6Æs
° (1)

j t ¹ ¯ , j t Xi j

)

, ¾¡ 2
¯ ,st Æ2

nX

i Æ1
½(´ i t )X2

i s Å
¡
¾¡ 2¢(1)

,

and ° (1)
st is given by (A.3), dropping the term involving ¿t . The rest of the variational updates are

unchanged and derivation of the variational lower bound poses no dif�culty.
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A.5.3 Probit regression model

We replace the linear link of model (3.1)–(3.2)–(3.3) with the probit link speci�cation (Albert and Chib,

1993)

yi t j ¯ t » Bernoulli
©
©

¡
X T

i ¯ t
¢ª

, i Æ1,. . . ,n , t Æ1,. . . ,q, (A.11)

where ©(¢) is the standard normal cumulative function, yi t is the response t for sample i and Xi is the

p £ 1 candidate predictor vector for sample i ; the rest of the model hierarchy is unchanged. We employ

the usual reparametrisation of (A.11), based on an auxiliary variable w i t ,

yi t Æ1 {w i t È 0}, w i t j ¯ t » N
¡
X T

i ¯ t ,1
¢
, i Æ1,. . . ,n , t Æ1,. . . ,q.

The mean-�eld distribution corresponding to w i t is

q (w i t ) Æ

8
<

:
1(w i t È 0)

©
³
X T

i ¯ (1)
t

´

9
=

;

yi t
8
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:
1(w i t · 0)

1¡ ©
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X T
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9
=

;

1¡ yi t

(2¼)¡ 1/2 exp
½

¡
1

2

³
w i t ¡ X T

i ¯ (1)
t

´2
¾

,

where cst does not depend on w i t , that is, the variational distribution of w i t is a truncated normal

variable: for ± 2 {0,1},

w i t j y Æ± » T N
³
X T

i ¯ (1)
t ,1;

n
0 Ç (¡ 1)1¡ ±w i t

o´
.

The computations for corresponding variational updates and contribution to the variational objective

function L (q) are similar to those of Appendix B.2.

A.5.4 Mixed linear-probit regression model

The model simply represents the binary responses using a probit link and the continuous responses

using a linear link; the algorithm is therefore a straightforward extension of the algorithms described in

Appendices A.2 and A.5.3.
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B Appendix for Chapter 4

B.1 Derivation of the variational algorithm for the group sparsity

model

B.1.1 Variational distributions

We detail the derivation of the variational algorithm for the group sparsity model presented in Sec-

tion 4.2.1. Consider q centred responses, y Æ
¡
y1, . . . ,yq

¢
, and p centred predictors, X Æ

¡
X1, . . . ,Xp

¢
,

for n samples, and let v Æ
¡
¯ ,° , ! ,¿,¾¡ 2

¢
. We have
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p
¡
¾¡ 2¢

,

with same distributions as for the reference hierarchical model, see Appendix A.2.1, except for the

conditional distribution of ¯ g t which has

¯ g t j ° g t ,¿t ,¾
¡ 2 » ° g t N jgj

³
0,¾2¿¡ 1

t I jgj

´
Å (1 ¡ ° g t )±0,

where jgj is the cardinality of group g, and ±0 is a point mass at 0 2 Rjgj .

Consider the following mean-�eld form for the variational approximation,
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The variational updates are as follows. We have
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where
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The updates for ! g are the same as for the reference model, namely,
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We identify a Gamma distribution
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B.1.2 Variational lower bound

We provide the variational lower bound, L (q), of the marginal log-likelihood, log p(y):
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B.2 Derivation of the variational algorithm for the similarity spar-

sity model

B.2.1 Variational distributions

We provide the derivation of the variational algorithm for the similarity sparsity model presented in

Section 4.2.2. Consider q centred responses, y Æ
¡
y1, . . . ,yq

¢
, and p centred predictors, X Æ

¡
X1, . . . ,Xp

¢
,

for n samples. We rewrite the model using the auxiliary variable zst
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° st Æ 1{zst È 0}, zst j µs » N (µs,1) , µ » N p (m0,§ 0).
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Consider the following mean-�eld form for the variational approximation,
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The variational updates are as follows. We have
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We therefore observe that
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The �rst moment of zst is obtained by observing that
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