CO₂ emission reductions in Switzerland and developing countries

Drawing from SR15 and our research

Philippe Thalmann
Professor of environmental economics EPFL
Member of OcCC

Séminaire/BBL Changement climatique et croissance économique, Berne, 19 mars 2019
WHAT THE IPCC SR 1.5° REPORT IMPLIES IN TERMS OF EMISSIONS REDUCTIONS AND POSSIBLE COSTS
Pathways compatible with global budget

Breakdown of contributions to global net CO₂ emissions in four illustrative model pathways

- **Fossil fuel and industry**
- **AFOLU**
- **BECCS**

P1: A scenario in which social, business and technological innovations result in lower energy demand up to 2050 while living standards rise, especially in the global South. A downsized energy system enables rapid decarbonization of energy supply. Afforestation is the only CDR option considered; neither fossil fuels with CCS nor BECCS are used.

P2: A scenario with a broad focus on sustainability including energy intensity, human development, economic convergence and international cooperation, as well as shifts towards sustainable and healthy consumption patterns, low-carbon technology innovation, and well-managed land systems with limited societal acceptability for BECCS.

P3: A middle-of-the-road scenario in which societal as well as technological development follows historical patterns. Emissions reductions are mainly achieved by changing the way in which energy and products are produced, and to a lesser degree by reductions in demand.

P4: A resource- and energy-intensive scenario in which economic growth and globalization lead to widespread adoption of greenhouse-gas-intensive lifestyles, including high demand for transportation fuels and livestock products. Emissions reductions are mainly achieved through technological means, making strong use of CDR through the deployment of BECCS.

SR15, SPM fig. 3b
All pathways require rapid and profound transformations

- Net CO$_2$ emissions = 0 around 2050
- Transformation of energy use: deep electrification and energy efficiency improvements in buildings, mobility, industry
- Transformation of electricity generation: mostly renewables (70-85% in 2050), no more coal
- Profound changes in land use, depending on scenario
- Nothing unheard of, even a speed of transformation that is known, but the scale is new
Emissions are declining in some regions

Emissions are declining in Switzerland but very slowly

Energy-related and total CO₂ emissions in Switzerland since 1945

From Fed. off. env. data
What would it cost?

- No estimates of total costs in SR15, only marginal costs
- These are very high, 3-4× higher than for +2°C
- Marginal costs do not mean much when the cost curve gets very steep
- Many measures are costless or generate greater external benefits than private costs (clean air, clean water, clean soils)
What would it cost?

Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €80 per tCO$_2$e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play.

Source: Global GHG Abatement Cost Curve v2.1
What would it cost in Switzerland?

Overall Swiss GHG abatement cost curve: base case
2030, measures with costs below €100 per tonnes of CO₂
Incomes of 4 billion CHF are at stake in the Swiss oil industry alone

<table>
<thead>
<tr>
<th>Description</th>
<th>Billion CHF, 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spending for final energy use</td>
<td>26.5</td>
</tr>
<tr>
<td>./. Electricity</td>
<td>- 10.0</td>
</tr>
<tr>
<td>Spending for final use of fossil energy</td>
<td>16.5</td>
</tr>
<tr>
<td>./. Petroleum tax</td>
<td>- 4.6</td>
</tr>
<tr>
<td>./. CO$_2$ tax</td>
<td>- 1.1</td>
</tr>
<tr>
<td>./. Value-added tax</td>
<td>- 1.2*</td>
</tr>
<tr>
<td>Spending for final use of fossil energy without taxes</td>
<td>9.6</td>
</tr>
<tr>
<td>./. Imports of fossil energy</td>
<td>- 5.7</td>
</tr>
<tr>
<td>Net domestic incomes from sale of fossil energy</td>
<td>3.9*</td>
</tr>
</tbody>
</table>

Data sources: Fed. off. of energy (Gesamtenergiestatistik), Fed. finance admin. and Federal customs admin. / * = Estimates
ACHIEVEMENTS AND CHALLENGES IN SWITZERLAND
What was achieved in Switzerland?

Decoupling after first oil-price shock (1973)
Many causes, among which the shift from domestic production to imports of industrial goods

From Fed. off. env. and Fed. off. of statistics data
How much is attributable to policy?

Energy-related CO₂ emissions in a scenario without measures and two scenarios with existing and announced measures (1990-2035)

Mio. t CO₂/a

-28%

CO₂ from combustion processes (1A)
Fig. 1 of Vielle and Thalmann (2017)
Total reduction of CO$_2$ emission in scenario with decided measures compared to scenario without measures, by group of measures (1990-2035)
Decarbonisation pathways for Switzerland

In parallel with *Deep Decarbonization Pathways Project* (DDPP) launched in October 2013 in view of COP21 (Paris)

Deep Decarbonization Pathways Project (2015), Pathways to deep decarbonization 2015 report - executive summary, SDSN – IDDRI, Fig. 2
Decarbonisation pathways for Switzerland

- Ambitious but realistic target: **1-1.5 tCO$_2$eq/capita** in 2050 (all GHGs without air transport and without LULUCF)
- Same target as the "NEP" scenario of the Energy Perspectives (Prognos, 2012) and as the Swiss INDC for COP21
- This target was seen as compatible with **$+2^\circ$ warming**
- Imagine and calculate the instruments necessary to achieve this: use existing instruments plus generalised CO$_2$ tax
Deep decarbonisation pathways (for max $+2^\circ$)

-30% domestic
-67%
How to get to 1\text{t CO}_2/capita in 2050

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO\textsubscript{2} tax (CHF\textsubscript{2013}/tCO\textsubscript{2})</td>
<td>177</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price of CO\textsubscript{2} certificats (CHF\textsubscript{2013}/tCO\textsubscript{2})</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tax on gasoline and diesel (CHF\textsubscript{2013}/l)</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same CO\textsubscript{2} tax on all fossils (CHF\textsubscript{2013}/tCO\textsubscript{2})</td>
<td></td>
<td>88</td>
<td>189</td>
<td>511</td>
</tr>
<tr>
<td>Social cost (% household consumption, relative to reference scenario)</td>
<td>0.11</td>
<td>0.42</td>
<td>0.78</td>
<td></td>
</tr>
</tbody>
</table>

Vielle et al. (2016). Scenario with induced technical progress (CCS is allowed)

511 CHF/tCO\textsubscript{2} with emissions of 1 tCO\textsubscript{2}/capita on average in 2050 is comparable to 128 CHF/tCO\textsubscript{2} for current emissions of 4 tCO\textsubscript{2}/capita

511 CHF/tCO\textsubscript{2} amount to 1.35 CHF/litre heating oil, which are added to the expected pre-CO\textsubscript{2} tax price of 1.40 CHF/litre in 2050
Contributions of consumption and technology in the case of house heating

Mean annual rate of change per decade
Decarbonisation scenario with induced technical change

<table>
<thead>
<tr>
<th>Metric</th>
<th>2010-2020</th>
<th>2020-2030</th>
<th>2030-2040</th>
<th>2040-2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>+1.6%</td>
<td>+0.4%</td>
<td>+0.3%</td>
<td>+0.2%</td>
</tr>
<tr>
<td>GDP per capita</td>
<td>-0.1%</td>
<td>+1.0%</td>
<td>+0.9%</td>
<td>+0.7%</td>
</tr>
<tr>
<td>Heated surface</td>
<td>+1.5%</td>
<td>+1.1%</td>
<td>+0.7%</td>
<td>+0.6%</td>
</tr>
<tr>
<td>Energy intensity</td>
<td>-3.7%</td>
<td>-2.7%</td>
<td>-3.3%</td>
<td>-3.5%</td>
</tr>
<tr>
<td>Carbon intensity</td>
<td>-0.0%</td>
<td>-0.6%</td>
<td>-1.3%</td>
<td>-3.7%</td>
</tr>
<tr>
<td>CO₂ emissions</td>
<td>-2.3%</td>
<td>-2.2%</td>
<td>-3.9%</td>
<td>-6.5%</td>
</tr>
</tbody>
</table>

Vielle et al. (2016, unpublished table)
All sectors must contribute

CO₂ emissions (Mt)

Decarbonisation scenario
with induced technical progress

Reference scenario

[Graph showing CO₂ emissions from different sectors: Others (industry, service & agriculture), Households (residential), Other transports (air & fluvial), Land transport, Energy conversion (excluding waste).]

Vielle et al. (2016, Fig. 2 + 15)
The cost depends on technological progress and what the ROW does

<table>
<thead>
<tr>
<th>Swiss deep decarbonization scenarios</th>
<th>Social cost in 2050 (% household consumption, relative to reference scenario)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central (with CCS and induced technical progress)</td>
<td>-0.8%</td>
</tr>
<tr>
<td>Central without CCS</td>
<td>-1.1%</td>
</tr>
<tr>
<td>Central without induced technical progress</td>
<td>-0.8%</td>
</tr>
<tr>
<td>Central with international DDP</td>
<td>-1.3%</td>
</tr>
</tbody>
</table>

Vielle et al. (2016)
Is the CO$_2$-Law proposed for 2021-2030 by Federal Council sufficient?

- It is quite doubtful that 2020 target can be met
- Target: -30% in 2030 rel. 1990 implies accelerated decrease after 2030
- Continuation of existing instruments with some tightening
- CO$_2$ tax only for thermal fuels: insufficient
- Cap on CO$_2$ tax at 210 CHF/t will bind if world oil price is lower in 2030 than the expected 139 USD$_{2013}$/barrel
- The tax-exemption mechanism for firms is too lenient and causes high administrative costs
Swiss GHG emissions reductions needed for different objectives
Conclusions on Swiss climate policy

- GHG emissions are stabilized since 1970s despite growing population and economy, but little of this is due to climate policy
- Existing and planned measures could lower CO$_2$ emissions by 28% in 2035 rel. 1990, not enough by any criterion
- Objectives in CO$_2$-law are not ambitious enough and not met
- The efforts needed now to meet the 2020 target would lead to 0 emissions by 2050 if continued
- There are not simulations yet of such a decarbonisation path
- Reducing GHG emissions to 1.7 tCO$_2$eq/capita in 2050 is feasible and would cost around 1% of aggregate consumption
HOW ABOUT THE REST OF THE WORLD?
Reaching the SDGs is much more likely in a 1.5° world than in a warmer world

Many important results and statements on impacts of CC for developing countries in IPCC 1.5° report:

- Poorer countries are particularly exposed and vulnerable
- +1.5°C means several hundred million fewer people exposed to climate-related risks and poverty by 2050 than with +2°C
- Not only impacts, also mitigation and adaptation are linked to sustainable development
- Some mitigation options pose threats to SD: bio-fuels, BECCS, afforestation
- Good adaptation can foster SD and poverty reduction
The role of adaptation

- "A wide range of adaptation options are available to reduce the risks to natural and managed ecosystems (e.g., ecosystem-based adaptation, ecosystem restoration and avoided degradation and deforestation, biodiversity management, sustainable aquaculture, and local knowledge and indigenous knowledge), the risks of sea level rise (e.g., coastal defence and hardening), and the risks to health, livelihoods, food, water, and economic growth, especially in rural landscapes (e.g., efficient irrigation, social safety nets, disaster risk management, risk spreading and sharing, and community-based adaptation) and urban areas (e.g., green infrastructure, sustainable land use and planning, and sustainable water management) (medium confidence)." (SR15, SPM B.6.1)

- "Limits to adaptive capacity exist at 1.5°C of global warming, become more pronounced at higher levels of warming and vary by sector, with site-specific implications for vulnerable regions, ecosystems and human health (medium confidence)." (SR15, SPM B.6.3)
Are there adaptation scenarios?

- It is much more common to distinguish varieties of possible measures to mitigate the impacts of climate change:
 - Sea level rise: build dikes, relocate activities
 - Less snow: artificial snow cover, shift tourism activities
 - Droughts for agriculture: build irrigation system, change crops

- "Scenarios" would group such measures by a criterion:
 - "Technology" scenario: dikes, artificial snow, irrigation
 - "Avoidance" scenario: relocation, change activity or crop
 - "Centralized" scenario: the State organizes adaptation measures
 - "Decentralized" scenario: autonomous adaptation by those affected
 - "Proactive"/"Reactive" scenarios: try to avoid damage or prepare to repair

- No one recommends one adaptation scenario: you always need a little of everything
How can Switzerland help?

• "International cooperation is a critical enabler for developing countries and vulnerable regions to strengthen their action for the implementation of 1.5°C-consistent climate responses, including through enhancing access to finance and technology and enhancing domestic capacities, taking into account national and local circumstances and needs (high confidence)" (SR15, SPM D.7.3)

• Switzerland can help with technological but also organizational know-how
5 reasons why Switzerland should reduce its GHG emissions without waiting for the World

1. A more efficient economy
2. Cleaner air and other co-benefits
3. Developing exportable solutions
4. Prompting an international response
5. Stewardship: the 39 MtCO$_2$eq emitted in Switzerland (2016) become 100 Mt when emissions for Switzerland are estimated

CO$_2$ emissions and CO$_2$ footprint of Switzerland

Carbon Footprint for Switzerland (1970-2015)

- Territorial Emissions
- Footprint (CBA)

https://worldmrio.com/footprints/carbon/
last update 3 June 2018
CONCLUSION
Conclusions

• Every country must get free of fossil fuels and reduce as much as possible its emissions of other greenhouse gases
• The longer it waits, the steeper the path
• High-income, high-tech countries should pave the way
• Pushing firms and households to decarbonize through price signals will call for high taxes … hardly acceptable, hardly doable (even if actual welfare cost is small)
• A 'New Climate Deal' is needed
• Example: decarbonisation of Swiss railway transportation between 1918 and 1950!
APPENDIX
References (1)

Effectiveness of Swiss climate policy
Thalmann, Philippe, "La politique climatique de la Suisse est-elle vraiment celle d'un bon élève?", La Vie Economique/Die Volkswirtschaft 86(12), Décembre 2013, 35-38
Vielle, Marc, and Philippe Thalmann, "Updated emissions scenarios without measures, 1990-2035", Report for Federal Office for the Environment, Lausanne, 12.10.2017

Deep Decarbonisation
References (2)

Climate policy targets

Impacts of climate change
Vöhringer, Frank, Marc Vielle, Boris Thurm, Wolfgang Knoke, Dario Stocker, Anita Frehner, Sophie Maire, Philippe Thalmann, "Assessing the impacts of climate change for Switzerland", *Final report* for the Federal Office for the Environment, 28 February 2017
Vöhringer, Frank, Marc Vielle, Philippe Thalmann, Anita Frehner, Wolfgang Knoke, Dario Stocker, Boris Thurm, "Costs and benefits of climate change in Switzerland", *Climate Change Economics* (published online 12 March 2019, doi:10.1142/S2010007819500052)