Scrape-off layer simulations in a Double Null magnetic configuration

C. Beadle, P. Ricci, P. Paruta

École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne. Switzerland

The GBS Model

- The GBS Code simulates edge and SOL turbulent dynamics over a 3D domain [Halpern et al., JCP 2016], [Ricci et al. PPCF 2012]
- GBS evolves the drift-reduced Braginskii equations with ordering $k_\parallel \ll k_\perp$ and $d/dt \ll \omega_{ci}$. [Zeiler et al., PoP 1997]
- Magnetic pre-sheath boundary conditions are used for the outer boundary. [Loizu et al., POP 2012.]

The GBS Code

- Geometric coordinate system to avoid the coordinate singularity present for magnetic coordinates at the X-point.
- Flux-driven: no separation is made between equilibrium and fluctuating quantities.
- Plasma and heat outflow from the core mimicked by local plasma and heat sources and the code is evolved until a steady state is reached.
- 4th order finite differences for spatial derivatives and 4th order Runge-Kutta time stepping.

Magnetic flux surfaces and geometrical coordinate system.

Some of the past GBS achievements

- Characterization of non-linear turbulent regimes in the SOL [Mosetto et al., PoP 2015]
- SOL width scaling as a function of dimensionless/engineering plasma parameters [Halpern et al., PPCF 2016]
- Origin and nature of intrinsic toroidal plasma rotation in the SOL [Loizu et al., PoP 2014]
- Mechanisms regulating the SOL equilibrium electrostatic potential [Loizu et al., PPCF 2013]

Double Null Simulation Results

- Magnetic equilibrium based on three current-carrying wires
- HFS is quiescent whilst LFS is turbulent.
- Pressure and electrical potential are higher at the upper than lower X point.
- High electrical potential at upper x point results in circulating flow.

SWISS PLASMA CENTER

Up-Down Asymmetry

- Consider main terms in time and toroidally averaged Ohm's law, which is contained within the GBS $v_{\parallel e}$ equation: $\nabla_{\parallel}(\phi) = 1.71 \nabla_{\parallel}(T_e) \langle \frac{T_e}{z} \nabla_{\parallel} N \rangle \langle \nu j_{\parallel} \rangle$
- To obtain \(\phi \) we integrate along the field lines, taking the mean of the integrals from either end of the field line:

Role of interchange and Kelvin-Helmholtz drive

- Interchange instability drive red circled terms is removed.
- With drift-wave turbulence now dominant, HFS is more turbulent and the asymmetry is reversed.

- Kelvin-Helmoltz drive green circled terms is removed.
- Turbulence in upper part of HFS disappears
- · Shape of turbulent structures on LFS changes.

Parameter scan in resistivity and safety factor

- The parallel resistivity, v, varied by two orders of magnitude.
- Poloidal field strength (and hence safety factor q) also varied.
- The SOL width is increased with increased resistivity and higher q.

Blob transport

Blob recognition for v = 1 (right) and v = 0.01 (left)

- Blobs dominate transport in outer SOL
- Blobs are tracked via pattern recognition.
- At higher resistivity, blobs have greater radial size and velocity
- But are less numerous, resulting in similar level of blob transport

