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1 Introduction

The environmental awareness of the world has considerably increased through-
out the past decades and it is now recognized that global actions are needed
to protect the planet (World Health Organisation, 2017). In point of fact, the
United Nations have dedicated four of these Sustainable Development Goals
(SDGs) to the Earth preservation: Responsible Consumption and Production,
Climate Action, Life Below Water, and Life on Land (United Nations, n.d.).

The Paris Agreement (United Nations Treaty Collection, 2016) that emerged
from the 2015 United Nations Climate Conference (COP 21) is a step further
toward the achievement of the SDG relative to the climate action, where 196
countries agreed to keep, for this century, the increase of global warming to “well
below 2◦C”. Each participating country shall translate the Paris agreement into
national agendas and regularly report on its contribution to global warming. In
addition to the major concerns as the lack of binding enforcement mechanism,
an important question emerges from these agreements. In order to undertake
direct actions and to assess the progress made to achieve the fixed objectives,
legislators need to understand the current state of the surrounded environment
and establish future trends of environmental parameters that help to prevent
new environmental issues. This is the role of environmental monitoring (Weston,
2011).

1.1 Environmental monitoring

Downes et al. (2002) classify monitoring in four categories according to the
different objectives :

• Long-term monitoring aims to provide background measure for long-
term dynamics of natural systems. They provide frameworks upon which
shorter term or localized changes (e.g. anthropogenic impact) could be
measured against.

• Compliance monitoring aims to ensure that a stipulated regulation is
followed. For example, the U.S. Environmental Protection Agency (EPA)
performs Air Compliance Monitoring to ensure compliance with the Clean
Air Act (CAA) and Water Compliance Monitoring to ensure compliance
with the Clean Water Act (CWA).

• Impact monitoring aims to assess the human impact exposure on the
natural environment with the objective of taking remedial measures to
prevent or minimize such impacts.

• Environmental monitoring aims to gain some indication of the current
state of the environment by the systematic sampling of air, water, soil or
biota (Weston, 2011).

Analysis of the data collected by environmental monitoring sensors allows
identifying future trends in environmental conditions, supporting policies devel-
opment and implementation, and assessing their cost-effectiveness or not. Ar-
tiola, Pepper, and Brusseau (2004) provide a non-exhaustive list of additional
benefits of environmental monitoring specific to diverse fields of application (Ta-
ble 1).
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Table 1: Knowledge-based regulation and benefits of environmental monitoring (Ar-
tiola et al., 2004)

Despite its undisputed benefits, several countries still not have an effective
monitoring network (United Nations, 2003). Even when it is the case, spatial
and temporal gaps can importantly restrict the knowledge we can infer from the
collected data (Gouveia, Fonseca, Câmara, & Ferreira, 2004) and in turn, the
ability to use them efficiently for decision-making (United Nations, 2003).

Nowadays, technological advances in the sensing field have motivated the
development of low-cost sensors that can be densely deployed in a multitude of
environmental systems including marine environments, air quality, biodiversity
and forestry (Stepenuck and Green, 2015; Gouveia et al., 2004). This trend
shifts data collection from a small number of formal institutions using expen-
sive and large monitoring stations toward a decentralized and diverse network
of stakeholders using low-cost distributed sensors (Buytaert, Dewulf, De Bièvre,
Clark, & Hannah, 2016).

This new paradigm of environmental monitoring carried out the subject
addressed by this master thesis, with a focus on urban air quality, an important
concern for human health (Benammar, Abdaoui, Ahmad, Touati, & Kadri,
2018).

1.2 Context

During the last decades, an increasing number of epidemiological studies have
found associations between air pollution and an increased morbidity and mortal-
ity (Mannucci, Harari, Martinelli, & Franchini, 2015). In the United Nations,
2003 Report, recommendations were already made for a strengthening of air
pollution monitoring.

However, according to a recent report of the World Health Organization
(2016), no improvement in outdoor air quality has been made over the last
decade and 90% of the world’s urban population was still exposed to PM2.5

concentrations exceeding the WHO air quality guidelines in 2014 (Figure 1). The
lack of monitoring of air pollution levels, sources and consequences on public
health has been identified as a major obstacle to the reduction of mortality
caused by air pollution (World Health Organization, 2016).
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Figure 1: Distribution of the world’s urban population by the concentration of par-
ticulate matter with an aerodynamic diameter of 2.5 µm or less (PM2.5) in 2014.
(source: World Health Organization, 2016)

Indeed, an effective air quality monitoring should provide valuable informa-
tion to help authorities to take direct actions for air pollution reduction such as
traffic or industrial activity control or land use management (Xie et al., 2017).

In the United States, the Environmental Protection Agency (EPA) has set-
ting up a national air quality monitoring network, composed of fixed stations
with Federal Reference Method (FRM) or Federal Equivalent Method (FEM)
instruments (White, n.d.). Their expensive cost (∼ $10, 000) (Clements et al.,
2017), allows them to provide high-quality time-series data (usually at an hourly
resolution) but only at sparse point-based locations with spatial resolutions in
the order of several hundred kilometers (Marjovi, Arfire, & Martinoli, 2015).

As air pollution depends predominantly on local emission sources, the spar-
sity of the regulatory monitoring network makes difficult the assessment of air
pollution field trends and human exposure to pollutants (Kumar et al., 2015).
Recent technological advances have brought a promising solution to overcome
the problem of the low spatial resolution with low-cost air quality sensors. Al-
though the data produced by these sensors are not as precise than the ones
collected by FRM/FEM instruments, they can be used in a high number of
locations simultaneously and allow the assessment of air quality at a high time
and spatial resolution (World Meteorological Organization, 2018).

It is precisely to take advantage of this new technology that a research study
dedicated to the urban air quality in Chicago, Array of Things (AoT), has been
launched two years ago. The AoT is “an urban sensing project, a network of
interactive, modular sensor boxes that will be installed around Chicago to col-
lect real-time data on the city’s environment, infrastructure, and activity for
research and public use. It will essentially serve as a ‘fitness tracker’ for the
city, measuring factors that impact livability in Chicago such as climate, air
quality and noise” (“Array of Things,” n.d.). The sensors platforms used in the
AoT project (i.e. Waggle platform) are designed as part of a research project
elaborated by the Argonne National Laboratory (ANL) and are installed at
the top of traffic signal poles across Chicago to benefit the City’s power sup-
ply. Each node contains several components including low-cost air quality and
meteorological sensors, cameras, linux controllers that send, every 30 seconds
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approximately, observations to the ANL server (see the nodes architecture in
Figure 2). Raw data will be open, free and available to the public through dif-
ferent portals. Moreover, several third parties will further analyse the collected
data to develop applications addressing challenges as urban air quality, traffic
safety or urban flooding.

Figure 2: AoT node architecture (source: AoT, https://arrayofthings.github.io)

The installation of a total of 105 nodes throughout the city will allow ob-
taining information about the air that 80% of the Chicagoan population breathe
(Figure 3b) and will provide a unique opportunity to monitor the air quality in
the city and implement direct actions against air pollution.

The organization of the AoT project is complex and involves several stake-
holders 1 and numerous partnerships (see the full list on the AoT website (“Ar-
ray of Things,” n.d.)). The different AoT members have handled the sensors
platforms development, the monitoring network design, the nodes deployment,
and the sensors calibration and they will in the longer term, ensure the mainte-
nance of the monitoring network, the collection of the distributed sensors data,
the data storage on ANL servers and the distribution of raw data through dif-
ferent platforms. However, no analysis or modeling will be conducted as part
of the AoT project and this task will be done by any third-parties who might
be interested in working with the data.

In this context, the Center of Spatial Data Science (CSDS) in the Univer-
sity of Chicago has started the Air Quality Project (“GeoDaCenter/airquality,”
n.d.) in January 2018 to analyze air quality data from AoT sensors, as part of
“The Partnership for Healthy Cities (PHC)” (n.d.). Supported by Bloomberg
Philanthropies in partnership with the World Health Organisation, the PHC

1Urban Center for Computation and Data (http://www.urbanccd.org/), Com-
putation Institute (https://ci.uchicago.edu/), Argonne National Laboratory
(https://www.anl.gov/), University of Chicago (https://www.uchicago.edu/), City of
Chicago (https://www.cityofchicago.org/city/en.html), School of the Art Institute of Chicago
(http://www.saic.edu/)
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financially helps a global network of cities, including Chicago, to implement in-
terventions against noncommunicable diseases and injuries.

(a) Chicago boundaries (source: Chicago Data
Portal, https://data.cityofchicago.org/, Open-
StreetMap Basemap)

(b) AoT monitoring network planned coverage

Figure 3: Definition of the AoT study area (3a) and coverage provided by the AoT
sensors (3b). Based on the total population US 2010 census (Chicago Data Portal,
https://data.cityofchicago.org/), the AoT nodes cover 42% of the total population
with a 1km radius around each node and 80% of the total population with a radius
of 2km around each node. Notes: Values corresponding to the population coverage are
slightly overestimated as we have summed the population of intersecting blocks, some
of them are not completely contained in the buffer. The nodes used in this analysis are
the ones initially planned (n=105).

For this project, the CSDS has defined three distinct objectives, all related
to the AoT air quality data, according to the different interests of three stake-
holders namely the AoT team, Bloomberg Philanthropies, and the Chicago De-
partment of Public Health (CDPH). They respectively consist of :

1. The creation of interpolated maps of AoT distributed sensors air quality
data;

2. The identification of air pollution drivers with a similar method like the
one used in the New York City Community Air Survey (Matte et al., 2013;
Clougherty et al., 2013);
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3. The intra-urban variation assessment of air pollutant (especially PM2.5)
and their potential impact on health.

The second objective was a key milestone for the PHC Grant, and its achieve-
ment by the end of 2018 is a priority in the Air Quality Project. A roadmap has
been elaborated to detail its implementation (see Figure 12 in Appendix, p. 44).

In addition to the ubiquitous need of air quality sensors data, drivers and
spatio-temporal predictors will also be required in the modeling approaches (a
preliminary list is presented in Figure 13 in Appendix, p. 45).

To achieve the different objectives of this large-scale project, the just men-
tioned spatial data resources have to be accessible to the whole CSDS team and
the data collection have to be accurate, up to date, consistent and centralized
to avoid a duplication and a fragmentation of data. This is the role of a Spatial
Data Infrastructure (SDI) (Phillips, Williamson, & Ezigbalike, 1999).

Unfortunately, important delays have occurred in the AoT project and the
majority of AoT sensors are still in a calibration phase. This procedure consists
of normalizing sensor responses with FRM/FEM ones (i.e. regulatory monitors)
at collocated sites in order to quantify sensor drift and help bound uncertainty
(Kumar et al., 2015; Clements et al., 2017).

In order to fulfill the exigencies of the PHC grant, the CSDS has decided to
search for new sources of distributed air quality sensors data. They also decided
to develop an initial framework able to handle the extraction and storage of the
different spatial data resources and, of the calibrated AoT data as soon as these
data will become available.

1.3 Goal and objectives

In this context, the goal of this master thesis is to design an SDI for distributed
air quality sensors data to provide a framework to facilitate the downloading,
the analysis and in turn the understanding of the spatial distribution of air
quality in the city of Chicago.

The following requirements (following Urbano et al., 2010) were identified
for the SDI design :

1. Data scalability. Distributed sensors can record several observations per
minute at numerous locations depending on the size of the monitoring
network. A persistent and large data storage is required to handle this
important amount of data.

2. Periodic and automatic data acquisition. New observations are collected
every day by monitoring sensors and are usually made available via data
access points (Vitolo, Elkhatib, Reusser, Macleod, & Buytaert, 2015). It
requires automated procedures to extract and store new data either con-
tinuously or at regular intervals depending on the time resolution needed.

3. Management of spatial information. Geodata is information that can be
geographically referenced in some consistent manner using latitude/longi-
tude, national coordinates, postal codes, etc. (Awange & Kyalo Kiema,
2013). Thus, the spatial location must be efficiently stored and tools must
be available for spatial manipulation.
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4. Management of temporal aspect. A specificity of environmental sensors
is the production of time series data, which consists of repeated measure-
ments of several parameters over time (Dunning & Friedman, n.d.). Thus,
these components must be stored and we must ensure the efficiency of data
manipulation relative to the temporal aspect.

5. Heterogeneity of applications. The complex nature of environmental sen-
sors data implies that data should be explored, analyzed, visualized by a
wide range of task-oriented applications.

6. Integration of different data sources. The infrastructure should allow the
integration of other spatial data resources, in our case the drivers and
spatio-temporal predictors data required for the Air Quality Project mod-
eling stage (see Figure 13 in Appendix, p. 45). It will provide an oppor-
tunity to expand the collected information and thus improve the under-
standing of the studied phenomenon.

7. Multi-user support. The infrastructure should be accessed locally or re-
motely by the different CSDS collaborators.

8. Data sharing. The SDI must be comprehensible and reproducible by the
different actors involved in the project. Thus, it must include standard
data definition, methods details, etc.

9. Flexibility. Additional needs might appear along the project and the SDI
must be flexible enough to minimize the changes that need to be made to
the infrastructure.

10. Cost-effectiveness. The cost-effectiveness of the SDI is an important added
value that guarantees its accessibility.

Taking into consideration the requirements mentioned above, the three main
objectives of this research will be to :

• identify which air quality sensors data we want to store in the SDI, where
to collect them and at which frequency;

• design a centralized spatial database where the selection of attributes we
want to store, the definition of standards and the modeling of the interre-
lationships between data sets will be crucial for an efficient integration of
the different data resources;

• automate the process by the implementation of a workflow, which will
ensure the maintenance and the consistency of the SDI;

An example of such an SDI is presented in Figure 4. The heterogeneous
data sources must be extracted and inserted in a spatial database that can be
accessed through different third-party applications that will, in turn, enable
data exploration, spatial analysis, and visualization. The output has then to be
stored back in the database.

The components of the planned SDI are displayed in red and the main steps
leading to its implementation are presented in the next section.
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Figure 4: Schema of a possible spatial data infrastructure that combines information
from heterogeneous sources in a centralized spatial database where it is accessed re-
motely or locally by client applications for manipulation, visualization, and analysis.
Outputs are then stored back in the database. In red are the components implemented
in this project. Reproduced from Urbano et al. (2010)

.

1.4 Methodology

Due to important delays in the AoT project and a lack of coordination between
the partners, it was not possible to use systematic interviews of the different
stakeholders and to elaborate a precise framework for the SDI.

Following the needs of the Air Quality Project, the first step of the SDI
design was to define which air quality data would be stored in the SDI. For
this purpose, other options of distributed air quality sensors data sources have
been considered in order to complete AoT sensors data, including data from
regulatory monitoring network and data from volunteer monitoring programs.
For each data source, different parameters had to be chosen including the data
extraction frequency, the time aggregation level, the data spatial extent, etc.

The important constraints relative to data access and availability have mainly
dictated the SDI design and the priority was to guarantee the flexibility of the
infrastructure and the maximization of the information stored.

A literature review has permitted to select different software and tools to
ensure an efficient storage and retrieval of the geodata.

Furthermore, several scripts were elaborated to ensure the different tasks
inherent to an SDI needs including data extraction, data standardization and
database update.
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2 Literature review

2.1 Air Quality Observation Systems

According to the World Health Organization, 2016 Report, air pollution moni-
toring is conducted in 3,000 cities worldwide. The same report alerts about the
lack of urban air quality measurements in many cities, which makes it impossi-
ble to identify air pollution sources and thus limit the ability of decision-makers
to assess risks, set targets and measure progress.

Since 1990, the Clean Air Act (US EPA, 2015) governs the air quality in
the United States. Under this law, the U.S Environmental Protection Agency
(EPA) has established limits for the concentration of six major air pollutants
2, known as criteria pollutants, across all the country. The compliance to these
limits, defined as National Ambient Air Quality Standards (NAAQS), is as-
sessed through the use of EPA’s Air Quality System (AQS) monitors data.

These reference stations provide highly accurate measurements for a variety
of pollutants at the cost of expensive and large monitoring devices (Marjovi
et al., 2015), resulting on a sparse monitoring network. Modeling approaches
are used to form a macroscopic view of pollution field trends across the coun-
try (Kumar et al., 2015) but the spatial resolution is not sufficient enough to
provide information about localized gradients of potential importance to health
protection (Nuria Castell et al., 2017).

The recent technological progress in remote sensing offers a valuable opportu-
nity for air quality monitoring as it extends significantly the spatial and tempo-
ral coverage offered by fixed-monitoring networks (Committee on Environment,
Natural Resources, and Sustainability, 2013). U.S. Atmospheric Remote Sens-
ing programs are led by the National Aeronautics and Space Administration
(NASA) and the National Oceanic and Atmospheric Administration (NOAA)
that have launched in the last two decades a suite of satellites 3 allowing the
measurements of columns of Aerosol Optical Depth (AOD), O3, H2O, CO,
CH4, SO2, NO2, CFCs, other pollutants and atmospheric parameters such as
temperature, cloud properties and water vapor (Committee on Environment,
Natural Resources, and Sustainability, 2013).

There is an extensive literature of how to integrate satellite imagery in urban
air quality studies especially for PM2.5 measurements as it has been found that
satellite-derived aerosol optical depth (AOD) measurements were correlated to
PM2.5 concentrations (Kloog, Nordio, Coull, and Schwartz, 2012; Kloog, Nor-
dio, Coull, and Schwartz, 2014; Stafoggia et al., 2017). The Multiangle Imple-
mentation of Atmospheric Correction (MAIAC) algorithm applied to AOD data
in combination with spatio-temporal predictors allows the prediction of PM2.5

concentration at 100m-scale across Switzerland (de Hoogh, Héritier, Stafoggia,
Künzli, & Kloog, 2018). It is important to note that the 100m resolution results

2Criteria Air Pollutants: Ground-level Ozone, Particulate Matter, Carbon Monoxide, Lead,
Sulfur Dioxide, Nitrogen Dioxide.

3Including Terra, Aqua, Aura, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation), as well as NOAA-17, NOAA-18, NOAA-19, and Suomi NPP (National
Polar-orbiting Partnership).
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of a mixed model comprising the ground-based monitoring stations and other
spatial-temporal predictors, the daily MAIAC spectral AOD being available at
a 1km resolution.

Although satellite data can help to fill the gap of ground-based monitor-
ing stations, this procedure is complex as satellite observations do not directly
correspond to in situ measurements of pollutant concentrations and it involves
the integration of models and ground-based information (Committee on Envi-
ronment, Natural Resources, and Sustainability, 2013). Furthermore, the avail-
ability of satellite data depends on meteorological conditions (e.g. unavailable
in cloudy days) that can create gaps in spatial coverage. Therefore, satellite
imagery can only be used as a complement to ground-based or aircraft mea-
surements.

During the last decade, an increasing number of low-cost sensors (< $2, 500)
measuring air particles and gases have appeared on the market (Clements et al.,
2017), becoming an interesting solution to overcome the lack of small-scale mea-
surements of air quality. Their characteristics and applications are the subjects
of the next section.

2.2 The emergence of distributed low-cost sensors in Air
Quality monitoring

Progress in developing low-cost micro-scale sensing technology has reduced the
cost of air pollution sensors from thousands to hundreds of dollars (Kumar et al.,
2015) and we are now experiencing a paradigm shift in how and who is monitor-
ing air quality (Núria Castell, Viana, Minguillón, Guerreiro, and Querol, 2013;
Lewis and Edwards, 2016).

Compared to the traditional fixed-site air monitoring devices, this new tech-
nology aims to be small, easy to use, user-friendly and with end-to-end solutions
(Kumar et al., 2015).

These significant advantages allow the measurements of gas and particles
concentrations at the hyperlocal level and at a very high time resolution (Williams,
2018), providing two main fields of sensors application that was impossible with
traditional approaches :

• Sensors can be deployed as dense fixed monitoring networks (ubiquitous
monitoring) to assess pollution variability across a city or even at a smaller
scale as community level.

• The integration of Global Positioning System (GPS) devices has brought
out the emergence of a mobile sensing system approach. Personal wearable
sensing platforms provide new capabilities to assess the air pollution health
impacts (Nuria Castell et al., 2017) and transportation sensing networks,
where sensors are anchored to moving sensor carriers, allow a finer spatial
resolution, a wider coverage with fewer nodes and a cheaper maintenance
(Marjovi et al., 2015).

Recent studies highlight the fascinating diversity in terms of sensors, mea-
sured parameters, monitoring objectives, end-users, spatial and temporal scales.
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As a matter of example, Marjovi et al. (2015) modeled at a city-scale level in
Lausanne (Switzerland) the Lung Deposited Surface Area (LDSA) that quanti-
fies human exposure to ultrafine particles. For this purpose, they developed a
spatially and temporally dynamic network coverage where sensing nodes were
anchored to ten public buses, measuring several air quality parameters (e.g.
CO, NO2, LDSA). Bikes (Bigazzi and Figliozzi, 2015; Peters et al., 2014),
pedestrians (Zwack, Paciorek, Spengler, & Levy, 2011) and cars (Hatzopoulou
et al., 2017) can also be used as sensor carriers.

Peters et al. (2014) used a bicycle platform in the streets of Antwerp (Bel-
gium) to assess the cyclist exposure to ultrafine particles (UFP) and black car-
bon (BC), revealing a high variability of both pollutants between and within
streets level. One of the major drawbacks of mobile air quality monitoring is the
incompleteness of temporal and spatial coverage making their data more suit-
able for measuring personal exposure than assessing air pollutants distribution
across a city (Xie et al., 2017).

As people can spend up to 90% of their time in enclosed environments
(Klepeis et al., 2001), indoor air quality monitoring is an important field when
assessing human exposure to pollution, which is now possible with low-cost sen-
sors. Mohammadyan et al. (2017) assessed the relationship between indoor and
outdoor particulate air pollution at six primary schools in Sari (Iran) and iden-
tified the total area of windows and the number of students in a classroom as
predictors for PM1 levels.

The AoT project is a perfect example of ubiquitous monitoring where more
than a hundred low-cost sensors are deployed across Chicago, allowing the as-
sessment of air quality at near real-time and at a micro-scale level. Moreover,
we can highlight two major differences with the previously mentioned studies:
First, the project is not planned to be time limited and it will become a per-
manent source of air quality measurements for the city of Chicago. Moreover,
it aims to have strong educational purposes, starting with the public solicita-
tion to identify community priorities and thus optimize the monitoring network
design. An eight-week course ”Lane of Things” has also been proposed in the
Chicago’s Lane Tech High School where students have learned about computer
science concepts and have been encouraged to gather environmental data in
their school such as noise level in hallways or humidity in gyms (Thornton,
2018).

Encourage public participation in environmental monitoring can both in-
crease the amount of air quality observations collected and promote citizen’s
involvement in environmental protection (Gouveia et al., 2004), and it became
easier with the emergence of low-cost sensors.

To our knowledge, at least two volunteer monitoring programs are collecting
air quality observations in Chicago.

The Shared Air / Shared Action (SA2) initiative is working with community-
based organizations in four Chicago neighborhoods (Little Village, Southeast
Side, Riverdale Community Area, and South Loop) to help residents collecting
their own data about the pollutants they breathe using a system of both mobile
and stationary monitors (Delta Institute, n.d.). This 3-years research project
(2016-2019) received one of the six grants provided by the U.S. EPA through
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the Science to Achieve Results (STAR) program for “Air Pollution Monitoring
for Communities” (2014).

Another promising initiative is the AirCasting open-source platform which
allows users to record, map and share health and environmental data using their
smartphone (“AirCasting,” n.d.). Several sensors devices 4 can be connected to
the AirCasting application and georeferenced measurements (using the phone
localization) collected during fixed or mobile sessions are displayed in real-time
on the user’s phone. For instance, the AirBeam is a portable, palm-sized air
quality monitor that uses a light scattering method to estimate the number of
ultrafine particles (PM2.5) in the air (Figure 5).

Figure 5: AirBeam sensor

The AirCasting platform permits to access to air quality data collected by
the entire AirCasting community. Data corresponding to a specific mobile or
fixed session can be directly visualized on the website or retrieved as JSON for-
mat through the AirCasting API. Another option is to use the CrowdMap that
average all the AirCasting contributor’s measurements for a given time range
over squared areas.

Naturally, the shift of how air quality monitoring is done and who is collect-
ing observations creates new challenges and unresolved issues (Clements et al.,
2017; Gouveia et al., 2004).

First of all, it is important to note that even if some low-cost air quality
sensors show a reasonable correlation with FEM/FRM monitors (r2 ∼ 0.7),
testing results of a recent study from the U.S. EPA’s Office of Research and
Development (ORD) (Williams, 2018) have shown that performance was widely
variable among low-cost sensors. Thus, in their actual state, low-cost sensors
cannot be used for regulatory or compliance purposes (Clements et al., 2017).

As there are no Quality Assurance (QA) protocols or industry standardiza-
tion in place yet (Clements et al., 2017), data coming from low-cost sensors are
in a variety of output formats, sometimes without data labels, units, metadata
or information about data accuracy. Not considering these issues can substan-
tially affect the quality of the models used and the reliability of the findings.

4Arduino-powered AirCasting Air Monitor (temperature, humidity, carbon monoxide and
nitrogen dioxide gas concentrations), Zephyr BioHarness 3 (heart rate, heart rate variability,
R to R, breathing rate, activity level, peak acceleration and core temperature measurements),
Zephyr HxM (heart rate measurements), Arduino-powered AirBeam2 (temperature, humidity,
particulate matter concentrations)
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Therefore, the integration of distributed low-cost sensors data to traditional
air quality measurements could greatly enhance the knowledge in urban air
quality but this task is complex and requires the implementation of an effi-
cient environmental information system. The design of such infrastructure is
presented in the following section.

2.3 Information systems for environmental data

A fundamental characteristic of environmental data is to be spatially distributed.
If we consider a transport infrastructure, land use characteristics or air quality
data, the information we can infer from these datasets will not be valuable if
we do not know where it is happening (“Environmental spatial data,” 2014). In
order to produce valuable knowledge from environmental data, an SDI must be
implemented (Awange & Kyalo Kiema, 2013).

Before the democratization of internet, environmental data were stored us-
ing operating system files, usually in several physical locations and in different
standards or formats, making extremely difficult the access and the use of data
(Bocher and Symposium, 2012; Ramakrishnan and Gehrke, 2003). The appari-
tion of Database Management Systems (DBMS) was revolutionary in terms of
data management as it brings a solution to several requirements exposed above.
First, they provide a virtually unlimited data storage capacity compared to
operating system files storage, the use of indexes can speed up the retrieval pro-
cess and using a database as central data repository avoids data replication and
the propagation of errors. In a DBMS, a data model (e.g. hierarchical model,
network model, relational model, object-oriented model and object-relational
model) describes how data will be stored, accessed and updated in the system
(Awange & Kyalo Kiema, 2013). It allows to link and integrate different data
sources and define complex relationship between them.

Relational databases are the simplest choice for data storage, even if the
flexibility of the NoSQL approach starts being popular, especially when it deals
with Big Data. In a relational data model, data are organized as tables where
the different attributes are represented as columns and where each row is a
record. The different tables are related through relation sets that will be used
to perform queries with the Structured Query Languages (SQL).

A relational DBMS will ensure the consistency of the data stored in the
database by the enforcement of integrity constraints (IC), which consist of rules
specified on a database schema that will restrict the data that can be stored in
an instance (Ramakrishnan & Gehrke, 2003).

Three types of IC are inherent to the relational model :

• Domain integrity specifies that all the values on an attribute will cor-
respond to the same data type.

• Entity integrity is ensured by specifying a primary key to each table.
The attribute chosen as the primary key should have to be unique and not
null.

• Referential integrity is a constraint defined between two tables that
will ensure that an attribute, namely a foreign key, will have a matching
primary key in the other table or will be null.
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However, relational databases have important limitations when dealing with
spatial data (Lijing Zhang & Jing Yi, 2010). Indeed, a spatial location must
be stored in addition to attribute and temporal characteristics and the complex
relationships between spatial entities (i.e. hierarchy, generalization, etc.) must
be efficiently modeled in order to perform spatial operations. Even if an RDBMS
allows the manipulation of spatial data, its basic two-dimensional table structure
will cause data redundancy and poor performance in spatial operations.

Object-relational database management systems as PostgreSQL or MySQL
take advantage of the flexibility of object-oriented databases while keeping the
simplest approach of relational models. Furthermore, most of them provide ex-
tensions that allow the storage and manipulation of spatial data. It is the case
of PostGIS for PostgreSQL.

Even if a DBMS provides time data type management, in some monitoring
systems, measurements are made at almost real-time and the amount of data
that need to be stored grows exponentially with the number of sensors deployed
and the number of parameters measured (Dunning & Friedman, n.d.). Conse-
quently, it can significantly affect the proper functioning of the database. To
prevent the overwhelming of the database, one of the two following solutions is
usually employed :

The first option is to aggregate measurements according to a specific time
range (e.g. hourly, daily). However, Pope and Wu (2014) have shown that
temporal scale of observation and analysis may substantially affect what air
pollution patterns revealed. With a too wide time aggregation, we could miss
important trends in the measured parameter and it could affect the quality of
the models. Moreover, a major concern in low-cost sensors application is the
detection of outliers or instrument malfunctions. If outliers are not properly
identified and handled, it can significantly bias our results, especially when av-
eraging the observations. Hence, keeping fine-grained resolution may represent
an added value.

The second option is to store data in a Time Serie Database System (TSDB),
optimized for queries based on a timestamp or a range of time. According Bader,
Kopp, and Falkenthal (n.d.), existing TSDBs can be subdivided in four groups :
TSDBs that depend on already existing DBMS to store time-series data, TSDBs
that are completely independent of other DBMS for the time-series data storage
despite using those for storing metadata or additional information, RDBMs that
can store time-series data and proprietary TSDBs that contain all commercially
or freely available TSDBs that are not open source.

TimescaleDB appeared on the market last year and it is an interesting so-
lution belonging to the first category of TSDB. Implemented as a PostgreSQL
extension, it has the advantage to let the users work with time series data as
regular PostgreSQL tables but with significant improvements in terms of data
ingestion, query performances and time-oriented features (Paolini-Subramanya,
2018).
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Figure 6: The role of an SDI in the integration of two different sources of distributed
environmental sensors data. (source: Gouveia et al., 2004)

As new data will become available every day, data acquisition, database
update, and views actualization must be appropriately scheduled (Awange &
Kyalo Kiema, 2013).

The latter can be implemented in the form of a workflow which is by def-
inition an pipeline execution with self-contained elements (e.g. scripts, web
services, binary executables). It will allow the execution of different subtasks
inherent to the SDI including data extraction, integration with other spatial
resources and data processing (see an example of these tasks in Figure 6).

However, it is important to note that the design of an SDI is mostly driven
by the research question, the spatial data and the various stakeholders involved
in the project as highlighted in the two following definitions : according to Kuhn
(2005), an SDI is ”a coordinated series of agreements on technology standards,
institutional arrangements, and policies that enable the discovery and use of
geospatial information by users and for purposes other than those it was cre-
ated for”. Another definition characterizes an SDI as ”a data infrastructure
implementing a framework of geographic data, metadata, users and tools that
are interactively connected in order to use spatial data in an efficient and flexible
way” (The White House, 2002).

The spatial data that will reside in the SDI are presented in the following
section.
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3 Data

After having reviewed and assessed different options for distributed air quality
sensors data sources in our study area (i.e. the city of Chicago), two have been
selected: the first consists of criteria pollutants measurements collected by the
U.S. official air quality monitoring network (i.e. AQS) and the second consists
of the entire data set collected by the AoT distributed low-cost sensors.

There are three main advantages using AQS air pollution data: observations
collected by the AQS instruments are highly accurate and can be used as refer-
ence values for the data recorded by the AoT low-cost sensors. Furthermore, the
AQS monitoring network covers the whole country and provides historical air
pollution data, which is extremely useful for determining the air quality regional
background. Data characteristics, their access, and their format are detailed for
each source in this section.

3.1 Air Quality System (AQS)

The AQS Data Mart is a 3.4 billion rows database containing all the informa-
tion from the AQS network, namely the monitored ambient air quality data
collected by EPA, state, local and tribal air pollution control agencies. It also
contains metadata about each monitoring station and data quality assurance
information (“AQS Data Mart,” n.d.). The database is updated every Sunday
5 and is consolidated through the AirData website.

Another possibility would have been to use the AirNow website which pro-
vides forecasts and near real-time observed air quality observations from over
2,000 monitoring stations. However, as the AirNow primary purpose is to report
the current and today’s forecast Air Quality Index (AQI), mostly based on O3

and PM2.5 measurements, only these two criteria pollutants had a consistent
dataset. Furthermore, the disadvantage of using real-time data is that only pre-
liminary quality assessments are performed, thus they are not fully verified and
validated through the EPA’s AQS procedure (“About AirNow—AirNow.gov,”
n.d.). In this project, AQS data will serve as reference values, that is why it
was more logical to consider AirData as our only EPA’s data source and favor
the data quality at the expense of temporal frequency.

The structure of the AQS database can be stated as: “Sites contain monitors
which contain raw data, summary data, precision and accuracy data” (Tec,
2011). Thus, we can identify three components that we will be interested in :

• A site is identified by the state and the county to which it belongs and
by a 4-digits number. Location data (coordinates, elevation, address) and
administrative information (reporting agency name, years of monitoring,
etc.) are also available.

• A monitor does not refer to a specific piece of equipment but to the
pollutant measured by a specific device at a site. Thus, a monitor is

5Even if AQS is updated practically every day as reporting agencies have data ready to
submit, data is required to be submitted by the end of the calendar quarter after the quarter
in which it was collected. On May 1st, all the data for the prior year should be complete and
correct.

17



uniquely identified by its site elements, a pollutant code and a parameter
occurrence code (POC) that is used in case of a pollutant is measured by
several devices at the same location. Information relative to the reporting
agency and the collection method is stored.

• Raw data values are the pollutant levels reported by a monitor (e.g. sam-
ple). A sample is uniquely identified by the site and monitor information,
and the timestamp at which it has been reported. A qualifier code may
inform the user about natural or anthropogenic events that explain high,
low or null raw data values.

Sites and monitors metadata are available as pre-generated CSV files in the
AirData website and hourly, 8-hour average, daily and annual summaries data
by pollutant are also available. AQS raw data can also be accessed through the
AirData API where a query to the \rawData service returns the data collected
by the AQS monitors. Several parameters (Table 2) may be assigned to the
query to filter the data according to the site location, the measured parameter,
the sample date, etc.

The use of the API for sample data request was preferred as it provides more
flexibility and the data are updated weekly. AirData offers three data output
formats depending on the user needs, and the AQCSV format, which is fully
described in the AQS documentation, was the more convenient for this project
as it is easy to link with the metadata files.

Query Parameter Description
user user ID
pw User password
format DMCSV (Full descriptions rather than codes and abbreviations),

AQCSV (using Air Quality System codes), AQS (Pipe separator |)
pc Parameter class (CRITERIA for criteria pollutants, CORE HAPS

for Urban Air Toxic Pollutants, MET for meteorological parame-
ters)

param 5 digit AQS parameter code
bdate begin date of data (YYYYMMDD format)
edate end date of data (YYYMMDD format)
cbdate return only values that changed after this date (YYYMMDD for-

mat)
cedate return only values that changed before this date (YYYMMDD for-

mat)
state 2 digits FIPS code for the state
county 3 digits FIPS code for the county
site 4 digits AQS ID number
cbsa 5 digit Census code for the Core Based Statistical Area
csa 3 digit Census code for the Consolidated Statistical Area
minlat Minimum Latitude
maxlat Maximum Latitude
minlon Minimum Longitude
maxlon Maximum Longitude
dur AQS duration code indicating sampling interval used for monitor-

ing activities
frmonly Y for Federal Reference (and Equivalent) Methods only, N will

return data that is not FRM/FEM

Table 2: List of query parameters for AQS raw data request (“AQS Data API doc-
umentation,” n.d.)
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In this project, AQS data aim to serve as a reference for the AoT project
both for data quality and value range (e.g. regional background). Hence, AQS
raw data were filtered according to the monitoring location and the measured
parameters to match AoT data.

Definition of the study area
Even if the AoT monitors are solely located in Chicago (Cook County), we

decided to extend the bounding box area to the surrounding counties while ex-
tracting AQS data (Figure 7). The presence of heavy industries along the Lake
Michigan, especially at the North-West of the State of Indiana can have a sig-
nificant role on the pollutant spatial variation in Chicago, especially with the
meteorological specificities of this region (e.g. wind and lake effect).

Figure 7: Counties considered for AQS raw data extraction

Selection of the parameters
Only the hourly observations relative to criteria pollutants (e.g. CRITERIA

class code, see Table 3) have been extracted from the AQS database. Hourly was
the smallest sampling frequency of AQS monitors and extracting more parame-
ters was not considered useful as only criteria pollutants are measured by AoT
sensors. However, depending on the future needs of the Air Quality project,
additional information might be interesting, for example, the composition of
particulate matter (PM2.5 speciation). In this case, the API query would have
to be modified to add another parameter class (e.g. CSN DART class code for
particulate matter speciation).
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The three AQS data sets (i.e. hourly observations for criteria pollutants,
monitors and sites metadata) are downloadable in a CSV format and their
respective structure is shown in Appendix (Figure 14, p. 46).

Pollutant Parameter Code

Carbon Monoxide (CO) 42101
Lead (TSP) LC 14129
Lead PM10 LC FRM/FEM 85129
Nitrogen Dioxide (NO2) 42602
Ozone (O3) 44201
PM10 Total 0-10 µm STP 81102
PM2.5 Local Conditions 88101
Sulfur Dioxide (SO2) 42401

Table 3: Parameter codes for criteria pollutants

3.2 Array of Things (AoT)

The structure of the AoT data sets is composed of three parts, similarly to the
structure of the AQS database:

• A node is a monitoring network endpoint. More specifically, it gives
information about the Waggle sensor platform as a whole including its
geographical location. It is uniquely identified by an ID.

• A sensor is the device used to collect an environmental parameter and is
uniquely identified by the subsystem it belongs, the sensor name and the
measured parameter. A node is composed of several sensors.

• Raw data are the values recorded by a sensor (i.e. observation). An
observation or sample is uniquely identified by the time at which the
measurement was reported, the sensor used, the measured parameter and
the node where the sampling was made.

As mentioned above, each sensor is part of a subsystem (i.e. board) in
the Waggle architecture. The most commons are the Metsense board 8a that
contains meteorological sensors, the Chemsense board 8b that contains all the
air quality sensors except PM sensors, the Lightsense board 8c that contains
sensors measuring light intensity and the Alphasense 8d which is the PM sensor
(for PM10, PM2.5, and PM1 measurements). Even if we will mainly use air
quality data for the Air Quality Project, all the parameters measured by the
AoT sensors will be stored in the infrastructure as other information including
meteorological observations could be extremely useful (i.e. as spatio-temporal
predictors).

It is important to note that not all the sensors are present in each node.
For instance, only 20% of the nodes contain Particulate Matter sensors (i.e. Al-
phasense subsystem) due to its expensive cost. Furthermore, more than half of
the sensors composing the Waggle platform are measuring system parameters
as internal temperature or humidity. For instance, too much humidity could
seriously affect the proper functioning of air quality sensors, especially the ones
measuring Particulate Matter (Williams, 2018).
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(a) Metsense (also named Airsense) (b) Chemsense

(c) Lightsense (d) Alphasense

Figure 8: Common Waggle subsystems
(source: AoT, https://github.com/waggle-sensor/sensors/blob/develop/README.md)

Ultimately, AoT data are supposed to be available in two different access
modes: in bulk download through the City of Chicago’s Open Data Portal or
with custom geospatial and temporal queries through the Plenar.io API.

A preliminary version of the Plenar.io API has been released in May but
it is not fully operational. Among other issues, data are not up-to-date and
temporal parameters in queries do not seem to work. These two accesses should
not be operational before the end of the AoT sensors calibration stage.

Meanwhile, the ANL who is handling the AoT engineering part (e.g. sensors
calibration and reparation, data collection, etc.) has provided an intermediary
access to AoT data via a File Browser and it is the data source used in this
thesis, being considered as the most reliable for now.

Specifically, the bulk download concerns two kinds of sensors data sets: the
Complete data set contains the raw information sent by all the sensors and the
Public data set is a subset of the Complete data set with only the raw data
recorded by calibrated sensors. In other words, measurements values from the
Public data set are supposed to be consistent, but a test analysis has revealed
some inconsistencies in these data. Hence, we have decided to work with the
complete data sets, which give an overview of the final structure we could have
once all the sensors will be calibrated.

The Public and Complete data sets are either available for a specific node
or for the complete monitoring network but they gathered all the data collected
since the beginning of the project. As we are not interested in a specific node
but more by a snapshot of the overall monitoring network, we used the second
option. The three AoT data sets (i.e. raw data, nodes and sensors metadata) are
available in a CSV format and their respective structure is shown in Appendix
(Figure 15, p. 46).
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4 Spatial Data Infrastructure

The SDI designed in this project is composed of three elements :

• The spatial database will store data and corresponding metadata from
the two different sources of air quality sensors data (i.e. AQS and AoT).

• Several scripts will handle the data extraction, the data standardization
and the insertion in the database.

• The cron job, a time-based job scheduler in Unix-like computer operating
systems, will allow the automation of the workflow at regular intervals.

Compared to other spatial data resources, designing an SDI for distributed
sensors data is complex for two reasons: first, the sampling frequency of envi-
ronmental sensors could range from hourly to near real-time resolution which
requires a frequent update of the SDI. Secondly, data are collected simulta-
neously at different locations, up to a hundred depending on the size of the
monitoring network, which results in a large amount of data that need to be
efficiently stored in the infrastructure.

The creation of a spatial database will ensure the efficient storage of dis-
tributed monitoring data and the cron job will ensure that the data stored are
up-to-date.

4.1 Spatial database

4.1.1 Data model

AQS and AoT sensors data consist of three data sets each (i.e. observations,
sites metadata and sensors/monitoring metadata), all available in a CSV format.
For clarity, they are stored in the spatial database as two different schemas.

The Entity Relationship Diagram (ERD) for each data source, providing a
high-level representation of the database structure is presented in Figure 9.

The main idea while designing the ERD was to stay as close as possible from
the original data sets structure. Hence, it can be summarized as follows: each
data source (i.e. AQS, AoT) is an entity set and the different data sets (i.e.
site, monitor, data for AQS and node, sensor, data for AoT) are the entities
composing the entity set.

The AQS entity set is presented in Figure 9a. Monitoring data (aqs.data
table) are uniquely identify by the time at which the measurement was recorded
(timestamp attribute) and the sampling characteristics (monit id attribute).

A monitor instance can record zero or more data but a data instance must
be recorded by exactly one monitor. Similarly, a data instance must be recorded
at one site but many data can be recorded at the same site. Thus the data table
relates to the site table and to the monitor table via many-to-one relationships.

Several changes can be observed compared to the structure of the data sets
extracted from the AQS and presented in Appendix (Figure 14, p. 46). For
instance, shorter names have been assigned to the different attributes and re-
dundant information has been removed (e.g. State, County, City, CBSA and
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(a) Air Quality System (AQS)

(b) Array of Things (AoT)

Figure 9: Entity Relationship Diagrams for the air quality sensors data

Tribe name that appeared both in the monitor and in the site data set) in order
to simplify data manipulation.

Another important improvement in the data storage is the creation of a se-
rial ID for the site table (site id attribute) and the monitor table (monit id
attribute). As explained in the Data section [3.1], three attributes were nec-
essary to uniquely identify a site and five for a monitor, which substantially
slowing down data manipulation.

The AoT entity set is presented in Figure 9b.
Reported data (aot.data table) are uniquely identified by the time at which

the measurement was recorded (timestamp attribute), the sensor identifier (sen-
sor id attribute) and the identifier of the node where the measurement was
collected (node id attribute). For some parameters, the value recorded by the
sensor is not in a convenient unit for the user and is converted (e.g. internal
temperature in the chemsense board). If it is the case, the value in the raw
unit would be saved in the val raw attribute. However, the unit recorded in the
aot.sensor table corresponds to the value attribute and the val raw attribute is
an additional information that should not be used in the modeling stage.

As for the AQS schema, the data table relates to the node and the monitor
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tables via many-to-one relationships. Indeed, an observation is recorded at
exactly one node by a sensor, but a sensor can record several observations and
several observations can be collected at the same node.

The number of data generated every day by the AoT sensors is colossal.
In fact, measurements are taken every 30-seconds approximately for all the
environmental sensors in the Waggle platform (approximately 50) at the 90 op-
erating nodes, resulting to more than 6 millions observations a day. Compared
to the initial structure of the data sets (Figure 15 in Appendix, p. 46), three
major changes were brought to optimize the database performance: First, a
new identifier was created for the node relation. Initially, the node identifier
was a long character (e.g. 001e0610ba8f ) but indexing on this type of data is
much slower than on integers values. Concerning the sensor relation (aot.sensor
table), three attributes were necessary to uniquely identify an instance. Hence,
a unique identifier was assigned to each combination. This operation has per-
mitted to remove three sensor attributes in the data relation and replace them
with a single identifier (sensor id attribute).

Furthermore, some of the attributes names were slightly modified for the
user comprehension. The creation of tables according to the ERD was done
through SQL commands. The two scripts handling the creation of the database
are shown in Appendix (create aqs.sh (Listing 2, p. 46) for the AQS schema
and create aot.sh (Listing 3, p. 49) for the AoT schema).

4.1.2 Data integrity

The temporal aspect of the data stored in the spatial database (aqs.data and
aot.data) is managed by defining a special data type to temporal attributes.
PostgreSQL supports a TIMESTAMP format, which is assigned to the times-
tamp of both aqs.data and aot.data tables. Otherwise, all the attributes stored
in the database were assigned to TEXT format at the exception of the primary
keys and foreign keys. As no data cleaning is done before the data ingest in the
spatial database, the objective was to prevent the interruption of the process
due to wrong data formats.

Primary keys are represented in bold with the label PK in the ERD. They
are specified when the tables are created with the following command (create aqs.sh,
Listing 2 in Appendix, p. 46).

PRIMARY KEY ( id )

Concerning the AQS data table, the site characteristic (monit id attribute)
was not considered as a primary key because the monitor entity already informs
about the monitoring site with the site id attribute.

Foreign keys are identified by the label FK in the ERD and they are added to
the different tables with the following SQL command (see Listing 2 and Listing
3 in Appendix, p. 46 and p. 49 respectively).

ALTER TABLE aqs . monitor
ADD FOREIGN KEY ( s i t e i d ) REFERENCES aqs . s i t e ( id ) ;
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4.1.3 Spatial component

As discussed before, one of the main characteristics of the air quality sensors
data is their spatial component that is indicated by the point shape entity
pictogram in the ERD. The use of pictograms allows to easily identify spatial
entities and their spatial attribute (e.g. Point in Figure 9) by minimizing the
clutter of the ER diagram.

In both the AQS and AoT data sets, the spatial component corresponds to
the latitude and longitude of the site where the sample was taken. Without
a spatial extension, these attributes are considered as text fields in the Post-
greSQL database.

The following operations were necessary to convert the database into a spa-
tial database :

1. Add the PostGIS extension to the PostgreSQL database

CREATE EXTENSION IF NOT EXISTS p o s t g i s ;

2. Add a geometry column to the tables containing the monitoring site lat-
itude and longitude (i.e. aqs.site and aot.node). The 4326 argument
corresponds to the EPSG code for the latitude and longitude coordinates
on the WGS84 reference ellipsoid.

ALTER TABLE aqs . s i t e ADD COLUMN geom geometry (POINT,4326 ) ;
ALTER TABLE aot . node ADD COLUMN geom geometry (POINT,4326 ) ;

3. Add a spatial index (Generalized Search Tree) to geometry columns, that
will speed up spatial queries.

CREATE INDEX idx geom ON aqs . s i t e USING GIST(geom) ;
CREATE INDEX idx geom ON aot . node USING GIST(geom) ;

4. Create a 2D point geometry from the latitude / longitude attributes

UPDATE aot . node SET geom = ST SetSRID ( ST MakePoint (” lon ” : :
numeric , ” l a t ” : : numeric ) ,4326) WHERE geom IS NULL;

UPDATE aqs . s i t e SET geom=ST SetSRID ( ST MakePoint (” lon ” : :
numeric , ” l a t ” : : numeric ) ,4326) WHERE geom IS NULL;

4.2 Automated workflow

The workflow can be divided into three parts according to the frequency of ex-
ecution and the ”big picture” is presented below. The WF init (Listing 1 in
Appendix, p. 44), WF aqs (Listing 4 in Appendix, p. 51) and WF aot (Listing 7
in Appendix, p. 54) bash shell scripts are contained environment that executes
the following scripts, sometimes in addition to more general tasks. With this
chained configuration, we can define a cron job only on the first element and
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the entire workflow will be executed.

For the cron job to work and also to guarantee access to the database to
the Air Quality Project collaborators, the entire infrastructure was built on a
server. The Research Computing Center provides to the University of Chicago
researchers an exclusive access to Midway, a high-performance computing clus-
ter. The cluster allows to centralize the data storage and guarantees the fast
computation of the workflow’s tasks. It can be accessed through the command
line with an SSH protocol.

ssh aladoy@la2 . r c c . uchicago . edu

(a) Workflow to initialize the database

(b) Weekly workflow for AQS data

(c) Daily workflow for AoT data

Figure 10: Overview of the different workflows

All the scripts were written using the Bash or R programming languages.
The first part of the workflow (Figure 10a) is executed only once and aims

to build the database in the way described in the previous section. More specif-
ically, the WF init.sh (Listing 1 in Appendix, p. 44) shell script starts the
execution of two scripts: create aqs.sh (Listing 2 in Appendix, p. 46), which
handles the creation of the AQS schema, and create aot.sh (Listing 3 in Ap-
pendix, p. 49), which handles the creation of the AoT schema.

PostgreSQL is widely supported by other programming languages which
facilitate the connection with third-party applications.

More specifically, two client interfaces will be used in the workflow to interact
with the spatial database :

• The psql interface is used in the bash shell scripts

export PGPASSWORD= ∗∗∗∗∗∗∗∗∗∗
psq l −h la2 . r c c . uchicago . edu −p 5432 −U ana i s −d a i r c h i c a g o

• The RPostgreSQL driver is used in the R scripts
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dbConnect ( drv=RPostgreSQL : : PostgreSQL ( ) , host = ” la2 . r c c .
uchicago . edu ” , port = 5432 , user= ” ana i s ” , password =
”∗∗∗∗∗∗∗∗∗∗” ,dbname=”a i r c h i c a g o ” , ” : memory : ” )

4.2.1 Weekly update of AQS data

The second part of the workflow (Figure 10b) is dedicated to AQS data. WF aqs.sh

(Listing 4 in Appendix, p. 51) is a contained environment that starts the execu-
tion of the aqs meta.R (Listing 5 in Appendix, p. 51) and aqs data.R (Listing
6 in Appendix, p. 52) scripts, which will handle the extraction and insertion of
new information in the database at a regular frequency.

As the AQS Data Mart database is updated every Sunday, the minimum
frequency for the execution of the AQS workflow was weekly and the cron job
syntax is shown below :

30 00 ∗ ∗ 1 cd S c r i p t s && sh WF aqs . sh >> l og / cron aqs . l og

This command line schedules the execution of the bash shell script WF aqs.sh

(Listing 4 in Appendix, p. 51) which is located in the folder Scripts every Mon-
day at 00:30 and outputs are stored in a log file named cron aqs.log.

In order to update the AQS metadata, the aqs meta.R (Listing 5 in Ap-
pendix, p. 51) script executes the following operations :

1. Download the CSV files containing sites and monitors metadata from the
AirData website

2. Transform the data frames according to the structure defined in the ERD
(Figure 9a)

3. Retrieve the sites already present in the database and insert potential new
sites

s i t e s d b <− t b l ( con , dbplyr : : in schema (” aqs ” , ” s i t e ”) ) %>%
d i s t i n c t ( id , s ta t e code , county code , s i te num ) %>% c o l l e c t
( )

n e w s i t e s <− a n t i j o i n ( s i t e s , s i t e s d b , by=c (” s t a t e c o d e ” ,”
county code ” ,” s ite num ”) )

dbWriteTable ( con , c (” aqs ” ,” s i t e ”) , new s i t e s , row . names=F, append
=T, temporary=F)

4. The same operation is conducted for the AQS monitors. As the state code,
county code and site num attributes are not stored in the aqs.monitor
table, an additional operation is required to retrieve this information from
the aqs.site table

s i t e s d b <− t b l ( con , dbplyr : : in schema (” aqs ” , ” s i t e ”) ) %>%
d i s t i n c t ( id , s ta t e code , county code , s i te num ) %>% c o l l e c t
( )

monitors db <− t b l ( con , dbplyr : : in schema (” aqs ” , ” monitor ”) )
%>% d i s t i n c t ( id , s i t e i d , param code , poc ) %>% c o l l e c t ( )

monitors <− i n n e r j o i n ( s i t e s d b , monitors , by=c (” s t a t e c o d e ” ,”
county code ” ,” s ite num ”) ) %>% rename ( s i t e i d=id )
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new monitors <− a n t i j o i n ( monitors , monitors db , by=c (” s i t e i d
” ,” param code ” ,” poc ”) )

new monitors <− new monitors %>% s e l e c t (−c ( s ta t e code ,
county code , s ite num , la t , lon , datum , l o c a l s i t e n a m e , address
, state name , county name , city name , cbsa name , tr ibe name ) )

dbWriteTable ( con , c (” aqs ” ,” monitor ”) , new monitors , row . names=F,
append=T, temporary=F)

Then, new data collected by the AQS monitoring network are extracted and
appended to the aqs.data table with the aqs data.R (Listing 6 in Appendix, p.
52) script according to the following procedure :

1. Extract last week data via the AirData API, where data are filtered to a
subset of counties surrounding Chicago (Figure 7) and a subset of pollu-
tants (Table 3).

2. Retrieve site and monitor identifiers from which the sample was taken and
store the resulting information in new columns (site id and monit id)

s i t e s d b <− t b l ( con , dbplyr : : in schema (” aqs ” , ” s i t e ”) ) %>%
d i s t i n c t ( id , s ta t e code , county code , s i te num ) %>%
c o l l e c t ( )

data <− i n n e r j o i n ( s i t e s d b , data , by=c (” s t a t e c o d e ” ,”
county code ” ,” s ite num ”) ) %>% rename ( s i t e i d=id )

monitors db <− t b l ( con , dbplyr : : in schema (” aqs ” , ” monitor ”) )
%>% d i s t i n c t ( id , s i t e i d , param code , poc ) %>% c o l l e c t ( )

data <− i n n e r j o i n ( monitors db , data , by=c (” s i t e i d ” ,”
param code ” ,” poc ”) ) %>% rename ( monit id=id )

3. Transform the data frame according to the structure defined in the ERD
(Figure 9a)

4. Insert new data in the aqs.data table

dbWriteTable ( con , c (” aqs ” ,” data ”) , data , row . names=F, append=T,
temporary=F)

4.2.2 Daily update of AoT data

The third part of the workflow (Figure 10c) is dedicated to AoT data.

Even if data are collected at near real-time, a daily frequency was considered
sufficient for the Air Quality Project needs.

Similarly to the syntax of the AQS cron job, the following command sched-
ules the execution of the WF aot.sh (Listing 7 in Appendix, p. 54) script located
in the Scripts folder every day at 00:30 and save the output in a dedicated log
file.

30 00 ∗ ∗ ∗ cd S c r i p t s && sh WF aot . sh >> l og / c ron aot . l og

Contrary to the AQS workflow, all the scripts constituting the AoT workflow
were written using the Bash programming language.
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The WF aot.sh (Listing 7 in Appendix, p. 54) will first start the aot extract.sh

(Listing 8 in Appendix, p. 54) execution to extract yesterday’s data collected by
the AoT sensors and corresponding metadata. Then, it will start the execution
of the aot insert.sh (Listing 9 in Appendix, p. 54) script to insert new data
and update the database.

More specifically, the following tasks are implemented in the aot extract.sh

(Listing 8 in Appendix, p. 54) script :

1. Download the complete dataset from the ANL website

wget http ://www. mcs . an l . gov/ r e s ea r ch / p r o j e c t s / waggle /downloads
/ da ta s e t s /AoT Chicago . complete . l a t e s t . t a r

ta r xvf AoT Chicago . complete . l a t e s t . t a r

2. From the resulting data zip file, extract data corresponding to yesterday’s
date and save the output in a CSV file

gunzip −c AoT Chicago . complete . $ ( date +’%Y−%m−%d ’ ) / data . csv . gz
| ( head −1 && grep ‘ date −−date=’ yesterday ’ +’%Y/%m/%d ’ ‘ )
> AoT Chicago . complete . $ ( date +’%Y−%m−%d ’ ) / yeste rday . csv

The algorithm used to update AoT metadata (i.e. nodes and sensors ta-
bles) is very similar to the one used for AQS metadata update. However, the
implementation is done using the Bash programming language.

Below are explained the operations allowing the nodes metadata update (for
sensors metadata update, see Listing 9 in Appendix, p. 54).

1. Create a temporary table with an identical structure to the nodes data
set

CREATE TEMP TABLE tmp(
raw id TEXT,
p r o j e c t TEXT,
vsn TEXT,
address TEXT,
l a t TEXT,
lon TEXT,
d e s c r i p t i o n TEXT,
PRIMARY KEY ( raw id )
) ;

2. Copy the CSV file containing the nodes metadata in the temporary table

COPY tmp FROM ’/ var /tmp/ aot data /AoT Chicago . complete . $ ( date −
d ” yeste rday ” +’%Y−%m−%d ’ ) / nodes . csv ’ DELIMITER ’ , ’ CSV
HEADER;

ANALYZE tmp ;

3. Insert potential new nodes in the database thanks to a JOIN operation
with the aot.node table. Here, the seq node sequence, which was initialized
during the creation of AoT tables (Listing 3 in Appendix, p. 49), works
like a serial id.
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INSERT INTO aot . node ( id , raw id , p ro j e c t , vsn , address , l a t ,
lon , d e s c r i p t i o n )

SELECT nextva l ( ’ seq node ’ ) , tmp . raw id , tmp . pro j e c t , tmp . vsn ,
tmp . address , tmp . la t , tmp . lon , tmp . d e s c r i p t i o n

FROM tmp LEFT JOIN aot . node ON tmp . raw id=aot . node . raw id
WHERE aot . node . raw id IS NULL

4. Drop the temporary table

DROP TABLE tmp ;

Regarding the daily insertion of AoT data, a temporary table is also used
to store the new observations but an additional step is required to retrieve
the node (node id) and sensor (sensor id) identifiers from the database.

INSERT INTO aot . data ( s e n s o r i d , timestamp , node id , val raw ,
va lue )

SELECT S . id , tmp . timestamp , N. id , tmp . val raw , tmp . va lue
FROM tmp LEFT JOIN aot . s enso r S ON tmp . s y s t=S . sy s t AND tmp .

s enso r=S . name AND tmp . param=S . param
LEFT JOIN aot . node N ON tmp . raw id=N. raw id
WHERE S . id IS NOT NULL;
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5 Discussion

Four main challenges were encountered in the SDI design :

The first constraint was the spatiotemporal nature of environmental sensors
data that required both the efficient storage of spatial data type and the update
of the database as new data are collected. The first is ensured by the addition of
the PostGIS extension to the PostgreSQL database which allows the storage of
all spatial data type (e.g. Line, Point, Polygon, MultiLineString, MultiPolygon)
and the support of various spatial operations and spatial indexes (Lijing Zhang
& Jing Yi, 2010). The temporal aspect was handled with the implementation on
a computing cluster of a time-based job scheduler starting a workflow specially
defined for each data source, at a daily and weekly frequency for the AoT and
AQS data respectively.

The second constraint was to ensure the integration of two complementary
sources of air quality sensors data, namely data collected by the highly reliable
official monitoring network sensors and data reported by the low-cost AoT sen-
sors. We faced some of the challenges highlighted by Clements et al. (2017)
relative to the data standardization of low-cost air quality sensors systems (e.g.
standardized definition of terms, units of measurements, file format). We tried
to homogenize as much as we could the attributes names and a data dictionary
has been elaborated for future database users (Figure 17 in Appendix, p. 63).
Concerning the monitoring site appellation, we did not change the AoT term
(i.e. node) to match the AQS appellation (i.e. site) as we thought it could
be confusing for the different users, especially for the communication with the
AoT team. Currently, all the data sets are in CSV format but the AoT data
will ultimately be available through the Plenar.io API and the latter allows the
extraction of AoT data in a JSON format. Hence, it will require additional data
transformations before the insertion in the spatial database.

The third constraint was to design an SDI that could be easily extendible to
the future needs of the Air Quality project. For now, there are some uncertain-
ties about the information that needs to be stored in the database, the level of
aggregation of the different data and the update frequency. Hence, we did not
remove any attributes of the initial datasets, except the duplicated ones and the
data sets were extracted with the finer level of aggregation (i.e. hourly for AQS
data and approximately 30 seconds for AoT data). Data extraction frequency
was dictated by the data sources update frequency (i.e. every Sunday for AQS
and every day for AoT).

The fourth constraint was relative to the important delays that occurred
in the AoT project and have seriously affected the data availability, the data
access, and the data format. Currently, the AoT team offers two options for
the bulk download: the entire dataset since the launch of the project, growing
every day of several gigabytes or the dataset for a specific node. None of the
options is convenient for the daily update of the SDI and we had no other
choices than downloading the entire dataset daily (up to 60GB) which requires
high computational power. That justifies why all the scripts relative to the
manipulation of AoT data were written in Bash as this programming language
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is more efficient with large files manipulation.
As said in the Data section, the AoT dataset contains both information

about the environmental parameters measured (ontology sensing) and the sys-
tem internal parameters (ontology system). During the calibration phase, hav-
ing information about system parameters could be useful to identify unusual
values. However, as the amount of data collected every day by AoT sensors is
important, we have first assessed the number of observations relative to system
parameters. On the 6,141,551 observations recorded on August 3, only 79,347
were related to system observations (the R code is provided below). Thus, the
AoT system parameters data were kept for the moment as they will not cause
a database overwhelming.

s e n s o r s <− r ead c sv ( ’ s e n s o r s . csv ’ ) %>% f i l t e r ( g r ep l (” s en s ing ” ,
onto logy ) )

data <− r ead c sv ( ’ complete data 20180803 . csv ’ )
s en s ing da ta <− i n n e r j o i n ( data , s ensor s , by=c ( ’ subsystem ’ , ’ sensor

’ , ’ parameter ’ ) )
nrow ( data )−nrow ( s en s ing da ta )

5.1 Strengths

The SDI created in this project provides a powerful framework for the spatial
analysis of the urban air quality in Chicago.

By combining data from a distributed low-cost monitoring network (i.e. Aot)
and a reference monitoring network (AQS), we can benefit from both the high-
spatial coverage offered by the AoT network and the high-quality measurements
produced by the AQS sensors.

With the example of SO2 monitoring sites, Figure 11 shows the enhancement
of the regulatory monitoring network (11a) by the AoT distributed network
(11b). Furthermore, the inclusion of AQS sensors data recorded in Chicago’s
surrounding counties allows obtaining information about the regional back-
ground and air pollutant transportation. As the AoT sensors are solely located
on roadsides, the measured values will be mainly influenced by traffic conditions
and having information about the regional background could be highly valuable
to avoid biases in the modeling stage. Furthermore, air pollutant transporta-
tion could play an important role in the spatial distribution of air pollutants
in Chicago as several heavy industries are located in the Lake Michigan south
shoreline.

The infrastructure is entirely based on free and open source software, namely
PostgreSQL for the DBMS and R and Bash programming languages for the dif-
ferent tasks operated in the workflow (i.e. data extraction, data standardization,
and database update). Furthermore, the SDI is hosted on a remote server that
will guarantee the proper functioning of the cron job and the database access
to the different CSDS collaborators.

Beside its cost-effectiveness, the PostgreSQL provides the advantage to offer
powerful client interfaces with the command line (psql) and the R environ-
ment (RPostgreSQL). Already used in the workflow to interact with the spatial
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(a) Air Quality System (AQS) active sites where
SO2 measurements are collected

0 5 10 15 20 km

(b) Array of Things (AoT) sites where SO2 mea-
surements are collected

Figure 11: Respective locations of SO2 AQS and AoT sensors.

database for the data insert and update process, they will offer a powerful tool
to the Air Quality Project team during the modeling stage.

Furthermore, the creation of IDs, the removal of duplicated attributes and
the creation of indexes will allow efficient data retrieval and data manipulation.
Spatial operations will also be possible thanks to the PostGIS extension.

5.2 Weaknesses

The actual instability of the AoT project has complicated the SDI design process
as we did not know the release date of calibrated data, their structure, and their
accuracy. Hence, modifications in the SDI design could be required in the future.

For instance, frequent changes are done in the AoT data access and there
are no guarantees that the AoT data structure will not be changed in the fu-
ture. If it is the case, some additional tasks should be implemented, either by
transforming new data according to the structure defined in the ERD (Figure
9b) or by creating a new table in the database.

In the literature review, we pointed out that a special attention should be
paid to the amount of environmental sensors data that will be regularly added in
the database. In case of distributed low-cost monitoring networks, observations
are usually recorded at near real-time frequency and it can rapidly overwhelm
the database, increasing exponentially with the number of nodes involved and
the number of parameters measured (Bader et al., n.d.). Even if all the data
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are currently efficiently stored, the daily insertion of 6 millions of observations
recorded by the AoT monitoring network could become problematic.

For now, the TimescaleDB extension is considered as the best solution for
the time series data storage as it could be added as a PostgreSQL extension.
However, it requires a wide format for the time series data and it is currently not
the case for the two data sources. The transformation into a wide format will
require additional data transformation and could complicate SQL operations for
data retrieval.

The other solution, also discussed in the literature review, would be to ag-
gregate the AoT data according to a specific time interval (e.g. hourly, daily)
which could vary for the different pollutants depending on the time resolution
needed in the modeling stage. As no reliable data are currently produced by
the AoT sensors, it was difficult to assess the efficiency of one solution or the
other.

5.3 Toward a federation of Chicago air pollution monitor-
ing systems?

The SDI implemented in this project and combining AoT and AQS air qual-
ity data is a first step toward the integration of volunteer initiatives to official
monitoring network data.

In addition to providing micro-scale air quality observations that could signif-
icantly increase the quality of urban air pollution models, Gouveia et al. (2004)
mentioned additional benefits of including volunteer monitoring programs data:
first, it could increase environmental awareness of the public and this educa-
tional purpose is more and more included in volunteer monitoring initiatives
(e.g. creation of the ”Lane of Things” course as part of the AoT project).
Moreover, it could offer a cost-effective solution for data collection (Aberer et
al., 2010), especially for countries with limited funding.

A search of volunteer monitoring initiative that could enhance AoT obser-
vations has been conducted during the data collection stage.

The first initiative we found, namely the Shared Air / Shared Action (SA2)
initiative (Delta Institute, n.d.), has not replied to a potential collaboration
request.

The option of using AirCasting users data (“AirCasting,” n.d.) has also
been assessed. For this purpose, the CSDS ordered an AirBeam sensor that
was configured and tested during a biking session in the south side of Chicago.
Description and results of this test session are available in Appendix (Figure 16
in Appendix, p. 58). The conclusions are as follows : concerning the sensor re-
liability, we can observe logical trends of the different parameters (e.g. increase
of the number of particles when stopping behind a public bus, lake effect on the
relative humidity and temperature) but serious doubts remain about the mea-
surements accuracy (e.g. number of PM2.5 increasing instantaneously from 0
to 62 without noticeable extreme events). Concerning the use of data collected
by the AirCasting community, it has to be done cautiously. First of all, it is
rare that users give indications about the session configuration, for example, if
they are inside or outside and it can yield to a significant bias in the results.
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Furthermore, Marjovi et al. (2015) discuss the difficulties related to the analy-
sis of spatially and temporally dynamic data (e.g. unpredictable and irregular
coverage). Despite the fact we did not consider the AirCasting initiative as
an added value for the project, this option should be re-evaluated if exposure
measurements are needed (e.g. to link health data to air pollution data) in the
future development of the Air Quality project. According to a recent report of
the U.S. EPA Office of Research and Development (ORD) (Williams, 2018), the
AirBeam sensor exhibits a strong correlation with the regulatory monitors in
terms of hourly averages of PM concentrations.

These examples highlight the major obstacles that prevent the efficient inte-
gration of different air quality sensors data sources. First, there is an isolation
of volunteer monitoring initiatives, which most of the time, focus on local issues
and entirely design the data collection, data storage, and data sharing in the
scope of their campaigns (Xie et al., 2017).

Furthermore, the lack of standard procedures relative to low-cost sensors
makes difficult the integration of heterogeneous data sources (Clements et al.,
2017). Data quality is often unknown and metadata on data sampling and col-
lection is scarce (Gouveia et al., 2004).

To conclude, the increasing number of initiatives measuring air quality pro-
vides an exciting opportunity to get high-level resolution data but efforts should
be made to maintain a good communication channel between the different
stakeholders and to standardize sampling procedure and collected data formats
(Phillips et al., 1999; Clements et al., 2017).
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6 Conclusion

In this master thesis, a Spatial Data Infrastructure (SDI) was implemented, al-
lowing the extraction of distributed air quality sensors data at regular intervals
from two different monitoring networks and their integration in a centralized
spatial database. In the context of the AoT project, a network of low-cost
sensors has been deployed across the city of Chicago reporting air quality obser-
vations at near real-time and at a micro-scale level (“Array of Things,” n.d.). As
their analysis could provide valuable knowledge to identify air pollution drivers
and support environmental policies development, the CSDS has been mandated
as part of the Partnership for Healthy Cities, in order to conduct a spatial anal-
ysis of the data collected by the AoT sensors (see the implementation details in
Document 7.1 in Appendix, p. 57).

Different constraints were required during the design of the SDI. Including
the efficient storage and management of spatiotemporal data, the integration of
disparate sources of air quality sensors data, and the automation of the process.
Delays in the AoT project have prevented the access to calibrated data and to
a stable data structure, which has complicated the design process.

The resulting SDI respects all the constraints defined at the beginning of the
project. More specifically, the PostgreSQL/PostGIS database guarantees data
scalability, the storage, and manipulation of spatial and temporal data and the
centralized access of two heterogeneous air quality sensors data sources. Fur-
thermore, a workflow composed of R and Bash scripts ensures the extraction of
data from the two sources, the standardization according to the designed data
model and the insertion and update of the database at a regular frequency (i.e.
weekly for AQS data and daily for AoT data) thanks to a job scheduler. The
SDI was entirely based on free and open source software and is located on a
remote server allowing a multi-access to the different CSDS collaborators. In
order to meet the future needs of the Air Quality Project, the SDI was conceived
to ensure the extension to other data sources, the connection to different third-
party applications including the R environment where the different models will
be implemented and the data model comprehension with the elaboration of a
metadata file (Figure 17 in Appendix, p. 63).

The SDI developed provides a unique framework to conduct the first analysis
of the AoT distributed air quality sensors data and represents the first step
toward a better knowledge of the urban air quality in the city of Chicago.
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Buytaert, W., Dewulf, A., De Bièvre, B., Clark, J., & Hannah, D. M. (2016,
April). Citizen science for water resources management: Toward polycen-
tric monitoring and governance? Journal of Water Resources Planning
and Management, 142 (4), 01816002. doi:10.1061/(ASCE)WR.1943-5452.
0000641

Castell, N. [Nuria], Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain,
B., . . . Bartonova, A. (2017, February). Can commercial low-cost sensor
platforms contribute to air quality monitoring and exposure estimates?
Environment International, 99, 293–302. doi:10.1016/j.envint.2016.12.007
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Figure 12: Air Quality Project roadmap for 2018

Listing 1: WF init.sh

1 #! / bin /bash
2

3 #I n i t i a l i z e the database
4

5 # CONNECT TO THE DATABASE
6 export PGPASSWORD= ∗∗∗∗∗∗∗∗∗∗ #Spec i f y environment v a r i a b l e s
7 RUN ON MYDB=” psq l −h la2 . r c c . uchicago . edu −p 5432 −U ana i s −d a i r c h i c a g o ”
8

9 $RUN ON MYDB <<SQL
10 CREATE EXTENSION IF NOT EXISTS p o s t g i s ;
11 SQL
12

13 #Create AQS t a b l e s
14 sh c r e a t e a q s . sh
15

16 #Create AoT t a b l e s
17 sh c r e a t e a o t . sh
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Figure 13: Spatio-temporal predictors considered in the Air Quality Project
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Figure 14: Structure of the Air Quality System data sets

(a) Sites
(b) Monitors

(c) Data (AQCSV
format)

Figure 15: Structure of the Array of Things complete data sets

(a) Nodes
(b) Sensors (c) Complete data

Listing 2: create aqs.sh

1 #! / bin /bash
2

3 #Create the database i n f r a s t r u c t u r e f o r Air Qual i ty System (AQS) data ( c r e a t i o n o f tab l e s
, c o n s t r a i n t s d e f i n i t i o n )

4

5 # CONNECT TO THE DATABASE
6 export PGPASSWORD= ∗∗∗∗∗∗∗∗∗∗ #Environment v a r i a b l e s
7 RUN ON MYDB=” psq l −h la2 . r c c . uchicago . edu −p 5432 −U ana i s −d a i r c h i c a g o ”
8

9 $RUN ON MYDB <<SQL
10 CREATE SCHEMA i f not e x i s t s aqs ;
11 SQL
12

13 #Create t a b l e f o r AQS data
14 $RUN ON MYDB <<SQL
15 CREATE TABLE aqs . data (
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16 monit id INTEGER NOT NULL,
17 timestamp TIMESTAMP NOT NULL,
18 s i t e i d INTEGER NOT NULL,
19 a q s i d TEXT,
20 d a t s t a t u s TEXT,
21 act code TEXT,
22 dur code TEXT,
23 f r e q TEXT,
24 value TEXT,
25 uni t TEXT,
26 qc TEXT,
27 meth code TEXT,
28 mpc TEXT,
29 mpc value TEXT,
30 uncert TEXT,
31 q u a l i f TEXT,
32 PRIMARY KEY ( monit id , timestamp )
33 ) ;
34 SQL
35

36 #Create t a b l e f o r AQS s i t e metadata
37 $RUN ON MYDB <<SQL
38 CREATE TABLE aqs . s i t e (
39 id SERIAL PRIMARY KEY,
40 s t a t e c o d e TEXT NOT NULL,
41 county code TEXT NOT NULL,
42 s i te num TEXT NOT NULL,
43 l a t TEXT,
44 l on TEXT,
45 datum TEXT,
46 e l e v TEXT,
47 l and use TEXT,
48 l o c s e t TEXT,
49 s i t e b d a t e TEXT,
50 s i t e e d a t e TEXT,
51 met s ta te code TEXT,
52 met county code TEXT,
53 met site num TEXT,
54 m e t s i t e t y p e TEXT,
55 m e t s i t e d i s t TEXT,
56 m e t s i t e d i r TEXT,
57 g m t o f f s e t TEXT,
58 agency TEXT,
59 l oca l name TEXT,
60 address TEXT,
61 z ip code TEXT,
62 state name TEXT,
63 county name TEXT,
64 city name TEXT,
65 cbsa name TEXT,
66 tr ibe name TEXT,
67 e x t r a c t d a t e TEXT
68 ) ;
69 SQL
70

71 #Add s p a t i a l component
72 $RUN ON MYDB <<SQL
73 ALTER TABLE aqs . s i t e ADD COLUMN geom geometry (POINT,4326 ) ;
74 CREATE INDEX idx geom ON aqs . s i t e USING GIST(geom) ;
75 SQL
76

77 #Create t a b l e f o r AQS monitor metadata
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78 $RUN ON MYDB <<SQL
79 CREATE TABLE aqs . monitor (
80 id SERIAL PRIMARY KEY,
81 s i t e i d INTEGER NOT NULL,
82 param code TEXT NOT NULL,
83 param name TEXT,
84 poc TEXT NOT NULL,
85 dat byear TEXT,
86 dat edate TEXT,
87 type TEXT,
88 networks TEXT,
89 r epo r t ag TEXT,
90 pqao TEXT,
91 c o l l e c t a g TEXT,
92 e x c l TEXT,
93 monit obj TEXT,
94 l a s t meth code TEXT,
95 last meth name TEXT,
96 naaqs pr im monitor TEXT,
97 qa prim monitor TEXT,
98 e x t r a c t d a t e TEXT
99 ) ;

100 SQL
101

102 #ADD FOREIGN KEYS
103 $RUN ON MYDB <<SQL
104 ALTER TABLE aqs . monitor
105 ADD FOREIGN KEY ( s i t e i d ) REFERENCES aqs . s i t e ( id ) ;
106

107 ALTER TABLE aqs . data
108 ADD FOREIGN KEY ( monit id ) REFERENCES aqs . monitor ( id ) ;
109

110 ALTER TABLE aqs . data
111 ADD FOREIGN KEY ( s i t e i d ) REFERENCES aqs . s i t e ( id ) ;
112 SQL
113

114

115 #ADD CONSTRAINTS FOR UNICITY
116 $RUN ON MYDB <<SQL
117 ALTER TABLE aqs . s i t e
118 ADD CONSTRAINT s i t e u n
119 UNIQUE ( s ta t e code , county code , s i te num ) ;
120

121 ALTER TABLE aqs . monitor
122 ADD CONSTRAINT monit un
123 UNIQUE ( id , s i t e i d , param code , poc ) ;
124

125 ALTER TABLE aqs . data
126 ADD CONSTRAINT data un
127 UNIQUE ( monit id , s i t e i d , timestamp ) ;
128 SQL
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Listing 3: create aot.sh

1 #! / bin /bash
2

3 #Create the database i n f r a s t r u c t u r e f o r the Array o f Things (AoT) data ( c r e a t i o n o f
tab l e s , c o n s t r a i n t s d e f i n i t i o n )

4

5 # CONNECTION TO THE DATABASE
6 export PGPASSWORD= ∗∗∗∗∗∗∗∗∗∗ #Environment v a r i a b l e s
7 RUN ON MYDB=” psq l −h la2 . r c c . uchicago . edu −p 5432 −U ana i s −d a i r c h i c a g o ”
8

9 $RUN ON MYDB <<SQL
10 CREATE SCHEMA i f not e x i s t s aot
11 SQL
12

13 #Create t a b l e f o r AoT senso r metadata
14 $RUN ON MYDB <<SQL
15 CREATE TABLE aot . s enso r (
16 id INTEGER NOT NULL,
17 onto logy TEXT,
18 s y s t TEXT NOT NULL,
19 name TEXT NOT NULL,
20 param TEXT NOT NULL,
21 uni t TEXT,
22 minval TEXT,
23 maxval TEXT,
24 r e f TEXT,
25 PRIMARY KEY( id )
26 )
27 SQL
28

29

30 #Create t a b l e f o r AoT node metadata
31 $RUN ON MYDB <<SQL
32 CREATE TABLE aot . node (
33 id INTEGER NOT NULL,
34 raw id TEXT NOT NULL,
35 p r o j e c t TEXT,
36 vsn TEXT,
37 address TEXT,
38 l a t TEXT,
39 l on TEXT,
40 d e s c r i p t i o n TEXT,
41 PRIMARY KEY( id )
42 )
43 SQL
44

45 #Add s p a t i a l component
46 $RUN ON MYDB <<SQL
47 ALTER TABLE aot . node ADD COLUMN geom geometry (POINT,4326 ) ;
48 CREATE INDEX idx geom ON aot . node USING GIST(geom) ;
49 SQL
50

51

52 #Create t a b l e f o r AoT data ( complete datase t )
53 $RUN ON MYDB <<SQL
54 CREATE TABLE aot . data (
55 s e n s o r i d INTEGER NOT NULL,
56 timestamp TIMESTAMP NOT NULL,
57 node id INTEGER NOT NULL,
58 val raw TEXT,
59 value TEXT,
60 PRIMARY KEY ( s e n s o r i d , timestamp , node id )
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61 )
62 SQL
63

64

65 #ADD FOREIGN KEYS
66 $RUN ON MYDB <<SQL
67 ALTER TABLE aot . data
68 ADD FOREIGN KEY ( s e n s o r i d ) REFERENCES aot . s enso r ( id ) ;
69

70 ALTER TABLE aot . data
71 ADD FOREIGN KEY ( node id ) REFERENCES aot . node ( id ) ;
72

73 ALTER TABLE aot . data
74 ADD FOREIGN KEY ( s e n s o r i d ) REFERENCES aot . s enso r ( id ) ;
75

76 ALTER TABLE aot . data
77 ADD FOREIGN KEY ( node id ) REFERENCES aot . node ( id ) ;
78 SQL
79

80

81 #ADD CONSTRAINTS FOR UNICITY
82 $RUN ON MYDB <<SQL
83 ALTER TABLE aot . node
84 ADD CONSTRAINT node un
85 UNIQUE ( raw id ) ;
86

87 ALTER TABLE aot . s enso r
88 ADD CONSTRAINT sensor un
89 UNIQUE ( syst , name , param ) ;
90

91 ALTER TABLE aot . data
92 ADD CONSTRAINT data un
93 UNIQUE ( s en so r i d , timestamp , node id ) ;
94 SQL
95

96

97 #CREATE SEQUENCES FOR NODE AND SENSOR TABLES
98 $RUN ON MYDB <<SQL
99 DROP SEQUENCE IF EXISTS seq node ;

100 DROP SEQUENCE IF EXISTS s e q s e n s o r ;
101

102 CREATE SEQUENCE seq node ;
103 CREATE SEQUENCE s e q s e n s o r ;
104 SQL
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Listing 4: WF aqs.sh

1 #! / bin /bash
2

3 #Workflow f o r AQS data
4

5 exec 1> l og /WFaqs $ ( date +’%Y%m%d ’ ) . l og 2>&1
6

7 #Extract and update AQS metadata
8 Rscr ipt −−v a n i l l a aqs meta .R
9

10 #Extract and i n s e r t o f AQS data
11 Rscr ipt −−v a n i l l a aqs data .R

Listing 5: aqs meta.R

1 #Extract ion o f AQS metadata ( s i t e s + monitors ) and update o f the database
2

3 #LIBRARIES
4 l ibrary ( t i d y v e r s e )
5 l ibrary (DBI)
6 l ibrary ( dbplyr )
7

8 #CONNECT TO THE DATABASE
9 con <− dbConnect ( drv=RPostgreSQL : : PostgreSQL ( ) , host = ” la2 . r c c . uchicago . edu” , port =

5432 , user= ” ana i s ” , password = ”∗∗∗∗∗∗∗∗∗∗” ,dbname=” a i r c h i c a g o ” , ” : memory : ” )
10

11 #DATA EXTRACTION
12 #Read s i t e metadata ( z ip f i l e from https ://aqs . epa . gov/aqsweb/a i rda ta/download f i l e s . html

)
13 temp <− tempfile ( ) #c r e a t e a temporary f i l e f o r the downloaded f i l e
14 download . f i l e ( ” https ://aqs . epa . gov/aqsweb/a i rda ta/aqs s i t e s . z ip ” , temp )
15 s i t e s <− read csv ( unz ( temp , ” aqs s i t e s . csv ” ) , col types = c o l s ( . default = ”c” ) ) #unzip

and read the csv f i l e
16 unlink ( temp ) #d e l e t e the temporary f i l e
17 names( s i t e s ) <− c ( ” s t a t e code ” , ” county code ” , ” s i t e num” , ” l a t ” , ” lon ” , ”datum” , ” e l e v ” , ” land

use ” , ” l o c s e t ” , ” s i t e bdate ” , ” s i t e edate ” , ”met s t a t e code ” , ”met county code ” , ”met s i t e
num” , ”met s i t e type ” , ”met s i t e d i s t ” , ”met s i t e d i r ” , ”gmt o f f s e t ” , ” agency ” , ” l o c a l name”
, ” address ” , ” z ip code ” , ” s t a t e name” , ” county name” , ” c i t y name” , ” cbsa name” , ” t r i b e name” ,
” e x t r a c t date ” )

18

19 #Convert s i t e type
20 s i t e s <− s i t e s %>% mutate ( l a t=as . double ( l a t ) , lon=as . double ( lon ) )
21

22 #Read monitors metadata ( z ip f i l e from https : //aqs . epa . gov/aqsweb/a i rda ta/download f i l e s .
html )

23 temp <− tempfile ( ) #c r e a t e a temporary f i l e in which we w i l l save the downloaded f i l e
24 download . f i l e ( ” https ://aqs . epa . gov/aqsweb/a i rda ta/aqs monitors . z ip ” , temp )
25 monitors <− read csv ( unz ( temp , ” aqs monitors . csv ” ) , col types = c o l s ( . default = ”c” ) ) #

unzip and read the csv f i l e
26 unlink ( temp ) #d e l e t e the temporary f i l e
27 names( monitors ) <− c ( ” s t a t e code ” , ” county code ” , ” s i t e num” , ”param code ” , ”param name” , ”poc

” , ” l a t ” , ” lon ” , ”datum” , ” dat byear ” , ” dat edate ” , ” type ” , ” networks ” , ” r epor t ag” , ”pqao” , ”
c o l l e c t ag” , ” e x c l ” , ”monit obj ” , ” l a s t meth code ” , ” l a s t meth name” , ”naaqs prim monitor ” ,
”qa prim monitor ” , ” l o c a l s i t e name” , ” address ” , ” s t a t e name” , ” county name” , ” c i t y name” , ”
cbsa name” , ” t r i b e name” , ” e x t r a c t date ” )

28

29 # #UNCOMMENT THE FOLLOWING PART FOR THE INITIAL INSERTION
30 # dbWriteTable ( con , c (” aqs ” ,” s i t e ”) , s i t e s , row . names=F, append=T, temporary=F)
31 # #S e l e c t id that cor re sponds to monitor and add a new column s i t e id
32 # s i t e s db <− t b l ( con , dbplyr : : in schema (” aqs ” , ” s i t e ”) ) %>% d i s t i n c t ( id , s t a t e code ,

county code , s i t e num) %>% c o l l e c t ( )
33 # monitors <− i nne r j o i n ( s i t e s db , monitors , by=c (” s t a t e code ” ,” county code ” ,” s i t e num”) )
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%>% rename ( s i t e id=id )
34 # #Remove columns that are a l r eady in the s i t e t ab l e
35 # monitors <− monitors %>% s e l e c t (−c ( s t a t e code , county code , s i t e num, la t , lon , datum , l o c a l

s i t e name , address , s t a t e name , county name , c i t y name , cbsa name , t r i b e name) )
36 # dbWriteTable ( con , c (” aqs ” ,” monitor ”) , monitors , row . names=F, append=T, temporary=F)
37

38 #DATABASE UPDATE ( add only rows that are not a l r eady in the database )
39 #aqs . s i t e t ab l e update
40 s i t e s db <− t b l ( con , dbplyr : : in schema ( ” aqs ” , ” s i t e ” ) ) %>% d i s t i n c t ( id , s t a t e code , county

code , s i t e num) %>% c o l l e c t ( )
41 new s i t e s <− ant i j o i n ( s i t e s , s i t e s db , by=c ( ” s t a t e code ” , ” county code ” , ” s i t e num” ) )
42 dbWriteTable ( con , c ( ” aqs ” , ” s i t e ” ) ,new s i t e s ,row .names=F,append=T, temporary=F)
43

44 #aqs . monitor t a b l e update
45 s i t e s db <− t b l ( con , dbplyr : : in schema ( ” aqs ” , ” s i t e ” ) ) %>% d i s t i n c t ( id , s t a t e code , county

code , s i t e num) %>% c o l l e c t ( )
46 monitors db <− t b l ( con , dbplyr : : in schema ( ” aqs ” , ” monitor ” ) ) %>% d i s t i n c t ( id , s i t e id ,

param code , poc ) %>% c o l l e c t ( )
47 monitors <− i nne r j o i n ( s i t e s db , monitors , by=c ( ” s t a t e code ” , ” county code ” , ” s i t e num” ) )

%>% rename ( s i t e id=id )
48 new monitors <− ant i j o i n ( monitors , monitors db , by=c ( ” s i t e id ” , ”param code ” , ”poc” ) )
49 new monitors <− new monitors %>% s e l e c t (−c ( s t a t e code , county code , s i t e num, la t , lon , datum ,

local s i t e name , address , s t a t e name , county name , c i t y name , cbsa name , t r i b e name) )
50 dbWriteTable ( con , c ( ” aqs ” , ” monitor ” ) ,new monitors ,row .names=F,append=T, temporary=F)
51

52 #Update geometry column f o r the s i t e t a b l e
53 dbExecute ( con , ’UPDATE aqs . s i t e SET geom=ST SetSRID (ST MakePoint (” lon ” : : numeric , ” l a t ” : :

numeric ) ,4326) WHERE geom IS NULL; ’ )
54

55 #Remove a l l the v a r i a b l e s and c l e a r up R memory
56 rm( l i s t=l s ( ) )
57 gc ( )

Listing 6: aqs data.R

1 #Extract ion o f AQS c r i t e r i a p o l l u t a n t s data f o r Chicago ’ s surrounding count i e s and
i n s e r t i o n in the database

2

3 #LIBRARIES
4 l ibrary ( t i d y v e r s e )
5 l ibrary (DBI)
6 l ibrary ( dbplyr )
7

8 #CONNECT TO THE DATABASE
9 con <− dbConnect ( drv=RPostgreSQL : : PostgreSQL ( ) , host = ” la2 . r c c . uchicago . edu” , port =

5432 , user= ” ana i s ” , password = ”∗∗∗∗∗∗∗∗∗∗” ,dbname=” a i r c h i c a g o ” , ” : memory : ” )
10

11 #Retr i eve the l a s t sampling date in the aqs . data t ab l e
12 bdate <− con %>% t b l ( s q l ( ”SELECT MAX( timestamp ) FROM aqs . data ” ) ) %>% p u l l ( ) %>% format ( ”%

Y%m%d” ) #Pul l out from the database in a s i n g l e v a r i a b l e
13 #Today ’ s date
14 edate <− format ( Sys . Date ( ) , ”%Y%m%d” )
15

16 # #FOR INITIAL INSERTION USE THE FOLLOWING BEGINNING DATE
17 # bdate <− ”20180101”
18

19 #Function e x t r a c t i n g data f o r a s p e c i f i c time per iod and a s p e c i f i c county .
20 # Request example : https ://aqs . epa . gov/api/rawData? user=ana i s . ladoy@epf l . ch&pw=∗∗∗∗∗∗∗∗∗

∗&format=AQCSV&pc=CRITERIA&param=&bdate =20150101&edate =20180101&s t a t e =17&county=031&
dur=1

21 aqs dat <− function ( bdate , edate , s ta te , county ) {
22 return ( read csv ( paste0 ( ” https : //aqs . epa . gov/api/rawData? user=ana i s . ladoy@epf l . ch&pw=∗∗

∗∗∗∗∗∗∗∗&format=AQCSV&pc=CRITERIA&param=&bdate=” , bdate , ”&edate=” , edate , ”&s t a t e=” , s ta te
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, ”&county=” , county , ”&dur=1” ) ) )
23 }
24

25 #Run aqs dat ( ) f o r Chicago ’ s surrounding count i e s
26 data <− data . frame ( )
27

28 #IL count i e s
29 count i e s . IL <− c ( ’ 031 ’ , ’ 097 ’ , ’ 043 ’ , ’ 197 ’ , ’ 091 ’ , ’ 111 ’ , ’ 089 ’ , ’ 093 ’ , ’ 063 ’ )
30 for ( i in 1 : length ( c ount i e s . IL ) ) {
31 r . IL <− aqs dat ( bdate , edate , ”17” , c oun t i e s . IL [ i ] )
32 data <− rbind (data , r . IL )
33 }
34

35 #IN count i e s
36 count i e s . IN <− c ( ’ 089 ’ , ’ 127 ’ , ’ 111 ’ , ’ 073 ’ , ’ 091 ’ , ’ 149 ’ , ’ 131 ’ )
37 for ( i in 1 : length ( c ount i e s . IN) ) {
38 r . IN <− aqs dat ( bdate , edate , ”18” , c oun t i e s . IN [ i ] )
39 data <− rbind (data , r . IN)
40 }
41

42 #WI count i e s
43 count i e s .WI <− c ( ’ 101 ’ , ’ 127 ’ , ’ 059 ’ , ’ 079 ’ , ’ 133 ’ )
44 for ( i in 1 : length ( c ount i e s .WI) ) {
45 r .WI <− aqs dat ( bdate , edate , ”55” , c oun t i e s .WI[ i ] )
46 data <− rbind (data , r .WI)
47 }
48

49 #Remove empty l i n e s (NA l i n e s )
50 data <− data %>% f i l t e r ( ! i s .na( s i t e ) & s i t e !=’END OF FILE ’ )
51

52 #Rename the columns as de f ined in the DB ( needed f o r dbWriteTable to work )
53 names(data ) <− c ( ” aqs id ” , ”dat s t a t u s ” , ” act code ” , ” timestamp” , ”param code ” , ”dur code ” , ”

f r e q ” , ” va lue ” , ” un i t ” , ”qc” , ”poc” , ” l a t ” , ” lon ” , ”datum” , ” e l e v ” , ”meth code ” , ”mpc” , ”mpc
value ” , ” uncert ” , ” q u a l i f ” )

54

55 #Decompose aqs id in s t a t e code , county code , s i t e num to a l low the j o i n opera t i on with
the s i t e t a b l e

56 data <− data %>% mutate ( s t a t e code=substr ( aqs id , 4 , 5 ) , county code=substr ( aqs id , 6 , 8 ) ,
s i t e num=substr ( aqs id , 9 , 1 2 ) )

57

58 #Add monit id and s i t e id
59 s i t e s db <− t b l ( con , dbplyr : : in schema ( ” aqs ” , ” s i t e ” ) ) %>% d i s t i n c t ( id , s t a t e code ,

county code , s i t e num) %>% c o l l e c t ( )
60 data <− i nne r j o i n ( s i t e s db , data , by=c ( ” s t a t e code ” , ” county code ” , ” s i t e num” ) ) %>%

rename ( s i t e id=id )
61

62 monitors db <− t b l ( con , dbplyr : : in schema ( ” aqs ” , ” monitor ” ) ) %>% d i s t i n c t ( id , s i t e id ,
param code , poc ) %>% c o l l e c t ( )

63 data <− i nne r j o i n ( monitors db , data , by=c ( ” s i t e id ” , ”param code ” , ”poc” ) ) %>% rename (
monit id=id )

64

65 #Remove s t a t e code , county code , s i t e num, param code , poc as they are a l r eady in the
monitor and s i t e t a b l e s

66 data <− data %>% s e l e c t (−c ( s t a t e code , county code , s i t e num, param code , poc , l a t , lon , datum ,
e l e v ) )

67

68 #Rearrange columns to match the DB s t r u c t u r e
69 data <− data [ , c ( ”monit id ” , ” timestamp” , ” s i t e id ” , ” aqs id ” , ”dat s t a t u s ” , ” act code ” , ”dur

code ” , ” f r e q ” , ” va lue ” , ” un i t ” , ”qc” , ”meth code ” , ”mpc” , ”mpc value ” , ” uncert ” , ” q u a l i f ” ) ]
70

71 #INSERT NEW DATA IN THE DB
72 dbWriteTable ( con , c ( ” aqs ” , ” data ” ) ,data ,row .names=F,append=T, temporary=F)
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73

74 #Remove a l l the v a r i a b l e s and c l e a r up R memory
75 rm( l i s t=l s ( ) )
76 gc ( )

Listing 7: WF aot.sh

1 #! / bin /bash
2

3 #Workflow f o r AoT data
4

5 exec 1> l og /WFaot $ ( date +’%Y%m%d ’ ) . l og 2>&1
6

7 #Extract AoT sensor s ’ yes te rday data
8 sh a o t e x t r a c t . sh
9

10 #I n s e r t AoT’ s data in the database and update metadata
11 sh a o t i n s e r t . sh

Listing 8: aot extract.sh

1 #! / bin /bash
2

3 #Extract ion o f AoT data and metadata
4

5 #Download the a rch ive
6 wget http ://www. mcs . an l . gov/ r e s ea r ch / p r o j e c t s / waggle /downloads/ da ta s e t s /AoT Chicago .

complete . l a t e s t . t a r
7 #Untar the a r ch ive
8 ta r xvf AoT Chicago . complete . l a t e s t . t a r
9 #Extract ion o f yesterday ’ s data , save the output in a CSV f i l e

10 gunzip −c AoT Chicago . complete . $ ( date +’%Y−%m−%d ’ ) / data . csv . gz | ( head −1 && grep ‘ date
−−date=’ yesterday ’ +’%Y/%m/%d ’ ‘ ) > AoT Chicago . complete . $ ( date +’%Y−%m−%d ’ ) / yeste rday .
csv

11

12 #You can have i s s u e s running t h i s command on Terminal (OSX) as Linux use GNU c o r e u t i l s
v e r s i o n o f date and OSX use BSD legacy u t i l i t i e s .

13 #To f i x t h i s problem , you need to i n s t a l l the c o r e u t i l s package ( brew i n s t a l l c o r e u t i l s )
that prov ide s GNU ve r s i o n o f t o o l s and r e p l a c e date by gdate as f o l l o w s :

14 # gunzip −c AoT Chicago . complete . $ ( date +’%Y−%m−%d ’ ) / data . csv . gz | grep $ ( gdate −−date=’
yesterday ’ +’%Y/%m/%d ’ ) > f i n a l o 5 . csv

15

16 #Remove the f o l d e r
17 rm −r AoT Chicago . complete . l a t e s t . t a r

Listing 9: aot insert.sh

1 #! / bin /bash
2

3 #I n s e r t i o n o f AoT’ s data and metadata update in the database
4

5 # CONNECT TO THE DATABASE
6 export PGPASSWORD= ∗∗∗∗∗∗∗∗∗∗ #Environment v a r i a b l e s
7 RUN ON MYDB=” psq l −h la2 . r c c . uchicago . edu −p 5432 −U ana i s −d a i r c h i c a g o ”
8

9 cp −R /home/ aladoy / s c r i p t s /AoT Chicago . complete . $ ( date −d ” yeste rday ” +’%Y−%m−%d ’ ) / / var /
tmp/ aot data

10

11 #UPDATE NODE METADATA IN THE DATABASE
12 $RUN ON MYDB <<SQL
13 CREATE TEMP TABLE tmp(
14 raw id TEXT,
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15 p r o j e c t TEXT,
16 vsn TEXT,
17 address TEXT,
18 l a t TEXT,
19 l on TEXT,
20 d e s c r i p t i o n TEXT,
21 PRIMARY KEY ( raw id )
22 ) ;
23

24 COPY tmp FROM ’ / var /tmp/ aot data /AoT Chicago . complete . $ ( date −d ” yeste rday ” +’%Y−%m−%d ’ ) /
nodes . csv ’ DELIMITER ’ , ’ CSV HEADER;

25 ANALYZE tmp ;
26

27 INSERT INTO aot . node ( id , raw id , p ro j e c t , vsn , address , l a t , lon , d e s c r i p t i o n )
28 SELECT nextva l ( ’ seq node ’ ) , tmp . raw id , tmp . pro j e c t , tmp . vsn , tmp . address , tmp . la t , tmp .

lon , tmp . d e s c r i p t i o n
29 FROM tmp LEFT JOIN aot . node ON tmp . raw id=aot . node . raw id
30 WHERE aot . node . raw id IS NULL;
31

32 DROP TABLE tmp ;
33 SQL
34

35 #Update geometry column
36 $RUN ON MYDB <<SQL
37 UPDATE aot . node SET geom = ST SetSRID ( ST MakePoint ( ” lon ” : : numeric , ” l a t ” : : numeric ) ,4326)

WHERE geom IS NULL;
38 SQL
39

40

41 #UPDATE SENSOR METADATA IN THE DATABASE
42 $RUN ON MYDB <<SQL
43 CREATE TEMP TABLE tmp(
44 onto logy TEXT,
45 s y s t TEXT,
46 name TEXT,
47 param TEXT,
48 uni t TEXT,
49 minval TEXT,
50 maxval TEXT,
51 r e f TEXT,
52 PRIMARY KEY ( syst , name , param )
53 ) ;
54

55 COPY tmp FROM ’ / var /tmp/ aot data /AoT Chicago . complete . $ ( date −d ” yeste rday ” +’%Y−%m−%d ’ ) /
s e n s o r s . csv ’ DELIMITER ’ , ’ CSV HEADER;

56 ANALYZE tmp ;
57

58 INSERT INTO aot . s enso r ( id , ontology , syst , name , param , unit , minval , maxval , r e f )
59 SELECT nextva l ( ’ s e q s e n s o r ’ ) , tmp . ontology , tmp . syst , tmp . name , tmp . param , tmp . unit , tmp .

minval , tmp . maxval , tmp . r e f
60 FROM tmp LEFT JOIN aot . s enso r ON tmp . s y s t=aot . s enso r . s y s t AND tmp . name=aot . s enso r . name

AND tmp . param=aot . s enso r . param
61 WHERE aot . s enso r . s y s t IS NULL AND aot . s enso r . name IS NULL AND aot . s enso r . param IS NULL;
62

63 DROP TABLE tmp ;
64 SQL
65

66

67 #INSERT NEW DATA IN THE DATABASE
68 $RUN ON MYDB <<SQL
69 CREATE TEMP TABLE tmp(
70 timestamp TIMESTAMP,
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71 raw id TEXT,
72 s y s t TEXT,
73 s enso r TEXT,
74 param TEXT,
75 val raw TEXT,
76 value TEXT,
77 PRIMARY KEY ( timestamp , raw id , syst , sensor , param )
78 ) ;
79

80 COPY tmp FROM ’ / var /tmp/ aot data /AoT Chicago . complete . $ ( date −d ” yeste rday ” +’%Y−%m−%d ’ ) /
yesterday . csv ’ DELIMITER ’ , ’ CSV HEADER;

81 ANALYZE tmp ;
82

83 INSERT INTO aot . data ( s e n s o r i d , timestamp , node id , val raw , va lue )
84 SELECT S . id , tmp . timestamp , N. id , tmp . val raw , tmp . va lue
85 FROM tmp LEFT JOIN aot . s enso r S ON tmp . s y s t=S . sy s t AND tmp . s enso r=S . name AND tmp . param=S .

param
86 LEFT JOIN aot . node N ON tmp . raw id=N. raw id
87 WHERE S . id IS NOT NULL;
88

89 DROP TABLE tmp ;
90 SQL
91

92 #Remove the f i l e s
93 rm −r AoT Chicago . complete . l a t e s t . t a r
94 rm −r AoT Chicago . complete . $ ( date +’%Y−%m−%d ’ )
95 rm −f yes te rday . csv
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Document 7.1: Description of the models that will be implemented in the Air Quality Project

Land Use Regression (LUR) Model - Sensors Only

1. Calculate range, IQR for the predictor variables within buffers of sensor
locations

(a) Buffers (m) for analysis: 50, 100, 150, 200, 300, 500, 1000

(b) Predictor Variables (list in 13): Point emissions, Area emissions (ie.
traffic intensity and road length), Land Use, Population Density

2. Descriptive statistical summary of analysis comparing AoT, AirCasting,
and EPA regulatory sensors

3. Replication of methods:

(a) Univariate stepwise regression following LUR standard literature
for baseline models, using optimal buffer distance for the region of
study

(b) Interpolation for region of study

(c) Spatial autocorrelation testing of model results, following LUR lit-
erature

4. Potential extensions:

(a) Factor analysis to account for correlation across predictor variables

(b) Updated interpolation and/or spatial regression methods for final
analysis

Hybrid Model - Sensors with Satellite Data

1. Aerosol Optical Depth (AOD) satellite data pre-processing and storage

2. Develop variable estimates for each 1km2 grid square in region:

(a) Baseline Covariates: AOD, Planetary Boundary Layer, Meteoro-
logical data, NDVI

(b) Spatiotemporal Predictor Variables: Point emissions, Area emis-
sions (ie. traffic intensity and road length), Land Cover, Elevation

3. Replication of methods - Three-stage model as follows:

(a) PM model fit for all AOD grid squares co-located with sensors

(b) Model fit used to determine value for all AOD grid squares without
sensors

(c) Predicted PM model (generalized additive mixed model with spatial
smoothing) fit for grid squares without AOD data
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Figure 16: Results of the AirBeam sensor performance evaluation performed during
a biking session in the south side of Chicago on April 26th

Performance evaluation of the AirBeam sensor
A. Ladoy

4/26/2018

Sensor carrier : Bike
Date : 04/26/2018
Time : 18:19 - 19:08
Location : South Side of Chicago
Registered account on the AirCasting platform : csds_aot

#List of AirCasting sessions for the csds_aot account

library('httr')
user_session.r<-GET('http://aircasting.org/api/sessions.json?q[usernames]=csds_aot')
user_session <- content(user_session.r)

flag <- integer()
user_session.meta<-data.frame()
for (i in 1:3) {
tryCatch(

{
print(paste('Session title :',user_session[[i]]$title,'Session id :', +

user_session[[i]]$id,sep=' '))
user_session.meta[i,'title'] <- user_session[[i]]$title
user_session.meta[i,'id'] <- user_session[[i]]$id
},
error=function(err){
message('On iteration ',i, ' there was an error: ',err)
flag <<-c(flag,i)}

)
}

#Retrieve data for the session "irene"
session_id <- user_session.meta$id[1]

session.r <- GET(paste('http://aircasting.org/api/sessions/',session_id,'.json',sep=''))
session <- content(session.r)

library(data.table)

data.temp <- rbindlist(session$streams$`AirBeam2-F`$measurements, fill=TRUE)
data.rh <- rbindlist(session$streams$`AirBeam2-RH`$measurements, fill=TRUE)
data.PM25 <- rbindlist(session$streams$`AirBeam2-PM2.5`$measurements, fill=TRUE)

#Conversion of temperature measurements to Celsius degree
data.temp$value <- sapply(data.temp$value, function(x) (x-32)/1.8)

library(ggplot2)
library(gridExtra)

#Function to print results
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descriptive_stat <- function(pollutant, unit, name, style) {
if(missing(style))
{

style='equal'
}

#Conversion of time to POSIXct format
pollutant$time <- as.POSIXct(pollutant$time,tz = "UTC",format = "%Y-%m-%dT%H:%M:%SZ")
print(summary(pollutant$value)) # Descriptive statistics
p1<-ggplot(pollutant, aes(value)) + geom_histogram()+labs(x=paste(name, '[',unit,']'))
p2<-ggplot(pollutant,aes(time,value)) + geom_line(size=1)
print(grid.arrange(p1, p2, ncol = 2))

}

Temperature measurements

Follow the link below to see the map of recorded temperature measurements in the AirCasting platform :
http://www.aircasting.org/map#/map_sessions?data=%7B%22location%22:%7B%22address%22:
%22%22,%22distance%22:%2210%22,%22limit%22:false%7D,%22gridResolution%22:25,%22tags%22:
%22%22,%22usernames%22:%22csds_aot,%20%22,%22time%22:%7B%22timeFrom%22:300,%22timeTo%
22:1739,%22dayFrom%22:0,%22dayTo%22:365,%22yearFrom%22:2017,%22yearTo%22:2018%7D,%22heat%
22:%7B%22highest%22:135,%22high%22:100,%22mid%22:75,%22low%22:45,%22lowest%22:15%7D,
%22sensorId%22:%22%22,%22counter%22:1%7D&sessionsIds=%5B53596%5D&tmp=%7B%22tmpSensorId%
22:%22Temperature-AirBeam2-F%20(F)%22%7D&didSessionsSearch=true&map=%7B%22zoom%22:
14,%22lat%22:41.784973584470016,%22lng%22:-87.58172333350001,%22mapType%22:%22terrain%22%7D
descriptive_stat(data.temp,'°C',substitute(data.temp))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 12.22 13.89 16.11 17.10 18.89 26.67

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

2

59



0

100

200

300

400

12 16 20 24

data.temp [ °C ]

co
un

t

12

16

20

24

18:30 18:45 19:00

time

va
lu

e

## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]

Relative Humidity (RH) measurements

Follow the link below to see the map of recorded RH measurements in the AirCasting platform :
http://www.aircasting.org/map#/map_sessions?data=%7B%22location%22:%7B%22address%22:
%22%22,%22distance%22:%2210%22,%22limit%22:false%7D,%22gridResolution%22:25,%22tags%22:
%22%22,%22usernames%22:%22csds_aot,%20%22,%22time%22:%7B%22timeFrom%22:300,%22timeTo%
22:1739,%22dayFrom%22:0,%22dayTo%22:365,%22yearFrom%22:2017,%22yearTo%22:2018%7D,%22heat%
22:%7B%22highest%22:100,%22high%22:75,%22mid%22:50,%22low%22:25,%22lowest%22:0%7D,
%22sensorId%22:%22%22,%22counter%22:1%7D&sessionsIds=%5B53596%5D&tmp=%7B%22tmpSensorId%
22:%22Humidity-AirBeam2-RH%20(%25)%22%7D&didSessionsSearch=true&map=%7B%22zoom%22:
14,%22lat%22:41.784973584470016,%22lng%22:-87.58172333350001,%22mapType%22:%22terrain%22%7D
descriptive_stat(data.rh, '%',substitute(data.rh))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 37 41 50 50 59 66
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## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]

PM2.5 measurements

Follow the link below to see the map of recorded PM2.5 measurements in the AirCasting platform :
http://www.aircasting.org/map#/map_sessions?data=%7B%22location%22:%7B%22address%22:
%22%22,%22distance%22:%2210%22,%22limit%22:false%7D,%22gridResolution%22:25,%22tags%22:
%22%22,%22usernames%22:%22csds_aot,%20%22,%22time%22:%7B%22timeFrom%22:300,%22timeTo%
22:1739,%22dayFrom%22:0,%22dayTo%22:365,%22yearFrom%22:2017,%22yearTo%22:2018%7D,%22heat%
22:%7B%22highest%22:150,%22high%22:55,%22mid%22:35,%22low%22:12,%22lowest%22:0%7D,
%22sensorId%22:%22%22,%22counter%22:1%7D&sessionsIds=%5B53596%5D&tmp=%7B%22tmpSensorId%
22:%22Particulate%20Matter-AirBeam2-PM2.5%20(%C2%B5g%2Fm%C2%B3)%22%7D&didSessionsSearch=
true&map=%7B%22zoom%22:14,%22lat%22:41.784973584470016,%22lng%22:-87.58172333350001,
%22mapType%22:%22terrain%22%7D
descriptive_stat(data.PM25, 'mu/m3',substitute(data.PM25), 'jenks')

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000 0.000 1.000 1.216 1.000 63.000
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## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
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Figure 17: Data documentation relative to the spatial database

sensor_id  - ID of the sensor that did the measurement.
timestamp  - Time at which the measurement was recorded.
node_id  - ID of node where the measurement was recorded.
val_raw  - Raw measurement value from sensor.
val_hrf  - Converted, "human readable" value from sensor.

id  - ID of node.
raw_id  - ID of the node as defined by the Argonne team.
project  - Project which manages node (only Chicago for now)
vsn  - Public name for node. The VSN is visible on the physical enclosure.
address  - Street address of node.
lat  - Latitude of the node.
lon  - Longitude of the node.
description  - More detailed description of node's build and configuration.

id  - ID of the sensor
ontology  - Ontology of measurement.
syst  - Subsystem containing the sensor.
name  - Sensor name.
param  - Parameter measured by the sensor.

DB - Readme

Array of Things (AoT)

aot.data table

aot.node table

aot.sensor table
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unit  - Physical units of sensor value.
minval  - Minimum value that the sensor can record.
maxval  - Maximum value that the sensor can record.
ref  - Reference to the sensor's datasheet.

monitor_id  - ID of the monitor that did the measurement.
timestamp  - Time at which the measurement was recorded.
site_id  - ID of the site where the measurement was recorded.
dat_status  - Status of the data. 0 = Preliminary 1 = Final. Data are denoted as final after the

agency collecting and reporting the data certifies that they meet quality assurance requirements and
are complete and correct in AQS. This is only required for criteria pollutants reported from state
agencies.
act_code  - Action code for data ingesting. Not relevant to data obtained from QAD. Always blank.
dur_code  - Measurement (sampling) period in minutes.
freq  - How often the measurement is repeated (minutes). If measurements are taken multiple

times per day (i.e., hourly), it is blank; otherwise, minutes equivalent (e.g., every day = 1440, and every
other day = 2880).
value  - Data (sampled) value of the specified parameter.

Air Quality System (AQS)

aqs.data table
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unit  - Three-digit AQS code used to describe the units in the measurement of the specified
parameter.
qc  - The AIRNow code used to link to the quality control codes that describe the validity, invalidity,

or questionable status of the measurement.
meth_code  - Three-digit AQS code that identifies the method used to perform the measurement.
mpc  - Measurement Performance Characteristic (MPC) is a performance measurement for the

measurement taken. The only valid value for QAD responses is "MDL" meaning method (lower)
detection limit.
mpc_value  - The value for the mpc (MDL) in the same units as the sample.
uncert  - Uncertainty needs to be in the same units as the specified parameter and is given using

the 95% confidence level.
qualif  - AQS qualifier code(s) separated by spaces. Qualifiers indicate whether the data have

been flagged by the submitter and the reason the sample was so flagged.

id  - ID of the site
state_code  - The FIPS code of the state in which the site is located.
county_code  - The FIPS code of the county in which the site is located.
site_num  - A unique number within the county identifying the site.
lat  - Latitude of the monitoring site.
lon  - Longitude of the monitoring site.
datum  - The Datum associated with the Latitude and Longitude measures.
elev  - The elevation of the ground at the site in meters above mean sea level.
land_use  - A category describing the predominant land use within a 1/4 mile radius of the site.
loc_set  - A description of the setting within which the monitoring site is located. E.g., rural, urban,

etc.
site_bdate  - The date when the site began operating.
site_edate  - The date on which the operating agency indicated that all operations ceased at this

site.
met_state_code  - Where sites are required to collect meteorological data, they may be able to list

a surrogate site from where the meteorological data will be used. If a "met" site is listed this contains
the AQS State Code identifier for that site.
met_county_code  - If a "met" site is listed this contains the AQS County Code identifier for that

site.
met_site_id  - If a "met" site is listed this contains the AQS Site Number for that site.
met_site_type  - If a "met" site is listed this contains the type of surrogate site. E.g., AQS site,

National Weather Service site, etc.
met_site_dist  - If a "met" site is listed this contains the distance from this site to the met site in

meters.
met_site_dir  - If a "met" site is listed this contains the direction from this site to the met site (true,

not magnetic, direction).

aqs.site table
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gmt_offset  - The time difference (in hours) between local standard time at this site and GMT.
agency  - The name of the agency that owns or controls the land at the site.
local_name  - The name of the site (if any) given by the State, local, or tribal air pollution control

agency that operates it.
address  - The approximate street address of the monitoring site.
zip_code  - The postal zip code in which the monitoring site resides.
state_name  - The name of the state where the monitoring site is located.
county_name  - The name of the county where the monitoring site is located.
city_name  - The name of the city where the monitoring site is located. This represents the legal

incorporated boundaries of cities and not urban areas.
cbsa_name  - The name of the core bases statistical area (metropolitan area) where the monitoring

site is located.
tribe_name  - If this site resides on tribal lands and the tribe has chosen to identify the site with

tribal identifiers, this is the name of the tribe that owns the site.
extract_date  - The date on which this data was retrieved from the AQS Data Mart. This does not

mean that all data is valid as of this date. Once site information is entered by the owning agency, it
may not be updated as values change (e.g., location setting evolves from urban to suburban).

id  - ID of the monitor
site_id  - ID of the site where the measurement was taken
param_code  - The AQS code corresponding to the parameter measured by the monitor.
param_name  - The name or description assigned in AQS to the parameter measured by the

monitor. Parameters may be pollutants or non-pollutants.
poc  - The "parameter occurrence code" (POC). The POC is used to specify if more than one

monitor is measuring the same parameter at the same site. For example, if there are two ozone
monitors at a site, they would have different POCs.
dat_byear  - The year in which the earliest sample from this site is available in AQS.
dat_edate  - The date on which the most recent sample from this site is available in AQS. This is

often the best way to determine if a monitor is still operating. Note that the reporting deadlines to AQS
are generally lengthy - about 6 months for most parameters.
type  - An administrative or regulatory classification for the monitor.
networks  - A list of the monitoring networks (groups of monitors with common goals and

procedures) to which the monitor belongs. If the monitor belongs to more than one network, the names
will be separated with semicolons.
report_ag  - The name of the agency responsible for reporting data to AQS.
pqao  - The name of the Primary Quality Assurance Organization for the monitor. Monitors of the

same parameter belonging to the same PQAO must meet aggregate quality assurance requirements.
collect_ag  - The name of the agency responsible for collecting data from the monitor.
excl  - If the agency operating the monitor has requested that data from this monitor be excluded

from NAAQS calculations and the governing EPA regional office has agreed, the NAAQS standard(s)

aqs.monitor table

66



and the years of exclusion are listed.
monit_obj  - Identification of the reason for measuring air quality by the monitor.
last_meth_code  - A three digit code representing the measurement method used by the monitor

for its most recent sample (methods can change, but often do not). A method code is only unique
within a parameter (that is, method 111 for ozone is not the same as method 111 for benzene).
last_meth_name  - The full description of the measurement method used by the monitor for its

most recent sample (methods can change, but often do not).
naaqs_prim_monitor  - A flag indicating if this monitor is part of a collocated set of monitors at the

site and it is the primary data source for NAAQS data comparisons.
qa_prim_monitor  - A flag indicating if this monitor is part of a collocated set of monitors at the site

and it is the primary monitor for making quality assurance comparisons.
extract_date  - The date on which this data was retrieved from the AQS Data Mart. This does not

mean that all data is valid as of this date. Once monitor information is entered by the reporting agency,
it may not be updated as values change (e.g., location setting evolves from urban to suburban).
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