
EPFL - SB – INSTITUTE of MATHEMATICS – Math
(Bâtiment MA) Station 8 - CH-1015 - Lausanne - Switzerland

https://math.epfl.ch/h

Address:

Volumetric Untrimming: Precise
decomposition of trimmed trivariates

into tensor products

MATHICSE Technical Report

March 2019

Volumetric Untrimming:
Precise decomposition of trimmed trivariates into tensor products

Fady Massarwia,∗, Pablo Antolinb, Gershon Elbera

aFaculty of Computer Science, Technion-Israel Institute of Technology, Israel
bInstitute of Mathematics, École Polytechnique Fédérale de Lausanne, Switzerland

Abstract

3D objects, modeled using Computer Aided Geometric Design (CAGD) tools, are traditionally represented
using a boundary representation (B-rep), and typically use spline functions to parameterize these bound-
ary surfaces. However, recent development in physical analysis, in isogeometric analysis (IGA) in specific,
necessitates a volumetric parametrization of the interior of the object. IGA is performed directly by inte-
grating over the spline spaces of the volumetric spline representation of the object. Typically, tensor-product
B-spline trivariates are used to parameterize the volumetric domain.

A general 3D object, that can be modeled in contemporary B-rep CAD tools, is typically represented
using trimmed B-spline surfaces. In order to capture the generality of the contemporary B-rep modeling
space, while supporting IGA needs, Massarwi and Elber (2016) proposed the use of trimmed trivariates
volumetric elements. However, the use of trimmed geometry makes the integration process more difficult
since integration over trimmed B-spline basis functions is a highly challenging task Xu et al. (2017). In this
work, we propose an algorithm that precisely decomposes a trimmed B-spline trivariate into a set of (singular
only on the boundary) tensor-product B-spline trivariates, that can be utilized to simplify the integration
process, in IGA. The trimmed B-spline trivariate is first subdivided into a set of trimmed Bézier trivariates,
at all its internal knots. Then, each trimmed Bézier trivariate, is decomposed into a set of mutually exclusive
tensor-product B-spline trivariates, that precisely cover the entire trimmed domain. This process, denoted
untrimming, can be performed in either the Euclidean space or the parametric space of the trivariate. We
present examples of the algorithm on complex trimmed trivariates’ based geometry, and we demonstrate the
effectiveness of the method by applying IGA over the (untrimmed) results.

Keywords: Volumetric representations, V-rep, V-model, isogeometric analysis, IGA, heterogeneous
materials.

1. Introduction

Tensor product (Bézier, B-spline and NURBS) surfaces are widely used in CAGD due to their sim-
ple structure, mathematical form, and powerful geometrical properties, that make them intuitive to use.
Consider the parametric representation of a tensor product B-spline volume:

Definition 1. A B-spline parametric trivariate is a volumetric extension to parametric B-spline curves and
surfaces, with a three dimensional parametric space Cohen et al. (2002). A common representation of
trivariates is by tensor product B-splines, as:

T (u, v, w) =
l∑

i=0

m∑
j=0

n∑
k=0

Pi,j,kBi,du
(u)Bj,dv

(v)Bk,dw
(w), (1)

∗Corresponding author
Email addresses: fadym@cs.technion.ac.il (Fady Massarwi), pablo.antolin@epfl.ch (Pablo Antolin),

gershon@cs.technion.ac.il (Gershon Elber)

where T is defined over the 3D parametric domain [Umin, Umax)×[Vmin, Vmax)×[Wmin,Wmax), Pi,j,k ∈ IRq,
q ≥ 3 are the control points of T , and Bi,d is the i’th univariate B-spline basis functions of degree d.

3D geometric objects, generated with contemporary computer aided geometric design (CAGD) systems,
are almost solely exploiting a boundary representation (B-rep), where these objects’ boundaries are repre-
sented as trimmed parametric surfaces. In recent years, with recent developments of additive manufacturing
and 3D printing as well as analysis, the demand for a full volumetric representation (V-rep) is increasing.
Volumetric modeling of the inside of the object, as oppose to only its boundary (B-rep), can be used to
describe different volumetric properties such as materials or stresses, in scalar, vector or tensor fields. De-
velopments in physical analysis, isogeometric analysis (IGA) in specific Cottrell et al. (2009), employs a
parametrization of the object’s volume. In IGA, the analysis is performed by integrating in the same spline
spaces that describe the geometry.

Tensor product trivariates are limited to a cuboid topology, making them difficult to use in creating
general 3D objects, having an arbitrary topology. That is, the cuboid topology does not allow one to
represent with ease general shapes, including holes. Similar to trimmed surfaces, that enriches the B-rep
modeling space of the set of objects that can be represented using tensor product surfaces Cohen et al.
(2002), trimmed trivariates can be used to create far more general volumetric objects, compared to tensor
products. A framework for a volumetric representation (V-rep) modeling is proposed in Massarwi and
Elber (2016), that suggests a representation for a general volumetric model (V-model) as well as V-model
constructors and Boolean operations algorithms on V-models. In Massarwi and Elber (2016), a V-model
is composed of volumetric elements called V-cells, where each V-cell relates to one or more (intersecting)
trivariate(s), and is defined as following:

Definition 2. A V-rep cell (V-cell) is a 3-manifold that is defined over of one or more (intersecting) B-spline
tensor product trivariates. The sub-domain of the V-cell is delineated by trimming surfaces.

In this work, we follow the definition of a V-cell in Massarwi and Elber (2016), selecting one tensor
product trivariate from the V-cell to be associate with the V-cell and parameterize it. Then, we define a
trimmed trivariate as following:

Definition 3. Trimmed trivariate T is defined in the domain of a containing tensor product trivariate T
and has a set of (possibly trimmed) surfaces S as the trimming surfaces of T , forming a 2-manifold in the
domain of T .

The trimming surfaces in S can be classified into two groups. The first type of the trimming (trimmed)
surfaces are (trimmed) boundary surfaces of T . The second type are trimming (trimmed) surfaces that are
(trimmed) boundary surfaces of some other trivariates, Fi, that are results of volumetric Boolean opera-
tions Massarwi and Elber (2016) between T and Fi. Note that, in Massarwi and Elber (2016), trimming
(trimmed) surfaces of the second type are not defined explicitly in the parametric space of T , but only in
the Euclidean space. Figure 1(a) shows an example of a trimmed trivariate.

In IGA, the analysis is performed directly in a spline space employing (suitable) integration over the
(trimmed) volumetric domain of the object, which herein means integration over trimmed trivariates. How-
ever, integration over trimmed B-spline basis functions is a highly challenging task Xu et al. (2017). Methods
to precisely integrate over the trimming domains are required, in order to support a complete and accurate
IGA over trimmed-trivariates. One way to achieve this goal, is by decomposing the trimmed-trivariates to
tensor-products.

In this work, we present a volumetric untrimming process for trimmed trivariate:

Definition 4. The Untrimming of a trimmed trivariate T , is a process in which T is decomposed into a
set of (potentially singular on the boundaries) mutually exclusive tensor-product B-spline trivariates that
precisely cover the entire trimmed volume of T .

A trivariate T is considered potentially singular on the boundary if the Jacobian of T can vanish only at
the boundaries, and T is self intersection free.

2

(a) (b) (c)

Figure 1: Subdivision of a trimmed B-spline trivariate into trimmed Bézier trivariates, shown in Euclidean space. (a) A trimmed
B-spline trivariate, having two internal knots at each parametric direction. Trimmed trimming surfaces on the boundaries of the
trivariate have an orange color, and non-boundary trimmed trimming surfaces are colored with yellow. (b) The iso parametric
surfaces of the internal knots (in green). (c) Twenty eight (and not twenty seven!) trimmed Bézier trivariates in an exploded
view, as result of all the subdivisions along the iso parametric knot surfaces (in (b)).

The resulting set of tensor product trivariates can be utilized to simplify the integration process in IGA,
as the integration will be performed over a non-trimmed B-spline basis functions with full support. In the
untrimming algorithm to be presented in this work, the trimmed-trivariate is first subdivided into trimmed
Bézier trivariates, at all its internal knots. Then, each trimmed Bézier trivariate is decomposed into a set
of tensor-product B-spline trivariates. The untrimming algorithm can be performed either in the Euclidean
space or the parametric space of the trimmed trivariate.

It is important to remark that, on the contrary to classical finite element and IGA methods, in which
the solution quality is intrinsically linked to the mesh quality, that is not the case in the present approach.
In the analysis, the tensor-product trivariates created during the untrimming process are exclusively used
for computing the integrals involved in Galerkin problems. Therefore, the solution discretization is not
related to the untrimming result and its quality is not conditioned by the untrimming trivariates’ Jacobians.
We refer the interested reader to Marussig and Hughes (2018), and references therein, where the numerical
computation of integrals in trimmed domains using untrimming tiles is discussed.

The rest of this document is organized as follows. Section 2 discusses related work. In Section 3, the
volumetric untrimming algorithm is introduced. In Section 4, some results of the untrimming algorithm
are introduced, and in Section 5, an IGA application over trimmed trivariates, utilizing the presented
untrimming algorithm, is presented. Finally, Section 6 concludes this effort and discusses possible future
work.

2. Previous work

Many algorithms have been proposed for hexahedral meshing of 2-manifold polygonal meshes, i.e Arm-
strong et al. (2015); Yu et al. (2015). Given a trimmed trivariate, hexahedral meshing algorithms can be
applied to a polygonal mesh which is an approximation mesh of the boundary surfaces of the trimmed
trivariate, only to generate hexahedral elements that cover the trimmed domain. Then, a trilinear tensor
product trivariate can be extracted from each hexahedron. However, there are two conceptual drawbacks of
such approach. First, the boundaries of the trimmed trivariate are approximated, which introduces an error
which might lead to instabilities in the integration and analysis processes. Second, all the generated tensor
product trivariates are of linear order, where in IGA, basis functions of a higher order (and continuity) are
typically handled (and desired). An extensive review of the existing isogeometric techniques for trimmed
domains, mostly in the context of trimmed surfaces, is presented in Marussig and Hughes (2018).

Meshing tools and algorithms are a long and large subject of research in the finite element community.
For example, Geuzaine and Remacle (2009) introduce Gmsh, a commonly used tool for mesh generation
that is suitable for finite element analysis, including of B-spline surfaces. Starting from a B-rep model,
the boundary (trimmed) surfaces are triangulated, and then methods for tetrahedral mesh generation are

3

applied to generate finite elements approximating the enclosed volume of the B-rep model. In addition
to the drawbacks discussed above when applying tetrahedral mesh generation algorithms, the generated
elements in Gmsh only approximate the boundary surfaces, and an optimization process needs to be applied
in order to reduce the approximation error. Specifically, the tool is not sufficient for IGA needs, as in
IGA, the integration should be performed in the parametric domain of the underlying trivariate, where the
integration boundaries shouldn’t cross knot values. Hence, method for subdividing the trimmed B-spline
trivariate into trimmed Bézier trivariates as well as further processing of trimmed Bézier trivariates are
required, and such tools are not available in Gmsh.

Other studies, such as Martin and Cohen (2010), suggests volumetric spline parametrization of a (B-rep)
polygonal mesh. Although generating high order trivariates, and since the input is a discrete triangulated
mesh, it is not clear how to utilize such an approach in a design process, while Martin and Cohen (2010)
can serve as another way of synthesizing trivariates.

In Xu et al. (2013), a volumetric parametrization of a multi-block computational domain is provided,
where the computation domain is segmented into several blocks, and each block is bounded by six tensor
product 2D faces that are used to generate a trivariate. An iterative process of moving the trivariate’s control
points is then applied in order to achieve a better analysis suitable parametrization. The optimization process
improves uniformity of the Jacobian for each trivariate as well as smoothness between trivariates. However,
the method in Xu et al. (2013) assumes full computational domains, and doesn’t handle trimmed trivariates.

Zhu et al. (2016) propose B++ splines; trimmed B-spline basis functions that are developed to perform
IGA on trimmed B-rep models. In order to handle arbitrary trimming curves, the trimmed spline basis
functions are defined over samples of trimming curves. Such sampling introduces inaccuracies, and trimmed
surfaces with sharp and complex boundaries require dense sampling in order to achieve a certain accuracy.
The inaccuracy is delegated to the analysis stage as the method in Zhu et al. (2016) requires conversion of
the B-rep trimmed spline surfaces into B++ surfaces.

In Liu et al. (2014), T-spline trivariates are extracted from boundary triangulated surfaces, using hier-
archical octrees, and Boolean operation of volumetric cylinders and cubes. However, even simple models
composed of cones and tetrahedrons cannot be handled by Liu et al. (2014).

An analysis suitable trivariate parametrization for a B-rep model is suggested in Engvall and Evans
(2017). First, the B-rep model is approximated as a polygonal mesh, then the interior of the polygonal mesh
is covered with unstructured tetrahedrons, and finally each tetrahedron is replaced with a rational Bézier
trivariate with, possibly, faces extracted from the original trimmed surfaces. Unfortunately, the method loses
the connection to the input B-rep surfaces, and is largely ignoring the problem of trimming, and assumes
non-trimmed surfaces of the B-rep model and thus can not handle trimmed trivariates.

To summarize, previous methods of trivariate volumetric parametrization of general models lack precision
or robustness, and cannot handle trimmed B-spline volumes. Additionally, previous methods suggest a
solution for B-rep models, and none of them suggest a solution for a general trimmed trivariate, that can
result from volumetric Boolean operations.

3. The Untrimming Algorithm

In this section, we present the volumetric untrimming algorithm. Recall Figure 1(a) and consider a
trimmed B-spline trivariate T , following Definition 3, as a tensor product B-spline trivariate T , and a set of
trimming (trimmed) surfaces, S. We assume the following on T , as in Massarwi and Elber (2016):

• S consists of (trimmed) surfaces that together form a 2-manifold B-rep model in the domain of T .
Note that each surface S ∈ S is a trimming surface of T , but S can also be a trimmed surface on its
own.

• Each trimmed surface S ∈ S is orientable and the normal at each point on S points toward the inside
of T .

The untrimming algorithm decomposes T into a set of mutually exclusive tensor product trivariates
that covers the volume enclosed by T and precisely interpolates the boundary (trimming surfaces). The

4

untrimming can be performed either in the Euclidean space, where the algorithm is applied directly over the
3D geometry of T , or in the parametric space of T , where the algorithm is applied on the trimmed parametric
domain of T . The result of the untrimming in the parametric space, is a set of mutually exclusive tensor
product trivariates τ , such that T (τ) completely covers T , in the Euclidean space.

Some simple applications, such as enclosed volume computation, can be performed by summing the
enclosed volume of each of the tensor product trivariates of the untrimming result in the Euclidean space.
However, in general integration applications, the untrimming needs to be performed in the trimmed para-
metric domain. In the next sub-sections, we describe the untrimming algorithm in the parametric space
(i.e the final output is a set of tensor product B-spline trivariates in the parametric space of T , that covers
the trimmed domain). The untrimming in the Euclidean space can be considered as a special case of the
algorithm, having the bounding box of T as the associated trivariate T .

The algorithm consists of two main stages: In the first stage, discussed in Section 3.1, T is subdivided
into trimmed Bézier trivariates at all the knot planes of T . In the second stage, discussed in Section 3.2,
each trimmed Bézier trivariate from the first stage is decomposed into a set of mutually exclusive (possibly
singular on the boundary) tensor product B-spline trivariates that cover the domain.

3.1. Subdivision into Bézier trimmed trivariates

The integration of B-spline basis functions is needed in IGA, for example, in the computation of the mass
and stiffness matrix elements Bartoň et al. (2017). In order to use the Gaussian quadrature method Atkinson
(2008) for precise computation of the integral over the B-spline basis functions, the B-spline basis functions
need to be split into polynomial or rational (in the NURBS case) functions. Bézier elements extraction of a
tensor product B-spline functions can be performed by multiple knot insertion Cohen et al. (2002). However,
for the Bézier elements’ extraction from a trimmed B-spline trivariate T , the trimming (trimmed) surfaces,
S, need to be subdivided as well, along the iso-parametric surfaces of T , at all the internal knots of T .

Algorithm 1 presents the process of subdividing a given trimmed trivariate, at a given parametric value
and direction. Algorithm 2 describes the subdivision algorithm of trimmed trivariate T , into trimmed Bézier
trivariates. Algorithm 2 recursively divides the trimmed trivariate T , at all the internal knots of T , in all
parametric directions, using Algorithm 1.

The general trimmed trivariate subdivision algorithm (Algorithm 1) is performed in the Euclidean space,
as the trimming surfaces S are given, following Massarwi and Elber (2016), in the Euclidean space. In
Algorithm 1, T is subdivided at a parametric value t, in direction dir, resulting in two tensor product
trivariates TL and TR. The trimming surfaces, S, are then separated by the iso-surface value t, in direction
dir, Siso, into two groups. The separation is done by applying B-rep intersection and subtraction Boolean
operations Satoh and Chiyokura (1991); Thomas (1986) between S (that forms a closed B-rep), and Siso.
See lines 3 and 4 in Algorithm 1, where SL and SR are the result of the intersection and subtraction Boolean
operations between S and Siso respectively. Such Boolean set operations typically involve computing surface-
surface intersections (SSI) that may introduce approximation errors. However, methods for computing SSI
have been investigated for a long time (i.e. Grandine and Klein (1997)), including bounds on errors in the
SSI. Each iso-parametric surface of T , divides T into two parts. However, since the trimming can impose
arbitrary topology, each of the two groups (SL and SR), from both sides of Siso, can consist of multiple
connected components of trimming surfaces, see for example Figure 2. For each group of trimming surfaces
that forms a connected component, SM , a trimmed trivariate is constructed inGroupNewTrimTV, having
SM as the trimming surfaces and either TL or TR (the one that contains SM) as its tensor product trivariate.
See Figures 1-3 for some results of Algorithm 2.

3.2. Untrimming a Bézier trimmed trivariate

In this section, we describe an algorithm to decompose a trimmed Bézier trivariate T into a set of
possibly singular on the boundary tensor product B-spline trivariates that covers T . Recall T is represented
as a tensor product Bézier trivariate T , and a set of trimming (trimmed) B-spline surfaces, S. The trimmed
surfaces in S can be classified into two groups: The first group contains boundary surfaces of T that are
possibly trimmed, and the second group contains surfaces that are general trimming (trimmed) surfaces in

5

Algorithm 1 TrimTrivarSubdiv(T , t, dir): Subdivision of a trimmed B-spline trivariate T at t
along dir

Input:
T = {T,S}: A trimmed B-spline trivariate; T is a tensor product B-spline trivariate, that is trimmed by

set of trimmed surfaces S;
t, dir: Subdivision parameter, t, of T , in parametric direction dir: u, v or w;

Output:
T dir
t : A set of trimmed trivariates which are the result of subdividing T at parameter t in direction dir;

// The following auxiliary function constructs a set of trimmed trivariates by trimming the trivariate T ,
// with a set of trimming (trimmed) surfaces, S.
Function GroupNewTrimTV(S, T)
1: TRes := ∅;
2: if S �= ∅ then
3: CS := Group S into sets of 2-manifold connected closed component surfaces;
4: for all Si ∈ CS do
5: Ti := Trimmed Trivariate {T ,Si};
6: TRes := TRes

⋃ {Ti};
7: end for
8: end if
9: return TRes;

Algorithm:

1: Siso := Iso surface of T at parameter t, in direction dir;
2: {TL, TR} := Subdivided T at parameter t, in direction dir;
3: SL := Intersect(S,Siso); //B-rep Boolean S ∗ Siso

4: SR := Subtract(S,Siso); //B-rep Boolean S − Siso

5: T dir
t :=

GroupNewTrimTV(SL, TL) ∪
GroupNewTrimTV(SR, TR);

6: return T dir
t ;

Algorithm 2 TrimTVBezierSubd(T): Subdivision of a trimmed trivariate T into trimmed
Bézier trivariates
Input:
T = {T,S}: A trimmed B-spline trivariate; T is a tensor product B-spline trivariate, that is trimmed by

set of trimmed surfaces S;
Output:
B: A set of trimmed Bézier trivariates;

Algorithm:

1: if T is a Bézier trivariate then // no internal knots
2: return T ;
3: else
4: t, dir := Find an internal knot, t, of T , in parametric direction dir (u, v or w);
5: T dir

t := TrimTrivarSubdiv(T , t, dir);
6: B := ∅;
7: for all Ti ∈ T dir

t do
8: B := B⋃

TrimTVBezierSubd(Ti);
9: end for

10: return B;
11: end if

6

(a)

(b)

(c)
Figure 2: Subdivision of trimmed trivariate (red) in (a) along
an iso-parametric surface (yellow) results in five trimmed
trivariates: one trimmed trivariate on the back side of the
iso-surface in (b), and four trimmed trivariates on the front
side of the iso-surface in (c). An exploded view is presented
in (b)/(c).

(a) (b)

Figure 3: Subdivision of trimmed B-spline trivariates into
trimmed Bézier trivariates. (a) Ten trimmed B-spline trivari-
ates forming a spherical volumetric model. (b) Subdivision of
the trimmed trivariates in (a) into 72 trimmed Bézier trivari-
ates (an exploded view).

the Euclidean space that can be, for example, a result of Boolean operation with other (trimmed) trivariate.
Since we aim for IGA applications that require integration over the trimmed trivariate’s domain in the
parametric space, the Euclidean space surfaces in S need to be back projected into the parametric domain
of T . However, trimming surfaces in the second group can not, in general, have an algebraic form and can
not have a precise piecewise-polynomial image in the parametric space of T . In such cases, the trimming
surfaces must be approximated in the parametric space, for example, by a least squares fit.

Algorithm 3 describes the untrimming algorithm of a trimmed Bézier trivariate; decomposing a trimmed
Bézier trivariate into a set of mutually exclusive (singular only on the boundary) tensor product B-spline
trivariates τ that cover the trimmed parametric domain of T , where T (τ) covers T in the Euclidean space.
The key idea of the algorithm is finding a kernel point of T : an internal point in T that is visible from
all points on all trimming surfaces in S. If such a kernel point, P , exists, the set of trimming (trimmed)
surfaces of T , S, is untrimmed: S is decomposed into a set of tensor product B-spline surfaces, S, by surface
untrimming operations, for example following Massarwi et al. (2018). A singular (only on its boundary)
tensor product B-spline trivariate is then constructed between P and each surface in S. Alternatively, If
no kernel point exists, T is subdivided along an iso parametric direction, and the algorithm is recursively
applied on each part.

The algorithm suggests a solution for the 3D art-gallery Marzal (2012); Berg et al. (2008) for objects
having free form (trimmed) boundary surfaces, where each kernel point can be treated as a guard. However,
clearly, the algorithm is not optimal in terms of minimal number of kernel points. Finding the optimal
solution of the art gallery problem, even for planar polygons, is NP-hard Lee and Lin (1986)

The algorithm is iterative; each iteration consists of four steps. In the first step, discussed in Section 3.2.1,
S is untrimmed to tensor product B-spline surfaces, S (see line 2 in Algorithm 3). In the second step,
discussed in Section 3.2.2, the untrimmed tensor product surfaces from the previous step are approximated
in the parametric space of T (see line 3 in Algorithm 3). In the third step, discussed in Section 3.2.3, the
algorithm seeks a kernel point in the domain of T , and if such a kernel point is found, builds mutually
exclusive tensor product trivariates that cover T (see lines 4-9 in Algorithm 3). In the fourth step, discussed
in Section 3.2.4, if no kernel point is found, T is subdivided into several parts (using Algorithm 1), and the
untrimming algorithm is recursively invoked on each part (see lines 11-15 in Algorithm 3). Section 3.2.4
also discusses the termination of this algorithm.

3.2.1. Untrimming of the trimming surfaces in S
At each iteration of Algorithm 3, the trimming surfaces of T , S, which can be trimmed surfaces, are

untrimmed in Euclidean space. In the process of untrimming trimmed surface Si ∈ S, Si is precisely
decomposed into a set of tensor product B-spline surfaces that covers Si. In this work, we use the minimal
weight untrimming algorithm proposed in Massarwi et al. (2018); though, any other untrimming algorithm of
trimmed surfaces can be employed as well. The untrimming algorithm in Massarwi et al. (2018) guarantees

7

Algorithm 3 TrivBezierUntrim(T): Decomposing trimmed Bézier trivariate T into (singular
only on the boundary) tensor product B-spline trivariates.

Input:
T = {T,S}: a trimmed Bézier trivariate; T is the tensor product Bézier trivariate, that is trimmed by

set of trimmed surfaces S;
Output:
τ : a set of mutually exclusive (singular only on the boundary) tensor product B-spline trivariates that

covers the parametric domain of T ;
Algorithm:

1: τ := ∅;
2: S := Untrimming trimmed surfaces in S into tensor product surfaces; // i.e. Massarwi et al. (2018)

3: ST
:= Approximation of T−1(S);

4: p := Find a kernel point of ST
;

5: if p �= null then

6: for all si(u, v) ∈ S
T
do

7: Ui(u, v, w) := (1− w)p+ wsi(u, v), w ∈ [0, 1];
8: τ := τ

⋃{Ui(u, v, w)};
9: end for

10: else
11: t, dir := Find a subdivision parametric value t, for T , in direction dir;
12: T dir

t := TrimTrivarSubdiv(T , t, dir); //Algorithm 1
13: for all Ti ∈ T dir

t do
14: τ := τ

⋃
TrivBezierUntrim(Ti);

15: end for
16: end if
17: return τ ;

positive determinant of the Jacobian in the interior of the resulting tensor product surfaces, provided the
input is regular. The untrimming of S is needed for the next steps since it simplifies the visibility test
used in seeking a kernel point (see Section 3.2.3), as visibility test for a tensor product B-spline surface is
simpler than the same test for a trimmed surface - where an intersection between trimming curves and the
boundaries of the visible regions of the underlying tensor product surface should be computed.

3.2.2. Approximating S in the parametric space of T

After untrimming S into tensor product surfaces, S, as described in Section 3.2.1, each tensor product
surface Si ∈ S is least squares approximated with a tensor product surface si in the parametric space of T ,
such that Si

∼= T (si). The approximation parameters of si are (in each parameter direction): The number of
samples m of Si, the order o of si, and the number of control points, n, of si. The approximation algorithm
consists of three steps:

1. Sample m2 points on Si, {Pjk}.
2. For each sample Pjk = Pjk(x, y, z), find the back projected point pjk(u, v, w) in the parametric space

of T , such that T (pjk) = Pjk. This can be done by finding the solution of the following system of
three equations and three unknowns (u, v, w):

Tx(u, v, w) = x, Ty(u, v, w) = y, Tz(u, v, w) = z, (2)

where Tx, Ty, Tz refer to the x, y, z components of T (u, v, w) respectively. Note that if T is regular,
only a single solution exists.

3. si ← Least squares approximation Atkinson (2008) of {pjk}, by a tensor product B-spline surface of
size (n× n) and orders (o× o).

8

(a)

T

(b)

S = {Si}

(c)

S = {Si}

(d)

ST
= {si}

Figure 4: Untrimming and approximating trimming surfaces, S, in the parametric space of trivariate T . (a) The trivariate T
in Euclidean space. (b) The trimming surfaces, S, also in Euclidean space. (c) S, the untrimming of S in the Euclidean space.
(d) Approximation of S in the parametric space of T , by tensor product surfaces of orders 3x3.

Quite a few methods exist for computing the precise (up to machine-precision) back projections of points
in freeforms. This classic inverse problem is, for example, efficiently solved billions of times in Ezair and
Elber (2017) for a regular trivariate T (u, v, w) by posing it as (and solving) three algebraic constraints in
(u, v, w) (as in Equation (2)). Going from back projection of points to back projection of curves and surfaces
is more involved but relates to fitting freeforms to point sets, methods that are well digested and are beyond
the scope of this work.

The approximation process described above is applied only to surfaces that are not lying on the bound-
aries of T . In the case of a trimming surface that is a (trimmed) boundary surface of T , si is simply extracted
as that boundary. See an example in Figure 4. Finally, note T (si) can be precisely computed by a symbolic
surface-trivariate composition DeRose et al. (1993); Elber (1992).

3.2.3. Seeking a kernel point

A kernel point of a closed B-rep model is an internal point that is visible from every point on the
boundary of the model Berg et al. (2008). Consider the trimming surfaces of a trimmed trivariate, given as

a set of tensor-product B-spline surfaces, ST
, (following the untrimming process in Section 3.2.1, and the

back projection to the parametric space in Section 3.2.2).

Lemma 5. Assume every surface si ∈ S
T
is C1. A point p is a kernel point of the B-rep bounded by ST

, if
the following condition is satisfied:

〈p− si(u, v), ni(u, v))〉 > 0, ∀si ∈ S
T
, ∀u, v ∈ si, (3)

where ni(u, v) =
∂si
∂u × ∂si

∂v is the (unnormalized) normal field of si, pointing into the B-rep. Again, note si
is regular in its interior and hence ni never vanishes in the interior of the domain.

Proof. As stated at the beginning of Section 3, we assume ni(u, v) points inside T . Under this assumption,
an internal point p is visible to a point on a surface si(u, v), if the straight line segment between p and
si(u, v) is in the positive half plane defined by the normal ni(u, v) and the point si(u, v), meaning that the
vector p − si(u, v) and the normal ni(u, v) satisfy: 〈p − si(u, v), ni(u, v)〉 > 0. Moreover, the line segment
p, si(u, v) lies entirely inside T .

Now, given an internal point p that satisfies Equation (3), and assume, by contradiction, that there exists
a point sj(u, v) that is not visible to p. Examine the line segment L = p, sj(u, v). Since sj(u, v) is not visible
to p, then, by the Jordan-Brouwer separation theorem Lima (1988), and ignoring tangential contact(s) for
now, there exists a finite segment of L that lies entirely outside T . Otherwise, if L is entirely inside T , then
sj(u, v) is visible to p. Let sl, sk be the segment of L that is outside T , where sl is the closest point to p
(See illustration on Figure 5). Because, sl, sk stabs the boundary at sk from outside, 〈p − sk, nk〉 can not
be positive, contradicting the assumption that p satisfies Equation (3), for all si. With special care, and
following similar lines, one can also handle tangential contacts. �

9

Figure 5: Auxiliary illustration for Lemma 5.

(a) (b)

Figure 6: Untrimming of a trimmed Bézier trivariate, after
finding a kernel point. A trimmed rational Bézier trivariate of
orders (4,2,2) having nine trimming trimmed surfaces in (a).
Once a kernel point is found, nine (singular on the boundary)
tensor product trivariates are constructed (b), and shown in
an exploded view.

Lemma 5 states that if all surfaces si ∈ S
T
are front facing with respect to p, then all si ∈ S

T
are visible

to p, in a similar way to front face visibility in projections, in graphics.

Note that although the normal of the entire closed B-rep bounded by ST
is not defined on intersec-

tion/stitching C0 points between surfaces in ST
, the proof is still valid on such points, as Equation (3) still

holds for each si surface.
More details on freeform surface visibility can be found in Elber and Cohen (1995). Equation (3) can

be computed by symbolically representing this inner product Elber (1992) as a tensor product B-spline
function, and verifying the positivity of all the control coefficients.

As a side comment, the kernel, if any, can be bound using an approach that utilizes the intersections of
all tangent planes at all parabolic points of S, assumed C2 Cohen et al. (2002). However, such an approach,
that involves computing parabolic points, is computationally expensive and numerically challenging. Instead,
and since herein we only seek a single kernel location, the trimmed parametric domain of T is uniformly
sampled, and the visibility test of Equation (3) is verified on each sample. There could be more than one
kernel sample that satisfies Equation (3). Among these samples, we, heuristically, pick the kernel point as
the sample, p, that minimizes the following expression:

max
∀si∈ST

(min
u,v

(‖si(u, v)− p‖))− min
∀sj∈ST

(min
u,v

(‖sj(u, v)− p‖)), (4)

that promotes kernel points for which the deviations of the maximal and minimal distance to the boundaries
are minimal, as we try to avoid thin and tall trivariates in the output, as much as possible.

During the process of seeking a kernel point, as only p changes during the domain sampling, caching
computation results that are independent of p, such as 〈si(u, v), ni(u, v)〉 in Equation (3), will result in a
significant speed up improvement.

If a kernel point p is found, a tensor product B-spline trivariate Ui(u, v, w) is constructed as a singular

ruled trivariate Cohen et al. (2002) between p and each tensor product B-spline surface si(u, v) ∈ S
T
, as

following:
Ui(u, v, w) = (1− w)p+ wsi(u, v), w ∈ [0, 1]. (5)

Since si(u, v) is guaranteed to (possibly) have singularities only on the boundaries (property of the
surfaces’ untrimming algorithm Massarwi et al. (2018)), so is Ui(u, v, w). See an example of untrimming of
a trimmed Bézier trivariate in Figure 6.

Note that although the trimming curves are typically the result of Boolean set operations, and hence
piecewise linear, the algorithm can handle smooth trimming curves of arbitrary order. The trivariates’
construction procedures can handle higher order curves as is. However, a B-spline curve fitting process needs
to be applied in the back projection approximation in the parametric space, as discussed in Section 3.2.2.

10

3.2.4. Subdivision of T
At each iteration, if no kernel point is found, T is subdivided into several trimmed trivariates, and the

untrimming algorithm is recursively applied on each part. Several strategies can be utilized to choose the
subdivision direction and value. In this work, the subdivision is performed, using Algorithm 1, along the
center of the bounding box of T , in the parametric space, and the parametric direction is the direction of
the longest dimension of the bounding box. This strategy ensure that the trimmed domain is getting smaller
with each iteration.

During the iterative subdivision process, a non-trimmed (full tensor product) trivariate domains can be
obtained, having six tensor product isoparametric boundary surfaces. In such cases, there is obviously no
need to compute a kernel point and the trivariate is not subdivided further. Further, during the subdivision
process, not all boundary surfaces are subdivided, in practice, in each iteration. Hence, we cache the
untrimming and approximation results of the surfaces (results of steps 2 and 3 in Algorithm 3, respectively)
to be used in forthcoming iterations.

We consider a special case that is handled differently: If the size of si, and the aperture of the normal

cone of si for each trimming surface, si ∈ S
T
, is less than a predefined thresholds εe and εθ respectively, then

each si is approximated by a planar surface, resulting in a polyhedron, C, that approximates ST
. Then,

kernel points of C can always be found, following Marzal (2012) for example.

Lemma 6. Assume all surfaces si ∈ S
T

have a bounded curvature. If the subdivision process satisfies the
following:

• The subdivision is performed at the center of the bounding box of T along the direction of the longest
dimension of the bounding box, and,

• ST
is approximated by a polyhedron when the size of each si ∈ S

T
and the aperture of the normal cone

of each si ∈ S
T
, is less than a predefined thresholds, εe and εθ, respectively,

then, Algorithm 3 terminates after a finite number of iterations.

Proof. Each surface si ∈ S
T

is represented as a B-spline surface, and si has a bounded curvature, by
assumption. In other words, for each threshold εθ, there exists a threshold εe such that if the size of si is
less than εe (which can be achieved by a finite number of subdivisions), then the aperture of the normal
cone of si is less than εθ. Since the subdivision is performed along the longest dimension, it is guaranteed
that the size of si is getting smaller at each iteration.

Eventually, after a finite number of iterations, and if no kernel point is found, the size of each surface si
will be less than εe and the aperture of the normal cone of si will be less than εθ. At that iteration, S is
approximated by a polyhedron and the algorithm terminates. �

4. Results

The algorithms presented in this paper are all implemented in the IRIT Elber (2015) solid modeling
kernel. We now present results of the untrimming algorithm applied on several trimmed trivariates and
V-rep models. The following examples were synthesized on a 3.4 GHz Intel i7 CPU with 32 GB RAM in a
single thread mode and Windows 7. Practically, in all the examples presented in this paper, we never failed
to find a kernel point and never had to resort to the polyhedron approximation (Recall Section 3.2.4).

Figure 7 shows the result of untrimming a trimmed Bézier trivariate of orders (2,2,3). The untrimming
is performed in the parametric space, and the trimming surfaces are untrimmed and approximated by a
set of bi-quadratic surfaces. The result consists of 262 tensor product B-spline trivariates that covers the
trimmed parametric domain of the trimmed trivariate. The whole untrimming process took 251 seconds,
out of which the approximation of the untrimmed surfaces in the parametric space took 107 seconds.

In Figure 8, a V-rep model consisting of one trimmed trilinear trivariate is untrimmed in the parametric
space, resulting in 76 tensor product trivariates that cover the trimmed parametric domain of the model.

11

Model
Input Output

Trimmed # Trimming # Tensor # Total Maximal Total (E)uclidean
trivariates surfaces product domain subdivision time or

Trivariates subdivisions depth (Sec.) (P)arametric

Figure 7 1 11 262 30 9 251 P

Figure 8 1 24 76 5 3 52 P

Figure 9 1 24 406 13 5 10.5 E

Figure 10 7 64 294 32 7 13.2 E

Figure 11 20 168 370 22 4 20.9 E

Figure 12 1 34 56 3 2 2.9 E

Table 1: Statistics on the process of untrimming the trimmed trivariates presented in Figures 7-12.

(a) (b) (c)

Figure 7: Untrimming of a trimmed Bézier trivariate. (a) A trimmed Bézier trivariate of orders (2,2,3). (b) Untrimming result
in the parametric space of (a), yielding 262 tensor product B-spline trivariates shown in an exploded semi-transparent view in
(c).

The trimming surfaces are untrimmed and approximated by bi-quadratic surfaces in the parametric domain.
The untrimming algorithm took 52 seconds, out of which the approximation of the untrimmed surfaces in
the parametric domain took 33 seconds.

Figure 9 shows untrimming of a complex trimmed trilinear B-spline trivariate having (4,4,3) internal
Bézier domains. The untrimming is performed in the Euclidean space, resulting in 406 tensor product B-
spline trivariates. The trimmed trivariate is first subdivided at all internal knots into 42 trimmed Bézier
trivariates (and not 48 = 4× 4× 3, as some domains are completely trimmed away), and then each trimmed
Bézier trivariate is untrimmed into a set of tensor product B-spline trivariates. The untrimming process
took 10.5 seconds, out of which the subdivision of the trimmed trivariate into trimmed Bézier trivariates
took 1.1 seconds.

Figures 10 and 11 show two untrimming results of volumetric models (V-models). Each V-model consists
of several trimmed trivariates. Since the trimmed trivariates do not share the same parametric space, and
in order to emphasize how the untrimming result covers the entire V-model, the untrimming is performed in
the Euclidean space. In Figure 10, the V-model, consisting of seven mutually exclusive trimmed trivariates,
is untrimmed in 13.2 seconds, resulting in 294 tensor product B-spline trivariates. In Figure 11, another
V-model, consisting of 20 mutually exclusive trimmed trivariates, is untrimmed in 20.9 seconds, resulting in
370 tensor product B-spline trivariates.

Precise computation of integral properties over trimmed trivariates are more difficult than over tensor
products. In Figure 12, we show one application of the untrimming algorithm. We precisely compute the
trimmed trivariate’s volume by first untrimming the trimmed trivariate into tensor products, and then com-

12

(a) (b) (c)

Figure 8: Untrimming of a V-model. (a) The trimmed trivariate of the V-model. Untrimming result consisting of 76 tensor
product B-spline trivariates composing the parametric domain in (b) and shown in semi-transparent exploded view in (c).

(a) (b)

Figure 9: Untrimming of a trilinear trimmed B-spline trivari-
ate with (4×4×3) Bézier domains. (a) The trimmed B-spline
trilinear trivariate. (b) Untrimming of (a) yielding 406 tensor
product B-spline trivariates displayed in an exploded view.

(a)

Figure 10: Untrimming of a V-model. (a) The V-model con-
sisting of seven trimmed trivariates. (b) The result of untrim-
ming each of the trimmed trivariates of the model, resulting
in 294 tensor product B-spline trivariates displayed in an ex-
ploded view.

puting the volume of all covering tensor products. Since we use symbolic spline integration Elber (1992),
the geometry must be (piecewise) polynomial (and not rational). Hence, arcs and circles are approximated
using piecewise polynomials to an accuracy of ∼10−3. The object in Figure 12(a) is constructed by sub-
tracting the following from a unit cube: (i) eight spheres of radii 0.3 centered at the corners of the cube,
and (ii) a cylinder with a radius of 0.1 along the center of the unit cube. The analytic value of the trimmed
cube’s volume is 0.855486. While the value we compute is 0.855284, a result that is well within the arc
approximation.

Finally, some statistics on the untrimming process (Algorithm 3) of the trimmed trivariates in Figures 7-
12 are presented in Table 1. In the input part, the number of trimmed trivariates in each model and the
number of total trimming surfaces for all the trimmed trivariates are presented in the first and the second
columns respectively. In the output section, the first column shows the number of tensor product trivariates
in the result of the untrimming algorithm. The second column shows the total number of subdivisions
of the domain performed during the untrimming process. The third column shows the maximal depth of
the recursive subdivision calls, in the untrimming algorithm. The fourth column shows the total running
time, in seconds, and the last column indicates if the untrimming is done in the parametric space or in the
Euclidean space.

13

(a) (b)

Figure 11: Untrimming of a V-model. (a) The V-model consisting of 20
trimmed trivariates. (b) The result of untrimming each of the trimmed
trivariates of the model, resulting in 370 tensor product B-spline trivari-
ates displayed in an exploded view.

(a)

(b)

(c)

Figure 12: (a) A trimmed trivariate constructed
by subtracting from a unit cube eight spheres of
radius 0.3 centered at the eight corners of the
cube, and a cylinder of radius 0.1 from the cen-
ter of the cube. (b) Untrimming of (a) results
in 56 tensor products that are displayed in an
exploded view in (c).

5. Analysis using untrimmed trivariates

In this section, we illustrate the use of the presented untrimming methodology for performing isogeometric
analysis in domains defined with trimmed B-spline trivariates. As a matter of example we focus in this section
on a linear elasticity problem setting, that is governed by the variational equation:∫

T
μ(x)∇su(x) : ∇sv(x)dx+

∫
T
λ(x)∇ · u(x)∇ · v(x)dx =

∫
T
f(x) · v(x)dx+

∫
SN

g(x) · v(x)dx, (6)

where u : T → R
3 is the elastic displacement at every point of the domain, the problem unknown, and

v : T → R
3 corresponds to the test functions. On the other hand f : T → R

3 and g : SN → R
3 are the

volumetric forces (e.g. self-weight) and the external loads applied on the external boundary (e.g. pressure).
SN is a subset of the exterior boundary S in which external loads are applied. Finally, λ and μ are the Lamé
parameters that charaterize the behaviour of the elastic material, that may change from point to point. For
the sake of brevity, prescribed displacements (Dirichlet boundary conditions) are not discussed here. In an
IGA context, both u and v are discretized by means of trivariate B-splines:

u =

l∑
i=0

m∑
j=0

n∑
k=0

ui,j,kBi,du
(u)Bj,dv

(v)Bk,dw
(w), (7)

where the coefficients ui,j,k ∈ R
3 are the problem unknowns (v is discretized in the same way). We refer

the interested readers to Cottrell et al. (2009) for a more detailed discussion about the fundamentals of
IGA. Thus, in an isoparametric framework we use the same spline space for describing both the trivariate
T (as in Equation (1)) and discretizing the solution (trial) u and the test functions v. For the analysis,
the support of functions Bi,du , Bj,dv , Bk,dw is limited to the active region of the domain defined by the
trimming. Therefore, those functions whose support is completely outside of the trimmed domain will not
be considered in the analysis.

In order to compute the integrals present in the Equation (6) in the domain T (and on the boundary SN)
we decompose the integral over the full domain as the sum of the integrals in every single Bézier element

14

contained in the domain. Thus, for computing the integral of a generic quantity α(x) over the domain T
we split the integral as:

∫
T α(x)dx =

∑nb

i

∫
B̂i

α̂(x)dx, where B̂i are the representation, in the parametric

domain of T , of the trimmed Bézier trivariates Bi (such that T = ∪nb
i Bi), and nb is the number of trivariates.

α̂(x) corresponds the pull-back of α(x). Thus, when computing
∫
B̂i

α̂(x)dx for i = 1, . . . , nb there exist two
possible situations:

• If B̂i is not a trimmed trivariate, but a full one, then a Gaussian quadrature rule is applied for
computing the integral. This is the case of standard IGA methods for non-trimmed domains.

• Otherwise, if B̂i is a trimmed trivariate, the element is untrimmed according to methodology presented
in Section 3, and the integral is computed using the resulting untrimming trivariates as:

∫
B̂i

α̂(x)dx =

nu,i∑
j=1

∫
τi,j

α̂(x)dx, for i = 1, . . . , nb, (8)

where τi,j is the j-th untrimming tensor product trivariate of the Bézier element B̂i, with j = 1, . . . , nu,i.

A discussion regarding the integration of the trimmed and non-trimmed Bézier elements can be found in
Rank et al. (2012). It is important to remark here that the tensor product trivariates τi,j are only used for
integration purposes. Therefore, they are not required to have high-quality Jacobians, and it is sufficient
that they are singular only on their boundary.

Remark 7. To perform analyses, in an IGA framework, in the case of computational domains created as
the union of more than one trimmed B-spline trivariate (e.g. Figures 10 and 11) is not as straightforward
as for single trimmed trivariates. These situations involve not only the precise integration of the operators
described in Equation (6), but also the consistent gluing of all the partial solution discretizations, defined for
every single trivariate, in the intersection regions. The treatment of this kind of domains is out of the scope
of this paper.

In order to illustrate the potentiality of the presented procedure, we perform linear elasticity numerical
experiments for the trimmed geometries shown in Figures 7, 9 and 12.

The same elastic material is considered in all cases, being the Young modulus and the Poisson ratio,
E = 1MPa and ν = 0.3, respectively (where λ = Eν/(1 + ν)(1 − 2ν) and μ = E/2(1 + ν)). The analysis
were performed using the IGA library igatools described in Pauletti et al. (2015).

All three cases present analogous loading conditions: one face is completely fixed (no displacement in
any direction is allowed) while the opposite face is pulled perpendicularly (the pulled face is free to deform
transversally). In these cases, Dirichlet boundary conditions are applied on faces of T (that could potentially
be trimmed) in a strong way: the degrees of freedom associated to the basis functions whose traces have
support on those faces are prescribed. On the other hand, the imposition of Dirichlet boundary conditions
on trimming boundaries (that are not faces of T) requires the use of weak imposition methods. This is out
of the scope of this paper, however, we refer the interested reader to Ruess et al. (2013) and Buffa et al.
(2019), and references therein.

In Figure 13, we gathered some of the obtained results. The shown geometries are deformed with respect
to the original ones as a consequence of the applied loads. The plotted (colored) scalar field corresponds the
distribution of the von Mises stress.

The cases 13(a), 13(b) and 13(c) were obtained using trimmed B-spline trivariates with (3 × 3 × 3),
(4× 4× 3) and (4× 4× 4) Bézier domains, respectively, and discretizing the elastic displacement solutions
with degree 2 in every direction (i.e. the models have 375, 540 and 648 degrees of freedom, respectively).
Note that the models in Figures 7 and 12 have underlying Bézier trivariates, and in order to obtain a more
precise analysis solution, the trivariates of these models were refined in each parametric direction. The
computational times for the assembly of the stiffness matrices are 114, 32 and 61 seconds, respectively;
and the resolution of the linear system of equations took less than one second in all cases. The current
untrimming process creates very accurate reparametrization of the trimmed domains. Nevertheless, from

15

(a) (b) (c)

Figure 13: Linear elasticity analyses on trimmed geometries from Figures 7, 9 and 12. The von Mises stress distribution is
plotted on the deformed geometries submitted to external loads: one face is fixed while the opposite face is pulled perpendic-
ularly.

the analysis point of view such level of accuracy is not needed for integration purposes. Therefore, by
creating much coarser reparametrizations the computational time of the matrix assembly could potentially
be reduced by orders of magnitude.

6. Conclusion

In this work, an untrimming algorithm for trimmed trivariate is introduced: decomposing a trimmed
B-spline trivariate into a set of mutually exclusive tensor product B-spline trivariates that completely cover
the trimmed domain. The algorithm uses a subdivision algorithm, introduced in this paper, that precisely
subdivides the trimmed B-spline trivariate into set of trimmed Bézier trivariates. The untrimming algorithm
then generates tensor product B-spline trivariates that are singular only on the boundaries and thus can be
utilized for integration in IGA application (i.e at quadrature locations). The quality of the analysis solution
is not influenced by the Jacobians’ quality of the generated tensor product trivariates.

Several directions for further improvements can be sought. Additional strategies of selecting the subdi-
vision location, in case no kernel point is found (see Section 3.2.4), can be further investigated, in order to
minimize the number of subdivisions required and thus minimizing the number of generated trivariates in the
output. For example, subdivision at locations that isolate individual non isoparametric trimming surfaces,
if exist. That is, every trimmed trivariate will have at most one non iso-parametric trimming surface.

Aiming for less subdivisions when seeking the kernel points (see Section 3.2.3), one can explore better
sampling approaches than the uniform sampling approach taken here. Similarly, a more precise (less lossy)
approach can be sought, by computing a tight bounding box of the solutions of Equation (3) in Lemma 5,
for all trimming surfaces, simultaneously. However, it requires the (simultaneous) processing of multiple
bivariate inequalities (one for each trimming surface). While potentially possible, for example, using interval
arithmetic, it can be time consuming.

Due to the independent untrimming of adjacent boundary surfaces, adjacent tensor product trivariates
in the output might not share the same functional space, which makes the presented approach less suitable
for other analysis approaches, such as domain decomposition Toselli and Widlund (2004), where constraints
are imposed on shared boundaries. In order to have adjacent surfaces with the same functional space, the
(trimmed) surfaces untrimming process (see Section 3.2.1) needs to be adapted to consider not only a single
trimmed surface, but also the adjacencies between the trimming (trimmed) surfaces of the trivariate.

The back projection approximation process of trimming surfaces, in the parametric space, as described
in Section 3.2.2, doesn’t guarantee stitched boundaries between adjacent surfaces, which likely to lead to
black holes in the approximated surfaces that may introduce inaccuracies when using the untrimming results
in applications, such as analysis. To overcome this limitation, the topological adjacency information should
be provided to the back projection process, and proper stitching methods should be considered.

16

Acknowledgements

This research was supported in part with funding from the ISRAEL SCIENCE FOUNDATION (grant
No. 597/18) and in part the Defense Advanced Research Projects Agency (DARPA), under contract HR0011-
17-2-0028. The views, opinions and/or findings expressed are those of the author and should not be inter-
preted as representing the official views or policies of the Department of Defense or the U.S. Government.
Pablo Antolin gratefully acknowledges the support of the European Research Council, through the ERC
AdG n. 694515 - CHANGE.

References

Armstrong, C.G., Fogg, H.J., Tierney, C.M., Robinson, T.T., 2015. Common themes in multi-block structured quad/hex mesh
generation. Procedia Engineering 124, 70–82.

Atkinson, K.E., 2008. An introduction to numerical analysis. John Wiley & Sons.
Bartoň, M., Puzyrev, V., Deng, Q., Calo, V., 2017. Efficient mass and stiffness matrix assembly via weighted gaussian

quadrature rules for b-splines. arXiv preprint arXiv:1710.01048 .
Berg, M.d., Cheong, O., Kreveld, M.v., Overmars, M., 2008. Computational geometry: algorithms and applications. Springer-

Verlag TELOS.
Buffa, A., Puppi, R., Vázquez, R., 2019. A minimal stabilization procedure for Isogeometric methods on trimmed geometries.

arXiv:1902.04937 [math] URL: http://arxiv.org/abs/1902.04937. arXiv: 1902.04937.
Cohen, E., Riesenfeld, R., Elber, G., 2002. Geometric modeling with splines: An introduction. 2002. AK Peters Natick, MA,

USA .
Cottrell, J.A., Hughes, T.J., Bazilevs, Y., 2009. Isogeometric analysis: toward integration of CAD and FEA. John Wiley &

Sons.
DeRose, T., Goldman, R., Hagen, H., Mann, S., 1993. Functional composition via blossoming. ACM Transactions on Graphics

12, 113–135.
Elber, G., 1992. Free Form Surface Analysis using a Hybrid of Symbolic and Numeric Computation. Ph.D. thesis. University

of Utah.
Elber, G., 2015. Irit 11 user’s manual URL: http://www.cs.technion.ac.il/\simirit.
Elber, G., Cohen, E., 1995. Arbitrarily precise computation of gauss maps and visibility sets for freeform surfaces, in: Pro-

ceedings of the third ACM symposium on Solid modeling and applications, ACM. pp. 271–279.
Engvall, L., Evans, J.A., 2017. Isogeometric unstructured tetrahedral and mixed-element bernstein?bézier discretizations.

Computer Methods in Applied Mechanics and Engineering 319, 83 – 123.
Ezair, B., Elber, G., 2017. Fabricating functionally graded material objects using trimmed trivariate volumetric representations,

in: Proceedings of SMI’2017 Fabrication and Sculpting Event (FASE), Berkeley, CA, USA.
Geuzaine, C., Remacle, J.F., 2009. Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities.

International journal for numerical methods in engineering 79, 1309–1331.
Grandine, T.A., Klein, F.W., 1997. A new approach to the surface intersection problem. Computer Aided Geometric Design

14, 111 – 134. URL: http://www.sciencedirect.com/science/article/pii/S0167839696000246, doi:https://doi.org/10.
1016/S0167-8396(96)00024-6.

Lee, D., Lin, A., 1986. Computational complexity of art gallery problems. IEEE Transactions on Information Theory 32,
276–282.

Lima, E.L., 1988. The jordan-brouwer separation theorem for smooth hypersurfaces. The American Mathematical Monthly
95, 39–42.

Liu, L., Zhang, Y., Hughes, T.J., Scott, M.A., Sederberg, T.W., 2014. Volumetric t-spline construction using boolean operations.
Engineering with Computers 30, 425–439.

Martin, T., Cohen, E., 2010. Volumetric parameterization of complex objects by respecting multiple materials. Computers &
Graphics 34, 187 – 197. Shape Modelling International (SMI) Conference 2010.

Marussig, B., Hughes, T.J.R., 2018. A review of trimming in isogeometric analysis: Challenges, data exchange and sim-
ulation aspects. Archives of Computational Methods in Engineering 25, 1059–1127. URL: https://doi.org/10.1007/

s11831-017-9220-9, doi:10.1007/s11831-017-9220-9.
Marzal, J., 2012. The three-dimensional art gallery problem and its solutions. Ph.D. thesis. Murdoch University.
Massarwi, F., Elber, G., 2016. A B-spline based framework for volumetric object modeling. Computer-Aided Design 78, 36 –

47. SPM 2016.
Massarwi, F., van Sosin, B., Elber, G., 2018. Untrimming: Precise conversion of trimmed-surfaces to tensor-product surfaces.

Computers & Graphics 70, 80–91.
Pauletti, M.S., Martinelli, M., Cavallini, N., Antolin, P., 2015. Igatools: An isogeometric analysis library. SIAM Journal of

Scientific Computing 37, 465 – 496.
Rank, E., Ruess, M., Kollmannsberger, S., Schillinger, D., Düster, A., 2012. Geometric modeling, isogeometric analysis and

the finite cell method. Computer Methods in Applied Mechanics and Engineering 249-252, 104 – 115. URL: http://www.
sciencedirect.com/science/article/pii/S0045782512001855, doi:https://doi.org/10.1016/j.cma.2012.05.022. higher
Order Finite Element and Isogeometric Methods.

17

Ruess, M., Schillinger, D., Bazilevs, Y., Varduhn, V., Rank, E., 2013. Weakly enforced essential boundary conditions for
NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. International Journal for
Numerical Methods in Engineering 95, 811–846. URL: https://onlinelibrary.wiley.com/doi/full/10.1002/nme.4522,
doi:10.1002/nme.4522.

Satoh, T., Chiyokura, H., 1991. Boolean operations on sets using surface data, in: Proceedings of the First ACM Symposium
on Solid Modeling Foundations and CAD/CAM Applications, ACM, New York, NY, USA. pp. 119–126. URL: http:

//doi.acm.org/10.1145/112515.112536, doi:10.1145/112515.112536.
Thomas, S.W., 1986. Set Operations on Sculptured Solids. Technical report, University of Utah, Department of Computer

Science. URL: https://books.google.co.il/books?id=9IFzGwAACAAJ.
Toselli, A., Widlund, O.B., 2004. Domain Decomposition Methods :Algorithms and Theory. volume 34 of Computational

Mathematics. Springer Verlag.
Xu, G., Mourrain, B., Duvigneau, R., Galligo, A., 2013. Analysis-suitable volume parameterization of multi-block computational

domain in isogeometric applications. Computer-Aided Design 45, 395–404.
Xu, J., Sun, N., Shu, L., Rabczuk, T., Xu, G., 2017. An improved isogeometric analysis method for trimmed geometries. arXiv

preprint arXiv:1707.00323 .
Yu, W., Zhang, K., Li, X., 2015. Recent algorithms on automatic hexahedral mesh generation, in: Computer Science &

Education (ICCSE), 2015 10th International Conference on, IEEE. pp. 697–702.
Zhu, X., Hu, P., Ma, Z.D., 2016. B++ splines with applications to isogeometric analysis. Computer Methods in Applied

Mechanics and Engineering 311, 503 – 536.

18

